WorldWideScience

Sample records for organic carbon nutrients

  1. Soluble organic nutrient fluxes

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  2. Do elevated nutrients and organic carbon on Philippine reefs increase the prevalence of coral disease?

    Kaczmarsky, L.; Richardson, L. L.

    2011-03-01

    Characterizations of Philippine coral diseases are very limited. The two most common, ulcerative white spot disease (UWS) and massive Porites growth anomalies (MPGA), target the genus Porites, a dominant reef-building genus. This is the first investigation in the Philippines to detect positive correlations between coral disease, nutrient levels, and organic carbon. A total of 5,843 Porites colonies were examined. Water and sediment samples were collected for analyses of nutrients (total nitrogen and phosphorus) and total organic carbon at 15 sites along a 40.5 km disease gradient, which was previously shown to positively correlate with human population levels. Results suggest that outbreaks of UWS and MPGAs are driven by elevated nutrient and organic carbon levels. Although the variables analyzed could be proxies for other causative agents (e.g., high sediment levels), the results provide quantitative evidence linking relatively higher coral disease prevalence to an anthropogenically impacted environment.

  3. Nutrient and dissolved organic carbon removal from natural waters using industrial by-products.

    Wendling, Laura A; Douglas, Grant B; Coleman, Shandel; Yuan, Zheng

    2013-01-01

    Attenuation of excess nutrients in wastewater and stormwater is required to safeguard aquatic ecosystems. The use of low-cost, mineral-based industrial by-products with high Ca, Mg, Fe or Al content as a solid phase in constructed wetlands potentially offers a cost-effective wastewater treatment option in areas without centralised water treatment facilities. Our objective was to investigate use of water treatment residuals (WTRs), coal fly ash (CFA), and granular activated carbon (GAC) from biomass combustion in in-situ water treatment schemes to manage dissolved organic carbon (DOC) and nutrients. Both CaO- and CaCO(3)-based WTRs effectively attenuated inorganic N species but exhibited little capacity for organic N removal. The CaO-based WTR demonstrated effective attenuation of DOC and P in column trials, and a high capacity for P sorption in batch experiments. Granular activated carbon proved effective for DOC and dissolved organic nitrogen (DON) removal in column trials, but was ineffective for P attenuation. Only CFA demonstrated effective removal of a broad suite of inorganic and organic nutrients and DOC; however, Se concentrations in column effluents exceeded Australian and New Zealand water quality guideline values. Water treated by filtering through the CaO-based WTR exhibited nutrient ratios characteristic of potential P-limitation with no potential N- or Si-limitation respective to growth of aquatic biota, indicating that treatment of nutrient-rich water using the CaO-based WTR may result in conditions less favourable for cyanobacterial growth and more favourable for growth of diatoms. Results show that selected industrial by-products may mitigate eutrophication through targeted use in nutrient intervention schemes. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  4. Nutrient dynamics across a dissolved organic carbon and burn gradient in central Siberia

    Rodriguez-Cardona, B.; Coble, A. A.; Prokishkin, A. S.; Kolosov, R.; Spencer, R. G.; Wymore, A.; McDowell, W. H.

    2016-12-01

    In stream ecosystems, dissolved organic carbon (DOC) and nitrogen (N) processing are tightly linked. In temperate streams, greater DOC concentrations and higher DOC:NO3- ratios promote the greatest nitrate (NO3-) uptake. However, less is known about this relationship in other biomes including the arctic which is undergoing changes due to climate change contributing to thawing of permafrost and alterations in biogeochemical cycles in soils and streams. Headwater streams draining into the N. Tunguska River in the central Siberian plateau are affected by forest fires but little is known about the aquatic biogeochemical implications in both a thawing and burning landscape. There are clear patterns between carbon concentration and fire history where generally DOC concentration in streams decrease after fires and older burn sites have shown greater DOC concentrations and more bioavailable DOC that could promote greater heterotrophic uptake of NO3-. However, the relationship between nutrient dynamics, organic matter composition, and fire history in streams is not very clear. In order to assess the influence of organic matter composition and DOC concentration on nutrient uptake in arctic streams, we conducted a series of short-term nutrient addition experiments following the tracer addition for spiraling curve characterization (TASCC) method, consisting of NO3- and NH4++PO43- additions, across 4 streams that comprise a fire gradient that spans 3- >100 years since the last burn with DOC concentrations ranging between 12-23 mg C/L. We hypothesized that nutrient uptake would be greatest in older burn sites due to greater DOC concentrations and availability. We will specifically examine how nutrient uptake relates to DOC concentration and OM composition (analyzed via FTICR-MS) across the burn gradient. Across the four sites DOC concentration and DOC:NO3- ratios decreased from old burn sites to recently burned sites. Results presented here can elucidate on the potential impacts

  5. Nutrient and Organic Carbon Losses, Enrichment Rate, and Cost of Water Erosion

    Ildegardis Bertol

    Full Text Available ABSTRACT Soil erosion from water causes loss of nutrients and organic carbon, enriches the environment outside the erosion site, and results in costs. The no-tillage system generates increased nutrient and C content in the topsoil and, although it controls erosion, it can produce a more enriched runoff than in the conventional tillage system. This study was conducted in a Humic Cambisol in natural rainfall from 1997 to 2012 to quantify the contents and total losses of nutrients and organic C in soil runoff, and to calculate the enrichment rates and the cost of these losses. The treatments evaluated were: a soil with a crop, consisting of conventional tillage with one plowing + two harrowings (CT, minimum tillage with one chisel plowing + one harrowing (MT, and no tillage (NT; and b bare soil: one plowing + two harrowings (BS. In CT, MT, and NT, black oat, soybean, vetch, corn, turnip, and black beans were cultivated. Over the 15 years, 15.5 Mg ha-1 of limestone, 525 kg ha-1 of N (urea, 1,302 kg ha-1 of P2O5 (triple superphosphate, and 1,075 kg ha-1 of K2O (potassium chloride were used in the soil. The P, K, Ca, Mg, and organic C contents in the soil were determined and also the P, K, Ca, and Mg sediments in the runoff water. From these contents, the total losses, the enrichment rates (ER, and financial losses were calculated. The NT increased the P, K, and organic C contents in the topsoil. The nutrients and organic C content in the runoff from NT was greater than from CT, showing that NT was not a fully conservationist practice for soil. The linear model y = a + bx fit the data within the level of significance (p≤0.01 when the values of P, K, and organic C in the sediments from erosion were related to those values in the soil surface layer. The nutrient and organic C contents were higher in the sediments from erosion than in the soil where the erosion originated, generating values of ER>1 for P, K, and organic C. The value of the total losses

  6. Nutrient and dissolved organic carbon removal from water using mining and metallurgical by-products.

    Wendling, Laura A; Douglas, Grant B; Coleman, Shandel; Yuan, Zheng

    2012-05-15

    Excess nutrient input to water bodies frequently results in algal blooms and development of oxygen deficient conditions. Mining or metallurgical by-products can potentially be utilised as filtration media within water treatment systems such as constructed wetlands, permeable reactive barriers, or drain liners. These materials may offer a cost-effective solution for the removal of nutrients and dissolved organic carbon (DOC) from natural waters. This study investigated steel-making, alumina refining (red mud and red sand) and heavy mineral processing by-products, as well as the low-cost mineral-based material calcined magnesia, in laboratory column trials. Influent water and column effluents were analysed for pH and flow rate, alkalinity, nutrient species and DOC, and a range of major cations and anions. In general, by-products with high Ca or Mg, and to a lesser extent those with high Fe content, were well-suited to nutrient and DOC removal from water. Of the individual materials examined, the heavy mineral processing residue neutralised used acid (NUA) exhibited the highest sorption capacity for P, and removed the greatest proportions of all N species and DOC from influent water. In general, NUA and mixtures containing NUA, particularly those with calcined magnesia or red mud/red sand were the most effective in removing nutrients and DOC from influent water. Post-treatment effluents from columns containing NUA and NUA/steel-making by-product, NUA/red sand and NUA/calcined magnesia mixtures exhibited large reductions in DOC, P and N concentrations and exhibited a shift in nutrient ratios away from potential N- and Si-limitation and towards potential P-limitation. If employed as part of a large-scale water treatment scheme, use of these mining and metallurgical by-products for nutrient removal could result in reduced algal biomass and improved water quality. Identification and effective implementation of mining by-products or blends thereof in constructed wetlands

  7. A watershed-scale characterization of dissolved organic carbon and nutrients on the South Carolina Coastal Plain

    Daniel Tufford; Setsen Alton-Ochir

    2016-01-01

    Dissolved organic matter (DOM) is recognized as a major component in the global carbon cycle and is an important driver of numerous biogeochemical processes in aquatic ecosystems, both in-stream and downstream in estuaries. This study sought to characterize chromophoric DOM (CDOM), dissolved organic carbon (DOC), and dissolved nutrients in major rivers and their...

  8. A watershed-scale characterication of dissolved organic carbon and nutrients on the South Carolina Coastal Plain

    Daniel L. Tufford; Setsen Alton-Ochir; Warren Hankinson

    2016-01-01

    Dissolved organic matter (DOM) is recognized as a major component in the global carbon cycle and is an important driver of numerous biogeochemical processes in aquatic ecosystems, both in-stream and downstream in estuaries. This study sought to characterize chromophoric DOM (CDOM), dissolved organic carbon (DOC), and dissolved nutrients in major rivers and their...

  9. Photomicrobial fuel cell (PFC) for simultaneous organic carbon, nutrients removal and energy production

    Zhang, Yifeng; Safa, Jafar; Angelidaki, Irini

    2014-01-01

    of power generation, carbon and nutrients removal was not significantly affected after changing the light/dark photoperiod from 24 h/0 h to 10 h/14 h. This work represents the first successful attempt to develop an effective bacteria-algae coupled system, capable for extracting energy and removing carbon...

  10. Distributions of nutrients, dissolved organic carbon and carbohydrates in the western Arctic Ocean

    Wang, Deli; Henrichs, Susan M.; Guo, Laodong

    2006-09-01

    Seawater samples were collected from stations along a transect across the shelf-basin interface in the western Arctic Ocean during September 2002, and analyzed for nutrients, dissolved organic carbon (DOC), and total dissolved carbohydrate (TDCHO) constituents, including monosaccharides (MCHO) and polysaccharides (PCHO). Nutrients (nitrate, ammonium, phosphate and dissolved silica) were depleted at the surface, especially nitrate. Their concentrations increased with increasing depth, with maxima centered at ˜125 m depth within the halocline layer, then decreased with increasing depth below the maxima. Both ammonium and phosphate concentrations were elevated in shelf bottom waters, indicating a possible nutrient source from sediments, and in a plume that extended into the upper halocline waters offshore. Concentrations of DOC ranged from 45 to 85 μM and had an inverse correlation with salinity, indicating that mixing is a control on DOC concentrations. Concentrations of TDCHO ranged from 2.5 to 19 μM-C, comprising 13-20% of the bulk DOC. Higher DOC concentrations were found in the upper water column over the shelf along with higher TDCHO concentrations. Within the TDCHO pool, the concentrations of MCHO ranged from 0.4 to 8.6 μM-C, comprising 20-50% of TDCHO, while PCHO concentrations ranged from 0.5 to 13.6 μM-C, comprising 50-80% of the TDCHO. The MCHO/TDCHO ratio was low in the upper 25 m of the water column, followed by a high MCHO/TDCHO ratio between 25 and 100 m, and a low MCHO/TDCHO ratio again below 100 m. The high MCHO/TDCHO ratio within the halocline layer likely resulted from particle decomposition and associated release of MCHO, whereas the low MCHO/TDCHO (or high PCHO/TDCHO) ratio below the halocline layer could have resulted from slow decomposition and additional particulate CHO sources.

  11. Nutrient gradients in a granular activated carbon biofilter drives bacterial community organization and dynamics.

    Boon, Nico; Pycke, Benny F G; Marzorati, Massimo; Hammes, Frederik

    2011-12-01

    The quality of drinking water is ensured by hygienic barriers and filtration steps, such as ozonation and granular activated carbon (GAC) filtration. Apart from adsorption, GAC filtration involves microbial processes that remove biodegradable organic carbon from the ozonated ground or surface water and ensures biological stability of the treated water. In this study, microbial community dynamics in were monitored during the start-up and maturation of an undisturbed pilot-scale GAC filter at 4 depths (10, 45, 80 and 115 cm) over a period of 6 months. New ecological tools, based on 16S rRNA gene-DGGE, were correlated to filter performance and microbial activity and showed that the microbial gradients developing in the filter was of importance. At 10 cm from the top, receiving the freshly ozonated water with the highest concentration of nutrients, the microbial community dynamics were minimal and the species richness remained low. However, the GAC samples at 80-115 cm showed a 2-3 times higher species richness than the 10-45 cm samples. The highest biomass densities were observed at 45-80 cm, which corresponded with maximum removal of dissolved and assimilable organic carbon. Furthermore, the start-up period was clearly distinguishable using the Lorenz analysis, as after 80 days, the microbial community shifted to an apparent steady-state condition with increased evenness. This study showed that GAC biofilter performance is not necessarily correlated to biomass concentration, but rather that an elevated functionality can be the result of increased microbial community richness, evenness and dynamics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Effect of light and nutrient availability on the release of dissolved organic carbon (DOC) by Caribbean turf algae.

    Mueller, Benjamin; den Haan, Joost; Visser, Petra M; Vermeij, Mark J A; van Duyl, Fleur C

    2016-03-22

    Turf algae increasingly dominate benthic communities on coral reefs. Given their abundance and high dissolved organic carbon (DOC) release rates, turf algae are considered important contributors to the DOC pool on modern reefs. The release of photosynthetically fixed carbon as DOC generally, but not always, increases with increased light availability. Nutrient availability was proposed as an additional factor to explain these conflicting observations. To address this proposed but untested hypothesis, we documented the interactive contributions of light and nutrient availability on the release of DOC by turf algae. DOC release rates and oxygen production were quantified in incubation experiments at two light levels (full and reduced light) and two nutrient treatments (natural seawater and enriched seawater). In natural seawater, DOC release at full light was four times higher than at reduced light. When nutrients were added, DOC release rates at both light levels were similar to the natural seawater treatment at full light. Our results therefore show that low light in combination with low nutrient availability reduces the release of DOC by turf algae and that light and nutrient availability interactively determine DOC release rates by this important component of Caribbean reef communities.

  13. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil.

    Sutton, Nora B; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-02-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton's reagent and modified Fenton's reagent coupled with a subsequent bioremediation phase of 187d, both with and without nutrient amendment. Chemical oxidation mobilized SOM into the liquid phase, producing dissolved organic carbon (DOC) concentrations 8-16 times higher than the untreated field sample. Higher aqueous concentrations of nitrogen and phosphorous species were also observed following oxidation; NH4(+) increased 14-172 times. During the bioremediation phase, dissolved carbon and nutrient species were utilized for microbial growth-yielding DOC concentrations similar to field sample levels within 56d of incubation. In the absence of nutrient amendment, the highest microbial respiration rates were correlated with higher availability of nitrogen and phosphorus species mobilized by oxidation. Significant diesel degradation was only observed following nutrient amendment, implying that nutrients mobilized by chemical oxidation can increase microbial activity but are insufficient for bioremediation. While all bioremediation occurred in the first 28d of incubation in the biotic control microcosm with nutrient amendment, biodegradation continued throughout 187d of incubation following chemical oxidation, suggesting that chemical treatment also affects the desorption of organic contaminants from SOM. Overall, results indicate that biodegradation of DOC, as an alternative substrate to diesel, and biological utilization of mobilized nutrients have implications for the success of coupled ISCO and ISB treatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Exogenous nutrients and carbon resource change the responses of soil organic matter decomposition and nitrogen immobilization to nitrogen deposition

    He, Ping; Wan, Song-Ze; Fang, Xiang-Min; Wang, Fang-Chao; Chen, Fu-Sheng

    2016-01-01

    It is unclear whether exogenous nutrients and carbon (C) additions alter substrate immobilization to deposited nitrogen (N) during decomposition. In this study, we used laboratory microcosm experiments and 15N isotope tracer techniques with five different treatments including N addition, N+non-N nutrients addition, N+C addition, N+non-N nutrients+C addition and control, to investigate the coupling effects of non-N nutrients, C addition and N deposition on forest floor decomposition in subtropical China. The results indicated that N deposition inhibited soil organic matter and litter decomposition by 66% and 38%, respectively. Soil immobilized 15N following N addition was lowest among treatments. Litter 15N immobilized following N addition was significantly higher and lower than that of combined treatments during the early and late decomposition stage, respectively. Both soil and litter extractable mineral N were lower in combined treatments than in N addition treatment. Since soil N immobilization and litter N release were respectively enhanced and inhibited with elevated non-N nutrient and C resources, it can be speculated that the N leaching due to N deposition decreases with increasing nutrient and C resources. This study should advance our understanding of how forests responds the elevated N deposition. PMID:27020048

  15. Rock Outcrops Redistribute Organic Carbon and Nutrients to Nearby Soil Patches in Three Karst Ecosystems in SW China.

    Dianjie Wang

    Full Text Available Emergent rock outcrops are common in terrestrial ecosystems. However, little research has been conducted regarding their surface function in redistributing organic carbon and nutrient fluxes to soils nearby. Water that fell on and ran off 10 individual rock outcrops was collected in three 100 × 100 m plots within a rock desertification ecosystem, an anthropogenic forest ecosystem, and a secondary forest ecosystem between June 2013 and June 2014 in Shilin, SW China. The concentrations of total organic carbon (TOC, total nitrogen (N, total phosphorus (P, and potassium (K in the water samples were determined during three seasons, and the total amounts received by and flowing out from the outcrops were calculated. In all three ecosystems, TOC and N, P, and K were found throughout the year in both the water received by and delivered to nearby soil patches. Their concentrations and amounts were generally greater in forested ecosystems than in the rock desertification ecosystem. When rock outcrops constituted a high percentage (≥ 30% of the ground surface, the annual export of rock outcrop runoff contributed a large amount of organic carbon and N, P, and K nutrients to soil patches nearby by comparison to the amount soil patches received via atmospheric deposition. These contributions may increase the spatial heterogeneity of soil fertility within patches, as rock outcrops of different sizes, morphologies, and emergence ratios may surround each soil patch.

  16. Effects of nutrient enrichment on the release of dissolved organic carbon and nitrogen by the scleractinian coral Montipora digitata

    Tanaka, Y.; Ogawa, H.; Miyajima, T.

    2010-09-01

    The effects of nutrient enrichment on the release of dissolved organic carbon and nitrogen (DOC and DON, respectively) from the coral Montipora digitata were investigated in the laboratory. Nitrate (NO3 -) and phosphate (PO4 3-) were supplied to the aquarium to get the final concentrations of 10 and 0.5 μmol l-1, respectively, and the corals were incubated for 8 days. The release rate of DON per unit coral surface area significantly decreased after the nutrient enrichment, while the release rate of DOC was constant. Because the chlorophyll a (chl a) content of zooxanthellae per unit surface area increased, the release rate of DOC significantly decreased when normalized to unit chl a. These results suggested that the incorporation of NO3 - and PO4 3- stimulated the synthesis of new cellular components in the coral colonies and consequently, reduced extracellular release of DOC and DON. Actually, significant increase in N and P contents relative to C content was observed in the coral’s tissue after the nutrient enrichment. The present study has concluded that inorganic nutrient enrichment not only affects coral-algal metabolism inside the colony but also affects a microbial community around the coral because the organic matter released from corals functions as energy carrier in the coral reef ecosystem.

  17. Variation and control of soil organic carbon and other nutrients in permafrost regions on central Qinghai-Tibetan Plateau

    Liu, Wenjie; Chen, Shengyun; Zhao, Qian; Ren, Jiawen; Qin, Dahe; Sun, Zhizhong

    2014-01-01

    The variation and control of soil organic carbon (SOC) and other nutrients in permafrost regions are critical for studying the carbon cycle and its potential feedbacks to climate change; however, they are poorly understood. Soil nutrients samples at depths of 0–10, 10–20, 20–30, and 30–40 cm, were sampled eight times in 2009 in alpine swamp meadow, alpine meadow and alpine steppe in permafrost regions of the central Qinghai-Tibetan Plateau. SOC and total nitrogen (TN) in the alpine swamp meadow and meadow decreased with soil depth, whereas the highest SOC content in the alpine steppe was found at depths of 20–30 cm. The vertical profiles of total and available phosphorus (P) and potassium (K) were relatively uniform for all the three grassland types. Correlation and linear regression analyses showed that soil moisture (SM) was the most important parameter for the vertical variation of SOC and other soil nutrients, and that belowground biomass (BGB) was the main source of SOC and TN. The spatial variations (including seasonal variation) of SOC and TN at plot scale were large. The relative deviation of SOC ranged from 7.18 to 41.50 in the alpine swamp meadow, from 2.88 to 35.91 in the alpine meadow, and from 9.33 to 68.38 in the alpine steppe. The spatial variations in the other soil nutrients varied among different grassland types. The most important factors for spatial variations (including seasonal variation) of SOC, TN, total P, available P, and both total and available K were: SM, SM and temperature, SM, air temperature, and SM and BGB, respectively. The large variation in the three grassland types implies that spatial variation at plot scale should be considered when estimating SOC storage and its dynamics. (letter)

  18. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea.

    Liu, Songlin; Jiang, Zhijian; Zhang, Jingping; Wu, Yunchao; Lian, Zhonglian; Huang, Xiaoping

    2016-09-15

    To assess the effect of nutrient enrichment on the source and composition of sediment organic carbon (SOC) beneath Thalassia hemprichii and Enhalus acoroides in tropical seagrass beds, Xincun Bay, South China Sea, intertidal sediment, primary producers, and seawater samples were collected. No significant differences on sediment δ(13)C, SOC, and microbial biomass carbon (MBC) were observed between T. hemprichii and E. acoroides. SOC was mainly of autochthonous origin, while the contribution of seagrass to SOC was less than that of suspended particulate organic matter, macroalgae and epiphytes. High nutrient concentrations contributed substantially to SOC of seagrass, macroalgae, and epiphytes. The SOC, MBC, and MBC/SOC ratio in the nearest transect to fish farming were the highest. This suggested a more labile composition of SOC and shorter turnover times in higher nutrient regions. Therefore, the research indicates that nutrient enrichment could enhance plant-derived contributions to SOC and microbial use efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea

    Liu, Songlin; Jiang, Zhijian; Zhang, Jingping; Wu, Yunchao; Lian, Zhonglian; Huang, Xiaoping

    2016-01-01

    To assess the effect of nutrient enrichment on the source and composition of sediment organic carbon (SOC) beneath Thalassia hemprichii and Enhalus acoroides in tropical seagrass beds, Xincun Bay, South China Sea, intertidal sediment, primary producers, and seawater samples were collected. No significant differences on sediment δ 13 C, SOC, and microbial biomass carbon (MBC) were observed between T. hemprichii and E. acoroides. SOC was mainly of autochthonous origin, while the contribution of seagrass to SOC was less than that of suspended particulate organic matter, macroalgae and epiphytes. High nutrient concentrations contributed substantially to SOC of seagrass, macroalgae, and epiphytes. The SOC, MBC, and MBC/SOC ratio in the nearest transect to fish farming were the highest. This suggested a more labile composition of SOC and shorter turnover times in higher nutrient regions. Therefore, the research indicates that nutrient enrichment could enhance plant-derived contributions to SOC and microbial use efficiency. - Highlights: • Response of sources and composition of SOC to nutrient enrichment was observed. • Similar SOC sources and composition were observed in the two seagrass communities. • Nutrient enrichment enhanced seagrass and macroalgae and epiphytes contribution to SOC. • High nutrient concentration stimulated the MBC and the MBC/SOC ratio.

  20. Use of industrial by-products and natural media to adsorb nutrients, metals and organic carbon from drinking water.

    Grace, Maebh A; Healy, Mark G; Clifford, Eoghan

    2015-06-15

    Filtration technology is well established in the water sector but is limited by inability to remove targeted contaminants, found in surface and groundwater, which can be damaging to human health. This study optimises the design of filters by examining the efficacy of seven media (fly ash, bottom ash, Bayer residue, granular blast furnace slag (GBS), pyritic fill, granular activated carbon (GAC) and zeolite), to adsorb nitrate, ammonium, total organic carbon (TOC), aluminium, copper (Cu) and phosphorus. Each medium and contaminant was modelled to a Langmuir, Freundlich or Temkin adsorption isotherm, and the impact of pH and temperature (ranging from 10 °C to 29 °C) on their performance was quantified. As retention time within water filters is important in contaminant removal, kinetic studies were carried out to observe the adsorption behaviour over a 24h period. Fly ash and Bayer residue had good TOC, nutrient and Cu adsorption capacity. Granular blast furnace slag and pyritic fill, previously un-investigated in water treatment, showed adsorption potential for all contaminants. In general, pH or temperature adjustment was not necessary to achieve effective adsorption. Kinetic studies showed that at least 60% of adsorption had occurred after 8h for all media. These media show potential for use in a multifunctional water treatment unit for the targeted treatment of specific contaminants. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. How do persistent organic pollutants be coupled with biogeochemical cycles of carbon and nutrients in terrestrial ecosystems under global climate change?

    Teng, Ying [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation; Griffith Univ., Nathan, QLD (Australia). Environmetnal Futures Centre and School of Biomolecular and Physical Sciences; Xu, Zhihong; Reverchon, Frederique [Griffith Univ., Nathan, QLD (Australia). Environmetnal Futures Centre and School of Biomolecular and Physical Sciences; Luo, Yongming [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation

    2012-03-15

    Global climate change (GCC), especially global warming, has affected the material cycling (e.g., carbon, nutrients, and organic chemicals) and the energy flows of terrestrial ecosystems. Persistent organic pollutants (POPs) were regarded as anthropogenic organic carbon (OC) source, and be coupled with the natural carbon (C) and nutrient biogeochemical cycling in ecosystems. The objective of this work was to review the current literature and explore potential coupling processes and mechanisms between POPs and biogeochemical cycles of C and nutrients in terrestrial ecosystems induced by global warming. Global warming has caused many physical, chemical, and biological changes in terrestrial ecosystems. POPs environmental fate in these ecosystems is controlled mainly by temperature and biogeochemical processes. Global warming may accelerate the re-emissions and redistribution of POPs among environmental compartments via soil-air exchange. Soil-air exchange is a key process controlling the fate and transportation of POPs and terrestrial ecosystem C at regional and global scales. Soil respiration is one of the largest terrestrial C flux induced by microbe and plant metabolism, which can affect POPs biotransformation in terrestrial ecosystems. Carbon flow through food web structure also may have important consequences for the biomagnification of POPs in the ecosystems and further lead to biodiversity loss induced by climate change and POPs pollution stress. Moreover, the integrated techniques and biological adaptation strategy help to fully explore the coupling mechanisms, functioning and trends of POPs and C and nutrient biogeochemical cycling processes in terrestrial ecosystems. There is increasing evidence that the environmental fate of POPs has been linked with biogeochemical cycles of C and nutrients in terrestrial ecosystems under GCC. However, the relationships between POPs and the biogeochemical cycles of C and nutrients are still not well understood. Further

  2. Effects of sulfate deposition on pore water dissolved organic carbon, nutrients, and microbial enzyme activities in a northern peatland

    L.R. Seifert-Monson; B.H. Hill; R.K. Kolka; T.M. Jicha; L.L. Lehto; C.M. Elonen

    2014-01-01

    Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolved organic carbon solubility. To further investigate the relationship between deposition...

  3. Effect of light and nutrient availability on the release of dissolved organic carbon (DOC) by Caribbean turf algae

    Mueller, B.; den Haan, J.; Visser, P.M.; Vermeij, M.J.A.; van Duyl, F.C.

    2016-01-01

    Turf algae increasingly dominate benthic communities on coral reefs. Given their abundance and high dissolved organic carbon (DOC) release rates, turf algae are considered important contributors to the DOC pool on modern reefs. The release of photosynthetically fixed carbon as DOC generally, but not

  4. Effects of sulfate deposition on pore water dissolved organic carbon, nutrients, and microbial enzyme activities in a northern peatland

    Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolve...

  5. Tillage, crop residue, and nutrient management effects on soil organic carbon sequestration in rice-based cropping systems: a review

    Sequestration of soil organic carbon (SOC) is one of the major agricultural strategies to mitigate greenhouse gas emissions, enhance food security, and improve agricultural sustainability. This paper synthesizes the much-needed state-of-knowledge on the effects of management practices, such as tilla...

  6. The role of isotopes in studying nutrient and organic matter dynamics in livestock/cropping systems, with emphasis on carbon and nitrogen

    Ledgard, Stewart F.

    2002-01-01

    Integration of livestock and cropping systems can increase the efficiency of use and recycling of nutrients and other resources. In developing countries, a key goal in mixed animal/cropping systems is maximising production of animals and crops, possibly including grain for human consumption, while minimising the need for inputs of resources such as fertilisers, irrigation water and energy. Low organic N levels in soil in some developing countries, such as in Africa, mean that achievement and maintenance of high yielding crops requires appropriate inputs of organic and/or fertiliser N sources. Improvement in organic matter and N levels in cropping soils are generally achieved via crop rotations or inter-cropping with grain legumes or green manures, or by importing external sources of organic material. Recycling of crop residues is also important for retaining organic matter and nutrients in cropped soils. Increases in the efficiency of these farming systems require a detailed knowledge of the limiting factors or resources for maximising productivity. Isotopes can play a valuable role in identifying, understanding and testing new methodologies associated with soil, water and nutrient resources. Isotopes (particularly 15 N) have been widely used in field studies for determining fertiliser use efficiency, N 2 fixation, and more recently for studying the fate of nutrients from organic materials and crop residues. The major benefit in using isotopes in studies of nutrient use efficiency is that it enables the fate of the nutrient to be traced throughout the soil/plant system even where there are large reserves of the nutrient in soil pools. Most research with isotopes has been restricted to above-ground plant components but some recent studies have targeted plant roots. Foliar 15 N labelling has been used to better quantify root N yields and to determine the uptake of 15 N-labelled root N by subsequent crops. Similarly, 13 CO 2 pulse labelling studies have provided

  7. Effect of nutrient management on soil organic carbon sequestration, fertility, and productivity under rice-wheat cropping system in semi-reclaimed sodic soils of North India.

    Gupta Choudhury, Shreyasi; Yaduvanshi, N P S; Chaudhari, S K; Sharma, D R; Sharma, D K; Nayak, D C; Singh, S K

    2018-02-05

    The ever shrinking agricultural land availability and the swelling demand of food for the growing population fetch our attention towards utilizing partially reclaimed sodic soils for cultivation. In the present investigation, we compared six treatments, like control (T1), existing farmers' practice (T2), balanced inorganic fertilization (T3) and combined application of green gram (Vigna radiate) with inorganic NPK (T4), green manure (Sesbania aculeate) with inorganic NPK (T5), and farmyard manure with inorganic NPK (T6), to study the influence of nutrient management on soil organic carbon sequestration and soil fertility under long-term rice-wheat cropping system along with its productivity in gypsum-amended partially reclaimed sodic soils of semi-arid sub-tropical Indian climate. On an average, combined application of organics along with fertilizer NPK (T4, T5, and T6) decreased soil pH, ESP, and BD by 3.5, 13.0, and 6.7% than FP (T2) and 3.7, 12.5, and 6.7%, than balanced inorganic fertilizer application (T3), respectively, in surface (0-20 cm). These treatments (T4, T5, and T6) also increased 14.1% N and 19.5% P availability in soil over the usual farmers' practice (FP) with an additional saving of 44.4 and 27.3% fertilizer N and P, respectively. Long-term (6 years) incorporation of organics (T4, T5, and T6) sequestered 1.5 and 2.0 times higher soil organic carbon as compared to the balanced inorganic (T3) and FP (T2) treatments, respectively. The allocation of soil organic carbon into active and passive pools determines its relative susceptibility towards oxidation. The lower active to passive ratio (1.63) in FYM-treated plots along with its potentiality of higher soil organic carbon (SOC) sequestration compared to the initial stock proved its acceptability for long-term sustenance under intensive cropping even in partially reclaimed sodic soils. Among all the treatments, T4 yielded the maximum from second year onwards. Moreover, after 6 years of continuous

  8. Effect of plants in constructed wetlands for organic carbon and nutrient removal: a review of experimental factors contributing to higher impact and suggestions for future guidelines.

    Jesus, João M; Danko, Anthony S; Fiúza, António; Borges, Maria-Teresa

    2018-02-01

    Constructed wetland is a proven technology for water pollution removal, but process mechanisms and their respective contribution are not fully understood. The present review details the effect of plants on removal efficiency of constructed wetlands by focusing on literature that includes experiments with unplanted controls for organic carbon and nutrient (N and P) removal. The contribution of plant direct uptake is also assessed. Although it was found that several studies, mostly at laboratory or pilot scales, showed no statistical differences between planted and unplanted controls, some factors were found that help maximize the effect of plants. This study intends to contribute to a better understanding of the significance of the effect of plants in a constructed wetland, as well as to suggest a set of experimental guidelines in this field.

  9. Physical and bacterial controls on inorganic nutrients and dissolved organic carbon during a sea ice growth and decay experiment

    Zhou, J.; Delille, B.; Kaartokallio, H.

    2014-01-01

    . The major findings are: (1) the incorporation of dissolved compounds (nitrate, nitrite, ammonium, phosphate, silicate, and DOC) into the sea ice was not conservative (relative to salinity) during ice growth. Brine convection clearly influenced the incorporation of the dissolved compounds, since the non......-conservative behavior of the dissolved compounds was particularly pronounced in the absence of brine convection. (2) Bacterial activity further regulated nutrient availability in the ice: ammonium and nitrite accumulated as a result of remineralization processes, although bacterial production was too low to induce...

  10. Nutrients, Dissolved Organic Carbon, Color, and Disinfection Byproducts in Base Flow and Stormflow in Streams of the Croton Watershed, Westchester and Putnam Counties, New York, 2000-02

    Heisig, Paul M.

    2009-01-01

    The Croton Watershed is unique among New York City's water-supply watersheds because it has the highest percentages of suburban development (52 percent) and wetland area (6 percent). As the City moves toward filtration of this water supply, there is a need to document water-quality contributions from both human and natural sources within the watershed that can inform watershed-management decisions. Streamwater samples from 24 small (0.1 to 1.5 mi2) subbasins and three wastewater-treatment plants (2000-02) were used to document the seasonal concentrations, values, and formation potentials of selected nutrients, dissolved organic carbon (DOC), color, and disinfection byproducts (DBPs) during stormflow and base-flow conditions. The subbasins were categorized by three types of drainage efficiency and a range of land uses and housing densities. Analyte concentrations in subbasin streams differed in response to the subbasin charateristics. Nutrient concentrations were lowest in undeveloped, forested subbasins that were well drained and increased with all types of development, which included residential, urban commercial/industrial, golf-course, and horse-farm land uses. These concentrations were further modified by subbasin drainage efficiency. DOC, in contrast, was highly dependent on drainage efficiency. Color intensity and DBP formation potentials were, in turn, associated with DOC and thus showed a similar response to drainage efficiency. Every constituent exhibited seasonal changes in concentration. Nutrients. Total (unfiltered) phosphorus (TP), soluble reactive phosphorus (SRP), and nitrate were associated primarily with residential development, urban, golf-course, and horse-farm land uses. Base-flow and stormflow concentrations of the TP, SRP, and nitrate generally increased with increasing housing density. TP and SRP concentrations were nearly an order of magnitude higher in stormflow than in base flow, whereas nitrate concentrations showed little difference

  11. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil

    Sutton, N.B.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton’s

  12. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis

    Mandy Velthuis

    2017-05-01

    Full Text Available Human activity is currently changing our environment rapidly, with predicted temperature increases of 1–5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus. In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition

  13. Nutrients and bioactive substances in aquatic organisms

    Devadasan, K.; Mukundan, M.K.; Antony, P.D.; Viswanathan Nair, P.G.; Perigreen, P.A.; Joseph, Jose

    1994-01-01

    The International Symposium on Nutrients and Bioactive Substances in Aquatic Organisms, was held during 16-17 September 1993 by the Society of Fisheries Technologists (India) to review the progress of research in this area in India and elsewhere. The papers presented indicate that scientific productivity in this field is substantial and that some of the bioactive materials isolated from aquatic organisms have potential application in human health, nutrition and therapy. The symposium focussed attention on toxicants, nutrients and bioactive substances in aquatic organisms in general, and also on pollution of aquatic systems due to thermal effluents. Paper relevant to INIS database is indexed separately. (M.K.V.)

  14. Multiplying Forest Garden Systems with biochar based organic fertilization for high carbon accumulation, improved water storage, nutrient cycling, and increased food diversity and farm productivity

    Schmidt, Hans-Peter; Pandit, Bishnu Hari; Lucht, Wolfgang; Gerten, Dieter; Kammann, Claudia

    2017-04-01

    On abandoned, erosion prone terraces in the middle hills of Nepal, 86 participating farmer families planted >25,000 mixed trees in 2015/16. Since it was convincingly demonstrated by more than 20 field trials in this region that this was the most plant-growth promoting method, all trees were planted with farmer-made organic biochar-based fertilizer. Planting pits were mulched with rice straw and were pipe irrigated from newly established water retention ponds during the 7 months of the dry season. A peer control system of farmer triads ensured an efficient maintenance of the plantations. Tree survival rate was above 80% after one year compared to below 50% on average for countrywide forestation projects over the last 30 years. In between the young Cinnamon, Moringa, Mulberry, Lemon, Michelia, Paulownia, nut and other trees, other secondary crops were cultivated such as ginger, turmeric, black beans, onions, lentils, all with organic biochar-based fertilizer and mulching. The objective of this forest garden project was to establish robust social-agronomic systems that can be multiplied from village to village for increasing soil fertility, protecting abandoned terraces from erosion, replenishing natural water resources, generating a stable income with climate-smart agriculture, as well as capturing and sequestering atmospheric carbon. The initial financing of the set-up of the forest garden systems (tree nursery, plantation, preparation of organic biochar based fertilizer, mulching materials, building of irrigation pits and pipe irrigation system, and general maintenance) was covered by carbon credits paid in advance by the international community in the form of a monthly carbon compensation subscription. All planted trees are GIS inventoried and the yearly biomass carbon uptake will be calculated as an average value of the first ten years of tree growth. The 25,000 mixed trees accumulated the equivalent of 350 t CO2 per year (10 years total C-accumulation divided by

  15. Determining Inorganic and Organic Carbon.

    Koistinen, Jaana; Sjöblom, Mervi; Spilling, Kristian

    2017-11-21

    Carbon is the element which makes up the major fraction of lipids and carbohydrates, which could be used for making biofuel. It is therefore important to provide enough carbon and also follow the flow into particulate organic carbon and potential loss to dissolved organic forms of carbon. Here we present methods for determining dissolved inorganic carbon, dissolved organic carbon, and particulate organic carbon.

  16. An anaerobic membrane bioreactor - membrane distillation hybrid system for energy recovery and water reuse: Removal performance of organic carbon, nutrients, and trace organic contaminants.

    Song, Xiaoye; Luo, Wenhai; McDonald, James; Khan, Stuart J; Hai, Faisal I; Price, William E; Nghiem, Long D

    2018-07-01

    In this study, a direct contact membrane distillation (MD) unit was integrated with an anaerobic membrane bioreactor (AnMBR) to simultaneously recover energy and produce high quality water for reuse from wastewater. Results show that AnMBR could produce 0.3-0.5L/g COD added biogas with a stable methane content of approximately 65%. By integrating MD with AnMBR, bulk organic matter and phosphate were almost completely removed. The removal of the 26 selected trace organic contaminants by AnMBR was compound specific, but the MD process could complement AnMBR removal, leading to an overall efficiency from 76% to complete removal by the integrated system. The results also show that, due to complete retention, organic matter (such as humic-like and protein-like substances) and inorganic salts accumulated in the MD feed solution and therefore resulted in significant fouling of the MD unit. As a result, the water flux of the MD process decreased continuously. Nevertheless, membrane pore wetting was not observed throughout the operation. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  17. Water balance, nutrient and carbon export from a heath forest catchment in central Amazonia, Brazil

    Zanchi, F. .B.; Waterloo, M.J.; Tapia, A.P.; Alvarado Barrientos, M.S.; Bolson, M.A.; Luizao, F.J.; Manzi, A.O.; Dolman, A.J.

    2015-01-01

    Carbon storage values in the Amazon basin have been studied through different approaches in the last decades in order to clarify whether the rainforest ecosystem is likely to act as a sink or source for carbon in the near future. This water balance, dissolved organic carbon (DOC) and nutrient export

  18. Carbon and nutrient use efficiencies optimally balance stoichiometric imbalances

    Manzoni, Stefano; Čapek, Petr; Lindahl, Björn; Mooshammer, Maria; Richter, Andreas; Šantrůčková, Hana

    2016-04-01

    Decomposer organisms face large stoichiometric imbalances because their food is generally poor in nutrients compared to the decomposer cellular composition. The presence of excess carbon (C) requires adaptations to utilize nutrients effectively while disposing of or investing excess C. As food composition changes, these adaptations lead to variable C- and nutrient-use efficiencies (defined as the ratios of C and nutrients used for growth over the amounts consumed). For organisms to be ecologically competitive, these changes in efficiencies with resource stoichiometry have to balance advantages and disadvantages in an optimal way. We hypothesize that efficiencies are varied so that community growth rate is optimized along stoichiometric gradients of their resources. Building from previous theories, we predict that maximum growth is achieved when C and nutrients are co-limiting, so that the maximum C-use efficiency is reached, and nutrient release is minimized. This optimality principle is expected to be applicable across terrestrial-aquatic borders, to various elements, and at different trophic levels. While the growth rate maximization hypothesis has been evaluated for consumers and predators, in this contribution we test it for terrestrial and aquatic decomposers degrading resources across wide stoichiometry gradients. The optimality hypothesis predicts constant efficiencies at low substrate C:N and C:P, whereas above a stoichiometric threshold, C-use efficiency declines and nitrogen- and phosphorus-use efficiencies increase up to one. Thus, high resource C:N and C:P lead to low C-use efficiency, but effective retention of nitrogen and phosphorus. Predictions are broadly consistent with efficiency trends in decomposer communities across terrestrial and aquatic ecosystems.

  19. Data set on the effects of conifer control and slash burning on soil carbon, total N, organic matter and extractable micro-nutrients

    Jonathan D. Bates

    2017-10-01

    Full Text Available Conifer control in sagebrush steppe of the western United States causes various levels of site disturbance influencing vegetation recovery and resource availability. The data set presented in this article include growing season availability of soil micronutrients and levels of total soil carbon, organic matter, and N spanning a six year period following western juniper (Juniperus occidentalis spp. occidentalis reduction by mechanical cutting and prescribed fire of western juniper woodlands in southeast Oregon. These data can be useful to further evaluate the impacts of conifer woodland reduction to soil resources in sagebrush steppe plant communities.

  20. Effects of nutrient additions on ecosystem carbon cycle in a Puerto Rican tropical wet forest

    YIQING LI; MING XU; XIAOMING ZOU

    2006-01-01

    Wet tropical forests play a critical role in global ecosystem carbon (C) cycle, but C allocation and the response of different C pools to nutrient addition in these forests remain poorly understood. We measured soil organic carbon (SOC), litterfall, root biomass, microbial biomass and soil physical and chemical properties in a wet tropical forest from May 1996 to July...

  1. Carbon footprint of urban source separation for nutrient recovery.

    Kjerstadius, H; Bernstad Saraiva, A; Spångberg, J; Davidsson, Å

    2017-07-15

    Source separation systems for the management of domestic wastewater and food waste has been suggested as more sustainable sanitation systems for urban areas. The present study used an attributional life cycle assessment to investigate the carbon footprint and potential for nutrient recovery of two sanitation systems for a hypothetical urban area in Southern Sweden. The systems represented a typical Swedish conventional system and a possible source separation system with increased nutrient recovery. The assessment included the management chain from household collection, transport, treatment and final return of nutrients to agriculture or disposal of the residuals. The results for carbon footprint and nutrient recovery (phosphorus and nitrogen) concluded that the source separation system could increase nutrient recovery (0.30-0.38 kg P capita -1 year -1 and 3.10-3.28 kg N capita -1 year -1 ), while decreasing the carbon footprint (-24 to -58 kg CO 2 -eq. capita -1 year -1 ), compared to the conventional system. The nutrient recovery was increased by the use of struvite precipitation and ammonium stripping at the wastewater treatment plant. The carbon footprint decreased, mainly due to the increased biogas production, increased replacement of mineral fertilizer in agriculture and less emissions of nitrous oxide from wastewater treatment. In conclusion, the study showed that source separation systems could potentially be used to increase nutrient recovery from urban areas, while decreasing the climate impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Historical storage budgets of organic carbon, nutrient and contaminant elements in saltmarsh sediments: Biogeochemical context for managed realignment, Humber Estuary, UK

    Andrews, J.E.; Samways, G.; Shimmield, G.B.

    2008-01-01

    Biogeochemical data from Welwick marsh (Humber Estuary, UK), an actively accreting saltmarsh, provides a decadal-centennial-scale natural analogue for likely future biogeochemical storage effects of managed realignment sites accreting either intertidal muds or saltmarsh. Marsh topographic profiles and progradation history from aerial photographs were combined with 137 Cs and niobium contamination history to establish and verify chronology and sediment mass accumulation. These data, combined with down-core measurements of particulate organic carbon (C org ), organic nitrogen (N org ), particle reactive phosphorus and selected contaminant metal (Zn, Pb, Cu, As and Nb) contents were then used to calculate sediment and chemical storage terms and to quantify changes in these over time. These data are used to help predict likely future biogeochemical storage changes at managed realignment sites in the estuary. The net effect of returning some 26 km 2 of reclaimed land to intertidal environments now (about 25% of the maximum possible realignment storage identified for the estuary) could result in the storage of some 40,000 tonnes a -1 of sediment which would also bury about 800 tonnes a -1 of C org and 40 tonnes a -1 of N org . Particulate contaminant P burial would be around 25 tonnes a -1 along with ∼ 6 tonnes a -1 contaminant Zn, 3 tonnes a -1 contaminant Pb, and ∼ 1 tonnes a -1 contaminant As and Cu. The study also shows that reclamation activities in the outer estuary since the mid-1700s has prevented, in total, the deposition of about 10 million tonnes of sediment, along with 320,000 tonnes of C org and 16,000 tonnes of N org . The study provides a mid-1990s baseline against which future measurements at the site can determine changes in burial fluxes and improvement or deterioration in contaminant metal contents of the sediments. The data are directly relevant for local managed realignment sites but also broadly indicative for sites generally on the European

  3. Bioremediation of oil on shorelines with organic and inorganic nutrients

    Sveum, P.; Ramstad, S.

    1995-01-01

    Two experiments to study the mechanisms associated with nutrient-enhanced biodegradation of oil (Statfjord crude oil)-contaminated shorelines were done in continuous-flow seawater exchange basins with simulated tides. The fertilizers included fish and meal pellets, stick water pellets, and two concentrations of Max Bac: standard and five times higher. Both one-time and repeated additions of fish meal were studied. The number of oil-degrading bacteria in the sediment increased by three to four orders of magnitude after adding oil and fertilizer, and repeated fertilization had little effect. Oil degradation was found to be extensive with all treatments in both experiments, which lasted 35 or 98 days. Polycyclic aromatic hydrocarbon degradation seems to be most extensive in the sediments with repeated application of fish meal. The relation between accumulated total soluble nitrogen in interstitial water and nC 17 /pristane differs between the sediments treated with Max Bac and the organic additives, and indicates that this concentration cannot be used as a sole indication of the oil degradation rate if organic nutrients are used. The relation between accumulated CO 2 production and nC 17 /pristane ratio indicates a diauxic use of the two different sources of carbon present, without being absolute. Repeated fertilization with organic additives is neither beneficial nor detrimental to the oil degradation activity

  4. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  5. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems

    Bucs, Szilard; Valladares Linares, Rodrigo; van Loosdrecht, Mark C.M.; Kruithof, Joop C.; Vrouwenvelder, Johannes S.

    2014-01-01

    organic carbon (TOC).Our studies showed that the organic nutrient load determined the accumulated amount of biomass. The same amount of accumulated biomass was found at constant nutrient load irrespective of linear flow velocity, shear, and/or feed spacer

  6. Marsh Soil Responses to Nutrients: Belowground Structural and Organic Properties.

    Coastal marsh responses to nutrient enrichment apparently depend upon soil matrix and whether the system is primarily biogenic or minerogenic. Deteriorating organic rich marshes (Jamaica Bay, NY) receiving wastewater effluent had lower belowground biomass, organic matter, and soi...

  7. Accumulative capabilities of essential nutrient elements in organs of ...

    Monsonia burkeana is widely used as herbal tea in South Africa. However, the accumulative capabilities (ACs) of its organs for essential nutrient elements are not documented. A study was conducted to determine the ACs for nutrient elements in fruit, leaf, stem and root of M. burkeana. Ten plants per plot, with three ...

  8. Spatio-temporal variability of inorganic and organic nutrients in five Galician rias (NW Spain

    María Dolores Doval

    2013-01-01

    Full Text Available The spatial variability of inorganic (nitrate, nitrite, ammonium, phosphate and silicate and organic (dissolved organic carbon nutrients in five Galician rias (Vigo, Pontevedra, Arousa, Muros and Ares-Betanzos was assessed by considering average values for the upwelling and downwelling periods. Inner stations were significantly different from middle and outer stations, especially during the downwelling period. Spatial differences between the five rías, tested by means of a multivariate analysis, were found in both periods. The behaviour of inorganic and organic nutrient variables was also significantly different between periods with and without shellfish harvesting closures due to the occurrence of toxic phytoplankton species.

  9. Hydrothermal carbonization of food waste for nutrient recovery and reuse.

    Idowu, Ifeolu; Li, Liang; Flora, Joseph R V; Pellechia, Perry J; Darko, Samuel A; Ro, Kyoung S; Berge, Nicole D

    2017-11-01

    Food waste represents a rather large and currently underutilized source of potentially available and reusable nutrients. Laboratory-scale experiments evaluating the hydrothermal carbonization of food wastes collected from restaurants were conducted to understand how changes in feedstock composition and carbonization process conditions influence primary and secondary nutrient fate. Results from this work indicate that at all evaluated reaction times and temperatures, the majority of nitrogen, calcium, and magnesium remain integrated within the solid-phase, while the majority of potassium and sodium reside in the liquid-phase. The fate of phosphorus is dependent on reaction times and temperatures, with solid-phase integration increasing with higher reaction temperature and longer time. A series of leaching experiments to determine potential solid-phase nutrient availability were also conducted and indicate that, at least in the short term, nitrogen release from the solids is small, while almost all of the phosphorus present in the solids produced from carbonizing at 225 and 250°C is released. At a reaction temperature of 275°C, smaller fractions of the solid-phase total phosphorus are released as reaction times increase, likely due to increased solids incorporation. Using these data, it is estimated that up to 0.96% and 2.30% of nitrogen and phosphorus-based fertilizers, respectively, in the US can be replaced by the nutrients integrated within hydrochar and liquid-phases generated from the carbonization of currently landfilled food wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Independence of nutrient limitation and carbon dioxide impacts on the Southern Ocean coccolithophore Emiliania huxleyi.

    Müller, Marius N; Trull, Thomas W; Hallegraeff, Gustaaf M

    2017-08-01

    Future oceanic conditions induced by anthropogenic greenhouse gas emissions include warming, acidification and reduced nutrient supply due to increased stratification. Some parts of the Southern Ocean are expected to show rapid changes, especially for carbonate mineral saturation. Here we compare the physiological response of the model coccolithophore Emiliania huxleyi (strain EHSO 5.14, originating from 50 o S, 149 o E) with pH/CO 2 gradients (mimicking ocean acidification ranging from 1 to 4 × current pCO 2 levels) under nutrient-limited (nitrogen and phosphorus) and -replete conditions. Both nutrient limitations decreased per cell photosynthesis (particulate organic carbon (POC) production) and calcification (particulate inorganic carbon (PIC) production) rates for all pCO 2 levels, with more than 50% reductions under nitrogen limitation. These impacts, however, became indistinguishable from nutrient-replete conditions when normalized to cell volume. Calcification decreased three-fold and linearly with increasing pCO 2 under all nutrient conditions, and was accompanied by a smaller ~30% nonlinear reduction in POC production, manifested mainly above 3 × current pCO 2 . Our results suggest that normalization to cell volume allows the major impacts of nutrient limitation (changed cell sizes and reduced PIC and POC production rates) to be treated independently of the major impacts of increasing pCO 2 and, additionally, stresses the importance of including cell volume measurements to the toolbox of standard physiological analysis of coccolithophores in field and laboratory studies.

  11. Aerobic mineralization of selected organic nutrient sources for soil ...

    Administrator

    food synthesis (Lavelle and Spain, 2001). Multipurpose trees such .... The soil and organic nutrient resource ... treatments. Simple correlation analysis was carried out to measure ..... Germination Ecology of Two Endemic Multipurpose. Species ...

  12. Interactions between temperature and nutrients across levels of ecological organization.

    Cross, Wyatt F; Hood, James M; Benstead, Jonathan P; Huryn, Alexander D; Nelson, Daniel

    2015-03-01

    Temperature and nutrient availability play key roles in controlling the pathways and rates at which energy and materials move through ecosystems. These factors have also changed dramatically on Earth over the past century as human activities have intensified. Although significant effort has been devoted to understanding the role of temperature and nutrients in isolation, less is known about how these two factors interact to influence ecological processes. Recent advances in ecological stoichiometry and metabolic ecology provide a useful framework for making progress in this area, but conceptual synthesis and review are needed to help catalyze additional research. Here, we examine known and potential interactions between temperature and nutrients from a variety of physiological, community, and ecosystem perspectives. We first review patterns at the level of the individual, focusing on four traits--growth, respiration, body size, and elemental content--that should theoretically govern how temperature and nutrients interact to influence higher levels of biological organization. We next explore the interactive effects of temperature and nutrients on populations, communities, and food webs by synthesizing information related to community size spectra, biomass distributions, and elemental composition. We use metabolic theory to make predictions about how population-level secondary production should respond to interactions between temperature and resource supply, setting up qualitative predictions about the flows of energy and materials through metazoan food webs. Last, we examine how temperature-nutrient interactions influence processes at the whole-ecosystem level, focusing on apparent vs. intrinsic activation energies of ecosystem processes, how to represent temperature-nutrient interactions in ecosystem models, and patterns with respect to nutrient uptake and organic matter decomposition. We conclude that a better understanding of interactions between temperature and

  13. Nutrient amendment does not increase mineralisation of sequestered carbon during incubation of a nitrogen limited mangrove soil

    Keuskamp, Joost A.

    2013-02-01

    Mangrove forests are sites of intense carbon and nutrient cycling, which result in soil carbon sequestration on a global scale. Currently, mangrove forests receive increasing quantities of exogenous nutrients due to coastal development. The present paper quantifies the effects of nutrient loading on microbial growth rates and the mineralisation of soil organic carbon (SOC) in two mangrove soils contrasting in carbon content. An increase in SOC mineralisation rates would lead to the loss of historically sequestered carbon and an enhanced CO2 release from these mangrove soils.In an incubation experiment we enriched soils from Avicennia and Rhizophora mangrove forests bordering the Red Sea with different combinations of nitrogen, phosphorus and glucose to mimic the effects of wastewater influx. We measured microbial growth rates as well as carbon mineralisation rates in the natural situation and after enrichment. The results show that microbial growth is energy limited in both soils, with nitrogen as a secondary limitation. Nitrogen amendment increased the rate at which labile organic carbon was decomposed, while it decreased SOC mineralisation rates. Such an inhibitory effect on SOC mineralisation was not found for phosphorus enrichment.Our data confirm the negative effect of nitrogen enrichment on the mineralisation of recalcitrant carbon compounds found in other systems. Based on our results it is not to be expected that nutrient enrichment by itself will cause degradation of historically sequestered soil organic carbon in nitrogen limited mangrove forests. © 2012 Elsevier Ltd.

  14. Supplementing the energy and plant nutrient requirements through organic recycling

    Mahdi, S. S.; Misra, R. V.

    1980-03-15

    In context of dwindling non-renewable energy resources and increasing health hazards because of environmental pollution, recycling of organic residues obtained through various sources like crops, animals, and human beings is becoming increasingly important. The organic residues obtained as wastes through these sources can be recycled effectively to meet scarce resources of energy and the plant nutrients, so vitally needed for our day-to-day activities and for raising agricultural production. Agriculture is the main stay of the Indian economy. Considerable quantities of crop residues available from agriculture can be utilized to serve as a source of organic fertilizers which not only provide plant nutrients but also improve soil health. The country has a large animal and human population. The animal and human wastes can be successfully used for production of energy and organic fertilizer by routing through biogas system. There is a need to develop an integrated energy and nutrient supply program. An action program is outlined.

  15. CO2 and nutrient-driven changes across multiple levels of organization in Zostera noltii ecosystems

    Martínez-Crego, B.; Olivé, I.; Santos, R.

    2014-12-01

    Increasing evidence emphasizes that the effects of human impacts on ecosystems must be investigated using designs that incorporate the responses across levels of biological organization as well as the effects of multiple stressors. Here we implemented a mesocosm experiment to investigate how the individual and interactive effects of CO2 enrichment and eutrophication scale-up from changes in primary producers at the individual (biochemistry) or population level (production, reproduction, and/or abundance) to higher levels of community (macroalgae abundance, herbivory, and global metabolism), and ecosystem organization (detritus release and carbon sink capacity). The responses of Zostera noltii seagrass meadows growing in low- and high-nutrient field conditions were compared. In both meadows, the expected CO2 benefits on Z. noltii leaf production were suppressed by epiphyte overgrowth, with no direct CO2 effect on plant biochemistry or population-level traits. Multi-level meadow response to nutrients was faster and stronger than to CO2. Nutrient enrichment promoted the nutritional quality of Z. noltii (high N, low C : N and phenolics), the growth of epiphytic pennate diatoms and purple bacteria, and shoot mortality. In the low-nutrient meadow, individual effects of CO2 and nutrients separately resulted in reduced carbon storage in the sediment, probably due to enhanced microbial degradation of more labile organic matter. These changes, however, had no effect on herbivory or on community metabolism. Interestingly, individual effects of CO2 or nutrient addition on epiphytes, shoot mortality, and carbon storage were attenuated when nutrients and CO2 acted simultaneously. This suggests CO2-induced benefits on eutrophic meadows. In the high-nutrient meadow, a striking shoot decline caused by amphipod overgrazing masked the response to CO2 and nutrient additions. Our results reveal that under future scenarios of CO2, the responses of seagrass ecosystems will be complex and

  16. Organic electrochemistry and carbon electrodes

    Weinberg, N.

    1983-01-01

    Carbons are often used in organic electrosynthesis and are critical as anodes or cathodes to certain reactions. Too often the surface properties of carbons have been left uncharacterized in relation to the reaction; however, these physical and chemical properties of carbons are important to the nature of the products, and the selectivity. Examples presented include the Kolbe reaction, the oxidation of aromatics in presence of carboxylate salts, electrofluorination of organics, acetamidation of aromatics, the hydrodimerization of formaldehyde and the oxidation of carbon fibers. These reactions apparently involve special surface characteristics: structure, surface area, stabilized surface sites, and the presence or absence of significant ''oxide'' functionality

  17. Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments

    Thomas, Zahra; Abbott, Benjamin W.; Troccaz, Olivier; Baudry, Jacques; Pinay, Gilles

    2016-03-01

    Direct and indirect effects from human activity have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. Despite an abundance of studies investigating the impact of agricultural activity on water quality, our understanding of what determines the capacity of a watershed to remove or retain nutrients remains limited. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments by investigating the relationship between catchment characteristics, stream discharge, and water chemistry. We analyzed a 5-year, high-frequency water chemistry data set from three catchments in western France ranging from 2.3 to 10.8 km2. The relationship between hydrology and solute concentrations differed between the three catchments and was associated with hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness had relatively invariant carbon and nutrient chemistry across hydrologic conditions, indicating high resilience to human disturbance. Conversely, the catchments with smoother, thinner soils responded to both intra- and interannual hydrologic variation with high concentrations of phosphate (PO43-) and ammonium (NH4+) in streams during low flow conditions and strong increases in dissolved organic carbon (DOC), sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land-use configuration) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on water quality was both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent

  18. Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary

    Santos, Isaac R.; Burnett, William C.; Dittmar, Thorsten; Suryaputra, I. G. N. A.; Chanton, Jeffrey

    2009-03-01

    We hypothesize that nutrient cycling in a Gulf of Mexico subterranean estuary (STE) is fueled by oxygen and labile organic matter supplied by tidal pumping of seawater into the coastal aquifer. We estimate nutrient production rates using the standard estuarine model and a non-steady-state box model, separate nutrient fluxes associated with fresh and saline submarine groundwater discharge (SGD), and estimate offshore fluxes from radium isotope distributions. The results indicate a large variability in nutrient concentrations over tidal and seasonal time scales. At high tide, nutrient concentrations in shallow beach groundwater were low as a result of dilution caused by seawater recirculation. During ebb tide, the concentrations increased until they reached a maximum just before the next high tide. The dominant form of nitrogen was dissolved organic nitrogen (DON) in freshwater, nitrate in brackish waters, and ammonium in saline waters. Dissolved organic carbon (DOC) production was two-fold higher in the summer than in the winter, while nitrate and DON production were one order of magnitude higher. Oxic remineralization and denitrification most likely explain these patterns. Even though fresh SGD accounted for only ˜5% of total volumetric additions, it was an important pathway of nutrients as a result of biogeochemical inputs in the mixing zone. Fresh SGD transported ˜25% of DOC and ˜50% of total dissolved nitrogen inputs into the coastal ocean, with the remainder associated with a one-dimensional vertical seawater exchange process. While SGD volumetric inputs are similar seasonally, changes in the biogeochemical conditions of this coastal plain STE led to higher summertime SGD nutrient fluxes (40% higher for DOC and 60% higher for nitrogen in the summer compared to the winter). We suggest that coastal primary production and nutrient dynamics in the STE are linked.

  19. Effect of organic and inorganic fertilizers on nutrient concentrations ...

    Effect of organic and inorganic fertilizers on nutrient concentrations in plantain ( Musa spp.) ... Fruit parameters measured were fruit weight, edible proportion and pulp dry matter content; also, the concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), iron (Fe) and zinc (Zn) in fruits were determined.

  20. MOTOR 2.0: module for transformation of organic matter and nutrients in soil; user guide and technical documentation

    Assinck, F.B.T.; Rappoldt, C.

    2004-01-01

    MOTOR is a MOdule describing the Transformation of Organic matteR and nutrients in soil. It calculates the transformations between pools of organic matter and mineral nitrogen in soil. Pools are characterized by a carbon and nitrogen content and can be labelled. MOTOR is a flexible tool because the

  1. Evaluating the consequences of salmon nutrients for riparian organisms: Linking condition metrics to stable isotopes.

    Vizza, Carmella; Sanderson, Beth L; Coe, Holly J; Chaloner, Dominic T

    2017-03-01

    Stable isotope ratios (δ 13 C and δ 15 N) have been used extensively to trace nutrients from Pacific salmon, but salmon transfer more than carbon and nitrogen to stream ecosystems, such as phosphorus, minerals, proteins, and lipids. To examine the importance of these nutrients, metrics other than isotopes need to be considered, particularly when so few studies have made direct links between these nutrients and how they affect riparian organisms. Our study specifically examined δ 13 C and δ 15 N of riparian organisms from salmon and non-salmon streams in Idaho, USA, at different distances from the streams, and examined whether the quality of riparian plants and the body condition of invertebrates varied with access to these nutrients. Overall, quality and condition metrics did not mirror stable isotope patterns. Most notably, all riparian organisms exhibited elevated δ 15 N in salmon streams, but also with proximity to both stream types suggesting that both salmon and landscape factors may affect δ 15 N. The amount of nitrogen incorporated from Pacific salmon was low for all organisms (1950s. In addition, our results support those of other studies that have cautioned that inferences from natural abundance isotope data, particularly in conjunction with mixing models for salmon-derived nutrient percentage estimates, may be confounded by biogeochemical transformations of nitrogen, physiological processes, and even historical legacies of nitrogen sources. Critically, studies should move beyond simply describing isotopic patterns to focusing on the consequences of salmon-derived nutrients by quantifying the condition and fitness of organisms putatively using those resources.

