WorldWideScience

Sample records for organic carbon isotopic

  1. Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation

    Science.gov (United States)

    Schobben, Martin; van de Velde, Sebastiaan; Gliwa, Jana; Leda, Lucyna; Korn, Dieter; Struck, Ulrich; Vinzenz Ullmann, Clemens; Hairapetian, Vachik; Ghaderi, Abbas; Korte, Christoph; Newton, Robert J.; Poulton, Simon W.; Wignall, Paul B.

    2017-11-01

    Bulk-carbonate carbon isotope ratios are a widely applied proxy for investigating the ancient biogeochemical carbon cycle. Temporal carbon isotope trends serve as a prime stratigraphic tool, with the inherent assumption that bulk micritic carbonate rock is a faithful geochemical recorder of the isotopic composition of seawater dissolved inorganic carbon. However, bulk-carbonate rock is also prone to incorporate diagenetic signals. The aim of the present study is to disentangle primary trends from diagenetic signals in carbon isotope records which traverse the Permian-Triassic boundary in the marine carbonate-bearing sequences of Iran and South China. By pooling newly produced and published carbon isotope data, we confirm that a global first-order trend towards depleted values exists. However, a large amount of scatter is superimposed on this geochemical record. In addition, we observe a temporal trend in the amplitude of this residual δ13C variability, which is reproducible for the two studied regions. We suggest that (sub-)sea-floor microbial communities and their control on calcite nucleation and ambient porewater dissolved inorganic carbon δ13C pose a viable mechanism to induce bulk-rock δ13C variability. Numerical model calculations highlight that early diagenetic carbonate rock stabilization and linked carbon isotope alteration can be controlled by organic matter supply and subsequent microbial remineralization. A major biotic decline among Late Permian bottom-dwelling organisms facilitated a spatial increase in heterogeneous organic carbon accumulation. Combined with low marine sulfate, this resulted in varying degrees of carbon isotope overprinting. A simulated time series suggests that a 50 % increase in the spatial scatter of organic carbon relative to the average, in addition to an imposed increase in the likelihood of sampling cements formed by microbial calcite nucleation to 1 out of 10 samples, is sufficient to induce the observed signal of carbon

  2. Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation

    Directory of Open Access Journals (Sweden)

    M. Schobben

    2017-11-01

    Full Text Available Bulk-carbonate carbon isotope ratios are a widely applied proxy for investigating the ancient biogeochemical carbon cycle. Temporal carbon isotope trends serve as a prime stratigraphic tool, with the inherent assumption that bulk micritic carbonate rock is a faithful geochemical recorder of the isotopic composition of seawater dissolved inorganic carbon. However, bulk-carbonate rock is also prone to incorporate diagenetic signals. The aim of the present study is to disentangle primary trends from diagenetic signals in carbon isotope records which traverse the Permian–Triassic boundary in the marine carbonate-bearing sequences of Iran and South China. By pooling newly produced and published carbon isotope data, we confirm that a global first-order trend towards depleted values exists. However, a large amount of scatter is superimposed on this geochemical record. In addition, we observe a temporal trend in the amplitude of this residual δ13C variability, which is reproducible for the two studied regions. We suggest that (sub-sea-floor microbial communities and their control on calcite nucleation and ambient porewater dissolved inorganic carbon δ13C pose a viable mechanism to induce bulk-rock δ13C variability. Numerical model calculations highlight that early diagenetic carbonate rock stabilization and linked carbon isotope alteration can be controlled by organic matter supply and subsequent microbial remineralization. A major biotic decline among Late Permian bottom-dwelling organisms facilitated a spatial increase in heterogeneous organic carbon accumulation. Combined with low marine sulfate, this resulted in varying degrees of carbon isotope overprinting. A simulated time series suggests that a 50 % increase in the spatial scatter of organic carbon relative to the average, in addition to an imposed increase in the likelihood of sampling cements formed by microbial calcite nucleation to 1 out of 10 samples, is sufficient to induce the

  3. Organic carbon isotope systematics of coastal marshes

    NARCIS (Netherlands)

    Middelburg, J.J.; Nieuwenhuize, J.; Lubberts, R.K.; Van de Plassche, O.

    1997-01-01

    Measurements of nitrogen, organic carbon and delta(13)C are presented for Spartina-dominated marsh sediments from a mineral marsh in SW Netherlands and from a peaty marsh in Massachusetts, U.S.A. delta(13)C Of organic carbon in the peaty marsh sediments is similar to that of Spartina material,

  4. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    Science.gov (United States)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  5. Stable isotope compositions of organic carbon and contents of ...

    African Journals Online (AJOL)

    The stable isotope compositions of organic carbon (OC), and contents of OC and nitrogen for four sediment cores recovered from lakes Makat (located in the Ngorongoro Crater), Ndutu and Masek (located in the Serengeti Plains) are used to document sources of organic matter (OM) and climatic changes in sub-arid ...

  6. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    International Nuclear Information System (INIS)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-01-01

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, f ow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated

  7. Isotopic fractionation between organic carbon and carbonate carbon in Precambrian banded ironstone series from Brazil

    International Nuclear Information System (INIS)

    Schidlowski, M.; Eichmann, R.; Fiebiger, W.

    1976-01-01

    37 delta 13 Csub(org) and 9 delta 13 Csub(carb) values furnished by argillaceous and carbonate sediments from the Rio das Velhas and Minas Series (Minas Gerais, Brazil) have yielded means of -24.3 +- 3.9 promille [PDB] and -0.9 +- 1.4 promille [PDB], respectively. These results, obtained from a major sedimentary banded ironstone province with an age between 2 and 3 x 10 9 yr, support previous assumptions that isotopic fractionation between inorganic and organic carbon in Precambrian sediments is about the same as in Phanerozoic rocks. This is consistent with a theoretically expected constancy of the kinetic fractionation factor governing biological carbon fixation and, likewise, with a photosynthetic pedigree of the reduced carbon fraction of Precambrian rocks. (orig.) [de

  8. Stable isotopic constraints on global soil organic carbon turnover

    Science.gov (United States)

    Wang, Chao; Houlton, Benjamin Z.; Liu, Dongwei; Hou, Jianfeng; Cheng, Weixin; Bai, Edith

    2018-02-01

    Carbon dioxide release during soil organic carbon (SOC) turnover is a pivotal component of atmospheric CO2 concentrations and global climate change. However, reliably measuring SOC turnover rates on large spatial and temporal scales remains challenging. Here we use a natural carbon isotope approach, defined as beta (β), which was quantified from the δ13C of vegetation and soil reported in the literature (176 separate soil profiles), to examine large-scale controls of climate, soil physical properties and nutrients over patterns of SOC turnover across terrestrial biomes worldwide. We report a significant relationship between β and calculated soil C turnover rates (k), which were estimated by dividing soil heterotrophic respiration rates by SOC pools. ln( - β) exhibits a significant linear relationship with mean annual temperature, but a more complex polynomial relationship with mean annual precipitation, implying strong-feedbacks of SOC turnover to climate changes. Soil nitrogen (N) and clay content correlate strongly and positively with ln( - β), revealing the additional influence of nutrients and physical soil properties on SOC decomposition rates. Furthermore, a strong (R2 = 0.76; p turnover and thereby improving predictions of multiple global change influences over terrestrial C-climate feedback.

  9. Carbon isotope effects in carbohydrates and amino acids of photosynthesizing organisms

    International Nuclear Information System (INIS)

    Ivlev, A.A.; Kaloshin, A.G.; Koroleva, M.Ya.

    1982-01-01

    The analysis of the carbon isotope distribution in carbohydrates and amino acids of some photosynthesizing organisms revealed the close relationship between distribution and the pathways of biosynthesis of the molecules. This relationship is explained on the basis of the previously proposed mechanism of carbon isotope fractionation in a cell, in which the chief part is played by kinetic isotope effects in the pyruvate decarboxylation reaction progressively increased in the conjugated processes of gluconeogenesis. Isotope differences of C 2 and C 3 fragments arising in decarboxylation of pyruvate, as well as isotope differences of biogenic acceptor and environmental CO 2 appearing in assimilation are the main reasons of the observed intramolecular isotopic heterogeneity of biomolecules. The heterogeneity is preserved in metabolites owing to an incomplete mixing of carbon atoms in biochemical reactions. The probable existence of two pools of carbohydrates in photosynthesizing organisms different in isotopic composition is predicted. Two types of intramolecular isotope distribution in amino acids are shown. (author)

  10. Elemental and stable isotopic approaches for studying the organic and inorganic carbon components in natural samples

    International Nuclear Information System (INIS)

    Helie, J-F

    2009-01-01

    The carbon cycle is an important part of major biogeochemical cycles. Many techniques may be used to characterize carbon amounts and sources in the environment. Here we first review the most popular techniques for the determination of organic and inorganic carbon concentrations. Decarbonatation techniques are also reviewed in details since it is often an important part of organic carbon analysis. The second part of this paper addresses the use of carbon stable isotopes to characterize organic carbon sources and processes in the environment. An overview of general stable isotopes background and terminology is given as well as the most popular analytical techniques.

  11. Tracing organic matter sources of estuarine tidal flat nematodes with stable carbon isotopes

    NARCIS (Netherlands)

    Moens, T.; Luyten, C.; Middelburg, J.J.; Herman, P.M.J.; Vincx, M.