  2. A Global Database of Litterfall Mass and Litter Pool Carbon and Nutrients

    National Aeronautics and Space Administration — Measurement data of aboveground litterfall and littermass and litter carbon, nitrogen, and nutrient concentrations were extracted from 685 original literature...

  3. Benthic biogeochemical cycling, nutrient stoichiometry, and carbon and nitrogen mass balances in a eutrophic freshwater bay

    Klump, J.V.; Fitzgerald, S.A.; Waplesa, J.T.

    2009-01-01

    Green Bay, while representing only ,7% of the surface area and ??1.4% of the volume of Lake Michigan, contains one-third of the watershed of the lake, and receives approximately one-third of the total nutrient loading to the Lake Michigan basin, largely from the Fox River at the southern end of the bay. With a history of eutrophic conditions dating back nearly a century, the southern portion of the bay behaves as an efficient nutrient and sediment trap, sequestering much of the annual carbon and nitrogen input within sediments accumulating at up to 1 cm per year. Depositional fluxes of organic matter varied from ??0.1 mol C m-2 yr-1 to >10 mol C m-2 yr-1 and were both fairly uniform in stoichiometric composition and relatively labile. Estimates of benthic recycling derived from pore-water concentration gradients, whole-sediment incubation experiments, and deposition-burial models of early diagenesis yielded an estimated 40% of the carbon and 50% of the nitrogen recycled back into the overlying water. Remineralization was relatively rapid with ??50% of the carbon remineralized within <15 yr of deposition, and a mean residence time for metabolizable carbon and nitrogen in the sediments of 20 yr. On average, organic carbon regeneration occurred as 75% CO2, 15% CH4, and 10% dissolved organic carbon (DOC). Carbon and nitrogen budgets for the southern bay were based upon direct measurements of inputs and burial and upon estimates of export and production derived stoichiometrically from a coupled phosphorus budget. Loadings of organic carbon from rivers were ??3.7 mol m-2 yr-1, 80% in the form of DOC and 20% as particulate organic carbon. These inputs were lost through export to northern Green Bay and Lake Michigan (39%), through sediment burial (26%), and net CO2 release to the atmosphere (35%). Total carbon input, including new production, was 4.54 mol m-2 C yr-1, equivalent to ??10% of the gross annual primary production. Nitrogen budget terms were less well quantified

  4. Sediment carbon and nutrient fluxes from cleared and intact temperate mangrove ecosystems and adjacent sandflats.

    Bulmer, Richard H; Schwendenmann, Luitgard; Lohrer, Andrew M; Lundquist, Carolyn J

    2017-12-01

    The loss of mangrove ecosystems is associated with numerous impacts on coastal and estuarine function, including sediment carbon and nutrient cycling. In this study we compared in situ fluxes of carbon dioxide (CO 2 ) from the sediment to the atmosphere, and fluxes of dissolved inorganic nutrients and oxygen across the sediment-water interface, in intact and cleared mangrove and sandflat ecosystems in a temperate estuary. Measurements were made 20 and 25months after mangrove clearance, in summer and winter, respectively. Sediment CO 2 efflux was over two-fold higher from cleared than intact mangrove ecosystems at 20 and 25months after mangrove clearance. The higher CO 2 efflux from the cleared site was explained by an increase in respiration of dead root material along with sediment disturbance following mangrove clearance. In contrast, sediment CO 2 efflux from the sandflat site was negligible (≤9.13±1.18mmolm -2 d -1 ), associated with lower sediment organic matter content. The fluxes of inorganic nutrients (NH 4 + , NO x and PO 4 3- ) from intact and cleared mangrove sediments were low (≤20.37±18.66μmolm -2 h - 1 ). The highest NH 4 + fluxes were measured at the sandflat site (69.21±13.49μmolm -2 h - 1 ). Lower inorganic nutrient fluxes within the cleared and intact mangrove sites compared to the sandflat site were associated with lower abundance of larger burrowing macrofauna. Further, a higher fraction of organic matter, silt and clay content in mangrove sediments may have limited nutrient exchange. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effects of nutrient loading on the carbon balance of coastal wetland sediments

    Morris, J.T.; Bradley, P.M.

    1999-01-01

    Results of a 12-yr study in an oligotrophic South Carolina salt marsh demonstrate that soil respiration increased by 795 g C m-2 yr-1 and that carbon inventories decreased in sediments fertilized with nitrogen and phosphorus. Fertilized plots became net sources of carbon to the atmosphere, and sediment respiration continues in these plots at an accelerated pace. After 12 yr of treatment, soil macroorganic matter in the top 5 cm of sediment was 475 g C m-2 lower in fertilized plots than in controls, which is equivalent to a constant loss rate of 40 g C m-2 yr-1. It is not known whether soil carbon in fertilized plots has reached a new equilibrium or continues to decline. The increase in soil respiration in the fertilized plots was far greater than the loss of sediment organic matter, which indicates that the increase in soil respiration was largely due to an increase in primary production. Sediment respiration in laboratory incubations also demonstrated positive effects of nutrients. Thus, the results indicate that increased nutrient loading of oligotrophic wetlands can lead to an increased rate of sediment carbon turnover and a net loss of carbon from sediments.

  6. Nutrient variations and isotopic evidences of particulate organic matter provenance in fringing reefs, South China

    Cao, Di; Cao, Wenzhi; Liang, Ying; Huang, Zheng

    2016-01-01

    Nutrient over-enrichment is considered to be one of the causes of coral decline. Increase in traditional fishing in the Xuwen National Coral Reefs Reserve tract (XW) and tourism around the Sanya National Coral Reefs Reserve tract (SY) are causing this coral decline. This study reviews the current state of knowledge of the nutrient status of coastal fringing reefs in South China and evaluates the primary sources of nutrients using stable isotope method. Surveys of seawater nutrients showed that the seawater remained clean in both the XW and SY coastal coral reef areas. Based on the isotopic differences between anthropogenic sewage and naturally occurring aquatic nutrients, the isotopic values of particulate organic matter (POM) and the C/N ratios were successfully used to identify the presence of anthropogenic nutrients in aquatic environments. The δ"1"3C, δ"1"5N and C/N compositions of POM from XW and SY (− 21.18 ± 2.11‰, 10.30 ± 5.54‰, and 5.35 ± 0.69 and − 20.80 ± 1.34‰, 7.06 ± 3.95‰, and 5.77 ± 2.15, respectively) showed statistically significant variations with the season. The δ"1"3C and δ"1"5N values of POM suggest marine and terrestrial-derived nutrient sources. Organic carbon is a mixture of marine phytoplankton, marine benthic algae and terrestrial-derived plants. The δ"1"5N values suggest terrestrial-derived sewage and upwelling-dominated nitrogen sources. In the presence of natural upwelling and coastal currents, coastal coral reef areas are more vulnerable to the increasing anthropogenic nutrient inputs. Anthropogenic activities might lead to large increases in the nutrient concentrations and could trigger the shift from coral- to macroalgae-dominated ecosystems, which would ultimately result in the degradation of the coastal coral reef ecosystem. These results provide some understanding of the declining coral reef ecosystem and the importance of conservation areas and coastal coral reef resource management. - Highlights: • The

  7. Nutrient variations and isotopic evidences of particulate organic matter provenance in fringing reefs, South China

    Cao, Di; Cao, Wenzhi, E-mail: wzcao@xmu.edu.cn; Liang, Ying; Huang, Zheng

    2016-10-01

    Nutrient over-enrichment is considered to be one of the causes of coral decline. Increase in traditional fishing in the Xuwen National Coral Reefs Reserve tract (XW) and tourism around the Sanya National Coral Reefs Reserve tract (SY) are causing this coral decline. This study reviews the current state of knowledge of the nutrient status of coastal fringing reefs in South China and evaluates the primary sources of nutrients using stable isotope method. Surveys of seawater nutrients showed that the seawater remained clean in both the XW and SY coastal coral reef areas. Based on the isotopic differences between anthropogenic sewage and naturally occurring aquatic nutrients, the isotopic values of particulate organic matter (POM) and the C/N ratios were successfully used to identify the presence of anthropogenic nutrients in aquatic environments. The δ{sup 13}C, δ{sup 15}N and C/N compositions of POM from XW and SY (− 21.18 ± 2.11‰, 10.30 ± 5.54‰, and 5.35 ± 0.69 and − 20.80 ± 1.34‰, 7.06 ± 3.95‰, and 5.77 ± 2.15, respectively) showed statistically significant variations with the season. The δ{sup 13}C and δ{sup 15}N values of POM suggest marine and terrestrial-derived nutrient sources. Organic carbon is a mixture of marine phytoplankton, marine benthic algae and terrestrial-derived plants. The δ{sup 15}N values suggest terrestrial-derived sewage and upwelling-dominated nitrogen sources. In the presence of natural upwelling and coastal currents, coastal coral reef areas are more vulnerable to the increasing anthropogenic nutrient inputs. Anthropogenic activities might lead to large increases in the nutrient concentrations and could trigger the shift from coral- to macroalgae-dominated ecosystems, which would ultimately result in the degradation of the coastal coral reef ecosystem. These results provide some understanding of the declining coral reef ecosystem and the importance of conservation areas and coastal coral reef resource management

  8. Carbon and nutrient mixed layer dynamics in the Norwegian Sea

    H. S. Findlay

    2008-10-01

    Full Text Available A coupled carbon-ecosystem model is compared to recent data from Ocean Weather Station M (66° N, 02° E and used as a tool to investigate nutrient and carbon processes within the Norwegian Sea. Nitrate is consumed by phytoplankton in the surface layers over the summer; however the data show that silicate does not become rapidly limiting for diatoms, in contrast to the model prediction and in contrast to data from other temperate locations. The model estimates atmosphere-ocean CO2 flux to be 37 g C m−2 yr−1. The seasonal cycle of the carbonate system at OWS M resembles the cycles suggested by data from other high-latitude ocean locations. The seasonal cycles of calcite saturation state and [CO32-] are similar in the model and in data at OWS M: values range from ~3 and ~120 μmol kg−1 respectively in winter, to ~4 and ~170 μmol kg−1 respectively in summer. The model and data provide further evidence (supporting previous modelling work that the summer is a time of high saturation state within the annual cycle at high-latitude locations. This is also the time of year that coccolithophore blooms occur at high latitudes.

  9. Urban tree effects on soil organic carbon.

    Jill L Edmondson

    Full Text Available Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered.

  10. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients

    Wellendorph, Petrine; Johansen, Lars Dan; Bräuner-Osborne, Hans

    2009-01-01

    drug targets, to treat, for example, type II diabetes by mimicking food intake by potent agonists or positive allosteric modulators. The ligand-receptor interactions of the promiscuous receptors of organic nutrients thus remain an interesting subject of emerging functional importance....... in taste tissue, the gastrointestinal tract, endocrine glands, adipose tissue, and/or kidney. These receptors thus hold the potential to act as sensors of food intake, regulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue....... The promiscuous tendency in ligand recognition of these receptors is in contrast to the typical specific interaction with one physiological agonist seen for most receptors, which challenges the classic "lock-and-key" concept. We here review the molecular mechanisms of nutrient sensing of the calcium...

  11. [Roles of organic acid metabolism in plant adaptation to nutrient deficiency and aluminum toxicity stress].

    Wang, Jianfei; Shen, Qirong

    2006-11-01

    Organic acids not only act as the intermediates in carbon metabolism, but also exert key roles in the plant adaptation to nutrient deficiency and metal stress and in the plant-microbe interactions at root-soil interface. From the viewpoint of plant nutrition, this paper reviewed the research progress on the formation and physiology of organic acids in plant, and their functions in nitrogen metabolism, phosphorus and iron uptake, aluminum tolerance, and soil ecology. New findings in the membrane transport of organic acids and the biotechnological manipulation of organic acids in transgenic model were also discussed. This novel perspectives of organic acid metabolism and its potential manipulation might present a possibility to understand the fundamental aspects of plant physiology, and lead to the new strategies to obtain crop varieties better adapted to environmental and metal stress.

  12. Evaluating the Contributions of Atmospheric Deposition of Carbon and Other Nutrients to Nitrification in Alpine Environments

    Oldani, K. M.; Mladenov, N.; Williams, M. W.

    2013-12-01

    The Colorado Front Range of the Rocky Mountains contains undeveloped, barren soils, yet in this environment there is strong evidence for a microbial role in increased nitrogen (N) export. Barren soils in alpine environments are severely carbon-limited, which is the main energy source for microbial activity and sustenance of life. It has been shown that atmospheric deposition can contain high amounts of organic carbon (C). Atmospheric pollutants, dust events, and biological aerosols, such as bacteria, may be important contributors to the atmospheric organic C load. In this stage of the research we evaluated seasonal trends in the chemical composition and optical spectroscopic (fluorescence and UV-vis absorbance) signatures of snow, wet deposition, and dry deposition in an alpine environment at Niwot Ridge in the Rocky Mountains of Colorado to obtain a better understanding of the sources and chemical character of atmospheric deposition. Our results reveal a positive trend between dissolved organic carbon concentrations and calcium, nitrate and sulfate concentrations in wet and dry deposition, which may be derived from such sources as dust and urban air pollution. We also observed the presence of seasonally-variable fluorescent components that may be attributed to fluorescent pigments in bacteria. These results are relevant because atmospheric inputs of carbon and other nutrients may influence nitrification in barren, alpine soils and, ultimately, the export of nitrate to alpine watersheds.

  13. Nutrient amendment does not increase mineralisation of sequestered carbon during incubation of a nitrogen limited mangrove soil

    Keuskamp, Joost A.; Schmitt, Heike; Laanbroek, Hendrikus J.; Verhoeven, Jos T.A.; Hefting, Mariet M.

    2013-01-01

    Mangrove forests are sites of intense carbon and nutrient cycling, which result in soil carbon sequestration on a global scale. Currently, mangrove forests receive increasing quantities of exogenous nutrients due to coastal development. The present

  14. Carbon Stable Isotope Values in Plankton and Mussels Reflect Changes in Carbonate Chemistry Associated with Nutrient Enhanced Net Production

    Autumn Oczkowski

    2018-02-01

    Full Text Available Coastal ecosystems are inherently complex and potentially adaptive as they respond to changes in nutrient loads and climate. We documented the role that carbon stable isotope (δ13C measurements could play in understanding that adaptation with a series of three Ecostat (i.e., continuous culture experiments. We quantified linkages among δ13C, nutrients, carbonate chemistry, primary, and secondary production in temperate estuarine waters. Experimental culture vessels (9.1 L containing 33% whole and 67% filtered (0.2 μm seawater were amended with dissolved inorganic nitrogen (N and phosphorous (P in low (3 vessels; 5 μM N, 0.3 μM P, moderate (3 vessels; 25 μM N, 1.6 μM P, and high amounts (3 vessels; 50 μM N, 3.1 μM P. The parameters necessary to calculate carbonate chemistry, chlorophyll-a concentrations, and particulate δ13C values were measured throughout the 14 day experiments. Outflow lines from the experimental vessels fed 250 ml containers seeded with juvenile blue mussels (Mytilus edulis. Mussel subsamples were harvested on days 0, 7, and 14 and their tissues were analyzed for δ13C values. We consistently observed that particulate δ13C values were positively correlated with chlorophyll-a, carbonate chemistry, and to changes in the ratio of bicarbonate to dissolved carbon dioxide (HCO3-:CO2. While the relative proportion of HCO3- to CO2 increased over the 14 days, concentrations of each declined, reflecting the drawdown of carbon associated with enhanced production. Plankton δ13C values, like chlorophyll-a concentrations, increased over the course of each experiment, with the greatest increases in the moderate and high treatments. Trends in δ13C over time were also observed in the mussel tissues. Despite ecological variability and different plankton abundances the experiments consistently demonstrated how δ13C values in primary producers and consumers reflected nutrient availability, via its impact on carbonate chemistry. We

  15. Enhanced biofiltration of O&G produced water comparing granular activated carbon and nutrients.

    Riley, Stephanie M; Ahoor, Danika C; Cath, Tzahi Y

    2018-05-31

    Large volumes of water are required for the development of unconventional oil and gas (O&G) wells. Water scarcity coupled with seismicity induced by deep-well disposal promote new O&G wastewater management strategies, specifically treatment and reuse. One technology that has been proven effective for removal of organic matter and solids is biologically active filtration (BAF) with granular active carbon (GAC); however, further optimization is needed to enhance BAF performance. This study evaluated three GAC media (one spent and two new) and two nutrient-mix supplements for enhanced removal of chemical oxygen demand (COD) and dissolved organic carbon (DOC). Biofilm development was also monitored and correlated to BAF performance. The spent GAC with extant biofilm quickly acclimated to PW and demonstrated up to 92% DOC removal (81% COD) in 24h, while little impact by nutrient addition was observed. In addition, virgin GAC was slow to establish a biofilm, indicating that appropriate GAC selection and pre-developed biofilm is critical for efficient BAF performance. Furthermore, the production of high quality BAF effluent (less than 20mg/L DOC) presents the opportunity to apply BAF as a pretreatment for subsequent desalination-expanding the potential for reuse applications of PW. Copyright © 2017. Published by Elsevier B.V.

  16. Repeat synoptic sampling reveals drivers of change in carbon and nutrient chemistry of Arctic catchments

    Zarnetske, J. P.; Abbott, B. W.; Bowden, W. B.; Iannucci, F.; Griffin, N.; Parker, S.; Pinay, G.; Aanderud, Z.

    2017-12-01

    Dissolved organic carbon (DOC), nutrients, and other solute concentrations are increasing in rivers across the Arctic. Two hypotheses have been proposed to explain these trends: 1. distributed, top-down permafrost degradation, and 2. discrete, point-source delivery of DOC and nutrients from permafrost collapse features (thermokarst). While long-term monitoring at a single station cannot discriminate between these mechanisms, synoptic sampling of multiple points in the stream network could reveal the spatial structure of solute sources. In this context, we sampled carbon and nutrient chemistry three times over two years in 119 subcatchments of three distinct Arctic catchments (North Slope, Alaska). Subcatchments ranged from 0.1 to 80 km2, and included three distinct types of Arctic landscapes - mountainous, tundra, and glacial-lake catchments. We quantified the stability of spatial patterns in synoptic water chemistry and analyzed high-frequency time series from the catchment outlets across the thaw season to identify source areas for DOC, nutrients, and major ions. We found that variance in solute concentrations between subcatchments collapsed at spatial scales between 1 to 20 km2, indicating a continuum of diffuse- and point-source dynamics, depending on solute and catchment characteristics (e.g. reactivity, topography, vegetation, surficial geology). Spatially-distributed mass balance revealed conservative transport of DOC and nitrogen, and indicates there may be strong in-stream retention of phosphorus, providing a network-scale confirmation of previous reach-scale studies in these Arctic catchments. Overall, we present new approaches to analyzing synoptic data for change detection and quantification of ecohydrological mechanisms in ecosystems in the Arctic and beyond.

  17. Sudden increase in atmospheric concentration reveals strong coupling between shoot carbon uptake and root nutrient uptake in young walnut trees

    Delaire, M.; Sigogne, M.; Beaujard, F.; Frak, E.; Adam, B.; Le Roux, X.

    2005-01-01

    Short-term effects of a sudden increase in carbon dioxide concentration on nutrient uptake by roots during vegetative growth was studied in young walnut trees. Rates of carbon dioxide uptake and water loss by individual trees were determined by a branch bag method from three days before and six days after carbon dioxide concentration was increased. Nutrient uptake rates were measured concurrently by a hydroponic recirculating nutrient solution system. Carbon dioxide uptake rates increased greatly with increasing atmospheric carbon dioxide; nutrient uptake rates were proportional to carbon dioxide uptake rates, except for the phosphorus ion. Daily water loss rates were only slightly affected by elevated carbon dioxide. Overall, it was concluded that in the presence of non-limiting supplies of water and nutrients, root nutrient uptake and shoot carbon assimilation are strongly coupled in the short term in young walnut trees despite the important carbon and nutrient storage capacities od woody species. 45 refs., 7 figs

  18. Evaluation of Net Primary Productivity and Carbon Allocation to Different Parts of Corn in Different Tillage and Nutrient Management Systems

    esmat mohammadi

    2017-09-01

    Full Text Available Evaluation of net primary productivity and carbon allocation to different organs of corn under nutrient management and tillage systems Introduction Agriculture operations produce 10 to 20 percent of greenhouse gases. As a result of conventional operations of agriculture, greenhouse gases have been increased (Osborne et al., 2010. Therefor it is necessary to notice to carbon sequestration to reduce greenhouse gases emissions. In photosynthesis process, plants absorb CO2 and large amounts of organic carbon accumulate in their organs. Biochar is produced of pyrolysis of organic compounds. Biochar is an appropriate compound for improved of soil properties and carbon sequestration (Whitman and Lehmann, 2009; Smith et al., 2010. Conservation tillage has become an important technology in sustainable agriculture due to its benefits. So the aim of this study was to evaluate the effect of nutrient management and tillage systems on net primary production and carbon allocation to different organs of corn in Shahrood. Material and methods This study was conducted at the Shahrood University of Technology research farm. Experiment was done as split plot in randomized complete block design with three replications. Tillage systems with two levels (conventional tillage and minimum tillage were as the main factor and nutrient management in seven levels including (control, chemical fertilizer, manure, biochar, chemical fertilizer + manure, chemical fertilizer + biochar, manure + biochar were considered as sub plot. At the time of maturity of corn, was sampled from its aboveground and belowground biomasses. Carbon content of shoot, seed and root was considered almost 45 percent of yield of each of these biomasses and carbon in root exudates almost 65 percent of carbon in the root. Statistical analysis of the data was performed using SAS program. Comparison of means was conducted with LSD test at the 5% level. Results and discussion Effect of nutrient management was

  19. Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experiment

    R. G. J. Bellerby

    2008-11-01

    Full Text Available Changes to seawater inorganic carbon and nutrient concentrations in response to the deliberate CO2 perturbation of natural plankton assemblages were studied during the 2005 Pelagic Ecosystem CO2 Enrichment (PeECE III experiment. Inverse analysis of the temporal inorganic carbon dioxide system and nutrient variations was used to determine the net community stoichiometric uptake characteristics of a natural pelagic ecosystem perturbed over a range of pCO2 scenarios (350, 700 and 1050 μatm. Nutrient uptake showed no sensitivity to CO2 treatment. There was enhanced carbon production relative to nutrient consumption in the higher CO2 treatments which was positively correlated with the initial CO2 concentration. There was no significant calcification response to changing CO2 in Emiliania huxleyi by the peak of the bloom and all treatments exhibited low particulate inorganic carbon production (~15 μmol kg−1. With insignificant air-sea CO2 exchange across the treatments, the enhanced carbon uptake was due to increase organic carbon production. The inferred cumulative C:N:P stoichiometry of organic production increased with CO2 treatment from 1:6.3:121 to 1:7.1:144 to 1:8.25:168 at the height of the bloom. This study discusses how ocean acidification may incur modification to the stoichiometry of pelagic production and have consequences for ocean biogeochemical cycling.

  20. Organic carbon content of tropical zooplankton

    Nair, V.R.

    In the Zuari and Mandovi estuaries variations in organic carbon of zooplankton are 26.4-38.8 and 24-39.9% of dry weight respectively. Maximum carbon content of estuarine zooplankton is observed in November. Organic carbon in nearshore and oceanic...

  1. Nutrient Removal during Stormwater Aquifer Storage and Recovery in an Anoxic Carbonate Aquifer.

    Vanderzalm, Joanne L; Page, Declan W; Dillon, Peter J; Barry, Karen E; Gonzalez, Dennis

    2018-03-01

    Stormwater harvesting coupled to managed aquifer recharge (MAR) provides a means to use the often wasted stormwater resource while also providing protection of the natural and built environment. Aquifers can act as a treatment barrier within a multiple-barrier approach to harvest and use urban stormwater. However, it remains challenging to assess the treatment performance of a MAR scheme due to the heterogeneity of aquifers and MAR operations, which in turn influences water treatment processes. This study uses a probabilistic method to evaluate aquifer treatment performance based on the removal of total organic C (TOC), N, and P during MAR with urban stormwater in an anoxic carbonate aquifer. Total organic C, N, and P are represented as stochastic variables and described by probability density functions (PDFs) for the "injectant" and "recovery"; these injectant and recovery PDFs are used to derive a theoretical MAR removal efficiency PDF. Four long-term MAR sites targeting one of two tertiary carbonate aquifers (T1 and T2) were used to describe the nutrient removal efficiencies. Removal of TOC and total N (TN) was dominated by redox processes, with median removal of TOC between 50 and 60% at all sites and TN from 40 to 50% at three sites with no change at the fourth. Total P removal due to filtration and sorption accounted for median removal of 29 to 53%. Thus, the statistical method was able to characterize the capacity of the anoxic carbonate aquifer treatment barrier for nutrient removal, which highlights that aquifers can be an effective long-term natural treatment option for management of water quality, as well as storage of urban stormwater. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems

    Bucs, Szilard

    2014-12-01

    The influence of organic nutrient load on biomass accumulation (biofouling) and pressure drop development in membrane filtration systems was investigated. Nutrient load is the product of nutrient concentration and linear flow velocity. Biofouling - excessive growth of microbial biomass in membrane systems - hampers membrane performance. The influence of biodegradable organic nutrient load on biofouling was investigated at varying (i) crossflow velocity, (ii) nutrient concentration, (iii) shear, and (iv) feed spacer thickness. Experimental studies were performed with membrane fouling simulators (MFSs) containing a reverse osmosis (RO) membrane and a 31 mil thick feed spacer, commonly applied in practice in RO and nanofiltration (NF) spiral-wound membrane modules. Numerical modeling studies were done with identical feed spacer geometry differing in thickness (28, 31 and 34 mil). Additionally, experiments were done applying a forward osmosis (FO) membrane with varying spacer thickness (28, 31 and 34 mil), addressing the permeate flux decline and biofilm development. Assessed were the development of feed channel pressure drop (MFS studies), permeate flux (FO studies) and accumulated biomass amount measured by adenosine triphosphate (ATP) and total organic carbon (TOC).Our studies showed that the organic nutrient load determined the accumulated amount of biomass. The same amount of accumulated biomass was found at constant nutrient load irrespective of linear flow velocity, shear, and/or feed spacer thickness. The impact of the same amount of accumulated biomass on feed channel pressure drop and permeate flux was influenced by membrane process design and operational conditions. Reducing the nutrient load by pretreatment slowed-down the biofilm formation. The impact of accumulated biomass on membrane performance was reduced by applying a lower crossflow velocity and/or a thicker and/or a modified geometry feed spacer. The results indicate that cleanings can be delayed

  3. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal.

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-04-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49-5.99 g N/(kg MLVSS⋅h) (MLVSS is mixed liquor volatile suspended solids) and 6.63-6.81 g N/(kg MLVSS⋅h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes.

  4. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal*

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-01-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49–5.99 g N/(kg MLVSS∙h) (MLVSS is mixed liquor volatile suspended solids) and 6.63–6.81 g N/(kg MLVSS∙h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes. PMID:25845364

  5. Aeolian nutrient fluxes following wildfire in sagebrush steppe: implications for soil carbon storage

    N. J. Hasselquist

    2011-12-01

    Full Text Available Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes occurring in the saltation zone during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C and nitrogen (N fluxes were as high as 235 g C m−1 d−1 and 19 g N m−1 d−1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes.

  6. Nutrient experiment using Phaeodactylum tricornutum as an assay organism

    C Teixeira

    1976-01-01

    Full Text Available The growth of Phaeodactylum tricornutum, cultured at 7,000 lux and 25º C, in twelve-day experiments using enriched water collected at the surface and 50.0 m depth from coastal waters offshore of Ubatuba area, was carried out. Different water enrichements were made by the aseptic addition of several nutrients, at each depth, according to Smayda (1964. The nitrogen out measured in terms of Carbon-14 assimilation and cloropyll concentration, was found to be a primary limiting factor for marine phytoplankton production.Este trabalho teve como finalidade avaliar a qualidade das águas costeiras coletadas num ponto nas proximidades da Ilha Vitória (Lat. 23º45' S - Long. 45º01' W, na superfície e a 50,0 m de profundidade. Foram realizadas 176 ensaios biológicos com o auxílio de Phaeodactylum tricornutum, incubada em dez diferentes combinações de meios, além do controle. As respostas às diferentes condições ambientais fornecidas as culturas, foram obtidas baseando-se na diferenciação da biomassa em termos de clorofila-a, e na realização da fotossíntese em termos da assimilação do carbono-14. Os resultados demonstraram ser o nitrogênio o fator limitante primário para o crescimento do fitoplâncton.

  7. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients.

    Wellendorph, Petrine; Johansen, Lars Dan; Bräuner-Osborne, Hans

    2009-09-01

    A number of highly promiscuous seven transmembrane (7TM) receptors have been cloned and characterized within the last few years. It is noteworthy that many of these receptors are activated broadly by amino acids, proteolytic degradation products, carbohydrates, or free fatty acids and are expressed in taste tissue, the gastrointestinal tract, endocrine glands, adipose tissue, and/or kidney. These receptors thus hold the potential to act as sensors of food intake, regulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue. The promiscuous tendency in ligand recognition of these receptors is in contrast to the typical specific interaction with one physiological agonist seen for most receptors, which challenges the classic "lock-and-key" concept. We here review the molecular mechanisms of nutrient sensing of the calcium-sensing receptor, the G protein-coupled receptor family C, group 6, subtype A (GPRC6A), and the taste1 receptor T1R1/T1R3, which are sensing L-alpha-amino acids, the carbohydrate-sensing T1R2/T1R3 receptor, the proteolytic degradation product sensor GPR93 (also termed GPR92), and the free fatty acid (FFA) sensing receptors FFA1, FFA2, FFA3, GPR84, and GPR120. The involvement of the individual receptors in sensing of food intake has been validated to different degrees because of limited availability of specific pharmacological tools and/or receptor knockout mice. However, as a group, the receptors represent potential drug targets, to treat, for example, type II diabetes by mimicking food intake by potent agonists or positive allosteric modulators. The ligand-receptor interactions of the promiscuous receptors of organic nutrients thus remain an interesting subject of emerging functional importance.

  8. Organic carbon organic matter and bulk density relationships in arid ...

    Soil organic matter (SOM) and soil organic carbon (SOC) constitute usually a small portion of soil, but they are one of the most important components of ecosystems. Bulk density (dB or BD) value is necessary to convert organic carbon (OC) content per unit area. Relationships between SOM, SOC and BD were established ...

  9. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir.

    Freedman, Adam J E; Tan, BoonFei; Thompson, Janelle R

    2017-06-01

    Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 , harbor a 'deep carbonated biosphere' with carbon cycling potential. We sampled subsurface fluids from scCO 2 -water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Assimilation of organic and inorganic nutrients by Erica root fungi from the fynbos ecosystem.

    Bizabani, Christine; Dames, Joanna Felicity

    2016-03-01

    Erica dominate the fynbos ecosystem, which is characterized by acidic soils that are rich in organic matter. The ericaceae associate with ericoid mycorrhizal (ERM) fungi for survival. In this study fungal biomass accumulation in vitro was used to determine nutrient utilisation of various inorganic and organic substrates. This is an initial step towards establishment of the ecological roles of typical ERM fungi and other root fungi associated with Erica plants, with regard to host nutrition. Meliniomyces sp., Acremonium implicatum, Leohumicola sp., Cryptosporiopsis erica, Oidiodendron maius and an unidentified Helotiales fungus were selected from fungi previously isolated and identified from Erica roots. Sole nitrogen sources ammonium, nitrate, arginine and Bovine Serum Albumin (BSA) were tested. Meliniomyces and Leohumicola species were able to utilise BSA effectively. Phosphorus nutrition was tested using orthophosphate, sodium inositol hexaphosphate and DNA. Most isolates preferred orthophosphate. Meliniomyces sp. and A. implicatum were able to accumulate significant biomass using DNA. Carbon utilisation was tested using glucose, cellobiose, carboxymethylcellulose, pectin and tannic acid substrates. All fungal isolates produced high biomass on glucose and cellobiose. The ability to utilize organic nutrient sources in culture, illustrates their potential role of these fungi in host nutrition in the fynbos ecosystem. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  11. Fermentation as a first step in carbon and nutrient recovery in regenerative life support systems

    Luther, Amanda; Lasseur, Christophe; Rebeyre, Pierre; Clauwaert, Peter; Rabaey, Korneel; Ronsse, Frederik; Zhang, Dong Dong; López Barreiro, Diego; Prins, Wolter

    2016-07-01

    Long term manned space missions, such as the establishment of a base on Mars, will require a regenerative means of supplying the basic resources (i.e., food, water, oxygen) necessary to support human life. The MELiSSA-loop is a closed loop compartmentalized artificial aquatic ecosystem designed to recover water, carbon, and nutrients from solid organic wastes (e.g., inedible food waste and feces) for the regeneration of food and oxygen for humans. The first step in this loop is a strictly anaerobic fermentation unit operated as a membrane bioreactor. In this step the aim is to maximize the hydrolysis of complex organic compounds into simple molecules (CO2, ammonia, volatile fatty acids, …) which can be consumed by plants and bacteria downstream to produce food again. Optimal steady state fermentation of a standardized homogeneous mixture of beets, lettuce, wheat straw, toilet paper, feces, and water was demonstrated to recover approximately 50% of the influent carbon as soluble organics in the effluent through anaerobic fermentation. Approximately 10% of the influent COD was converted to CO2, with the remaining ~40% retained as a mixture of undigested solids and biomass. Approximately 50% of the influent nitrogen was recovered in the effluent, 97% of which was in the form of ammonia. Similar results have been obtained at both lab and pilot scale. With only 10% of the carbon driven to CO2 through this fermentation, a major challenge at this moment for the MELiSSA-loop is closing the carbon cycle, by completely oxidizing the carbon in the organic waste and non-edible parts of the plant into CO2 for higher plants and algae to fix again for food production. To further improve the overall degradation we are investigating the integration of a high temperature and pressure, sub- or near critical water conditions to improve the degradation of fibrous material with the addition of an oxidant (hydrogen peroxide, H2O2) under sub- or near critical conditions to further

  12. Nutrient management in farms in conversion to organic

    Kolbe, Hartmut

    2008-01-01

    This report, adapted for Saxony, serves converting farmers supported by local advisors as a guideline for a balanced nutrient management at farm level. Essentials of nutrient supply and management measures to consider during the conversion are described to guarantee a successful farming with a naturally based nutrient management. Especially for the conversion phase it is recommended to calculate nitrogen balance after each crop rotation with the help of advisors. This report shows the me...

  13. Energy and nutrient recovery from anaerobic treatment of organic wastes

    Henrich, Christian-Dominik

    The objective of the research was to develop a complete systems design and predictive model framework of a series of linked processes capable of providing treatment of landfill leachate while simultaneously recovering nutrients and bioenergy from the waste inputs. This proposed process includes an "Ammonia Recovery Process" (ARP) consisting of: (1) ammonia de-sorption requiring leachate pH adjustment with lime or sodium hydroxide addition followed by, (2) ammonia re-absorption into a 6-molar sulfuric acid spray-tower followed by, (3) biological activated sludge treatment of soluble organic residuals (BOD) followed by, (4) high-rate algal post-treatment and finally, (5) an optional anaerobic digestion process for algal and bacterial biomass, and/or supplemental waste fermentation providing the potential for additional nutrient and energy recovery. In addition, the value provided by the waste treatment function of the overall processes, each of the sub-processes would provide valuable co-products offering potential GHG credit through direct fossil-fuel replacement, or replacement of products requiring fossil fuels. These valuable co-products include, (1) ammonium sulfate fertilizer, (2) bacterial biomass, (3) algal biomass providing, high-protein feeds and oils for biodiesel production and, (4) methane bio-fuels. Laboratory and pilot reactors were constructed and operated, providing data supporting the quantification and modeling of the ARP. Growth parameters, and stoichiometric coefficients were determined, allowing for design of the leachate activated sludge treatment sub-component. Laboratory and pilot algal reactors were constructed and operated, and provided data that supported the determination of leachate organic/inorganic-nitrogen ratio, and loading rates, allowing optimum performance of high-rate algal post-treatment. A modular and expandable computer program was developed, which provided a systems model framework capable of predicting individual component

  14. Interactions between biomass energy technologies and nutrient and carbon balances at the farm level

    Joergensen, Uffe; Molt Petersen, B. [Danish Inst. of Agricultural Science, Dept. of Agroecology, Tjele (Denmark)

    2006-08-15

    Biomass energy is by far the largest renewable energy source in the world (IEA Renewable information (www.iea.org)). Biomass utilisation is closely linked to management and sustainability issues of forestry and agriculture. Carbon is extracted from forests and agriculture to bioenergy facilities, from where it is partly or fully emitted as CO{sub 2} and thus no longer available for sustaining soil organic matter content. Nutrients are extracted as well and, depending of the conversion technology, they may be recycled to farmland or lost as gaseous emissions. Thus, we must be able to describe these effects, and to suggest strategies to alleviate adverse effects on farm sustainability and on the environment. By choosing intelligent combinations of cropping systems and energy conversion technologies, win-win solutions may be achieved. This paper illustrates, via three cases, some agricultural impacts of choice of biomass technology and describes an intriguing possibility for recycling municipal or industrial wastes through the bioenergy chain. (au)

  15. Impacts of soil redistribution on the transport and fate of organic carbon in loess soils

    Wang, X.

    2014-01-01

    Soil erosion is an important environmental process leading to loss of topsoil including carbon (C) and nutrients, reducing soil quality and loss of biomass production. So far, the fate of soil organic carbon (SOC) in eroding landscapes is not yet fully understood and remains an important uncertainty

  16. Modeling the relative importance of nutrient and carbon loads ...

    The Louisiana continental shelf (LCS) in the northern Gulf of Mexico experiences bottom water hypoxia in the summer. In order to gain a more fundamental understanding of the controlling factors leading to hypoxia, the Gulf of Mexico Dissolved Oxygen Model (GoMDOM) was applied to this area to simulate dissolved oxygen concentrations in the water as a function of various nutrient loadings. The model is a numerical, biogeochemical, three-dimensional ecological model that receives its physical transport data from the Navy Coastal Ocean Model (NCOM-LCS). GoMDOM was calibrated to a large set of nutrient, phytoplankton, dissolved oxygen, sediment nutrient flux, sediment oxygen demand (SOD), primary production, and respiration data collected in 2006 and corroborated with field data collected in 2003. The primary objective was to use the model to estimate a nutrient load reduction of both nitrogen and phosphorus necessary to reduce the size of the hypoxic area to 5,000 km2, a goal established in the 2008 Gulf of Mexico Hypoxia Action Plan prepared by the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force. Using the year 2006 as a test case, the model results suggest that the nitrogen and phosphorus load reduction from the Atchafalaya and Mississippi River basins would need to be reduced by 64% to achieve the target hypoxia area. The Louisiana continental shelf (LCS) in the northern part of the Gulf of Mexico has a history of subsurface hypoxia in the summer.

  17. Episodic Salinization of Urban Rivers: Potential Impacts on Carbon, Cation, and Nutrient Fluxes

    Haq, S.; Kaushal, S.

    2017-12-01

    Human dominated watersheds are subjected to an array of salt inputs (e.g. road salts), and in urban areas, infrastructure and impervious surfaces quickly drain applied road salts into the river channel. As a result, many streams experience episodic salinization over the course of hours to days following a snow event (e.g. road salt pulse), and long-term salinization over the course of seasons to decades. Salinization of streams can release contaminants (e.g. heavy metals), reduce biodiversity, and degrade drinking water quality. We investigated the water quality effects of episodic salinization in urban streams. Sediment and streamwater were incubated from twelve sites in the Baltimore-Washington Metropolitan Area under a range of sodium chloride treatments in a lab environment to mimic a vertical stream column with a sediment-water interface undergoing episodic salinization, and to characterize relationships between experimental salinization and nutrient/cation fluxes. Eight sites (Baltimore) exhibit a land use gradient and are routinely monitored within the Baltimore Ecosystem Study LTER project, and four sites (Washington DC) are suburban and offer a contrasting lithology and physiographic province. Our research suggests that salinization can mobilize total dissolved nitrogen, soluble reactive phosphorous, and base cations; potentially due to coupled biotic-abiotic processes, such as ion exchange, rapid nitrification, pH changes, and chloride-organic matter dispersal. The impact of salinization on dissolved inorganic and organic carbon varied between sites, potentially due to sediment composition, organic matter content, and ambient water quality. We contrasted the experimental results with measurements of salinization (specific conductance) and nutrients (nitrate) from real-time sensors operated by the US Geological Survey that encompass the same watersheds as our experimental sites. Sensor data was analyzed to provide insight on the timescales of salinity-nutrient

  18. The role of aquatic fungi in transformations of organic matter mediated by nutrients

    Cynthia J. Tant; Amy D. Rosemond; Andrew S. Mehring; Kevin A. Kuehn; John M. Davis

    2015-01-01

    1. We assessed the key role of aquatic fungi in modifying coarse particulate organic matter (CPOM) by affecting its breakdown rate, nutrient concentration and conversion to fine particulate organic matter (FPOM). Overall, we hypothesised that fungal-mediated conditioning and breakdown of CPOM would be accelerated when nutrient concentrations are increased and tested...

  19. Energy and nutrient density of foods in relation to their carbon footprint.

    Drewnowski, Adam; Rehm, Colin D; Martin, Agnes; Verger, Eric O; Voinnesson, Marc; Imbert, Philippe

    2015-01-01

    A carbon footprint is the sum of greenhouse gas emissions (GHGEs) associated with food production, processing, transporting, and retailing. We examined the relation between the energy and nutrient content of foods and associated GHGEs as expressed as g CO2 equivalents. GHGE values, which were calculated and provided by a French supermarket chain, were merged with the Composition Nutritionnelle des Aliments (French food-composition table) nutrient-composition data for 483 foods and beverages from the French Agency for Food, Environmental and Occupational Health and Safety. Foods were aggregated into 34 food categories and 5 major food groups as follows: meat and meat products, milk and dairy products, frozen and processed fruit and vegetables, grains, and sweets. Energy density was expressed as kcal/100 g. Nutrient density was determined by using 2 alternative nutrient-density scores, each based on the sum of the percentage of daily values for 6 or 15 nutrients, respectively. The energy and nutrient densities of foods were linked to log-transformed GHGE values expressed per 100 g or 100 kcal. Grains and sweets had lowest GHGEs (per 100 g and 100 kcal) but had high energy density and a low nutrient content. The more-nutrient-dense animal products, including meat and dairy, had higher GHGE values per 100 g but much lower values per 100 kcal. In general, a higher nutrient density of foods was associated with higher GHGEs per 100 kcal, although the slopes of fitted lines varied for meat and dairy compared with fats and sweets. Considerations of the environmental impact of foods need to be linked to concerns about nutrient density and health. The point at which the higher carbon footprint of some nutrient-dense foods is offset by their higher nutritional value is a priority area for additional research. © 2015 American Society for Nutrition.

  20. Deposition and benthic mineralization of organic carbon

    Nordi, Gunnvor A.; Glud, Ronnie N.; Simonsen, Knud

    2018-01-01

    Seasonal variations in sedimentation and benthic mineralization of organic carbon (OC) were investigated in a Faroese fjord. Deposited particulate organic carbon (POC) was mainly of marine origin, with terrestrial material only accounting for b1%. On an annual basis the POC export fromthe euphotic...

  1. Organic carbon isotope systematics of coastal marshes

    Middelburg, J.J.; Nieuwenhuize, J.; Lubberts, R.K.; Van de Plassche, O.

    1997-01-01

    Measurements of nitrogen, organic carbon and delta(13)C are presented for Spartina-dominated marsh sediments from a mineral marsh in SW Netherlands and from a peaty marsh in Massachusetts, U.S.A. delta(13)C Of organic carbon in the peaty marsh sediments is similar to that of Spartina material,

  2. Acidity controls on dissolved organic carbon mobility in organic soils

    Evans, Ch. D.; Jones, T.; Burden, A.; Ostle, N.; Zielinski, P.; Cooper, M.; Peacock, M.; Clark, J.; Oulehle, Filip; Cooper, D.; Freeman, Ch.

    2012-01-01

    Roč. 18, č. 11 (2012), s. 3317-3331 ISSN 1354-1013 Institutional support: RVO:67179843 Keywords : acidity * dissolved organic carbon * organic soil * peat * podzol * soil carbon * sulphur Subject RIV: EH - Ecology, Behaviour Impact factor: 6.910, year: 2012

  3. Effect of organic and inorganic fertilizers on nutrient concentrations ...

    Yomi

    2012-01-24

    Jan 24, 2012 ... food energy and basic nutrients for proper nutrition of man. ... 2008). Irrespective of the variety, crop yield is a direct ..... had recently formed the research drive of scientists so as .... Bioresource Technology for Sustainable.

  4. Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation

    Schobben, Martin; van de Velde, Sebastiaan; Gliwa, Jana; Leda, Lucyna; Korn, Dieter; Struck, Ulrich; Vinzenz Ullmann, Clemens; Hairapetian, Vachik; Ghaderi, Abbas; Korte, Christoph; Newton, Robert J.; Poulton, Simon W.; Wignall, Paul B.

    2017-11-01

    Bulk-carbonate carbon isotope ratios are a widely applied proxy for investigating the ancient biogeochemical carbon cycle. Temporal carbon isotope trends serve as a prime stratigraphic tool, with the inherent assumption that bulk micritic carbonate rock is a faithful geochemical recorder of the isotopic composition of seawater dissolved inorganic carbon. However, bulk-carbonate rock is also prone to incorporate diagenetic signals. The aim of the present study is to disentangle primary trends from diagenetic signals in carbon isotope records which traverse the Permian-Triassic boundary in the marine carbonate-bearing sequences of Iran and South China. By pooling newly produced and published carbon isotope data, we confirm that a global first-order trend towards depleted values exists. However, a large amount of scatter is superimposed on this geochemical record. In addition, we observe a temporal trend in the amplitude of this residual δ13C variability, which is reproducible for the two studied regions. We suggest that (sub-)sea-floor microbial communities and their control on calcite nucleation and ambient porewater dissolved inorganic carbon δ13C pose a viable mechanism to induce bulk-rock δ13C variability. Numerical model calculations highlight that early diagenetic carbonate rock stabilization and linked carbon isotope alteration can be controlled by organic matter supply and subsequent microbial remineralization. A major biotic decline among Late Permian bottom-dwelling organisms facilitated a spatial increase in heterogeneous organic carbon accumulation. Combined with low marine sulfate, this resulted in varying degrees of carbon isotope overprinting. A simulated time series suggests that a 50 % increase in the spatial scatter of organic carbon relative to the average, in addition to an imposed increase in the likelihood of sampling cements formed by microbial calcite nucleation to 1 out of 10 samples, is sufficient to induce the observed signal of carbon

  5. Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation

    M. Schobben

    2017-11-01

    Full Text Available Bulk-carbonate carbon isotope ratios are a widely applied proxy for investigating the ancient biogeochemical carbon cycle. Temporal carbon isotope trends serve as a prime stratigraphic tool, with the inherent assumption that bulk micritic carbonate rock is a faithful geochemical recorder of the isotopic composition of seawater dissolved inorganic carbon. However, bulk-carbonate rock is also prone to incorporate diagenetic signals. The aim of the present study is to disentangle primary trends from diagenetic signals in carbon isotope records which traverse the Permian–Triassic boundary in the marine carbonate-bearing sequences of Iran and South China. By pooling newly produced and published carbon isotope data, we confirm that a global first-order trend towards depleted values exists. However, a large amount of scatter is superimposed on this geochemical record. In addition, we observe a temporal trend in the amplitude of this residual δ13C variability, which is reproducible for the two studied regions. We suggest that (sub-sea-floor microbial communities and their control on calcite nucleation and ambient porewater dissolved inorganic carbon δ13C pose a viable mechanism to induce bulk-rock δ13C variability. Numerical model calculations highlight that early diagenetic carbonate rock stabilization and linked carbon isotope alteration can be controlled by organic matter supply and subsequent microbial remineralization. A major biotic decline among Late Permian bottom-dwelling organisms facilitated a spatial increase in heterogeneous organic carbon accumulation. Combined with low marine sulfate, this resulted in varying degrees of carbon isotope overprinting. A simulated time series suggests that a 50 % increase in the spatial scatter of organic carbon relative to the average, in addition to an imposed increase in the likelihood of sampling cements formed by microbial calcite nucleation to 1 out of 10 samples, is sufficient to induce the

  6. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland

    Sanders, Christian J.; Eyre, Bradley D.; Santos, Isaac R.; Machado, Wilson; Luiz-Silva, Wanilson; Smoak, Joseph M.; Breithaupt, Joshua L.; Ketterer, Michael E.; Sanders, Luciana; Marotta, Humberto; Silva-Filho, Emmanoel

    2014-04-01

    The effect of nutrient enrichment on mangrove sediment accretion and carbon accumulation rates is poorly understood. Here we quantify sediment accretion through radionuclide tracers to determine organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) accumulation rates during the previous 60 years in both a nutrient-enriched and a pristine mangrove forest within the same geomorphological region of southeastern Brazil. The forest receiving high nutrient loads has accumulated OC, TN, and TP at rates that are fourfold, twofold, and eightfold respectively, higher than those from the undisturbed mangrove. Organic carbon and TN stable isotopes (δ13C and δ15N) reflect an increased presence of organic matter (OM) originating with either phytoplankton, benthic algae, or another allochthonous source within the more rapidly accumulated sediments of the impacted mangrove. This suggests that the accumulation rate of OM in eutrophic mangrove systems may be enhanced through the addition of autochthonous and allochthonous nonmangrove material.

  7. Mobility of organic carbon from incineration residues

    Ecke, Holger; Svensson, Malin

    2008-01-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2 6-1 experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO 2 until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon

  8. Liquid Organic Fertilizers for Sustainable Agriculture: Nutrient Uptake of Organic versus Mineral Fertilizers in Citrus Trees.

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Bermejo, Almudena; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    The main objective of this study was to compare the performance of two liquid organic fertilizers, an animal and a plant-based fertilizer, with mineral fertilization on citrus trees. The source of the fertilizer (mineral or organic) had significant effect in the nutritional status of the organic and conventionally managed mandarins. Nutrient uptake, vegetative growth, carbohydrate synthesis and soil characteristics were analyzed. Results showed that plants fertilized with animal based liquid fertilizers exhibited higher total biomass with a more profuse development of new developing organs (leaves and fibrous roots). Liquid organic fertilization resulted in an increased uptake of macro and micronutrients compared to mineral fertilized trees. Moreover, organic fertilization positively affected the carbohydrate content (fructose, glucose and sucrose) mainly in summer flush leaves. Liquid organic fertilization also resulted in an increase of soil organic matter content. Animal-based fertilizer, due to intrinsic composition, increased total tree biomass and carbohydrate leaves content, and led to lower soil nitrate concentration and higher P and Mg exchangeable in soil extract compared to vegetal-based fertilizer. Therefore, liquid organic fertilizers could be used as an alternative to traditional mineral fertilization in drip irrigated citrus trees.

  9. Effects of Pig Manure Organic Fertilizer Application on Available Nutrient Content and Soil Aggregate Distribution in Fluvo-aquic Soil

    SHI Wen-xuan

    2017-08-01

    Full Text Available This paper focuses on environmental risk caused by livestock manure disorderly discharged from integrated livestock and poultry industry. 2-year pot experiment was carried out to study the effects of pig manure organic fertilizer on fluvo-aquic soil organic carbon, available nutrient content and soil aggregate distribution, which designed in 5 levels of organic fertilizer application(0, 6.7, 13.3, 26.7, 40.0 g·kg-1 soil. The results showed that the organic carbon, alkali-hydrolyzable nitrogen, available P and available K contents in soil were enhanced with organic fertilizer application increasing, and the indicators of soil were increased significantly in second year, such as organic carbon content was 2.7%~54.0% higher than that of the first year, alkali-hydrolyzable nitrogen content was higher 6.7%~34.6%, available P content was higher 36.8%~159.5% and available K content was higher 20.3%~35.7%. There was a significant linear relationship between soil organic carbon content and external organic carbon input. Organic fertilizer application could significantly improve lettuce yield, and it had a significant effect. The soil micro-aggregate contents for 0.053~0.25 mm and 0.5 mm soil macro-aggregates were increased with organic fertilizer application increasing. Organic fertilizer application could promote soil macro-aggregates formation, when the pig manure organic fertilizer applied 40.0 g·kg-1 soil, the contents of >0.25 mm soil aggregates reached maximum, and also the mean weight diameter(MWD and geometric average diameter(GWD of soil aggregates were higher than that of other treatments, the soil agglomeration became more stronger and the soil structure became more stable.

  10. Carbon and nutrient stocks of three Fabaceae trees used for forest restoration and subjected to fertilization in Amazonia.

    Jaquetti, Roberto K; Gonçalves, José Francisco C

    2017-01-01

    Amazonia is crucial to global carbon cycle. Deforestation continues to be one of the main causes of the release of C into the atmosphere, but forest restoration plantations can reverse this scenario. However, there is still diffuse information about the C and nutrient stocks in the vegetation biomass. We investigated the carbon and nutrient stocks of Fabaceae trees (Inga edulis, Schizolobium amazonicum and Dipteryx odorata) subjected to fertilization treatments (T1 - no fertilization; T2 - chemical; T3 - organic; and T4 - organic and chemical fertilization) in a degraded area of the Balbina Hydroelectric Dam, AM - Brazil. As an early successional species, I. edulis stocked more C and nutrients than the other two species independent of the fertilization treatment, and S. amazonicum stocked more C than D. odorata under T1 and T4. The mixed species plantation had the potential to stock 4.1 Mg C ha-1 year-1, while I. edulis alone could stock 9.4 Mg C ha-1 year-1. Mixing species that rapidly assimilate C and are of significant ecological and commercial value (e.g., Fabaceae trees) represents a good way to restore degraded areas. Our results suggest that the tested species be used for forest restoration in Amazonia.

  11. Carbon and nutrient stocks of three Fabaceae trees used for forest restoration and subjected to fertilization in Amazonia

    ROBERTO K. JAQUETTI

    2017-08-01

    Full Text Available ABSTRACT Amazonia is crucial to global carbon cycle. Deforestation continues to be one of the main causes of the release of C into the atmosphere, but forest restoration plantations can reverse this scenario. However, there is still diffuse information about the C and nutrient stocks in the vegetation biomass. We investigated the carbon and nutrient stocks of Fabaceae trees (Inga edulis, Schizolobium amazonicum and Dipteryx odorata subjected to fertilization treatments (T1 - no fertilization; T2 - chemical; T3 - organic; and T4 - organic and chemical fertilization in a degraded area of the Balbina Hydroelectric Dam, AM - Brazil. As an early successional species, I. edulis stocked more C and nutrients than the other two species independent of the fertilization treatment, and S. amazonicum stocked more C than D. odorata under T1 and T4. The mixed species plantation had the potential to stock 4.1 Mg C ha-1 year-1, while I. edulis alone could stock 9.4 Mg C ha-1 year-1. Mixing species that rapidly assimilate C and are of significant ecological and commercial value (e.g., Fabaceae trees represents a good way to restore degraded areas. Our results suggest that the tested species be used for forest restoration in Amazonia.

  12. Mechanical sludge disintegration for the production of carbon source for biological nutrient removal.

    Kampas, P; Parsons, S A; Pearce, P; Ledoux, S; Vale, P; Churchley, J; Cartmell, E

    2007-04-01

    The primary driver for a successful biological nutrient removal is the availability of suitable carbon source, mainly in the form of volatile fatty acids (VFA). Several methods have been examined to increase the amount of VFAs in wastewater. This study investigates the mechanism of mechanical disintegration of thickened surplus activated sludge by a deflaker technology for the production of organic matter. This equipment was able to increase the soluble carbon in terms of VFA and soluble chemical oxygen demand (SCOD) with the maximum concentration to be around 850 and 6530 mgl(-1), for VFA and SCOD, respectively. The particle size was reduced from 65.5 to 9.3 microm after 15 min of disintegration with the simultaneous release of proteins (1550 mgl(-1)) and carbohydrates (307 mgl(-1)) indicating floc disruption and breakage. High performance size exclusion chromatography investigated the disintegrated sludge and confirmed that the deflaker was able to destroy the flocs releasing polymeric substances that are typically found outside of cells. When long disintegration times were applied (>or=10 min or >or=9000 kJkg(-1)TS of specific energy) smaller molecular size materials were released to the liquid phase, which are considered to be found inside the cells indicating cell lysis.

  13. Effect of organic substrates on available elemental contents in nutrient solution

    Ao, Y.S.; Sun, M.; Li, Y.Q. [Shanghai Jiao Tong University, Shanghai (China). School for Agriculture & Biology

    2008-07-15

    In this paper, the changes of available elemental contents in the nutrient solution extracts of organic substrates (peat moss, charred rice husk, chicken manure, sawdust, turfgrass clipping and weathered coal) were studied and compared with that in the water extracts. Results showed that available elemental contents in the nutrient solution extracts are significantly different between organic substrates, whereas ionic concentrations are basically under steady condition after treatment for 36-108 h. Ionic contents in the nutrient solution extracts are not equal to the value of adding ionic concentrations in the supplied nutrient solution to that in the water extract. Thus, a mathematical model was proposed for adjusting the composition of supplied nutrient solution to match plant requirements in the organic soilless culture system.

  14. Pelagic community production and carbon-nutrient stoichiometry under variable ocean acidification in an Arctic fjord

    A. Silyakova

    2013-07-01

    Full Text Available Net community production (NCP and carbon to nutrient uptake ratios were studied during a large-scale mesocosm experiment on ocean acidification in Kongsfjorden, western Svalbard, during June–July 2010. Nutrient depleted fjord water with natural plankton assemblages, enclosed in nine mesocosms of ~ 50 m3 in volume, was exposed to pCO2 levels ranging initially from 185 to 1420 μatm. NCP estimations are the cumulative change in dissolved inorganic carbon concentrations after accounting for gas exchange and total alkalinity variations. Stoichiometric coupling between inorganic carbon and nutrient net uptake is shown as a ratio of NCP to a cumulative change in inorganic nutrients. Phytoplankton growth was stimulated by nutrient addition half way through the experiment and three distinct peaks in chlorophyll a concentration were observed during the experiment. Accordingly, the experiment was divided in three phases. Cumulative NCP was similar in all mesocosms over the duration of the experiment. However, in phases I and II, NCP was higher and in phase III lower at elevated pCO2. Due to relatively low inorganic nutrient concentration in phase I, C : N and C : P uptake ratios were calculated only for the period after nutrient addition (phase II and phase III. For the total post-nutrient period (phase II + phase III ratios were close to Redfield, however they were lower in phase II and higher in phase III. Variability of NCP, C : N and C : P uptake ratios in different phases reflects the effect of increasing CO2 on phytoplankton community composition and succession. The phytoplankton community was composed predominantly of haptophytes in phase I, prasinophytes, dinoflagellates, and cryptophytes in phase II, and haptophytes, prasinophytes, dinoflagellates and chlorophytes in phase III (Schulz et al., 2013. Increasing ambient inorganic carbon concentrations have also been shown to promote primary production and carbon assimilation. For this study, it is

  15. Nutrient supply to organic agriculture as governed by EU regulations and standards in six European countries

    Løes, Anne Kristin; Bünemann, E.K.; Cooper, J.

    2017-01-01

    -farm P sources include conventional animal manure, composted or anaerobically digested organic residues, rock phosphate, and some animal residues such as meat and bone meal. The recent proposed revision of EU regulations for organic production (2014) puts less emphasis on closing nutrient cycles...... as means are taken to ensure the quality and safety of these inputs. Awareness of the need to close nutrient cycles may contribute to adapting regulations and private standards to support recycling of nutrients from society to organic agriculture. A better definition of the term “natural substance...

  16. Stream nutrient enrichment has a greater effect on coarse than on fine benthic organic matter

    Cynthia J. Tant; Amy D. Rosemond; Matthew R. First

    2013-01-01

    Nutrient enrichment affects bacteria and fungi associated with detritus, but little is known about how biota associated with different size fractions of organic matter respond to nutrients. Bacteria dominate on fine (1 mm) fractions, which are used by different groups of detritivores. We measured the effect of experimental...

  17. The implications of phasing out conventional nutrient supply in organic agriculture

    Oelofse, Myles; Jensen, Lars Stoumann; Magid, Jakob

    2013-01-01

    Soil fertility management in organic systems, regulated by the organic standards, should seek to build healthy, fertile soils and reduce reliance on external inputs. The use of nutrients from conventional sources, such as animal manures from conventional farms, is currently permitted......, with restrictions, in the organic regulations. However, the reliance of organic agriculture on the conventional system is considered problematic. In light of this, the organic sector in Denmark has recently decided to gradually phase out, and ultimately ban, the use of conventional manures and straws in organic...... agriculture in Denmark. Core focal areas for phasing out conventional nutrients are as follows: (1) amendments to crop selection and rotations, (2) alternative nutrient sources (organic wastes) and (3) increased cooperation between organic livestock and arable farmers. Using Denmark as a case, this article...

  18. Carbon Stable Isotope Values in Plankton and Mussels Reflect Changes in Carbonate Chemistry Associated with Nutrient Enhanced Net Production

    Coastal ecosystems are inherently complex and potentially adaptive as they respond to changes in nutrient loads and climate. We documented the role that carbon stable isotope (δ13C) measurements could play in understanding that adaptation with a series of three Ecostat (i.e...

  19. Organic amendments and nutrient leaching in soil columns

    The lack of nutrient build up in reclaimed coal mine soils would therefore require additional inputs to maintain plant productivity and establishment of a healthy ecosystem. In a greenhouse experiment, reclaimed coal mine soil were amended with fresh and composted poultry manure at the rates based ...

  20. Accumulative capabilities of essential nutrient elements in organs of ...

    use

    2011-11-23

    Nov 23, 2011 ... Cu > Mn > Zn > B. In conclusion, the ACs for essential nutrient elements differed, with the ... and Fe were quantified using Perkin Elmer Atomic Absorption .... vitamin C, protein and fat ranging from 249.6 to 266 .... Boron determination in plant tissues by ... Accumulation of cadmium and selected elements.

  1. Radiocarbon in marine dissolved organic carbon (DOC)

    Clercq, M. le; Plicht, J. van der; Meijer, H.A.J.; Baar, H.J.W. de

    Dissolved Organic Carbon (DOC) plays an important role in the ecology and carbon cycle in the ocean. Analytical problems with concentration and isotope ratio measurements have hindered its study. We have constructed a new analytical method based on supercritical oxidation for the determination of

  2. Organic carbon spiralling in stream ecosystems

    Newbold, J D; Mulholland, P J; Elwood, J W; O' Neill, R V

    1982-01-01

    The term spiralling has been used to describe the combined processes of cycling and longitudinal transport in streams. As a measure or organic carbon spiralling, we introduced organic carbon turnover length, S, defined as the average or expected downstream distance travelled by a carbon atom between its entry or fixation in the stream and its oxidation. Using a simple model for organic carbon dynamics in a stream, we show that S is closely related to fisher and Likens' ecosystem efficiency. Unlike efficiency, however, S is independent of the length of the study reach, and values of S determined in streams of differing lengths can be compared. Using data from three different streams, we found the relationship between S and efficiency to agree closely with the model prediction. Hypotheses of stream functioning are discussed in the context of organic carbeon spiralling theory.

  3. External Carbon Source Addition as a Means to Control an Activated Sludge Nutrient Removal Process

    Isaacs, Steven Howard; Henze, Mogens; Søeberg, Henrik

    1994-01-01

    In alternating type activated sludge nutrient removal processes, the denitrification rate can be limited by the availability of readily-degradable carbon substrate. A control strategy is proposed by which an easily metabolizable COD source is added directly to that point in the process at which d...

  4. Geochemical ecosystem engineering by the mud shrimp Upogebia pugettensis (Crustacea: Thalassinidae) in Yaquina Bay, Oregon: density-dependent effects on organic matter remineralization and nutrient cycling

    We investigated the effect of the thalassinid mud shrimp Upogebia pugettensis on organic matter and nutrient cycling on Idaho Flat, an intertidal flat in the Yaquina River estuary, Oregon. Field studies were conducted to measure carbon and nitrogen remineralization rates and bent...

  5. Worldwide organic soil carbon and nitrogen data

    Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  6. Organic Carbon Storage in China's Urban Areas

    Zhao, Shuqing; Zhu, Chao; Zhou, Decheng; Huang, Dian; Werner, Jeremy

    2013-01-01

    China has been experiencing rapid urbanization in parallel with its economic boom over the past three decades. To date, the organic carbon storage in China's urban areas has not been quantified. Here, using data compiled from literature review and statistical yearbooks, we estimated that total carbon storage in China's urban areas was 577±60 Tg C (1 Tg  = 1012 g) in 2006. Soil was the largest contributor to total carbon storage (56%), followed by buildings (36%), and vegetation (7%), while carbon storage in humans was relatively small (1%). The carbon density in China's urban areas was 17.1±1.8 kg C m−2, about two times the national average of all lands. The most sensitive variable in estimating urban carbon storage was urban area. Examining urban carbon storages over a wide range of spatial extents in China and in the United States, we found a strong linear relationship between total urban carbon storage and total urban area, with a specific urban carbon storage of 16 Tg C for every 1,000 km2 urban area. This value might be useful for estimating urban carbon storage at regional to global scales. Our results also showed that the fraction of carbon storage in urban green spaces was still much lower in China relative to western countries, suggesting a great potential to mitigate climate change through urban greening and green spaces management in China. PMID:23991014

  7. Impact of peatland restoration on nutrient and carbon leaching from contrasting sites in southern Finland

    Vasander, Harri; Sallantaus, Tapani; Koskinen, Markku

    2010-05-01

    Impacts of peatland restoration on nutrient and carbon leaching from contrasting sites in southern Finland Tapani Sallantaus1, Markku Koskinen2, Harri Vasander2 1)Finnish Environment Institute, Biodiversity unit, Box 140, FIN-00251 Helsinki, Finland, tapani.sallantaus@ymparisto.fi 2)Department of Forest Sciences, University of Helsinki, Box 27, FIN-00014 University of Helsinki, Finland, markku.koskinen@helsinki.fi, harri.vasander@helsinki.fi Less than 20 % of the original mire area of southern Finland is still in natural state. Even many peatlands in today's nature conservation areas had been partly or totally drained before conservation. Until now, about 15000 ha of peatlands have been restored in conservation areas. Here we present data concerning changes in leaching due to restoration in two contrasting areas in southern Finland. The peatlands in Seitseminen have originally been fairly open, growing stunted pine, and unfertile, either bogs or poor fens. The responses of tree stand to drainage in the 1960s were moderate, and the tree stand before restoration was about 50 m3/ha, on average. The trees were partly harvested before filling in the ditches mainly in the years 1997-1999 . The peatlands of Nuuksio are much more fertile than those in Seitseminen, and had greatly responded to drainage, which took place already in the 1930s and 1950s. The tree stand consisted mainly of spruce and exceeded 300 m3/ha in large part of the area. The ditches were dammed in the autumn 2001 and the tree stand was left standing. Runoff water quality was monitored in three basins in both areas. To obtain the leaching rates, we used simulated runoff data obtained from the Finnish Environment Institute, Hydrological Services Division. The responses in leaching were in the same direction in both cases. However, especially when calculated per restored hectare (Table 1), the responses were much stronger in the more fertile areas of Nuuksio for organic carbon and nitrogen, but not so much

  8. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  9. Effects of nitrogen enrichment on soil organic matter in tropical forests with different ambient nutrient status

    Vaughan, E.; Cusack, D. F.; McDowell, W. H.; Marin-Spiotta, E.

    2017-12-01

    Nitrogen (N) enrichment is a widespread and increasingly important human influence on ecosystems globally, with implications for net primary production and biogeochemical processes. Previous research has shown that N enrichment can alter soil carbon (C) cycling, although the direction and magnitude of the changes are not consistent across studies, and may change with time. Inconsistent responses to N additions may be due to differences in ambient nutrient status, and/or variable responses of plant C inputs and microbial decomposition. Although plant production in the tropics is not often limited by N, soil processes may respond differently to N enrichment. Our study uses a 15-year N addition experiment at two different tropical forest sites in the Luquillo Long-Term Ecological Research project site in Puerto Rico to address long-term changes in soil C pools due to fertilization. The two forests differ in elevation and ambient nutrient status. Soil sampling three and five years post-fertilization showed increased soil C concentrations under fertilization, driven by increases in mineral-associated C (Cusack et al. 2011). However, the longer-term trends at these sites are unknown. To this end, soil samples were collected following fifteen years of fertilization. Soils were sampled from 0-10 cm and 10-20 cm. Bulk soil C and N concentrations will be measured and compared to samples collected before fertilization (2002) and three years post fertilization (2005). We are using density fractionation to isolate different soil organic matter pools into a free light, occluded light, and dense, mineral associated fraction. These pools represent different mechanisms of soil organic matter stabilization, and provide more detailed insight into changes in bulk soil C. These data will provide insight into the effects of N enrichment on tropical forest soils, and how those effects may change through time with a unique long-term data set.

  10. Stable isotopic constraints on global soil organic carbon turnover

    Wang, Chao; Houlton, Benjamin Z.; Liu, Dongwei; Hou, Jianfeng; Cheng, Weixin; Bai, Edith

    2018-02-01

    Carbon dioxide release during soil organic carbon (SOC) turnover is a pivotal component of atmospheric CO2 concentrations and global climate change. However, reliably measuring SOC turnover rates on large spatial and temporal scales remains challenging. Here we use a natural carbon isotope approach, defined as beta (β), which was quantified from the δ13C of vegetation and soil reported in the literature (176 separate soil profiles), to examine large-scale controls of climate, soil physical properties and nutrients over patterns of SOC turnover across terrestrial biomes worldwide. We report a significant relationship between β and calculated soil C turnover rates (k), which were estimated by dividing soil heterotrophic respiration rates by SOC pools. ln( - β) exhibits a significant linear relationship with mean annual temperature, but a more complex polynomial relationship with mean annual precipitation, implying strong-feedbacks of SOC turnover to climate changes. Soil nitrogen (N) and clay content correlate strongly and positively with ln( - β), revealing the additional influence of nutrients and physical soil properties on SOC decomposition rates. Furthermore, a strong (R2 = 0.76; p turnover and thereby improving predictions of multiple global change influences over terrestrial C-climate feedback.

  11. Overall effect of carbon production and nutrient release in sludge holding tank on mainstream biological nutrient removal efficiency.

    Jabari, Pouria; Yuan, Qiuyan; Oleszkiewicz, Jan A

    2017-09-11

    The potential of hydrolysis/fermentation of activated sludge in sludge holding tank (SHT) to produce additional carbon for the biological nutrient removal (BNR) process was investigated. The study was conducted in anaerobic batch tests using the BNR sludge (from a full-scale Westside process) and the mixture of BNR sludge with conventional non-BNR activated sludge (to have higher biodegradable particulate chemical oxygen demand (bpCOD) in sludge). The BioWin 4.1 was used to simulate the anaerobic batch test of the BNR sludge. Also, the overall effect of FCOD production and nutrient release on BNR efficiency of the Westside process was estimated. The experimental results showed that the phosphorous uptake of sludge increased during hydrolysis/ fermentation condition up to the point when poly-P was completely utilized; afterwards, it decreased significantly. The BioWin simulation could not predict the loss of aerobic phosphorous uptake after poly-P was depleted. The results showed that in the case of activated sludge with relatively higher bpCOD (originating from plants with short sludge retention time or without primary sedimentation), beneficial effect of SHT on BNR performance is feasible. In order to increase the potential of SHT to enhance BNR efficiency, a relatively low retention time and high sludge load is recommended.

  12. Nutrient cycling for biomass: Interactive proteomic/transcriptomic networks for global carbon management processes within poplar-mycorrhizal interactions

    Cseke, Leland [Univ. of Alabama, Huntsville, AL (United States)

    2016-08-30

    This project addresses the need to develop system-scale models at the symbiotic interface between ectomycorrhizal fungi (Laccaria bicolor) and tree species (Populus tremuloides) in response to environmental nutrient availability / biochemistry. Using our now well-established laboratory Laccaria x poplar system, we address the hypothesis that essential regulatory and metabolic mechanisms can be inferred from genomic, transcriptomic and proteomic-level changes that occur in response to environmental nutrient availability. The project addresses this hypothesis by applying state-of-the-art protein-level analytic approaches to fill the gap in our understanding of how mycorrhizal regulatory and metabolic processes at the transcript-level translate to nutrient uptake, carbon management and ultimate net primary productivity of plants. In most cases, these techniques were not previously optimized for poplar trees or Laccaria. Thus, one of the major contributions of this project has been to provide avenues for new research in these species by overcoming the pitfalls that had previously prevented the use of techniques such as ChIP-Seq and SWATH-proteomics. Since it is the proteins that sense and interact with the environment, participate in signal cascades, activate and regulate gene expression, perform the activities of metabolism and ultimately sequester carbon and generate biomass, an understanding of protein activities during symbiosis-linked nutrient uptake is critical to any systems-level approach that links metabolic processes to the environment. This project uses a team of experts at The University of Alabama in Huntsville (UAH), The University of Alabama at Birmingham (UAB) and Argonne National Laboratory (ANL) to address the above hypothesis using a multiple "omics" approach that combines gene and protein expression as well as protein modifications, and biochemical analyses (performed at Brookhaven National Laboratory (BNL)) in poplar trees under mycorrhizal and

  13. Dissolved organic matter and lake metabolism: Biogeochemistry and controls of nutrient flux dynamics to fresh waters. Technical progress report, January 1, 1990--December 31, 1991

    Wetzel, R.G.

    1992-12-31

    The land-water interface region consists of two major components: the wetland, and the down-gradient adjacent littoral floating-leaved and submersed, macrophyte communities. Because of the importance of very high production and nutrient turnover of attached microbiota, a major emphasis of this investigation was placed upon these biota and their metabolic capacities for assimilation and release of organic compounds and nutrient retention and cycling. Examination of the capacities of wetland littoral communities to regulate fluxes of nutrients and organic compounds often has been limited to input-output analyses. These input-output data are an integral part of these investigations, but most of the research effort concentrated on the biotic and metabolic mechanisms that control fluxes and retention capacities and their effects upon biota in the down-gradient waters. The important regulatory capacities of dissolved organic compounds on enzyme reactivity was examined experimentally and coupled to the wetland-littoral organic carbon flux budgets.

  14. Carbonate system and nutrients in the Pearl River estuary, China: Seasonal and inter-annual variations

    Guo, X.

    2017-12-01

    Located in southern China and surrounded by several metropolis, the Pearl River estuary is a large subtropical estuary under significant human perturbation. We examined the impact of sewage treatment rate on the water environmental factors. Carbonate system parameters (Dissolved inorganic carbon or DIC, Total alkalinity or TA, and pH), and nutrients were surveyed in the Pearl River estuary from 2000 to 2015. Spatially, concentrations of nutrients were high at low salinity and decreased with salinity in both wet and dry seasons although seasonal variation occurred. However, distribution patterns of DIC and TA differed in wet and dry seasons. In wet season, both DIC and TA were low at low salinity (600-1500 umol kg-1) and increased with salinity, but in dry season they were high at low salinity (3000-3500 umol kg-1) and decreased with salinity. Compared with the years before 2010, both values and distribution patterns of DIC, TA and pH were similar among the years in wet season, but they were conspicuously different in the upper estuary in dry season. Both DIC and TA were more than 1000 umol kg-1 lower than those in the years before 2010. For nutrients at low salinity, the ammonia concentration was much lower in the years after 2010 (200 vs. 400 umol kg-1 in wet season and 400 vs. 800 umol kg-1 in dry season), but nitrate concentration was slightly higher (180 vs 120 mmol kg-1 in wet season and 200 vs 180 mmol kg-1 in dry season). As a reference, carbonate system parameters and nutrients were stable among the 16 years in the adjacent northern South China Sea. The variations in biogeochemical processes induced by nutrients concentration and structure as a result of sewage discharge will be discussed in detail. The decrease in DIC, TA and nutrients in the upper Pearl River estuary after 2010 was due mainly to the improvement of sewage treatment rate and capacity.

  15. Short communication: A laboratory study to validate the impact of the addition of Alnus nepalensis leaf litter on carbon and nutrients mineralization in soil

    GAURAV MISHRA

    2016-04-01

    Full Text Available Abstract. Mishra G, Giri K, Dutta A, Hazarika S and Borgohain P. 2015. A laboratory study to validate the impact of the addition of Alnus nepalensis leaf litter on carbon and nutrients mineralization in soil. Nusantara Bioscience 8: 5-7. Plant litter or residues can be used as soil amendment to maintain the carbon stock and soil fertility. The amount and rate of mineralization depends on biochemical composition of plant litter. Alnus nepalensis (Alder is known for its symbiotic nitrogen fixation and capability to restore fertility of degraded lands. A laboratory incubation experiment was conducted for 60 days under controlled conditions to validate the carbon and nutrients mineralization potential of alder litter. Soil fertility indicators, i.e. soil organic carbon (SOC, available nitrogen (N, available phosphorus (P, and available potassium (K were analyzed using standard procedures. Significant differences were observed in the soil properties after addition of litter. Nutrient composition of alder litter was found superior by providing significantly higher organic matter and helped in better nutrient cycling. Therefore, alder based land use system may be replicated in other degraded lands or areas for productivity enhancement which is important for sustaining biodiversity and soil fertility.

  16. Towards an ecologically sustainable energy production based on forest biomass - Forest fertilisation with nutrient rich organic waste matter

    Roegaard, Pia-Maria; Aakerback, Nina; Sahlen, Kenneth; Sundell, Markus [Swedish Polytechnic, Vasa (Finland)

    2006-07-15

    The project is a collaboration between Swedish Univ. of Agricultural Sciences, Faculty of Forest Sciences in Umeaa, Swedish Polytechnic, Finland in Vaasa and the Finnish Forest Research Institute in Kannus. Today there are pronounced goals within the EU that lead towards an ecologically sustainable community and there is also a global goal to decrease net carbon dioxide emissions. These goals involve among other things efforts to increase the use of renewable biofuel as energy source. This will result in an enlarged demand for biomass for energy production. Therefore, the forest resources in the Nordic countries will be required for energy production to a far greater extent in the future. One way to meet this increased tree biomass demand is to increase forest tree growth through supply of nutrients, of which nitrogen is the most important. Organic nutrient rich waste matter from the society, such as sewage sludge and mink and fox manure compost from fur farms might be used as forest fertilizer. This would result in increased supply of renewable tree biomass, decreased net carbon dioxide emissions, increased forest ecosystem carbon sequestration, decreased methane emissions from sewage sludge landfill and decreased society costs for sludge landfill or incineration. Therefore, the purpose of this project is to develop methods for forest fertilisation with nutrient rich organic waste matter from municipal wastewater, sludge and manure from mink and fox farms. The project may be divided into three main parts. The first part is the chemical composition of the fertiliser with the objective to increase the nitrogen content in sludge-based fertilisers and in compost of mink and fox manure. The second part involves the technique and logistics for forest fertilisation i.e., to develop application equipment that may be integrated in existing forest technical systems. The third part consists of field fertilisation investigations and an environmental impact assessment

  17. Variability of nutrients and carbon dioxide in the Antarctic Intermediate Water between 1990 and 2014

    Panassa, Essowè; Santana-Casiano, J. Magdalena; González-Dávila, Melchor; Hoppema, Mario; van Heuven, Steven M. A. C.; Völker, Christoph; Wolf-Gladrow, Dieter; Hauck, Judith

    2018-03-01

    Antarctic Intermediate Water (AAIW) formation constitutes an important mechanism for the export of macronutrients out of the Southern Ocean that fuels primary production in low latitudes. We used quality-controlled gridded data from five hydrographic cruises between 1990 and 2014 to examine decadal variability in nutrients and dissolved inorganic carbon (DIC) in the AAIW (neutral density range 27 net primary productivity (more nutrients unutilized) in the source waters of the AAIW could have contributed as well but cannot fully explain all observed changes.

  18. Treatment of sludge containing nitro-aromatic compounds in reed-bed mesocosms – Water, BOD, carbon and nutrient removal

    Gustavsson, L.; Engwall, M.

    2012-01-01

    Highlights: ► It is necessary to improve existing and develop new sludge management techniques. ► One method is dewatering and biodegradation of compounds in constructed wetlands. ► The result showed high reduction of all tested parameters after treatment. ► Plants improve degradation and Phragmites australis is tolerant to xenobiotics. ► The amount of sludge could be reduced by 50–70%. - Abstract: Since the mid-1970s, Sweden has been depositing 1 million ton d.w sludge/year, produced at waste water treatment plants. Due to recent legislation this practice is no longer a viable method of waste management. It is necessary to improve existing and develop new sludge management techniques and one promising alternative is the dewatering and treatment of sludge in constructed wetlands. The aim of this study was to follow reduction of organic carbon, BOD and nutrients in an industrial sludge containing nitro-aromatic compounds passing through constructed small-scale wetlands, and to investigate any toxic effect such as growth inhibition of the common reed Phragmites australis. The result showed high reduction of all tested parameters in all the outgoing water samples, which shows that constructed wetlands are suitable for carbon and nutrient removal. The results also showed that P. australis is tolerant to xenobiotics and did not appear to be affected by the toxic compounds in the sludge. The sludge residual on the top of the beds contained low levels of organic carbon and is considered non-organic and could therefore be landfilled. Using this type of secondary treatment method, the amount of sludge could be reduced by 50–70%, mainly by dewatering and biodegradation of organic compounds.

  19. Temperature dependence of photodegradation of dissolved organic matter to dissolved inorganic carbon and particulate organic carbon

    Porcal, Petr; Dillon, P. J.; Molot, L. A.

    2015-01-01

    Roč. 10, č. 6 (2015), e0128884 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP503/12/0781; GA ČR(CZ) GA15-09721S Institutional support: RVO:60077344 Keywords : dissolved organic carbon * particulate organic carbon * photodegradation * temperature Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.057, year: 2015

  20. Postdiagnostic intake of one-carbon nutrients and alcohol in relation to colorectal cancer survival.

    Lochhead, Paul; Nishihara, Reiko; Qian, Zhi Rong; Mima, Kosuke; Cao, Yin; Sukawa, Yasutaka; Kim, Sun A; Inamura, Kentaro; Zhang, Xuehong; Wu, Kana; Giovannucci, Edward; Meyerhardt, Jeffrey A; Chan, Andrew T; Fuchs, Charles S; Ogino, Shuji

    2015-11-01

    Observational data have suggested that intakes of nutrients involved in one-carbon metabolism are inversely associated with risk of colorectal carcinoma and adenomas. In contrast, results from some preclinical studies and cardiovascular and chemoprevention trials have raised concerns that high folate intake may promote carcinogenesis by facilitating the progression of established neoplasia. We tested the hypothesis that higher total folate intake (including food folate and folic acid from fortified foods and supplements) or other one-carbon nutrient intakes might be associated with poorer survival after a diagnosis of colorectal cancer. We used rectal and colon cancer cases within the following 2 US prospective cohort studies: the Nurses' Health Study and the Health Professionals Follow-Up Study. Biennial questionnaires were used to gather information on medical history and lifestyle factors, including smoking and alcohol consumption. B-vitamin and methionine intakes were derived from food-frequency questionnaires. Data on tumor molecular characteristics (including microsatellite instability, CpG island methylator phenotype, KRAS, BRAF, and PIK3CA mutations, and long interspersed nucleotide element 1 methylation level) were available for a subset of cases. We assessed colorectal cancer-specific mortality according to postdiagnostic intakes of one-carbon nutrients with the use of multivariable Cox proportional hazards regression models. In 1550 stage I-III colorectal cancer cases with a median follow-up of 14.9 y, we documented 641 deaths including 176 colorectal cancer-specific deaths. No statistically significant associations were observed between postdiagnostic intakes of folate or other one-carbon nutrients and colorectal cancer-specific mortality (multivariate P-trend ≥ 0.21). In an exploratory molecular pathologic epidemiology survival analysis, there was no significant interaction between one-carbon nutrients or alcohol and any of the tumor molecular

  1. Postdiagnostic intake of one-carbon nutrients and alcohol in relation to colorectal cancer survival123

    Lochhead, Paul; Nishihara, Reiko; Qian, Zhi Rong; Mima, Kosuke; Cao, Yin; Sukawa, Yasutaka; Kim, Sun A; Inamura, Kentaro; Zhang, Xuehong; Wu, Kana; Giovannucci, Edward; Meyerhardt, Jeffrey A; Chan, Andrew T; Fuchs, Charles S; Ogino, Shuji

    2015-01-01

    Background: Observational data have suggested that intakes of nutrients involved in one-carbon metabolism are inversely associated with risk of colorectal carcinoma and adenomas. In contrast, results from some preclinical studies and cardiovascular and chemoprevention trials have raised concerns that high folate intake may promote carcinogenesis by facilitating the progression of established neoplasia. Objective: We tested the hypothesis that higher total folate intake (including food folate and folic acid from fortified foods and supplements) or other one-carbon nutrient intakes might be associated with poorer survival after a diagnosis of colorectal cancer. Design: We used rectal and colon cancer cases within the following 2 US prospective cohort studies: the Nurses’ Health Study and the Health Professionals Follow-Up Study. Biennial questionnaires were used to gather information on medical history and lifestyle factors, including smoking and alcohol consumption. B-vitamin and methionine intakes were derived from food-frequency questionnaires. Data on tumor molecular characteristics (including microsatellite instability, CpG island methylator phenotype, KRAS, BRAF, and PIK3CA mutations, and long interspersed nucleotide element 1 methylation level) were available for a subset of cases. We assessed colorectal cancer–specific mortality according to postdiagnostic intakes of one-carbon nutrients with the use of multivariable Cox proportional hazards regression models. Results: In 1550 stage I–III colorectal cancer cases with a median follow-up of 14.9 y, we documented 641 deaths including 176 colorectal cancer–specific deaths. No statistically significant associations were observed between postdiagnostic intakes of folate or other one-carbon nutrients and colorectal cancer–specific mortality (multivariate P-trend ≥ 0.21). In an exploratory molecular pathologic epidemiology survival analysis, there was no significant interaction between one-carbon

  2. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions

    Flávia Bottino

    2016-06-01

    Full Text Available Abstract Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40 °C. Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days. After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic. However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity and carbon release.

  3. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.

    Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu

    2016-01-01

    Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. Investigating Pathways of Nutrient and Energy Flows Through Aquatic Food Webs Using Stable Isotopes of Carbon and Nitrogen

    Hadwen, W. L.; Bunn, S. E. [Australian Rivers Institute, Griffith School of Environment, Griffith University, Nathan Campus, Brisbane, Queensland (Australia)

    2013-05-15

    Carbon and nitrogen stable isotopes can provide valuable insights into pathways of nutrient and energy flows in aquatic ecosystems. Carbon stable isotopes are principally used to trace pathways of organic matter transfer through aquatic food webs, particularly with regard to identifying the dominant sources of nutrition for aquatic biota. Stable isotopes of carbon have been widely used to answer one of the most pressing questions in aquatic food web ecology - to what degree do in-stream (autochthonous) and riparian (allochthonous) sources of energy fuel riverine food webs? In conjunction with carbon stable isotopes, nitrogen stable isotopes have been used to determine the trophic position of consumers and to identify the number of trophic levels in aquatic food webs. More recently, stable nitrogen isotopes have been recommended as indicators of anthropogenic disturbances. Specifically, agricultural land uses and/or sewage effluent discharge have been shown to significantly increase {delta}{sup 15}N signatures in primary producers and higher order consumers in freshwater, estuarine and marine environments. Together, carbon and nitrogen stable isotopes can be used to examine natural food web functions as well as the degree to which human modifications to catchments and aquatic environments can influence aquatic ecosystem function. (author)

  5. Fertilization increases paddy soil organic carbon density*

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-01-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369

  6. Fertilization increases paddy soil organic carbon density.

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-04-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.

  7. Carbon sequestration and nutrient reserves under differen t land use systems

    Maria Ivanilda Aguiar

    2014-02-01

    Full Text Available This study evaluated the contribution of agroforestry (AFS and traditional systems to carbon sequestration and nutrient reserves in plants, litter and soil. The study was carried out in the semiarid region of Brazil in a long-term experiment on an experimental farm of the goat and sheep section of the Brazilian Agricultural Research Corporation (Embrapa. Two agroforestry systems were investigated: agrosilvopastoral (ASP and forest-pasture areas (SP as well as traditional agriculture management (TM, two areas left fallow after TM (six fallow years - F6 and nine fallow years - F9 and one area of preserved Caatinga vegetation (CAT. Soil, litter and plants were sampled from all areas and the contents of C, N, P, K, Ca and Mg per compartment determined. The AFS (ASP and SP had higher nutrient stocks than the traditional and intermediate stocks compared to the preserved Caatinga. In the ASP, a relevant part of the nutrients extracted by crops is returned to the system by constant inputs of litter, weeding of herbaceous vegetation and cutting of the legume crops. After fallow periods of six and nine years, carbon and nutrient stocks in the compartments soil, litter and herbaceous plants were similar to those of the preserved Caatinga (CAT, but still lower than under natural conditions in the woody vegetation.

  8. Nutrients in Energy and One-Carbon Metabolism: Learning from Metformin Users

    Fedra Luciano-Mateo

    2017-02-01

    Full Text Available Metabolic vulnerability is associated with age-related diseases and concomitant co-morbidities, which include obesity, diabetes, atherosclerosis and cancer. Most of the health problems we face today come from excessive intake of nutrients and drugs mimicking dietary effects and dietary restriction are the most successful manipulations targeting age-related pathways. Phenotypic heterogeneity and individual response to metabolic stressors are closely related food intake. Understanding the complexity of the relationship between dietary provision and metabolic consequences in the long term might provide clinical strategies to improve healthspan. New aspects of metformin activity provide a link to many of the overlapping factors, especially the way in which organismal bioenergetics remodel one-carbon metabolism. Metformin not only inhibits mitochondrial complex 1, modulating the metabolic response to nutrient intake, but also alters one-carbon metabolic pathways. Here, we discuss findings on the mechanism(s of action of metformin with the potential for therapeutic interpretations.

  9. Relationship between Organic Carbon Runoff to River and Land Cover

    Kim, G. S.; Lee, S. G.; Lim, C. H.; Lee, W.; Yoo, S.; Kim, S. J.; Heo, S.; Lee, W. K.

    2017-12-01

    Carbon is an important unit in understanding the ecosystem and energy circulation. Each ecosystem, land, water, and atmosphere, is interconnected through the exchange of energy and organic carbon. In the rivers, primary producers utilize the organic carbon from the land. Understanding the organic carbon uptake into the river is important for understanding the mechanism of river ecosystems. The main organic carbon source of the river is land. However, it is difficult to observe the amount of organic carbon runoff to the river. Therefore, an indirect method should be used to estimate the amount of organic carbon runoff to the river. The organic carbon inflow is caused by the runoff of organic carbon dissolved in water or the inflow of organic carbon particles by soil loss. Therefore, the hydrological model was used to estimate organic carbon runoff through the flow of water. The land cover correlates with soil respiration, soil loss, and so on, and the organic carbon runoff coefficient will be estimated to the river by land cover. Using the organic carbon concentration from water quality data observed at each point in the river, we estimate the amount of organic carbon released from the land. The reason is that the runoff from the watershed converges into the rivers in the watershed, the watershed simulation is conducted based on the water quality data observation point. This defines a watershed that affects organic carbon observation sites. The flow rate of each watershed is calculated by the SWAT (Soil and Water Assessment Tool), and the total organic carbon runoff is calculated by using flow rate and organic carbon concentration. This is compared with the factors related to the amount of organic carbon such as land cover, soil loss, and soil organic carbon, and spatial analysis is carried out to estimate the organic carbon runoff coefficient per land cover.

  10. Beaver-mediated lateral hydrologic connectivity, fluvial carbon and nutrient flux, and aquatic ecosystem metabolism

    Wegener, Pam; Covino, Tim; Wohl, Ellen

    2017-06-01

    River networks that drain mountain landscapes alternate between narrow and wide valley segments. Within the wide segments, beaver activity can facilitate the development and maintenance of complex, multithread planform. Because the narrow segments have limited ability to retain water, carbon, and nutrients, the wide, multithread segments are likely important locations of retention. We evaluated hydrologic dynamics, nutrient flux, and aquatic ecosystem metabolism along two adjacent segments of a river network in the Rocky Mountains, Colorado: (1) a wide, multithread segment with beaver activity; and, (2) an adjacent (directly upstream) narrow, single-thread segment without beaver activity. We used a mass balance approach to determine the water, carbon, and nutrient source-sink behavior of each river segment across a range of flows. While the single-thread segment was consistently a source of water, carbon, and nitrogen, the beaver impacted multithread segment exhibited variable source-sink dynamics as a function of flow. Specifically, the multithread segment was a sink for water, carbon, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along the multithread relative to the single-thread segment. Our data suggest that beaver activity in wide valleys can create a physically complex hydrologic environment that can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. Given the widespread removal of beaver, determining the cumulative effects of these changes is a critical next step in restoring function in altered river networks.

  11. Illuminating pathways of forest nutrient provision: relative release from soil mineral and organic pools

    Hauser, E.; Billings, S. A.

    2017-12-01

    Depletion of geogenic nutrients during soil weathering can prompt vegetation to rely on other sources, such as organic matter (OM) decay, to meet growth requirements. Weathered soils also tend to permit deep rooting, a phenomenon sometimes attributed to vegetation foraging for geogenic nutrients. This study examines the extent to which OM recycling provides nutrients to vegetation growing in soils with diverse weathering states. We thus address the fundamental problem of how forest vegetation obtains sufficient nutrition to support productivity despite wide variation in soils' nutrient contents. We hypothesized that vegetation growing on highly weathered soils relies on nutrients released from OM decay to a greater extent than vegetation growing on less weathered, more nutrient-rich substrates. For four mineralogically diverse Critical Zone Observatories (CZO) and Critical Zone Exploratory Network sites, we calculated weathering indices and approximated vegetation nutrient demand and nutrient release from OM decay. We also measured nutrient release rates from OM decay at each site. We then assessed the relationship between degree of soil weathering and the estimated fraction of nutrient demand satisfied by OM derived nutrients. Results are consistent with our hypothesis. The chemical index of alteration (CIA), a weathering index that increases in value with mineral depletion, varies predictably from 90 at the highly weathered Calhoun CZO to 60 at the Catalina CZO, where soils are more recently developed. Estimates of rates of K release from OM decay increase with CIA values. The highest release rate is 2.4 gK m-2 y-1 at Calhoun, accounting for 30% of annual vegetation K uptake; at Catalina, less than 0.5 gm-2 y-1 K is released, meeting 14% of vegetation demand. CIA also co-varies with rooting depth across sites: the deepest roots at the Calhoun sites are growing in soils with the highest CIA values, while the deepest roots at Catalina sites are growing in soils

  12. Effect of crop rotation on soil nutrient balance and weediness in soddy podzolic organic farming fields

    Zarina, Livija; Zarina, Liga

    2017-04-01

    The nutrient balance in different crop rotations under organic cropping system has been investigated in Latvia at the Institute of Agricultural Resources and Economics since 2006. Latvia is located in a humid and moderate climatic region where the rainfall exceeds evaporation (soil moisture coefficient > 1) and the soil moisture regime is characteristic with percolation. The average annual precipitation is 670-850 mm. The average temperature varies from -6.7° C in January to 16.5 °C in July. The growing season is 175 - 185 days. The most widespread are podzolic soils and mainly they are present in agricultural fields in all regions of Latvia. In a wider sense the goal of the soil management in organic farming is a creation of the biologically active flora and fauna in the soil by maintaining a high level of soil organic matter which is good for crops nutrient balance. Crop rotation is a central component of organic farming systems and has many benefits, including growth of soil microbial activity, which may increase nutrient availability. The aim of the present study was to calculate nutrient balance for each crop in the rotations and average in each rotation. Taking into account that crop rotations can limit build-up of weeds, additionally within the ERA-net CORE Organic Plus transnational programs supported project PRODIVA the information required for a better utilization of crop diversification for weed management in North European organic arable cropping systems was summarized. It was found that the nutrient balance was influenced by nutrients uptake by biomass of growing crops in crop rotation. The number of weeds in the organic farming fields with crop rotation is dependent on the cultivated crops and the succession of crops in the crop rotation.

  13. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Velescu, Andre; Valarezo, Carlos; Wilcke, Wolfgang

    2016-05-01

    In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM) by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth. In 2007, we established a nutrient manipulation experiment (NUMEX) to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N), 10 kg ha-1 a-1 of phosphorus (P), 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca) in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes. Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC) and dissolved organic nitrogen (DON) concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments. Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N and P

  14. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Andre eVelescu

    2016-05-01

    Full Text Available In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth.In 2007, we established a nutrient manipulation experiment (NUMEX to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N, 10 kg ha-1 a-1 of phosphorus (P, 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes.Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC and dissolved organic nitrogen (DON concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments.Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N

  15. Understanding and Projecting Climate and Human Impacts on Terrestrial-Coastal Carbon and Nutrient Fluxes

    Lohrenz, S. E.; Cai, W. J.; Tian, H.; He, R.; Fennel, K.

    2017-12-01

    Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. Here, we describe a NASA Carbon Monitoring System project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The nature of our approach, coupling models of terrestrial and ocean ecosystem dynamics and associated carbon processes, allows for assessment of how societal and human-related land use, land use change and forestry and climate-related change affect terrestrial carbon transport as well as export of materials through watersheds to the coastal margins. Our objectives include the following: 1) Provide representation of carbon processes in the terrestrial ecosystem to understand how changes in land use and climatic conditions influence the export of materials to the coastal ocean, 2) Couple the terrestrial exports of carbon, nutrients and freshwater to a coastal biogeochemical model and examine how different climate and land use scenarios influence fluxes across the land-ocean interface, and 3) Project future changes under different scenarios of climate and human impact, and support user needs related to carbon management and other activities (e.g., water quality, hypoxia, ocean acidification). This research is providing information that will contribute to determining an overall carbon balance in North America as well as describing and predicting how human- and climate-related changes impact coastal water quality including possible effects of coastal

  16. One year monitoring of fire-induced effects on dissolved organic matter and nutrient dynamics under different land-use

    Potthast, Karin; Meyer, Stefanie; Crecelius, Anna; Schubert, Ulrich; Michalzik, Beate

    2016-04-01

    It is supposed that the changing climate will promote extreme weather events that in turn will increase drought periods and the abundance of fire events in temperate climate regions such as Central Europe. The impact of fires on the nutrient budgets of ecosystems is highly diverse and seems to depend on the ecosystem type. For example, little is known about fire effects on water-bound organic matter (OM) and nutrient fluxes in temperate managed forest ecosystems. Fires can strongly alter the distribution (forest floor vs. mineral soil), binding forms (organic vs. inorganic) and availability (solubility by water) of OM and associated nutrients. To elucidate the effects and seasonality of low intensity fires on the mobilization of dissolved organic carbon and nutrients, an experimental ground fire was conducted in November 2014 in the Hainich region, Central Germany. In addition, differences in response patterns between two land-use types (pasture and beech forest) were investigated. Lysimeters (n=5 controls/ 5 fire-manipulated) with topsoil monoliths (0-4 cm), rainfall/throughfall samplers, littertraps as well as temperature and moisture sensors were installed on three sites of each land-use type. During the one year of monitoring (Sep14-Dec15) soil solution, rainfall, and throughfall samples were taken biweekly and analyzed for pH, dissolved and particulate organic carbon (DOC, POC) and nitrogen (DN, PN) as well as for nutrients (e.g. K, Ca, Mg, P, S). Compared to the control sites, the ground fire immediately induced a short-run release peak of DOC in both land-use types. Within two weeks these differences were muted in the post-fire period. The effect of fire was land-use specific with annual DOC fluxes of 82 and 45 kg/(ha*a) for forest and pasture sites, respectively. In contrast, nitrogen fluxes responded differently to the fire event. In the forest, a significant increase in DN concentrations was notable five months after the fire, at the beginning of the

  17. Effect of organic root plus (biostimulant) on the growth, nutrient ...

    The effectiveness of organic root plus (biostimulant) was compared with conventional fertilizer on the growth and yield of amaranthus in a glass house study. The treatments consisted of control, full rate each of biostimulant and fertilizer, and combination of fertilizer with biostimulant at full and half rates. The urea, single ...

  18. Source Material and Concentration of Wildfire-Produced Pyrogenic Carbon Influence Post-Fire Soil Nutrient Dynamics

    Lucas A. Michelotti

    2015-04-01

    Full Text Available Pyrogenic carbon (PyC is produced by the thermal decomposition of organic matter in the absence of oxygen (O. PyC affects nutrient availability, may enhance post-fire nitrogen (N mineralization rates, and can be a significant carbon (C pool in fire-prone ecosystems. Our objectives were to characterize PyC produced by wildfires and examine the influence that contrasting types of PyC have on C and N mineralization rates. We determined C, N, O, and hydrogen (H concentrations and atomic ratios of charred bark (BK, charred pine cones (PC, and charred woody debris (WD using elemental analysis. We also incubated soil amended with BK, PC, and WD at two concentrations for 60 days to measure C and N mineralization rates. PC had greater H/C and O/C ratios than BK and WD, suggesting that PC may have a lesser aromatic component than BK and WD. C and N mineralization rates decreased with increasing PyC concentrations, and control samples produced more CO2 than soils amended with PyC. Soils with PC produced greater CO2 and had lower N mineralization rates than soils with BK or WD. These results demonstrate that PyC type and concentration have potential to impact nutrient dynamics and C flux to the atmosphere in post-fire forest soils.

  19. Dietary One-Carbon Nutrient Intake and Risk of Lymphoid and Myeloid Neoplasms: Results of the Netherlands Cohort Study

    Heinen, M.M.; Brandt, P.A. van den; Schouten, L.J.; Goldbohm, R.A.; Schouten, H.C.; Verhage, B.A.J.

    2014-01-01

    Background: Previous epidemiologic research suggests a protective role of one-carbon nutrients in carcinogenesis. Folate, however, may play a dual role in neoplasms development: protect early in carcinogenesis and promote carcinogenesis at a later stage. We prospectively examined associations

  20. Effects of nutrient ratios and carbon dioxide bio-sequestration on biomass growth of Chlorella sp. in bubble column photobioreactor.

    Vo, Hoang-Nhat-Phong; Bui, Xuan-Thanh; Nguyen, Thanh-Tin; Nguyen, Dinh Duc; Dao, Thanh-Son; Cao, Ngoc-Dan-Thanh; Vo, Thi-Kim-Quyen

    2018-08-01

    Photobioreactor technology, especially bubble column configuration, employing microalgae cultivation (e.g., Chlorella sp.), is an ideal man-made environment to achieve sufficient microalgae biomass through its strictly operational control. Nutrients, typically N and P, are necessary elements in the cultivation process, which determine biomass yield and productivity. Specifically, N:P ratios have certain effects on microalgae's biomass growth. It is also attractive that microalgae can sequester CO 2 by using that carbon source for photosynthesis and, subsequently, reducing CO 2 emission. Therefore, this study aims to investigate the effect of N:P ratios on Chlorella sp.'s growth, and to study the dynamic of CO 2 fixation in the bubble column photobioreactor. According to our results, N:P ratio of 15:1 could produce the highest biomass yield (3568 ± 158 mg L -1 ). The maximum algae concentration was 105 × 10 6  cells mL -1 , receiving after 92 h. Chlorella sp. was also able to sequester CO 2 at 28 ± 1.2%, while the specific growth rate and carbon fixation rate were observed at 0.064 h -1 and 68.9 ± 1.91 mg L -1  h -1 , respectively. The types of carbon sources (e.g., organic and inorganic carbon) possessed potential impact on microalgae's cultivation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The contribution of leaching to the rapid release of nutrients and carbon in the early decay of wetland vegetation

    Davis, S. E.; Childers, D.L.; Noe, G.B.

    2006-01-01

    Our goal was to quantify the coupled process of litter turnover and leaching as a source of nutrients and fixed carbon in oligotrophic, nutrient-limited wetlands. We conducted poisoned and non-poisoned incubations of leaf material from four different perennial wetland plants (Eleocharis spp., Cladium jamaicense, Rhizophora mangle and Spartina alterniflora) collected from different oligotrophic freshwater and estuarine wetland settings. Total phosphorus (TP) release from the P-limited Everglades plant species (Eleocharis spp., C. jamaicense and R. mangle) was much lower than TP release by the salt marsh plant S. alterniflora from N-limited North Inlet (SC). For most species and sampling times, total organic carbon (TOC) and TP leaching losses were much greater in poisoned than non-poisoned treatments, likely as a result of epiphytic microbial activity. Therefore, a substantial portion of the C and P leached from these wetland plant species was bio-available to microbial communities. Even the microbes associated with S. alterniflora from N-limited North Inlet showed indications of P-limitation early in the leaching process, as P was removed from the water column. Leaves of R. mangle released much more TOC per gram of litter than the other species, likely contributing to the greater waterborne [DOC] observed by others in the mangrove ecotone of Everglades National Park. Between the two freshwater Everglades plants, C. jamaicense leached nearly twice as much P than Eleocharis spp. In scaling this to the landscape level, our observed leaching losses combined with higher litter production of C. jamaicense compared to Eleocharis spp. resulted in a substantially greater P leaching from plant litter to the water column and epiphytic microbes. In conclusion, leaching of fresh plant litter can be an important autochthonous source of nutrients in freshwater and estuarine wetland ecosystems. ?? Springer 2006.

  2. Utilization of solid catfish manure waste as carbon and nutrient source for lactic acid production.

    Shi, Suan; Li, Jing; Blersch, David M

    2018-04-19

    The aim of this work was to study the solid waste (manure) produced by catfish as a potential feedstock for the production of lactic acid (LA) via fermentation. The solid waste contains high levels of both carbohydrates and nutrients that are sufficient for LA bacteria. Simultaneous saccharification and co-fermentation (SSCF) was applied using enzyme and Lactobacillus pentosus, and different loadings of enzyme and solid waste were tested. Results showed LA concentrations of 35.7 g/L were obtained at 15% solids content of catfish waste. Because of the high nutrient content in the fish waste, it could also be used as supplementary substrate for nitrogen and carbon sources with other lignocellulosic materials. A combined feedstock of catfish waste and paper mill sludge was tested, increasing the final LA concentration to 43.1 g/L at 12% solids loading. The catfish waste was shown to be a potential feedstock to provide both carbon and nutrients for LA production, suggesting its use as a sole substrate or in combination with other lignocellulosic materials.

  3. Organic carbon in glacial fjords of Chilean Patagonia

    Pantoja, Silvio; Gutiérrez, Marcelo; Tapia, Fabián; Abarzúa, Leslie; Daneri, Giovanni; Reid, Brian; Díez, Beatriz

    2016-04-01

    The Southern Ice Field in Chilean Patagonia is the largest (13,000 km2) temperate ice mass in the Southern hemisphere, yearly transporting ca. 40 km3 of freshwater to fjords. This volume of fresh and cold water likely affects adjacent marine ecosystems by changing circulation, productivity, food web dynamics, and the abundance and distribution of planktonic and benthic organisms. We hypothesize that freshwater-driven availability of inorganic nutrient and transport of organic and inorganic suspended matter, as well as microbes, become a controlling factor for productivity in the fjord associated with the Baker river and Jorge Montt glacier. Both appear to be sources of silicic acid, but not of nitrate and particulate organic carbon, especially during summer, when surface PAR and glacier thawing are maximal. In contrast to Baker River, the Jorge Montt glacier is also a source of dissolved organic carbon towards a proglacial fjord and the Baker Channel, indicating that a thorough chemical description of sources (tidewater glacier and glacial river) is needed. Nitrate in fiord waters reaches ca. 15 μM at 25 m depth with no evidence of mixing up during summer. Stable isotope composition of particulate organic nitrogen reaches values as low as 3 per mil in low-salinity waters near both glacier and river. Nitrogen fixation could be depleting δ15N in organic matter, as suggested by the detection at surface waters of nif H genes belonging to diazotrophs near the Montt glacier. As diazotrophs have also been detected in other cold marine waters (e.g. Baltic Sea, Arctic Ocean) as well as glaciers and polar terrestrial waters, there is certainly a potential for both marine and freshwater microbes to contribute and have a significant impact on the Patagonian N and C budgets. Assessing the impact of freshwater on C and N fluxes and the microbial community structure in Patagonian waters will allow understanding future scenarios of rapid glacier melting. This research was funded

  4. The role of Juncus effusus litter quality and nutrient availability on organic matter decomposition in restored cutover bogs

    Agethen, Svenja; Knorr, Klaus-Holger

    2017-04-01

    More than 90% of peatlands in Europe are degraded by drainage and subsequent land use. However, beneficial effects of functioning peatlands, most of all carbon storage, have long been recognized but remain difficult to recover. Fragmentation and a surrounding of intensively used agricultural catchments with excess nutrients in air and waters further affects the recovery of sites. Under such conditions, highly competitive species such as Juncus effusus colonize restored peatlands instead of peat forming Sphagnum. While the specific stoichiometry and chemical composition makes Sphagnum litter recalcitrant in decomposition and hence, effective in carbon sequestration, we know little about dynamics involving Juncus, although this species provides organic matter in high quantity and of rather labile quality. To better understand decomposition in context of litter quality and nutrient availability, we incubated different peat types for 70 days; I) recent, II) weakly degraded fossil, and III) earthyfied nutrient rich fossil peat, amended with two 13C pulse-labelled Juncus litter types (excessively fertilized "F", and nutrient poor "NF" plants grown for three years watered with MilliQ only), respectively. We determined anaerobic decomposition rates, compared potential rates extrapolated from pure materials with measured rates of the mixtures, and tracked the 13C in the solid, liquid, and gaseous phase. To characterize the biogeochemical conditions, inorganic and organic electron acceptors, hydrogen and organic acids, and total enzyme activity were monitored. For characterization of dissolved organic matter we used UV-Vis and fluorescence spectroscopy (parallel factor analysis), and for solid organic matter elemental analysis and FTIR spectroscopy. There were two main structural differences between litter types: "F" litter and its leachates contained more proteinaceous components, the C/N ratio was 20 in contrast to 60 of the "NF" litter. However, humic components and

  5. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere

    Cleveland, Cory C.; Townsend, Alan R.

    2006-01-01

    Terrestrial biosphere–atmosphere carbon dioxide (CO2) exchange is dominated by tropical forests, where photosynthetic carbon (C) uptake is thought to be phosphorus (P)-limited. In P-poor tropical forests, P may also limit organic matter decomposition and soil C losses. We conducted a field-fertilization experiment to show that P fertilization stimulates soil respiration in a lowland tropical rain forest in Costa Rica. In the early wet season, when soluble organic matter inputs to soil are hig...

  6. Exploring the Nutrient Release Potential of Organic Materials as Integrated Soil Fertility Management Components Using SAFERNAC

    Maro, G.P.; Mrema, J.P.; Msanya, B.M.; Janssen, B.H.; Teri, J.M.

    2014-01-01

    The aim of this study was to establish the nutrient release potential of different organic materials and assess their role in integrated soil fertility management for coffee using the new coffee yield model SAFERNAC. It involved an incubation experiment conducted at TaCRI Lyamungu Screenhouse for

  7. Interactions between nutrients and organic micro-pollutants in shallow freshwater ecosystems

    Roessink, I.; Koelmans, A.A.; Brock, T.C.M.

    2008-01-01

    Effects of nutrients and toxicants in aquatic ecosystems may interact in several ways. Here, we (a) present an overview of reported mechanisms that may play a role in these interactions, and (b) compare these reported mechanisms against the results of a suite of experiments performed with organic

  8. Fractionation and characterization of soil organic carbon during transition to organic farming

    Abdelrahman, H.; Olk, D.; Cocozza, C.; Miano, T.

    2012-04-01

    The transition from conventional to organic farming is the most difficult period faced by organic growers as it could be characterized by unstable conditions, such as nutrient availability, production reductions, mineralization extents. As soil organic matter (SOM), specifically soil organic carbon (SOC), is known to play important roles in maintenance and improvement of many soil properties, it is important to define its changes during the transition period. Total SOC might not be the suitable tool to track the changes in organically based soil fertility within a 3- to 5-yr transition period. Labile fractions that are important for nutrient cycling and supply are likely to be controlled by management to a much greater extent than is total SOM. Two field experiments, in south of Italy, were established in 2009 to study the changes in SOC during transition to organic farming. Experiments included a cereal/leguminous rotation with triplicates treatments of permitted amendments (compost and fertilizers). Soils were sampled at the beginning of the project, and after each crop harvest in 2010 and 2011. A sequential fractionation procedure was used to separate different SOC-fractions: light fraction (LF), two size classes of particulate organic matter (POM), mobile humic acid (MHA) and Ca++ bound humic acid (CaHA). Isolated fractions were quantified and analyzed for their content of C, N, carbohydrates and amino compounds fingerprints. The obtained results showed that compost application contributed to significantly higher quantities of LF, POM and MHA than did fertilizers application. Carbohydrates content decreased in LF while increased noticeably in POM and slightly in MHA fractions, which indicates that decomposing materials are converted, within the time span of humification, from young fractions into more mature fractions. Amino compounds were found to provide up to 40% of total soil N with a major contribution of the humified fractions, MHA and CaHA. The utilized

  9. Effect of integrated forage rotation and manure management on yield, nutrient balance and soil organic matter

    Cesare Tomasoni

    2011-03-01

    Full Text Available This paper reports results from a field experiment established in 1995 and still on going. It is located in Lodi, in the irrigated lowlands of Lombardy, Northern Italy. The experiment compares two rotations: the annual double cropping system, Italian ryegrass + silage maize (R1; and the 6-year rotation, in which three years of double crop Italian ryegrass + silage maize are followed by three years of alfalfa harvested for hay (R6 Each rotation have received two types of dairy manure: i farmyard manure (FYM; ii semi-liquid manure (SLM. The intent was to apply to each unit land area the excreta produced by the number of adult dairy cows sustained, in terms of net energy, by the forage produced in each rotation, corresponding to about 6 adult cows ha-1 for R1 and 4 adult cows ha-1 for R6. Manure was applied with (N1 or without (N0 an extra supply of mineral N in the form of urea. The objectives of this study were: i to assess whether the recycling of two types of manure in two forage rotation systems can sustain crop yields in the medium and long term without additional N fertilization; ii to evaluate the nutrient balance of these integrated forage rotations and manure management systems; iii to compare the effects of farmyard manure and semi-liquid manure on soil organic matter. The application of FYM, compared to SLM, increased yield of silage maize by 19% and alfalfa by 23%, while Italian ryegrass was not influenced by the manure treatment. Yet, silage maize produced 6% more in rotation R6 compared to rotation R1. The mineral nitrogen fertilization increased yield of Italian ryegrass by 11% and of silage maize by 10%. Alfalfa, not directly fertilized with mineral nitrogen, was not influenced by the nitrogen applied to the other crops in rotation. The application of FYM, compared to SLM, increased soil organic matter (SOM by +37 % for the rotation R1, and by +20% for the rotation R6. Conversely, no significant difference on SOM was observed

  10. Managing soil nutrients with compost in organic farms of East Georgia

    Ghambashidze, Giorgi

    2013-04-01

    Soil Fertility management in organic farming relies on a long-term integrated approach rather than the more short-term very targeted solutions common in conventional agriculture. Increasing soil organic matter content through the addition of organic amendments has proven to be a valuable practice for maintaining or restoring soil quality. Organic agriculture relies greatly on building soil organic matter with compost typically replacing inorganic fertilizers and animal manure as the fertility source of choice. In Georgia, more and more attention is paid to the development of organic farming, occupying less than 1% of total agricultural land of the country. Due to increased interest towards organic production the question about soil amendments is arising with special focus on organic fertilizers as basic nutrient supply sources under organic management practice. In the frame of current research two different types of compost was prepared and their nutritional value was studied. The one was prepared from organic fraction municipal solid waste and another one using fruit processing residues. In addition to main nutritional properties both composts were tested on heavy metals content, as one of the main quality parameter. The results have shown that concentration of main nutrient is higher in municipal solid waste compost, but it contains also more heavy metals, which is not allowed in organic farming system. Fruit processing residue compost also has lower pH value and is lower in total salt content being is more acceptable for soil in lowlands of East Georgia, mainly characterised by alkaline reaction. .

  11. Transport of sediments, carbon and nutrients in areas of reforestation and grassland based on simulated rainfall

    Adilson Pinheiro

    2013-08-01

    Full Text Available The objective of this study was to evaluate the soil losses, as well as carbon and chemical samples in runoff through areas of pine (Pinus taeda, eucalyptus (Eucalyptus dunni and a consortium of pasture with oat (Avena stringosa and ryegrass (Lolium multiflorium in the Fragosos river basin, in Concordia, SC. For this, rainfall simulations with mean intensities of 94 mm h-1 were conducted in September and November 2011, in plots of 1 m2 established in the three areas. Runoff, loads carried of the sediment, and carbon and chemical concentrations were quantified in the experiment. The results showed that the concentrations of sediment and organic carbon were higher in the eucalyptus area. The largest concentrations of chemicals for all areas were nitrate, calcium, magnesium and potassium. Total carbon, organic carbon, sediment and nitrate were transported in higher loads in the eucalyptus area. With the exception of nitrate and chloride, the chemical loads carried were higher in the pasture area.

  12. Organic carbon dynamics in mangrove ecosystems: a review

    Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C.

    2008-01-01

    Our current knowledge on production, composition, transport, pathways and transformations of organic carbon in tropical mangrove environments is reviewed and discussed. Organic carbon entering mangrove foodwebs is either produced autochthonously or imported by tides and/or rivers. Mangrove litter

  13. Method for obtaining more precise measures of excreted organic carbon

    Anon.

    1977-01-01

    A new method for concentrating and measuring excreted organic carbon by lyophilization and scintillation counting is efficient, improves measurable radioactivity, and increases precision for estimates of organic carbon excreted by phytoplankton and macrophytes

  14. Distribution of organic carbon in sediments from the Arabian Sea

    Paropkari, A.L.; Mascarenhas, A.; PrakashBabu, C.

    Many earlier studies on the distribution of organic carbon in the Arabian Sea, sediments have projected contradictory opinions on the factors favouring accumulation and preservation of organic carbon in the Arabian Sea. An attempt is made...

  15. Benthic Carbon Mineralization and Nutrient Turnover in a Scottish Sea Loch

    Glud, Ronnie N.; Berg, Peter; Stahl, Henrik

    2016-01-01

    Based on in situ microprofiles, chamber incubations and eddy covariance measurements, we investigated the benthic carbon mineralization and nutrient regeneration in a ~65-m-deep sedimentation basin of Loch Etive, UK. The sediment hosted a considerable amount of infauna that was dominated by the b......Based on in situ microprofiles, chamber incubations and eddy covariance measurements, we investigated the benthic carbon mineralization and nutrient regeneration in a ~65-m-deep sedimentation basin of Loch Etive, UK. The sediment hosted a considerable amount of infauna that was dominated....... The average benthic O2 exchange as derived by chamber incubations and the eddy covariance approach were similar (14.9 ± 2.5 and 13.1 ± 9.0 mmol m−2 day−1) providing confidence in the two measuring approaches. Moreover, the non-invasive eddy approach revealed a flow-dependent benthic O2 flux that was partly...... ascribed to enhanced ventilation of infauna burrows during periods of elevated flow rates. The ratio in exchange rates of ΣCO2 and O2 was close to unity, confirming that the O2 uptake was a good proxy for the benthic carbon mineralization in this setting. The infauna activity resulted in highly dynamic...

  16. Arsenic methylation capacity in relation to nutrient intake and genetic polymorphisms in one-carbon metabolism.

    Gamboa-Loira, Brenda; Hernández-Alcaraz, César; Gandolfi, A Jay; Cebrián, Mariano E; Burguete-García, Ana; García-Martínez, Angélica; López-Carrillo, Lizbeth

    2018-07-01

    Nutrients and genetic polymorphisms participating in one-carbon metabolism may explain interindividual differences in inorganic arsenic (iAs) methylation capacity, which in turn may account for variations in susceptibility to iAs-induced diseases. 1) To evaluate the association between polymorphisms in five one-carbon metabolism genes (FOLH1 c.223 T > C, MTHFD1 c.1958 G > A, MTHFR c.665 C > T, MTR c.2756 A > G, and MTRR c.66 A > G) and iAs methylation capacity; 2) To assess if previously reported associations between nutrient intake and iAs methylation capacity are modified by those polymorphisms. Women (n = 1027) exposed to iAs in Northern Mexico were interviewed. Blood and urine samples were collected. Nutrient dietary intake was estimated using a validated food frequency questionnaire. iAs methylation capacity was calculated from urinary iAs species (iAs, monomethylarsonic acid [MMA] and dimethylarsinic acid [DMA]) measured by high performance liquid chromatography (HPLC-ICP-MS). One polymorphism in each of the five genes evaluated was genotyped by allelic discrimination. Multivariable linear regression models were used to evaluate if genetic polymorphisms modified the associations between iAs methylation capacity parameters and nutrient intake. The median (min-max) concentration of total arsenic (TAs) was 20.2 (1.3-2776.0) µg/g creatinine in the study population. Significant interactions for iAs metabolism were only found with FOLH1 c.223 T > C polymorphism and vitamin B12 intake, so that CT and CC genotype carriers had significantly lower %iAs, and higher DMA/iAs with an increased vitamin B12 intake, as compared to carriers of wild-type TT. Differences in dietary nutrient intake and genetic variants in one-carbon metabolism may jointly influence iAs methylation capacity. Confirmation of these interactions in other populations is warranted. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Prognosis of breast cancer is associated with one-carbon metabolism related nutrients among Korean women

    Lee Yunhee

    2012-08-01

    Full Text Available Abstract Background The 5-year survival rate for breast cancer among Korean women has increased steadily; however, breast cancer remains the leading cause of cancer mortality among women. One-carbon metabolism, which requires an adequate supply of methyl group donors and B vitamins, may affect the prognosis of breast cancer. This aim of this study was to investigate the associations of dietary intake of vitamin B2, vitamin B6 and folate before diagnosis on the prognosis of breast cancer. Methods We assessed the dietary intake using a food frequency questionnaire with 980 women who were newly diagnosed and histopathologically confirmed to have primary breast cancer from hospitals in Korea, and 141 disease progression events occurred. Cox’s proportional hazard regression models were used to estimate the hazard ratio (HR and 95% confidence interval (95% CI adjusting for age, education, recruitment sites, TNM stage, hormone status, nuclear grade and total calorie. Results There was no significant association between any one-carbon metabolism related nutrients (vitamin B2, B6 and folate and the progression of breast cancer overall. However, one-carbon metabolism related nutrients were associated with disease progression in breast cancer patients stratified by subtypes. In ER + and/or PR + breast cancers, no association was observed; however, in ER–/PR– breast cancers, a high intake of vitamin B2 and folate statistically elevated the HR of breast cancer progression (HR = 2.28; 95% CI, 1.20-4.35, HR = 1.84; 95% CI, 1.02-3.32, respectively compared to a low intake. This positive association between the ER/PR status and progression of the disease was profound when the nutrient intakes were categorized in a combined score (Pinteraction = 0.018. In ER–/PR– breast cancers, high combined scores were associated with a significantly poor DFS compared to those belonging to the low score group (HR = 3.84; 95% CI, 1

  18. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter

    Vladislav Gulis; Keller Suberkropp

    2003-01-01

    The relative contributions of fungi and bacteria to carbon flow from submerged decaying plant litter at different levels of inorganic nutrients (N and P) were studied. We estimated leaf mass loss, fungal and bacterial biomass and production, and microbial respiration and constructed partial carbon budgets for red maple leaf disks precolonized in a stream and then...

  19. Microbial respiration per unit microbial biomass increases with carbon-to-nutrient ratios in soils

    Spohn, Marie; Chodak, Marcin

    2015-04-01

    The ratio of carbon-to-nutrient in forest floors is usually much higher than the ratio of carbon-to-nutrient that soil microorganisms require for their nutrition. In order to understand how this mismatch affects carbon cycling, the respiration rate per unit soil microbial biomass carbon - the metabolic quotient (qCO2) - was studied. This was done in a field study (Spohn and Chodak, 2015) and in a meta-analysis of published data (Spohn, 2014). Cores of beech, spruce, and mixed spruce-beech forest soils were cut into slices of 1 cm from the top of the litter layer down to 5 cm in the mineral soil, and the relationship between the qCO2 and the soil carbon-to-nitrogen (C:N) and the soil carbon-to-phosphorus (C:P) ratio was analyzed. We found that the qCO2 was positively correlated with soil C:N ratio in spruce soils (R = 0.72), and with the soil C:P ratio in beech (R = 0.93), spruce (R = 0.80) and mixed forest soils (R = 0.96). We also observed a close correlation between the qCO2 and the soil C concentration in all three forest types. Yet, the qCO2 decreased less with depth than the C concentration in all three forest types, suggesting that the change in qCO2 is not only controlled by the soil C concentration. We conclude that microorganisms increase their respiration rate per unit biomass with increasing soil C:P ratio and C concentration, which adjusts the substrate to their nutritional demands in terms of stoichiometry. In an analysis of literature data, I tested the effect of the C:N ratio of soil litter layers on microbial respiration in absolute terms and per unit microbial biomass C. For this purpose, a global dataset on the microbial respiration rate per unit microbial biomass C - termed the metabolic quotient (qCO2) - was compiled form literature data. It was found that the qCO2 in the soil litter layers was positively correlated with the litter C:N ratio and negatively related with the litter nitrogen (N) concentration. The positive relation between the qCO2

  20. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling

    D. S. Goll

    2012-09-01

    Full Text Available Terrestrial carbon (C cycle models applied for climate projections simulate a strong increase in net primary productivity (NPP due to elevated atmospheric CO2 concentration during the 21st century. These models usually neglect the limited availability of nitrogen (N and phosphorus (P, nutrients that commonly limit plant growth and soil carbon turnover. To investigate how the projected C sequestration is altered when stoichiometric constraints on C cycling are considered, we incorporated a P cycle into the land surface model JSBACH (Jena Scheme for Biosphere–Atmosphere Coupling in Hamburg, which already includes representations of coupled C and N cycles.

    The model reveals a distinct geographic pattern of P and N limitation. Under the SRES (Special Report on Emissions Scenarios A1B scenario, the accumulated land C uptake between 1860 and 2100 is 13% (particularly at high latitudes and 16% (particularly at low latitudes lower in simulations with N and P cycling, respectively, than in simulations without nutrient cycles. The combined effect of both nutrients reduces land C uptake by 25% compared to simulations without N or P cycling. Nutrient limitation in general may be biased by the model simplicity, but the ranking of limitations is robust against the parameterization and the inflexibility of stoichiometry. After 2100, increased temperature and high CO2 concentration cause a shift from N to P limitation at high latitudes, while nutrient limitation in the tropics declines. The increase in P limitation at high-latitudes is induced by a strong increase in NPP and the low P sorption capacity of soils, while a decline in tropical NPP due to high autotrophic respiration rates alleviates N and P limitations. The quantification of P limitation remains challenging. The poorly constrained processes of soil P sorption and biochemical mineralization are identified as the main uncertainties in the strength of P limitation

  1. Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-08-01

    Many alpine areas are experiencing deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, atmospheric deposition sources may be an important source of C and nutrients for these environments. We evaluated the magnitude of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long-term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were 1.12 ± 0.19 mg l-1, and weekly concentrations reached peaks as high at 6-10 mg l-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. To investigate potential sources of C in atmospheric deposition, we evaluated the chemical quality of dissolved organic matter (DOM) and relationships between DOM and other solutes in wet deposition. Relationships between DOC concentration, fluorescence, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring, which may reflect an association of DOM with dust. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples. Our C budget estimates for the Green Lake 4 catchment

  2. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration

    Kell, Douglas B.