    2002-01-01

    The present study explores the use of stable carbon isotopes to trace organic matter sources of intertidal nematodes in the Schelde estuary (SW Netherlands). Stable carbon isotope signatures of nematodes from a saltmarsh and 4 tidal flat stations were determined in spring and winter situations, and

  12. Stable carbon isotope composition of organic material and carbonate in sediment of a swamp and lakes in Honshu island, Japan

    International Nuclear Information System (INIS)

    Ishizuka, Toshio

    1978-01-01

    Recent sediments from a swamp and lakes in Honshu were analyzed for organic carbon and carbonate contents, and stable isotope ratios of carbon in the organic materials and carbonate. delta C 13 values of the carbonate tend to be distinctly larger than those of organic carbon in reducing condition as natural gas field, whereas in oxidizing SO 4 -reducing conditions, they are slightly larger than those of organic carbon within the limited range of a few per mil. Carbon isotopic compositions of organic carbon in sediment of the swamp, Obuchi-numa, were analyzed and compared with habitat analysis of associated fossil diatoms. deltaC 13 values of organic carbon in the sediment vary in correlation with the species abundance in habitat of the associated fossil diatoms, ranging from fresh-water (-0.0282) to coastal marine (-0.0236) via brackish. (auth.)

  13. Bringing organic carbon isotopes and phytoliths to the table as additional constraints on paleoelevation

    Science.gov (United States)

    Sheldon, N. D.; Cotton, J. M.; Hren, M. T.; Hyland, E. G.; Smith, S. Y.; Strömberg, C. A. E.

    2015-12-01

    A commonly used tool in paleotectonic and paleoaltimetry studies is the oxygen isotopic composition of authigenic carbonates formed that formed in lakes or soils, with both spatial (e.g., shoreline to mountain top) or temporally resolved records potentially providing constraints. However, in many cases there is a substantial spread in the oxygen isotope data for a given time period, often to the point of allowing for essentially any interpretation of the data depending upon how they have been used by the investigator. One potential way of distinguishing between different potential paleotectonic or paleoaltimetric interpretations is to use carbon isotope and plant microfossil (phytolith) analyses from the same paleosols to screen the oxygen isotope data by looking for evidence of evaporative enrichment. For example, if both inorganic (carbonate) and organic carbon isotopes are measured from the same paleosol, then in it possible to determine if the two isotope record equilibrium conditions or if they record disequilibrium driven by kinetic effects. In the former case, the oxygen isotope results can be considered reliable whereas in the latter case, the oxygen isotope results can be considered unreliable and could be culled from the interpretation. Similarly, because the distribution of C4 plants varies as a function of temperature and elevation, the presence/absence or abundance of C4 plant phytoliths, or of carbon isotope compositions that require a component of C4 vegetation can also be used to constrain paleoelevation by providing a maximum elevation constraint. Worked examples will include the late Miocene-Pliocene of Catamarca, Argentina, where phytoliths and organic carbon isotopes provide a maximum elevation constraint and can be used to demonstrate that oxygen isotopes do not provide a locally useful constraint on paleoelevation, and Eocene-Miocene of southwestern Montana where organic matter and phytoliths can be used to select between different potential

  14. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest canopy...

  15. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest...

  16. Carbon isotope ratios of organic matter in Bering Sea settling particles. Extremely high remineralization of organic carbon derived from diatoms

    International Nuclear Information System (INIS)

    Yasuda, Saki; Akagi, Tasuku; Naraoka, Hiroshi; Kitajima, Fumio; Takahashi, Kozo

    2016-01-01

    The carbon isotope ratios of organic carbon in settling particles collected in the highly-diatom-productive Bering Sea were determined. Wet decomposition was employed to oxidize relatively fresh organic matter. The amount of unoxidised organic carbon in the residue following wet decomposition was negligible. The δ 13 C of organic carbon in the settling particles showed a clear relationship against SiO 2 /CaCO 3 ratio of settling particles: approximately -26‰ and -19‰ at lower and higher SiO 2 /CaCO 3 ratios, respectively. The δ 13 C values were largely interpreted in terms of mixing of two major plankton sources. Both δ 13 C and compositional data can be explained consistently only by assuming that more than 98% of diatomaceous organic matter decays and that organic matter derived from carbonate-shelled plankton may remain much less remineralized. A greater amount of diatom-derived organic matter is discovered to be trapped with the increase of SiO 2 /CaCO 3 ratio of the settling particles. The ratio of organic carbon to inorganic carbon, known as the rain ratio, therefore, tends to increase proportionally with the SiO 2 /CaCO 3 ratio under an extremely diatom-productive condition. (author)

  17. Geological factors of the isotopic distribution of carbon of organic matter in sedimentary rocks

    International Nuclear Information System (INIS)

    Maass, J.

    1981-01-01

    The isotope ratio of carbon of fossile organic matter can be regarded as a definite criterion of its genetic origin. As the biofacial character of organic matter, especially the chemical composition (H/C-ratio), decisively influences the mode and quantity of the potential hydrocarbon production, isotopic analysis is an essential method for the prognostic evaluation of sedimentary basins with regard to their oil and gas perspectives. The genetic relations to the parent substance continue in the bituminization and coalification products and make it possible to apply the isotopic analysis of carbon to prospection work for hydrocarbons. (author)

  18. Soil organic carbon assessments in cropping systems using isotopic techniques

    Science.gov (United States)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, is probably due to the presence of deep roots under pastures in ICLS. Delta carbon-13 values for 0-5 cm were -22.9, -21.2 and -19.9 per mil for REF, ICLS and CCS, respectively (Pis explained by the presence of tree species with high lignin content in natural vegetation. Lignin has lower delta carbon-13 compared to cellulose (dominating in crops and pastures), which is present in greater proportion in plant residues of

  19. Measurement of stable isotope ratio of organic carbon in water samples

    International Nuclear Information System (INIS)

    Fujii, Toshihiro; Otsuki, Akira

    1977-01-01

    A new method for the measurement of stable isotope ratios was investigated and applied to organic carbon's isotope ratio measurements in water samples. A few river water samples from Tsuchiura city were tested. After the wet oxidation of organic carbons to carbon dioxide in a sealed ampoule, the isotope ratios were determined with the gas chromatograph-quadrupole mass spectrometer combined with a total organic carbon analyser, under the dynamic conditions. The GC-MS had been equipped with the multiple ion detector-digital integrator system. The ion intensities at m/e 44 and 45 were simultaneously measured at a switching rate of 1 ms. The measurements with carbon dioxide acquired from sodium carbonate (53 μg) gave the isotope ratios with the variation coefficient of 0.62%. However, the variation coefficients obtained from organic carbons in natural water samples were 2 to 3 times as high as that from sodium carbonate. This method is simple and rapid and may be applied to various fields especially in biology and medicine. (auth.)

  20. Hydrogen and carbon isotopes of petroleum and related organic matter

    International Nuclear Information System (INIS)

    Yeh, H.W.; Epstein, S.

    1981-01-01

    D/H and 13 C/ 12 C ratios were measured for 114 petroleum samples and for several samples of related organic matter. DeltaD of crude oil ranges from -85 to -181 per thousand except for one distillate (-250 per thousand) from the Kenai gas field; delta 13 C of crude oil ranges from -23.3 to -32.5 per thousand. Variation in deltaD and delta 13 C values of compound-grouped fractions of a crude oil is small, 3 and 1.1 per thousand, respectively, and the difference in deltaD and delta 13 C between oil and coeval wax is slight. Gas fractions are 53 to 70 and 22.6 to 23.2 per thousand depleted in D and 13 C, respectively, relative to the coexisting oil fractions. The deltaD and delta 13 C values of the crude oils appear to be largely determined by the isotopic compositions of their organic precursors. The contribution of terrestrial organic debris to the organic precursors of most marine crude oils may be significant. (author)

  1. Carbon isotope effects in carbohydrates and amino acids of photosynthesizing organisms

    Energy Technology Data Exchange (ETDEWEB)

    Ivlev, A.A.; Kaloshin, A.G.; Koroleva, M.Ya. (Ministerstvo Geologii SSR, Moscow)

    1982-02-10

    The analysis of the carbon isotope distribution in carbohydrates and amino acids of some photosynthesizing organisms revealed the close relationship between distribution and the pathways of biosynthesis of the molecules. This relationship is explained on the basis of the previously proposed mechanism of carbon isotope fractionation in a cell, in which the chief part is played by kinetic isotope effects in the pyruvate decarboxylation reaction progressively increased in the conjugated processes of gluconeogenesis. Isotope differences of C/sub 2/ and C/sub 3/ fragments arising in decarboxylation of pyruvate, as well as isotope differences of biogenic acceptor and environmental CO/sub 2/ appearing in assimilation are the main reasons of the observed intramolecular isotopic heterogeneity of biomolecules. The heterogeneity is preserved in metabolites owing to an incomplete mixing of carbon atoms in biochemical reactions. The probable existence of two pools of carbohydrates in photosynthesizing organisms different in isotopic composition is predicted. Two types of intramolecular isotope distribution in amino acids are shown.

  2. Measurement of organic carbon stable isotope composition of different soil types by EA-IRMS system

    International Nuclear Information System (INIS)

    Qi Biao; Ding Lingling; Cui Jiehua; Wang Yanhong

    2009-01-01

    Element analyzer-isotope ratio mass spectrometers (EA-IRMS) is a rapid and precise method for measuring stable carbon isotope. Pure CO 2 reference gas was calibrated via international standard-Urea, and the δ 13 C us PDB value of pure CO 2 is (-29.523 ± 0.0181)%. Stability and linearity of the EA-IRMS system, precision of δ 13 C measurement for samples were tested through experimental comparison. Moreover, determination method of organic carbon stable isotope in soil was based on the system. The EA-IRMS system had well linearity when ion intensity ranged from 1.0 to 7.0V, and it excelled the total linearity when the ion intensity was from 1.5 to 5.0V, and the accurate result of δ 13 C for sample analysis could be obtained with precision of 0.015%. If carbon content in sample is more than 5μg, the requirement for analyzing accurate result of δ 13 C could be achieved. The organic carbon stable isotope was measured in 18 different types soil samples, the average natural abundance of 13 C was 1.082%, and the organic carbon stable isotope composition was significantly different among different type soils. (authors)

  3. Fractionation between inorganic and organic carbon during the Lomagundi (2.22 2.1 Ga) carbon isotope excursion

    Science.gov (United States)

    Bekker, A.; Holmden, C.; Beukes, N. J.; Kenig, F.; Eglinton, B.; Patterson, W. P.