    2011-01-01

    Background The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from ‘root crops’) mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth. Scope Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO2. This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing. PMID:21813565

  3. Redox-controlled carbon and phosphorus burial: A mechanism for enhanced organic carbon sequestration during the PETM

    Komar, Nemanja; Zeebe, Richard E.

    2017-12-01

    Geological records reveal a major perturbation in carbon cycling during the Paleocene-Eocene Thermal Maximum (PETM, ∼56 Ma), marked by global warming of more than 5 °C and a prominent negative carbon isotope excursion of at least 2.5‰ within the marine realm. The entire event lasted about 200,000 yr and was associated with a massive release of light carbon into the ocean-atmosphere system over several thousands of years. Here we focus on the terminal stage of the PETM, during which the ocean-atmosphere system rapidly recovered from the carbon cycle perturbation. We employ a carbon-cycle box model to examine the feedbacks between surface ocean biological production, carbon, oxygen, phosphorus, and carbonate chemistry during massive CO2 release events, such as the PETM. The model results indicate that the redox-controlled carbon-phosphorus feedback is capable of producing enhanced organic carbon sequestration during large carbon emission events. The locale of carbon oxidation (ocean vs. atmosphere) does not affect the amount of carbon sequestered. However, even though the model produces trends consistent with oxygen, excess accumulation rates of organic carbon (∼1700 Pg C during the recovery stage), export production and δ13 C data, it fails to reproduce the magnitude of change of sediment carbonate content and the CCD over-deepening during the recovery stage. The CCD and sediment carbonate content overshoot during the recovery stage is muted by a predicted increase in CaCO3 rain. Nonetheless, there are indications that the CaCO3 export remained relatively constant during the PETM. If this was indeed true, then an initial pulse of 3,000 Pg C followed by an additional, slow leak of 2,500 Pg C could have triggered an accelerated nutrient supply to the surface ocean instigating enhanced organic carbon export, consequently increasing organic carbon sequestration, resulting in an accelerated restoration of ocean-atmosphere biogeochemistry during the termination

  4. Hydrothermal carbonization of glucose in saline solution: sequestration of nutrients on carbonaceous materials

    Jessica Nover

    2016-02-01

    Full Text Available In this study, feasibility of selected nutrient sequestration during hydrothermal carbonization (HTC was tested for three different HTC temperatures (180, 230, and 300 °C. To study the nutrient sequestration in solid from liquid solution, sugar and salt solutions were chosen as HTC feedstock. Glucose was used as carbohydrate source and various salts e.g., ammonium hydrophosphate, potassium chloride, potassium sulfate, and anhydrous ferric chloride were used as source of nitrogen and phosphorus, potassium, and iron, respectively. Solid hydrochar was extensively characterized by means of elemental, ICP-OES, SEM-EDX, surface area, pore volume and size, and ATR-FTIR to determine nutrients’ sequestration as well as hydrochar quality variation with HTC temperatures. The spherical mesoporous hydrochars produced during HTC have low surface area in the range of 1.0–3.5 m2 g−1. Hydrochar yield was increased about 10% with the increase of temperature from 180 °C to 300 °C. Nutrient sequestration was also increased with HTC temperature. In fact, around 71, 31, and 23 wt% nitrogen, iron, and phosphorus were sequestered at 300 °C, respectively. Potassium sequestration was very low throughout the HTC and maximum 5.2% was observed in solid during HTC.

  5. Optimal Management of Water, Nutrient and Carbon Cycles of Green Urban Spaces

    Revelli, R.; Pelak, N. F., III; Porporato, A. M.

    2016-12-01

    The urban ecosystem is a complex, metastable system with highly coupled flows of mass, energy, people and capital. Their sustainability is in part linked to the existence of green spaces which provide important ecosystem services, whose sustainable management requires quantification of their benefits in terms of impacts on water, carbon and energy fluxes. An exploration of problems of optimal management of such green urban spaces and the related biogeochemical fluxes is presented, extending probabilistic ecohydrological models of the soil-plant system to the urban context, where biophysical and ecological conditions tend to be radically different from the surrounding rural and natural environment (e.g. heat islands, air and water pollution, low quality soils, etc…). The coupled soil moisture, nutrient and plant dynamics are modeled to compute water requirements, carbon footprint, nutrient demand and losses, and related fluxes under different design, management and climate scenarios. The goal is to provide operative rules for a sustainable water use through focused irrigation and fertilization strategies, optimal choice of plants, soil and cultivation conditions, accounting for the typical hydroclimatic variability that occur in the urban environment. This work is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 701914. The work is also cofounded by USDA Agricultural Research Service cooperative agreement 58-6408-3-027; National Science Foundation (NSF) grants: EAR-1331846, EAR-1316258, and the DGE-1068871 and FESD EAR-1338694.

  6. Growth and nutrient balance of Enterolobium contortsiliquum seedlings with addition of organic substrates and wastewater

    Emanuel França Araújo

    2016-06-01

    Full Text Available Given the strong generation of solid organic waste and wastewater, the use of these materials as a primary source of nutrients is an important practice in environmental management, especially in the production of seedlings with emphasis on degraded areas. The objective of this study was to evaluate growth and nutrient balance of “tamboril” (Enterolobium contortsiliquum (Vell. Morong seedlings grown on substrates with different formulations proportions of organic matter irrigated with wastewater. It was tested five ratios of organic composts and soil: 0:100; 20:80; 40:60; 60:40 and 80:20 v/v. Two procedences of irrigation water was tested: water supply and wastewater from swine farming, arranged in a completely randomized design in a factorial scheme 5 x 2, with four replications. At 90 days, we evaluate seedlings morphological variables, the integrate diagnosis recommendation index and the nutrient balance index. The organic residue contributes to seedlings growth and nutritional balance. The proportion 80:20 proved to be the most suitable for “tamboril” seedlings production. Seedlings presented lower growth and nutritional balance when irrigate with swine farm wastewater.

  7. Stocks of organic carbon in Estonian soils

    Kõlli, Raimo

    2009-06-01

    Full Text Available The soil organic carbon (SOC stocks (Mg ha–1 ofautomorphic mineral (9 soil groups, hydromorphic mineral (7, and lowland organic soils (4 are given for the soil cover or solum layer as a whole and also for its epipedon (topsoil layer. The SOC stocks for forest, arable lands, and grasslands and for the entire Estonian soil cover were calculated on the basis of the mean SOC stock and distribution area of the respective soil type. In the Estonian soil cover (42 400 km2, a total of 593.8 ± 36.9 Tg of SOC is retained, with 64.9% (385.3 ± 27.5 Tg in the epipedon layer (O, H, and A horizons and 35.1% in the subsoil (B and E horizons. The pedo-ecological regularities of SOC retention in soils are analysed against the background of the Estonian soil ordination net.

  8. Effects of shelter and enrichment on the ecology and nutrient cycling of microbial communities of subtidal carbonate sediments.

    Forehead, Hugh I; Kendrick, Gary A; Thompson, Peter A

    2012-04-01

    The interactions between physical disturbances and biogeochemical cycling are fundamental to ecology. The benthic microbial community controls the major pathway of nutrient recycling in most shallow-water ecosystems. This community is strongly influenced by physical forcing and nutrient inputs. Our study tests the hypotheses that benthic microbial communities respond to shelter and enrichment with (1) increased biomass, (2) change in community composition and (3) increased uptake of inorganic nutrients from the water column. Replicate in situ plots were sheltered from physical disturbance and enriched with inorganic nutrients or left without additional nutrients. At t(0) and after 10 days, sediment-water fluxes of nutrients, O(2) and N(2) , were measured, the community was characterized with biomarkers. Autochthonous benthic microalgal (BMA) biomass increased 30% with shelter and a natural fivefold increase in nutrient concentration; biomass did not increase with greater enrichment. Diatoms remained the dominant taxon of BMA, suggesting that the sediments were not N or Si limited. Bacteria and other heterotrophic organisms increased with enrichment and shelter. Daily exchanges of inorganic nutrients between sediments and the water column did not change in response to shelter or nutrient enrichment. In these sediments, physical disturbance, perhaps in conjunction with nutrient enrichment, was the primary determinant of microbial biomass. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina)

    Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.

    2014-01-01

    Multiple techniques, including thermal infrared aerial remote sensing, geophysical and geological data, geochemical characterization and radium isotopes, were used to evaluate the role of groundwater as a source of dissolved nutrients, carbon, and trace gases to the Okatee River estuary, South Carolina. Thermal infrared aerial remote sensing surveys illustrated the presence of multiple submarine groundwater discharge sites in Okatee headwaters. Significant relationships were observed between groundwater geochemical constituents and 226Ra activity in groundwater with higher 226Ra activity correlated to higher concentrations of organics, dissolved inorganic carbon, nutrients, and trace gases to the Okatee system. A system-level radium mass balance confirmed a substantial submarine groundwater discharge contribution of these constituents to the Okatee River. Diffusive benthic flux measurements and potential denitrification rate assays tracked the fate of constituents in creek bank sediments. Diffusive benthic fluxes were substantially lower than calculated radium-based submarine groundwater discharge inputs, showing that advection of groundwater-derived nutrients dominated fluxes in the system. While a considerable potential for denitrification in tidal creek bank sediments was noted, in situ denitrification rates were nitrate-limited, making intertidal sediments an inefficient nitrogen sink in this system. Groundwater geochemical data indicated significant differences in groundwater chemical composition and radium activity ratios between the eastern and western sides of the river; these likely arose from the distinct hydrological regimes observed in each area. Groundwater from the western side of the Okatee headwaters was characterized by higher concentrations of dissolved organic and inorganic carbon, dissolved organic nitrogen, inorganic nutrients and reduced metabolites and trace gases, i.e. methane and nitrous oxide, than groundwater from the eastern side

  10. Optimizing the vermicomposting of organic wastes amended with inorganic materials for production of nutrient-rich organic fertilizers: a review.

    Mupambwa, Hupenyu Allan; Mnkeni, Pearson Nyari Stephano

    2018-04-01

    Vermicomposting is a bio-oxidative process that involves the action of mainly epigeic earthworm species and different micro-organisms to accelerate the biodegradation and stabilization of organic materials. There has been a growing realization that the process of vermicomposting can be used to greatly improve the fertilizer value of different organic materials, thus, creating an opportunity for their enhanced use as organic fertilizers in agriculture. The link between earthworms and micro-organisms creates a window of opportunity to optimize the vermi-degradation process for effective waste biodegradation, stabilization, and nutrient mineralization. In this review, we look at up-to-date research work that has been done on vermicomposting with the intention of highlighting research gaps on how further research can optimize vermi-degradation. Though several researchers have studied the vermicomposting process, critical parameters that drive this earthworm-microbe-driven process which are C/N and C/P ratios; substrate biodegradation fraction, earthworm species, and stocking density have yet to be adequately optimized. This review highlights that optimizing the vermicomposting process of composts amended with nutrient-rich inorganic materials such as fly ash and rock phosphate and inoculated with microbial inoculants can enable the development of commercially acceptable organic fertilizers, thus, improving their utilization in agriculture.

  11. Comparing of organic nutrients digestibility in the feed rations containing lupin and peas in horses

    Pavel Šajdler

    2005-01-01

    Full Text Available The aim of this study was to find out and compare organic nutrients digestibility in feed rations containing different forage legumes in balance trials on horses. The trials were always performed on a group of six sports horses (weight of 495 to 742 kg. Six feed rations were tested, which contained different proportion of certain forage legume in empirical feed mixtures. Three feed mixtures contained white lupine seeds (WLS – Lu 0 (0.01% WLS, Lu 7 (7% WLS, Lu 14 (14% WLS and surplus three feed mixtures contained field pea seeds (FPS – Hr 0 (0.01% FPS, Hr 10 (10% FPS, Hr 20 (20% FPS. Amount of WLS in feed mixtures Lu 0 and Lu 7 was completed with starch to value 14% and amount of FPS in feed mixtures Hr 0 and Hr 10 was completed with starch to value 20%. Indicator method was used to predict dietary nutrients digestibility. Apparent digestibility values of all organic nutrients were higher at the feed rations with the content of FPS. Average values of apparent digestibility coefficient of those feed rations were: dry matter (77.79%; SD = 2.91, organic matter (78.43%; SD = 2.78, crude protein (79.89%; SD = 3.43, fat (66.57%; SD = 2.40, crude fiber (68.97%; SD = 3.21 and nitrogen-free extract (83.30%; SD = 2.71.

  12. A microbial bioassay to estimate nutrient availability in organic fertilizers; field calibration:

    Salas, E.; Ramirez, C.

    2001-01-01

    A good correlation was recently shown between the increase in the microbial biomass (BM) in a mixture of soil/organic amendment and the growth of a test plant, sorghum, in the same substrate. This work reports the validation of the microbial assay as a potential guide to establish the fertilization rate for organic fertilizers such as compost under field conditions. A field trial was established with green pepper (Capsicum annum L.) and tomato (Lycopersicum esculentum L) as test plants. Treatments were soil alone or amended with 10% (W/W) of organic amendments of contrasting nutrient value, namely: chicken manure (CM), compost (C), bocashi (B), vermicompost (V) and coffe hulls (Br). A complete randomized block design with 4 replicates was used. The following variables were determined: plant dry weight (PSC) and fresh fruit weight (PFF) for green pepper, 97 days after showing; for tomato, plant dry weight (PST) was determined 32 days after showing. For the microbial biomass a complete randomized block design was also used, with 6 replicates, for the same mixtures. Microbial biomass was determined 2 days after amendment with glucose (0.8%) using the substrate- induce respiration assay. The organic amendments CM, C and B induced the highest values for BM as well as fro PSC, PFF and PST, which indicates a high nutrient availability for these organic amendments, whereas the organic amendments V and Br showed the lowest values (P [es

  13. To what extent does organic farming rely on nutrient inflows from conventional farming?

    Nowak, Benjamin; Nesme, Thomas; Pellerin, Sylvain; David, Christophe

    2013-01-01

    Organic farming is increasingly recognized as a prototype for sustainable agriculture. Its guidelines ban the use of artificial fertilizers. However, organic farms may import nutrients from conventional farming through material exchanges. In this study, we aimed at estimating the magnitude of these flows through the quantification of nitrogen, phosphorus and potassium inflows from conventional farming to organic farming. Material inflows and outflows were collected for two cropping years on 63 farms. The farms were located in three French agricultural districts distributed over a gradient of farming activity defined by both the stocking rate and the ratio of the farm area under arable crops. Our results showed that on average, inflows from conventional farming were 23%, 73% and 53% for nitrogen, phosphorus and potassium, respectively. These inflows were strongly determined by the farm production systems. However, for farms similar in terms of production systems, the inflows also depended on the local context, such as the proximity of organic livestock farms: the reliance of organic farming on conventional farming was lower in mixed than in specialized districts. These results highlight the necessity to quantify the contribution of nutrient inflows from conventional farming when assessing organic farming and development scenarios. (letter)

  14. Impacts of multiwalled carbon nanotubes on nutrient removal from wastewater and bacterial community structure in activated sludge.

    Reti Hai

    Full Text Available BACKGROUND: The increasing use of multiwalled carbon nanotubes (MWCNTs will inevitably lead to the exposure of wastewater treatment facilities. However, knowledge of the impacts of MWCNTs on wastewater nutrient removal and bacterial community structure in the activated sludge process is sparse. AIMS: To investigate the effects of MWCNTs on wastewater nutrient removal, and bacterial community structure in activated sludge. METHODS: Three triplicate sequencing batch reactors (SBR were exposed to wastewater which contained 0, 1, and 20 mg/L MWCNTs. MiSeq sequencing was used to investigate the bacterial community structures in activated sludge samples which were exposed to different concentrations of MWCNTs. RESULTS: Exposure to 1 and 20 mg/L MWCNTs had no acute (1 day impact on nutrient removal from wastewater. After long-term (180 days exposure to 1 mg/L MWCNTs, the average total nitrogen (TN removal efficiency was not significantly affected. TN removal efficiency decreased from 84.0% to 71.9% after long-term effects of 20 mg/L MWCNTs. After long-term exposure to 1 and 20 mg/L MWCNTs, the total phosphorus removal efficiencies decreased from 96.8% to 52.3% and from 98.2% to 34.0% respectively. Further study revealed that long-term exposure to 20 mg/L MWCNTs inhibited activities of ammonia monooxygenase and nitrite oxidoreductase. Long-term exposure to 1 and 20 mg/L MWCNTs both inhibited activities of exopolyphosphatase and polyphosphate kinase. MiSeq sequencing data indicated that 20 mg/L MWCNTs significantly decreased the diversity of bacterial community in activated sludge. Long-term exposure to 1 and 20 mg/L MWCNTs differentially decreased the abundance of nitrifying bacteria, especially ammonia-oxidizing bacteria. The abundance of PAOs was decreased after long-term exposure to 20 mg/L MWCNTs. The abundance of glycogen accumulating organisms (GAOs was increased after long-term exposure to 1 mg/L MWCNTs. CONCLUSION: MWCNTs have adverse effects on

  15. Nutrient and organic matter inputs to Hawaiian anchialine ponds: influences of n-fixing and non-n-fixing trees

    Kehauwealani K. Nelson-Kaula; Rebecca Ostertag; R. Flint Hughes; Bruce D. Dudley

    2016-01-01

    Invasive nitrogen-fixing plants often increase energy and nutrient inputs to both terrestrial and aquatic ecosystems via litterfall, and these effects may be more pronounced in areas lacking native N2-fixers. We examined organic matter and nutrient inputs to and around anchialine ponds...

  16. Atmospheric deposition as a source of carbon and nutrients to barren, alpine soils of the Colorado Rocky Mountains

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-03-01

    Many alpine areas are experiencing intense deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, we evaluated the magnitude and chemical quality of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were approximately 1.0 mg L-1and weekly concentrations reached peaks as high at 6-10 mg L-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. Relationships among DOC concentration, dissolved organic matter (DOM) fluorescence properties, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples and, therefore, likely to be more bioavailable to microbes in barren alpine soils. Bioavailability experiments with different types of atmospheric C sources are needed to better evaluate the substrate quality of atmospheric C inputs. Our C budget estimates for the Green Lake 4 catchment suggest that atmospheric deposition represents an

  17. Carbon Monoxide Fumigation Improved the Quality, Nutrients, and Antioxidant Activities of Postharvest Peach

    Li, Ying; Pei, Fei

    2014-01-01

    Peaches (Prunus persica cv. Yanhong) were fumigated with carbon monoxide (CO) at 0, 0.5, 5, 10, and 20 μmol/L for 2 hours. The result showed that low concentration CO (0.5–10 μmol/L) might delay the decrease of firmness and titrable acid content, restrain the increase of decay incidence, and postpone the variation of soluble solids content, but treating peaches with high concentration CO (20 μmol/L) demonstrated adverse effects. Further research exhibited that exogenous CO could induce the phenylalnine ammonialyase activity, maintain nutrient contents such as Vitamin C, total flavonoid, and polyphenol, and enhance antioxidant activity according to reducing power and 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl radical scavenging activity. Treating peaches with appropriate concentration CO was beneficial to the quality, nutrients, and antioxidant activity of postharvest peaches during storage time. Therefore, CO fumigation might probably become a novel method to preserve postharvest peach and other fruits in the future. PMID:26904651

  18. Ancient Soils in a Sunburnt Country: Nutrient and Carbon Distributions in an Australian Dryland River System

    McIntyre, R. E.; Grierson, P. F.; Adams, M. A.

    2005-05-01

    Riparian systems are hotspots in dryland landscapes for nutrient supply and transformation. Biogeochemical fluxes in riparian systems are closely coupled to hydrological flowpaths, which, in dryland regions, are characterised by catastrophic flooding and long periods of erratic or no flow. Re-wetting of soils stimulates soil microbial processes that drive mineralization of nutrients necessary for plant growth. We present here the first data of a 3-year research project investigating biogeochemical processes in riparian systems in the semi-arid Pilbara region of Western Australia. Spatial patterns of nitrogen, phosphorus and carbon were closely related to topographic zone (across floodplain and channels) and vegetation type. NO3- and PCi concentrations were four-fold higher in channel, bank and riparian soils than in soils of floodplain and riparian-floodplain transition zones. Nitrogen distribution was highly heterogeneous in riparian soils (NO3- CV=102%, NH4+ CV=84%) while phosphorus was particularly heterogeneous in floodplain soils (PCi CV=153%, PCo CV=266%), in comparison to other zones. Phospholipid fatty acid (PLFA) and enzymatic profiles will be used to assess microbial functional groups, combined with mineralisation experiments and stable isotope studies (15N and 13C). These data will improve understanding of biogeochemical cycling in dryland riparian systems, and contribute to improved regional management of water resources.

  19. Nitrogen and organic carbon cycling processes in tidal marshes and shallow estuarine habitats

    Bergamaschi, B. A.; Downing, B. D.; Pellerin, B. A.; Kraus, T. E. C.; Fleck, J.; Fujii, R.

    2016-02-01

    Tidal wetlands and shallow water habitats can be sites of high aquatic productivity, and they have the potential of exchanging this newly produced organic carbon with adjacent deeper habitats. Indeed, export of organic carbon from wetlands and shallow water habitats to pelagic food webs is one of the primary ecosystem functions targeted in tidal wetland restorations. Alternatively, wetlands and shallow water habitats can function as retention areas for nutrients due to the nutrient demand of emergent macrophytes and denitrification in anoxic zones. They can also remove phytoplankton and non-algal particles from the aquatic food webs because the shallower waters can result in higher rates of benthic grazing and higher settling due to lower water velocities. We conducted studies in wetland and channel sites in the San Francisco estuary (USA) to investigate the dynamics of nutrients and carbon production at a variety of temporal scales. We collected continuous time series of nutrients, oxygen, chlorophyll and pH in conjunction with continuous acoustic measurement of water velocity and discharge to provide mass controls and used simple biogeochemical models to assess rates. We found a high degree of temporal variability in individual systems, corresponding to, for example, changes in nutrient supply, water level, light level, wind, wind direction, and other physical factors. There was also large variability among the different systems, probably due to differences in flows and geomorphic features. We compare the aquatic productivity of theses environments and speculate as to the formative elements of each. Our findings demonstrate the complex interaction between physical, chemical, and biological factors that determine the type of production and degree of export from tidal wetlands and shallow water habitats, suggesting that a clearer picture of these processes is important for guiding future large scale restoration efforts.

  20. Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide.

    Liu, Xiaoning; Ying, Kezhen; Chen, Guangyao; Zhou, Canwei; Zhang, Wen; Zhang, Xihui; Cai, Zhonghua; Holmes, Thomas; Tao, Yi

    2017-11-01

    In this study, Chlorella vulgaris (C. vulgaris) were cultured in cell culture flask supplied with intermittent CO 2 enriched gas. The impact of CO 2 concentration (from 1% to 20% v/v) on the growth of C. vulgaris cultured in domestic wastewater was exploited in various perspectives which include biomass, specific growth rate, culture pH, carbon consumption, and the removal of nitrogen and phosphorus compounds. The results showed that the maximum microalgal biomass concentration, 1.12 g L -1 , was achieved with 10% CO 2 as a feed gas. At 20% CO 2 the growth of C. vulgaris suffered from inhibition during initial 1.5 d, but acclimated to low pH (6.3 in average) with relatively higher specific growth rate (0.3-0.5 d -1 ) during subsequent culture period. After the rapid consumption of ammonium in the wastewater, an obvious decline in the nitrate concentration was observed, indicating that C. vulgaris prefer ammonium as a primary nitrogen source. The total nitrogen and phosphorus decreased from 44.0 mg L -1 to 2.1-5.4 mg L -1 and from 5.2 mg L -1 to 0-0.6 mg L -1 within 6.5 d under the aeration of 1-20% CO 2 , respectively, but no significant difference in consumed nitrogen versus phosphorus ratio was observed among different CO 2 concentration. The kinetics of nutrients removal were also determined through the application of pseudo first order kinetic model. 5-10% CO 2 aeration was optimal for the growth of C. vulgaris in the domestic wastewater, based on the coupling of carbon consumption, microalgal biomass, the nutrients removal and kinetics constants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Changes in soil carbon and nutrients following 6 years of litter removal and addition in a tropical semi-evergreen rain forest

    E. V. J. Tanner

    2016-11-01

    Full Text Available Increasing atmospheric CO2 and temperature may increase forest productivity, including litterfall, but the consequences for soil organic matter remain poorly understood. To address this, we measured soil carbon and nutrient concentrations at nine depths to 2 m after 6 years of continuous litter removal and litter addition in a semi-evergreen rain forest in Panama. Soils in litter addition plots, compared to litter removal plots, had higher pH and contained greater concentrations of KCl-extractable nitrate (both to 30 cm; Mehlich-III extractable phosphorus and total carbon (both to 20 cm; total nitrogen (to 15 cm; Mehlich-III calcium (to 10 cm; and Mehlich-III magnesium and lower bulk density (both to 5 cm. In contrast, litter manipulation did not affect ammonium, manganese, potassium or zinc, and soils deeper than 30 cm did not differ for any nutrient. Comparison with previous analyses in the experiment indicates that the effect of litter manipulation on nutrient concentrations and the depth to which the effects are significant are increasing with time. To allow for changes in bulk density in calculation of changes in carbon stocks, we standardized total carbon and nitrogen on the basis of a constant mineral mass. For 200 kg m−2 of mineral soil (approximately the upper 20 cm of the profile about 0.5 kg C m−2 was “missing” from the litter removal plots, with a similar amount accumulated in the litter addition plots. There was an additional 0.4 kg C m−2 extra in the litter standing crop of the litter addition plots compared to the control. This increase in carbon in surface soil and the litter standing crop can be interpreted as a potential partial mitigation of the effects of increasing CO2 concentrations in the atmosphere.

  2. Biofilms' contribution to organic carbon in salt marsh sediments

    Valentine, K.; Quirk, T. E.; Mariotti, G.; Hotard, A.

    2017-12-01

    Coastal salt marshes are productive environments with high potential for carbon (C) accumulation. Organic C in salt marsh sediment is typically attributed to plant biomass. Recent field measurements, however, suggest that biofilms - mainly composed of benthic diatoms and their secretion - also contribute to basal C in these environments and can be important contributors to marsh productivity, C cycling, and potentially, C sequestration. The potential for biofilms to soil organic C and the influence of mineral sedimentation of biofilm-based C accumulation is unknown. We conducted controlled laboratory experiments to test (1) whether biofilms add measurable amounts of organic C to the sediment and (2) the effect of mineral sedimentation rate on the amount of biofilm-based C accumulation. Settled beds of pure bentonite mud were created in 10-cm-wide cylinders. Each cylinder was inoculated with biofilms collected from a marsh in Louisiana. A small amount of mud was added weekly for 11 weeks. Control experiments without biofilms were also performed. Biofilms were grown with a 12/12 hours cycle, with a gentle mixing of the water column that did not cause sediment resuspension, with a nutrient-rich medium that was exchanged weekly, and in the absence of metazoan grazing. At the end of the experiment, the sediment columns were analyzed for depth-integrated chl-a, loss on ignition (LOI), and total organic carbon (TOC). Chl-a values ranged from 26-113 mg/cm2, LOI values ranged from 86-456 g/m2/yr, and TOC values ranged from 31-211 g/m2/yr. All three of these metrics (chl-a, LOI, and TOC) increased with the rate of mineral sedimentation. These results show that biofilms, in the absence of erosion and grazing, can significantly contribute to C accumulation in salt marshes, especially with high rates of mineral sedimentation. Given the short time scale of the experiment, the increase in organic C accumulation with the rate of sedimentation is attributed to stimulated biofilm

  3. Enhanced Removal of Nutrients and Trace Organics from Urban Runoff with Novel Capture, Treatment, and Recharge Systems

    Ashoori, N.; Planes, M. T.; Lefevre, G.; Sedlak, D.; Luthy, R. G.

    2017-12-01

    Rapid population growth, urban sprawl and impact of climate change are forcing water-stressed areas to rely on new local sources of water supply. Under this scenario, reclamation of stormwater runoff has emerged as a source for irrigation and replenishing drinking-water groundwater reservoirs. However, urban stormwater can be a significant source of pollutants, including nutrients and organic compounds. In order to overcome the stormwater treatment system limitations, this project has developed a pilot-scale column system for passive treatment of infiltrated water using low-cost, low-energy geomedia. The objective was to provide guidance on the design and operation of systems for controlling nutrient and trace organic contaminant releases to surface waters. The work comprised of replicate column studies in the field to test stormwater treatment modules with various media, such as woodchips and biochar, using urban runoff from a watershed in Sonoma, California. Woodchip bioreactors host an endemic population of microorganisms that can be harnessed to biologically degrade nitrate. The columns amended with biochar enhance removal of organic pollutants present in stormwater through physicochemical processes (i.e., adsorption onto biochar) and biodegradation in the column through increasing retention time. The field columns were conditioned with stormwater for eight months before being spiked weekly with 50 ppb of representative trace organics. The key finding was the successful field demonstration of a novel treatment system for both the removal of nitrate and trace organics. Nitrogen removal was successful in all columns for the thirteen month experiment due to the woodchips being an effective source of carbon for denitrifying microorganisms to convert nitrate to nitrogen gases. As for the trace organics experiments, the results highlight an overall attenuation of the studied trace organic compounds by the columns containing woodchip and biochar throughout the five

  4. Dissolved organic matter and lake metabolism: Biogeochemistry and controls of nutrient flux dynamics in lakes: Technical progress report, 1 July 1986-30 June 1987

    Wetzel, R.G.

    1987-01-01

    Most lakes are small and possess large littoral and wetland components in the interface region between the open water per se and the drainage basin. Not only does the photosynthetic productivity of the surrounding littoral-wetland complex vastly exceed that of the pelagic zone, but the littoral-wetland vegetation and its intensive synthesis and decompositional metabolism regulate loading of inorganic nutrients passing to the open water (functioning as pulsed sources and sinks), and regulate loading of dissolved organic matter and particulate organic matter to the recipient open water, which by numerous complex pathways and mechanisms enhance or suppress pelagic productivity. Research emphasis was placed on the sources, fates, and interactions of dissolved and particulate organic matter in relation to inorganic chemical cycling: allochthonous loading to the lake system; and the coupled nutrient physiology and metabolism of phytoplankton, bacterial populations, macrophytes and attendant sessile algal-bacterial communities. Regulatory mechanisms of growth and rates of carbon and nutrient cycling were evaluated among the inorganic-organic influxes of allochthonous sources as they are controlled by wetland-littoral communities, the littoral photosynthetic producer-decomposer complex, the microflora of the sediment-water interface, and the microflora of the pelagic zone. 28 refs., 13 figs., 2 tabs

  5. Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a mid-successional boreal forest

    Melvin, April M.; Mack, Michelle C.; Johnstone, Jill F.; McGuire, A. David; Genet, Helene; Schuur, Edward A.G.

    2015-01-01

    In the boreal forest of Alaska, increased fire severity associated with climate change is expanding deciduous forest cover in areas previously dominated by black spruce (Picea mariana). Needle-leaf conifer and broad-leaf deciduous species are commonly associated with differences in tree growth, carbon (C) and nutrient cycling, and C accumulation in soils. Although this suggests that changes in tree species composition in Alaska could impact C and nutrient pools and fluxes, few studies have measured these linkages. We quantified C, nitrogen, phosphorus, and base cation pools and fluxes in three stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a single fire event in 1958. Paper birch consistently displayed characteristics of more rapid C and nutrient cycling, including greater aboveground net primary productivity, higher live foliage and litter nutrient concentrations, and larger ammonium and nitrate pools in the soil organic layer (SOL). Ecosystem C stocks (aboveground + SOL + 0–10 cm mineral soil) were similar for the two species; however, in black spruce, 78% of measured C was found in soil pools, primarily in the SOL, whereas aboveground biomass dominated ecosystem C pools in birch forest. Radiocarbon analysis indicated that approximately one-quarter of the black spruce SOL C accumulated prior to the 1958 fire, whereas no pre-fire C was observed in birch soils. Our findings suggest that tree species exert a strong influence over C and nutrient cycling in boreal forest and forest compositional shifts may have long-term implications for ecosystem C and nutrient dynamics.

  6. Erosion of soil organic carbon: implications for carbon sequestration

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  7. Isotopic fractionation between organic carbon and carbonate carbon in Precambrian banded ironstone series from Brazil

    Schidlowski, M.; Eichmann, R.; Fiebiger, W.

    1976-01-01

    37 delta 13 Csub(org) and 9 delta 13 Csub(carb) values furnished by argillaceous and carbonate sediments from the Rio das Velhas and Minas Series (Minas Gerais, Brazil) have yielded means of -24.3 +- 3.9 promille [PDB] and -0.9 +- 1.4 promille [PDB], respectively. These results, obtained from a major sedimentary banded ironstone province with an age between 2 and 3 x 10 9 yr, support previous assumptions that isotopic fractionation between inorganic and organic carbon in Precambrian sediments is about the same as in Phanerozoic rocks. This is consistent with a theoretically expected constancy of the kinetic fractionation factor governing biological carbon fixation and, likewise, with a photosynthetic pedigree of the reduced carbon fraction of Precambrian rocks. (orig.) [de

  8. Comparing of organic nutrients digestibility in the feed rations containing lupin and peas in horses

    Pavel Šajdler; Ladislav Zeman

    2005-01-01

    The aim of this study was to find out and compare organic nutrients digestibility in feed rations containing different forage legumes in balance trials on horses. The trials were always performed on a group of six sports horses (weight of 495 to 742 kg). Six feed rations were tested, which contained different proportion of certain forage legume in empirical feed mixtures. Three feed mixtures contained white lupine seeds (WLS) – Lu 0 (0.01% WLS), Lu 7 (7% WLS), Lu 14 (14% WLS) and surplus thre...

  9. Volatile organic carbon/air separation test using gas membranes

    King, C.V.; Kaschemekat, J.

    1993-08-01

    An estimated 900 metric tons of carbon tetrachloride were discharged to soil columns during the Plutonium Finishing Plant Operations at the Hanford Site. The largest percentage of this volatile organic compound was found in the vadose region of the 200 West Area. Using a Vacuum Extraction System, the volatile organic compound was drawn from the soil in an air mixture at a concentration of about 1,000 parts per million. The volatile organic compounds were absorbed from the air stream using granulated activated carbon canisters. A gas membrane separation system, developed by Membrane Technology and Research, Inc., was tested at the Vacuum Extraction System site to determine if the volatile organic compound load on the granulated activated carbon could be reduced. The Vacuum Extraction System condensed most of the volatile organic compound into liquid carbon tetrachloride and vented the residual gas stream into the granulated activated carbon. This system reduced the cost of operation about $5/kilogram of volatile organic compound removed

  10. Accumulation of organic carbon in northwestern Arabian sea sediments

    Khan, A.A.

    1999-01-01

    In this study accumulation of organic carbon in marine sediments of northwestern Arabian sea has been discussed. This paper presents the geochemical analysis of Organic carbon content and accumulation, delta 13 stable carbon isotope and Ba/Al. The primary objective was to investigate the high resolution information about the variations in paleoproductivity and source of organic matter in sediments below an upwelling area. Undisturbed sediments (Piston core NIOP-486) of late Pleistocene time were collected during Netherlands Indian Ocean Program (NIOP-1992-93). The core NIOP-486 was raised from a depth of 2077 meters near the Owen Ridge. This core records deposition history of last 200,000 years and includes 4 warm and 3 cold periods. The distribution of organic carbon content in studied core shows a pronounced cyclicity during glacial and interglacial stages. Organic carbon accumulation trends show that high sedimentation rates in glacial stages results in rapid burial and hence increase organic carbon accumulation. Paleoproductivity indicator Ba/Al has been used to compare with the organic carbon content and is correlated with the warm and cold periods variations in monsoons upwelling intensity. Generally, low paleoproductivity is found in glacial stages. The organic carbon content and accumulation, in sediments however seems to differ from the paleoproductivity trends shown by Ba/Al in glacial sediments of stage 6. Delta 13 C.org isotope results of the core NIOP-486 confirm that organic matter in sediments is predominantly marine (-20 to -23% ). (author)

  11. Metals, organic compounds, and nutrients in Long Island Sound: sources, magnitudes, trends, and impacts

    Mullaney, John R.; Varekamp, J.C.; MCElroy, A.E.; Brsslin, V.T.

    2014-01-01

    Long Island Sound (LIS) is a relatively shallow estuary with a mean depth of 20 m (maximum depth 49 m) and a unique hydrology and history of pollutant loading. Those factors have contributed to a wide variety of contamination problems in its muddy sediments, aquatic life and water column. The LIS sediments are contaminated with a host of legacy and more recently released toxic compounds and elements related to past and present wastewater discharges and runoff. These include non-point and storm water runoff and groundwater discharges, whose character has changed over the years along with the evolution of its watershed and industrial history. Major impacts have resulted from the copious amounts of nutrients discharged into LIS through atmospheric deposition (N), domestic and industrial waste water flows, fertilizer releases, and urban runoff. All these sources and their effects are in essence the result of human presence and activities in the watershed, and the severity of pollutant loading and their impacts generally scales with total population in the watersheds surrounding LIS. Environmental legislation passed since the mid-to late 1900s (e.g., Clean Air Act, Clean Water Act) has had a beneficial effect, however, and contaminant loadings for many toxic organic and inorganic chemicals and nutrients have diminished over the last few decades (O’Shea and Brosnan 2000; Trench, et al, 2012; O’Connor and Lauenstein 2006; USEPA 2007). Major strides have been made in reducing the inflow of nutrients into LIS, but cultural eutrophication is still an ongoing problem and nutrient control efforts will need to continue. Nonetheless, LIS is still a heavily human impacted estuary (an ‘Urban Estuary’, as described for San Francisco Bay by Conomos, 1979), and severe changes in water quality and sediment toxicity as well as ecosystem shifts have been witnessed over the relatively short period since European colonization in the early 1600s (Koppelman et al., 1976).

  12. Nutrients, organic compounds, and mercury in the Meduxnekeag River watershed, Maine, 2003

    Schalk, Charles W.; Tornes, Lan

    2005-01-01

    In 2003, the U.S. Geological Survey, in cooperation with the Houlton Band of Maliseet Indians, sampled streambed sediments and surface water of the Meduxnekeag River watershed in northeastern Maine under various hydrologic conditions for nutrients, hydrophobic organic compounds, and mercury. Nutrients were sampled to address concerns related to summer algal blooms, and organic compounds and mercury were sampled to address concerns about regional depositional patterns and overall watershed quality. In most surface-water samples, phosphorus was not detected or was detected at concentrations below the minimum reporting limit. Nitrate and organic nitrogen were detected in every surface-water sample for which they were analyzed; the highest concentration of total nitrogen was 0.75 milligrams per liter during low flow. Instantaneous nitrogen loads and yields were calculated at four stations for two sampling events. These data indicate that the part of the watershed that includes Houlton, its wastewater-treatment plant, and four small urban brooks may have contributed high concentrations of nitrate to Meduxnekeag River during the high flows on April 23-24 and high concentrations of both organic and nitrate nitrogen on June 2-3. Mercury was detected in all three bed-sediment samples for which it was analyzed; concentrations were similar to those reported from regional studies. Notable organic compounds detected in bed sediments included p,p'-DDE and p,p'-DDT (pesticides of the DDT family) and several polycyclic aromatic hydrocarbons. Polychlorinated biphenyls (PCBs) and phthalates were not detected in any sample, whereas p-cresol was the only phenolic compound detected. Phosphorus was detected at concentrations below 700 milligrams per kilogram in each bed-sediment sample for which it was analyzed. Data were insufficient to establish whether the lack of large algal blooms in 2003 was related to low concentrations of phosphorus.

  13. Nutrient and carbon availability influences on denitrification in the regulated Lower Colorado River, Austin

    Spector, J.

    2016-12-01

    The Lower Colorado River in Austin, Texas receives nitrogen-rich runoff and treated wastewater effluent and is subject to periodic water releases from the Longhorn Dam, which cause fluctuations in groundwater stage downstream. This research examined groundwater denitrification at the Hornsby Bend riparian area (located approximately 24 km downstream of downtown Austin) and characterized how dam-induced hyporheic exchange affects denitrification rates. Conductivity, temperature, water level, and dissolved oxygen concentrations were measured continuously throughout flood pulses for six months using dataloggers installed in a transect of seven monitoring wells on the river bank. Hourly samples were collected using an autosampler in one monitoring well (MW-5) during various flood conditions during the six month monitoring period. Water samples were analyzed for total organic carbon, total nitrogen, anions (NO3- and NO2-), NH4+ concentrations, alkalinity, and specific ultraviolet absorbance (SUVA) to characterize dissolved organic matter. Following large flood events (up to 4 m of water level stage increase), average conductivity increased 300 µs/centimeter in MW-5 as the water level receded. Analysis of water samples indicated that NO3- reduction occurred as conductivity and alkalinity increased. In addition, NH4+ concentrations increased during high conductivity periods. Increased denitrification activity corresponded with high SUVA. High conductivity and alkalinity increase the availability of electron donors (HCO3- and CO32-) and enhances denitrification potential. Higher SUVA values indicate increased dissolved organic carbon aromaticity and corresponding NO3- reduction. Additionally, changes in dissolved organic matter lability indicate the residence times of possible reactive organic carbon in the riparian area. This study has implications for determining advantageous geochemical conditions for hyporheic zone denitrification following large flood events.

  14. Mangrove litter production and organic carbon pools in the ...

    Mngazana Estuary is an important source of mangrove litter and POC for the adjacent marine environment, possibly sustaining nearshore food webs. Keywords: Dissolved organic carbon, harvesting, litter production, mangroves, particulate organic carbon, Rhizophora mucronata, South Africa African Journal of Aquatic ...

  15. State-Space Estimation of Soil Organic Carbon Stock

    Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.

    2014-04-01

    Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.

  16. Dilution limits dissolved organic carbon utilization in the deep ocean

    Arrieta, J.M.; Mayol, E.; Hansman, R.L.; Herndl, G.J.; Dittmar, T.; Duarte, C.M.

    2015-01-01

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An

  17. Nutrient demand and fungal access to resources control the carbon allocation to the symbiotic partners in tripartite interactions of Medicago truncatula.

    Kafle, Arjun; Garcia, Kevin; Wang, Xiurong; Pfeffer, Philip E; Strahan, Gary D; Bücking, Heike

    2018-06-02

    Legumes form tripartite interactions with arbuscular mycorrhizal (AM) fungi and rhizobia, and both root symbionts exchange nutrients against carbon from their host. The carbon costs of these interactions are substantial, but our current understanding of how the host controls its carbon allocation to individual root symbionts is limited. We examined nutrient uptake and carbon allocation in tripartite interactions of Medicago truncatula under different nutrient supply conditions, and when the fungal partner had access to nitrogen, and followed the gene expression of several plant transporters of the SUT and SWEET family. Tripartite interactions led to synergistic growth responses and stimulated the phosphate and nitrogen uptake of the plant. Plant nutrient demand but also fungal access to nutrients played an important role for the carbon transport to different root symbionts, and the plant allocated more carbon to rhizobia under nitrogen demand, but more carbon to the fungal partner when nitrogen was available. These changes in carbon allocation were consistent with changes in the SUT and SWEET expression. Our study provides important insights into how the host plant controls its carbon allocation under different nutrient supply conditions and changes its carbon allocation to different root symbionts to maximize its symbiotic benefits. This article is protected by copyright. All rights reserved.

  18. Organic carbon accumulation in Brazilian mangal sediments

    Sanders, Christian J.; Smoak, Joseph M.; Sanders, Luciana M.; Sathy Naidu, A.; Patchineelam, Sambasiva R.

    2010-12-01

    This study reviews the organic carbon (OC) accumulation rates in mangrove forests, margins and intertidal mudflats in geographically distinct areas along the Brazilian coastline (Northeastern to Southern). Our initial results indicate that the mangrove forests in the Northeastern region of Brazil are accumulating more OC (353 g/m 2/y) than in the Southeastern areas (192 g/m 2/y) being that the sediment accumulation rates, 2.8 and 2.5 mm/y, and OC content ˜7.1% and ˜5.8% (dry sediment weight) were contributing factors to the discrepancies between the forests. The intertidal mudflats on the other hand showed substantially greater OC accumulation rates, sedimentation rates and content 1129 g/m 2/y and 234 g/m 2/y; 7.3 and 3.4 mm/y; 10.3% and ˜2.7% (OC of dry sediment weight content), respectively, in the Northeastern compared to the Southeastern region. Mangrove forests in the South-Southeastern regions of Brazil may be more susceptible to the rising sea level, as they are geographically constricted by the vast mountain ranges along the coastline.

  19. Inferring absorbing organic carbon content from AERONET data

    A. Arola

    2011-01-01

    Full Text Available Black carbon, light-absorbing organic carbon (often called "brown carbon" and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated the amount of light–absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon levels in biomass burning regions of South America and Africa are relatively high (about 15–20 mg m−2 during biomass burning season, while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30–35 mg m−2 during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by the global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while the opposite is true in urban areas in India and China.

  20. Inferring absorbing organic carbon content from AERONET data

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.

    2011-01-01

    Black carbon, light-absorbing organic carbon (often called "brown carbon") and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated the amount of light-absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South America and Africa are relatively high (about 15-20 mg m-2 during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 mg m-2 during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by the global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while the opposite is true in urban areas in India and China.

  1. Novel Agricultural Conservation System with Sustained Yield and Decreased Water, Nutrient, Energy, and Carbon Footprints

    Hansen, K.; Shukla, S.; Holt, N.; Hendricks, G.; Sishodia, R. P.

    2017-12-01

    Fresh fruits and vegetables are conventionally grown in raised bed plasticulture (RBP), a high intensity, high input, and high output production system. In 2016, the fresh market plasticulture industry covered 680,000 ha in the US, producing crops (e.g. tomato, peppers, melons, and strawberries) valued at ten billion dollars. To meet the increasing future demand for fresh fruits and vegetables and sustain the production potential of croplands, a transformation of the conventional food-water-energy nexus is essential. A novel agricultural conservation system, compact bed geometry, has been proposed to shift the paradigm in RBP, sustaining yield and decreasing inputs (e.g. water, nutrients, energy, and carbon). Compact bed geometries fit the shape of the wetting front created when water is applied through drip irrigation on the production soil, creating a taller (23-30 cm) and thinner bed (66-41 cm). Two seasons of tomato (single row) and pepper (double row) production, in the environmentally fragile watershed of the Florida Everglades, highlight the potential impact of compact bed geometry on environmental sustainability in agricultural production. No difference in plant growth or yield was detected, with a reduction of 5-50% in irrigation water, up to 20% less N application, 12% less P, 20% less K, and 5-15% less carbon dioxide emissions. The hydrologic benefits of compact bed geometry include 26% less runoff generation, decreased need for active drainage pumping, and increased residence time for irrigation water within the bed, overall decreasing instances of nutrient leaching. A water related co-benefit observed was a reduction in the occurrences of Phytophthora capsici in pepper, which has the potential to reduce yield by as much as 70%. Non-water co-benefits include up to a 250/ ha reduction in production cost, with the potential to save the industry 200 million dollars annually. This economic benefit has led to rapid industry adoption, with more than 20

  2. Increased feeding and nutrient excretion of adult Antarctic krill, Euphausia superba, exposed to enhanced carbon dioxide (CO₂.

    Grace K Saba

    Full Text Available Ocean acidification has a wide-ranging potential for impacting the physiology and metabolism of zooplankton. Sufficiently elevated CO(2 concentrations can alter internal acid-base balance, compromising homeostatic regulation and disrupting internal systems ranging from oxygen transport to ion balance. We assessed feeding and nutrient excretion rates in natural populations of the keystone species Euphausia superba (Antarctic krill by conducting a CO(2 perturbation experiment at ambient and elevated atmospheric CO(2 levels in January 2011 along the West Antarctic Peninsula (WAP. Under elevated CO(2 conditions (∼672 ppm, ingestion rates of krill averaged 78 µg C individual(-1 d(-1 and were 3.5 times higher than krill ingestion rates at ambient, present day CO(2 concentrations. Additionally, rates of ammonium, phosphate, and dissolved organic carbon (DOC excretion by krill were 1.5, 1.5, and 3.0 times higher, respectively, in the high CO(2 treatment than at ambient CO(2 concentrations. Excretion of urea, however, was ∼17% lower in the high CO(2 treatment, suggesting differences in catabolic processes of krill between treatments. Activities of key metabolic enzymes, malate dehydrogenase (MDH and lactate dehydrogenase (LDH, were consistently higher in the high CO(2 treatment. The observed shifts in metabolism are consistent with increased physiological costs associated with regulating internal acid-base equilibria. This represents an additional stress that may hamper growth and reproduction, which would negatively impact an already declining krill population along the WAP.

  3. Vertical flow constructed wetlands: kinetics of nutrient and organic matter removal.

    Pérez, M M; Hernández, J M; Bossens, J; Jiménez, T; Rosa, E; Tack, F

    2014-01-01

    The kinetics of organic matter and nutrient removal in a pilot vertical subsurface wetland with red ferralitic soil as substrate were evaluated. The wetland (20 m(2)) was planted with Cyperus alternifolius. The domestic wastewater that was treated in the wetland had undergone a primary treatment consisting of a septic moat and a buffer tank. From the sixth week of operation, the performance of the wetland stabilized, and a significant reduction in pollutant concentration of the effluent wastewater was obtained. Also a significant increase of dissolved oxygen (5 mg/l) was obtained. The organic matter removal efficiency was greater than 85% and the nutrient removal efficiency was greater than 75% in the vertical subsurface wetland. Nitrogen and biochemical oxygen demand (BOD) removal could be described by a first-order model. The kinetic constants were 3.64 and 3.27 d(-1) for BOD and for total nitrogen, respectively. Data on the removal of phosphorus were adapted to a second-order model. The kinetic constant was 0.96 (mg/l)(-1) d(-1). The results demonstrated the potential of vertical flow constructed wetlands to clean treated domestic wastewater before discharge into the environment.

  4. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and

  5. The Effects of Different External Carbon Sources on Nitrous Oxide Emissions during Denitrification in Biological Nutrient Removal Processes

    Hu, Xiang; Zhang, Jing; Hou, Hongxun

    2018-01-01

    The aim of this study was to investigate the effects of two different external carbon sources (acetate and ethanol) on the nitrous oxide (N2O) emissions during denitrification in biological nutrient removal processes. Results showed that external carbon source significantly influenced N2O emissions during the denitrification process. When acetate served as the external carbon source, 0.49 mg N/L and 0.85 mg N/L of N2O was produced during the denitrificaiton processes in anoxic and anaerobic/anoxic experiments, giving a ratio of N2O-N production to TN removal of 2.37% and 4.96%, respectively. Compared with acetate, the amount of N2O production is negligible when ethanol used as external carbon addition. This suggested that ethanol is a potential alternative external carbon source for acetate from the point of view of N2O emissions.

  6. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments.

    Keil, Richard

    2017-01-03

    Carbon preservation in marine sediments, supplemented by that in large lakes, is the primary mechanism that moves carbon from the active surficial carbon cycle to the slower geologic carbon cycle. Preservation rates are low relative to the rates at which carbon moves between surface pools, which has led to the preservation term largely being ignored when evaluating anthropogenic forcing of the global carbon cycle. However, a variety of anthropogenic drivers-including ocean warming, deoxygenation, and acidification, as well as human-induced changes in sediment delivery to the ocean and mixing and irrigation of continental margin sediments-all work to decrease the already small carbon preservation term. These drivers affect the cycling of both carbonate and organic carbon in the ocean. The overall effect of anthropogenic forcing in the modern ocean is to decrease delivery of carbon to sediments, increase sedimentary dissolution and remineralization, and subsequently decrease overall carbon preservation.

  7. Organic Matter Quality and its Influence on Carbon Turnover and Stabilization in Northern Peatlands

    Turetsky, M. R.; Wieder, R. K.

    2002-12-01

    Peatlands cover 3-5 % of the world's ice-free land area, but store about 33 % of global terrestrial soil carbon. Peat accumulation in northern regions generally is controlled by slow decomposition, which may be limited by cold temperatures and water-logging. Poor organic matter quality also may limit decay, and microbial activity in peatlands likely is regulated by the availability of labile carbon and/or nutrients. Conversely, carbon in recalcitrant soil structures may be chemically protected from microbial decay, particularly in peatlands where carbon can be buried in anaerobic soils. Soil organic matter quality is controlled by plant litter chemical composition and the susceptibility of organic compounds to decomposition through time. There are a number of techniques available for characterizing organic quality, ranging from chemical proximate or elemental analysis to more qualitative methods such as nuclear magenetic resonance, pyrolysis/mass spectroscopy, and Fourier transform infrared spectroscopy. We generally have relied on proximate analysis for quantitative determination of several organic fractions (i.e., water-soluble carbohydrates, soluble nonpolars, water-soluble phenolics, holocellulose, and acid insoluble material). Our approaches to studying organic matter quality in relation to C turnover in peatlands include 1) 14C labelling of peatland vegetation along a latitudinal gradient in North America, allowing us to follow the fate of 14C tracer in belowground organic fractions under varying climates, 2) litter bag studies focusing on the role of individual moss species in litter quality and organic matter decomposition, and 3) laboratory incubations of peat to explore relationships between organic matter quality and decay. These studies suggest that proximate organic fractions vary in lability, but that turnover of organic matter is influenced both by plant species and climate. Across boreal peatlands, measures of soil recalcitrance such as acid

  8. Human induced impacts on soil organic carbon in southwest Iceland

    Gísladóttir, Guðrún; Erlendsson, Egill; Lal, Rattan

    2013-04-01

    The Icelandic environment has been strongly influenced by natural processes during the Holocene. Since settlement in AD 874, the introduction of grazing animals and other land use has drastically affected the natural environment. This includes the diminishing of vegetative cover, which has led to soil exposure and accelerated erosion over large areas, especially when in conjunction with harsh climate. This has specifically impacted processes and properties of volcanic soils (Andosols), which are subject to accelerated erosion by wind and water. While approximately 46% of the land surface in Iceland has sustained continuous vegetation cover, large areas have lost some or all of their soil cover formed during the postglacial era. Elsewhere, remaining soils have sparse or no vegetation cover, thus impairing soil carbon (C) sequestration. Among their multifunctional roles, soils support plant growth, increase soil biotic activity, enhance nutrient storage and strengthen the cycling of water and nutrients. In contrast, soil degradation by accelerated erosion and other processes impairs soil quality, reduces soil structure and depletes the soil organic matter (SOM) pool. Depletion of the SOM pool has also global implications because the terrestrial C pool is the third largest pool and strongly impacts the global C cycle. Erosional-depositional processes may deplete soil organic C (SOC) by erosion and increase by deposition. Some SOC-enriched sediments are redistributed over the landscape, while others are deposited in depression sites and transported into aquatic ecosystems. SOC decomposition processes are severely constrained in some environmental settings and any SOC buried under anaerobic conditions is protected against decomposition. Yet, the impact of the SOC transported by erosional processes and redistributed over the landscape is not fully understood because the variability in its turnover characteristics has not been widely studied. Thus, the fate of C

  9. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay

    Kemp, W.M.; Smith, E.M.; Marvin-DiPasquale, M.; Boynton, W.R.

    1997-01-01

    The major fluxes of organic carbon associated with physical transport and biological metabolism were compiled, analyzed and compared for the mainstem portion of Chesapeake Bay (USA). In addition, 5 independent methods were used to calculate the annual mean net ecosystem metabolism (NEM = production - respiration) for the integrated Bay. These methods, which employed biogeochemical models, nutrient mass-balances anti summation of individual organic carbon fluxes, yielded remarkably similar estimates, with a mean NEM of +50 g C m-2 yr-1 (?? SE = 751, which is approximately 8% of the estimated annual average gross primary production. These calculations suggest a strong cross-sectional pattern in NEM throughout the Bay, wherein net heterotrophic metabolism prevails in the pelagic zones of the main channel, while net autotrophy occurs in the littoral zones which flank the deeper central area. For computational purposes, the estuary was separated into 3 regions along the land-sea gradient: (1) the oligohaline Upper Bay (11% of total area); (2) the mesohaline Mid Bay (36% of area); and (3) the polyhaline Lower Bay (53% of area). A distinct regional trend in NEM was observed along this salinity gradient, with net here(atrophy (NEM = 87 g C m-2 yr-1) in the Upper Bay, balanced metabolism in the Mid Bay and net autotrophy (NEM = +92 g C m-2 yr-1) in the Lower Bay. As a consequence of overall net autotrophy, the ratio of dissolved inorganic nitrogen (DIN) to total organic nitrogen (TON) changed from DIN:TON = 5.1 for riverine inputs to DIN:TON = 0.04 for water exported to the ocean. A striking feature of this organic C mass-balance was the relative dominance of biologically mediated metabolic fluxes compared to physical transport fluxes. The overall ratio of physical TOC inputs (1) to biotic primary production (P) was 0.08 for the whole estuary, but varied dramatically from 2.3 in the Upper Bay to 0.03 in the Mid and Lower Bay regions. Similarly, ecosystem respiration was

  10. Long-term nutrient fertilization and the carbon balance of permanent grassland: any evidence for sustainable intensification?

    Fornara, Dario A.; Wasson, Elizabeth-Anne; Christie, Peter; Watson, Catherine J.

    2016-09-01

    Sustainable grassland intensification aims to increase plant yields while maintaining the ability of soil to act as a sink rather than sources of atmospheric CO2. High biomass yields from managed grasslands, however, can be only maintained through long-term nutrient fertilization, which can significantly affect soil carbon (C) storage and cycling. Key questions remain about (1) how long-term inorganic vs. organic fertilization influences soil C stocks, and (2) how soil C gains (or losses) contribute to the long-term C balance of managed grasslands. Using 43 years of data from a permanent grassland experiment, we show that soils not only act as significant C sinks but have not yet reached C saturation. Even unfertilized control soils showed C sequestration rates of 0.35 Mg C ha-1 yr-1 (i.e. 35 g C m-2 yr-1; 0-15 cm depth) between 1970 and 2013. High application rates of liquid manure (i.e. cattle slurry) further increased soil C sequestration to 0.86 Mg C ha-1 yr-1 (i.e. 86 g C m-2 yr-1) and a key cause of this C accrual was greater C inputs from cattle slurry. However, average coefficients of slurry-C retention in soils suggest that 85 % of C added yearly through liquid manure is lost possibly via CO2 fluxes and organic C leaching. Inorganically fertilized soils (i.e. NPK) had the lowest C-gain efficiency (i.e. unit of C gained per unit of N added) and lowest C sequestration (similar to control soils). Soils receiving cattle slurry showed higher C-gain and N-retention efficiencies compared to soils receiving NPK or pig slurry. We estimate that net rates of CO2-sequestration in the top 15 cm of the soil can offset 9-25 % of GHG (greenhouse gas) emissions from intensive management. However, because of multiple GHG sources associated with livestock farming, the net C balance of these grasslands remains positive (9-12 Mg CO2-equivalent ha-1 yr-1), thus contributing to climate change. Further C-gain efficiencies (e.g. reduced enteric fermentation and use of feed

  11. Elemental and isotopic compositions of organic carbon and nitrogen ...

    The general downcore trend can be attributed to systematic changes in relative proportion between C3 and C4 types of organic matter (OM), resulting from climatic changes or nutrient changes and shift between algae and higher plants. The lower most section containing the most depleted values can be attributed either to ...

  12. Ultraviolet-B Radiation and Nitrogen Affect Nutrient Concentrations and the Amount of Nutrients Acquired by Above-Ground Organs of Maize

    Correia, Carlos M.; Coutinho, João F.; Bacelar, Eunice A.; Gonçalves, Berta M.; Björn, Lars Olof; Moutinho Pereira, José

    2012-01-01

    UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn con...

  13. Wildfire and forest disease interaction lead to greater loss of soil nutrients and carbon.

    Cobb, Richard C; Meentemeyer, Ross K; Rizzo, David M

    2016-09-01

    Fire and forest disease have significant ecological impacts, but the interactions of these two disturbances are rarely studied. We measured soil C, N, Ca, P, and pH in forests of the Big Sur region of California impacted by the exotic pathogen Phytophthora ramorum, cause of sudden oak death, and the 2008 Basin wildfire complex. In Big Sur, overstory tree mortality following P. ramorum invasion has been extensive in redwood and mixed evergreen forests, where the pathogen kills true oaks and tanoak (Notholithocarpus densiflorus). Sampling was conducted across a full-factorial combination of disease/no disease and burned/unburned conditions in both forest types. Forest floor organic matter and associated nutrients were greater in unburned redwood compared to unburned mixed evergreen forests. Post-fire element pools were similar between forest types, but lower in burned-invaded compared to burned-uninvaded plots. We found evidence disease-generated fuels led to increased loss of forest floor C, N, Ca, and P. The same effects were associated with lower %C and higher PO4-P in the mineral soil. Fire-disease interactions were linear functions of pre-fire host mortality which was similar between the forest types. Our analysis suggests that these effects increased forest floor C loss by as much as 24.4 and 21.3 % in redwood and mixed evergreen forests, respectively, with similar maximum losses for the other forest floor elements. Accumulation of sudden oak death generated fuels has potential to increase fire-related loss of soil nutrients at the region-scale of this disease and similar patterns are likely in other forests, where fire and disease overlap.

  14. Growth responses of Ulva prolifera to inorganic and organic nutrients: Implications for macroalgal blooms in the southern Yellow Sea, China

    Li, Hongmei; Zhang, Yongyu; Han, Xiurong; Shi, Xiaoyong; Rivkin, Richard B.; Legendre, Louis

    2016-05-01

    The marine macrophyte Ulva prolifera is the dominant green-tide-forming seaweed in the southern Yellow Sea, China. Here we assessed, in the laboratory, the growth rate and nutrient uptake responses of U. prolifera to different nutrient treatments. The growth rates were enhanced in incubations with added organic and inorganic nitrogen [i.e. nitrate (NO3-), ammonium (NH4+), urea and glycine] and phosphorus [i.e. phosphate (PO43-), adenosine triphosphate (ATP) and glucose 6-phosphate (G-6-P)], relative to the control. The relative growth rates of U. prolifera were higher when enriched with dissolved organic nitrogen (urea and glycine) and phosphorus (ATP and G-6-P) than inorganic nitrogen (NO3- and NH4+) and phosphorus (PO43-). In contrast, the affinity was higher for inorganic than organic nutrients. Field data in the southern Yellow Sea showed significant inverse correlations between macroalgal biomass and dissolved organic nutrients. Our laboratory and field results indicated that organic nutrients such as urea, glycine and ATP, may contribute to the development of macroalgal blooms in the southern Yellow Sea.

  15. Municipal Compost as a Nutrient Source for Organic Crop Production in New Zealand

    Abie Horrocks

    2016-05-01

    Full Text Available About 1% of New Zealand farmland is managed organically. Nitrogen is the nutrient most likely to limit organic crop production. A potential solution is incorporation of compost to supply N. About 726,000 t of municipal garden and kitchen wastes are sent to landfills annually. Composting offers a means of reducing the impact of landfill wastes on the wider environment. Organically certified compost (N content typically 2% to 2.5% is available from some municipal composting plants. To be effectively used on organic farms, the rate of N release (mineralization must be known. Laboratory incubations were conducted to quantify mineralization of compost N under controlled (temperature and moisture conditions. Nitrogen availability and crop yields from a one-off application of compost (25–100 t·ha−1 were also assessed in two field trials (using cereal and forage crops. The results suggested that a relatively small part (13%–23% of compost N was used by the crops in 3–4 years. Much of this was mineral N present at the time of application. Mineralization rates in the laboratory and field studies were much lower than expected from published work or compost C:N ratio (considered an important indicator of N mineralization potential of composts.