    2008-07-01

    The Lomagundi (2.22-2.1 Ga) positive carbon isotope excursion in shallow-marine sedimentary carbonates has been associated with the rise in atmospheric oxygen, but subsequent studies have demonstrated that the carbon isotope excursion was preceded by the rise in atmospheric oxygen. The amount of oxygen released to the exosphere during the Lomagundi excursion is constrained by the average global fractionation between inorganic and organic carbon, which is poorly characterized. Because dissolved inorganic and organic carbon reservoirs were arguably larger in the Paleoproterozoic ocean, at a time of lower solar luminosity and lower ocean redox state, decoupling between these two variables might be expected. We determined carbon isotope values of carbonate and organic matter in carbonates and shales of the Silverton Formation, South Africa and in the correlative Sengoma Argillite Formation, near the border in Botswana. These units were deposited between 2.22 and 2.06 Ga along the margin of the Kaapvaal Craton in an open-marine deltaic setting and experienced lower greenschist facies metamorphism. The prodelta to offshore marine shales are overlain by a subtidal carbonate sequence. Carbonates exhibit elevated 13C values ranging from 8.3 to 11.2‰ vs. VPDB consistent with deposition during the Lomagundi positive excursion. The total organic carbon (TOC) contents range from 0.01 to 0.6% and δ13C values range from - 24.8 to - 13.9‰. Thus, the isotopic fractionation between organic and carbonate carbon was on average 30.3 ± 2.8‰ ( n = 32) in the shallow-marine environment. The underlying Sengoma shales have highly variable TOC contents (0.14 to 21.94%) and δ13C values (- 33.7 to - 20.8‰) with an average of - 27.0 ± 3.0‰ ( n = 50). Considering that the shales were also deposited during the Lomagundi excursion, and taking δ13C values of the overlying carbonates as representative of the δ13C value of dissolved inorganic carbon during shale deposition, a carbon

  4. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    Science.gov (United States)

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  5. The isotopic composition of soil organic carbon on a north - south transect in western Canada

    Czech Academy of Sciences Publication Activity Database

    Bird, M.; Šantrůčková, Hana; Lloyd, J.; Lawson, E.

    2002-01-01

    Roč. 53, - (2002), s. 393-403 ISSN 1351-0754 Institutional research plan: CEZ:AV0Z6066911 Keywords : isotopic composition * soil organic carbon * western Canada Subject RIV: EH - Ecology, Behaviour Impact factor: 1.452, year: 2002

  6. 61 stable isotope compositions of organic carbon and contents of ...

    African Journals Online (AJOL)

    Mgina

    isotope record from Lake Ndutu shows a general downcore decrease in δ. 13C values ... in bulk δ13C of the terrestrial biomass in the tropics may ... CO2, temperature, moisture conditions and ... A map showing location of sampling sites of Ngorongoro Crater, Lake Ndutu and .... the Lakes Makat and Masek records cannot.

  7. Organic carbon and nitrogen stable isotopes in the intertidal sediments from the Yangtze Estuary, China

    International Nuclear Information System (INIS)

    Liu, M. . E-mail mliu@geo.ecnu.edu.cn; Hou, L.J.; Xu, S.Y.; Ou, D.N.; Yang, Y.; Yu, J.; Wang, Q.

    2006-01-01

    The natural isotopic compositions and C/N elemental ratios of sedimentary organic matter were determined in the intertidal flat of the Yangtze Estuary. The results showed that the ratios of carbon and nitrogen stable isotopes were respectively -29.8 per mille to - 26.0 per mille and 1.6 per mille -5.5 per mille in the flood season (July), while they were -27.3 per mille to - 25.6 per mille and 1.7 per mille -7.8 per mille in the dry season (February), respectively. The δ 13 C signatures were remarkably higher in July than in February, and gradually increased from the freshwater areas to the brackish areas. In contrast, there were relatively complex seasonal and spatial changes in stable nitrogen isotopes. It was also reflected that δ 15 N and C/N compositions had been obviously modified by organic matter diagenesis and biological processing, and could not be used to trace the sources of organic matter at the study area. In addition, it was considered that the mixing inputs of terrigenous and marine materials generally dominated sedimentary organic matter in the intertidal flat. The contribution of terrigenous inputs to sedimentary organic matter was roughly estimated according to the mixing balance model of stable carbon isotopes

  8. Stable carbon isotope analyses of nanogram quantities of particulate organic carbon (pollen) with laser ablation nano combustion gas chromatography/isotope ratio mass spectrometry

    NARCIS (Netherlands)

    van Roij, Linda; Sluijs, Appy; Laks, Jelmer J.; Reichart, Gert-Jan

    2017-01-01

    Rationale: Analyses of stable carbon isotope ratios (δ13C values) of organic and inorganic matter remains have been instrumental for much of our understanding of present and past environmental and biological processes. Until recently, the analytical window of such analyses has been limited to

  9. Variation in stable carbon isotopes in organic matter from the Gunflint Iron Formation

    International Nuclear Information System (INIS)

    Barghoorn, E.S.; Knoll, A.H.; Dembicki, H. Jr.; Meinschein, W.G.

    1977-01-01

    In order to examine possible variations in organic carbon isotopic ratios within a single Precambrian formation, the kerogen separated from 15 samples of the approximately 2000 m.y. old Gunflint Iron Formation and the conformably overlying Rove Formation, representing a wide range of lithologies and geographic localities, was isotopically analyzed. From the resulting data, four conclusions can be drawn: (1) delta 13 C values of the shallow water algal chert facies are significantly more negative (-25 to -30 parts per thousand) than those of the deeper water chert-carbonate and taconite facies (-15 to -20 parts per thousand). Comparative data for modern marine algal mats shows a range of delta 13 C values from -8.4 to -19 parts per thousand PDB. Values obtained for fresh water mats were slightly more negative. (2) These differences in isotopic ratios can be correlated with similar differences in preserved microbiotas. (3) Anthraxolite lenses are depleted in 13 C relative to the reduced carbon in surrounding sediments. (4) The effect of Keweenawan diabase intrusions upon the carbon isotopic composition is pronounced, but limited to the immediate vicinity of the contact. (author)

  10. Elemental and isotopic compositions of organic carbon and nitrogen ...

    African Journals Online (AJOL)

    The general downcore trend can be attributed to systematic changes in relative proportion between C3 and C4 types of organic matter (OM), resulting from climatic changes or nutrient changes and shift between algae and higher plants. The lower most section containing the most depleted values can be attributed either to ...

  11. Carbon-isotope stratigraphy from terrestrial organic matter through the Monterey event, Miocene, New Jersey margin (IODP Expedition 313)

    DEFF Research Database (Denmark)

    Fang, Linhao; Bjerrum, Christian J.; Hesselbo, Stephen P.

    2013-01-01

    documented from oceanic settings (i.e., lack of positive excursion of carbon-isotope values in terrestrial organic matter through the Langhian Stage). Factors that may potentially bias local terrestrial carbon-isotope records include reworking from older deposits, degradation and diagenesis, as well....../or reworking of older woody phytoclasts, but where such processes have occurred they do not readily explain the observed carbon-isotope values. It is concluded that the overall carbon-isotope signature for the exchangeable carbon reservoir is distorted, to the extent that the Monterey event excursion...... is not easily identifiable. The most likely explanation is that phytoclast reworking has indeed occurred in clinoform toe-of-slope facies, but the reason for the resulting relatively heavy carbon-isotope values in the Burdigalian remains obscure....

  12. A universal carbonate ion effect on stable oxygen isotope ratios in unicellular planktonic calcifying organisms

    OpenAIRE

    Ziveri, P.; Thoms, S.; Probert, I.; Geisen, M.; Langer, H.

    2012-01-01

    The oxygen isotopic composition (δ18O) of calcium carbonate of planktonic calcifying organisms is a key tool for reconstructing both past seawater temperature and salinity. The calibration of paloeceanographic proxies relies in general on empirical relationships derived from field experiments on extant species. Laboratory experiments have more often than not revealed that variables other than the target parameter influence the proxy signal, which makes proxy c...

  13. Nitrogen and carbon isotopes in soil with special reference to the diagnosis of organic matter

    International Nuclear Information System (INIS)

    Wada, Eitaro; Nakamura, Koichi.

    1980-01-01

    Distributions of nitrogen and carbon isotopes in terrestrial ecosystems are described based on available data and our recent findings for soil organic matters. Major processes regulating N-isotope and C-isotope ratios in biogenic substances are discussed. The biological di-nitrogen fixation and the precipitation are major sources which lower the delta 15 N value for forested soil organic matters. Denitrification enhances delta 15 N value for soil in cultivated fields. An addition of chemical fertilizer lowers 15 N content in soils. The permiation of soil water is an important factor controlling vertical profiles of delta 15 N in soil systems. Among soil organic matters, non-hydrolizable fraction seems to give unique low delta 15 N value, suggesting the utility of delta 15 N analysis in studying the nature of the fractions. delta 13 C of soil organic matter is significantly lower than that for marine sediments. delta 13 C for soil humus varies with respect to chemical forms as well as an age of soil organic matters. The variation is large in paddy fields. It is, thus, probable that delta 13 C is an useful parameter in studying the early epidiagenesis of soil organic matters. Based on the known delta 15 N-delta 13 C relationships, a two-source mixing model has been applied to assess sources of organic matters in coastal sediment. (author)

  14. Organic carbon isotope ratios of recent sediments from coastal lagoons of the Gulf of Mexico, Mexico

    International Nuclear Information System (INIS)

    Botello, A.V.; Mandelli, E.F.; Macko, S.; Parker, P.L.

    1980-01-01

    The stable carbon isotope composition of sedimentary organic carbon was determined in the sediments of seven coastal lagoons of the Gulf of Mexico, Mexico. For most of the lagoons the delta 13 C values for sediments ranged from -20.1 to -23.9 parts per thousand. Anomalously low values, -26.8 to 29.3 parts per thousand were determined in sediments of two of the studied lagoons, probably due to the presence of organic carbon from anthropogenic sources, naturally absent in these environments. The delta 13 C values determined in the tissues of oysters collected at the same time in the different lagoons were very similar to those recorded in the sediments. (author)

  15. Diagenetic fractionation of carbon isotopes in particulate and dissolved organic matter in sediments from Skan Bay, Alaska

    International Nuclear Information System (INIS)

    Alperin, M.J.; Reeburgh, W.S.

    1991-01-01

    Isotope fractionation during organic matter diagenesis was investigated by measuring detailed depth distributions of stable carbon isotope ratios in sediment particulate organic carbon (POC) and dissolved organic carbon (DOC) reservoirs. The δ 13 C value of the POC shifted systematically from -19 per-thousand at the surface to -21 per-thousand at 10 cm. Significant trends were also apparent in the δ 13 C-DOC profile. Proceeding down-core, DOC became isotopically heavier between 0 and 5 cm and isotopically lighter at greater depths. Two mechanisms could account for the observed down-core shift in δ 13 C-POC: (a) temporal changes in the isotope ratios of deposited organic matter and (b) isotope fractionation associated with diagenesis. The δ 15 C-DOC depth distribution is sensitive to which mechanism controls the isotopic composition of the POC reservoir. A diagenetic model that couples POC and DOC reservoirs was used to discriminate between temporal changes and diagenetic alteration of the POC isotopic composition. The model indicated that observed trends in δ 13 C-POC and δ 13 C-DOC depth distributions are consistent with isotopic fractionation of POC during diagenesis

  16. Could a secular increase in organic burial explain the rise of oxygen? Insights from a geological carbon cycle model constrained by the carbon isotope record

    Science.gov (United States)

    Krissansen-Totton, J.; Kipp, M.; Catling, D. C.

    2017-12-01

    The stable isotopes of carbon in marine sedimentary rock provide a window into the evolution of the Earth system. Conventionally, a relatively constant carbon isotope ratio in marine sedimentary rocks has been interpreted as implying constant organic carbon burial relative to total carbon burial. Because organic carbon burial corresponds to net oxygen production from photosynthesis, it follows that secular changes in the oxygen source flux cannot explain the dramatic rise of oxygen over Earth history. Instead, secular declines in oxygen sink fluxes are often invoked as causes for the rise of oxygen. However, constant fractional organic burial is difficult to reconcile with tentative evidence for low phosphate concentrations in the Archean ocean, which would imply lower marine productivity and—all else being equal—less organic carbon burial than today. The conventional interpretation of the carbon isotope record rests on the untested assumption that the isotopic ratio of carbon inputs into the ocean reflect mantle isotopic values throughout Earth history. In practice, differing rates of carbonate and organic weathering will allow for changes in isotopic inputs, as suggested by [1] and [2]. However, these inputs can not vary freely because large changes in isotopic inputs would induce secular trends in carbon reservoirs, which are not observed in the isotope record. We apply a geological carbon cycle model to all Earth history, tracking carbon isotopes in crustal, mantle, and ocean reservoirs. Our model is constrained by the carbon isotope record such that we can determine the extent to which large changes in organic burial are permitted. We find both constant organic burial and 3-5 fold increases in organic burial since 4.0 Ga can be reconciled with the carbon isotope record. Changes in the oxygen source flux thus need to be reconsidered as a possible contributor to Earth's oxygenation. [1] L. A. Derry, Organic carbon cycling and the lithosphere, in Treatise on

  17. Stable carbon isotope analyses of nanogram quantities of particulate organic carbon (pollen) with laser ablation nano combustion gas chromatography/isotope ratio mass spectrometry

    Science.gov (United States)

    Sluijs, Appy; Laks, Jelmer J.; Reichart, Gert‐Jan

    2016-01-01

    Rationale Analyses of stable carbon isotope ratios (δ 13C values) of organic and inorganic matter remains have been instrumental for much of our understanding of present and past environmental and biological processes. Until recently, the analytical window of such analyses has been limited to samples containing at least several μg of carbon. Methods Here we present a setup combining laser ablation, nano combustion gas chromatography and isotope ratio mass spectrometry (LA/nC/GC/IRMS). A deep UV (193 nm) laser is used for optimal fragmentation of organic matter with minimum fractionation effects and an exceptionally small ablation chamber and combustion oven are used to reduce the minimum sample mass requirement compared with previous studies. Results Analyses of the international IAEA CH‐7 polyethylene standard show optimal accuracy, and precision better than 0.5‰, when measuring at least 42 ng C. Application to untreated modern Eucalyptus globulus (C3 plant) and Zea mays (C4 plant) pollen grains shows a ~ 16‰ offset between these species. Within each single Z. mays pollen grain, replicate analyses show almost identical δ 13C values. Conclusions Isotopic offsets between individual pollen grains exceed analytical uncertainties, therefore probably reflecting interspecimen variability of ~0.5–0.9‰. These promising results set the stage for investigating both δ 13C values and natural carbon isotopic variability between single specimens of a single population of all kinds of organic particles yielding tens of nanograms of carbon. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:27766694

  18. Radiocarbon and stable-isotope geochemistry of organic and inorganic carbon in Lake Superior

    Science.gov (United States)

    Zigah, Prosper K.; Minor, Elizabeth C.; Werne, Josef P.

    2012-03-01

    We present a lake-wide investigation of Lake Superior carbon and organic matter biogeochemistry using radiocarbon, stable isotope, and carbon concentrations. Dissolved inorganic carbon (DIC) abundance in the lake was 121-122 Tg C, with offshore concentration andδ13C values being laterally homogenous and tightly coupled to the physical and thermal regime and biochemical processes. Offshore Δ14C of DIC (50-65‰) exhibited lateral homogeneity and was more 14C enriched than co-occurring atmospheric CO2 (˜38‰); nearshore Δ14C of DIC (36-38‰) was similar to atmospheric CO2. Dissolved organic carbon (DOC) abundance was 14.2-16.4 Tg C. DOC's concentration and δ13C were homogenous in June (mixed lake), but varied laterally during August (stratification) possibly due to spatial differences in lake productivity. Throughout sampling, DOC had modern radiocarbon values (14-58‰) indicating a semilabile nature with a turnover time of ≤60 years. Lake particulate organic carbon (POC, 0.9-1.3 Tg C) was consistently 13C depleted relative to DOC. The δ15N of epilimnetic particulate organic nitrogen shifted to more negative values during stratification possibly indicating greater use of nitrate (rather than ammonium) by phytoplankton in August. POC's radiocarbon was spatially heterogeneous (Δ14C range: 58‰ to -303‰), and generally 14C depleted relative to DOC and DIC. POC 14C depletion could not be accounted for by black carbon in the lake but, because of its spatial and temporal distribution, is attributed to sediment resuspension. The presence of old POC within the epilimnion of the open lake indicates possible benthic-pelagic coupling in the lake's organic carbon cycle; the ultimate fate of this old POC bears further investigation.

  19. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures

    Science.gov (United States)

    Fu, Qi; Socki, R. A.; Niles, Paul B.

    2011-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  20. Carbon isotope characterization of vegetation and soil organic matter in subtropical forests in Luquillo, Puerto Rico

    International Nuclear Information System (INIS)

    Fischer, J.C. von; Tieszen, L.L.

    1995-01-01

    We examined natural abundances of 13 C in vegetation and soil organic maner (SOM) of subtropical wet and rain forests to characterize the isotopic enrichment through decomposition that has been reported for temperate forests. Soil cores and vegetative samples from the decomposition continuum (leaves, new litter, old liner, wood, and roots) were taken from each of four forest types in the Luquillo Experimental Forest, Puerto Rico. SOM δ 13 C was enriched 1.60/00 relative to aboveground litter. We found no further enrichment within the soil profile. The carbon isotope ratios of vegetation varied among forests, ranging from -28.20/00 in the Colorado forest to -26.90/00 in the Palm forest. Isotope ratios of SOM differed between forests primarily in the top 20 em where the Colorado forest was again most negative at -28.00/00, and the Palm forest was most positive at -26.50/00. The isotopic differences between forests are likely attributable to differences in light regimes due to canopy density variation, soil moisture regimes, and/or recycling of CO 2 . Our data suggest that recalcitrant SOM is not derived directly from plant lignin since plant lignin is even more 13 C depleted than the bulk vegetation. We hypothesize that the anthropogenic isotopic depletion of atmospheric CO 2 , (ca 1.50/00 in the last 150 years) accounts for some of the enrichment observed in the SOM relative to the more modern vegetation in this study and others. This study also supports other observations that under wet or anaerobic soil environments there is no isotopic enrichment during decomposition or with depth in the active profile. (author)

  1. Carbon isotope characterization of vegetation and soil organic matter in subtropical forests in Luquillo, Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J.C. von [Cornell University, Ithaca, NY (United States); Tieszen, L. L.