  16. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  17. Analysis of Dissolved Organic Nutrients in the Interstitial Water of Natural Biofilms.

    Tsuchiya, Yuki; Eda, Shima; Kiriyama, Chiho; Asada, Tomoya; Morisaki, Hisao

    2016-07-01

    In biofilms, the matrix of extracellular polymeric substances (EPSs) retains water in the interstitial region of the EPS. This interstitial water is the ambient environment for microorganisms in the biofilms. The nutrient condition in the interstitial water may affect microbial activity in the biofilms. In the present study, we measured the concentrations of dissolved organic nutrients, i.e., saccharides and proteins, contained in the interstitial water of biofilms formed on the stones. We also analyzed the molecular weight distribution, chemical species, and availability to bacteria of some saccharides in the interstitial water. Colorimetric assays showed that the concentrations of saccharides and proteins in the biofilm interstitial water were significantly higher (ca. 750 times) than those in the surrounding lake waters (p Chromatographic analyses demonstrated that the saccharides in the interstitial waters were mainly of low molecular-weight saccharides such as glucose and maltose, while proteins in the interstitial water were high molecular-weight proteins (over 7000 Da). Bacterial growth and production of EPS occurred simultaneously with the decrease in the low molecular-weight saccharide concentrations when a small portion of biofilm suspension was inoculated to the collected interstitial water, suggesting that the dissolved saccharides in the interstitial water support bacterial growth and formation of biofilms.

  18. Carbon isotope ratios of organic matter in Bering Sea settling particles. Extremely high remineralization of organic carbon derived from diatoms

    Yasuda, Saki; Akagi, Tasuku; Naraoka, Hiroshi; Kitajima, Fumio; Takahashi, Kozo

    2016-01-01

    The carbon isotope ratios of organic carbon in settling particles collected in the highly-diatom-productive Bering Sea were determined. Wet decomposition was employed to oxidize relatively fresh organic matter. The amount of unoxidised organic carbon in the residue following wet decomposition was negligible. The δ 13 C of organic carbon in the settling particles showed a clear relationship against SiO 2 /CaCO 3 ratio of settling particles: approximately -26‰ and -19‰ at lower and higher SiO 2 /CaCO 3 ratios, respectively. The δ 13 C values were largely interpreted in terms of mixing of two major plankton sources. Both δ 13 C and compositional data can be explained consistently only by assuming that more than 98% of diatomaceous organic matter decays and that organic matter derived from carbonate-shelled plankton may remain much less remineralized. A greater amount of diatom-derived organic matter is discovered to be trapped with the increase of SiO 2 /CaCO 3 ratio of the settling particles. The ratio of organic carbon to inorganic carbon, known as the rain ratio, therefore, tends to increase proportionally with the SiO 2 /CaCO 3 ratio under an extremely diatom-productive condition. (author)

  19. The Alleviation of Nutrient Deficiency Symptoms in Changbai Larch (Larix olgensis Seedlings by the Application of Exogenous Organic Acids

    Jinfeng Song

    2016-09-01

    Full Text Available Exogenous organic acids are beneficial in protecting plants from the stress of heavy metal toxins (e.g., Pb in soils. This work focuses on the potential role of organic acids in protecting Changbai larch (Larix olgensis seedlings from the stress of growing in nutrient deficient soil. The seedlings were planted in a nutrient rich or deficient soil (A1 horizon of a Haplic Cambisol without organic acid as the nutrient rich control, or fully-mixed A1 + B horizons in a proportion of 1:2 as deficient in pots in a greenhouse. In A1 + B horizons the seedlings were treated daily with concentrations of oxalic or citric acid (OA or CA at a rate approximately equivalent to 0, 0.04, 0.2, 1.0, or 2.0 mmol·kg−1 of soil for 10, 20, and 30 days. Nutrient deficiency stressed the seedlings as indicated by lipid peroxidation and malondialdehyde (MDA content in leaves significantly increasing, and superoxide dismutase (SOD activities, proline, photosynthetic pigment contents, and chlorophyll fluorescence (Fv/Fm decreasing. The stress increased in controls over the application periods. When nutrient deficient plants were exposed to an organic acid (especially 5.0 or 10.0 mmol·L−1 for 20 days, the stress as indicated by the physiological parameters was reversed, and survival rate of seedlings, and biomass of root, stem, and leaf significantly increased; CA was more effective than OA. The results demonstrate that exogenous organic acids alleviate nutrient deficiency-induced oxidative injuries and improve the tolerance of L. olgensis seedlings to nutrient deficiency.

  20. Balancing carbon/nitrogen ratio to improve nutrients removal and algal biomass production in piggery and brewery wastewaters.

    Zheng, Hongli; Liu, Mingzhi; Lu, Qian; Wu, Xiaodan; Ma, Yiwei; Cheng, Yanling; Addy, Min; Liu, Yuhuan; Ruan, Roger

    2018-02-01

    To improve nutrients removal from wastewaters and enhance algal biomass production, piggery wastewater was mixed with brewery wastewaters. The results showed that it was a promising way to cultivate microalga in piggery and brewery wastewaters by balancing the carbon/nitrogen ratio. The optimal treatment condition for the mixed piggery-brewery wastewater using microalga was piggery wastewater mixed with brewery packaging wastewater by 1:5 at pH 7.0, resulting in carbon/nitrogen ratio of 7.9, with the biomass concentration of 2.85 g L -1 , and the removal of 100% ammonia, 96% of total nitrogen, 90% of total phosphorus, and 93% of chemical oxygen demand. The application of the established strategies can enhance nutrient removal efficiency of the wastewaters while reducing microalgal biomass production costs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Ultraviolet-B radiation and nitrogen affect nutrient concentrations and the amount of nutrients acquired by above-ground organs of maize.

    Correia, Carlos M; Coutinho, João F; Bacelar, Eunice A; Gonçalves, Berta M; Björn, Lars Olof; Moutinho Pereira, José

    2012-01-01

    UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn concentrations in stems and nitrogen-use efficiency (NUE) were higher in N-starved plants. UV-B and N effects on shoot dry biomass were more pronounced than on nutrient concentrations. Nutrient uptake decreased under high UV-B and increased with increasing N application, mainly at maturity harvest. Significant interactions UV-B x N were observed for NUE and for concentration and mass of some elements. For instance, under enhanced UV-B, N, Cu, Zn, and Mn concentrations decreased in leaves, except on N-stressed plants, whereas they were less affected by N nutrition. In order to minimize nutritional, economical, and environmental negative consequences, fertiliser recommendations based on element concentration or yield goals may need to be adjusted.

  2. Ultraviolet-B Radiation and Nitrogen Affect Nutrient Concentrations and the Amount of Nutrients Acquired by Above-Ground Organs of Maize

    Carlos M. Correia

    2012-01-01

    Full Text Available UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn concentrations in stems and nitrogen-use efficiency (NUE were higher in N-starved plants. UV-B and N effects on shoot dry biomass were more pronounced than on nutrient concentrations. Nutrient uptake decreased under high UV-B and increased with increasing N application, mainly at maturity harvest. Significant interactions UV-B x N were observed for NUE and for concentration and mass of some elements. For instance, under enhanced UV-B, N, Cu, Zn, and Mn concentrations decreased in leaves, except on N-stressed plants, whereas they were less affected by N nutrition. In order to minimize nutritional, economical, and environmental negative consequences, fertiliser recommendations based on element concentration or yield goals may need to be adjusted.

  3. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms.

    Kishida, Naohiro; Kim, Juhyun; Tsuneda, Satoshi; Sudo, Ryuichi

    2006-07-01

    In a biological nutrient removal (BNR) process, the utilization of denitrifying polyphosphate-accumulating organisms (DNPAOs) has many advantages such as effective use of organic carbon substrates and low sludge production. As a suitable process for the utilization of DNPAOs in BNR, an anaerobic/oxic/anoxic granular sludge (AOAGS) process was proposed in this study. In spite of performing aeration for nitrifying bacteria, the AOAGS process can create anaerobic/anoxic conditions suitable for the cultivation of DNPAOs because anoxic zones exist inside the granular sludge in the oxic phase. Thus, DNPAOs can coexist with nitrifying bacteria in a single reactor. In addition, the usability of DNPAOs in the reactor can be improved by adding the anoxic phase after the oxic phase. These characteristics enable the AOAGS process to attain effective removal of both nitrogen and phosphorus. When acetate-based synthetic wastewater (COD: 600 mg/L, NH4-N: 60 mg/L, PO(4)-P: 10 mg/L) was supplied to a laboratory-scale sequencing batch reactor under the operation of anaerobic/oxic/anoxic cycles, granular sludge with a diameter of 500 microm was successfully formed within 1 month. Although the removal of both nitrogen and phosphorus was almost complete at the end of the oxic phase, a short anoxic period subsequent to the oxic phase was necessary for further removal of nitrogen and phosphorus. As a result, effluent concentrations of NH(4)-N, NO(x)-N and PO(4)-P were always lower than 1 mg/L. It was found that penetration depth of oxygen inside the granular sludge was approximately 100 microm by microsensor measurements. In addition, from the microbiological analysis by fluorescence in situ hybridization, existence depth of polyphosphate-accumulating organisms was further than the maximum oxygen penetration depth. The water quality data, oxygen profiles and microbial community structure demonstrated that DNPAOs inside the granular sludge may be responsible for denitrification in the

  4. 234Th as tracer of organic carbon export in Bransfield Strait, Antarctic

    Oliveira, Joselene de; Vieira, Lucia Helena; Duarte, Celina Lopes

    2011-01-01

    The element thorium has multiple isotopes that have emerged collectively as a powerful set of tracers for particle associated processes in the oceans. The production of 2 34T h from 2 38U , coupled with the conservative behavior of 2 38U in seawater, makes the source of 2 34T h easy to characterize. Because of its very particle reactive behavior, 2 34T h is removed from a parcel of water in only two ways, through decay and through particle flux. Therefore, a steady-state 1D activity balance can be used to calculate its flux. This work presents results of a collaborative research on organic carbon fluxes distribution in the Bransfield Strait. Macro-nutrients, micro nutrients and chlorophyll-a distributions were used to examine the pathway sources. 2 34T h was used as a tracer of organic carbon fluxes distribution in the Bransfield Strait in order to evaluate its influence in the CO 2 drawdown, since POC export via sinking particles is the primary mechanism of carbon sequestration in the Southern Ocean. Fluxes up to 15274 dmp m-2 d-1 were estimated, the highest value observed in Station 09 at 794 m depth. POC exported fluxes derived from the disequilibrium 2 34T h/ 2 38U model varied from 0.6 to 16000 mmol C m -2 d -1 . (author)

  5. Carbon storage and nutrient mobilization from soil minerals by deep roots and rhizospheres

    Callesen, Ingeborg; Harrison, Robert; Stupak, Inge

    2016-01-01

    studies on potential release of nutrients due to chemical weathering indicate the importance of root access to deep soil layers. Nutrient release profiles clearly indicate depletion in the top layers and a much higher potential in B and C horizons. Reviewing potential sustainability of nutrient supplies......Roots mobilize nutrients via deep soil penetration and rhizosphere processes inducing weathering of primary minerals. These processes contribute to C transfer to soils and to tree nutrition. Assessments of these characteristics and processes of root systems are important for understanding long......-term supplies of nutrient elements essential for forest growth and resilience. Research and techniques have significantly advanced since Olof Tamm’s 1934 “base mineral index” for Swedish forest soils, and the basic nutrient budget estimates for whole-tree harvesting systems of the 1970s. Recent research...

  6. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere.

    Cleveland, Cory C; Townsend, Alan R

    2006-07-05

    Terrestrial biosphere-atmosphere carbon dioxide (CO(2)) exchange is dominated by tropical forests, where photosynthetic carbon (C) uptake is thought to be phosphorus (P)-limited. In P-poor tropical forests, P may also limit organic matter decomposition and soil C losses. We conducted a field-fertilization experiment to show that P fertilization stimulates soil respiration in a lowland tropical rain forest in Costa Rica. In the early wet season, when soluble organic matter inputs to soil are high, P fertilization drove large increases in soil respiration. Although the P-stimulated increase in soil respiration was largely confined to the dry-to-wet season transition, the seasonal increase was sufficient to drive an 18% annual increase in CO(2) efflux from the P-fertilized plots. Nitrogen (N) fertilization caused similar responses, and the net increases in soil respiration in response to the additions of N and P approached annual soil C fluxes in mid-latitude forests. Human activities are altering natural patterns of tropical soil N and P availability by land conversion and enhanced atmospheric deposition. Although our data suggest that the mechanisms driving the observed respiratory responses to increased N and P may be different, the large CO(2) losses stimulated by N and P fertilization suggest that knowledge of such patterns and their effects on soil CO(2) efflux is critical for understanding the role of tropical forests in a rapidly changing global C cycle.

  7. The Irminger Sea and the Iceland Sea time series measurements of sea water carbon and nutrient chemistry 1983–2008

    J. Olafsson

    2010-03-01

    Full Text Available This paper describes the ways and means of assembling and quality controling the Irminger Sea and Iceland Sea time-series biogeochemical data which are included in the CARINA data set. The Irminger Sea and the Iceland Sea are hydrographically different regions where measurements of sea water carbon and nutrient chemistry were started in 1983. The sampling is seasonal, four times a year. The carbon chemistry is studied with measurements of the partial pressure of carbon dioxide in seawater, pCO2, and total dissolved inorganic carbon, TCO2. The carbon chemistry data are for surface waters only until 1991 when water column sampling was initiated. Other measured parameters are salinity, dissolved oxygen and the inorganic nutrients nitrate, phosphate and silicate. Because of the CARINA criteria for secondary quality control, depth >1500 m, the IRM-TS could not be included in the routine QC and the IS-TS only in a limited way. However, with the information provided here, the quality of the data can be assessed, e.g. on the basis of the results obtained with the use of reference materials.

  8. Stratification and the distribution of phytoplankton, nutrients, inorganic carbon, and sulfur in the surface waters of Weddell Sea leads

    Zemmelink, H. J.; Houghton, L.; Dacey, J. W. H.; Stefels, J.; Koch, B. P.; Wisotzki, A.; Scheltz, A.; Thomas, D. N.; Papadimitriou, S.; Kennedy, H.; Kuosa, H.; Dittmar, T.

    2008-01-01

    The distribution (fine resolution depth profiles) of major nutrients, chlorophyll-a, organic compounds, and phytoplankton (biomass and numbers) was examined in lead water in pack ice of the Weddell Sea. Samples were taken by pulling water into a syringe from a series of depths from 0.002 to 4m.

  9. Organic carbon input in shallow groundwater at Aspo, southeastern Sweden

    Wallin, B.

    1993-01-01

    The variation in carbon and oxygen isotopes in calcite fissure fillings and dissolved carbonate from shallow groundwaters has been examined at Aspo, southeastern Sweden. The shallow water lens is refilled by meteoric water and is considered as an open system. The σ 13 C-signatures of the dissolved carbonate fall within a narrow range of -15.8 to -17.4 per-thousand, indicative of organic an organic carbon source. The low σ 13 C-values suggest that input of soil-CO 2 is the dominating carbon source for the system. σ 13 C and σ 18 O-values in the calcite fissure fillings show a wide range in values with a possible two end-member mixing of early post glacial atmospheric CO 2 dominated system to a present day soil-CO 2 dominating carbon source

  10. Organic foods contain higher levels of certain nutrients, lower levels of pesticides, and may provide health benefits for the consumer.

    Crinnion, Walter J

    2010-04-01

    The multi-billion dollar organic food industry is fueled by consumer perception that organic food is healthier (greater nutritional value and fewer toxic chemicals). Studies of the nutrient content in organic foods vary in results due to differences in the ground cover and maturity of the organic farming operation. Nutrient content also varies from farmer to farmer and year to year. However, reviews of multiple studies show that organic varieties do provide significantly greater levels of vitamin C, iron, magnesium, and phosphorus than non-organic varieties of the same foods. While being higher in these nutrients, they are also significantly lower in nitrates and pesticide residues. In addition, with the exception of wheat, oats, and wine, organic foods typically provide greater levels of a number of important antioxidant phytochemicals (anthocyanins, flavonoids, and carotenoids). Although in vitro studies of organic fruits and vegetables consistently demonstrate that organic foods have greater antioxidant activity, are more potent suppressors of the mutagenic action of toxic compounds, and inhibit the proliferation of certain cancer cell lines, in vivo studies of antioxidant activity in humans have failed to demonstrate additional benefit. Clear health benefits from consuming organic dairy products have been demonstrated in regard to allergic dermatitis.

  11. Effects of organic plant oils and role of oxidation on nutrient utilization in juvenile rainbow trout (Oncorhynchus mykiss)

    Lund, Ivar; Dalsgaard, Anne Johanne Tang; Jacobsen, Charlotte

    2013-01-01

    Producing organic fish diets requires that the use of both fishmeal and fish oil (FO) be minimized and replaced by sustainable, organic sources. The purpose of the present study was to replace FO with organic oils and evaluate the effects on feed intake, feed conversion ratio (FCR), daily specifi...... with plant-based organic oils without negatively affecting nutrient digestibility and growth performance. Furthermore, plant-based organic oils are less likely to oxidize than FOs, prolonging the shelf life of such organic diets...... growth rate (SGR) and nutrient digestibility in diets in which fishmeal protein was partly substituted by organic plant protein concentrates. It is prohibited to add antioxidants to organic oils, and therefore the effects of force-oxidizing the oils (including FO) on feed intake and nutrient...... very different dietary fatty acid profiles. All organic plant oils had a positive effect on apparent lipid digestibility compared with the FO diet (P,0.05), whereas there were no effects on the apparent digestibility of other macronutrients when compared with the FO diet (P.0.05). Organic vegetable...

  12. Selection criteria for oxidation method in total organic carbon measurement.

    Yoon, GeunSeok; Park, Sang-Min; Yang, Heuiwon; Tsang, Daniel C W; Alessi, Daniel S; Baek, Kitae

    2018-05-01

    During the measurement of total organic carbon (TOC), dissolved organic carbon is converted into CO 2 by using high temperature combustion (HTC) or wet chemical oxidation (WCO). However, the criteria for selecting the oxidation methods are not clear. In this study, the chemical structures of organic material were considered as a key factor to select the oxidation method used. Most non-degradable organic compounds showed a similar oxidation efficiency in both methods, including natural organic compounds, dyes, and pharmaceuticals, and thus both methods are appropriate to measure TOC in waters containing these compounds. However, only a fraction of the carbon in the halogenated compounds (perfluorooctanoic acid and trifluoroacetic acid) were oxidized using WCO, resulting in measured TOC values that are considerably lower than those determined by HTC. This result is likely due to the electronegativity of halogen elements which inhibits the approach of electron-rich sulfate radicals in the WCO, and the higher bond strength of carbon-halogen pairs as compared to carbon-hydrogen bonds, which results in a lower degree of oxidation of the compounds. Our results indicate that WCO could be used to oxidize most organic compounds, but may not be appropriate to quantify TOC in organic carbon pools that contain certain halogenated compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Soil Carbon and Nutrient Changes Associated with Deforestation for Pasture in Southern Costa Rica

    Huth, Timothy J.; Porder, Stephen; Chaves, Joaquin; Whiteside, Jessica H.

    2012-01-01

    We assessed the effects of deforestation on soil carbon (C) and nutrient stocks in the premontane landscape near Las Cruces Biological Station in southern Costa Rica, where forests were cleared for pasture in the mid-1960s. We excavated six soil pits to a depth of 1 m in both pasture and primary forest, and found that C stocks were 20 kg C per square meters in both settings. Nevertheless, soil delta C-13 suggests 50 percent of the forest-derived soil C above 40 cm depth has turned over since deforestation. Soil nitrogen (N) and phosphorus (P) stocks derived from the soil pits were not significantly different between land uses (P = 0.43 and 0.61, respectively). At a larger spatial scale, however, the ubiquity of ruts produced by cattle-induced erosion indicates that there are substantial soil effects of grazing in this steep landscape. Ruts averaged 13 cm deep and covered 45 percent of the landscape, and thus are evidence of the removal of 0.7 Mg C/ ha/yr, and 70, 9 and 40 kg/ha/yr of N, P and potassium (K), respectively. Subsoils in this region are 10 times less C- and N-rich, and 2 times less P- and K-rich than the topsoil. Thus, rapid topsoil loss may lead to a decline in pasture productivity in the coming decades. These data also suggest that the soil C footprint of deforestation in this landscape may be determined by the fate of soil C as it is transported downstream, rather than C turnover in situ.

  14. Biochar soil amendment for waste-stream diversion, nutrient holding capacity, and carbon sequestration in two contrasting soils

    Deem, L. M.; Crow, S. E.; Deenik, J. L.; Penton, C. R.; Yanagida, J.

    2013-12-01

    Biochar is organic matter that has been pyrolized under low oxygen conditions for use as a soil amendment. Currently biochar is viewed as a way to improve soil quality (e.g., increased nutrient and water holding capacity) and increase in soil carbon (C) sequestration. The use of biochar in soil is not new, yet little is known about the underlying mechanisms that control the interactions between biochar and soil following amendment. In the past, the effects of biochar addition on crop yields, soil properties and greenhouse gas (GHG) fluxes in both in-situ and controlled experiments have produced inconsistent results. These discrepancies may be uncovered in part by chemical and physical characterization of the biochar prior to amendment and identification of soil- and biochar-specific interactions. Furthermore, a more holistic consideration of the system may demonstrate the virtues of biochar amendment beyond the typical considerations of yield and gas flux. We expect that as the differences between the physical and chemical properties of the biochar and the soil increase, the impact on the soil quality metrics will also increase. For this study, we used a waste product (i.e., anaerobic digester sludge) biochar with 81.5% C, pH of 10.44, pH-independent charge for anion exchange capacity (AEC) and a pH-dependent charge for cation exchange capacity (CEC), 4.14% moisture content and 25.75 cmol¬c /kg exchangeable base cations. This biochar was incorporated into both a low and a high fertility Hawaiian field soil to quantitate biochar effects on crop yield, soil pH, CEC, AEC, hot and cold water extractable C and nitrogen, bulk density, phosphorus, soil microbial ecology, and GHG flux in varying soil conditions. Compared to the higher fertility soil, we hypothesized that the low fertility soil would demonstrate a greater increase in soil quality, including higher pH, CEC and water holding capacity. Two crop management practices were included with each soil: traditional

  15. Supercritical Water Oxidation Total Organic Carbon (TOC) Analysis

    The work presented here is the evaluation of the modified wet‐oxidation method described as Supercritical Water Oxidation (SCWO) for the analysis of total organic carbon (TOC) in very difficult oil/gas produced water sample matrices.

  16. Organic carbon in Hanford single-shell tank waste

    Toth, J.J.; Willingham, C.E.; Heasler, P.G.; Whitney, P.D.

    1994-04-01

    Safety of Hanford single-shell tanks (SSTs) containing organic carbon is a concern because the carbon in the presence of oxidizers (NO 3 or NO 2 ) is combustible when sufficiently concentrated and exposed to elevated temperatures. A propagating chemical reaction could potentially occur at high temperature (above 200 C). The rapid increase in temperature and pressure within a tank might result in the release of radioactive waste constituents to the environment. The purpose of this study is to gather available laboratory information about the organic carbon waste inventories stored in the Hanford SSTs. Specifically, the major objectives of this investigation are: Review laboratory analytical data and measurements for SST composite core and supernatant samples for available organic data; Assess the correlation of organic carbon estimated utilizing the TRAC computer code compared to laboratory measurements; and From the laboratory analytical data, estimate the TOC content with confidence levels for each of the 149 SSTs

  17. Mini Total Organic Carbon Analyzer (miniTOCA)

    National Aeronautics and Space Administration — The objective of this development is to create a prototype hand-held, 1 to 2 liter size battery-powered Total Organic Carbon Analyzer (TOCA). The majority of...

  18. Biochar, compost and biochar-compost blend as options to recover nutrients and sequester carbon.

    Oldfield, Thomas L; Sikirica, Nataša; Mondini, Claudio; López, Guadalupe; Kuikman, Peter J; Holden, Nicholas M

    2018-07-15

    This work assessed the potential environmental impact of recycling organic materials in agriculture via pyrolysis (biochar) and composting (compost), as well its combination (biochar-compost blend) versus business-as-usual represented by mineral fertiliser. Life cycle assessment methodology was applied using data sourced from experiments (FP7 project Fertiplus) in three countries (Spain, Italy and Belgium), and considering three environmental impact categories, (i) global warming; (ii) acidification and (iii) eutrophication. The novelty of this analysis is the inclusion of the biochar-compost blend with a focus on multiple European countries, and the inclusion of the acidification and eutrophication impact categories. Biochar, compost and biochar-compost blend all resulted in lower environmental impacts than mineral fertiliser from a systems perspective. Regional differences were found between biochar, compost and biochar-compost blend. The biochar-compost blend offered benefits related to available nutrients and sequestered C. It also produced yields of similar magnitude to mineral fertiliser, which makes its acceptance by farmers more likely whilst reducing environmental impacts. However, careful consideration of feedstock is required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Soil Fertility and Electrical Conductivity Affected by Organic Waste Rates and Nutrient Inputs

    Davi Lopes do Carmo

    2016-01-01

    Full Text Available ABSTRACT The composition of organic waste (OW and its effect on soil processes may change soil fertility and electrical conductivity (EC. The side effects of waste use in crop fertilization are poorly understood for Brazilian soils. This study examined the effect of the addition of 15 different organic wastes to Oxisols and a Neosol on pH, base saturation, EC, cation exchange capacity (CEC at pH 7, and the availability of Al, macro (P, K, Ca2+, Mg2+ and S and micronutrients (B, Fe2+, Mn2+, Cu2+ and Zn2+. Soil samples (150 g were treated with chicken, pig, horse, cattle, and quail manures, sewage sludge 1 and 2, eucalyptus sawdust, plant substrate, coconut fiber, pine bark, coffee husk, peat, limed compost, and biochar. Wastes were added considering a fixed amount of C (2 g kg-1, which resulted in waste rates ranging from 2.5 to 25.6 Mg ha-1. The soil-waste mixtures were incubated for 330 days in laboratory conditions. The waste liming or acidification values were soil-dependent. The use of some manures and compost increased the pH to levels above of those considered adequate for plant growth. The soil EC was slightly increased in the Neosol and in the medium textured Oxisol, but it was sharply changed (from 195 to 394 µS cm-1 by the addition of organic wastes in the clayey Oxisol, although the EC values were below the range considered safe for plant growth. Changes in the soil availability of P, K+, Ca2+ and Zn2+ were highly related to the inputs of these nutrients by the wastes, and other factors in soil changed due to waste use. Organic waste use simultaneously affects different soil fertility attributes; thus, in addition to the target nutrient added to the soil, the soil acidity buffering capacity and the waste liming and agronomic value must be taken into account in the waste rate definition.

  20. The large variation in organic carbon consumption in spring in the East China Sea

    C.-C. Chen

    2013-05-01

    Full Text Available A tremendous amount of organic carbon respired by plankton communities has been found in summer in the East China Sea (ECS, and this rate has been significantly correlated with fluvial discharge from the Changjiang River. However, respiration data has rarely been collected in other seasons. To evaluate and reveal the potential controlling mechanism of organic carbon consumption in spring in the ECS, two cruises covering almost the entire ECS shelf were conducted in the spring of 2009 and 2010. These results showed that although the fluvial discharge rates were comparable to the high riverine flow in summer, the plankton community respiration (CR varied widely between the two springs. In 2009, the level of CR was double that of 2010, with mean (± SD values of 111.7 (±76.3 and 50.7 (±62.9 mg C m−3 d−1, respectively. The CR was positively correlated with concentrations of particulate organic carbon and/or chlorophyll a (Chl a in 2009 (all p 2 (fCO2 in the surface waters, even with a significant amount of inorganic carbon regenerated via CR. In 2010, even more riverine runoff nutrients were measured in the ECS than in 2009. Surprisingly, the growth of phytoplankton in 2010 was not stimulated by enriched nutrients, and its growth was likely limited by low water temperature and/or low light intensity. Low temperature might also suppress planktonic metabolism, which could explain why the CR was lower in 2010. During this period, lower surface water fCO2 may have been driven mainly by physical process(es. To conclude, these results indicate that high organic carbon consumption (i.e. CR in the spring of 2009 could be attributed to high planktonic biomasses, and the lower CR rate during the cold spring of 2010 might be likely limited by low temperature in the ECS. This further suggests that the high inter-annual variability of organic carbon consumption needs to be kept in mind when budgeting the annual carbon balance.

  1. Effects of Soil Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest Ecosystem.

    Whendee L. Silver; Jason Neff; Megan McGroddy; Ed Veldkamp; Michael Keller; Raimundo Cosme

    2000-01-01

    Soil texture plays a key role in belowground C storage in forest ecosystems and strongly influences nutrient availability and retention, particularly in highly weathered soils. We used field data and the Century ecosystem model to explore the role of soil texture in belowground C storage, nutrient pool sizes, and N fluxes in highly weathered soils in an Amazonian...

  2. Development of a Soil Organic Carbon Baseline for Otjozondjupa, Namibia

    Nijbroek, R.; Kempen, B.; Mutua, J.; Soderstrom, M.; Piikki, K.; Hengari, S.; Andreas, A.

    2017-01-01

    Land Degradation Neutrality (LDN) has been piloted in 14 countries and will be scaled up to over 120 countries. As a LDN pilot country, Namibia developed sub-national LDN baselines in Otjozondjupa Region. In addition to the three LDN indicators (soil organic carbon, land productivity and land cover change), Namibia also regards bush encroachment as an important form of land degradation. We collected 219 soil profiles and used Random Forest modelling to develop the soil organic carbon stock ba...

  3. Soil Organic Carbon in the Soil Scapes of Southeastern Tanzania

    Rossi, Joni

    2009-01-01

    Soil organic carbon (SOC) is well known to maintain several functions. On the one hand, being the major component of soil organic matter (SOM),it is a determinant of soil physical and chemical properties, an important proxy for soil biological activity and a measure of soil productivity. Land use management that will enhance soil carbon (C) levels is therefore important for farmers and land use planners, particularly in semiarid and sub-humid Africa where severe soil degradation and desertifi...

  4. Organic carbon, nitrogen and phosphorus contents of some tea soils

    Ahmed, M.S.; Zamir, M.R.; Sanauallah, A.F.M.

    2005-01-01

    Soil samples were collected from Rungicherra Tea-Estate of Moulvibazar district, Bangladesh. Organic carbon, organic matter, total nitrogen and available phosphorus content of the collected soil of different topographic positions have been determined. The experimental data have been analyzed statistically and plotted against topography and soil depth. Organic carbon and organic matter content varied from 0.79 to 1.24% and 1.37 to 2.14%. respectively. Total nitrogen and available phosphorus content of these soils varied respectively from 0.095 to 0.13% and 2.31 to 4.02 ppm. (author)

  5. Microbial metabolic potential for carbon degradation and nutrient (nitrogen and phosphorus) acquisition in an ombrotrophic peatland.

    Lin, Xueju; Tfaily, Malak M; Green, Stefan J; Steinweg, J Megan; Chanton, Patrick; Imvittaya, Aopeau; Chanton, Jeffrey P; Cooper, William; Schadt, Christopher; Kostka, Joel E

    2014-06-01

    This study integrated metagenomic and nuclear magnetic resonance (NMR) spectroscopic approaches to investigate microbial metabolic potential for organic matter decomposition and nitrogen (N) and phosphorus (P) acquisition in soils of an ombrotrophic peatland in the Marcell Experimental Forest (MEF), Minnesota, USA. This analysis revealed vertical stratification in key enzymatic pathways and taxa containing these pathways. Metagenomic analyses revealed that genes encoding laccases and dioxygenases, involved in aromatic compound degradation, declined in relative abundance with depth, while the relative abundance of genes encoding metabolism of amino sugars and all four saccharide groups increased with depth in parallel with a 50% reduction in carbohydrate content. Most Cu-oxidases were closely related to genes from Proteobacteria and Acidobacteria, and type 4 laccase-like Cu-oxidase genes were >8 times more abundant than type 3 genes, suggesting an important and overlooked role for type 4 Cu-oxidase in phenolic compound degradation. Genes associated with sulfate reduction and methanogenesis were the most abundant anaerobic respiration genes in these systems, with low levels of detection observed for genes of denitrification and Fe(III) reduction. Fermentation genes increased in relative abundance with depth and were largely affiliated with Syntrophobacter. Methylocystaceae-like small-subunit (SSU) rRNA genes, pmoA, and mmoX genes were more abundant among methanotrophs. Genes encoding N2 fixation, P uptake, and P regulons were significantly enriched in the surface peat and in comparison to other ecosystems, indicating N and P limitation. Persistence of inorganic orthophosphate throughout the peat profile in this P-limiting environment indicates that P may be bound to recalcitrant organic compounds, thus limiting P bioavailability in the subsurface. Comparative metagenomic analysis revealed a high metabolic potential for P transport and starvation, N2 fixation, and

  6. Middle Holocene Organic Carbon and Biomarker Records from the South Yellow Sea: Relationship to the East Asian Monsoon

    Zou, Liang; Hu, Bangqi; Li, Jun; Dou, Yanguang; Xie, Luhua; Dong, Liang

    2018-03-01

    The East Asian monsoon system influences the sedimentation and transport of organic matter in East Asian marginal seas that is derived from both terrestrial and marine sources. In this study, we determined organic carbon (OC) isotope values, concentrations of marine biomarkers, and levels of OC and total nitrogen (TN) in core YSC-1 from the central South Yellow Sea (SYS). Our objectives were to trace the sources of OC and variations in palaeoproductivity since the middle Holocene, and their relationships with the East Asian monsoon system. The relative contributions of terrestrial versus marine organic matter in core sediments were estimated using a two-end-member mixing model of OC isotopes. Results show that marine organic matter has been the main sediment constituent since the middle Holocene. The variation of terrestrial organic carbon concentration (OCter) is similar to the EASM history. However, the variation of marine organic carbon concentration (OCmar) is opposite to that of the EASM curve, suggesting OCmar is distinctly influenced by terrestrial material input. Inputs of terrestrial nutrients into the SYS occur in the form of fluvial and aeolian dust, while concentrations of nutrients in surface water are derived mainly from bottom water via the Yellow Sea circulation system, which is controlled by the East Asian winter monsoon (EAWM). Variations in palaeoproductivity represented by marine organic matter and biomarker records are, in general, consistent with the recent EAWM intensity studies, thus, compared with EASM, EAWM may play the main role to control the marine productivity variations in the SYS.

  7. Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system.

    Scharler, U M; Ulanowicz, R E; Fogel, M L; Wooller, M J; Jacobson-Meyers, M E; Lovelock, C E; Feller, I C; Frischer, M; Lee, R; McKee, K; Romero, I C; Schmit, J P; Shearer, C

    2015-11-01

    Our study investigated the carbon:nitrogen:phosphorus (C:N:P) stoichiometry of mangrove island of the Mesoamerican Barrier Reef (Twin Cays, Belize). The C:N:P of abiotic and biotic components of this oligotrophic ecosystem was measured and served to build networks of nutrient flows for three distinct mangrove forest zones (tall seaward fringing forest, inland dwarf forests and a transitional zone). Between forest zones, the stoichiometry of primary producers, heterotrophs and abiotic components did not change significantly, but there was a significant difference in C:N:P, and C, N, and P biomass, between the functional groups mangrove trees, other primary producers, heterotrophs, and abiotic components. C:N:P decreased with increasing trophic level. Nutrient recycling in the food webs was highest for P, and high transfer efficiencies between trophic levels of P and N also indicated an overall shortage of these nutrients when compared to C. Heterotrophs were sometimes, but not always, limited by the same nutrient as the primary producers. Mangrove trees and the primary tree consumers were P limited, whereas the invertebrates consuming leaf litter and detritus were N limited. Most compartments were limited by P or N (not by C), and the relative depletion rate of food sources was fastest for P. P transfers thus constituted a bottleneck of nutrient transfer on Twin Cays. This is the first comprehensive ecosystem study of nutrient transfers in a mangrove ecosystem, illustrating some mechanisms (e.g. recycling rates, transfer efficiencies) which oligotrophic systems use in order to build up biomass and food webs spanning various trophic levels.

  8. Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system

    Scharler, U.M.; Ulanowicz, Robert E.; Fogel, M.L.; Wooller, M.J.; Jacobson-Meyers, M.E.; Lovelock, C.E.; Feller, I.C.; Frischer, M.; Lee, R.; Mckee, Karen L.; Romero, I.C.; Schmit, J.P.; Shearer, C.

    2015-01-01

    Our study investigated the carbon:nitrogen:phosphorus (C:N:P) stoichiometry of mangrove island of the Mesoamerican Barrier Reef (Twin Cays, Belize). The C:N:P of abiotic and biotic components of this oligotrophic ecosystem was measured and served to build networks of nutrient flows for three distinct mangrove forest zones (tall seaward fringing forest, inland dwarf forests and a transitional zone). Between forest zones, the stoichiometry of primary producers, heterotrophs and abiotic components did not change significantly, but there was a significant difference in C:N:P, and C, N, and P biomass, between the functional groups mangrove trees, other primary producers, heterotrophs, and abiotic components. C:N:P decreased with increasing trophic level. Nutrient recycling in the food webs was highest for P, and high transfer efficiencies between trophic levels of P and N also indicated an overall shortage of these nutrients when compared to C. Heterotrophs were sometimes, but not always, limited by the same nutrient as the primary producers. Mangrove trees and the primary tree consumers were P limited, whereas the invertebrates consuming leaf litter and detritus were N limited. Most compartments were limited by P or N (not by C), and the relative depletion rate of food sources was fastest for P. P transfers thus constituted a bottleneck of nutrient transfer on Twin Cays. This is the first comprehensive ecosystem study of nutrient transfers in a mangrove ecosystem, illustrating some mechanisms (e.g. recycling rates, transfer efficiencies) which oligotrophic systems use in order to build up biomass and food webs spanning various trophic levels.

  9. The microbially mediated soil organic carbon loss under degenerative succession in an alpine meadow.

    Zhang, Yuguang; Liu, Xiao; Cong, Jing; Lu, Hui; Sheng, Yuyu; Wang, Xiulei; Li, Diqiang; Liu, Xueduan; Yin, Huaqun; Zhou, Jizhong; Deng, Ye

    2017-07-01

    Land-cover change has long been recognized as having marked effect on the amount of soil organic carbon (SOC). However, the microbially mediated processes and mechanisms on SOC are still unclear. In this study, the soil samples in a degenerative succession from alpine meadow to alpine steppe meadow in the Qinghai-Tibetan Plateau were analysed using high-throughput technologies, including Illumina sequencing and geochip functional gene arrays. The soil microbial community structure and diversity were significantly (p carbon degradation genes (e.g., pectin and hemicellulose) was significantly higher in alpine steppe meadow than in alpine meadow, but the relative abundance of soil recalcitrant carbon degradation genes (e.g., chitin and lignin) showed the opposite tendency. The Biolog Ecoplate experiment showed that microbially mediated soil carbon utilization was more active in alpine steppe meadow than in alpine meadow. Consequently, more soil labile carbon might be decomposed in alpine steppe meadow than in alpine meadow. Therefore, the degenerative succession of alpine meadow because of climate change or anthropogenic activities would most likely decrease SOC and nutrients medicated by changing soil microbial community structure and their functional potentials for carbon decomposition. © 2017 John Wiley & Sons Ltd.

  10. Soil Chemical Properties and Nutrient Uptake of Cocoa as Affected by Application of Different Organic Matters and Phosphate Fertilizers

    Sugiyanto Sugiyanto

    2008-07-01

    Full Text Available Effort repair of land quality better be done by simultan namely with application of organic matters and inorganic fertilization. The objective of this research is to study the effect of varied organic matters source and phosphate fertilizers on the chemicals soil characteristic and cocoa nutrient uptake. The experiment was laid experimentally in split-plot design and environmentally in randomized complete block design. The main plot was source of P consisted of, control, SP 36 and rock phosphate in dosage of 200 mg P2O5 per kg of air dry soil. Source of organic matter as sub-plot consisted of control (no organic matter, cow dung, cocoa pod husk compost and sugar cane filter cake, each in dosage of 2.5 and 5.0%. Result of this experiment showed application of cow dung, cocoa pod husk compost and sugar cane filter cake increased content of C, N, Ca exchangeable, Fe available, and pH in soil, and SP 36 increased availability of P in soil. Application of sugar cane filter cake increased N, K, Ca, Mg, and SO4 uptake but did not increase Cl uptake, application of cow dung in dosage 5% increased N, K, and Cl uptake and cocoa pod husk compost dosage 5% increased N and K uptake of cocoa. SP 36 increased Mg uptake of cocoa but rock phosphate did not increase it. They were not interaction between organic matters and phosphate fertilizers to nutrient uptake of cocoa. Nutrient soil content as affected by organic matters correlated with nutrient uptake of cocoa.Key words : soil chemical properties, nutrient uptake, cocoa, organic matter, phosphate fertlizers.

  11. Evaluation of Soil Quality Using Labile Organic Carbon and Carbon Management Indices in Agricultural Lands of Neyriz, Fars Province

    Anahid Salmanpour

    2017-02-01

    Full Text Available Introduction: Soil organic matter is considered as an indicator of soil quality, because of its role on the stability of soil structure, water holding capacity, microbial activity, storage and release of nutrients. Although changes and trends of organic matter are assessed on the basis of organic carbon, it responds slowly to changes of soil management. Therefore, identifying sensitive components of organic carbon such as carbon labile lead to better understanding of the effect of land use change and soil management on soil quality. The main components of sustainable agriculture in arid and semi-arid regions are the amount of water; and soil and water salinity. Water deficit and irrigation with saline water are important limiting factors for cropping and result in adverse effects on soil properties and soil quality. Soil carbon changes is a function of addition of plant debris and removal of it from soil by its decomposition. If the amount of organic carbon significantly reduced due to the degradation of the soil physical and chemical properties and soil quality, agricultural production will face serious problems. To this end, this study was done to evaluate soil quality using soil labile carbon and soil carbon management indices in some agricultural lands of Neyriz area, Fars province, Iran. Materials and Methods: Five fields were selected in two regions, Dehfazel and Tal-e-mahtabi, consisted of irrigated wheat and barley with different amount of irrigation water and water salinity levels. Three farms were located in Dehfazel and two farms in Tal-e-Mahtabi region. In each farm, three points were randomly selected and soil samples were collected from 0-40 cm of the surface layer. Plant samples were taken from a 1x1 square meter and grain crop yield was calculated per hectare. Water samples were obtained in each region from the wells at the last irrigation. Physical and chemical characteristics of the soil and water samples were determined. Soil

  12. Soil Organic Carbon assessment on two different forest management

    Fernández Minguillón, Alex; Sauras Yera, Teresa; Vallejo Calzada, Ramón

    2017-04-01

    Soil Organic Carbon assessment on two different forest management. A.F. Minguillón1, T. Sauras1, V.R: Vallejo1. 1 Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Universidad de Barcelona, Avenida Diagonal 643, 03080 Barcelona, Spain. Soils from arid and semiarid zones are characterized by a low organic matter content from scarce plant biomass and it has been proposed that these soils have a big capacity to carbon sequestration. According to IPCC ARS WG2 (2014) report and WG3 draft, increase carbon storage in terrestrial ecosystems has been identified such a potential tool for mitigation and adaptation to climate change. In ecological restoration context improve carbon sequestration is considered a management option with multiple benefits (win-win-win). Our work aims to analyze how the recently developed restoration techniques contributed to increases in terrestial ecosystem carbon storage. Two restoration techniques carried out in the last years have been evaluated. The study was carried out in 6 localities in Valencian Community (E Spain) and organic horizons of two different restoration techniques were evaluated; slash brush and thinning Aleppo pine stands. For each technique, carbon stock and its physical and chemical stability has been analysed. Preliminary results point out restoration zones acts as carbon sink due to (1) the relevant necromass input produced by slash brush increases C stock on the topsoil ;(2) Thinning increase carbon accumulation in vegetation.

  13. Methods of soil organic carbon determination in Brazilian savannah soils

    Juliana Hiromi Sato

    2014-08-01

    Full Text Available Several methods exist for determining soil organic carbon, and each one has its own advantages and limitations. Consequently, a comparison of the experimental results obtained when these methods are employed is hampered, causing problems in the comparison of carbon stocks in soils. This study aimed at evaluating the analytical procedures used in the determination of carbon and their relationships with soil mineralogy and texture. Wet combustion methods, including Walkley-Black, Mebius and Colorimetric determination as well as dry combustion methods, such as Elemental and Gravimetric Analysis were used. Quantitative textural and mineralogical (kaolinite, goethite and gibbsite analyses were also carried out. The wet digestion methods underestimated the concentration of organic carbon, while the gravimetric method overestimated. Soil mineralogy interfered with the determination of carbon, with emphasis on the gravimetric method that was greatly influenced by gibbsite.

  14. Pathways of organic carbon oxidation in three continental margin sediments

    Canfield, Donald Eugene; Jørgensen, Bo Barker; Fossing, Henrik

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude...... that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated...... organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most...

  15. Spatial and temporal variability in nutrients and carbon uptake during 2004 and 2005 in the eastern equatorial Pacific Ocean

    Palacz, A. P.; Chai, F.

    2012-01-01

    The eastern equatorial Pacific plays a great role in the global carbon budget due to its enhanced biological productivity linked to the equatorial upwelling. However, as confirmed by the Equatorial Biocomplexity cruises in 2004 and 2005, nutrient upwelling supply varies strongly, partly due...... and intraseasonal time scales. Here, high resolution Pacific ROMS-CoSiNE (Regional Ocean Modeling System-Carbon, Silicon, Nitrogen Ecosystem) model results were evaluated with in situ and remote sensing data. The results of model-data comparison revealed a good agreement in domain-average hydrographic....... In order to fully resolve the complexity of biological and physical interactions in the eastern equatorial Pacific, we recommended improving CoSiNE and other models by introducing more phytoplankton groups, variable Redfield and carbon to chlorophyll ratios, as well as resolving the Fe-Si co...

  16. INFLUENCE OF ORGANIC NUTRIENTS AND COCULTURES ON THE COMPETITIVE BEHAVIOR OF 1,2-DICHLOROETHANE-DEGRADING BACTERIA

    Wijngaard, Arjan J. van den; Kleij, Roelof G. van der; Doornweerd, Rianne E.; Janssen, Dick B.

    1993-01-01

    The effects of organic nutrients and cocultures on substrate removal by and competitive behavior of 1,2-dichloroethane-degrading bacteria were investigated. Xanthobacter autotrophicus GJ10 needed biotin for optimal growth on 1,2-dichloroethane. In continuous culture, dilution of biotin to a

  17. Agar Sediment Test for Assessing the Suitability of Organic Waste Streams for Recovering Nutrients by the Aquatic Worm Lumbriculus variegatus

    Laarhoven, Bob; Elissen, H.J.H.; Temmink, H.; Buisman, C.J.N.

    2016-01-01

    An agar sediment test was developed to evaluate the suitability of organic waste streams from the food industry for recovering nutrients by the aquatic worm Lumbriculus variegatus (Lv). The effects of agar gel, sand, and food quantities in the sediment test on worm growth, reproduction, and water

  18. Stable isotope compositions of organic carbon and contents of ...

    The stable isotope compositions of organic carbon (OC), and contents of OC and nitrogen for four sediment cores recovered from lakes Makat (located in the Ngorongoro Crater), Ndutu and Masek (located in the Serengeti Plains) are used to document sources of organic matter (OM) and climatic changes in sub-arid ...

  19. Organic loss in drained wetland: managing the carbon footprint

    Durham, B.; van de Noort, R.; Martens, V.V.; Vorenhout, M.

    2012-01-01

    The recent installation of land drains at Star Carr, Yorkshire, UK, has been linked with loss of preservation quality in this important Mesolithic buried landscape, challenging the PARIS principle. Historically captured organic carbon, including organic artefacts, is being converted to soluble

  20. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  1. Production of dissolved organic carbon in aquatic sediment suspensions

    Koelmans, A.A.; Prevo, L.

    2003-01-01

    In many water quality models production of dissolved organic carbon (DOC) is modelled as mineralisation from particulate organic matter (POM). In this paper it is argued that the DOC production from dessicated sediments by water turbulence may be of similar importance
    In many water quality

  2. Nutrients and carbon fluxes in the estuaries of major rivers flowing into the tropical Atlantic

    Moacyr Cunha De Araujo

    2014-05-01

    Full Text Available Knowledge of the seasonal variability of river discharge and the concentration of nutrients in the estuary waters of large rivers flowing into the tropical Atlantic contributes to a better understanding of the biogeochemical processes that occur in adjacent coastal and ocean systems. The monthly averaged variations of the physical and biogeochemical contributions of the Orinoco, Amazon, São Francisco, Paraíba do Sul (South America, Volta, Niger and Congo (Africa Rivers are estimated from models or observations. The results indicate that these rivers deliver approximately 0.1 Pg C yr-1 in its dissolved organic (DOC 0.046 Pg C yr-1 and inorganic (DIC 0.053 Pg C yr-1 forms combined. These values represent 27.3% of the global DOC and 13.2% of the global DIC delivered by rivers into the world’s oceans. Estimations of the air-sea CO2 fluxes indicate a slightly higher atmospheric liberation for the African systems compared with the South American estuaries (+10.67 mmol m-2 day-1 and +5.48 mmol m-2 day-1, respectively. During the high river discharge periods, the fluxes remained positive in all of the analyzed systems (average +128 mmol m-2 day-1, except at the mouth of the Orinoco River, which continued to act as a sink for CO2. During the periods of low river discharges, the mean CO2 efflux decreased to +5.29 mmol m-2 day-1. The updated and detailed review presented here contributes to the accurate quantification of CO2 input into the atmosphere and to ongoing studies on the oceanic modeling of biogeochemical cycles in the tropical Atlantic.

  3. Retranslocation and localization of nutrient elements in various organs of moso bamboo (Phyllostachys pubescens)

    Umemura, Mitsutoshi, E-mail: mitsutoshi.ume@gmail.com; Takenaka, Chisato, E-mail: chisato@agr.nagoya-u.ac.jp

    2014-09-15

    Moso bamboo (Phyllostachys pubescens) is one of the major giant bamboo species growing in Japan, and the invasion of mismanaged bamboo populations into contiguous forests has been a serious problem. To understand expansion mechanisms of the bamboo, it is important to obtain some first insights into the plant's rapid growth from the viewpoints of the nutrient dynamics in bamboo organs. We have investigated seasonal changes in the concentrations of several nutrient elements in leaves of the plants from three P. pubescens forests and the distributions of those elements in both mature (culms, branches, leaves, roots, and rhizomes) and growing organs (shoots and rhizomes). Among all elements analyzed, boron (B) concentrations in leaves showed a specific seasonal variation that was synchronous across all study sites. Boron was detected at high concentrations in the younger parts of growing rhizomes and shoots, and in mature leaves. These results indicate that P. pubescens could actively utilize B for vegetative reproduction by the retranslocation and the local accumulation behaving as mobile B. Silicon (Si) was found in high concentrations in surface parts of culms and in the mature sheaths of growing rhizomes and shoots following those in mature leaves. P. pubescens, a plant known to accumulate Si, accumulated only low levels of Ca and B in the leaves, indicating that it is possible to utilize more Si for cell wall enhancement than Ca or B. In both mature culms and rhizomes, zinc (Zn) was found at much higher concentrations in the nodes with meristematic tissue than those in internodes, indicating that Zn might play a role in promoting culm and rhizome elongation. We suggest that specific and local utilization of B, Si, and Zn in P. pubescens might support the vegetative reproduction and rapid growth. - Highlights: • The bamboo efficiently utilizes boron by the retranslocation and local accumulation. • Zinc found in nodes at high concentrations may support

  4. Retranslocation and localization of nutrient elements in various organs of moso bamboo (Phyllostachys pubescens)

    Umemura, Mitsutoshi; Takenaka, Chisato

    2014-01-01

    Moso bamboo (Phyllostachys pubescens) is one of the major giant bamboo species growing in Japan, and the invasion of mismanaged bamboo populations into contiguous forests has been a serious problem. To understand expansion mechanisms of the bamboo, it is important to obtain some first insights into the plant's rapid growth from the viewpoints of the nutrient dynamics in bamboo organs. We have investigated seasonal changes in the concentrations of several nutrient elements in leaves of the plants from three P. pubescens forests and the distributions of those elements in both mature (culms, branches, leaves, roots, and rhizomes) and growing organs (shoots and rhizomes). Among all elements analyzed, boron (B) concentrations in leaves showed a specific seasonal variation that was synchronous across all study sites. Boron was detected at high concentrations in the younger parts of growing rhizomes and shoots, and in mature leaves. These results indicate that P. pubescens could actively utilize B for vegetative reproduction by the retranslocation and the local accumulation behaving as mobile B. Silicon (Si) was found in high concentrations in surface parts of culms and in the mature sheaths of growing rhizomes and shoots following those in mature leaves. P. pubescens, a plant known to accumulate Si, accumulated only low levels of Ca and B in the leaves, indicating that it is possible to utilize more Si for cell wall enhancement than Ca or B. In both mature culms and rhizomes, zinc (Zn) was found at much higher concentrations in the nodes with meristematic tissue than those in internodes, indicating that Zn might play a role in promoting culm and rhizome elongation. We suggest that specific and local utilization of B, Si, and Zn in P. pubescens might support the vegetative reproduction and rapid growth. - Highlights: • The bamboo efficiently utilizes boron by the retranslocation and local accumulation. • Zinc found in nodes at high concentrations may support

  5. Effects of Litter and Nutrient Additions on Soil Carbon Cycling in a Tropical Forest

    Cusack, D. F.; Halterman, S.; Turner, B. L.; Tanner, E.; Wright, S. J.

    2014-12-01

    Soil carbon (C) dynamics present one of the largest sources of uncertainty in global C cycle models, with tropical forest soils containing some of the largest terrestrial C stocks. Drastic changes in soil C storage and loss are likely to occur if global change alters plant net primary production (NPP) and/or nutrient availability in these ecosystems. We assessed the effects of litter removal and addition, as well as fertilization with nitrogen (N), phosphorus (P), and/or potassium (K), on soil C stocks in a tropical seasonal forest in Panama after ten and sixteen years, respectively. We used a density fractionation scheme to assess manipulation effects on rapidly and slowly cycling pools of C. Soil samples were collected in the wet and dry seasons from 0-5 cm and 5-10 cm depths in 15- 45x45 m plots with litter removal, 2x litter addition, and control (n=5), and from 32- 40x40 m fertilization plots with factorial additions of N, P, and K. We hypothesized that litter addition would increase all soil C fractions, but that the magnitude of the effect on rapidly-cycling C would be dampened by a fertilization effect. Results for the dry season show that the "free light" C fraction, or rapidly cycling soil C pool, was significantly different among the three litter treatments, comprising 5.1 ± 0.9 % of total soil mass in the litter addition plots, 2.7 ± 0.3 % in control plots, and 1.0 ± 0.1 % in litter removal plots at the 0-5cm depth (means ± one standard error, p < 0.05). Bulk soil C results are similar to observed changes in the rapidly cycling C pool for the litter addition and removal. Fertilization treatments on average diminished this C pool size relative to control plots, although there was substantial variability among fertilization treatments. In particular, addition of N and P together did not significantly alter rapidly cycling C pool sizes (4.1 ± 1.2 % of total soil mass) relative to controls (3.5 ± 0.4 %), whereas addition of P alone resulted in

  6. Spatially Resolved Carbon Isotope and Elemental Analyses of the Root-Rhizosphere-Soil System to Understand Below-ground Nutrient Interactions

    Denis, E. H.; Ilhardt, P.; Tucker, A. E.; Huggett, N. L.; Rosnow, J. J.; Krogstad, E. J.; Moran, J.

    2017-12-01

    The intimate relationships between plant roots, rhizosphere, and soil are fostered by the release of organic compounds from the plant (through various forms of rhizodeposition) into soil and the simultaneous harvesting and delivery of inorganic nutrients from the soil to the plant. This project's main goal is to better understand the spatial controls on bi-directional nutrient exchange through the rhizosphere and how they impact overall plant health and productivity. Here, we present methods being developed to 1) spatially track the release and migration of plant-derived organics into the rhizosphere and soil and 2) map the local inorganic geochemical microenvironments within and surrounding the rhizosphere. Our studies focused on switchgrass microcosms containing soil from field plots at the Kellogg Biological Station (Hickory Corners, Michigan), which have been cropped with switchgrass for nearly a decade. We used a 13CO2 tracer to label our samples for both one and two diel cycles and tracked subsequent movement of labeled organic carbon using spatially specific δ13C analysis (with 50 µm resolution). The laser ablation-isotope ratio mass spectrometry (LA-IRMS) approach allowed us to map the extent of 13C-label migration into roots, rhizosphere, and surrounding soil. Preliminary results show the expected decrease of organic exudates with distance from a root and that finer roots (<0.1 mm) incorporated more 13C-label than thicker roots, which likely correlates to specific root growth rates. We are adapting both laser induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to spatially map inorganic nutrient content in the exact same samples used for LA-IRMS analysis. Both of these methods provide rapid surface mapping of a wide range of elements (with high dynamic range) at 150 μm spatial resolution. Preliminary results show that, based on elemental content, we can distinguish between roots, rhizosphere

  7. [Roles of soil dissolved organic carbon in carbon cycling of terrestrial ecosystems: a review].

    Li, Ling; Qiu, Shao-Jun; Liu, Jing-Tao; Liu, Qing; Lu, Zhao-Hua

    2012-05-01

    Soil dissolved organic carbon (DOC) is an active fraction of soil organic carbon pool, playing an important role in the carbon cycling of terrestrial ecosystems. In view of the importance of the carbon cycling, this paper summarized the roles of soil DOC in the soil carbon sequestration and greenhouse gases emission, and in considering of our present ecological and environmental problems such as soil acidification and climate warming, discussed the effects of soil properties, environmental factors, and human activities on the soil DOC as well as the response mechanisms of the DOC. This review could be helpful to the further understanding of the importance of soil DOC in the carbon cycling of terrestrial ecosystems and the reduction of greenhouse gases emission.

  8. Effects of organic plant oils and role of oxidation on nutrient utilization in juvenile rainbow trout (Oncorhynchus mykiss).

    Lund, I; Dalsgaard, J; Jacobsen, C; Hansen, J H; Holm, J; Jokumsen, A

    2013-03-01

    Producing organic fish diets requires that the use of both fishmeal and fish oil (FO) be minimized and replaced by sustainable, organic sources. The purpose of the present study was to replace FO with organic oils and evaluate the effects on feed intake, feed conversion ratio (FCR), daily specific growth rate (SGR) and nutrient digestibility in diets in which fishmeal protein was partly substituted by organic plant protein concentrates. It is prohibited to add antioxidants to organic oils, and therefore the effects of force-oxidizing the oils (including FO) on feed intake and nutrient digestibility was furthermore examined. Four organic oils with either a relatively high or low content of polyunsaturated fatty acids were considered: linseed oil, rapeseed oil, sunflower oil and grapeseed oil. Substituting FO with organic oils did not affect feed intake (P > 0.05), FCR or SGR (P > 0.05) despite very different dietary fatty acid profiles. All organic plant oils had a positive effect on apparent lipid digestibility compared with the FO diet (P digestibility of other macronutrients when compared with the FO diet (P > 0.05). Organic vegetable oils did not undergo auto-oxidation as opposed to the FO, and the FO diet consequently had a significantly negative effect on the apparent lipid digestibility. Feed intake was not affected by oxidation of any oils. In conclusion, the study demonstrated that it is possible to fully substitute FO with plant-based organic oils without negatively affecting nutrient digestibility and growth performance. Furthermore, plant-based organic oils are less likely to oxidize than FOs, prolonging the shelf life of such organic diets.

  9. Effect of reclamation on soil organic carbon pools in coastal areas of eastern China

    Li, Jianguo; Yang, Wenhui; Li, Qiang; Pu, Lijie; Xu, Yan; Zhang, Zhongqi; Liu, Lili

    2018-06-01

    The coastal wetlands of eastern China form one of the most important carbon sinks in the world. However, reclamation can significantly alter the soil carbon pool dynamics in these areas. In this study, a chronosequence was constructed for four reclamation zones in Rudong County, Jiangsu Province, eastern China (reclaimed in 1951, 1974, 1982, and 2007) and a reference salt marsh to identify both the process of soil organic carbon (SOC) evolution, as well as the effect of cropping and soil properties on SOC with time after reclamation. The results show that whereas soil nutrient elements and SOC increased after reclamation, the electrical conductivity of the saturated soil extract (ECe), pH, and bulk density decreased within 62 years following reclamation and agricultural amendment. In general, the soil's chemical properties remarkably improved and SOC increased significantly for approximately 30 years after reclamation. Reclamation for agriculture (rice and cotton) significantly increased the soil organic carbon density (SOCD) in the top 60 cm, especially in the top 0-30 cm. However, whereas the highest concentration of SOCD in rice-growing areas was in the top 0-20 cm of the soil profile, it was greater at a 20-60 cm depth in cottongrowing areas. Reclamation also significantly increased heavy fraction organic carbon (HFOC) levels in the 0-30 cm layer, thereby enhancing the stability of the soil carbon pool. SOC can thus increase significantly over a long time period after coastal reclamation, especially in areas of cultivation, where coastal SOC pools in eastern China tend to be more stable.

  10. Effect of reclamation on soil organic carbon pools in coastal areas of eastern China

    Li, Jianguo; Yang, Wenhui; Li, Qiang; Pu, Lijie; Xu, Yan; Zhang, Zhongqi; Liu, Lili

    2018-04-01

    The coastal wetlands of eastern China form one of the most important carbon sinks in the world. However, reclamation can significantly alter the soil carbon pool dynamics in these areas. In this study, a chronosequence was constructed for four reclamation zones in Rudong County, Jiangsu Province, eastern China (reclaimed in 1951, 1974, 1982, and 2007) and a reference salt marsh to identify both the process of soil organic carbon (SOC) evolution, as well as the effect of cropping and soil properties on SOC with time after reclamation. The results show that whereas soil nutrient elements and SOC increased after reclamation, the electrical conductivity of the saturated soil extract (ECe), pH, and bulk density decreased within 62 years following reclamation and agricultural amendment. In general, the soil's chemical properties remarkably improved and SOC increased significantly for approximately 30 years after reclamation. Reclamation for agriculture (rice and cotton) significantly increased the soil organic carbon density (SOCD) in the top 60 cm, especially in the top 0-30 cm. However, whereas the highest concentration of SOCD in rice-growing areas was in the top 0-20 cm of the soil profile, it was greater at a 20-60 cm depth in cottongrowing areas. Reclamation also significantly increased heavy fraction organic carbon (HFOC) levels in the 0-30 cm layer, thereby enhancing the stability of the soil carbon pool. SOC can thus increase significantly over a long time period after coastal reclamation, especially in areas of cultivation, where coastal SOC pools in eastern China tend to be more stable.