    1995-06-15

    We examined natural abundances of {sup 13}C in vegetation and soil organic maner (SOM) of subtropical wet and rain forests to characterize the isotopic enrichment through decomposition that has been reported for temperate forests. Soil cores and vegetative samples from the decomposition continuum (leaves, new litter, old liner, wood, and roots) were taken from each of four forest types in the Luquillo Experimental Forest, Puerto Rico. SOM δ{sup 13}C was enriched 1.60/00 relative to aboveground litter. We found no further enrichment within the soil profile. The carbon isotope ratios of vegetation varied among forests, ranging from -28.20/00 in the Colorado forest to -26.90/00 in the Palm forest. Isotope ratios of SOM differed between forests primarily in the top 20 em where the Colorado forest was again most negative at -28.00/00, and the Palm forest was most positive at -26.50/00. The isotopic differences between forests are likely attributable to differences in light regimes due to canopy density variation, soil moisture regimes, and/or recycling of CO{sub 2}. Our data suggest that recalcitrant SOM is not derived directly from plant lignin since plant lignin is even more {sup 13}C depleted than the bulk vegetation. We hypothesize that the anthropogenic isotopic depletion of atmospheric CO{sub 2}, (ca 1.50/00 in the last 150 years) accounts for some of the enrichment observed in the SOM relative to the more modern vegetation in this study and others. This study also supports other observations that under wet or anaerobic soil environments there is no isotopic enrichment during decomposition or with depth in the active profile. (author)

  2. Stable carbon isotope signals in particulate organic and inorganic carbon of coccolithophores - A numerical model study for Emiliania huxleyi.

    Science.gov (United States)

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2017-05-07

    A recent numerical cell model, which explains observed light and carbonate system effects on particulate organic and inorganic carbon (POC and PIC) production rates under the assumption of internal pH homeostasis, is extended for stable carbon isotopes ( 12 C, 13 C). Aim of the present study is to mechanistically understand the stable carbon isotopic fractionation signal (ε) in POC and PIC and furthermore the vital effect(s) included in measured ε PIC values. The virtual cell is divided into four compartments, for each of which the 12 C as well as the 13 C carbonate system kinetics are implemented. The compartments are connected to each other via trans-membrane fluxes. In contrast to existing carbon fractionation models, the presented model calculates the disequilibrium state for both carbonate systems and for each compartment. It furthermore calculates POC and PIC production rates as well as ε POC and ε PIC as a function of given light conditions and the compositions of the external carbonate system. Measured POC and PIC production rates as well as ε PIC values are reproduced well by the model (comparison with literature data). The observed light effect on ε POC (increase of ε POC with increasing light intensities), however, is not reproduced by the basic model set-up, which is solely based on RubisCO fractionation. When extending the latter set-up by assuming that biological fractionation includes further carbon fractionation steps besides the one of RubisCO, the observed light effect on ε POC is also reproduced. By means of the extended model version, four different vital effects that superimpose each other in a real cell can be detected. Finally, we discuss potential limitations of the ε PIC proxy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Testing the ``Wildfire Hypothesis:'' Terrestrial Organic Carbon Burning as the Cause of the Paleocene-Eocene Boundary Carbon Isotope Excursion

    Science.gov (United States)

    Moore, E. A.; Kurtz, A. C.

    2005-12-01

    The 3‰ negative carbon isotope excursion (CIE) at the Paleocene-Eocene boundary has generally been attributed to dissociation of seafloor methane hydrates. We are testing the alternative hypothesis that the carbon cycle perturbation resulted from wildfires affecting the extensive peatlands and coal swamps formed in the Paleocene. Accounting for the CIE with terrestrial organic carbon rather than methane requires a significantly larger net release of fossil carbon to the ocean-atmosphere, which may be more consistent with the extreme global warming and ocean acidification characteristic of the Paleocene-Eocene Thermal Maximum (PETM). While other researchers have noted evidence of fires at the Paleocene-Eocene boundary in individual locations, the research presented here is designed to test the "wildfire hypothesis" for the Paleocene-Eocene boundary by examining marine sediments for evidence of a global increase in wildfire activity. Such fires would produce massive amounts of soot, widely distributed by wind and well preserved in marine sediments as refractory black carbon. We expect that global wildfires occurring at the Paleocene-Eocene boundary would produce a peak in black carbon abundance at the PETM horizon. We are using the method of Gelinas et al. (2001) to produce high-resolution concentration profiles of black carbon across the Paleocene-Eocene boundary using seafloor sediments from ODP cores, beginning with the Bass River core from ODP leg 174AX and site 1209 from ODP leg 198. This method involves the chemical and thermal extraction of non-refractory carbon followed by combustion of the residual black carbon and measurement as CO2. Measurement of the δ 13C of the black carbon will put additional constraints on the source of the organic material combusted, and will allow us to determine if this organic material was formed prior to or during the CIE.

  4. Organic geochemistry and stable isotope composition of New Zealand carbonate concretions and calcite fracture fills

    International Nuclear Information System (INIS)

    Pearson, M.J.; Nelson, C.S.

    2005-01-01

    Carbonate concretion bodies, representing a number of morphological types, and associated calcite fracture fills, mainly from New Zealand, have been studied both organically and inorganically. Extracted organic material is dominated by a complex polymeric dark brown highly polar fraction with a subordinate less polar and lighter coloured lipid fraction. The relative proportion of the two fractions is the principal control on the colour of fracture fill calcites. Concretions are classified mainly by reference to their carbonate stable carbon and oxygen isotope and cation composition. Typical subspherical calcitic septarian concretions, such as those in the Paleocene Moeraki and the Eocene Rotowaro Siltstones, contain carbon derived mainly by bacterial sulfate reduction in marine strata during early diagenesis. Other concretions, including a septarian calcitic type from the Northland Allochthon, have a later diagenetic origin. Siderite concretions, abundant in the nonmarine Waikato Coal Measures, are typically dominated by methanogenic carbon, whereas paramoudra-like structures from the Taranaki Miocene have the most extreme carbon isotope compositions, probably resulting from methane formation or oxidation in fluid escape conduits. Lipids from concretion bodies and most fracture fill calcites contain significant concentrations of fatty acids. Concretion bodies dominated by bimodally distributed n-fatty acids with strong even-over-odd preference, in which long chain n-acids are of terrestrial origin, have very low hydrocarbon biomarker maturities. Concretion bodies that lack long chain n-acids often have higher apparent biomarker maturity and prominent alpha-omega diacids. Such diacids are abundant in fracture fill calcites at Rotowaro, especially where calcite infills the septaria of a siderite concretion in the non-marine Waikato Coal Measures, and support the view that fluid transport resulted in carbonate entrapment of the fracture-hosted acids. Diacids also

  5. Thallium isotope evidence for a permanent increase in marine organic carbon export in the early Eocene

    Science.gov (United States)

    Nielsen, S.G.; Mar-Gerrison, S.; Gannoun, A.; LaRowe, D.; Klemm, V.; Halliday, A.N.; Burton, K.W.; Hein, J.R.

    2009-01-01

    The first high resolution thallium (Tl) isotope records in two ferromanganese crusts (Fe-Mn crusts), CD29 and D11 from the Pacific Ocean are presented. The crusts record pronounced but systematic changes in 205Tl/203Tl that are unlikely to reflect diagenetic overprinting or changes in isotope fractionation between seawater and Fe-Mn crusts. It appears more likely that the Fe-Mn crusts track the Tl isotope composition of seawater over time. The present-day oceanic residence time of Tl is estimated to be about 20,000??yr, such that the isotopic composition should reflect ocean-wide events. New and published Os isotope data are used to construct age models for these crusts that are consistent with each other and significantly different from previous age models. Application of these age models reveals that the Tl isotope composition of seawater changed systematically between ~ 55??Ma and ~ 45??Ma. Using a simple box model it is shown that the present day Tl isotope composition of seawater depends almost exclusively on the ratio between the two principal output fluxes of marine Tl. These fluxes are the rate of removal of Tl from seawater via scavenging by authigenic Fe-Mn oxyhydroxide precipitation and the uptake rate of Tl during low temperature alteration of oceanic crust. It is highly unlikely that the latter has changed greatly. Therefore, assuming that the marine Tl budget has also not changed significantly during the Cenozoic, the low 205Tl/203Tl during the Paleocene is best explained by a more than four-fold higher sequestration of Tl by Fe-Mn oxyhydroxides compared with at the present day. The calculated Cenozoic Tl isotopic seawater curve displays a striking similarity to that of S, providing evidence that both systems may have responded to the same change in the marine environment. A plausible explanation is a marked and permanent increase in organic carbon export from ~ 55??Ma to ~ 45??Ma, which led to higher pyrite burial rates and a significantly reduced

  6. Soil carbon dynamics inferred from carbon isotope compositions of soil organic matter and soil respiration

    International Nuclear Information System (INIS)

    Koarashi, Jun; Asano, Tomohiro; Iida, Takao; Moriizumi, Jun

    2004-01-01

    To better understand 14 C cycling in terrestrial ecosystems, 14 C abundances were evaluated for fractionated soil organic matter (SOM) and soil respiration in an urban forest. In 2001 soil profile, Δ 14 C values of litter and bulk SOM increased rapidly from litter surface (62.7 per mille) to uppermost mineral soil layer (244.9 per mille), and then decreased sharply to 6 cm depth of mineral soil (125.0 per mille). Carbon enriched in 14 C by atmospheric nuclear weapons testing had penetrated to at least 16 cm depth of mineral soil. The average Δ 14 C in atmospheric CO 2 was 58.8 per mille in August 2001, suggesting recent carbon input to the topmost litter layer. Although a similar depth distribution was observed for Δ 14 C values of residual SOM after acid hydrolysis, the Δ 14 C values were slightly lower than those in bulk SOM. This indicates input of 'bomb' C into this organic fraction and higher 14 C abundance in acid-soluble SOM. The most of CO 2 may be derived from the microbial decomposition of the acid-soluble, or labile, SOM. Therefore, the labile SOM may become most influential pool for soil carbon cycling. In contrast, carbon in base-insoluble SOM remained considerably low in 14 C abundance at all depths, suggesting no or little incorporation of 'bomb' C to this fraction. Values of Δ 14 C in soil respiration ranged from 91.9 to 146.4 per mille in August 2001, showing a significant contribution from decomposition of SOM fixed over past 2-40 years. These results indicate that the use of bulk SOM as a representative of soil carbon pool would lead to severe misunderstand of the soil C dynamics on decadal and shorter time scales. (author)

  7. The dynamics of CO2 fixation in the Southern Ocean as indicated by carboxylase activities and organic carbon isotopic ratios

    International Nuclear Information System (INIS)

    Fontugne, M.

    1991-01-01

    Recent studies have suggested a direct relationship between the dissolved CO 2 concentration and carbon isotopic composition of phytoplankton in surface ocean. Thus, measurement of δ 13 C of planktonic organic matter in deep-sea ocean cores can potentially yield a record of the past atmospheric CO 2 variations. However, results are presented from 3 cruises in Indian and Atlantic sectors of the Southern Ocean (between 40-66degS) in which biochemical and physiological factors associated with photosynthetic processes lead to carbon isotopic fractionation by phytoplankton which cannot be directly related to variations within the mineral carbon pool. Simultaneous measurements of the carboxylase activities in the 13 C/ 12 C ratio of particulate organic carbon show that there is a large variability in phytoplankton carbon metabolism, especially on a seasonal scale, in spite of a relative uniformity of the environmental conditions. Phytoplankton carbon metabolism is clearly a main factor governing variations in the stable isotopic composition of organic matter in the euphotic layer. Interrelationships between light, Rubiso activity and δ 13 C are clearly shown by the data. Heterotrophic processes may also influence the carbon isotope mass balance, especially during the break-up of the ice pack. In addition to the influence of photosynthetic metabolism, the effect of the meridoneal temperature gradient is also verified by the data set. (author). 24 refs.; 5 figs

  8. Modelling the 13C and 12C isotopes of inorganic and organic carbon in the Baltic Sea

    Science.gov (United States)

    Gustafsson, Erik; Mörth, Carl-Magnus; Humborg, Christoph; Gustafsson, Bo G.

    2015-08-01

    In this study, 12C and 13C contents of all carbon containing state variables (dissolved inorganic and organic carbon, detrital carbon, and the carbon content of autotrophs and heterotrophs) have for the first time been explicitly included in a coupled physical-biogeochemical Baltic Sea model. Different processes in the carbon cycling have distinct fractionation values, resulting in specific isotopic fingerprints. Thus, in addition to simulating concentrations of different tracers, our new model formulation improves the possibility to constrain the rates of processes such as CO2 assimilation, mineralization, and air-sea exchange. We demonstrate that phytoplankton production and respiration, and the related air-sea CO2 fluxes, are to a large degree controlling the isotopic composition of organic and inorganic carbon in the system. The isotopic composition is further, but to a lesser extent, influenced by river loads and deep water inflows as well as transformation of terrestrial organic carbon within the system. Changes in the isotopic composition over the 20th century have been dominated by two processes - the preferential release of 12C to the atmosphere in association with fossil fuel burning, and the eutrophication of the Baltic Sea related to increased nutrient loads under the second half of the century.

  9. Technical note: An inverse method to relate organic carbon reactivity to isotope composition from serial oxidation

    Directory of Open Access Journals (Sweden)

    J. D. Hemingway

    2017-11-01

    Full Text Available Serial oxidation coupled with stable carbon and radiocarbon analysis of sequentially evolved CO2 is a promising method to characterize the relationship between organic carbon (OC chemical composition, source, and residence time in the environment. However, observed decay profiles depend on experimental conditions and oxidation pathway. It is therefore necessary to properly assess serial oxidation kinetics before utilizing decay profiles as a measure of OC reactivity. We present a regularized inverse method to estimate the distribution of OC activation energy (E, a proxy for bond strength, using serial oxidation. Here, we apply this method to ramped temperature pyrolysis or oxidation (RPO analysis but note that this approach is broadly applicable to any serial oxidation technique. RPO analysis directly compares thermal reactivity to isotope composition by determining the E range for OC decaying within each temperature interval over which CO2 is collected. By analyzing a decarbonated test sample at multiple masses and oven ramp rates, we show that OC decay during RPO analysis follows a superposition of parallel first-order kinetics and that resulting E distributions are independent of experimental conditions. We therefore propose the E distribution as a novel proxy to describe OC thermal reactivity and suggest that E vs. isotope relationships can provide new insight into the compositional controls on OC source and residence time.

  10. Technical note: An inverse method to relate organic carbon reactivity to isotope composition from serial oxidation

    Science.gov (United States)

    Hemingway, Jordon D.; Rothman, Daniel H.; Rosengard, Sarah Z.; Galy, Valier V.

    2017-11-01

    Serial oxidation coupled with stable carbon and radiocarbon analysis of sequentially evolved CO2 is a promising method to characterize the relationship between organic carbon (OC) chemical composition, source, and residence time in the environment. However, observed decay profiles depend on experimental conditions and oxidation pathway. It is therefore necessary to properly assess serial oxidation kinetics before utilizing decay profiles as a measure of OC reactivity. We present a regularized inverse method to estimate the distribution of OC activation energy (E), a proxy for bond strength, using serial oxidation. Here, we apply this method to ramped temperature pyrolysis or oxidation (RPO) analysis but note that this approach is broadly applicable to any serial oxidation technique. RPO analysis directly compares thermal reactivity to isotope composition by determining the E range for OC decaying within each temperature interval over which CO2 is collected. By analyzing a decarbonated test sample at multiple masses and oven ramp rates, we show that OC decay during RPO analysis follows a superposition of parallel first-order kinetics and that resulting E distributions are independent of experimental conditions. We therefore propose the E distribution as a novel proxy to describe OC thermal reactivity and suggest that E vs. isotope relationships can provide new insight into the compositional controls on OC source and residence time.

  11. Origin of particulate organic carbon in the marine atmosphere as indicated by it stable carbon isotopic composition

    International Nuclear Information System (INIS)

    Chesselet, R.; Fontugne, M.; Buat-Menard, P.; Ezat, U.; Lambert, C.E.

    1981-01-01

    Organic carbon concentration and isotopic composition were determined in samples of atmospheric particulate matter collected in 1979 at remote marine locations (Enewetak atoll, Sargasso Sea) during the SEAREX (Sea-Air Exchange) program field experiments. Atmospheric Particulate Organic Carbon (POC) concentrations were found to be in the range of 0.3 to 1.2 mg. m -3 , in agreement with previous literature data. The major mass of POC was found on the smallest particles (r 13 C/ 12 C of the small particles is close to the one expected (d 13 C = 26 +- 2 0 //sub infinity/) for atmospheric POC of continental origin. For all the samples analysed so far, it appears that more than 80% of atmospheric POC over remote marine areas is of continental origin. This can be explained either by long-range transport of small sized continental organic aserosols or by the production of POC in the marine atmosphere from a vapor phase organic carbon pool of continental origin. The POC in the large size fraction of marine aerosols ( 13 C = -21 +- 2 0 / 00 ) for POC associated with sea-salt droplets transported to the marine atmosphere

  12. Stable isotopic investigations of early development in extant and fossil chambered cephalopods I. Oxygen isotopic composition of eggwater and carbon isotopic composition of siphuncle organic matter in Nautilus

    Science.gov (United States)

    Crocker, Kimberley C.; DeNiro, Michael J.; Ward, Peter D.

    1985-12-01

    Eggwaters from the chambered cephalopod Nautilus are depleted in both 18O and deuterium relative to ambient seawater. Eggwaters from six other species, including the related chambered cephalopod Sepia, do not show such depletion. These observations indicate that the previously observed step towards more positive δ 18O values in calcium carbonate laid down after Nautilus hatches, relative to carbonate precipitated prior to hatching, can be explained by equilibration of the carbonate with water in the egg before hatching and with seawater after hatching. The presence of an oxygen isotope difference between eggwater and seawater for Nautilus and its absence for Sepia suggest that hatching will be recorded in the δ 18O values of shell carbonates for some but not all extinct and extant chambered cephalopods. The δ 13C values of the organic fraction of the siphuncle in Nautilus do not show any consistent pattern with regard to the time of formation before or after hatching. This observation suggests that the minimum in δ 13C values previously observed for calcium carbonate precipitated after Nautilus hatches is not caused by a change in food sources once the animal becomes free-swimming, as has been suggested.

  13. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  14. Carbon Isotope Characterization of Organic Intermediaries in Hydrothermal Hydrocarbon Synthesis by Pyrolysis-GC-MS-C-IRMS

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2010-01-01

    We report results of experiments designed to characterize the carbon isotope composition of intermediate organic compounds produced as a result of mineral surface catalyzed reactions. The impetus for this work stems from recently reported detection of methane in the Martian atmosphere coupled with evidence showing extensive water-rock interaction during Martian history. Abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions may be one possible process responsible for methane generation on Mars, and measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible isotope measurements. Our isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-Combustion-Isotope Ratio Mass Specrometry (Py-GC-MS-C-IRMS). Others have conducted similar pyrolysis-IRMS experiments on low molecular weight organic acids (Dias, et al, Organic Geochemistry, 33 [2002]). Our technique differs in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of the organic compounds. A sample of carboxylic acid (mixture of C1 through C6) was pyrolyzed at 100 XC and passed through the GC-MS-C-IRMS (combusted at 940 XC). In order to test the reliability of our technique we compared the _13C composition of different molecular weight organic acids (from C1 through C6) extracted individually by the traditional sealed-tube cupric oxide combustion (940 XC) method with the _13C produced by our pyrolysis technique. Our data indicate that an average 4.3. +/-0.5. (V

  15. A novel high-temperature combustion based system for stable isotope analysis of dissolved organic carbon in aqueous samples. : I development and validation

    NARCIS (Netherlands)

    Federherr, E.; Cerli, C.; Kirkels, F. M. S. A.; Kalbitz, K.; Kupka, H. J.; Dunsbach, R.; Lange, L.; Schmidt, T. C.