  11. Organic carbon efflux from a deciduous forest catchment in Korea

    S. J. Kim

    2010-04-01

    Full Text Available Soil infiltration and surface discharge of precipitation are critical processes that affect the efflux of Dissolved Organic Carbon (DOC and Particulate Organic Carbon (POC in forested catchments. Concentrations of DOC and POC can be very high in the soil surface in most forest ecosystems and their efflux may not be negligible particularly under the monsoon climate. In East Asia, however, there are little data available to evaluate the role of such processes in forest carbon budget. In this paper, we address two basic questions: (1 how does stream discharge respond to storm events in a forest catchment? and (2 how much DOC and POC are exported from the catchment particularly during the summer monsoon period? To answer these questions, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge, groundwater level and conducted hydrochemical analyses (including DOC, POC, and six tracers in a deciduous forest catchment in Gwangneung National Arboretum in west-central Korea. Based on the end-member mixing analysis of the six storm events during the summer monsoon in 2005, the surface discharge was estimated as 30 to 80% of the total runoff discharge. The stream discharge responded to precipitation within 12 h during these storm events. The annual efflux of DOC and POC from the catchment was estimated as 0.04 and 0.05 t C ha−1 yr−1, respectively. Approximately 70% of the annual organic carbon efflux occurred during the summer monsoon period. Overall, the annual efflux of organic carbon was estimated to be about 10% of the Net Ecosystem carbon Exchange (NEE obtained by eddy covariance measurement at the same site. Considering the current trends of increasing intensity and amount of summer rainfall and the large interannual variability in NEE, ignoring the organic carbon efflux from forest catchments would result in an inaccurate estimation of the carbon sink strength of forest ecosystems in the monsoon

  12. Estimating Values of Carbon Sequestration and Nutrient Recycling in Forests: An Application to the Stockholm-Mälar Region in Sweden

    Ing-Marie Gren

    2015-10-01

    Full Text Available We calculate values of forest carbon sequestration and nutrient recycling applying the replacement cost method. The value is then determined as the savings in costs by the replacement of more expensive abatement measures with these ecosystem services in cost-effective climate and nutrient programs. To this end, a dynamic optimization model is constructed, which accounts for uncertainty in sequestration. It is applied to the Stockholm-Mälar region in southeast Sweden where the EU 2050 climate policy for carbon emissions and the Baltic Sea action plan for nutrient discharges are applied. The results show that the value of carbon and nutrient sequestration can correspond to approximately 0.5% of the region’s gross domestic product, or 40% of the value of productive forest. The largest part of this value is attributed to carbon sequestration because of the relative stringency in targets and expensive alternative abatement measures. However, sequestration is uncertain because of stochastic weather conditions, and when society has a large risk aversion for not attaining climate and nutrient targets, the values of the forest carbon and nutrient sequestration can approach zero.

  13. Responses of Soil Organic Carbon to Long-Term Understory Removal in Subtropical Cinnamomum camphora Stands

    Yacong Wu

    2014-01-01

    Full Text Available We conducted a study on a 48-year-old Cinnamomum camphora plantation in the subtropics of China, by removing understory gradually and then comparing this treatment with a control (undisturbed. This study analyzed the content and storage soil organic carbon (SOC in a soil depth of 0–60 cm. The results showed that SOC content was lower in understory removal (UR treatment, with a decrease range from 5% to 34%, and a decline of 10.16 g·kg−1 and 8.58 g·kg−1 was noticed in 0–10 cm and 10–20 cm layers, respectively, with significant differences (P<0.05. Carbon storage was reduced in UR, ranging from 2% to 43%, with a particular drastic decline of 15.39 t·hm−2 and 11.58 t·hm−2 in 0–10 cm (P<0.01 and 10–20 cm (P<0.01 layers, respectively. Content of SOC had an extremely significant (P<0.01 correlation with soil nutrients in the two stands, and the correlation coefficients of CK were higher than those of UR. Our data showed that the presence of understory favored the accumulation of soil organic carbon to a large extent. Therefore, long-term practice of understory removal weakens the function of forest ecosystem as a carbon sink.

  14. Modeling soil organic carbon with Quantile Regression: Dissecting predictors' effects on carbon stocks

    Lombardo, Luigi; Saia, Sergio; Schillaci, Calogero; Mai, Paul Martin; Huser, Raphaë l

    2017-01-01

    Soil Organic Carbon (SOC) estimation is crucial to manage both natural and anthropic ecosystems and has recently been put under the magnifying glass after the Paris agreement 2016 due to its relationship with greenhouse gas. Statistical applications

  15. Stable carbon isotope composition of organic material and carbonate in sediment of a swamp and lakes in Honshu island, Japan

    Ishizuka, Toshio

    1978-01-01

    Recent sediments from a swamp and lakes in Honshu were analyzed for organic carbon and carbonate contents, and stable isotope ratios of carbon in the organic materials and carbonate. delta C 13 values of the carbonate tend to be distinctly larger than those of organic carbon in reducing condition as natural gas field, whereas in oxidizing SO 4 -reducing conditions, they are slightly larger than those of organic carbon within the limited range of a few per mil. Carbon isotopic compositions of organic carbon in sediment of the swamp, Obuchi-numa, were analyzed and compared with habitat analysis of associated fossil diatoms. deltaC 13 values of organic carbon in the sediment vary in correlation with the species abundance in habitat of the associated fossil diatoms, ranging from fresh-water (-0.0282) to coastal marine (-0.0236) via brackish. (auth.)

  16. Biotransformation of trace organic compounds by activated sludge from a biological nutrient removal treatment system.

    Inyang, Mandu; Flowers, Riley; McAvoy, Drew; Dickenson, Eric

    2016-09-01

    The removal of trace organic compounds (TOrCs) and their biotransformation rates, kb (LgSS(-)(1)h(-)(1)) was investigated across different redox zones in a biological nutrient removal (BNR) system using an OECD batch test. Biodegradation kinetics of fourteen TOrCs with initial concentration of 1-36μgL(-)(1) in activated sludge were monitored over the course of 24h. Degradation kinetic behavior for the TOrCs fell into four groupings: Group 1 (atenolol) was biotransformed (0.018-0.22LgSS(-)(1)h(-)(1)) under anaerobic, anoxic, and aerobic conditions. Group 2 (meprobamate and trimethoprim) biotransformed (0.01-0.21LgSS(-)(1)h(-)(1)) under anoxic and aerobic conditions, Group 3 (DEET, gemfibrozil and triclosan) only biotransformed (0.034-0.26LgSS(-)(1)h(-)(1)) under aerobic conditions, and Group 4 (carbamazepine, primidone, sucralose and TCEP) exhibited little to no biotransformation (<0.001LgSS(-)(1)h(-)(1)) under any redox conditions. BNR treatment did not provide a barrier against Group 4 compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Factors controlling soil organic carbon stability along a temperate forest altitudinal gradient

    Tian, Qiuxiang; He, Hongbo; Cheng, Weixin; Bai, Zhen; Wang, Yang; Zhang, Xudong

    2016-01-01

    Changes in soil organic carbon (SOC) stability may alter carbon release from the soil and, consequently, atmospheric CO2 concentration. The mean annual temperature (MAT) can change the soil physico-chemical characteristics and alter the quality and quantity of litter input into the soil that regulate SOC stability. However, the relationship between climate and SOC stability remains unclear. A 500-day incubation experiment was carried out on soils from an 11 °C-gradient mountainous system on Changbai Mountain in northeast China. Soil respiration during the incubation fitted well to a three-pool (labile, intermediate and stable) SOC decomposition model. A correlation analysis revealed that the MAT only influenced the labile carbon pool size and not the SOC stability. The intermediate carbon pool contributed dominantly to cumulative carbon release. The size of the intermediate pool was strongly related to the percentage of sand particle. The decomposition rate of the intermediate pool was negatively related to soil nitrogen availability. Because both soil texture and nitrogen availability are temperature independent, the stability of SOC was not associated with the MAT, but was heavily influenced by the intrinsic processes of SOC formation and the nutrient status. PMID:26733344

  18. Chemistry of organic carbon in soil with relationship to the global carbon cycle

    Post, W.M. III.

    1988-01-01

    Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO 2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs

  19. Comparison between disintegrated and fermented sewage sludge for production of a carbon source suitable for biological nutrient removal.

    Soares, Ana; Kampas, Pantelis; Maillard, Sarah; Wood, Elizabeth; Brigg, Jon; Tillotson, Martin; Parsons, Simon A; Cartmell, Elise

    2010-03-15

    There is a need to investigate processes that enable sludge re-use while enhancing sewage treatment efficiency. Mechanically disintegrated thickened surplus activated sludge (SAS) and fermented primary sludge were compared for their capacity to produce a carbon source suitable for BNR by completing nutrient removal predictive tests. Mechanically disintegration of SAS using a deflaker enhanced volatile fatty acids (VFAs) content from 92 to 374 mg l(-1) (4.1-fold increase). In comparison, primary sludge fermentation increased the VFAs content from 3.5 g l(-1) to a final concentration of 8.7 g l(-1) (2.5-fold increase). The carbon source obtained from disintegration and fermentation treatments improved phosphate (PO(4)-P) release and denitrification by up to 0.04 mg NO(3)-Ng(-1)VSS min(-1) and 0.031 mg PO(4)-Pg(-1)VSS min(-1), respectively, in comparison to acetate (0.023 mg NO(3)-Ng(-1)VSS min(-1)and 0.010 mg PO(4)-Pg(-1)VSS min(-1)). Overall, both types of sludge were suitable for BNR but disintegrated SAS displayed lower carbon to nutrient ratios of 8 for SCOD:PO(4)-P and 9 for SCOD:NO(3)-N. On the other hand, SAS increased the concentration of PO(4)-P in the settled sewage by a further 0.97 g PO(4)-P kg(-1)SCOD indicating its potential negative impact towards nutrient recycling in the BNR process. (c) 2009 Elsevier B.V. All rights reserved.

  20. Differences in temperature, organic carbon and oxygen consumption among lowland streams

    Sand-Jensen, K.; Pedersen, N. L.

    2005-01-01

    1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams with or w......1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams...... the exponential increase of oxygen consumption rate between 4 and 20 °C averaged 0.121 °C-1 (Q10 of 3.35) in 70 measurements and showed no significant variations between seasons and stream sites or correlations with ambient temperature and organic content. 5. Oxygen consumption rate was enhanced downstream...... at ambient temperature by 30-40% and 80-130%, respectively. Faster consumption of organic matter and dissolved oxygen downstream of point sources should increase the likelihood of oxygen stress of the stream biota and lead to the export of less organic matter but more mineralised nutrients to the coastal...

  1. The carbon commute: Effects of urbanization on dissolved organic carbon quality on a suburban New England river network

    Balch, E.; Robison, A.; Wollheim, W. M.

    2017-12-01

    Understanding anthropogenic influence on the sources and fluxes of carbon is necessary for interpreting the carbon cycle and contaminant transport throughout a river system. As urbanization increases worldwide, it is critical to understand how urbanization affects the carbon cycle so that we may be able to predict future changes. Rivers act as both transporters of terrestrial dissolved organic carbon (DOC) to coastal regions, and active transformers of DOC. The character (lability) of the carbon found within a river network is influenced by its sources and fluxes, as determined by the ecological processes, land use, and discharge, which vary throughout the network. We have characterized DOC quantity and quality throughout a suburban New England river network (Ipswich River, MA) in an attempt to provide a detailed picture of how DOC quality varies within a network, and how urbanization influences these changes. We conducted a synoptic survey of 45 sites over two hydrologically similar days in the Ipswich River network in northeast Massachusetts, USA. We collected discrete grab samples for DOC quantity and quality analyses. We also collected dissolved oxygen, conductivity, and nutrients (major anions and cations) as an extension of the synoptic survey. We plan to determine the source of the DOC by using excitation-emission matrices (EEMs), and specific UV absorption (SUVA) at 254 nm. These analyses will provide us with a detailed picture of how DOC quality varies within a network, and how urbanization influences these changes. Using land use data of the Ipswich River watershed, we are able to model the changes in DOC quality throughout the network. In highly urbanized headwaters, through the progressively more forested and wetland dominated main stem reaches, we expect to see the imprint of urbanization throughout the network due to its decreased lability. Studying the imprint of urbanization on DOC throughout a river network helps us complete our understanding of

  2. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink.

    Hilton, Robert G; Galy, Valier; Gaillardet, Jérôme; Dellinger, Mathieu; Bryant, Charlotte; O'Regan, Matt; Gröcke, Darren R; Coxall, Helen; Bouchez, Julien; Calmels, Damien

    2015-08-06

    Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO2) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 ± 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of 2.2(+1.3)(-0.9) teragrams of carbon per year from the Mackenzie River, which is three times the CO2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO2 sink.

  3. Maximum organic carbon limits at different melter feed rates (U)

    Choi, A.S.

    1995-01-01

    This report documents the results of a study to assess the impact of varying melter feed rates on the maximum total organic carbon (TOC) limits allowable in the DWPF melter feed. Topics discussed include: carbon content; feed rate; feed composition; melter vapor space temperature; combustion and dilution air; off-gas surges; earlier work on maximum TOC; overview of models; and the results of the work completed

  4. Methodology guideline. Organization of conference neutral in carbon

    2007-01-01

    In the framework of the Climate Plan elaborated by the french government, the neutral carbon principle must be applied to conference organization and the international travels. This guide has two main functions: heighten to allow everybody to understand the climate change impacts and problems, and bring some recommendations and tools to implement a neutral carbon conference (transport, welcome, accommodation and meal). (A.L.B.)

  5. Application of calcium carbonate slows down organic amendments mineralization in reclaimed soils

    Zornoza, Raúl; Faz, Ángel; Acosta, José A.; Martínez-Martínez, Silvia; Ángeles Muñoz, M.

    2014-05-01

    A field experiment was set up in Cartagena-La Unión Mining District, SE Spain, aimed at evaluating the short-term effects of pig slurry (PS) amendment alone and together with marble waste (MW) on organic matter mineralization, microbial activity and stabilization of heavy metals in two tailing ponds. These structures pose environmental risk owing to high metals contents, low organic matter and nutrients, and null vegetation. Carbon mineralization, exchangeable metals and microbiological properties were monitored during 67 days. The application of amendments led to a rapid decrease of exchangeable metals concentrations, except for Cu, with decreases up to 98%, 75% and 97% for Cd, Pb and Zn, respectively. The combined addition of MW+PS was the treatment with greater reduction in metals concentrations. The addition of PS caused a significant increase in respiration rates, although in MW+PS plots respiration was lower than in PS plots. The mineralised C from the pig slurry was low, approximately 25-30% and 4-12% for PS and MW+PS treatments, respectively. Soluble carbon (Csol), microbial biomass carbon (MBC) and β-galactosidase and β-glucosidase activities increased after the application of the organic amendment. However, after 3 days these parameters started a decreasing trend reaching similar values than control from approximately day 25 for Csol and MBC. The PS treatment promoted highest values in enzyme activities, which remained high upon time. Arylesterase activity increased in the MW+PS treatment. Thus, the remediation techniques used improved soil microbiological status and reduced metal availability. The combined application of PS+MW reduced the degradability of the organic compounds. Keywords: organic wastes, mine soils stabilization, carbon mineralization, microbial activity.

  6. Characterization of activated carbon produced from urban organic waste

    Abdul Gani Haji

    2013-10-01

    Full Text Available The difficulties to decompose organic waste can be handled naturally by pyrolisis so it can  decomposes quickly that produces charcoal as the product. This study aims to investigate the characteristics of activated carbon from urban organic waste. Charcoal results of pyrolysis of organic waste activated with KOH 1.0 M at a temperature of 700 and 800oC for 60 to 120 minutes. Characteristics of activated carbon were identified by Furrier Transform Infra Red (FTIR, Scanning Electron Microscopy (SEM, and X-Ray Diffraction (XRD. However, their quality is determined yield, moisture content, ash, fly substances, fixed carbon, and the power of adsorption of iodine and benzene. The identified functional groups on activated carbon, such as OH (3448,5-3436,9 cm-1, and C=O (1639,4 cm-1. In general, the degree and distance between the layers of active carbon crystallites produced activation in all treatments showed no significant difference. The pattern of activated carbon surface topography structure shows that the greater the pore formation in accordance with the temperature increase the more activation time needed. The yield of activated carbon obtained ranged from 72.04 to 82.75%. The results of characterization properties of activated carbon was obtained from 1.11 to 5.41% water, 13.68 to 17.27% substance fly, 20.36 to 26.59% ash, and 56.14 to 62.31% of fixed carbon . Absorption of activated carbon was good enough at 800oC and 120 minutes of activation time, that was equal to 409.52 mg/g of iodine and 14.03% of benzene. Activated carbon produced has less good quality, because only the water content and flying substances that meet the standards.Doi: 10.12777/ijse.5.2.89-94 [How to cite this article: Haji, A.G., Pari, G., Nazar, M., and Habibati.  (2013. Characterization of activated carbon produced from urban organic waste . International Journal of Science and Engineering, 5(2,89-94. Doi: 10.12777/ijse.5.2.89-94

  7. Cost effective tools for soil organic carbon monitoring

    Shepherd, Keith; Aynekulu, Ermias

    2013-04-01

    There is increasing demand for data on soil properties at fine spatial resolution to support management and planning decisions. Measurement of soil organic carbon has attracted much interest because (i) soil organic carbon is widely cited as a useful indicator of soil condition and (ii) of the importance of soil carbon in the global carbon cycle and climate mitigation strategies. However in considering soil measurement designs there has been insufficient attention given to careful analysis of the specific decisions that the measurements are meant to support and on what measurements have high information value for decision-making. As a result, much measurement effort may be wasted or focused on the wrong variables. A cost-effective measurement is one that reduces risk in decisions and does not cost more than the societal returns to additional evidence. A key uncertainty in measuring soil carbon as a soil condition indicator is what constitutes a good or bad level of carbon on a given soil. A measure of soil organic carbon concentration may have limited value for informing management decisions without the additional information required to interpret it, and so expending further efforts on improving measurements to increase precision may then have no value to improving the decision. Measuring soil carbon stock changes for carbon trading purposes requires high levels of measurement precision but there is still large uncertainty on whether the costs of measurement exceed the benefits. Since the largest cost component in soil monitoring is often travel to the field and physically sampling soils, it is generally cost-effective to meet multiple objectives by analysing a number of properties on a soil sample. Diffuse reflectance infrared spectroscopy is playing a key role in allowing multiple soil properties to be determined rapidly and at low cost. The method provides estimation of multiple soil properties (e.g. soil carbon, texture and mineralogy) in one measurement

  8. Comparing carbon to carbon: Organic and inorganic carbon balances across nitrogen fertilization gradients in rainfed vs. irrigated Midwest US cropland

    Hamilton, S. K.; McGill, B.

    2017-12-01

    The top meter of the earth's soil contains about twice the amount of carbon than the atmosphere. Agricultural management practices influence whether a cropland soil is a net carbon source or sink. These practices affect both organic and inorganic carbon cycling although the vast majority of studies examine the former. We will present results from several rarely-compared carbon fluxes: carbon dioxide emissions and sequestration from lime (calcium carbonate) weathering, dissolved gases emitted from groundwater-fed irrigation, dissolved organic carbon (DOC) leaching to groundwater, and soil organic matter storage. These were compared in a corn-soybean-wheat rotation under no-till management across a nitrogen fertilizer gradient where half of the replicated blocks are irrigated with groundwater. DOC and liming fluxes are also estimated from a complementary study in neighboring plots comparing a gradient of management practices from conventional to biologically-based annuals and perennials. These studies were conducted at the Kellogg Biological Station Long Term Ecological Research site in Michigan where previous work estimated that carbon dioxide emissions from liming accounted for about one quarter of the total global warming impact (GWI) from no-till systems—our work refines that figure. We will present a first time look at the GWI of gases dissolved in groundwater that are emitted when the water equilibrates with the atmosphere. We will explore whether nitrogen fertilizer and irrigation increase soil organic carbon sequestration by producing greater crop biomass and residues or if they enhance microbial activity, increasing decomposition of organic matter. These results are critical for more accurately estimating how intensive agricultural practices affect the carbon balance of cropping systems.

  9. Modelling the 13C and 12C isotopes of inorganic and organic carbon in the Baltic Sea

    Gustafsson, Erik; Mörth, Carl-Magnus; Humborg, Christoph; Gustafsson, Bo G.

    2015-08-01

    In this study, 12C and 13C contents of all carbon containing state variables (dissolved inorganic and organic carbon, detrital carbon, and the carbon content of autotrophs and heterotrophs) have for the first time been explicitly included in a coupled physical-biogeochemical Baltic Sea model. Different processes in the carbon cycling have distinct fractionation values, resulting in specific isotopic fingerprints. Thus, in addition to simulating concentrations of different tracers, our new model formulation improves the possibility to constrain the rates of processes such as CO2 assimilation, mineralization, and air-sea exchange. We demonstrate that phytoplankton production and respiration, and the related air-sea CO2 fluxes, are to a large degree controlling the isotopic composition of organic and inorganic carbon in the system. The isotopic composition is further, but to a lesser extent, influenced by river loads and deep water inflows as well as transformation of terrestrial organic carbon within the system. Changes in the isotopic composition over the 20th century have been dominated by two processes - the preferential release of 12C to the atmosphere in association with fossil fuel burning, and the eutrophication of the Baltic Sea related to increased nutrient loads under the second half of the century.

  10. Assessing the fate of nutrients and carbon in the bioenergy chain through the modeling of biomass growth and conversion.

    François, Jessica; Fortin, Mathieu; Patisson, Fabrice; Dufour, Anthony

    2014-12-02

    A forest growth model was coupled to a model of combined heat and power (CHP) production in a gasification plant developed in Aspen Plus. For a given production, this integrated forest-to-energy model made it possible to predict the annual flows in wood biomass, carbon, and nutrients, including N, S, P, and K, from the forest to the air emissions (NOx, SOx, PAH, etc.) and ash flows. We simulated the bioenergy potential of pure even-aged high-forest stands of European beech, an abundant forest type in Northeastern France. Two forest management practices were studied, a standard-rotation and a shorter-rotation scenario, along with two wood utilizations: with or without fine woody debris (FWD) harvesting. FWD harvesting tended to reduce the forested area required to supply the CHP by 15–22% since larger amounts of energy wood were available for the CHP process, especially in the short-rotation scenario. Because less biomass was harvested, the short-rotation scenario with FWD decreased the nutrient exports per hectare and year by 4–21% compared to standard practices but increased the amount of N, S, and P in the CHP process by 2–9%. This increase in the input nutrient flows had direct consequences on the inorganic air emissions, thus leading to additional NOx and SO2 emissions. This model is a valuable tool for assessing the life cycle inventories of the entire bioenergy chain.

  11. Carbon-14 measurements and characterization of dissolved organic carbon in ground water

    Murphy, E.M.

    1987-01-01

    Carbon-14 was measured in the dissolved organic carbon (DOC) in ground water and compared with 14 C analyses of dissolved inorganic carbon (DIC). Two field sites were used for this study; the Stripa mine in central Sweden, and the Milk River Aquifer in southern Alberta, Canada. The Stripa mine consists of a Precambrian granite dominated by fracture flow, while the Milk River Aquifer is a Cretaceous sandstone aquifer characterized by porous flow. At both field sites, 14 C analyses of the DOC provide additional information on the ground-water age. Carbon-14 was measured on both the hydrophobic and hydrophilic organic fractions of the DOC. The organic compounds in the hydrophobic and hydrophilic fractions were also characterized. The DOC may originate from kerogen in the aquifer matrix, from soil organic matter in the recharge zone, of from a combination of these two sources. Carbon-14 analyses, along with characterization of the organics, were used to determine this origin. Carbon-14 analyses of the hydrophobic fraction in the Milk River Aquifer suggest a soil origin, while 14 C analyses of the hydrophilic fraction suggest an origin within the Cretaceous sediments (kerogen) or from the shale in contact with the aquifer

  12. [Soil organic carbon fractionation methods and their applications in farmland ecosystem research: a review].

    Zhang, Guo; Cao, Zhi-ping; Hu, Chan-juan

    2011-07-01

    Soil organic carbon is of heterogeneity in components. The active components are sensitive to agricultural management, while the inert components play an important role in carbon fixation. Soil organic carbon fractionation mainly includes physical, chemical, and biological fractionations. Physical fractionation is to separate the organic carbon into active and inert components based on the density, particle size, and its spatial distribution; chemical fractionation is to separate the organic carbon into various components based on the solubility, hydrolizability, and chemical reactivity of organic carbon in a variety of extracting agents. In chemical fractionation, the dissolved organic carbon is bio-available, including organic acids, phenols, and carbohydrates, and the acid-hydrolyzed organic carbon can be divided into active and inert organic carbons. Simulated enzymatic oxidation by using KMnO4 can separate organic carbon into active and non-active carbon. Biological fractionation can differentiate microbial biomass carbon and potential mineralizable carbon. Under different farmland management practices, the chemical composition and pool capacity of soil organic carbon fractions will have different variations, giving different effects on soil quality. To identify the qualitative or quantitative relationships between soil organic carbon components and carbon deposition, we should strengthen the standardization study of various fractionation methods, explore the integrated application of different fractionation methods, and sum up the most appropriate organic carbon fractionation method or the appropriate combined fractionation methods for different farmland management practices.

  13. Carbon and nutrient contents in soils from the Kings River Experimental Watersheds, Sierra Nevada Mountains, California

    D.W. Johnson; C.T. Hunsaker; D.W. Glass; B.M. Rau; B.A. Roath

    2011-01-01

    Soil C and nutrient contents were estimated for eight watersheds in two sites (one high elevation, Bull, and one low elevation, Providence) in the Kings River Experimental Watersheds in the western Sierra Nevada Mountains of California. Eighty-seven quantitative pits were dug to measure soil bulk density and total rock content, while three replicate surface samples...

  14. Contaminant immobilization and nutrient release by carbonized biomass in water and soils

    Chars contain functional surface groups such as carboxylic, phenolic, hydroxyl, carbonyl, and quinones, in addition to porous structures that can impact essential soil properties such as cation exchange capacity (CEC), pH, and retention of water, nutrients, and pesticides. Physical and chemical pro...

  15. Speleothem records of acid sulphate deposition and organic carbon mobilisation

    Wynn, Peter; Fairchild, Ian; Bourdin, Clement; Baldini, James; Muller, Wolfgang; Hartland, Adam; Bartlett, Rebecca

    2017-04-01

    Dramatic increases in measured surface water DOC in recent decades have been variously attributed to either temperature rise, or destabilisation of long-term soil carbon pools following sulphur peak emissions status. However, whilst both drivers of DOC dynamics are plausible, they remain difficult to test due to the restricted nature of the available records of riverine DOC flux (1978 to present), and the limited availability of SO2 emissions inventory data at the regional scale. Speleothems offer long term records of both sulphur and carbon. New techniques to extract sulphur concentrations and isotopes from speleothem calcite have enabled archives of pollution history and environmental acidification to be reconstructed. Due to the large dynamic range in sulphur isotopic values from end member sources (marine aerosol +21 ‰ to continental biogenic emissions -30 ‰) and limited environmental fractionation under oxidising conditions, sulphur isotopes form an ideal tracer of industrial pollution and environmental acidification in the palaeo-record. We couple this acidification history to the carbon record, using organic matter fluorescence and trace metals. Trace metal ratios and abundance can be used to infer the type and size of organic ligand and are therefore sensitive to changes in temperature as a driver of organic carbon processing and biodegradation. This allows fluorescent properties and ratios of trace metals in speleothem carbonate to be used to represent both the flux of organic carbon into the cave as well as the degradation pathway. Here we present some of the first results of this work, exploring sulphur acidification as a mechanistic control on carbon solubility and export throughout the twentieth century.

  16. Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain

    F.S. Peterson; K. Lajtha

    2013-01-01

    Factors influencing soil organic matter (SOM) stabilization and dissolved organic carbon (DOC) content in complex terrain, where vegetation, climate, and topography vary over the scale of a few meters, are not well understood. We examined the spatial correlations of lidar and geographic information system-derived landscape topography, empirically measured soil...

  17. Biotransformation and sorption of trace organic compounds in biological nutrient removal treatment systems.

    Lakshminarasimman, Narasimman; Quiñones, Oscar; Vanderford, Brett J; Campo-Moreno, Pablo; Dickenson, Eric V; McAvoy, Drew C

    2018-05-28

    This study determined biotransformation rates (k bio ) and sorption-distribution coefficients (K d ) for a select group of trace organic compounds (TOrCs) in anaerobic, anoxic, and aerobic activated sludge collected from two different biological nutrient removal (BNR) treatment systems located in Nevada (NV) and Ohio (OH) in the United States (US). The NV and OH facilities operated at solids retention times (SRTs) of 8 and 23 days, respectively. Using microwave-assisted extraction, the biotransformation rates of the chosen TOrCs were measured in the total mixed liquor. Sulfamethoxazole, trimethoprim, and atenolol biotransformed in all three redox regimes irrespective of the activated sludge source. The biotransformation of N, N-diethyl-3-methylbenzamide (DEET), triclosan, and benzotriazole was observed in aerobic activated sludge from both treatment plants; however, anoxic biotransformation of these three compounds was seen only in anoxic activated sludge from NV. Carbamazepine was recalcitrant in all three redox regimes and both sources of activated sludge. Atenolol and DEET had greater biotransformation rates in activated sludge with a higher SRT (23 days), while trimethoprim had a higher biotransformation rate in activated sludge with a lower SRT (8 days). The remaining compounds did not show any dependence on SRT. Lyophilized, heat inactivated sludge solids were used to determine the sorption-distribution coefficients. Triclosan was the most sorptive compound followed by carbamazepine, sulfamethoxazole, DEET, and benzotriazole. The sorption-distribution coefficients were similar across redox conditions and sludge sources. The biotransformation rates and sorption-distribution coefficients determined in this study can be used to improve fate prediction of the target TOrCs in BNR treatment systems. Copyright © 2018. Published by Elsevier B.V.

  18. Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of global Nutrient Export from Watersheds (NEWS) models and their application

    Seitzinger, S.P.; Harrison, J.A.; Dumont, E.L.; Beusen, A.H.W.; Bouwman, A.F.

    2005-01-01

    An overview of the first spatially explicit, multielement (N, P, and C), multiform (dissolved inorganic: DIN, DIP; dissolved organic: DOC, DON, DOP; and particulate: POC, PN, PP) predictive model system of river nutrient export from watersheds (Global Nutrient Export from Watersheds (NEWS)) is

  19. Human and riverine impacts on the dynamics of seawater nutrient and carbon parameters in Kwangyang Bay, South Korea

    Kim, Tae-Wook; Kim, Dongseon; Baek, Seung Ho; Kim, Young Ok

    2015-04-01

    We investigated seawater nutrient and carbon parameters in Kwangyang Bay, South Korea, which has been exposed to significant human influences, in each core month of four seasons for between 2010 and 2012. The survey data were analyzed using multivariate statistics analysis (cluster and factor analysis). As a result, we found that the Seomjin River (the fifth largest river in South Korea) and biological activity, including phytoplankton photosynthesis and bacterial decomposition, were the main factors determining the overall water quality of the bay. However, the impacts of these factors varied both spatially and seasonally, because the factors were linked with the geographical environments and seasonal variations in freshwater discharge. In particular, the Seomjin River was primarily responsible for nitrate, silicate, total alkalinity, and dissolved inorganic carbon, and exhibited a significant impact in the summer. During the past 10 years, nutrient loads from the river and industrial complexes to the bay have decreased. The impacts of this decrease are visible in the phosphate concentration, which has fallen to a third of its initial value. We also examined the potential role of atmospheric nitrogen deposition in nitrogen cycling in the study area.

  20. Distribution of organic matter and plant nutrients in a sal (shorea robusta) coppice plantation

    Kaul, O.N.; Sharma, D.C.; Srivastava, P.B.L.

    The biomass and nutrient content (N, P, K, Ca, Mg) of leaves, twigs, branches, stems and bark were determined for sample trees in a stand in the New Forest, Dehra Dun, coppiced 21 years previously. It was estimated that the removal of stems, branches and bark by harvesting at this age would remove 82-91% of the total nutrients (kg/ha) in the stand.

  1. Soil organic matter dynamics and the global carbon cycle

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-01-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C·yr -1 is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world's soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics

  2. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-01-01

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, f ow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated

  3. Organic carbon production, mineralization and preservation on the Peruvian margin

    Dale, A. W.; Sommer, S.; Lomnitz, U.; Montes, I.; Treude, T.; Gier, J.; Hensen, C.; Dengler, M.; Stolpovsky, K.; Bryant, L. D.; Wallmann, K.

    2014-09-01

    Carbon cycling in Peruvian margin sediments (11° S and 12° S) was examined at 16 stations from 74 m on the inner shelf down to 1024 m water depth by means of in situ flux measurements, sedimentary geochemistry and modeling. Bottom water oxygen was below detection limit down to ca. 400 m and increased to 53 μM at the deepest station. Sediment accumulation rates and benthic dissolved inorganic carbon fluxes decreased rapidly with water depth. Particulate organic carbon (POC) content was lowest on the inner shelf and at the deep oxygenated stations (< 5%) and highest between 200 and 400 m in the oxygen minimum zone (OMZ, 15-20%). The organic carbon burial efficiency (CBE) was unexpectedly low on the inner shelf (< 20%) when compared to a global database, for reasons which may be linked to the frequent ventilation of the shelf by oceanographic anomalies. CBE at the deeper oxygenated sites was much higher than expected (max. 81%). Elsewhere, CBEs were mostly above the range expected for sediments underlying normal oxic bottom waters, with an average of 51 and 58% for the 11° S and 12° S transects, respectively. Organic carbon rain rates calculated from the benthic fluxes alluded to a very efficient mineralization of organic matter in the water column, with a Martin curve exponent typical of normal oxic waters (0.88 ± 0.09). Yet, mean POC burial rates were 2-5 times higher than the global average for continental margins. The observations at the Peruvian margin suggest that a lack of oxygen does not affect the degradation of organic matter in the water column but promotes the preservation of organic matter in marine sediments.

  4. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions.

    Luo, Zhongkui; Feng, Wenting; Luo, Yiqi; Baldock, Jeff; Wang, Enli

    2017-10-01

    Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (r C , Mg C ha -1  yr -1 ). Among these variables, we found that the most influential variables on r C were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on r C , followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining r C . The direct correlation of r C with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process-based SOC models. © 2017 John Wiley & Sons Ltd.

  5. Modelling system dynamics and phytoplankton diversity at Ranchi lake using the carbon and nutrient mass balance equations.

    Mukherjee, B; Nivedita, M; Mukherjee, D

    2014-05-01

    Modelling system dynamics in a hyper-eutrophic lake is quite complex especially with a constant influx of detergents and sewage material which continually changes the state variables and interferes with the assessment of the chemical rhythm occurring in polluted conditions as compared to unpolluted systems. In this paper, a carbon and nutrient mass balance model for predicting system dynamics in a complex environment was studied. Studies were conducted at Ranchi lake to understand the altered environmental dynamics in hyper-eutrophic conditions, and its impact on the plankton community. The lake was monitored regularly for five years (2007 - 2011) and the data collected on the carbon flux, nitrates, phosphates and silicates was used to design a mass balance model for evaluating and predicting the system. The model was then used to correlate the chemical rhythm with that of the phytoplankton dynamics and diversity. Nitrates and phosphates were not limiting (mean nitrate and phosphate concentrations were 1.74 and 0.83 mgl⁻¹ respectively). Free carbon dioxide was found to control the system and, interacting with other parameters determined the diversity and dynamics of the plankton community. N/P ratio determined which group of phytoplankton dominated the community, above 5 it favoured the growth of chlorophyceae while below 5 cyanobacteria dominates. TOC/TIC ratio determined the abundance. The overall system was controlled by the availability of free carbon dioxide which served as a limiting factor.

  6. The Influence of Leaf Fall and Organic Carbon Availability on Nitrogen Cycling in a Headwater Stream

    Thomas, S. A.; Kristin, A.; Doyle, B.; Goodale, C. L.; Gurwick, N. P.; Lepak, J.; Kulkari, M.; McIntyre, P.; McCalley, C.; Raciti, S.; Simkin, S.; Warren, D.; Weiss, M.

    2005-05-01

    The study of allochthonous carbon has a long and distinguished history in stream ecology. Despite this legacy, relatively little is known regarding the influence of leaf litter on nutrient dynamics. We conducted 15N-NO3 tracer additions to a headwater stream in upstate New York before and after autumn leaf fall to assess the influence of leaf litter on nitrogen spiraling. In addition, we amended the stream with labile dissolved organic carbon (as acetate) midway through each experiment to examine whether organic carbon availability differentially stimulated nitrogen cycling. Leaf standing stocks increased from 53 to 175 g dry mass m-2 and discharge more than tripled (6 to 20 L s-1) between the pre- and post-leaf fall period. In contrast, nitrate concentration fell from approximately 50 to less then 10 ug L-1. Despite higher discharge, uptake length was shorter following leaf fall under both ambient (250 and 72 m, respectively) and DOC amended (125 and 45 m) conditions. Uptake velocity increased dramatically following leaf fall, despite a slight decline in the areal uptake rate. Dissolved N2 gas samples were also collected to estimate denitrification rates under each experimental condition. The temporal extent of increased nitrogen retention will also be explored.

  7. Contribution of trees and grasses to ecosystem fluxes of water, carbon, and energy throughout the seasons under different nutrient availability

    El-Madany, T. S.; Migliavacca, M.; Perez-Priego, O.; Luo, Y.; Moreno, G.; Carrara, A.; Kolle, O.; Reichstein, M.

    2017-12-01

    In semi-arid savanna type ecosystems, the carbon and water cycle are closely related to each other. Water availability is the main driver for the development and phenology of the vegetation, especially for annual plants. Depending on tree density, nutrient availability and species the contribution of the tree- and the herbaceous layer to ecosystem fluxes can vary substantially. We present data from an ecosystem scale nutrient manipulation experiment within a Mediterranean savanna type ecosystem which is used for cattle. The footprint areas of two out of three ecosystem eddy co-variance (EC) towers were fertilized with nitrogen (NT) and nitrogen plus phosphorous (NPT) while the third one served as the control tower (CT). At each ecosystem EC-tower an additional herbaceous layer tower was installed that only sampled fluxes from the herbaceous layer. Under certain assumptions flux differences between the ecosystem EC and the herbaceous layer EC systems can be considered as the contribution of the trees to the ecosystem fluxes. Based on phenology of the herbaceous layer estimated through green-chromatic-coordinates from digital imagery the year was separated into spring, senescence, regreening, and winter. The focus of the analysis is (i) the evaluation of the method and how it works throughout the different seasons and (ii) the quantification of the contribution of trees and grasses to ecosystem fluxes of water, carbon, and energy under different environmental conditions and nutrient stoichiometry. The contribution of the trees to total ecosystem fluxes is variable in time. Especially, during the beginning of the senescence period high evapotranspiration rates and largest carbon uptake are measured while the contribution to sensible heat fluxes is largest during the end of the summer. During the regreening and winter the contribution of ET is relatively constant around 0.25 mm d-1. During the peak of the greenness ET and carbon flux of the herbaceous EC tower are

  8. Production and carbon allocation in a clonal Eucalyptus plantation with water and nutrient manipulations

    Jose Luiz Stape; Dan Binkley; Michael G. Ryan

    2008-01-01

    We examined resource limitations on growth and carbon allocation in a fast-growing, clonal plantation of Eucalyptus grandis urophylla in Brazil by characterizing responses to annual rainfall, and response to irrigation and fertililization for 2 years. Productivity measures included gross primary production (GPP), total belowground carbon allocation (...

  9. Minerilization of carbon and nitrogen of organic residues from ...

    Minerilization of carbon and nitrogen of organic residues from selected plants in a tropical cropping system. O M Onuh, HA Okorie. Abstract. No Abstract. Journal of Agriculture and Food Sciences Vol. 3 (1) 2005 pp. 11-24. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  10. Estimation of organic carbon loss potential in north of Iran

    Shahriari, A.; Khormali, F.; Kehl, M.; Welp, G.; Scholz, Ch.

    2009-04-01

    The development of sustainable agricultural systems requires techniques that accurately monitor changes in the amount, nature and breakdown rate of soil organic matter and can compare the rate of breakdown of different plant or animal residues under different management systems. In this research, the study area includes the southern alluvial and piedmont plains of Gorgan River extended from east to west direction in Golestan province, Iran. Samples from 10 soil series and were collected from cultivation depth (0-30 cm). Permanganate-oxidizable carbon (POC) an index of soil labile carbon, was used to show soil potential loss of organic carbon. In this index shows the maximum loss of OC in a given soil. Maximum loss of OC for each soil series was estimated through POC and bulk density (BD). The potential loss of OC were estimated between 1253263 and 2410813 g/ha Carbon. Stable organic constituents in the soil include humic substances and other organic macromolecules that are intrinsically resistant against microbial attack, or that are physically protected by adsorption on mineral surfaces or entrapment within clay and mineral aggregates. However, the (Clay + Silt)/OC ratio had a negative significant (p < 0.001) correlation with POC content, confirming the preserving effect of fine particle.

  11. Development of a Soil Organic Carbon Baseline for Otjozondjupa, Namibia

    Nijbroek, R.; Kempen, B.; Mutua, J.; Soderstrom, M.; Piikki, K.; Hengari, S.; Andreas, A.

    2017-01-01

    Land Degradation Neutrality (LDN) has been piloted in 14 countries and will be scaled up to over 120 countries. As a LDN pilot country, Namibia developed sub-national LDN baselines in Otjozondjupa Region. In addition to the three LDN indicators (soil organic carbon, land productivity and land cover

  12. Organic carbon in the sediments of Mandovi estuary, Goa

    Alagarsamy, R.

    Total organic carbon (TOC) in surficial sediments in Mandovi Estuary, Goa, India varies widely from 0.1 to 3% (av. 1.05%). Highest values of TOC (2.4-3%) lie close to the mouth region and indicate no definite trend in its variation in the estuarine...

  13. Organic carbon stocks in the soils of Brazil

    Batjes, N.H.

    2005-01-01

    Soil organic carbon stocks to 1 m for Brazil, calculated using an updated Soil and Terrain (SOTER) database and simulation of phenoforms, are 65.9-67.5 Pg C, of which 65% is in the Amazonian region of Brazil. Other researchers have obtained similar gross results, despite very different spatial

  14. Evaluation of the soil organic carbon, nitrogen and available ...

    The result obtained indicates that the level of these chemical properties were generally low as compared to standard measures and parameter for ratings soil fertility in the Nigerian Savanna. Keywords: Status of organic carbon, total nitrogen, available phosphorus, top horizons, research farm. Bowen Journal of Agriculture ...

  15. Effects of organic nitrogen and carbon sources on mycelial growth ...

    Grifola umbellate is a famous and expensive Chinese herb medicine and the main medicinal component is polysaccharide mainly produced by its mycelia. Effects of organic nitrogen and carbon resources on mycelial growth and polysaccharides production of a medicinal mushroom, G. umbellate were studied in the ...

  16. Simulation of Long-Term Carbon and Nitrogen Dynamics in Grassland-Based Dairy Farming Systems to Evaluate Mitigation Strategies for Nutrient Losses.

    Ghulam Abbas Shah

    Full Text Available Many measures have been proposed to mitigate gaseous emissions and other nutrient losses from agroecosystems, which can have large detrimental effects for the quality of soils, water and air, and contribute to eutrophication and global warming. Due to complexities in farm management, biological interactions and emission measurements, most experiments focus on analysis of short-term effects of isolated mitigation practices. Here we present a model that allows simulating long-term effects at the whole-farm level of combined measures related to grassland management, animal housing and manure handling after excretion, during storage and after field application. The model describes the dynamics of pools of organic carbon and nitrogen (N, and of inorganic N, as affected by farm management in grassland-based dairy systems. We assessed the long-term effects of delayed grass mowing, housing type (cubicle and sloping floor barns, resulting in production of slurry and solid cattle manure, respectively, manure additives, contrasting manure storage methods and irrigation after application of covered manure. Simulations demonstrated that individually applied practices often result in compensatory loss pathways. For instance, methods to reduce ammonia emissions during storage like roofing or covering of manure led to larger losses through ammonia volatilization, nitrate leaching or denitrification after application, unless extra measures like irrigation were used. A strategy of combined management practices of delayed mowing and fertilization with solid cattle manure that is treated with zeolite, stored under an impermeable sheet and irrigated after application was effective to increase soil carbon stocks, increase feed self-sufficiency and reduce losses by ammonia volatilization and soil N losses. Although long-term datasets (>25 years of farm nutrient dynamics and loss flows are not available to validate the model, the model is firmly based on knowledge of

  17. Nutrients and temperature additively increase stream microbial respiration

    David W. P. Manning; Amy D. Rosemond; Vladislav Gulis; Jonathan P. Benstead; John S. Kominoski

    2017-01-01

    Rising temperatures and nutrient enrichment are co‐occurring global‐change drivers that stimulate microbial respiration of detrital carbon, but nutrient effects on the temperature dependence of respiration in aquatic ecosystems remain uncertain. We measured respiration rates associated with leaf litter, wood, and fine benthic organic matter (FBOM) across...

  18. Spatial distribution of soil organic carbon stocks in France

    M. P. Martin

    2011-05-01

    Full Text Available Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory.

    We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils.

    The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the

  19. A 200 year sedimentary record of progressive eutrophication in lake Greifen (Switzerland): Implications for the origin of organic-carbon-rich sediments

    Hollander, David J.; McKenzie, Judith A.; Lo Ten Haven, H.

    1992-09-01

    Over the past 200 years Lake Greifen, a small lake in northeastern Switzerland, has undergone dramatic changes in primary productivity and eutrophication due to increased nutrient supply from agricultural activity and industrialization. A 40 year historical record of the water-column chemistry indicates that productivity and eutrophication reached a maximum in 1974, after which stricter regulations on the input of nutrients resulted in a progressive decrease. Collected cores show the sedimentary expression of this anthropogenically induced eutrophication by a well-developed annual sedimentation and by enhanced values of total organic carbon, organic-carbon accumulation rates, and hydrogen indices (HI) of the kerogens. Analyses of the carbon isotopic composition of sedimentary carbonates and organic matter reveal that the fractionation between these two phases varies with the HI of kerogens. This observation is explicable in terms of changing productivity and preservation of the organic matter, and the CO2(aq) budget of the water body. We propose that if high primary productivity were primarily responsible for the preservation and accumulation of organic matter, then a negative correlation will occur between Δδ13Ccalcite-organic matter (Δδ13Ccal-om) and HI values. In an environment with relatively low to moderate productivity but with bottom-water anoxia, a positive correlation will exist between Δδ13Ccal-om and HI values. This study of Lake Greifen has implications for understanding paleoenvironmental controls on ancient organic-carbon-rich sediments.

  20. Forest nutrient and carbon pools at Walker Branch watershed: changes during a 21-year period

    Carl C. Trettin; D.W. Johnson; D.E. Todd

    1999-01-01

    A 21-yr perspective on changes in nutrient and C pools on undisturbed upland forest sites is provided. Plots originally representing four cover types have been sampled three times. On each plot, forest biomass, forest floor, and soil, to a depth of 60 cm, were measured, sampled, and analyzed for Ca, Mg, C, N, and P. Exchangeable soil Ca and Mg have declined in most...

  1. Targeting the pains of food insecurity and malnutrition among internally displaced persons with nutrient synergy and analgesics in organ meat.

    Fayemi, Peter O; Muchenje, Voster; Yetim, Hasan; Ahhmed, Abdulatef

    2018-02-01

    Living with pain is one of the distressing effects of food insecurity and malnutrition among millions of internally displaced persons (IDPs) worldwide. Vulnerability to emotional pain, metabolic imbalance, chronic illnesses and non-communicable diseases by IDPs are associated with stressed livelihood and restricted access to balanced diets in their camps. Tackling the complexity of issues related to internal displacement is challenging as 45% are globally trapped in protracted conditions. In this review, a diet-based intervention is proposed considering the potential benefits of nutrient synergy and analgesic constituents in organ meat. Providing an affordable, value added and well packaged nutrient dense diet is suggested to meet daily protein and micronutrient requirements from organ meat. Also, unlocking health-promoting bioactive substances and analgesics in restructured organ meat product is proposed as personalized dietary remedy to exert opioid bioactivity in food matrix. Exploiting the nutrient synergy of this animal by-product will not only improve the nutritional status or wellbeing but also raise the composite score of dietary diversity or food security index among IDPs by 2030. Copyright © 2016. Published by Elsevier Ltd.

  2. Yield, Quality, and Nutrient Concentrations of Strawberry (Fragaria ×ananassa Duch. cv. 'Sonata') Grown with Different Organic Fertilizer Strategies.

    Pokhrel, Bhaniswor; Laursen, Kristian Holst; Petersen, Karen Koefoed

    2015-06-17

    Four combinations of two solid organic fertilizers (Monterra Malt and chicken manure) applied before planting and two liquid organic fertilizers (broad bean and Pioner Hi-Fruit/K-Max) given through drip irrigation (fertigation) were compared with inorganic fertilization regarding growth, yield, nutrient concentration, and fruit quality of strawberries. Broad bean fertigation combined with Monterra Malt resulted in a similar fruit yield as inorganic fertilizer and a higher yield than Monterra Malt combined with Pioner; however, total soluble solids, firmness, and titratable acid were improved with Pioner fertigation, although these parameters were more affected by harvest time than the applied fertilizers. The concentrations of most nutrients in fruits and leaves were higher in inorganically fertigated plants. The reductions in fruit yield in three of four treatments and fruit weight in all organic treatments may be due to a combination of the following conditions in the root zone: (1) high pH and high NH4(+)/NO3(-) ratio; (2) high EC and/or high NaCl concentration; (3) cation imbalance; and (4) nutrient deficiency.

  3. Effect of Pseudomonas and Bacillus bacteria on Yield and Nutrient Uptake in Comparison with Chemical and Organic Fertilizers in Wheat

    A. Fallah Nosrat Abad

    2015-06-01

    Full Text Available The high cost of fertilizers in farming systems, soil pollution and degradation of soil are factors that caused to full use of available renewable nutrient sources of plant (organic and biological with optimal application of fertilizers in order to maintain fertility, structure, biological activity, exchange capacity and water-holding capacity of the water in soil. Therefore, in recent years, according to investigators biofertilizers and organic farming as an alternative to chemical fertilizers has been drawn. Through this study, we examined the effects of triple superphosphate, organic matters and phosphate solubilizing microorganisms on quantitative and qualitative yield of wheat and nutrient uptake. The experiment was carried out in the factorial based on randomized complete block design. The factors were: 1-phosphate solubilizing bacteria in three levels including control, Pseudomonas Putida and Bacillus Coagulans bacteria, 2- triple superphosphate in five levels of 0, 25%, 50%, 75% and 100% and 3-organic matter in 2 levels of 0 and 15 ton/ha in the soil with high phosphorous accessibility (13 mg/kg soil but lower than sufficient limit for plant 15 mg/kg soil. The results showed that the highest amount of yield has been recorded in Pseudomonas Putida bacteria treatment with organic matter and 25% phosphate fertilizer. As a result, at the conditions of this experiment phosphate solubilizing bacteria and organic matter significantly had higher yield than control and their combination with phosphate fertilizer had significant effect on reducing phosphate fertilizer use.

  4. Latitudinal gradients in degradation of marine dissolved organic carbon.

    Carol Arnosti

    Full Text Available Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC. The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars. Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO(2 reservoir, such a change could profoundly affect the global carbon cycle.

  5. Organic carbon production, mineralisation and preservation on the Peruvian margin

    Dale, A. W.; Sommer, S.; Lomnitz, U.; Montes, I.; Treude, T.; Liebetrau, V.; Gier, J.; Hensen, C.; Dengler, M.; Stolpovsky, K.; Bryant, L. D.; Wallmann, K.

    2015-03-01

    Carbon cycling in Peruvian margin sediments (11 and 12° S) was examined at 16 stations, from 74 m water depth on the middle shelf down to 1024 m, using a combination of in situ flux measurements, sedimentary geochemistry and modelling. Bottom water oxygen was below detection limit down to ca. 400 m and increased to 53 μM at the deepest station. Sediment accumulation rates decreased sharply seaward of the middle shelf and subsequently increased at the deep stations. The organic carbon burial efficiency (CBE) was unusually low on the middle shelf (60%) at the deep oxygenated sites. In line with other studies, CBE was elevated under oxygen-deficient waters in the mid-water oxygen minimum zone. Organic carbon rain rates calculated from the benthic fluxes alluded to efficient mineralisation of organic matter in the water column compared to other oxygen-deficient environments. The observations at the Peruvian margin suggest that a lack of oxygen does not greatly affect the degradation of organic matter in the water column but promotes the preservation of organic matter in sediments.

  6. Methodology guideline. Organization of conference neutral in carbon; Guide methodologique. Organisation de conference neutre en carbone

    NONE

    2007-07-01

    In the framework of the Climate Plan elaborated by the french government, the neutral carbon principle must be applied to conference organization and the international travels. This guide has two main functions: heighten to allow everybody to understand the climate change impacts and problems, and bring some recommendations and tools to implement a neutral carbon conference (transport, welcome, accommodation and meal). (A.L.B.)

  7. Latitudinal gradients in degradation of marine dissolved organic carbon

    Arnosti, Carol; Steen, Andrew; Ziervogel, Kai

    2011-01-01

    unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide information......Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely...... about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76 ºS to 79 ºN to hydrolyze a range of high...

  8. Carbon transfer from dissolved organic carbon to the cladoceran Bosmina: a mesocosm study

    Tang Yali

    2017-01-01

    Full Text Available A mesocosm study illuminated possible transfer pathways for dissolved organic carbon from the water column to zooplankton. Organic carbon was added as 13C enriched glucose to 15 mesocosms filled with natural lake water. Stable isotope analysis and phospholipid fatty acids-based stable isotope probing were used to trace the incorporation of 13C into the cladoceran Bosmina and its potential food items. Glucose-C was shown to be assimilated into phytoplankton (including fungi and heterotrophic protists, bacteria and Bosmina, all of which became enriched with 13C during the experiment. The study suggests that bacteria play an important role in the transfer of glucose-C to Bosmina. Furthermore, osmotic algae, fungi and heterotrophic protists might also contribute to the isotopic signature changes observed in Bosmina. These findings help to clarify the contribution of dissolved organic carbon to zooplankton and its potential pathways.

  9. Differential response of carbon cycling to long-term nutrient input and altered hydrological conditions in a continental Canadian peatland

    Berger, Sina; Praetzel, Leandra S. E.; Goebel, Marie; Blodau, Christian; Knorr, Klaus-Holger

    2018-02-01

    Peatlands play an important role in global carbon cycling, but their responses to long-term anthropogenically changed hydrologic conditions and nutrient infiltration are not well known. While experimental manipulation studies, e.g., fertilization or water table manipulations, exist on the plot scale, only few studies have addressed such factors under in situ conditions. Therefore, an ecological gradient from the center to the periphery of a continental Canadian peatland bordering a eutrophic water reservoir, as reflected by increasing nutrient input, enhanced water level fluctuations, and increasing coverage of vascular plants, was used for a case study of carbon cycling along a sequence of four differently altered sites. We monitored carbon dioxide (CO2) and methane (CH4) surface fluxes and dissolved inorganic carbon (DIC) and CH4 concentrations in peat profiles from April 2014 through September 2015. Moreover, we studied bulk peat and pore-water quality and we applied δ13C-CH4 and δ13C-CO2 stable isotope abundance analyses to examine dominant CH4 production and emission pathways during the growing season of 2015. We observed differential responses of carbon cycling at the four sites, presumably driven by abundances of plant functional types and vicinity to the reservoir. A shrub-dominated site in close vicinity to the reservoir was a comparably weak sink for CO2 (in 1.5 years: -1093 ± 794, in 1 year: +135 ± 281 g CO2 m-2; a net release) as compared to two graminoid-moss-dominated sites and a moss-dominated site (in 1.5 years: -1552 to -2260 g CO2 m-2, in 1 year: -896 to -1282 g CO2 m-2). Also, the shrub-dominated site featured notably low DIC pore-water concentrations and comparably 13C-enriched CH4 (δ13C- CH4: -57.81 ± 7.03 ‰) and depleted CO2 (δ13C-CO2: -15.85 ± 3.61 ‰) in a more decomposed peat, suggesting a higher share of CH4 oxidation and differences in predominant methanogenic pathways. In comparison to all other sites, the graminoid

  10. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe

    Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.

    2018-03-01

    Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global

  11. [Impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain].

    Li, Jian-Lin; Jiang, Chang-Sheng; Hao, Qing-Ju

    2014-12-01

    Soil aggregates have the important effect on soil fertility, soil quality and the sustainable utilization of soil, and they are the mass bases of water and fertilizer retention ability of soil and the supply or release of soil nutrients. In this paper, in order to study the impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain, we separated four land use types of soil, which are woodland, abandoned land, orchard and sloping farmland by wet sieving method, then we got the proportion of large macroaggregates (> 2 mm), small macroaggregates (0.25-2 mm), microaggregates (53 μm-0.25 mm) and silt + clay (soil depth of 0-60 cm and calculated the total content of organic carbon of all aggregates fraction in each soil. The results showed that reclamation of woodland will lead to fragmentation of macroaggregates and deterioration of soil structure, and the proportion of macroaggrgates (> 0.25 mm) were 44.62% and 32.28% respectively in the soils of orchard and sloping farmland, which reduced 38.58% (P soil fraction from silt + clay to large macroaggregates and small macroaggregates, so it will improve the soil structure. MWD (mean weight diameter) and GMD (geometric mean diameter) are important indicators of evaluating the stability of soil aggregates. We found the MWD and GWD in soil depth of 0-60 cm in orchards and sloping farmland were significantly lower than those in woodland (P soil aggregates, and they will be separated more easily by water. However, after changing the sloping farmland to abandoned land will enhance the stability of soil aggregates, and improve the ability of soil to resist external damage. The organic carbon content in each soil aggregate of four land use types decreased with the increase of soil depth. In soil depth of 0-60 cm, the storage of organic carbon of large macroaggregates in each soil are in orders of woodland (14.98 Mg x hm(-2)) > abandoned land (8.71 Mg x hm(-2)) > orchard (5.82 Mg x hm(-2

  12. Soil organic carbon assessments in cropping systems using isotopic techniques

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, is probably due to the presence of deep roots under pastures in ICLS. Delta carbon-13 values for 0-5 cm were -22.9, -21.2 and -19.9 per mil for REF, ICLS and CCS, respectively (Pis explained by the presence of tree species with high lignin content in natural vegetation. Lignin has lower delta carbon-13 compared to cellulose (dominating in crops and pastures), which is present in greater proportion in plant residues of

  13. Attenuation of bulk organic matter, nutrients (N and P), and pathogen indicators during soil passage: Effect of temperature and redox conditions in simulated soil aquifer treatment (SAT)

    Abel, Chol D T

    2012-07-22

    Soil aquifer treatment (SAT) is a costeffective natural wastewater treatment and reuse technology. It is an environmentally friendly technology that does not require chemical usage and is applicable to both developing and developed countries. However, the presence of organic matter, nutrients, and pathogens poses a major health threat to the population exposed to partially treated wastewater or reclaimed water through SAT. Laboratory-based soil column and batch experiments simulating SAT were conducted to examine the influence of temperature variation and oxidation-reduction (redox) conditions on removal of bulk organic matter, nutrients, and indicator microorganisms using primary effluent. While an average dissolved organic carbon (DOC) removal of 17.7 % was achieved in soil columns at 5 °C, removal at higher temperatures increased by 10 % increments with increase in temperature by 5 °C over the range of 15 to 25 °C. Furthermore, soil column and batch experiments conducted under different redox conditions revealed higher DOC removal in aerobic (oxic) experiments compared to anoxic experiments. Aerobic soil columns exhibited DOC removal 15 % higher than that achieved in the anoxic columns, while aerobic batch showed DOC removal 7.8 % higher than the corresponding anoxic batch experiments. Ammonium-nitrogen removal greater than 99 % was observed at 20 and 25 °C, while 89.7 % was removed at 15 °C, but the removal substantially decreased to 8.8 % at 5 °C. While ammonium-nitrogen was attenuated by 99.9 % in aerobic batch reactors carried out at room temperature, anoxic experiments under similar conditions revealed 12.1 % ammonium-nitrogen reduction, corresponding to increase in nitrate-nitrogen and decrease in sulfate concentration. © Springer Science+Business Media B.V. 2012.

  14. Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes

    Jäckel, N.; Weingarth, D.; Zeiger, M.; Aslan, M.; Grobelsek, I.; Presser, V.

    2014-12-01

    This study investigates carbon onions (∼400 m2 g-1) as a conductive additive for supercapacitor electrodes of activated carbon and compares their performance with carbon black with high or low internal surface area. We provide a study of the electrical conductivity and electrochemical behavior between 2.5 and 20 mass% addition of each of these three additives to activated carbon. Structural characterization shows that the density of the resulting film electrodes depends on the degree of agglomeration and the amount of additive. Addition of low surface area carbon black (∼80 m2 g-1) enhances the power handling of carbon electrodes but significantly lowers the specific capacitance even when adding small amounts of carbon black. A much lower decrease in specific capacitance is observed for carbon onions and the best values are seen for carbon black with a high surface area (∼1390 m2 g-1). The overall performance benefits from the addition of any of the studied additives only at either high scan rates and/or electrolytes with high ion mobility. Normalization to the volume shows a severe decrease in volumetric capacitance and only at high current densities nearing 10 A g-1 we can see an improvement of the electrode capacitance.

  15. Aged riverine particulate organic carbon in four UK catchments

    Adams, Jessica L.; Tipping, Edward; Bryant, Charlotte L.; Helliwell, Rachel C.; Toberman, Hannah; Quinton, John

    2015-01-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO 14 C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO 14 C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 14 C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO 14 C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high- 14 C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO 14 C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO 14 C in rivers draining catchments with low erosion rates. - Highlights:

  16. Aged riverine particulate organic carbon in four UK catchments

    Adams, Jessica L., E-mail: jesams@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); Tipping, Edward, E-mail: et@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); Bryant, Charlotte L., E-mail: charlotte.bryant@glasgow.ac.uk [NERC Radiocarbon Facility, East Kilbride G75 0QF, Scotland (United Kingdom); Helliwell, Rachel C., E-mail: rachel.helliwell@hutton.ac.uk [The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH Scotland (United Kingdom); Toberman, Hannah, E-mail: hannahtoberman@hotmail.com [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP (United Kingdom); Quinton, John, E-mail: j.quinton@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2015-12-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO{sup 14}C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO{sup 14}C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 {sup 14}C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO{sup 14}C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high-{sup 14}C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO{sup 14}C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO{sup 14}C in rivers draining catchments with low erosion rates

  17. Investigating the Effect of Livestock Grazing and Associated Plant Community Shifts on Carbon and Nutrient Cycling in Alberta, Canada

    Hewins, D. B.; Chuan, S.; Stolnikova, E.; Bork, E. W.; Carlyle, C. N.; Chang, S. X.

    2015-12-01

    Grassland ecosystems are ubiquitous across the globe covering an estimated 40 % of Earth's terrestrial landmass. These ecosystems are widely valued for providing forage for domestic livestock and a suite of important ecosystem goods and services including carbon (C) storage. Despite storing more than 30 % of soil C globally, the effect of both livestock grazing and the associated change in plant community structure in response to grazing on C and nutrient cycling remains uncertain. To gain a quantitative understanding of the direct and indirect effects of livestock grazing on C and nutrient cycling, we established study sites at 15 existing site localities with paired long-term grazing (ca. 30 y) and non-grazed treatments (totaling 30 unique plant communities). Our sites were distributed widely across Alberta in three distinct grassland bioclimatic zones allowing us to make comparisons across the broad range of climate variability typical of western Canadian grasslands. In each plant community we decomposed 5 common plant species that are known to increase or decrease in response to grazing pressure, a unique plant community sample, and a cellulose paper control. We measured mass loss, initial lignin, C and N concentrations at 0, 1, 3, 6 and 12 months of field incubation. In addition we assayed hydrolytic and oxidative extracellular enzymes associated with for C (n= 5 hydrolytic; phenoloxidase and peroxidase) and nutrients (i.e. N and P; n=1 ea.) cycling from each litter sample at each collection. Our results suggest that by changing the plant community structure, grazing can affect rates of decomposition and associated biogeochemical cycling by changing plant species and associated litter inputs. Moreover, measures of microbial function are controlled by site-specific conditions (e.g. temperature and precipitation), litter chemistry over the course of our incubation.

  18. Dynamics of organic carbon losses by water erosion after biocrust removal

    Cantón Yolanda

    2014-12-01

    Full Text Available In arid and semiarid ecosystems, plant interspaces are frequently covered by communities of cyanobacteria, algae, lichens and mosses, known as biocrusts. These crusts often act as runoff sources and are involved in soil stabilization and fertility, as they prevent erosion by water and wind, fix atmospheric C and N and contribute large amounts of C to soil. Their contribution to the C balance as photosynthetically active surfaces in arid and semiarid regions is receiving growing attention. However, very few studies have explicitly evaluated their contribution to organic carbon (OC lost from runoff and erosion, which is necessary to ascertain the role of biocrusts in the ecosystem C balance. Furthermore, biocrusts are not resilient to physical disturbances, which generally cause the loss of the biocrust and thus, an increase in runoff and erosion, dust emissions, and sediment and nutrient losses. The aim of this study was to find out the influence of biocrusts and their removal on dissolved and sediment organic carbon losses. One-hour extreme rainfall simulations (50 mm h-1 were performed on small plots set up on physical soil crusts and three types of biocrusts, representing a development gradient, and also on plots where these crusts were removed from. Runoff and erosion rates, dissolved organic carbon (DOC and organic carbon bonded to sediments (SdOC were measured during the simulated rain. Our results showed different SdOC and DOC for the different biocrusts and also that the presence of biocrusts substantially decreased total organic carbon (TOC (average 1.80±1.86 g m-2 compared to physical soil crusts (7.83±3.27 g m-2. Within biocrusts, TOC losses decreased as biocrusts developed, and erosion rates were lower. Thus, erosion drove TOC losses while no significant direct relationships were found between TOC losses and runoff. In both physical crusts and biocrusts, DOC and SdOC concentrations were higher during the first minutes after runoff

  19. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    Kumblad, Linda [Stockholm Univ. (Sweden). Dept. of Systems Ecology; Kautsky, Ulrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2004-09-01

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment.

  20. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    Kumblad, Linda

    2004-09-01

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment

  1. A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon.

    Kipka, Undine; Di Toro, Dominic M

    2011-09-01

    Predicting the association of contaminants with both particulate and dissolved organic matter is critical in determining the fate and bioavailability of chemicals in environmental risk assessment. To date, the association of a contaminant to particulate organic matter is considered in many multimedia transport models, but the effect of dissolved organic matter is typically ignored due to a lack of either reliable models or experimental data. The partition coefficient to dissolved organic carbon (K(DOC)) may be used to estimate the fraction of a contaminant that is associated with dissolved organic matter. Models relating K(DOC) to the octanol-water partition coefficient (K(OW)) have not been successful for many types of dissolved organic carbon in the environment. Instead, linear solvation energy relationships are proposed to model the association of chemicals with dissolved organic matter. However, more chemically diverse K(DOC) data are needed to produce a more robust model. For humic acid dissolved organic carbon, the linear solvation energy relationship predicts log K(DOC) with a root mean square error of 0.43. Copyright © 2011 SETAC.

  2. Retardation of volatile organic compounds in ground water in low organic carbon sediments

    Hoffman, F.

    1995-04-01

    It is postulated that adsorption onto aquifer matrix surfaces is only one of the processes that retard contaminants in ground water in unconsolidated sediments; others include hydrodynamic dispersion, abiotic/biotic degradation, matrix diffusion, partitioning to organic carbon, diffusion into and retention in dead-end pores, etc. This work aims at these processes in defining the K d of VOCs in sediments with low organic carbon content. Experiments performed include an initial column experiment for VOC (TCE and perchloroethylene(PCE)) retardation tests on geological materials, PCE and TCE data from LLNL sediments, and a preliminary multilayer sampler experiment. The VOC K d s in low organic carbon permeable aquifer materials are dependent on the VOC composition and independent of aquifer grain size, indicating that sorption was not operative and that the primary retarding factors are diffusion controlled. The program of future experiments is described

  3. Advancing understanding of the fluvial export of organic matter through high-resolution profiling of dissolved organic carbon.

    Waldron, S.; Drew, S.; Gilvear, D.; Murray, H.; Heal, K.

    2012-04-01

    Quantifying the natural variation (complexity) of a system remains an enduring scientific challenge in better understanding controls on surface water quality. This characterisation is needed in order to reveal controlling processes, such as dilution, and also to identify unusual load profiles. In trying to capture that natural variation we still rely largely on concentration time series (and associated export budgets) generated from manual spot sampling, or from samples collected by autosamplers - approaches which are unlikely to provide the high temporal resolution of parameter concentration required. Now however, advances in sensor technology are helping us address this challenge. Here we present detailed dissolved organic carbon (DOC) export profiles from a small upland river (9.4 km sq.), generated since June 2011 by semi-continuous logging of UV-vis absorption (200-750 nm, every 2.5 nm) every 30 minutes. Observed increases in the concentration of the DOC, [DOC], in freshwaters have prompted significant research to understand the cause and consequences of increased export: higher levels of DOC require additional water purification of potable sources; increased aquatic export may represent a reduction in terrestrial C-soil sequestration; changes in light penetration can affect the heterotrophic / autotrophic balance in surface waters and this has consequences for the food web structure; increased aquatic export may also result in increased carbon dioxide evasion. Additionally, C export is often linked to nutrient export: we have observed statistically significant stoichiometric relationships between DOC and soluble reactive phosphorus (SRP) concentrations, thus understanding better this parameters offers insight into export of other nutrient and the source of material from which these dissolved compounds are produced; this may be particulate. Our Scottish study site is interesting because there are multiple processes that can contribute to DOC and other nutrient

  4. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes.

    Zhang, Shujuan; Shao, Ting; Karanfil, Tanju

    2011-01-01

    Understanding the influence of natural organic matter (NOM) on synthetic organic contaminant (SOC) adsorption by carbon nanotubes (CNTs) is important for assessing the environmental implications of accidental CNT release and spill to natural waters, and their potential use as adsorbents in engineered systems. In this study, adsorption of two SOCs by three single-walled carbon nanotubes (SWNTs), one multi-walled carbon nanotube (MWNT), a microporous activated carbon fiber (ACF) [i.e., ACF10] and a bimodal porous granular activated carbon (GAC) [i.e., HD4000] was compared in the presence and absence of NOM. The NOM effect was found to depend strongly on the pore size distribution of carbons. Minimal NOM effect occurred on the macroporous MWNT, whereas severe NOM effects were observed on the microporous HD4000 and ACF10. Although the single-solute adsorption capacities of the SWNTs were much lower than those of HD4000, in the presence of NOM the SWNTs exhibited adsorption capacities similar to those of HD4000. Therefore, if released into natural waters, SWNTs can behave like an activated carbon, and will be able to adsorb, carry, and transfer SOCs to other systems. However, from an engineering application perspective, CNTs did not exhibit a major advantage, in terms of adsorption capacities, over the GAC and ACF. The NOM effect was also found to depend on molecular properties of SOCs. NOM competition was more severe on the adsorption of 2-phenylphenol, a nonplanar and hydrophilic SOC, than phenanthrene, a planar and hydrophobic SOC, tested in this study. In terms of surface chemistry, both adsorption affinity to SOCs and NOM effect on SOC adsorption were enhanced with increasing hydrophobicity of the SWNTs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. An improved method for quantitatively measuring the sequences of total organic carbon and black carbon in marine sediment cores

    Xu, Xiaoming; Zhu, Qing; Zhou, Qianzhi; Liu, Jinzhong; Yuan, Jianping; Wang, Jianghai

    2018-01-01

    Understanding global carbon cycle is critical to uncover the mechanisms of global warming and remediate its adverse effects on human activities. Organic carbon in marine sediments is an indispensable part of the global carbon reservoir in global carbon cycling. Evaluating such a reservoir calls for quantitative studies of marine carbon burial, which closely depend on quantifying total organic carbon and black carbon in marine sediment cores and subsequently on obtaining their high-resolution temporal sequences. However, the conventional methods for detecting the contents of total organic carbon or black carbon cannot resolve the following specific difficulties, i.e., (1) a very limited amount of each subsample versus the diverse analytical items, (2) a low and fluctuating recovery rate of total organic carbon or black carbon versus the reproducibility of carbon data, and (3) a large number of subsamples versus the rapid batch measurements. In this work, (i) adopting the customized disposable ceramic crucibles with the microporecontrolled ability, (ii) developing self-made or customized facilities for the procedures of acidification and chemothermal oxidization, and (iii) optimizing procedures and carbon-sulfur analyzer, we have built a novel Wang-Xu-Yuan method (the WXY method) for measuring the contents of total organic carbon or black carbon in marine sediment cores, which includes the procedures of pretreatment, weighing, acidification, chemothermal oxidation and quantification; and can fully meet the requirements of establishing their highresolution temporal sequences, whatever in the recovery, experimental efficiency, accuracy and reliability of the measurements, and homogeneity of samples. In particular, the usage of disposable ceramic crucibles leads to evidently simplify the experimental scenario, which further results in the very high recovery rates for total organic carbon and black carbon. This new technique may provide a significant support for

  6. Dissolved Organic Carbon and Natural Terrestrial Sequestration Potential in Volcanic Terrain, San Juan Mountains, Colorado

    Yager, D. B.; Burchell, A.; Johnson, R. H.; Kugel, M.; Aiken, G.; Dick, R.

    2009-12-01

    The need to reduce atmospheric CO2 levels has stimulated studies to understand and quantify carbon sinks and sources. Soils represent a potentially significant natural terrestrial carbon sequestration (NTS) reservoir. This project is part of a collaborative effort to characterize carbon (C) stability in temperate soils. To examine the potential for dissolved organic carbon (DOC) values as a qualitative indicator of C-stability, peak-flow (1500 ft3/s) and low-flow (200 ft3/s) samples from surface and ground waters were measured for DOC. DOC concentrations are generally low. Median peak-flow values from all sample sites (mg/L) were: streams (0.9); seeps (1.2); wells (0.45). Median low-flow values were: streams (0.7); seeps (0.75); wells (0.5). Median DOC values decrease between June and September 0.45 mg/L for seeps, and 0.2 mg/L for streams. Elevated DOC in some ground waters as compared to surface waters indicates increased contact time with soil organic matter. Elevated peak-flow DOC in areas with propylitically-altered bedrocks, composed of a secondary acid neutralizing assemblage of calcite-chlorite-epidote, reflects increased microbial and vegetation activity as compared to reduced organic matter accumulation in highly-altered terrain composed of an acid generating assemblage with abundant pyrite. Waters sampled in propylitically-altered bedrock terrain exhibit the lowest values during low-flow and suggest bedrock alteration type may influence DOC. Previous studies revealed undisturbed soils sampled have 2 to 6 times greater total organic soil carbon (TOSC) than global averages. Forest soils underlain by intermediate to mafic volcanic bedrock have the highest C (34.15 wt%), C: N (43) and arylsulfatase enzyme activity (ave. 278, high 461 µg p-nitrophenol/g/h). Unreclaimed mine sites have the lowest C (0 to 0.78 wt%), and arylsulfatase enzyme activity (0 to 41). Radiocarbon dates on charcoal collected from paleo-burn horizons illustrate Rocky Mountain soils may

  7. Simultaneous attenuation of pharmaceuticals, organic matter, and nutrients in wastewater effluent through managed aquifer recharge: Batch and column studies.

    Im, Huncheol; Yeo, Inseol; Maeng, Sung Kyu; Park, Chul Hwi; Choi, Heechul

    2016-01-01

    Batch and column experiments were conducted to evaluate the removal of organic matter, nutrients, and pharmaceuticals and to identify the removal mechanisms of the target contaminants. The sands used in the experiments were obtained from the Youngsan River located in South Korea. Neutral and cationic pharmaceuticals (iopromide, estrone, and trimethoprim) were removed with efficiencies greater than 80% from different sand media during experiments, due to the effect of sorption between sand and pharmaceuticals. However, the anionic pharmaceuticals (sulfamethoxazole, ketoprofen, ibuprofen, and diclofenac) were more effectively removed by natural sand, compared to baked sand. These observations were mainly attributed to biodegradation under natural conditions of surface organic matter and ATP concentrations. The removal of organic matter and nitrogen was also found to increase under biotic conditions. Therefore, it is indicated that biodegradation plays an important role and act as major mechanisms for the removal of organic matter, nutrients, and selected pharmaceuticals during sand passage and the managed aquifer recharge, which is an effective treatment method for removing target contaminants. However, the low removal efficiencies of pharmaceuticals (e.g., carbamazepine and sulfamethoxazole) require additional processes (e.g., AOPs, NF and RO membrane), a long residence time, and long travel distance for increasing the removal efficiencies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Phytoplankton variation and its relation to nutrients and allochthonous organic matter in a coastal lagoon on the Gulf of Mexico

    Aké-Castillo, José A.; Vázquez, Gabriela

    2008-07-01

    In tropical and subtropical zones, coastal lagoons are surrounded by mangrove communities which are a source of high quantity organic matter that enters the aquatic system through litter fall. This organic matter decomposes, becoming a source of nutrients and other substances such as tannins, fulvic acids and humic acids that may affect the composition and productivity of phytoplankton communities. Sontecomapan is a coastal lagoon located in the southern Gulf of Mexico, which receives abundant litter fall from mangrove. To study the phytoplankton composition and its variation in this lagoon from October 2002 to October 2003, we evaluated the concentrations of dissolved folin phenol active substances (FPAS) as a measure of plant organic matter, salinity, temperature, pH, O 2, N-NH 4+, N-NO 3-, P-PO 43-, Si-SiO 2, and phytoplanktonic cell density in different mangrove influence zones including the three main rivers that feed the lagoon. Nutrients concentrations depended on freshwater from rivers, however these varied seasonally. Concentrations of P-PO 43-, N-NH 4+ and FPAS were the highest in the dry season, when maximum mangrove litter fall is reported. Variation of these nutrients seemed to depend on the internal biogeochemical processes of the lagoon. Blooms of diatoms ( Skeletonema spp., Cyclotella spp. and Chaetoceros holsaticus) and dinoflagellates ( Peridinium aff. quinquecorne, Prorocentrum cordatum) occurred seasonally and in the different mangrove influence zones. The high cell densities in these zones and the occurrence of certain species and its ordination along gradient of FPAS in a canonical correspondence analysis, suggest that plant organic matter (i.e. mangrove influence) may contribute to phytoplankton dynamics in Sontecomapan lagoon.

  9. Leaching of soils during laboratory incubations does not affect soil organic carbon mineralisation but solubilisation.

    González-Domínguez, Beatriz; Studer, Mirjam S; Hagedorn, Frank; Niklaus, Pascal A; Abiven, Samuel

    2017-01-01

    Laboratory soil incubations provide controlled conditions to investigate carbon and nutrient dynamics; however, they are not free of artefacts. As carbon and nitrogen cycles are tightly linked, we aimed at investigating whether the incubation-induced accumulation of mineral nitrogen (Nmin) biases soil organic carbon (SOC) mineralisation. For this, we selected two soils representative of the C:N ratio values found in European temperate forests, and applied two incubation systems: 'closed' beakers and 'open' microlysimeters. The latter allowed leaching the soil samples during the incubation. By the end of the 121-day experiment, the low C:N soil significantly accumulated more Nmin in beakers (5.12 g kg-1 OC) than in microlysimeters (3.00 g kg-1 OC) but there was not a significant difference in SOC mineralisation at any point of the experiment. On the other hand, Nmin did not accumulate in the high C:N soil but, by the end of the experiment, leaching had promoted 33.9% more SOC solubilisation than beakers. Therefore, we did not find evidence that incubation experiments introduce a bias on SOC mineralisation. This outcome strengthens results from soil incubation studies.

  10. Organic-inorganic hybrid carbon dots for cell imaging

    Liu, Huan; Zhang, Hongwen; Li, Jiayu; Tang, Yuying; Cao, Yu; Jiang, Yan

    2018-04-01

    In this paper, nitrogen-doped carbon dots (CDs) had been synthesized directly by one-step ultrasonic treatment under mild conditions. During the functionalization process, Octa-aminopropyl polyhedral oligomeric silsesquioxane hydrochloride salt (OA-POSS) was used as stabilizing and passivation agent, which lead to self-assembling of CDs in aqueous medium solution. OA-POSS was obtained via hydrolytic condensation of γ-aminopropyl triethoxy silane (APTES). The average size of CDs prepared was approximately 3.3 nm with distribution between 2.5 nm and 4.5 nm. The prepared organic-inorganic hybrid carbon dots have several characteristics such as photoluminescence emission wavelength, efficient cellular uptake, and good biocompatibility. The results indicate that OA-POSS can maintain the fluorescence properties of the carbon dots effectively, and reduced cytotoxicity provides the possibility for biomedical applications. More than 89% of the Hela cells were viable when incubated with 2 mg ml‑1 or lesser organic-inorganic hybrid carbon dots. Thus, it provides a potential for multicolor imaging with HeLa cells.

  11. Dilution limits dissolved organic carbon utilization in the deep ocean

    Arrieta, Jesus

    2015-03-19

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  12. Dilution limits dissolved organic carbon utilization in the deep ocean

    Arrieta, J M; Mayol, Eva; Hansman, Roberta L.; Herndl, Gerhard J.; Dittmar, Thorsten; Duarte, Carlos M.

    2015-01-01

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  13. Evaluation of nutrient and energy sources of the deepest known serpentinite-hosted ecosystem using stable carbon, nitrogen, and sulfur isotopes.

    Onishi, Yuji; Yamanaka, Toshiro; Okumura, Tomoyo; Kawagucci, Shinsuke; Watanabe, Hiromi Kayama; Ohara, Yasuhiko

    2018-01-01

    The Shinkai Seep Field (SSF) in the southern Mariana forearc discovered in 2010 is the deepest (~5,700 m in depth) known serpentinite-hosted ecosystem dominated by a vesicomyid clam, Calyptogena (Abyssogena) mariana. The pioneering study presumed that the animal communities are primary sustained by reducing fluid originated from the serpentinization of mantle peridotite. For understanding the nutrient and energy sources for the SSF community, this study conducted four expeditions to the SSF and collected additional animal samples such as polychaetes and crustaceans as well as sediments, fragments of chimneys developing on fissures of serpentinized peridotite, seeping fluid on the chimneys, and pore water within the chimneys. Geochemical analyses of seeping fluids on the chimneys and pore water of the chimneys revealed significantly high pH (~10) that suggest subseafloor serpentinization controlling fluid chemistry. Stable isotope systematics (carbon, nitrogen, and sulfur) among animals, inorganic molecules, and environmental organic matter suggest that the SSF animal community mostly relies on the chemosynthetic production while some organisms appear to partly benefit from photosynthetic production despite the great depth of SSF.

  14. Effect of vermicompost on some physiological attributes involved in carbon and nitrogen metabolism as well as nutrient status in leaves of tobacco (nicotiana tabacum L.)

    Qin, C.; Zheng, P.; Akram, N.A.

    2016-01-01

    A pot experiment was carried out to examine the influence of vermicompost application on some key enzymes and metabolites involved in carbon (C) and nitrogen (N) metabolism as well as nutrient status in the leaves of tobacco (Nicotiana tabacum L.). Two types of vermicompost with two application rates were used in this study. Regardless of application rate, both types of vermicompost significantly increased total N, phosphorus (P) and potassium (K) contents in the leaves. They also caused enhancements in contents of total soluble carbohydrates, reducing sugars, starch and total organic C as well as amylase and invertase activities involved in C metabolism, contents of soluble protein and nicotine in N metabolism in the leaves. With an increase in application rate, each vermicompost type had an increasing effect on almost all measured parameters except nitrate reductase activity. Regardless of vermicompost type, the high rate (50%) of application showed the best effects compared with controls. The effects of V1 type vermicompost were superior to those of V2 at the same application rate. Therefore, the above effects might appear to be dependent on both type and dose. Vermicompost could be considered as an effective organic matter for attaining improved plant nutrition as well as C and N metabolism. (author)

  15. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil.

    Wijesekara, Hasintha; Bolan, Nanthi S; Thangavel, Ramesh; Seshadri, Balaji; Surapaneni, Aravind; Saint, Christopher; Hetherington, Chris; Matthews, Peter; Vithanage, Meththika

    2017-12-01

    A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha -1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ 13 C and δ 15 N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO 2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ 13 C, and enriched δ 15 N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO 2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO 2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Climate Change Impacts on the Organic Carbon Cycle at the Land-Ocean Interface

    Canuel, E. A.; Cammer, S. S.; McIntosh, H.; Pondell, C. R.

    2012-12-01

    Humans have modified estuaries across the globe by altering the delivery of water, sediments and elements such as carbon and nitrogen that play important roles in biogeochemical processes. These activities have caused declines in the health and quality of estuarine ecosystems globally and this trend will likely continue due to increasing population growth in coastal regions, expected changes associated with climate change, and their interaction with each other, leading to serious consequences for the ecological and societal services they provide. A key function of estuaries is the transfer and transformation of carbon and biogenic elements between land and ocean systems. The anticipated effects of climate change on biogeochemical processes in estuaries are likely to be both numerous and complex but are poorly understood. Climate change has the potential to influence the carbon cycle in estuaries through anticipated changes to organic matter production, transformation, burial and export. Estuarine biogeochemical processes will likely be altered by: 1) sea level rise and increased storm intensity which will amplify the erosion and transfer of terrigenous materials, 2) increases in water temperatures which will enhance the rates of biological and biogeochemical processes (e.g., enzyme kinetics, decomposition rates, and remineralization), while simultaneously decreasing the concentration of dissolved oxygen, 3) changes in particle (or sediment) loadings in response to altered patterns of precipitation and river runoff, and 4) altered inputs of nutrients and dissolved organic materials to coastal waters, also resulting from changing precipitation and runoff. In this presentation, we review the effects of climate change on the carbon cycle in estuaries, with a focus on the temperate estuaries of North America.

  17. Pyroclastic Eruption Boosts Organic Carbon Fluxes Into Patagonian Fjords

    Mohr, Christian H.; Korup, Oliver; Ulloa, Héctor; Iroumé, Andrés.

    2017-11-01

    Fjords and old-growth forests store large amounts of organic carbon. Yet the role of episodic disturbances, particularly volcanic eruptions, in mobilizing organic carbon in fjord landscapes covered by temperate rainforests remains poorly quantified. To this end, we estimated how much wood and soils were flushed to nearby fjords following the 2008 eruption of Chaitén volcano in south-central Chile, where pyroclastic sediments covered >12 km2 of pristine temperate rainforest. Field-based surveys of forest biomass, soil organic content, and dead wood transport reveal that the reworking of pyroclastic sediments delivered 66,500 + 14,600/-14,500 tC of large wood to two rivers entering the nearby Patagonian fjords in less than a decade. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits ( 79,900 + 21,100/-16,900 tC) or stored in active river channels (5,900-10,600 tC). We estimate that bank erosion mobilized 132,300+21,700/-30,600 tC of floodplain forest soil. Eroded and reworked forest soils have been accreting on coastal river deltas at >5 mm yr-1 since the eruption. While much of the large wood is transported out of the fjord by long-shore drift, the finer fraction from eroded forest soils is likely to be buried in the fjords. We conclude that the organic carbon fluxes boosted by rivers adjusting to high pyroclastic sediment loads may remain elevated for up to a decade and that Patagonian temperate rainforests disturbed by excessive loads of pyroclastic debris can be episodic short-lived carbon sources.

  18. Short communication: A laboratory study to validate the impact of the addition of Alnus nepalensis leaf litter on carbon and nutrients mineralization in soil

    GAURAV MISHRA; KRISHNA GIRI; ANTARA DUTTA

    2016-01-01

    Abstract. Mishra G, Giri K, Dutta A, Hazarika S and Borgohain P. 2015. A laboratory study to validate the impact of the addition of Alnus nepalensis leaf litter on carbon and nutrients mineralization in soil. Nusantara Bioscience 8: 5-7. Plant litter or residues can be used as soil amendment to maintain the carbon stock and soil fertility. The amount and rate of mineralization depends on biochemical composition of plant litter. Alnus nepalensis (Alder) is known for its symbiotic nitrogen fixa...

  19. Hidden cycle of dissolved organic carbon in the deep ocean.

    Follett, Christopher L; Repeta, Daniel J; Rothman, Daniel H; Xu, Li; Santinelli, Chiara

    2014-11-25

    Marine dissolved organic carbon (DOC) is a large (660 Pg C) reactive carbon reservoir that mediates the oceanic microbial food web and interacts with climate on both short and long timescales. Carbon isotopic content provides information on the DOC source via δ(13)C and age via Δ(14)C. Bulk isotope measurements suggest a microbially sourced DOC reservoir with two distinct components of differing radiocarbon age. However, such measurements cannot determine internal dynamics and fluxes. Here we analyze serial oxidation experiments to quantify the isotopic diversity of DOC at an oligotrophic site in the central Pacific Ocean. Our results show diversity in both stable and radio isotopes at all depths, confirming DOC cycling hidden within bulk analyses. We confirm the presence of isotopically enriched, modern DOC cocycling with an isotopically depleted older fraction in the upper ocean. However, our results show that up to 30% of the deep DOC reservoir is modern and supported by a 1 Pg/y carbon flux, which is 10 times higher than inferred from bulk isotope measurements. Isotopically depleted material turns over at an apparent time scale of 30,000 y, which is far slower than indicated by bulk isotope measurements. These results are consistent with global DOC measurements and explain both the fluctuations in deep DOC concentration and the anomalous radiocarbon values of DOC in the Southern Ocean. Collectively these results provide an unprecedented view of the ways in which DOC moves through the marine carbon cycle.

  20. Spatial Patterns of Soil Organic Carbon in the United States

    Bliss, N. B.

    2005-12-01

    The Department of the Interior (DOI) has jurisdiction influencing approximately 22 percent of the land area of the United States. The poster presents estimates of the current stocks of soil organic carbon (SOC) on all lands and Federal lands. The DOI lands have about 22 percent of the nation's SOC, so the average carbon intensity (8.66 kg C m-2) about matches the average for all lands (8.81 kg C m-2). However the carbon on DOI lands is not evenly distributed. Of the 17.76 Petagrams (1 Pg = 1015 grams) of SOC on DOI lands, 13.07 Pg (74 percent) are in Alaska, and 4.69 Pg (26 percent) are in the Conterminous U.S. The Alaska soils are wetter and colder than the national average, and the DOI lands in the conterminous U.S. are warmer and drier than the average. A set of SOC maps is shown, developed by intersecting the State Soil Geographic (STATSGO) database with data on federal lands from the National Atlas. With 22 percent of the nation's soil carbon, the DOI lands are important in a national accounting of greenhouse gas emission and sequestration. Future behavior of these lands is uncertain, but in scenarios of warming or drying, carbon released by respiration may exceed carbon captured by photosynthesis, resulting in a net release of carbon to the atmosphere. If warming stimulates a net release of greenhouse gases, this represents a positive feedback contributing to future global warming, a very unstable condition for the global climate system.

  1. Storage and release of organic carbon from glaciers and ice sheets

    Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.

    2015-02-01

    Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change -- equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

  2. Storage and release of organic carbon from glaciers and ice sheets

    Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.

    2015-01-01

    Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change — equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

  3. Leaching behavior of total organic carbon, nitrogen, and phosphorus from banana peel.

    Jiang, Ruixue; Sun, Shujuan; Xu, Yan; Qiu, Xiudong; Yang, Jili; Li, Xiaochen

    2015-01-01

    The leaching behavior of organic carbon and nutrient compounds from banana peel (BP) was investigated in batch assays with respect to particle size, contact time, pH value, and temperature. The granularity, contact time, pH, and temperature caused no significant effects on the leaching of total phosphorus (TP) from the BP. The maximum leached total nitrogen (TN) content was found at pH 5.0 and 90 minutes, while no significant effects were caused by the granularity and temperature. The maximum leached total organic carbon (TOC) content was found by using a powder of 40 mesh, 150 minutes and at pH 6.0, while the temperature had no effect on the TOC leaching. The proportions of the TN, TP, and TOC contents leached from the dried BP ranged from 33.6% to 40.9%, 60.4% to 72.7%, and 8.2% to 9.9%, respectively, indicating that BP could be a potential pollution source for surface and ground water if discharged as domestic waste or reutilized without pretreatment.

  4. Aqueous adsorption and removal of organic contaminants by carbon nanotubes

    Yu, Jin-Gang; Zhao, Xiu-Hui; Yang, Hua; Chen, Xiao-Hong; Yang, Qiaoqin; Yu, Lin-Yan; Jiang, Jian-Hui; Chen, Xiao-Qing

    2014-01-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future. - Highlights: • We summarize the most recent research progress of CNTs for removal of organics. • Adsorption mechanisms between CNTs and organics were elucidated in detail. • The developing trends and prospects of CNTs for removal of organics were discussed

  5. Aqueous adsorption and removal of organic contaminants by carbon nanotubes

    Yu, Jin-Gang, E-mail: yujg@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Zhao, Xiu-Hui; Yang, Hua [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Chen, Xiao-Hong [Collaborative Innovation Center of Resource-conserving and Environment-friendly Society and Ecological Civilization, Changsha, Hunan 410083 (China); Yang, Qiaoqin [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada); Yu, Lin-Yan [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Jiang, Jian-Hui [College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China); Chen, Xiao-Qing, E-mail: xqchen@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China)

    2014-06-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future. - Highlights: • We summarize the most recent research progress of CNTs for removal of organics. • Adsorption mechanisms between CNTs and organics were elucidated in detail. • The developing trends and prospects of CNTs for removal of organics were discussed.

  6. Organic Carbon, Nitrogen and Phosphorus Accumulation Rates in the Soils of the Everglades Mangrove Ecotone

    Smoak, J. M.; Breithaupt, J. L.; Sanders, C. J.

    2015-12-01

    One of the fundamental questions with regard to coastal ecotones relates to their role in the transformation, transport and storage of biogeochemically important constituents and how that role may be altered by climate change. Coastal wetlands provide a range of valuable ecosystem services including sequestering organic carbon (OC) and nutrients in their soils at rates greater than terrestrial ecosystems on a per area basis. As such the Everglades mangrove ecotone, the largest contiguous mangrove forest in North America, is a biogeochemical "hotspot" at the interface of freshwater marsh and the Gulf of Mexico. Over the last one hundred years this region has been impacted by a reduction in freshwater flow and a sea-level rise (SLR) of 2.3 mm/yr which combined to cause a landward shift in the ecotone. This creates an ideal setting to examine climate induced alterations in the mangrove-ecotone biogeochemical cycle. The ability of the Everglades mangrove forest to keep pace with SLR depends largely on the rate of organic matter accumulation as that accumulation is a key contributor to accretion. However, the basic threat from SLR can be exacerbated in some areas by accelerating organic matter mineralization due to increasing salinity. The increase in salinity supplies sulfate which functions as a terminal electron acceptor that soil microbes can utilize to enhance mineralization in the brackish ecotone regions of coastal wetlands. To investigate these processes, we measured mangrove forest soil accretion, OC, N and P accumulation rates over the most recent 10, 50 and 100 year periods (via 210Pb dating) from the Gulf of Mexico to the upper freshwater reaches of the mangrove forest within Everglades National Park. Lower organic carbon accumulation rates compared to the rest of the system were found in the ecotone region most susceptible to enhanced organic matter mineralization.

  7. Evolution of organic carbon burial in the Global Ocean during the Neogene

    LI, Z.; Zhang, Y.

    2017-12-01

    Although only a small fraction of the organic carbon (OC) that rains from surface waters is eventually buried in the sediments, it is a process that controls the organic sub-cycle of the long-term carbon cycle, and the key for atmospheric O2, CO2 and nutrient cycling. Here we constrain the spatiotemporal variability of OC burial by quantifying the total organic carbon (TOC) mass accumulation rate (MAR) over the Neogene (23.0-2.6 Ma) by compiling the TOC, age model and sediment density data from sites retrieved by the Deep Sea Drilling Program, Ocean Drilling Program, and Integrated Ocean Drilling Program. We screened all available sites which yielded 80 sites with adequate data quality, covering all major ocean basins and sedimentary depositional environments. All age models are updated to the GTS 2012 timescale so the TOC MAR records from different sites are comparable. Preliminary results show a clear early Miocene peak of OC burial in many sites related to high sediment flux which might reflect the orogenic uplift and/or glacier erosion. Places that receive high influx of terrigenous inputs become "hotspots" for Neogene burial of OC. At "open ocean" sites, OC burial seems to be more impacted by marine productivity changes, with a pronounced increase during the middle Miocene "Monterey Formation" and late Miocene - early Pliocene "Biogenic Bloom". Upon the completion of the data collection, we will further explore the regional and global OC burial in the context of tectonic uplift, climate change and the evolution of primary producers and consumers during the last 23 million years of Earth history.

  8. Forcing of dissolved organic carbon release by phytoplankton by anticyclonic mesoscale eddies in the subtropical NE Atlantic Ocean

    S. Lasternas

    2013-03-01

    Full Text Available The organic carbon fluxes mediated by planktonic communities in two cyclonic eddies (CEs and two anticyclonic eddies (AEs at the Canary Eddy Corridor were studied and compared with the dynamics in two far-field (FF stations located outside the eddies. We observed favorable conditions and signs for upwelling at the center of CEs and for downwelling and mixing at the centers of AEs. CEs were characterized by a higher concentration of nutrients and the highest concentration of chlorophyll a (chl a, associated with the highest abundance of microphytoplankton and diatoms. AEs displayed concentrations of chl a values and nutrients similar to those at the FF stations, except for the highest ammonium concentration occurring at AE and a very low concentration of phosphorus at FF stations. AEs were transient systems characterized by an increasing abundance of picophytoplankton and heterotrophic bacteria. While primary production was similar between the systems, the production of dissolved organic carbon (PDOC was significantly higher in the AEs. Phytoplankton cell mortality was lowest in the CEs, and we found higher cell mortality rates at AE than at FF stations, despite similar chl a concentration. Environmental changes in the AEs have been significantly prejudicial to phytoplankton as indicated by higher phytoplankton cell mortality (60% of diatoms cells were dead and higher cell lysis rates. The adverse conditions for phytoplankton associated with the early-stage anticyclonic systems, mainly triggered by active downwelling, resulted in higher cell mortality, forcing photosynthesized carbon to fuel the dissolved pool.

  9. Effect of nutrient availability on carbon and nitrogen incorporation and flows through benthic algae and bacteria in near-shore sandy sediment

    Cook, P.; Veuger, B.; Böer, S.; Middelburg, J.J.

    2007-01-01

    Carbon and nitrogen uptake in a microbial community comprising bacteria and microalgae in a sandy marine sediment under nutrient-limited and -replete conditions was studied using a mesocosm approach. After 2 wk of incubation, a pulse of H13CO3– and 15NH4+ was added to the mesocosms, and subsequent

  10. Organic matter iron and nutrient transport and nature of dissolved organic matter in the drainage basin of a boreal humic river in northern Finland

    Heikkinen, K.

    1994-01-01

    Organic carbon and iron transport into the Gulf of Bothnia and the seasonal changes in the nature of dissolved organic matter (DOM) were studied in 1983 and 1984 at the mouth of the River Kiiminkijoki, which crosses an area of minerotrophic mires in northern Finland. Organic and inorganic transport within the drainage basin was studied in the summer and autumn of 1985 and 1986. The results indicate that the dissolved organic carbon (DOC) is mainly of terrestrial origin, leaching mostly from peatlands. The DOC concentrations decrease under low flow conditions. The proportion of drifting algae as a particulate organic carbon (POC) source seems to increase in summer. The changes in the ratio of Fe/DOC, the colour of the DOM and the ratio of Fe/DOC, the colour of the DOM and the ratio of fluorescence to DOC with discharge give indications of the origin, formation, nature and fate of the DOM in the river water. Temperature-dependent microbiological processes in the formation and sedimentation of Fe-organic colloids seem to be important. Estimates are given for the amounts and transport rates of organic carbon and Fe discharged into the Gulf of Bothnia by river. High apparent molecular weight (HAMW) organic colloids are important for the organic, Fe and P transport in the basin. The DOM in the water consists mainly of fulvic acids, although humic acids are also important. The results indicate an increase in the mobilization of HAMW Fe-organic colloids in the peatlands following drainage and peat mining. The transport of inorganic nitrogen from the peatlands in the area and in the river is increasing due to peat mining. The changes in the transport of organic matter, Fe and P are less marked

  11. Basin-scale changes of total organic carbon profiles in the eastern South Atlantic

    X. A. Alvarez-Salgado

    2001-03-01

    Full Text Available Total organic carbon (TOC samples were collected at 6 stations spaced ~800 km apart in the eastern South Atlantic, from the Equator to 45°S along 9°W. Analyses were performed by high temperature catalytic oxidation (HTCO in the base laboratory. Despite the complex advection and mixing patterns of North Atlantic and Antarctic waters with extremely different degrees of ventilation, TOC levels below 500 m are quasi-constant at 55±3 µmol C l-1, pointing to the refractory nature of deep-water TOC. On the other hand, a TOC excess from 25 to 38 g C m-2 is observed in the upper 100 m of the permanently stratified nutrient-depleted Equatorial, Subequatorial and Subtropical upper ocean, where vertical turbulent diffusion is largely prevented. Conversely, TOC levels in the nutrient-rich upper layer of the Subantarctic Front only exceeds 9 g C m-2 the deep-water baseline. As much as 70% of the TOC variability in the upper 500 m is due to simple mixing of reactive TOC formed in the surface layer and refractory TOC in deep ocean waters, with a minor contribution (13% to oxygen consumption in the prominent subsurface AOU maximum at 200-400 m depth.

  12. Pyrolysis and co-composting of municipal organic waste in Bangladesh: A quantitative estimate of recyclable nutrients, greenhouse gas emissions, and economic benefits.

    Mia, Shamim; Uddin, Md Ektear; Kader, Md Abdul; Ahsan, Amimul; Mannan, M A; Hossain, Mohammad Monjur; Solaiman, Zakaria M

    2018-05-01

    Waste causes environmental pollution and greenhouse gas (GHG) emissions when it is not managed sustainably. In Bangladesh, municipal organic waste (MOW) is partially collected and landfilled. Thus, it causes deterioration of the environment urging a recycle-oriented waste management system. In this study, we propose a waste management system through pyrolysis of selective MOW for biochar production and composting of the remainder with biochar as an additive. We estimated the carbon (C), nitrogen (N), phosphorus (P) and potassium (K) recycling potentials in the new techniques of waste management. Waste generation of a city was calculated using population density and per capita waste generation rate (PWGR). Two indicators of economic development, i.e., gross domestic product (GDP) and per capita gross national income (GNI) were used to adopt PWGR with a projected contribution of 5-20% to waste generation. The projected PWGR was then validated with a survey. The waste generation from urban areas of Bangladesh in 2016 was estimated between 15,507 and 15,888 t day -1 with a large share (∼75%) of organic waste. Adoption of the proposed system could produce 3936 t day -1 biochar blended compost with an annual return of US $210 million in 2016 while it could reduce GHG emission substantially (-503 CO 2 e t -1 municipal waste). Moreover, the proposed system would able to recover ∼46%, 54%, 54% and 61% of total C, N, P and K content in the initial waste, respectively. We also provide a projection of waste generation and nutrient recycling potentials for the year 2035. The proposed method could be a self-sustaining policy option for waste management as it would generate ∼US$51 from each tonne of waste. Moreover, a significant amount of nutrients can be recycled to agriculture while contributing to the reduction in environmental pollution and GHG emission. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Comparative Study of Elemental Nutrients in Organic and Conventional Vegetables Using Laser-Induced Breakdown Spectroscopy (LIBS).

    Bhatt, Chet R; Alfarraj, Bader; Ghany, Charles T; Yueh, Fang Y; Singh, Jagdish P

    2017-04-01

    In this study, the laser-induced breakdown spectroscopy (LIBS) technique was used to identify and compare the presence of major nutrient elements in organic and conventional vegetables. Different parts of cauliflowers and broccolis were used as working samples. Laser-induced breakdown spectra from these samples were acquired at optimum values of laser energy, gate delay, and gate width. Both univariate and multivariate analyses were performed for the comparison of these organic and conventional vegetable flowers. Principal component analysis (PCA) was taken into account for multivariate analysis while for univariate analysis, the intensity of selected atomic lines of different elements and their intensity ratio with some reference lines of organic cauliflower and broccoli samples were compared with those of conventional ones. In addition, different parts of the cauliflower and broccoli were compared in terms of intensity and intensity ratio of elemental lines.

  14. Agar Sediment Test for Assessing the Suitability of Organic Waste Streams for Recovering Nutrients by the Aquatic Worm Lumbriculus variegatus.

    Bob Laarhoven

    Full Text Available An agar sediment test was developed to evaluate the suitability of organic waste streams from the food industry for recovering nutrients by the aquatic worm Lumbriculus variegatus (Lv. The effects of agar gel, sand, and food quantities in the sediment test on worm growth, reproduction, and water quality were studied. Agar gel addition ameliorated growth conditions by reducing food hydrolysis and altering sediment structure. Best results for combined reproduction and growth were obtained with 0.6% agar-gel (20 ml, 10 g. fine sand, 40 g. coarse sand, and 105 mg fish food (Tetramin. With agar gel, ingestion and growth is more the result of addition of food in its original quality. Final tests with secondary potato starch sludge and wheat bran demonstrated that this test is appropriate for the comparison of solid feedstuffs and suspended organic waste streams. This test method is expected to be suitable for organic waste studies using other sediment dwelling invertebrates.

  15. Validity of estimating the organic carbon content of basin sediment using color measurements

    Sasaki, Toshinori; Sugai, Toshihiko; Ogami, Takashi; Yanagida, Makoto; Yasue, Ken-ichi

    2010-01-01

    Psychometric lightness (L* value) measured by a colorimeter offers a rapid means of obtaining the organic carbon content of sediment. We measured peat and lacustrine sediments covering the past 300 ka - 106 samples for L* value and 197 samples for organic carbon content. L* values are highly correlated with organic carbon contents. Therefore, L* values are a convenient alternative to measuring organic carbon contents. (author)

  16. Biogas production on organic farms: Sustainable energy and better nutrient cycling

    Grieb, Beatrice; Zerger, Uli

    2014-01-01

    Biogas production in organic farming is an approach to combine renewable energy and organic farming with numerous positive impacts on the farming system. In Germany biogas on organic farms has a long tradition, now the EU Project “SUSTAINGAS” aims at promotion of this issue on an EU-level. In this context a description of organic biogas was established.

  17. [Effects of different cultivation patterns on soil aggregates and organic carbon fractions].

    Qiu, Xiao-Lei; Zong, Liang-Gang; Liu, Yi-Fan; Du, Xia-Fei; Luo, Min; Wang, Run-Chi

    2015-03-01

    Combined with the research in an organic farm in the past 10 years, differences of soil aggregates composition, distribution and organic carbon fractions between organic and conventional cultivation were studied by simultaneous sampling analysis. The results showed that the percentages of aggregates (> 1 mm, 1-0.5 mm, 0.5-0.25 mm and organic cultivation were 9.73%, 18.41%, 24.46% and 43.90%, respectively. The percentage of organic cultivation than that in conventional cultivation. Organic cultivation increased soil organic carbon (average of 17.95 g x kg(-1)) and total nitrogen contents (average of 1.51 g x kg(-1)). Among the same aggregates in organic cultivation, the average content of heavy organic carbon fraction was significantly higher than that in conventional cultivation. This fraction accumulated in organic carbon. In organic cultivation, the content of labile organic carbon in > 1 mm macro-aggregates was significantly higher than that in conventional cultivation, while no significant difference was found among the other aggregates, indicating that the labile organic carbon was enriched in > 1 mm macro-aggregates. Organic cultivation increased the amounts of organic carbon and its fractions, reduced tillage damage to aggregates, and enhanced the stability of organic carbon. Organic cultivation was therefore beneficial for soil carbon sequestration. The findings of this research may provide theoretical basis for further acceleration of the organic agriculture development.

  18. Influence of Beaver-Induced Complexity on Storage of Organic Carbon and Sediment in Colorado Mountain Streams

    Laurel, D.; Wohl, E.

    2016-12-01

    Beaver meadows (complexes of multiple different aged beaver dams and ponds) influence the storage of water, sediment, and nutrients. Although beaver meadows compose only a small fraction of catchment area, they provide a potentially large role in retaining these fluxes in mountain watersheds. Multiple dams and ponds in beaver meadows increase overbank flows leading to an anastomosing stream channel planform, and deposition of fine sediment along with particulate organic carbon. An earlier study estimated a range of cumulative carbon stored in 27 beaver meadows east of the continental divide in Rocky Mountain National Park. Storage ranged from 735,800 to 2.8 x 106 Mg carbon, with the high value estimating storage if all the meadows had active beaver (historic conditions pre-European settlement) and the lower value estimating current conditions where many of the meadows are abandoned. We combined geomorphic surveys, soil depth probing by rebar, and soil cores analyzed for carbon content to investigate the influence of beaver activity, meadow size, and meadow placement within the drainage on catchment-scale fluxes of fine sediment and organic carbon. We found carbon storage in floodplain soils to be highly variable across both active and abandoned meadows; however, active beaver meadows store more carbon on average than abandoned meadows. In addition, active meadows with high levels of beaver activity (multiple colonies) stored greater volumes of fine sediment behind dams and in ponds. These results have implications for the restoration potential of abandoned beaver meadows in mountain environments to store greater volumes of sediment and more organic carbon if beaver are successfully reintroduced.

  19. Acclimation of tree function and structure to climate change and implications to forest carbon and nutrient balances

    Hari, P.; Nissinen, A.; Berninger, F. [Helsinki Univ. (Finland). Dept. of Forest Ecology] [and others

    1996-12-31

    Before large-scale anthropogenetic emissions the environmental factors have been rather stable for thousands of years, varying yearly, seasonally and daily in rather regular manners around some mean values. In this century the emissions of CO{sub 2}, sulphur and nitrogen from society to atmosphere are changing both atmospheric and soil environment at rates not experienced before. The fluxes to soil affect the contents of plant available nutrients and solubility of toxic compounds in the forest soil. Additionally, the chemical state of soil environment is coupled to tree growth, litter production and nutrient uptake as well as to the activity of biological organisms in soil, which decompose litter and release nutrients from it. Trees have developed effective regulation systems to cope with the environment during the evolution. The resulting acclimations improve the functioning of the trees if the environmental factors remain within their range of variation during the evolution. Outside the range the results of the regulation are unpredictable. The acclimative changes caused by the action of the regulation system may considerably change the response of trees to present environmental change. The analysis of the effects of present environmental change on forests requires simultaneous treatment of the atmosphere, forest soils and trees. Each of these components is dominated by its own features. The analyze of material and energy fluxes connect them to each other. The aim of this research is to analyse changes in the forest soils and reactions of trees to changes in the atmosphere and forest soils under a common theoretical framework, enabling combination of the obtained results into a holistic analysis of the response of forests to the present environmental change

  20. Acclimation of tree function and structure to climate change and implications to forest carbon and nutrient balances

    Hari, P; Nissinen, A; Berninger, F [Helsinki Univ. (Finland). Dept. of Forest Ecology; and others

    1997-12-31

    Before large-scale anthropogenetic emissions the environmental factors have been rather stable for thousands of years, varying yearly, seasonally and daily in rather regular manners around some mean values. In this century the emissions of CO{sub 2}, sulphur and nitrogen from society to atmosphere are changing both atmospheric and soil environment at rates not experienced before. The fluxes to soil affect the contents of plant available nutrients and solubility of toxic compounds in the forest soil. Additionally, the chemical state of soil environment is coupled to tree growth, litter production and nutrient uptake as well as to the activity of biological organisms in soil, which decompose litter and release nutrients from it. Trees have developed effective regulation systems to cope with the environment during the evolution. The resulting acclimations improve the functioning of the trees if the environmental factors remain within their range of variation during the evolution. Outside the range the results of the regulation are unpredictable. The acclimative changes caused by the action of the regulation system may considerably change the response of trees to present environmental change. The analysis of the effects of present environmental change on forests requires simultaneous treatment of the atmosphere, forest soils and trees. Each of these components is dominated by its own features. The analyze of material and energy fluxes connect them to each other. The aim of this research is to analyse changes in the forest soils and reactions of trees to changes in the atmosphere and forest soils under a common theoretical framework, enabling combination of the obtained results into a holistic analysis of the response of forests to the present environmental change

  1. Contribution of assimilable organic carbon to biological fouling in seawater reverse osmosis membrane treatment.

    Weinrich, Lauren; LeChevallier, Mark; Haas, Charles N

    2016-09-15

    Biological fouling occurs on RO membranes when bacteria and nutrients are present in conditions that are conducive to growth and proliferation of the bacteria. Controlling microbial growth on the membranes is typically limited to biocide application (i.e., disinfectants) in seawater RO plants. However, biological growth and subsequent fouling has not been well-managed. Pretreatment has not been focused on nutrient limitation. This project used a biological assay, the assimilable organic carbon (AOC) test to evaluate pretreatment effects on the nutrient supply. The AOC test provided a useful surrogate measurement for the biodegradability or biofouling potential of RO feed water. Biofouling observed in controlled conditions at the bench- and pilot-scale resulted in statistically significant correlations between AOC and the operational effects caused by biofouling. Membrane fouling rates are observed through operational changes over time such as increased differential pressure between the membrane feed and concentrate locations and decreased permeate flux through the membrane. In full scale plants there were strong correlations when AOC was used as a predictor variable for increased differential pressure (0.28-0.55 bar from September-December 2012) and decreased specific flux (1.40 L per hour/(m(2) · bar)). Increased differential pressure was associated with RO membrane biological fouling when the median AOC was 50 μg/L during pilot testing. Conditions were also evaluated at the bench-scale using a flat sheet RO membrane. In a comparison test using 30 and 1000 μg/L AOC, fouling was detected on more portions of the membrane when AOC was higher. Biofilm and bacterial deposits were apparent from scanning electron microscope imaging and biomass measurements using ATP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effect of land use on the spatial variability of organic matter and nutrient status in an Oxisol

    Paz-Ferreiro, Jorge; Alves, Marlene Cristina; Vidal Vázquez, Eva

    2013-04-01

    Heterogeneity is now considered as an inherent soil property. Spatial variability of soil attributes in natural landscapes results mainly from soil formation factors. In cultivated soils much heterogeneity can additionally occur as a result of land use, agricultural systems and management practices. Organic matter content (OMC) and nutrients associated to soil exchange complex are key attribute in the maintenance of a high quality soil. Neglecting spatial heterogeneity in soil OMC and nutrient status at the field scale might result in reduced yield and in environmental damage. We analyzed the impact of land use on the pattern of spatial variability of OMC and soil macronutrients at the stand scale. The study was conducted in São Paulo state, Brazil. Land uses were pasture, mango orchard and corn field. Soil samples were taken at 0-10 cm and 10-20 cm depth in 84 points, within 100 m x 100 m plots. Texture, pH, OMC, cation exchange capacity (CEC), exchangeable cations (Ca, Mg, K, H, Al) and resin extractable phosphorus were analyzed.. Statistical variability was found to be higher in parameters defining the soil nutrient status (resin extractable P, K, Ca and Mg) than in general soil properties (OMC, CEC, base saturation and pH). Geostatistical analysis showed contrasting patterns of spatial dependence for the different soil uses, sampling depths and studied properties. Most of the studied data sets collected at two different depths exhibited spatial dependence at the sampled scale and their semivariograms were modeled by a nugget effect plus a structure. The pattern of soil spatial variability was found to be different between the three study soil uses and at the two sampling depths, as far as model type, nugget effect or ranges of spatial dependence were concerned. Both statistical and geostatistical results pointed out the importance of OMC as a driver responsible for the spatial variability of soil nutrient status.

  3. Wool-waste as organic nutrient source for container-grown plants

    Zheljazkov, Valtcho D. [Mississippi State University, North Mississippi Research and Extension Center, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Stratton, Glenn W [Department of Plant and Animal Sciences and Department of Environmental Sciences, Nova Scotia Agricultural College, Truro, NS, B2N 5E3 (Canada); Pincock, James [Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4J3 (Canada); Butler, Stephanie [Department of Plant and Animal Sciences and Department of Environmental Sciences, Nova Scotia Agricultural College, Truro, NS, B2N 5E3 (Canada); Jeliazkova, Ekaterina A [Mississippi State University, Department of Plant and Soil Sciences, Mississippi State, MS 39762 (United States); Nedkov, Nedko K [Research Institute for Roses and Aromatic Crops, 49 Osvobojdenie Blv., Kazanluk (Bulgaria); Gerard, Patrick D [Department of Applied Economics and Statistics, Clemson University, Clemson, SC 29634 (United States)

    2009-07-15

    A container experiment was conducted to test the hypothesis that uncomposted wool wastes could be used as nutrient source and growth medium constituent for container-grown plants. The treatments were: (1) rate of wool-waste application (0 or unamended control, 20, 40, 80, and 120 g of wool per 8-in. pot), (2) growth medium constituents [(2.1) wool plus perlite, (2.2) wool plus peat, and (2.3) wool plus peat plus perlite], and (3) plant species (basil and Swiss chard). A single addition of 20, 40, 80, or 120 g of wool-waste to Swiss chard (Beta vulgaris L.) and basil (Ocimum basilicum L.) in pots with growth medium provided four harvests of Swiss chard and five harvests of basil. Total basil yield from the five harvests was 1.6-5 times greater than the total yield from the unamended control, while total Swiss chard yield from the four harvests was 2-5 times greater relative to the respective unamended control. The addition of wool-waste to the growth medium increased Swiss chard and basil tissue N, and NO{sub 3}-N and NH{sub 4}-N in growth medium relative to the unamended control. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis of wool fibers sampled at the end of the experiments indicated various levels of decomposition, with some fibers retaining their original surface structure. Furthermore, most of the wool fibers' surfaces contained significant concentrations of S and much less N, P, or K. SEM/EDX revealed that some plant roots grow directly on wool-waste fibers suggesting either (1) root directional growth towards sites with greater nutrient concentration and/or (2) a possible role for roots or root exudates in wool decomposition. Results from this study suggest that uncomposted wool wastes can be used as soil amendment, growth medium constituent, and nutrient source for container-grown plants.

  4. Wool-waste as organic nutrient source for container-grown plants

    Zheljazkov, Valtcho D.; Stratton, Glenn W.; Pincock, James; Butler, Stephanie; Jeliazkova, Ekaterina A.; Nedkov, Nedko K.; Gerard, Patrick D.

    2009-01-01

    A container experiment was conducted to test the hypothesis that uncomposted wool wastes could be used as nutrient source and growth medium constituent for container-grown plants. The treatments were: (1) rate of wool-waste application (0 or unamended control, 20, 40, 80, and 120 g of wool per 8-in. pot), (2) growth medium constituents [(2.1) wool plus perlite, (2.2) wool plus peat, and (2.3) wool plus peat plus perlite], and (3) plant species (basil and Swiss chard). A single addition of 20, 40, 80, or 120 g of wool-waste to Swiss chard (Beta vulgaris L.) and basil (Ocimum basilicum L.) in pots with growth medium provided four harvests of Swiss chard and five harvests of basil. Total basil yield from the five harvests was 1.6-5 times greater than the total yield from the unamended control, while total Swiss chard yield from the four harvests was 2-5 times greater relative to the respective unamended control. The addition of wool-waste to the growth medium increased Swiss chard and basil tissue N, and NO 3 -N and NH 4 -N in growth medium relative to the unamended control. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis of wool fibers sampled at the end of the experiments indicated various levels of decomposition, with some fibers retaining their original surface structure. Furthermore, most of the wool fibers' surfaces contained significant concentrations of S and much less N, P, or K. SEM/EDX revealed that some plant roots grow directly on wool-waste fibers suggesting either (1) root directional growth towards sites with greater nutrient concentration and/or (2) a possible role for roots or root exudates in wool decomposition. Results from this study suggest that uncomposted wool wastes can be used as soil amendment, growth medium constituent, and nutrient source for container-grown plants.

  5. Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials

    Levitsky, Igor A; Karachevtsev, Victor A

    2012-01-01

    Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials describes physical, optical and spectroscopic properties of the emerging class of nanocomposites formed from carbon nanotubes (CNTs)  interfacing with organic and inorganic materials. The three main chapters detail novel trends in  photophysics related to the interaction of  light with various carbon nanotube composites from relatively simple CNT/small molecule assemblies to complex hybrids such as CNT/Si and CNT/DNA nanostructures.   The latest experimental results are followed up with detailed discussions and scientific and technological perspectives to provide a through coverage of major topics including: ·   Light harvesting, energy conversion, photoinduced charge separation  and transport  in CNT based nanohybrids · CNT/polymer composites exhibiting photoactuation; and ·         Optical  spectroscopy  and structure of CNT/DNA complexes. Including original data and a short review of recent research, Phot...

  6. Distribution of soil organic carbon in the conterminous United States

    Bliss, Norman B.; Waltman, Sharon; West, Larry T.; Neale, Anne; Mehaffey, Megan; Hartemink, Alfred E.; McSweeney, Kevin M.

    2014-01-01

    The U.S. Soil Survey Geographic (SSURGO) database provides detailed soil mapping for most of the conterminous United States (CONUS). These data have been used to formulate estimates of soil carbon stocks, and have been useful for environmental models, including plant productivity models, hydrologic models, and ecological models for studies of greenhouse gas exchange. The data were compiled by the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) from 1:24,000-scale or 1:12,000-scale maps. It was found that the total soil organic carbon stock in CONUS to 1 m depth is 57 Pg C and for the total profile is 73 Pg C, as estimated from SSURGO with data gaps filled from the 1:250,000-scale Digital General Soil Map. We explore the non-linear distribution of soil carbon on the landscape and with depth in the soil, and the implications for sampling strategies that result from the observed soil carbon variability.

  7. 77 FR 59287 - National Organic Program (NOP); Sunset Review (2012) for Nutrient Vitamins and Minerals

    2012-09-27

    ...) from creating certification programs to certify organic farms or handling operations unless the State.... Pursuant to the OFPA (7 U.S.C. 6507(b)(2)), a State organic certification program may contain additional... the State and for the certification of organic farm and handling operations located within the State...

  8. Production, partitioning and stoichiometry of organic matter under variable nutrient supply during mesocosm experiments in the tropical Pacific and Atlantic Ocean

    J. M. S. Franz

    2012-11-01

    Full Text Available Oxygen-deficient waters in the ocean, generally referred to as oxygen minimum zones (OMZ, are expected to expand as a consequence of global climate change. Poor oxygenation is promoting microbial loss of inorganic nitrogen (N and increasing release of sediment-bound phosphate (P into the water column. These intermediate water masses, nutrient-loaded but with an N deficit relative to the canonical N:P Redfield ratio of 16:1, are transported via coastal upwelling into the euphotic zone. To test the impact of nutrient supply and nutrient stoichiometry on production, partitioning and elemental composition of dissolved (DOC, DON, DOP and particulate (POC, PON, POP organic matter, three nutrient enrichment experiments were conducted with natural microbial communities in shipboard mesocosms, during research cruises in the tropical waters of the southeast Pacific and the northeast Atlantic. Maximum accumulation of POC and PON was observed under high N supply conditions, indicating that primary production was controlled by N availability. The stoichiometry of microbial biomass was unaffected by nutrient N:P supply during exponential growth under nutrient saturation, while it was highly variable under conditions of nutrient limitation and closely correlated to the N:P supply ratio, although PON:POP of accumulated biomass generally exceeded the supply ratio. Microbial N:P composition was constrained by a general lower limit of 5:1. Channelling of assimilated P into DOP appears to be the mechanism responsible for the consistent offset of cellular stoichiometry relative to inorganic nutrient supply and nutrient drawdown, as DOP build-up was observed to intensify under decreasing N:P supply. Low nutrient N:P conditions in coastal upwelling areas overlying O2-deficient waters seem to represent a net source for DOP, which may stimulate growth of diazotrophic phytoplankton. These results demonstrate that microbial nutrient assimilation and

  9. Enhanced Nutrients Removal Using Reeds Straw as Carbon Source in a Laboratory Scale Constructed Wetland

    Tong Wang

    2018-05-01

    Full Text Available The low carbon/nitrogen (C/N ratio and high nitrate content characteristics of agricultural runoff restricted the nitrogen removal in constructed wetlands (CWs. To resolve such problems, the economically- and easily-obtained Phragmites Australis (reeds litters were applied and packed in the surface layer of a surface flow CW as external carbon sources. The results demonstrated that the introduction of the reeds straw increased the C concentration as a result of their decomposition during the CW operation, which will help the denitrification in the ensuing operation of an entire 148 days. The total nitrogen (TN and Chemical Oxygen Demand (COD ( in the effluent reached the peak level of 63.2 mg/L and 83 mg/L at the fourth and the second day, respectively. Subsequently, the pollutants in the CW that were filled with straw decreased rapidly and achieved a stable removal after 13 days of operation. Moreover, the present study showed that the N removal efficiency increased with the increase of the hydraulic retention time (HRT. Under the HRT of four days, the CW presented 74.1 ± 6%, 87.4 ± 6% and 56.0 ± 6% removal for TN, NO3-, and TP, respectively.

  10. The effect of modifying rooting depths and nitrification inhibitors on nutrient uptake from organic biogas residues in maize

    Dietrich, Charlotte C.; Koller, Robert; Nagel, Kerstin A.; Schickling, Anke; Schrey, Silvia D.; Jablonowski, Nicolai D.

    2017-04-01

    Optimizing the application of and nutrient uptake from organic nutrient sources, such as the nutrient-rich residues ("digestates") from the biogas industry, is becoming a viable option in remediating fertility on previously unsuitable soils for agricultural utilization. Proposedly, concurrent changes in root system architecture and functioning could also serve as the basis of future phytomining approaches. Herein, we evaluate the effect of spatial nutrient availability and nitrification on maize root architecture and nutrient uptake. We test these effects by applying maize-based digestate at a rate of 170 kg/ha in layers of varying depths (10, 25 and 40 cm) and through either the presence or absence of nitrification inhibitors. In order to regularly monitor above- and below-ground plant biomass production, we used the noninvasive phenotyping platform, GROWSCREEN-Rhizo at the Forschungszentrum Jülich, using rhizotrons (Nagel et al., 2012). Measured parameters included projected plant height and leaf area, as well as root length and spatial distribution. Additionally, root diameters were quantified after the destructive harvest, 21 days after sowing (DAS). Spatial nutrient availability significantly affected root system architecture, as for example root system size -the area occupied by roots- increased alongside nutrient layer depths. Fertilization also positively affected root length density (RLD). Within fertilized layers, the presence of nitrification inhibitors increased RLD by up to 30% and was most pronounced in the fine root biomass fraction (0.1 to 0.5mm). Generally, nitrification inhibitors promoted early plant growth by up to 45% across treatments. However, their effect varied in dependence of layer depths, leading to a time-delayed response in deeper layers, accounting for plants having to grow significantly longer roots in order to reach fertilized substrate. Nitrification inhibitors also initiated the comparatively early on-set of growth differences in

  11. Insights in groundwater organic matter from Liquid Chromatography-Organic Carbon Detection

    Rutlidge, H.; Oudone, P.; McDonough, L.; Andersen, M. S.; Baker, A.; Meredith, K.; O'Carroll, D. M.

    2017-12-01

    Understanding the processes that control the concentration and characteristics of organic matter in groundwater has important implications for the terrestrial global carbon budget. Liquid Chromatography - Organic Carbon Detection (LC-OCD) is a size-exclusion based chromatography technique that separates the organic carbon into molecular weight size fractions of biopolymers, humic substances, building blocks (degradation products of humic substances), low molecular weight acids and low molecular weight neutrals. Groundwater and surface water samples were collected from a range of locations in Australia representing different surface soil, land cover, recharge type and hydrological properties. At one site hyporheic zone samples were also collected from beneath a stream. The results showed a general decrease in the aromaticity and molecular weight indices going from surface water, hyporheic downwelling and groundwater samples. The aquifer substrate also affected the organic composition. For example, groundwater samples collected from a zone of fractured rock showed a relative decrease in the proportion of humic substances, suggestive of sorption or degradation of humic substances. This work demonstrates the potential for using LC-OCD in elucidating the processes that control the concentration and characteristics of organic matter in groundwater.