    2014-01-01

    RATIONALE: Traditionally, dissolved organic carbon (DOC) stable isotope analysis (SIA) is performed using either offline sample preparation followed by elemental analyzer/isotope ratiomass spectrometry (EA/IRMS) or a wet chemical oxidation (WCO)-based device coupled to an isotope ratio mass

  16. Sinemurian–Pliensbachian calcareous nannofossil biostratigraphy and organic carbon isotope stratigraphy in the Paris Basin

    DEFF Research Database (Denmark)

    Peti, Leonie; Thibault, Nicolas Rudolph; Clemence, Marie-Emilie

    2017-01-01

    The biostratigraphy of Sinemurian to lower Toarcian calcareous nannofossils has been investigated in the Sancerre-Couy core (Paris Basin), which contains a mixed assemblage of species with affinities to the northern and southern areas of the peri-tethyan realm, thus allowing for the use and calib......The biostratigraphy of Sinemurian to lower Toarcian calcareous nannofossils has been investigated in the Sancerre-Couy core (Paris Basin), which contains a mixed assemblage of species with affinities to the northern and southern areas of the peri-tethyan realm, thus allowing for the use...... organic carbon isotope curve based on 385 data points. The main bioevents, i.e. the first occurrences of Parhabdolithus liasicus, Crepidolithus pliensbachensis, Crepidolithus crassus, Mitrolithus lenticularis, Similiscutum cruciulus sensu lato, Lotharingius hauffii, Crepidolithus cavus and Lotharingius...... between the different domains. In addition to the nine main bioevents used for the biozonation of the core, we document an additional 50 distinct bioevents, evaluate their reliability and discuss their potential significance by comparison to previous studies. A total of five significant negative organic...

  17. Biochemical and stable carbon isotope records of mangrove derived organic matter in the sediment cores

    Digital Repository Service at National Institute of Oceanography (India)

    Manju, M.N.; Resmi, P.; RatheeshKumar, C.S.; Gireeshkumar, T.R.; Chandramohanakumar, N.; Joseph, M.M.

    in mangrove sediments. This also confirms the involvement of heterotrophic microorganisms in the organic carbon dynamics of the study area. The bulk elemental ratio (total organic carbon/total nitrogen) varied between 11.39 and 24.14 in the study region...

  18. Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest

    International Nuclear Information System (INIS)

    Koarashi, Jun; Iida, Takao; Asano, Tomohiro

    2005-01-01

    To better understand the role of soil organic matter in terrestrial carbon cycle, carbon isotope compositions in soil samples from a temperate-zone forest were measured for bulk, acid-insoluble and base-insoluble organic matter fractions separated by a chemical fractionation method. The measurements also made it possible to estimate indirectly radiocarbon ( 14 C) abundances of acid- and base-soluble organic matter fractions, through a mass balance of carbon among the fractions. The depth profiles of 14 C abundances showed that (1) bomb-derived 14 C has penetrated the first 16 cm mineral soil at least; (2) Δ 14 C values of acid-soluble organic matter fraction are considerably higher than those of other fractions; and (3) a significant amount of the bomb-derived 14 C has been preserved as the base-soluble organic matter around litter-mineral soil boundary. In contrast, no or little bomb-derived 14 C was observed for the base-insoluble fraction in all sampling depths, indicating that this recalcitrant fraction, accounting for approximately 15% of total carbon in this temperate-zone forest soil, plays a role as a long-term sink in the carbon cycle. These results suggest that bulk soil organic matter cannot provide a representative indicator as a source or a sink of carbon in soil, particularly on annual to decadal timescales

  19. Carbon and Hydrogen Isotope Measurements of Alcohols and Organic Acids by Online Pyroprobe-GC-IRMS

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.

    2012-01-01

    The detection of methane in the atmosphere of Mars, combined with evidence showing widespread water-rock interaction during martian history, suggests that the production of methane on Mars may be the result of mineral surface-catalyzed CO2 and or CO reduction during Fisher-Tropsch Type (FTT) reactions. A better understanding of these reaction pathways and corresponding C and H isotope fractionations is critical to deciphering the synthesis of organic compounds produced under abiotic hydrothermal conditions. Described here is a technique for the extraction and analysis of both C and H isotopes from alcohols (C1-C4) and organic acids (C1-C6). This work is meant to provide a "proof of concept" for making meaningful isotope measurements on complex mixtures of solid-phase hydrocarbons and other intermediary products produced during high-temperature and high-pressure synthesis on mineral-catalyzed surfaces. These analyses are conducted entirely "on-line" utilizing a CDS model 5000 Pyroprobe connected to a Thermo Trace GC Ultra that is interfaced with a Thermo MAT 253 isotope ratio mass spectrometer operating in continuous flow mode. Also, this technique is designed to carry a split of the GC-separated product to a DSQ II quadrupole mass spectrometer as a means of making semi-quantitative compositional measurements. Therefore, both chemical and isotopic measurements can be carried out on the same sample.

  20. Stable isotope compositions of organic carbon and contents of organic carbon and nitrogen of lacustrine sediments from sub-arid northern Tanzania

    International Nuclear Information System (INIS)

    Muzuka, A.N.N.

    2006-01-01

    The stable isotope compositions of organic carbon (OC), and contents of OC and nitrogen for four sediment cores recovered from lakes Makat (located in the Ngorongoro Crater), Ndutu and Masek (located in the Serengeti Plains) are used to document sources of organic matter (OM) and climatic changes in sub-arid northern Tanzania during the late Pleistocene-Holocene period. Accelerate mass spectrometer (AMS) 14 C ages on total OM for sediments collected from the Ngorongoro Crater Lake indicate that the sedimentation rate is approximately 17 cm/ka. The δ 13 C values from the 20 cm long core (short core) show a downcore increase, whereas that of 500 cm long core (long core), show two peaks enriched in 13 C and three peaks depleted in 13 C. A general downcore increase in the δ 13 C values for the short core suggests changes in the relative proportion of C 3 and C 4 fraction increasing downcore. Similarly, low and high peaks in the long core suggest changes in the relative proportion of C 3 and C 4 with low values having high proportion of C 3 type of material, probably indicating changes in precipitation and lake levels in the area. Deposition of OM depleted in 13 C took place during periods of high precipitation and high lake levels. Although high content of OC and nitrogen in some core sections are associated with elevated C/N ratio values, diagenetic alteration of isotope signature is unlikely to have caused OC and isotope enrichment in sections having high contents of OC and nitrogen. The OC isotope record from Lake Ndutu shows a general downcore decrease in δ 13 C values and contents of OC and nitrogen. (author)

  1. Contribution of deep sourced carbon from hydrocarbon seeps to sedimentary organic carbon: Evidence from Δ14C and δ13C isotopes

    Science.gov (United States)

    Feng, D.; Peckmann, J.; Peng, Y.; Liang, Q.; Roberts, H. H.; Chen, D.

    2017-12-01

    Sulfate-driven anaerobic oxidation of methane (AOM) limits the release of methane from marine sediments and promotes the formation of carbonates close to the seafloor along continental margins. It has been established that hydrocarbon seeps are a source of dissolved inorganic and organic carbon to marine environments. However, questions remain about the contribution of deep sourced carbon from hydrocarbon seeps to the sedimentary organic carbon pool. For a number of hydrocarbon seeps from the South China Sea and the Gulf of Mexico, the portion of modern carbon was determined based on natural radiocarbon abundances (Δ14C) and stable carbon isotope (δ13Corganic carbon) compositions of the non-carbonate fractions extracted from authigenic carbonates. Samples from both areas show a mixing trend between ideal planktonic organic carbon (δ13C = -22‰ VPDB and 90% modern carbon) and the ambient methane. The δ13Corganic carbon values of non-carbonate fractions from three ancient seep deposits (northern Italy, Miocene; western Washington State, USA, Eocene to Oligocene) confirm that the proxy can be used to constrain the record of sulfate-driven AOM through most of Earth history by measuring the δ13C values of organic carbon. This study reveals the potential of using δ13C values of organic carbon to discern seep and non-seep environments. This new approach is particularly promising when authigenic carbonate is not present in ancient sedimentary environments. Acknowledgments: The authors thank BOEM and NOAA for their years' support of the deep-sea dives. Funding was provided by the NSF of China (Grants: 41422602 and 41373085).

  2. Analysis of dissolved organic carbon concentration and 13C isotopic signature by TOC-IRMS - assessment of analytical performance

    Science.gov (United States)

    Kirkels, Frédérique; Cerli, Chiara; Federherr, Eugen; Kalbitz, Karsten

    2013-04-01

    Stable carbon isotopes provide a powerful tool to assess carbon pools and their dynamics. Dissolved organic carbon (DOC) has been recognized to play an important role in ecosystem functioning and carbon cycling and has therefore gained increased research interest. However, direct measurement of 13C isotopic signature of carbon in the dissolved phase is technically challenging particularly using high temperature combustion. Until recently, mainly custom-made systems existed which were modified for coupling of TOC instruments with IRMS for simultaneous assessment of C content and isotopic signature. The variety of coupled systems showed differences in their analytical performances. For analysis of DOC high temperature combustion is recognized as best performing method, owing to its high efficiency of conversion to CO2 also for highly refractory components (e.g. humic, fulvic acids) present in DOC and soil extracts. Therefore, we tested high temperature combustion TOC coupled to IRMS (developed by Elementar Group) for bulk measurements of DOC concentration and 13C signature. The instruments are coupled via an Interface to exchange the carrier gas from O2 to He and to concentrate the derived CO2 for the isotope measurement. Analytical performance of the system was assessed for a variety of organic compounds characterized by different stability and complexity, including humic acid and DOM. We tested injection volumes between 0.2-3 ml, thereby enabling measurement of broad concentration ranges. With an injection volume of 0.5 ml (n=3, preceded by 1 discarded injection), DOC and 13C signatures for concentrations between 5-150 mg C/L were analyzed with high precision (standard deviation (SD) predominantly TOC-IRMS in comparison with other systems capable of determining C concentration and isotopic signatures. We recognize the advantages of this system providing: - High sample throughput, short measurement time (15 minutes), flexible sample volume - Easy maintenance