  12. Out of sight - Profiling soil characteristics, nutrients and microbial communities affected by organic amendments down to one meter in a long-term maize cultivation experiment

    Lehtinen, Taru; Mikkonen, Anu; Zavattaro, Laura; Grignani, Carlo; Baumgarten, Andreas; Spiegel, Heide

    2016-04-01

    Soil characteristics, nutrients and microbial activity in the deeper soil layers are topics not of-ten covered in agricultural studies since the main interest lies within the most active topsoils and deep soils are more time-consuming to sample. Studies have shown that deep soil does matter, although biogeochemical cycles are not fully understood yet. The main aim of this study is to investigate the soil organic matter dynamics, nutrients and microbial community composition in the first meter of the soil profiles in the long-term maize cropping system ex-periment Tetto Frati, in the vicinity of the Po River in Northern Italy. The trial site lies on a deep, calcareous, free-draining soil with a loamy texture. The following treatments have been applied since 1992: 1) maize for silage with 250 kg mineral N ha-1 (crop residue removal, CRR), 2) maize for grain with 250 kg mineral N ha-1 (crop residue incorporation, CRI), 3) maize for silage with 250 kg bovine slurry N ha-1 (SLU), 4) maize for silage with 250 kg farm yard manure N ha-1 (FYM). Soil characteristics (pH, carbonate content, soil organic carbon (SOC), aggregate stability (WSA)), and nutrients (total nitrogen (Nt), CAL-extractable phos-phorous (P) and potassium (K), potential N mineralisation) were investigated. Bacteri-al community composition was investigated with Ion PGM high-throughput sequencing at the depth of 8000 sequences per sample. Soil pH was moderately alkaline in all soil samples, in-creasing with increasing soil depth, as the carbonate content increased. SOC was significantly higher in the treatments with organic amendments (CRI, SLU and FYM) compared to CRR in 0-25 cm (11.1, 11.6, 14.7 vs. 9.8 g kg-1, respectively), but not in the deeper soil. At 50-75 cm soil depth FYM treatment revealed higher WSA compared to CRR, as well as higher CAL-extractable K (25 and 15 mg kg-1, respectively) and potential N mineralisation (11.30 and 8.78 mg N kg-1 7d-1, respectively). At 75-100 cm soil depth, SLU and

  13. Self-organized global control of carbon emissions

    Zhao, Zhenyuan; Fenn, Daniel J.; Hui, Pak Ming; Johnson, Neil F.

    2010-09-01

    There is much disagreement concerning how best to control global carbon emissions. We explore quantitatively how different control schemes affect the collective emission dynamics of a population of emitting entities. We uncover a complex trade-off which arises between average emissions (affecting the global climate), peak pollution levels (affecting citizens’ everyday health), industrial efficiency (affecting the nation’s economy), frequency of institutional intervention (affecting governmental costs), common information (affecting trading behavior) and market volatility (affecting financial stability). Our findings predict that a self-organized free-market approach at the level of a sector, state, country or continent can provide better control than a top-down regulated scheme in terms of market volatility and monthly pollution peaks. The control of volatility also has important implications for any future derivative carbon emissions market.

  14. Satellite observation of particulate organic carbon dynamics in ...

    Particulate organic carbon (POC) plays an important role in coastal carbon cycling and the formation of hypoxia. Yet, coastal POC dynamics are often poorly understood due to a lack of long-term POC observations and the complexity of coastal hydrodynamic and biogeochemical processes that influence POC sources and sinks. Using field observations and satellite ocean color products, we developed a nw multiple regression algorithm to estimate POC on the Louisiana Continental Shelf (LCS) from satellite observations. The algorithm had reliable performance with mean relative error (MRE) of ?40% and root mean square error (RMSE) of ?50% for MODIS and SeaWiFS images for POC ranging between ?80 and ?1200 mg m23, and showed similar performance for a large estuary (Mobile Bay). Substantial spatiotemporal variability in the satellite-derived POC was observed on the LCS, with high POC found on the inner shelf (satellite data with carefully developed algorithms can greatly increase

  15. [Effects of climate change on forest soil organic carbon storage: a review].

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.

  16. Carbon, nitrogen, and phosphorus stoichiometry of plankton and the nutrient regime in Cabo Frio Bay, SE Brazil.

    Kütter, Vinicius T; Wallner-Kersanach, Monica; Sella, Silvia M; Albuquerque, Ana Luiza S; Knoppers, Bastiaan A; Silva-Filho, Emmanoel V

    2014-01-01

    This long-term study, performed during the years 2003-2005 and 2008-2009, investigated the carbon (C), nitrogen (N), and phosphorus (P) contents of the phyto- and zooplankton communities and the nutrient regime of Cabo Frio Bay, SE Brazil. The information intends to serve as baseline of the plankton C, N, and P stoichiometry for the calibration of biogeochemical and ecological models in support to future findings related to the local and regional phenomena of climatic change. Cabo Frio Bay is a small semienclosed system set adjacent to a region subject to sporadic coastal upwelling. Zooplankton exhibited average annual C, N, and P contents of 11.6 ± 6.9 %, 2.8 ± 1.8 %, and 0.18 ± 0.08 %, and phytoplankton (>20 μm) 6.8 ± 6.0 %, 1.6 ± 1.5 %, and 0.09 ± 0.08 %, respectively. The C/N/P ratios correspond to the lowest already found to date for a marine environment. The low C contents must have been brought about by a predominance of gelatinous zooplankton, like Doliolids/ Salps and also Pteropods. Average annual nutrient concentrations in the water were 0.21 ± 0.1 μM for phosphate, 0.08 ± 0.1 μM for nitrite, 0.74 ± 1.6 μM for nitrate, and 1.27 ± 1.1 μM for ammonium. N/P ratios were around 8:1 during the first study period and 12:1 during the second. The plankton C/N/P and N/P nutrient ratios and elemental concentrations suggest that the system was oligotrophic and nitrogen limited. The sporadic intrusions of upwelling waters during the first study period had no marked effect upon the systems metabolism, likely due to dilution effects and the short residence times of water of the bay.

  17. Above-ground woody biomass allocation and within tree carbon and nutrient distribution of wild cherry (Prunus avium L. – a case study

    Christopher Morhart

    2016-02-01

    Full Text Available Background: The global search for new ways to sequester carbon has already reached agricultural lands. Such land constitutes a major potential carbon sink. The production of high value timber within agroforestry systems can facilitate an in-situ carbon storage function. This is followed by a potential long term ex- situ carbon sinkwithin long lasting products such as veneer and furniture. For this purpose wild cherry (Prunus avium L. is an interesting option for middle Europe, yielding high prices on the timber market. Methods: A total number of 39 wild cherry were sampled in 2012 and 2013 to assess the leafless above ground biomass. The complete trees including stem and branches were separated into 1 cm diameter classes. Wood and bark from sub-samples were analysed separately and nutrient content was derived. Models for biomass estimation were constructed for all tree compartments. Results: The smallest diameter classes possess the highest proportion of bark due to smaller cross sectional area. Tree boles with a greater amount of stem wood above 10 cm in diameter will have a more constant bark proportion. Total branch bark proportion also remains relatively constant above d1.3m measurements of 8 cm. A balance is evident between the production of new branches with a low diameter and high bark proportion offset by the thickening and a relative reduction in bark proportion in larger branches. The results show that a single tree with an age of 17 and 18 years can store up to 85 kg of carbon within the aboveground biomass portion, an amount that will increase as the tree matures. Branches display greater nutrient content than stem sections per volume unit which can be attributed to a greater bark proportion. Conclusions: Using the derived models the carbon and the nutrient content of above-ground woody biomass of whole trees can be calculated. Suggested values for carbon with other major and minor nutrients held within relatively immature trees

  18. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  19. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    Brooks, A J; Kilduff, James E; Lim, Hyung-nam

    2012-01-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7–8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π–π electron donor–acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion

  20. Substantial soil organic carbon retention along floodplains of mountain streams

    Sutfin, Nicholas A.; Wohl, Ellen

    2017-07-01

    Small, snowmelt-dominated mountain streams have the potential to store substantial organic carbon in floodplain sediment because of high inputs of particulate organic matter, relatively lower temperatures compared with lowland regions, and potential for increased moisture conditions. This work (i) quantifies mean soil organic carbon (OC) content along 24 study reaches in the Colorado Rocky Mountains using 660 soil samples, (ii) identifies potential controls of OC content based on soil properties and spatial position with respect to the channel, and (iii) and examines soil properties and OC across various floodplain geomorphic features in the study area. Stepwise multiple linear regression (adjusted r2 = 0.48, p sample depth, percent sand, distance from the channel, and relative elevation from the channel are significant predictors of OC content in the study area. Principle component analysis indicates limited separation between geomorphic floodplain features based on predictors of OC content. A lack of significant differences among floodplain features suggests that the systematic random sampling employed in this study can capture the variability of OC across floodplains in the study area. Mean floodplain OC (6.3 ± 0.3%) is more variable but on average greater than values in uplands (1.5 ± 0.08% to 2.2 ± 0.14%) of the Colorado Front Range and higher than published values from floodplains in other regions, particularly those of larger rivers.

  1. Elucidating Adsorptive Fractions of Natural Organic Matter on Carbon Nanotubes.

    Ateia, Mohamed; Apul, Onur G; Shimizu, Yuta; Muflihah, Astri; Yoshimura, Chihiro; Karanfil, Tanju

    2017-06-20

    Natural organic matter (NOM) is a heterogeneous mixture of organic compounds that is omnipresent in natural waters. To date, the understanding of the adsorption of NOM components by carbon nanotubes (CNTs) is limited because of the limited number of comprehensive studies in the literature examining the adsorption of NOM by CNTs. In this study, 11 standard NOM samples from various sources were characterized, and their adsorption behaviors on four different CNTs were examined side-by-side using total organic carbon, fluorescence, UV-visible spectroscopy, and high-performance size-exclusion chromatography (HPSEC) analysis. Adsorption was influenced by the chemical properties of the NOM, including aromaticity, degree of oxidation, and carboxylic acidity. Fluorescence excitation-emission matrix (EEM) analysis showed preferential adsorption of decomposed and terrestrial-derived NOM compared to freshly produced and microbial-derived NOM. HPSEC analysis revealed preferential adsorption of fractions in the molecular weight range of 0.5-2 kDa for humic acids but in the molecular weight range of 1-3 kDa for all fulvic acids and reverse-osmosis isolates. However, the smallest characterized fraction (MW < 0.4 kDa) in all samples did not adsorb on the CNTs.

  2. The soil organic carbon content of anthropogenically altered organic soils effects the dissolved organic matter quality, but not the dissolved organic carbon concentrations

    Frank, Stefan; Tiemeyer, Bärbel; Bechtold, Michel; Lücke, Andreas; Bol, Roland

    2016-04-01

    Dissolved organic carbon (DOC) is an important link between terrestrial and aquatic ecosystems. This is especially true for peatlands which usually show high concentrations of DOC due to the high stocks of soil organic carbon (SOC). Most previous studies found that DOC concentrations in the soil solution depend on the SOC content. Thus, one would expect low DOC concentrations in peatlands which have anthropogenically been altered by mixing with sand. Here, we want to show the effect of SOC and groundwater level on the quantity and quality of the dissolved organic matter (DOM). Three sampling sites were installed in a strongly disturbed bog. Two sites differ in SOC (Site A: 48%, Site B: 9%) but show the same mean annual groundwater level of 15 and 18 cm below ground, respectively. The SOC content of site C (11%) is similar to Site B, but the groundwater level is much lower (-31 cm) than at the other two sites. All sites have a similar depth of the organic horizon (30 cm) and the same land-use (low-intensity sheep grazing). Over two years, the soil solution was sampled bi-weekly in three depths (15, 30 and 60 cm) and three replicates. All samples were analyzed for DOC and selected samples for dissolved organic nitrogen (DON) and delta-13C and delta-15N. Despite differences in SOC and groundwater level, DOC concentrations did not differ significantly (A: 192 ± 62 mg/L, B: 163 ± 55 mg/L and C: 191 ± 97 mg/L). At all sites, DOC concentrations exceed typical values for peatlands by far and emphasize the relevance even of strongly disturbed organic soils for DOC losses. Individual DOC concentrations were controlled by the temperature and the groundwater level over the preceding weeks. Differences in DOM quality were clearer. At site B with a low SOC content, the DOC:DON ratio of the soil solution equals the soil's C:N ratio, but the DOC:DON ratio is much higher than the C:N ratio at site A. In all cases, the DOC:DON ratio strongly correlates with delta-13C. There is no

  3. Seasonal patterns in nutrients, carbon, and algal responses in wadeable streams within three geographically distinct areas of the United States, 2007-08

    Lee, Kathy E.; Lorenz, David L.; Petersen, James C.; Greene, John B.

    2012-01-01

    The U.S. Geological Survey determined seasonal variability in nutrients, carbon, and algal biomass in 22 wadeable streams over a 1-year period during 2007 or 2008 within three geographically distinct areas in the United States. The three areas are the Upper Mississippi River Basin (UMIS) in Minnesota, the Ozark Plateaus (ORZK) in southern Missouri and northern Arkansas, and the Upper Snake River Basin (USNK) in southern Idaho. Seasonal patterns in some constituent concentrations and algal responses were distinct. Nitrate concentrations were greatest during the winter in all study areas potentially because of a reduction in denitrification rates and algal uptake during the winter, along with reduced surface runoff. Decreases in nitrate concentrations during the spring and summer at most stream sites coincided with increased streamflow during the snowmelt runoff or spring storms indicating dilution. The continued decrease in nitrate concentrations during summer potentially is because of a reduction in nitrate inputs (from decreased surface runoff) or increases in biological uptake. In contrast to nitrate concentrations, ammonia concentrations varied among study areas. Ammonia concentration trends were similar at UMIS and USNK sampling sites with winter peak concentrations and rapid decreases in ammonia concentrations by spring or early summer. In contrast, ammonia concentrations at OZRK sampling sites were more variable with peak concentrations later in the year. Ammonia may accumulate in stream water in the winter under ice and snow cover at the UMIS and USNK sites because of limited algal metabolism and increased mineralization of decaying organic matter under reducing conditions within stream bottom sediments. Phosphorus concentration patterns and the type of phosphorus present changes with changing hydrologic conditions and seasons and varied among study areas. Orthophosphate concentrations tended to be greater in the summer at UMIS sites, whereas total

  4. Effects of vegetation structure on soil carbon, nutrients and greenhouse gas exchange in a savannah ecosystem of Mount Kilimanjaro Region

    Becker, J.

    2015-12-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon sequestration. Savannah ecosystems are under strong pressure from climate and land-use change, especially around populous areas like the Mt. Kilimanjaro region. Savannah vegetation consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover, aboveground biomass and root structure. The canopy structure is a major regulator for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4) in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine spatial trends and changes of soil parameters and relate their variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. At these each sampling point a soil core was taken and separated in 0-10 cm and 10-30 cm depth. We measured soil carbon (C) and nitrogen (N) storage, microbial biomass C and N, Natural δ13C, soil respiration, available nutrients, pH, cation exchange capacity (CEC) as well as root biomass and -density, soil temperature and soil water content. Concentrations and stocks of C and N fractions, CEC and K+ decreased up to 50% outside the crown covered area. Microbial C:N ratio and CO2 efflux was about 30% higher outside the crown. This indicates N limitation and low C use efficiency in soil outside the crown area. We conclude that the spatial structure of aboveground biomass in savanna ecosystems leads to a spatial variance in nutrient limitation. Therefore, the capability of a savanna ecosystem

  5. The deep-sea glass sponge Lophophysema eversa harbours potential symbionts responsible for the nutrient conversions of carbon, nitrogen and sulfur.

    Tian, Ren-Mao; Sun, Jin; Cai, Lin; Zhang, Wei-Peng; Zhou, Guo-Wei; Qiu, Jian-Wen; Qian, Pei-Yuan

    2016-09-01

    Glass sponge (Hexactinellida, Porifera) is a special lineage because of its unique tissue organization and skeleton material. Structure and physiology of glass sponge have been extensively studied. However, our knowledge of the glass sponge-associated microbial community and of the interaction with the host is rather limited. Here, we performed genomic studies on the microbial community in the glass sponge Lophophysema eversa in seamount. The microbial community was dominated by an ammonia-oxidizing archaeum (AOA), a nitrite-oxidizing bacterium (NOB) and a sulfur-oxidizing bacterium (SOB), all of which were autotrophs. Genomic analysis on the AOA, NOB and SOB in the sponge revealed specific functional features of sponge-associated microorganisms in comparison with the closely related free-living relatives, including chemotaxis, phage defence, vitamin biosynthesis and nutrient uptake among others, which are related to ecological functions. The three autotrophs play essential roles in the cycles of carbon, nitrogen and sulfur in the microenvironment inside the sponge body, and they are considered to play symbiotic roles in the host as scavengers of toxic ammonia, nitrite and sulfide. Our study extends knowledge regarding the metabolism and the evolution of chemolithotrophs inside the invertebrate body. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  7. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions.

    Ersan, Gamze; Kaya, Yasemin; Apul, Onur G; Karanfil, Tanju

    2016-09-15

    The effect of NOM preloading on the adsorption of phenanthrene (PNT) and trichloroethylene (TCE) by pristine graphene nanosheets (GNS) and graphene oxide nanosheet (GO) was investigated and compared with those of a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), and two coal based granular activated carbons (GACs). PNT uptake was higher than TCE by all adsorbents on both mass and surface area bases. This was attributed to the hydrophobicity of PNT. The adsorption capacities of PNT and TCE depend on the accessibility of the organic molecules to the inner regions of the adsorbent which was influenced from the molecular size of OCs. The adsorption capacities of all adsorbents decreased as a result of NOM preloading due to site competition and/or pore/interstice blockage. However, among all adsorbents, GO was generally effected least from the NOM preloading for PNT, whereas there was not observed any trend of NOM competition with a specific adsorbent for TCE. In addition, SWCNT was generally affected most from the NOM preloading for TCE and there was not any trend for PNT. The overall results indicated that the fate and transport of organic contaminants by GNSs and CNTs type of nanoadsorbents and GACs in different natural systems will be affected by water quality parameters, characteristics of adsorbent, and properties of adsorbate. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. TOR Signaling and Nutrient Sensing.

    Dobrenel, Thomas; Caldana, Camila; Hanson, Johannes; Robaglia, Christophe; Vincentz, Michel; Veit, Bruce; Meyer, Christian

    2016-04-29

    All living organisms rely on nutrients to sustain cell metabolism and energy production, which in turn need to be adjusted based on available resources. The evolutionarily conserved target of rapamycin (TOR) protein kinase is a central regulatory hub that connects environmental information about the quantity and quality of nutrients to developmental and metabolic processes in order to maintain cellular homeostasis. TOR is activated by both nitrogen and carbon metabolites and promotes energy-consuming processes such as cell division, mRNA translation, and anabolism in times of abundance while repressing nutrient remobilization through autophagy. In animals and yeasts, TOR acts antagonistically to the starvation-induced AMP-activated kinase (AMPK)/sucrose nonfermenting 1 (Snf1) kinase, called Snf1-related kinase 1 (SnRK1) in plants. This review summarizes the immense knowledge on the relationship between TOR signaling and nutrients in nonphotosynthetic organisms and presents recent findings in plants that illuminate the crucial role of this pathway in conveying nutrient-derived signals and regulating many aspects of metabolism and growth.

  9. Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes

    Lewandowski, Andrzej; Olejniczak, Angelika; Galinski, Maciej; Stepniak, Izabela [Faculty of Chemical Technology, Poznan University of Technology, ul. Piotrowo 3, PL-60 965 Poznan (Poland)

    2010-09-01

    Properties of capacitors working with the same carbon electrodes (activated carbon cloth) and three types of electrolytes: aqueous, organic and ionic liquids were compared. Capacitors filled with ionic liquids worked at a potential difference of 3.5 V, their solutions in AN and PC were charged up to the potential difference of 3 V, classical organic systems to 2.5 V and aqueous to 1 V. Cyclic voltammetry, galvanostatic charging/discharging and impedance spectroscopy were used to characterize these capacitors. The highest specific energy was recorded for the device working with ionic liquids, while the highest power is characteristic for the device filled with aqueous H{sub 2}SO{sub 4} electrolyte. Aqueous electrolytes led to energy density an order of magnitude lower in comparison to that characteristic of ionic liquids. (author)

  10. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  11. Organic carbon fluxes in stemflow, throughfall and rainfall in an olive orchard

    Lombardo, L.; Vanwalleghem, T.; Gomez, J. A.

    2012-04-01

    The importance of rainfall distribution under the vegetation canopy for nutrient cycling of forest ecosystems has been widely studied (e.g. Kolkai et al., 1999, Bath et al., 2011). It has been demonstrated how throughfall and stemflow reach the soil as chemically-enriched water, by incorporating soluble organic and inorganic particles deriving from plant exudates and from atmospheric depositions (dryfall and wetfall) present on the surfaces of the plant (leaves, bark, fruits). Dissolved (DOC) and particulate (POC) organic carbon inputs from stem- and canopy-derived hydrologic fluxes are small but important components of the natural carbon cycle. DOC has also the capability to form complexes that control the transport and solubility of heavy metals in surface and ground waters, being composed for the most part (75-90%) of fulvic, humic or tanninic compounds, and for the resting part of molecules like carbohydrates, hydrocarbons, waxes, fatty acids, amino and hydroxy acids. However, very little data is available for agricultural tree crops, especially olive trees. In this sense, the objective of this work is to investigate the concentration and fluxes of organic carbon in rainfall, throughfall, and stemflow in a mature olive orchard located in Cordoba, in Southern Spain and to relate them to rainfall characteristics and tree physiology. The measurements started in October 2011. Four high density polyethylene bottles with 18-cm-diameter polyethylene funnels for throughfall collection were placed beneath the canopy of each of the three selected olive trees; four more collectors were placed in open spaces in the same orchard for rainfall sampling. Stemflow was collected through PVC spiral tubes wrapped around the trunks and leading into collection bins. The throughflow sampling points were chosen randomly. Total and dissolved organic carbon concentrations in unfiltered (TOC) and filtered (0.45 µm membrane filter, DOC) collected waters were measured using a TOC analyzer

  12. Contaminant Immobilization and Nutrient Release by Biochar Soil Amendment: Roles of Natural Organic Matter

    Contamination of soil interstitial waters by labile heavy metals such as CuII, CdII, and NiII is of worldwide concern. Carbonaceous materials such as char and activated carbon have received considerable attention in recent years as soil amendment for both sequestering heavy metal contaminants and r...

  13. Carbon Composition of Particulate Organic Carbon in the Gulf of Mexico

    Rogers, K.; Montoya, J. P.; Weber, S.; Bosman, S.; Chanton, J.

    2016-02-01

    The Deepwater Horizon blowout released 5.0x1011 g C from gaseous hydrocarbons and up to 6.0x1011g C from oil into the water column. Another carbon source, adding daily to the water column, leaks from the natural hydrocarbon seeps that pepper the seafloor of the Gulf of Mexico. How much of this carbon from the DWH and natural seeps is assimilated into particulate organic carbon (POC) in the water column? We filtered seawater collected in 2010, 2012, and 2013 from seep and non-seep sites, collecting POC on 0.7µm glass microfiber filters and analyzing the POC for stable and radiocarbon isotopes. Mixing models based on carbon isotopic endmembers of methane, oil, and modern production were used to estimate the percentage of hydrocarbon incorporated into POC. Significant differences were seen between POC from shallow and deep waters and between POC collected from seep, non-seep, and blowout sites; however yearly differences were not as evident suggesting the GOM has a consistent supply of depleted carbon. Stable carbon isotopes signatures of POC in the Gulf averaged -23.7±2.5‰ for shallow samples and -26.65±2.9‰ for deep POC samples, while radiocarbon signatures averaged -100.4±146.1‰ for shallow and -394.6±197‰ for deep samples. POC in the northern Gulf are composed of 23-91% modern carbon, 2-21% methane, and 0-71% oil. Oil plays a major role in the POC composition of the GOM, especially at the natural seep GC600.

  14. Waste design for households with respect to water, organics and nutrients

    Henze, M.

    1997-01-01

    . The BOD and COD load to wastewater can be significantly reduced by separating toilet wastes and part of the kitchen wastes. The phosphate content of detergents influences the phosphorus load significantly. Kitchen wastes can be diverted to the solid waste system or the compostable fraction of solid wastes......Waste design couples handling and treatment of waste with the production and control of waste materials. This integrated approach will allow for a reduced use of non renewable resources in waste treatment The paper discusses the use of waste design for households and its impact on the composition...... of household wastewater. This will allow for the design of a wastewater with characteristics quite different from those normally found. The separation of toilet wastes or just urine can reduce the amount of nitrogen and phosphorus in the wastewater to a level where no further nutrient removal is needed...

  15. Soil Fertility Status, Nutrient Uptake, and Maize (Zea mays L.) Yield Following Organic Matters and P Fertilizer Application on Andisol

    Minardi, S.; Harieni, S.; Anasrullah, A.; Purwanto, H.

    2017-04-01

    Objective of this study were to elucidate effects of organic matters and P fertilizer application on soil fertility status, nutrient uptake and maize yield in the Andisol. This experiment consisted of two factors. The first factor comprised of four levels of organic matters input (without organic matter, manure, rice straw, and Gliricidia sepium leaves), with the application dosage 10 t.ha-1 and the second factor comprised of three levels of P fertilizer application (without P addition (control), 50 kg P2O5 ha-1, 100 kg P2O5 ha-1). Results of this study showed that organic matters and P fertilizer application improved soil fertility status, especially pH, soil organic C, cation exchange capacity (CEC), available P which resulted in an increase in P uptake that improve yield of maize. The highest yield of maize (corn cob) was obtained through application Gliricida sepium (8.40 t.ha-1), followed by manure (6.02 t.ha-1) and rice straw (5.87 t.ha-1). Application of 50 kg P2O5 Ha-1 yield was (5.76 t.ha-1) and application of 100 Kg P2O5 Ha-1 yield was (6.12 t.ha-1).

  16. ORGANIC CARBON AND TOTAL NITROGEN IN THE DENSIMETRIC FRACTIONS OF ORGANIC MATTER UNDER DIFFERENT SOIL MANAGEMEN

    MARCELO RIBEIRO VILELA PRADO

    2016-01-01

    Full Text Available The evaluation of land use and management by the measurement of soil organic matter and its fractions has gained attention since it helps in the understanding of the dynamics of their contribution to soil productivity, especially in tropical environments. This study was conducted in the municipality of Colorado do Oeste, state of Rondônia, Brazil and its aim was to determinethe quantity of organic carbon and total nitrogen in the light and heavy fractions of organic matter in the surface layers of a typic hapludalf under different land use systems: Native Forest: open evergreen forest, reference environment; Agroforestry System 1: teak (Tectona grandis LF and kudzu (Pueraria montana; Agroforestry System 2: coffee (Coffea canephora, marandu palisade grass (Brachiaria brizantha cv. Marandu, “pinho cuiabano” (Parkia multijuga, teak and kudzu.; Agroforestry System 3: teak and cocoa (Theobroma cacao; Silvopasture System: teak, cocoa and marandu palisade grass; and Extensive Grazing System: marandu palisade grass. The experimental design was a randomized block in split-split plots (use systems versus soil layers of 0-0.05 and 0.05-0.10 m with three replications. The results showed that relative to Native Forest, the Agroforestry System 2 had equal- and greater amounts of organic carbon and total nitrogen respectively (light and heavy fractions in the soil organic matter, with the light fraction being responsible for storage of approximately 45% and 70% of the organic carbon and total nitrogen, respectively. Therefore, the light densimetric fraction proved to be useful in the early identification of the general decline of the soil organic matter in the land use systems evaluated.

  17. Soil Organic Carbon Responses to Forest Expansion on Mountain Grasslands

    Guidi, Claudia

    . Changes in labile soil C were assessed by carbohydrate and thermal analyses of soil samples and fractions. Forest expansion on mountain grasslands caused a decrease in SOC stocks within the mineral soil. The SOC accumulation within the organic layers following forest establishment could not fully...... and thermally labile to resistant components decreased from grassland to forest successional stages, and corresponded to decreased SOC protection within stable aggregates. This PhD thesis showed that mineral SOC stocks and physically protected SOC fractions decreased following forest expansion on mountain......Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties...

  18. Extracellular enzymes in sensing environmental nutrients and ecosystem changes: Ligand mediation in organic phosphorus cycling

    Inorganic and organic phosphates react strongly with soil constituents, resulting in relatively low concentrations of soluble P in the soil solution. Multiple competing reactions are operating to regulate the solution-phase concentration of P-containing organic substrates and the released phosphate...

  19. Dissolved organic nutrients and phytoplankton production in the Mandovi estuary and coastal waters of Goa

    Verlecar, X.N.

    Total organic nitrogen (TON) and dissolved organic phosphorus (DOP) in the coastal and estuarine waters of Goa, India varied from 0.6 to 47.1 mu g-at N 1-1 and 0.12 to 3.49 mu g-at P l-1 respectively. The chlorophyll content of these waters...

  20. Microbial population analysis of nutrient removal-related organisms in membrane bioreactors

    Silva, A.F.; Carvalho, G.; Oehmen, A.; Lousada-Ferreira, M.; Van Nieuwenhuijzen, A.; Reis, M.A.M.; Crespo, M.T.B.

    2012-01-01

    Membrane bioreactors (MBR) are an important and increasingly implemented wastewater treatment technology, which are operated at low food to microorganism ratios (F/M) and retain slow-growing organisms. Enhanced biological phosphorus removal (EBPR)-related organisms grow slower than ordinary

  1. Denitrification potential and its relation to organic carbon quality in three coastal wetland soils

    Dodla, Syam K. [School of Plant, Environmental and Soil Sciences, Louisiana State Univ. Agricultural Center, Baton Rouge, LA 70803 (United States); Wang, Jim J. [School of Plant, Environmental and Soil Sciences, Louisiana State Univ. Agricultural Center, Baton Rouge, LA 70803 (United States)], E-mail: jjwang@agctr.lsu.edu; DeLaune, Ron D. [Wetland Biogeochemistry Institute, School of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803 (United States); Cook, Robert L. [Chemistry Department, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2008-12-15

    Capacity of a wetland to remove nitrate through denitrification is controlled by its physico-chemical and biological characteristics. Understanding these characteristics will help better to guide beneficial use of wetlands in processing nitrate. This study was conducted to determine the relationship between soil organic carbon (SOC) quality and denitrification rate in Louisiana coastal wetlands. Composite soil samples of different depths were collected from three different wetlands along a salinity gradient, namely, bottomland forest swamp (FS), freshwater marsh (FM), and saline marsh (SM) located in the Barataria Basin estuary. Potential denitrification rate (PDR) was measured by acetylene inhibition method and distribution of carbon (C) moieties in organic C was determined by {sup 13}C solid-state NMR. Of the three wetlands, the FM soil profile exhibited the highest PDR on both unit weight and unit volume basis as compared to FS and SM. The FM also tended to yield higher amount of N{sub 2}O as compared to the FS and SM especially at earlier stages of denitrification, suggesting incomplete reduction of NO{sub 3}{sup -} at FM and potential for emission of N{sub 2}O. Saline marsh soil profile had the lowest PDR on the unit volume basis. Increasing incubation concentration from 2 to 10 mg NO{sub 3}{sup -}-N L{sup -1} increased PDR by 2 to 6 fold with the highest increase in the top horizons of FS and SM soils. Regression analysis showed that across these three wetland systems, organic C has significant effect in regulating PDR. Of the compositional C moieties, polysaccharides positively influenced denitrification rate whereas phenolics (likely phenolic adehydes and ketonics) negatively affected denitrification rate in these wetland soils. These results could have significant implication in integrated assessment and management of wetlands for treating nutrient-rich biosolids and wastewaters, non-point source agricultural runoff, and nitrate found in the diverted

  2. Denitrification potential and its relation to organic carbon quality in three coastal wetland soils

    Dodla, Syam K.; Wang, Jim J.; DeLaune, Ron D.; Cook, Robert L.

    2008-01-01

    Capacity of a wetland to remove nitrate through denitrification is controlled by its physico-chemical and biological characteristics. Understanding these characteristics will help better to guide beneficial use of wetlands in processing nitrate. This study was conducted to determine the relationship between soil organic carbon (SOC) quality and denitrification rate in Louisiana coastal wetlands. Composite soil samples of different depths were collected from three different wetlands along a salinity gradient, namely, bottomland forest swamp (FS), freshwater marsh (FM), and saline marsh (SM) located in the Barataria Basin estuary. Potential denitrification rate (PDR) was measured by acetylene inhibition method and distribution of carbon (C) moieties in organic C was determined by 13 C solid-state NMR. Of the three wetlands, the FM soil profile exhibited the highest PDR on both unit weight and unit volume basis as compared to FS and SM. The FM also tended to yield higher amount of N 2 O as compared to the FS and SM especially at earlier stages of denitrification, suggesting incomplete reduction of NO 3 - at FM and potential for emission of N 2 O. Saline marsh soil profile had the lowest PDR on the unit volume basis. Increasing incubation concentration from 2 to 10 mg NO 3 - -N L -1 increased PDR by 2 to 6 fold with the highest increase in the top horizons of FS and SM soils. Regression analysis showed that across these three wetland systems, organic C has significant effect in regulating PDR. Of the compositional C moieties, polysaccharides positively influenced denitrification rate whereas phenolics (likely phenolic adehydes and ketonics) negatively affected denitrification rate in these wetland soils. These results could have significant implication in integrated assessment and management of wetlands for treating nutrient-rich biosolids and wastewaters, non-point source agricultural runoff, and nitrate found in the diverted Mississippi River water used for coastal

  3. Soil salinity decreases global soil organic carbon stocks.

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Organic carbon in Hanford single-shell tank waste

    Toth, J.J.; Willingham, C.E.; Heasler, P.G.; Whitney, P.D.

    1994-07-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTS) obtained from a review of the laboratory analytical data. This activity was undertaken at the request of Westinghouse Hanford Company (WHC). The objective of this study is to provide a best estimate, including confidence levels, of total organic carbon (TOC) in each of the 149 SSTs at Hanford. The TOC analyte information presented in this report is useful as part of the criteria to identify SSTs for additional measurements or monitoring for the organic safety program. This report is a precursor to an investigation of TOC and moisture in Hanford SSTS, in order to provide best estimates for each together in one report. Measured laboratory data were obtained for 75 of the 149 SSTS. The data represent a thorough investigation of data from 224 tank characterization datasets, including core-sampling and process laboratory data. Liquid and solid phase TOC values were investigated by examining selected tanks with both reported TOC values in solid and liquid phases. Some relationships were noted, but there was no clustering of data or significance between the solid and liquid phases. A methodology was developed for estimating the distribution and levels of TOC in SSTs using a logarithmic scale and an analysis of variance (ANOVA) technique. The methodology grouped tanks according to waste type using the Sort On Radioactive Waste Type (SORWT) grouping method. The SORWT model categorizes Hanford SSTs into groups of tanks expected to exhibit similar characteristics based on major waste types and processing histories. The methodology makes use of laboratory data for the particular tank and information about the SORWT group of which the tank is a member. Recommendations for a simpler tank grouping strategy based on organic transfer records were made

  5. DEVELOP NEW TOTAL ORGANIC CARBON/SPECIFIC UV ...

    The purpose of this project is to provide a total organic carbon (TOC)/specific ultraviolet absorbance (SUVA) method that will be used by the Office of Ground Water and Drinking Water (OGWDW) to support monitoring requirements of the Stage 2 Disinfectant/Disinfection By-products (D/DBP) Rule. The Stage 2 Rule requires that enhanced water treatment be used if the source water is high in aquatic organic matter prior to the application of a disinfectant. Disinfectants (chlorine, ozone, etc.) are used in the production of drinking water in order to reduce the risk of microbial disease. These disinfectants react with the organic material that is naturally present in the source water to form disinfection by-products (DBPs). Exposure to some of these by-products may pose a long term health risk. The number and nature of DBPs make it impossible to fully characterize all of the by-products formed during the treatment of drinking water and it is more cost effective to reduce formation of DBPs than to remove them from the water after they are formed. Two measurements (TOC and SUVA) are believed to be predictive of the amount of by-products that can be formed during the disinfection of drinking water and are considered to be surrogates for DBP precursors. SUVA is calculated as the ultraviolet absorption at 254nm (UV254) in cm-1 divided by the mg/L dissolved organic carbon (DOC) concentration (measured after filtration of the water through a 0.45um pore-diameter filte

  6. Elemental and stable isotopic approaches for studying the organic and inorganic carbon components in natural samples

    Helie, J-F

    2009-01-01

    The carbon cycle is an important part of major biogeochemical cycles. Many techniques may be used to characterize carbon amounts and sources in the environment. Here we first review the most popular techniques for the determination of organic and inorganic carbon concentrations. Decarbonatation techniques are also reviewed in details since it is often an important part of organic carbon analysis. The second part of this paper addresses the use of carbon stable isotopes to characterize organic carbon sources and processes in the environment. An overview of general stable isotopes background and terminology is given as well as the most popular analytical techniques.

  7. Multi-method comparison of carrot quality from a conventional and three organic cropping systems with increasing levels of nutrient recycling

    Paoletti, Flavio; Raffo´, Antonio; Kristensen, Hanne Lakkenborg

    2012-01-01

    BACKGROUND: There is a need to advance the study of the effects of organic and conventional systems on product quality. In particular, little is known about the importance of different farming practices concerning nutrient cycling and the use of external inputs within organic farming for the qual...

  8. Soil carbon dynamics inferred from carbon isotope compositions of soil organic matter and soil respiration

    Koarashi, Jun; Asano, Tomohiro; Iida, Takao; Moriizumi, Jun

    2004-01-01

    To better understand 14 C cycling in terrestrial ecosystems, 14 C abundances were evaluated for fractionated soil organic matter (SOM) and soil respiration in an urban forest. In 2001 soil profile, Δ 14 C values of litter and bulk SOM increased rapidly from litter surface (62.7 per mille) to uppermost mineral soil layer (244.9 per mille), and then decreased sharply to 6 cm depth of mineral soil (125.0 per mille). Carbon enriched in 14 C by atmospheric nuclear weapons testing had penetrated to at least 16 cm depth of mineral soil. The average Δ 14 C in atmospheric CO 2 was 58.8 per mille in August 2001, suggesting recent carbon input to the topmost litter layer. Although a similar depth distribution was observed for Δ 14 C values of residual SOM after acid hydrolysis, the Δ 14 C values were slightly lower than those in bulk SOM. This indicates input of 'bomb' C into this organic fraction and higher 14 C abundance in acid-soluble SOM. The most of CO 2 may be derived from the microbial decomposition of the acid-soluble, or labile, SOM. Therefore, the labile SOM may become most influential pool for soil carbon cycling. In contrast, carbon in base-insoluble SOM remained considerably low in 14 C abundance at all depths, suggesting no or little incorporation of 'bomb' C to this fraction. Values of Δ 14 C in soil respiration ranged from 91.9 to 146.4 per mille in August 2001, showing a significant contribution from decomposition of SOM fixed over past 2-40 years. These results indicate that the use of bulk SOM as a representative of soil carbon pool would lead to severe misunderstand of the soil C dynamics on decadal and shorter time scales. (author)

  9. Impact of exogenous organic carbon on the removal of chemicals of concern in the high rate nitrifying trickling filters.

    Mai, Lei; van den Akker, Ben; Du, Jun; Kookana, Rai S; Fallowfield, Howard

    2016-06-01

    The application of fixed bed high rate nitrifying trickling filters (NTFs) for the removal of track organic chemicals of concern (CoC) is less well known than their application to nutrient removal in water treatment. Particularly, the effect of exogenous organic carbon substrate (sucrose) loading on the performance of NTFs is not well understood. A laboratory-scale NTF system was operated in recirculation mode, with the objective of removing ammonia and CoC simultaneously. The efficiency of a high rate NTF for removal both of low concentration of ammonia (5 mg NH4-N L(-1)) and different concentrations of CoC in the presence of an exogenous organic carbon substrate (30 mg total organic carbon (TOC) L(-1)) was investigated. In the presence of exogenous organic carbon, the results demonstrated that the high rate NTF was able to successfully remove most of the CoCs investigated, with the removal ranging from 20.2% to 87.54%. High removal efficiencies were observed for acetaminophen (87.54%), bisphenol A (86.60%), trimethoprim (86.24%) and 17α-ethynylestradiol (80.60%). It was followed by the medium removal efficiency for N, N-diethyl-m-toluamide (61.31%) and atrazine (56.90%). In contrast, the removal of caffeine (28.43%) and benzotriazole (20.20%) was poorer in the presence of exogenous organic carbon. The removal efficiency for CoC was also compared with the results obtained in our previous study in the absence of exogenous organic carbon. The results showed that the addition of exogenous organic carbon was able to improve the removal of some of the CoC. Significant TOC percentage removals (45.68%-84.43%) and ammonia removal rate (mean value of 0.44 mg NH4-N L(-1) h(-1)) were also achieved in this study. The findings from this study provide valuable information for optimising the efficiency of high rate NTF for the removal of ammonia, CoC and TOC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Dissolved organic carbon and its potential predictors in eutrophic lakes.

    Toming, Kaire; Kutser, Tiit; Tuvikene, Lea; Viik, Malle; Nõges, Tiina

    2016-10-01

    Understanding of the true role of lakes in the global carbon cycle requires reliable estimates of dissolved organic carbon (DOC) and there is a strong need to develop remote sensing methods for mapping lake carbon content at larger regional and global scales. Part of DOC is optically inactive. Therefore, lake DOC content cannot be mapped directly. The objectives of the current study were to estimate the relationships of DOC and other water and environmental variables in order to find the best proxy for remote sensing mapping of lake DOC. The Boosted Regression Trees approach was used to clarify in which relative proportions different water and environmental variables determine DOC. In a studied large and shallow eutrophic lake the concentrations of DOC and coloured dissolved organic matter (CDOM) were rather high while the seasonal and interannual variability of DOC concentrations was small. The relationships between DOC and other water and environmental variables varied seasonally and interannually and it was challenging to find proxies for describing seasonal cycle of DOC. Chlorophyll a (Chl a), total suspended matter and Secchi depth were correlated with DOC and therefore are possible proxies for remote sensing of seasonal changes of DOC in ice free period, while for long term interannual changes transparency-related variables are relevant as DOC proxies. CDOM did not appear to be a good predictor of the seasonality of DOC concentration in Lake Võrtsjärv since the CDOM-DOC coupling varied seasonally. However, combining the data from Võrtsjärv with the published data from six other eutrophic lakes in the world showed that CDOM was the most powerful predictor of DOC and can be used in remote sensing of DOC concentrations in eutrophic lakes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation–incubation procedure.

    X.M. Zoua; H.H. Ruanc; Y. Fua; X.D. Yanga; L.Q. Sha

    2005-01-01

    Labile carbon is the fraction of soil organic carbon with most rapid turnover times and its oxidation drives the flux of CO2 between soils and atmosphere. Available chemical and physical fractionation methods for estimating soil labile organic carbon are indirect and lack a clear biological definition. We have modified the well-established Jenkinson and Powlson’s...

  12. Sorption of organic compounds to activated carbons. Evaluation of isotherm models

    Pikaar, I.; Koelmans, A.A.; Noort, van P.C.M.

    2006-01-01

    Sorption to 'hard carbon' (black carbon, coal, kerogen) in soils and sediments is of major importance for risk assessment of organic pollutants. We argue that activated carbon (AC) may be considered a model sorbent for hard carbon. Here, we evaluate six sorption models on a literature dataset for

  13. Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark

    Adhikari, Kabindra; Hartemink, Alfred E.; Minasny, Budiman

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard ...

  14. Climate Variability, Dissolved Organic Carbon, UV Exposure, and Amphibian Decline

    Brooks, P. D.; O'Reilly, C. M.; Diamond, S.; Corn, S.; Muths, E.; Tonnessen, K.; Campbell, D. H.

    2001-12-01

    Increasing levels of UV radiation represent a potential threat to aquatic organisms in a wide range of environments, yet controls on in situ variability on UV exposure are relatively unknown. The primary control on the penetration of UV radiation in surface water environments is the amount of photoreactive dissolved organic carbon (DOC). Consequently, biogeochemical processes that control the cycling of DOC also affect the exposure of aquatic organisms to UV radiation. Three years of monitoring UV extinction and DOC composition in Rocky Mountain, Glacier, Sequoia/ Kings Canyon, and Olympic National Parks demonstrate that the amount of fulvic acid DOC is much more important than the total DOC pool in controlling UV attenuation. This photoreactive component of DOC originates primarily in soil, and is subject both to biogeochemical controls (e.g. temperature, moisture, vegetation, soil type) on production, and hydrologic controls on transport to surface water and consequently UV exposure to aquatic organisms. Both of these controls are positively related to precipitation with greater production and transport associated with higher precipitation amounts. For example, an approximately 20 percent reduction in precipitation from 1999 to 2000 resulted in a 27% - 59% reduction in the amount of photoreactive DOC at three sites in Rocky Mountain National Park. These differences in the amount of hydrophobic DOC result in an increase in UV exposure in the aquatic environment by a factor of 2 or more. Implications of these findings for observed patterns of amphibian decline will be discussed.

  15. Effect of carbonation on the leaching of organic carbon and of copper from MSWI bottom ash.

    Arickx, S; De Borger, V; Van Gerven, T; Vandecasteele, C

    2010-07-01

    In Flanders, the northern part of Belgium, about 31% of the produced amount of MSWI bottom ash is recycled as secondary raw material. In view of recycling a higher percentage of bottom ash, a particular bottom ash fraction (Ø 0.1-2mm) was studied. As the leaching of this bottom ash fraction exceeds some of the Flemish limit values for heavy metals (with Cu being the most critical), treatment is required. Natural weathering and accelerated carbonation resulted in a significant decrease of the Cu leaching. Natural weathering during 3 months caused a decrease of Cu leaching to <50% of its original value, whereas accelerated carbonation resulted in an even larger decrease (to ca. 13% of its initial value) after 2 weeks, with the main decrease taking place within the first 48 h. Total organic carbon decreased to ca. 70% and 55% of the initial concentration in the solid phase, and to 40% and 25% in the leachate after natural weathering and after accelerated carbonation, respectively. In the solid material the decrease of the Hy fraction was the largest, the FA concentration remained essentially constant. The decrease of FA in the leachate can be attributed partly to an enhanced adsorption of FA to Fe/Al (hydr)oxides, due to the combined effect of a pH decrease and the neoformation of Al (hydr)oxides (both due to carbonation). A detailed study of adsorption of FA to Fe/Al (hydr)oxides showed that significant adsorption of FA occurs, that it increases with decreasing pH and started above pH 12 for Fe (hydr)oxides and around 10 for Al (hydr)oxides. Depending whether FA or Hy are considered the controlling factor in enhanced Cu leaching, the decreasing FA or Hy in the leachate explains the decrease in the Cu leaching during carbonation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  16. Recent sedimentary history of organic matter and nutrient accumulation in the Ohuira Lagoon, northwestern Mexico.

    Ruiz-Fernández, Ana Carolina; Frignani, Mauro; Tesi, Tommaso; Bojórquez-Leyva, Humberto; Bellucci, Luca Giorgio; Páez-Osuna, Federico

    2007-08-01

    (210)Pb-derived sediment accumulation rates, as well as a suite of geochemical proxies (Al, Fe, delta(13)C, delta(15)N), were used to assess the time-dependent variations of C, N, and P fluxes recorded in two sediment cores collected at Ohuira Lagoon, in the Gulf of California, Mexico, during the last 100 years. Sedimentary C, N, and P concentrations increased with time and were related to land clearing, water impoundment, and agriculture practices, such as fertilization. C:N:P ratios and delta(13)C suggested an estuarine system that is responsive to increased C loading from a N-limited phytoplankton community, whereas delta(15)N values showed the transition between an estuarine-terrestrial to an estuarine-more marine environment, as a consequence of the declining freshwater supply into the estuary due to the channeling and impoundment of El Fuerte River between 1900 and 1956. The recent increases in nutrient fluxes (2- to 9-fold the pre-anthropogenic fluxes of C and N, and 2 to 13 times for P) taking place in the mainland from the 1940s, were related to the expansion of the intensive agriculture fields and to the more recent development of shrimp farming activities.

  17. Aspen increase soil moisture, nutrients, organic matter and respiration in Rocky Mountain forest communities.

    Buck, Joshua R; St Clair, Samuel B

    2012-01-01

    Development and change in forest communities are strongly influenced by plant-soil interactions. The primary objective of this paper was to identify how forest soil characteristics vary along gradients of forest community composition in aspen-conifer forests to better understand the relationship between forest vegetation characteristics and soil processes. The study was conducted on the Fishlake National Forest, Utah, USA. Soil measurements were collected in adjacent forest stands that were characterized as aspen dominated, mixed, conifer dominated or open meadow, which includes the range of vegetation conditions that exist in seral aspen forests. Soil chemistry, moisture content, respiration, and temperature were measured. There was a consistent trend in which aspen stands demonstrated higher mean soil nutrient concentrations than mixed and conifer dominated stands and meadows. Specifically, total N, NO(3) and NH(4) were nearly two-fold higher in soil underneath aspen dominated stands. Soil moisture was significantly higher in aspen stands and meadows in early summer but converged to similar levels as those found in mixed and conifer dominated stands in late summer. Soil respiration was significantly higher in aspen stands than conifer stands or meadows throughout the summer. These results suggest that changes in disturbance regimes or climate scenarios that favor conifer expansion or loss of aspen will decrease soil resource availability, which is likely to have important feedbacks on plant community development.

  18. Effects of long-term organic material applications and green manure crop cultivation on soil organic carbon in rain fed area of Thailand

    Tomohide Sugino

    2013-12-01

    Full Text Available A long-term field experiment on organic material application and crop rotation with green manure crops has been conducted since 1976 at Lopburi Agricultural Research and Development Center, Department of Agriculture, Lop Buri Province, Thailand, to clarify the effect of organic materials and green manure crop on soil organic carbon changes. The stock change factors that stand for the relative change of soil organic carbon on the carbon stock in a reference condition (native vegetation that is not degraded or improved. Stock change factor for input of organic matter (FI, representing different levels of C input to soil such as organic material application, crop residue treatment and green manure crop cultivation, was computed with the present field experimental results. While the computed FI of "High input with manure" was within the range of IPCC default FI value, some of the computed FI of " High input without manure" was much higher than the IPCC default though it was varied due to the biomass production and nutrient contents of the green manure crops planted as the second crops after corn. Therefore, the FI computed by field experimental results can contribute to more accurate estimation of SOC changes in farm land especially in Southeast Asia because the default FI mostly depends on the experimental data in temperate zones. Moreover, the field experiment has focused the effect of reduced tillage practices on SOC changes and corn yield since 2011. The results of the experiment will be used to compute Stock change factor for management regime (FMG which represents the effects of tillage operations.

  19. Modelling and mapping the topsoil organic carbon content for Tanzania

    Kempen, Bas; Kaaya, Abel; Ngonyani Mhaiki, Consolatha; Kiluvia, Shani; Ruiperez-Gonzalez, Maria; Batjes, Niels; Dalsgaard, Soren

    2014-05-01

    Soil organic carbon (SOC), held in soil organic matter, is a key indicator of soil health and plays an important role in the global carbon cycle. The soil can act as a net source or sink of carbon depending on land use and management. Deforestation and forest degradation lead to the release of vast amounts of carbon from the soil in the form of greenhouse gasses, especially in tropical countries. Tanzania has a high deforestation rate: it is estimated that the country loses 1.1% of its total forested area annually. During 2010-2013 Tanzania has been a pilot country under the UN-REDD programme. This programme has supported Tanzania in its initial efforts towards reducing greenhouse gas emission from forest degradation and deforestation and towards preserving soil carbon stocks. Formulation and implementation of the national REDD strategy requires detailed information on the five carbon pools among these the SOC pool. The spatial distribution of SOC contents and stocks was not available for Tanzania. The initial aim of this research, was therefore to develop high-resolution maps of the SOC content for the country. The mapping exercise was carried out in a collaborative effort with four Tanzanian institutes and data from the Africa Soil Information Service initiative (AfSIS). The mapping exercise was provided with over 3200 field observations on SOC from four sources; this is the most comprehensive soil dataset collected in Tanzania so far. The main source of soil samples was the National Forest Monitoring and Assessment (NAFORMA). The carbon maps were generated by means of digital soil mapping using regression-kriging. Maps at 250 m spatial resolution were developed for four depth layers: 0-10 cm, 10-20 cm, 20-30 cm, and 0-30 cm. A total of 37 environmental GIS data layers were prepared for use as covariates in the regression model. These included vegetation indices, terrain parameters, surface temperature, spectral reflectances, a land cover map and a small

  20. Fractionation between inorganic and organic carbon during the Lomagundi (2.22 2.1 Ga) carbon isotope excursion

    Bekker, A.; Holmden, C.; Beukes, N. J.; Kenig, F.; Eglinton, B.; Patterson, W. P.

    2008-07-01

    The Lomagundi (2.22-2.1 Ga) positive carbon isotope excursion in shallow-marine sedimentary carbonates has been associated with the rise in atmospheric oxygen, but subsequent studies have demonstrated that the carbon isotope excursion was preceded by the rise in atmospheric oxygen. The amount of oxygen released to the exosphere during the Lomagundi excursion is constrained by the average global fractionation between inorganic and organic carbon, which is poorly characterized. Because dissolved inorganic and organic carbon reservoirs were arguably larger in the Paleoproterozoic ocean, at a time of lower solar luminosity and lower ocean redox state, decoupling between these two variables might be expected. We determined carbon isotope values of carbonate and organic matter in carbonates and shales of the Silverton Formation, South Africa and in the correlative Sengoma Argillite Formation, near the border in Botswana. These units were deposited between 2.22 and 2.06 Ga along the margin of the Kaapvaal Craton in an open-marine deltaic setting and experienced lower greenschist facies metamorphism. The prodelta to offshore marine shales are overlain by a subtidal carbonate sequence. Carbonates exhibit elevated 13C values ranging from 8.3 to 11.2‰ vs. VPDB consistent with deposition during the Lomagundi positive excursion. The total organic carbon (TOC) contents range from 0.01 to 0.6% and δ13C values range from - 24.8 to - 13.9‰. Thus, the isotopic fractionation between organic and carbonate carbon was on average 30.3 ± 2.8‰ ( n = 32) in the shallow-marine environment. The underlying Sengoma shales have highly variable TOC contents (0.14 to 21.94%) and δ13C values (- 33.7 to - 20.8‰) with an average of - 27.0 ± 3.0‰ ( n = 50). Considering that the shales were also deposited during the Lomagundi excursion, and taking δ13C values of the overlying carbonates as representative of the δ13C value of dissolved inorganic carbon during shale deposition, a carbon

  1. Soil organic carbon of an intensively reclaimed region in China: Current status and carbon sequestration potential.

    Deng, Xunfei; Zhan, Yu; Wang, Fei; Ma, Wanzhu; Ren, Zhouqiao; Chen, Xiaojia; Qin, Fangjin; Long, Wenli; Zhu, Zhenling; Lv, Xiaonan

    2016-09-15

    Land reclamation has been highly intensive in China, resulting in a large amount of soil organic carbon (SOC) loss to the atmosphere. Evaluating the factors which drive SOC dynamics and carbon sequestration potential in reclaimed land is critical for improving soil fertility and mitigating global warming. This study aims to determine the current status and factors important to the SOC density in a typical reclaimed land located in Eastern China, where land reclamation has been undergoing for centuries. A total of 4746 topsoil samples were collected from 2007 to 2010. The SOC density of the reclaimed land (3.18±0.05kgCm(-2); mean±standard error) is significantly lower than that of the adjacent non-reclaimed land (5.71±0.04kgCm(-2)) (pcarbon sequestration potential of the reclaimed lands may achieve a maximum of 5.80±1.81kgCO2m(-2) (mean±SD) when dryland is converted to flooded land with vegetable-rice cropping system and soil pH of ~5.9. Note that in some scenarios the methane emission substantially offsets the carbon sequestration potential, especially for continuous rice cropping system. With the optimal setting for carbon sequestration, it is estimated that the dryland reclaimed in the last 50years in China is able to sequester 0.12milliontons CO2 equivalent per year. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The Role of Soil Organic Matter, Nutrients, and Microbial Community Structure on the Performance of Microbial Fuel Cells

    Rooney-Varga, J. N.; Dunaj, S. J.; Vallino, J. J.; Hines, M. E.; Gay, M.; Kobyljanec, C.

    2011-12-01

    Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful, natural, and renewable resource: soil organic carbon. In the current study, we analyzed microbial community structure, MFC performance, and soil characteristics in different microhabitats (bulk soil, anode, and cathode) within MFCs constructed from agricultural or forest soils in order to determine how soil type and microbial dynamics influence MFC performance. MFCs were constructed with soils from agricultural and hardwood forest sites at Harvard Forest (Petersham, MA). The bulk soil characteristics were analyzed, including polyphenols, short chain fatty acids, total organic C and N, abiotic macronutrients, N and P mineralization rates, CO2 respiration rates, and MFC power output. Microbial community structure of the anodes, cathodes, and bulk soils was determined with molecular fingerprinting methods, which included terminal restriction length polymorphism (T-RFLP) analysis and 16S rRNA gene sequencing analysis. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs, suggesting that active agricultural MFC microbial communities were supported by higher quality organic carbon. Microbial community profile data indicate that the microbial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and, to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These data suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic microbial

  3. Physiological-phased kinetic characteristics of microalgae Chlorella vulgaris growth and lipid synthesis considering synergistic effects of light, carbon and nutrients.

    Liao, Qiang; Chang, Hai-Xing; Fu, Qian; Huang, Yun; Xia, Ao; Zhu, Xun; Zhong, Nianbing

    2018-02-01

    To comprehensively understand kinetic characteristics of microalgae growth and lipid synthesis in different phases, a phase-feeding strategy was proposed to simultaneously regulate light, carbon and nutrients in adaption, growth and stationary phases of microalgae cultivation. Physiological-phased kinetic characteristics of microalgae Chlorella vulgaris growth and lipid synthesis under synergistic effects of light, carbon and nutrients were investigated, and supply-demand relationships of electrons and energy between light and dark reactions of photosynthesis process were discussed. Finally, the optimized cultivation strategy for microalgae in various phases were obtained, under which the lipid productivity was significantly improved from 130.11 mg/L/d to 163.42 mg/L/d. The study provided some important guidance for the large-scale production of biofuels from microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Haemophilus ducreyi Seeks Alternative Carbon Sources and Adapts to Nutrient Stress and Anaerobiosis during Experimental Infection of Human Volunteers.

    Gangaiah, Dharanesh; Zhang, Xinjun; Baker, Beth; Fortney, Kate R; Gao, Hongyu; Holley, Concerta L; Munson, Robert S; Liu, Yunlong; Spinola, Stanley M

    2016-05-01

    Haemophilus ducreyi causes the sexually transmitted disease chancroid in adults and cutaneous ulcers in children. In humans, H. ducreyi resides in an abscess and must adapt to a variety of stresses. Previous studies (D. Gangaiah, M. Labandeira-Rey, X. Zhang, K. R. Fortney, S. Ellinger, B. Zwickl, B. Baker, Y. Liu, D. M. Janowicz, B. P. Katz, C. A. Brautigam, R. S. Munson, Jr., E. J. Hansen, and S. M. Spinola, mBio 5:e01081-13, 2014, http://dx.doi.org/10.1128/mBio.01081-13) suggested that H. ducreyi encounters growth conditions in human lesions resembling those found in stationary phase. However, how H. ducreyi transcriptionally responds to stress during human infection is unknown. Here, we determined the H. ducreyi transcriptome in biopsy specimens of human lesions and compared it to the transcriptomes of bacteria grown to mid-log, transition, and stationary phases. Multidimensional scaling showed that the in vivo transcriptome is distinct from those of in vitro growth. Compared to the inoculum (mid-log-phase bacteria), H. ducreyi harvested from pustules differentially expressed ∼93 genes, of which 62 were upregulated. The upregulated genes encode homologs of proteins involved in nutrient transport, alternative carbon pathways (l-ascorbate utilization and metabolism), growth arrest response, heat shock response, DNA recombination, and anaerobiosis. H. ducreyi upregulated few genes (hgbA, flp-tad, and lspB-lspA2) encoding virulence determinants required for human infection. Most genes regulated by CpxRA, RpoE, Hfq, (p)ppGpp, and DksA, which control the expression of virulence determinants and adaptation to a variety of stresses, were not differentially expressed in vivo, suggesting that these systems are cycling on and off during infection. Taken together, these data suggest that the in vivo transcriptome is distinct from those of in vitro growth and that adaptation to nutrient stress and anaerobiosis is crucial for H. ducreyi survival in humans. Copyright © 2016

  5. Influence of organic and inorganic sources of nutrients on the functional diversity of microbial communities in the vegetable cropping system of the Indo-Gangetic plains.

    Manjunath, Mallappa; Kumar, Upendra; Yadava, Raj Bahadur; Rai, Awadhesh Bahadur; Singh, Bijendra

    2018-05-31

    The aim of the present study was to assess the effects of different organic and inorganic fertilizers on the functional diversity of soil microbial community under a vegetable production system. The Biolog ® Eco-plate technique and indices, such as average well-colour development (AWCD), McIntosh and Shannon diversity were employed to study the diversity of soil microorganisms. The AWCD, i.e. overall utilization of carbon sources, suggested that different organic treatments had a significant impact on the metabolic activity of soil microorganisms. After 120h, the highest AWCD values were observed in poultry manure (2.5 t·ha -1 )+vermicompost (3.5 t·ha -1 ) (0.63) and farm yard manure (FYM) (10 t·ha -1 )+vermicompost (3.5 t·ha -1 ) (0.61). After 72h, the highest value of the McIntosh diversity index was recorded in poultry manure (2.5 t·ha -1 )+vermicompost (3.5 t·ha -1 ) (3.87), followed by poultry manure (2.5 t·ha -1 )+vermicompost (3.5 t·ha -1 )+biofertilizers (Azotobacter 500 g·ha -1 applied as seed treatment) (3.12). In the case of the Shannon diversity index, the highest values were noticed in organic treatments; however, there was no significant differences between organic and inorganic treatments. Biplot analysis showed a clear differentiation of organic treatments from the inorganic control. The amino acids, phenolics and polymer utilizing microorganisms were dominant in organic treatments. Inorganic control recorded the lowest values of the microbial diversity indices. Through this study, we have identified the best combination of organic nutrients, i.e. poultry manure (2.5 t·ha -1 )+vermicompost (3.5 t·ha -1 ) for the stimulation of metabolically active soil microbial communities. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  6. Aggregate and soil organic carbon dynamics in South Chilean Andisols

    D. Huygens

    2005-01-01

    Full Text Available Extreme sensitivity of soil organic carbon (SOC to climate and land use change warrants further research in different terrestrial ecosystems. The aim of this study was to investigate the link between aggregate and SOC dynamics in a chronosequence of three different land uses of a south Chilean Andisol: a second growth Nothofagus obliqua forest (SGFOR, a grassland (GRASS and a Pinus radiata plantation (PINUS. Total carbon content of the 0-10cm soil layer was higher for GRASS (6.7 kg C m-2 than for PINUS (4.3 kg C m-2, while TC content of SGFOR (5.8 kg C m-2 was not significantly different from either one. High extractable oxalate and pyrophosphate Al concentrations (varying from 20.3-24.4 g kg-1, and 3.9-11.1 g kg-1, respectively were found in all sites. In this study, SOC and aggregate dynamics were studied using