  3. Stable carbon isotope fractionation of organic cyst-forming dinoflagellates: Evaluating the potential for a CO2 proxy

    Science.gov (United States)

    Hoins, Mirja; Van de Waal, Dedmer B.; Eberlein, Tim; Reichart, Gert-Jan; Rost, Björn; Sluijs, Appy

    2015-07-01

    Over the past decades, significant progress has been made regarding the quantification and mechanistic understanding of stable carbon isotope fractionation (13C fractionation) in photosynthetic unicellular organisms in response to changes in the partial pressure of atmospheric CO2 (pCO2). However, hardly any data is available for organic cyst-forming dinoflagellates while this is an ecologically important group with a unique fossil record. We performed dilute batch experiments with four harmful dinoflagellate species known for their ability to form organic cysts: Alexandrium tamarense, Scrippsiella trochoidea, Gonyaulax spinifera and Protoceratium reticulatum. Cells were grown at a range of dissolved CO2 concentrations characterizing past, modern and projected future values (∼5-50 μmol L-1), representing atmospheric pCO2 of 180, 380, 800 and 1200 μatm. In all tested species, 13C fractionation depends on CO2 with a slope of up to 0.17‰ (μmol L)-1. Even more consistent correlations were found between 13C fractionation and the combined effects of particulate organic carbon quota (POC quota; pg C cell-1) and CO2. Carbon isotope fractionation as well as its response to CO2 is species-specific. These results may be interpreted as a first step towards a proxy for past pCO2 based on carbon isotope ratios of fossil organic dinoflagellate cysts. However, additional culture experiments focusing on environmental variables other than pCO2, physiological underpinning of the recorded response, testing for possible offsets in 13C values between cells and cysts, as well as field calibration studies are required to establish a reliable proxy.

  4. Applications of compound-specific carbon isotope ratios in organic contaminant studies

    International Nuclear Information System (INIS)

    Aravena, R.; Hunkeler, D.; Bloom, Y.; Frape, S.K.; Butler, B.; Edwards, E.; Cox, E.

    1999-01-01

    In this paper results are presented on the application of compound-specific isotope ratios measurements to assess biodegradation of chlorinated solvents, in particularly on microbial dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE). Analytical aspects and isotope data from laboratory and field studies are discussed. The analytical tests showed that both headspace and SPME techniques provide accurate δ 13 C values with a similar precision for a wide range of chlorinated solvents. However, the SPME method is generally more sensitive. The microcosm experiments show that a significant isotopic fractionation occurs during dechlorination of PCE and TCE to ethene. The largest fractionation factors are observed in the steps DCE-VC and VC-Ethene. In general, the δ 13 C of each dechlorination product was always more negative than the δ 13 C of the corresponding precursor. In addition, the δ 13 C values of each compound increased with time. A similar pattern was observed for dechlorination of PCE at a field site. These results show that compound-specific carbon isotope ratios technology is a very sensitive tool for evaluation of natural attenuation of chlorinated solvents in groundwater. (author)

  5. Compound-specific C- and H-isotope compositions of enclosed organic matter in carbonate rocks: Implications for source identification of sedimentary organic matter and paleoenvironmental reconstruction

    International Nuclear Information System (INIS)

    Xiong Yongqiang; Wang Yanmei; Wang Yongquan; Xu Shiping

    2007-01-01

    The Bohai Bay Basin is one of the most important oil-producing provinces in China. Molecular organic geochemical characteristics of Lower Paleozoic source rocks in this area have been investigated by analyzing chemical and isotopic compositions of solvent extracts and acid-released organic matter from the Lower Paleozoic carbonate rocks in the Jiyang Sub-basin of the Bohai Bay Basin. The results indicate that enclosed organic matter in carbonate rocks has not been recognizably altered by post-depositional processes. Two end-member compositions are suggested for early organic matter trapped in the Lower Paleozoic carbonate rocks: (1) a source dominated by aquatic organisms and deposited in a relatively deep marine environment and (2) a relatively high saline, evaporative marine depositional environment. In contrast, chemical and isotopic compositions of solvent extracts from these Lower Paleozoic carbonate rocks are relatively complicated, not only inheriting original characteristics of their precursors, but also overprinted by various post-depositional alterations, such as thermal maturation, biodegradation and mixing. Therefore, the integration of both organic matter characteristics can provide more useful information on the origin of organic matter present in carbonate rocks and the environments of their deposition

  6. Compound-specific C- and H-isotope compositions of enclosed organic matter in carbonate rocks: Implications for source identification of sedimentary organic matter and paleoenvironmental reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Yongqiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)], E-mail: xiongyq@gig.ac.cn; Wang Yanmei; Wang Yongquan; Xu Shiping [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2007-11-15

    The Bohai Bay Basin is one of the most important oil-producing provinces in China. Molecular organic geochemical characteristics of Lower Paleozoic source rocks in this area have been investigated by analyzing chemical and isotopic compositions of solvent extracts and acid-released organic matter from the Lower Paleozoic carbonate rocks in the Jiyang Sub-basin of the Bohai Bay Basin. The results indicate that enclosed organic matter in carbonate rocks has not been recognizably altered by post-depositional processes. Two end-member compositions are suggested for early organic matter trapped in the Lower Paleozoic carbonate rocks: (1) a source dominated by aquatic organisms and deposited in a relatively deep marine environment and (2) a relatively high saline, evaporative marine depositional environment. In contrast, chemical and isotopic compositions of solvent extracts from these Lower Paleozoic carbonate rocks are relatively complicated, not only inheriting original characteristics of their precursors, but also overprinted by various post-depositional alterations, such as thermal maturation, biodegradation and mixing. Therefore, the integration of both organic matter characteristics can provide more useful information on the origin of organic matter present in carbonate rocks and the environments of their deposition.

  7. Effects of molecular weight of natural organic matter on cadmium mobility in soil environments and its carbon isotope characteristics

    International Nuclear Information System (INIS)

    Mahara, Y.; Kubota, T.; Wakayama, R.; Nakano-Ohta, T.; Nakamura, T.

    2007-01-01

    We investigated the role of natural organic matter in cadmium mobility in soil environments. We collected the dissolved organic matter from two different types of natural waters: pond surface water, which is oxic, and deep anoxic groundwater. The collected organic matter was fractionated into four groups with molecular weights (unit: Da (Daltons)) of 3 , 1-10 x 10 3 , 10-100 x 10 3 , and > 100 x 10 3 . The organic matter source was land plants, based on the carbon isotope ratios (δ 13 C/ 12 C). The organic matter in surface water originated from presently growing land plants, based on 14 C dating, but the organic matter in deep groundwater originated from land plants that grew approximately 4000 years ago. However, some carbon was supplied by the high-molecular-weight fraction of humic substances in soil or sediments. Cadmium interacted in a system of siliceous sand, fractionated organic matter, and water. The lowest molecular weight fraction of organic matter ( 3 ) bound more cadmium than did the higher molecular weight fractions. Organic matter in deep groundwater was more strongly bound to cadmium than was organic matter in surface water. The binding behaviours of organic matter with cadmium depended on concentration, age, molecular weight, and degradation conditions of the organic matter in natural waters. Consequently, the dissolved, low-molecular-weight fraction in organic matter strongly influences cadmium migration and mobility in the environment

  8. Freezing and fractionation: effects of preservation on carbon and nitrogen stable isotope ratios of some limnetic organisms.

    Science.gov (United States)

    Wolf, J Marshall; Johnson, Brett; Silver, Douglas; Pate, William; Christianson, Kyle

    2016-03-15

    Stable isotopes of carbon and nitrogen have become important natural tracers for studying food-web structure and function. Considerable research has demonstrated that chemical preservatives and fixatives shift the isotopic ratios of aquatic organisms. Much less is known about the effects of freezing as a preservation method although this technique is commonly used. We conducted a controlled experiment to test the effects of freezing (-10 °C) and flash freezing (–79 °C) on the carbon and nitrogen isotope ratios of zooplankton (Cladocera), Mysis diluviana and Rainbow Trout (Oncorhynchus mykiss). Subsamples (~0.5 mg) of dried material were analyzed for percentage carbon, percentage nitrogen, and the relative abundance of stable carbon and nitrogen isotopes (δ13C and δ15N values) using a Carlo Erba NC2500 elemental analyzer interfaced to a ThermoFinnigan MAT Delta Plus isotope ratio mass spectrometer. The effects of freezing were taxon-dependent. Freezing had no effect on the isotopic or elemental values of Rainbow Trout muscle. Effects on the δ13C and δ15N values of zooplankton and Mysis were statistically significant but small relative to typical values of trophic fractionation. The treatment-control offsets had larger absolute values for Mysis (δ13C: ≤0.76 ± 0.41‰, δ15N: ≤0.37 ± 0.16‰) than for zooplankton (δ13C: ≤0.12 ± 0.06‰, δ15N: ≤0.30 ± 0.27‰). The effects of freezing were more variable for the δ13C values of Mysis, and more variable for the δ15N values of zooplankton. Generally, both freezing methods reduced the carbon content of zooplankton and Mysis, but freezing had a negative effect on the %N of zooplankton and a positive effect on the %N of Mysis. The species-dependencies and variability of freezing effects on aquatic organisms suggest that more research is needed to understand the mechanisms responsible for freezing-related fractionation before standardized protocols for freezing as a preservation method can be adopted.

  9. Uranium isotopes and dissolved organic carbon in loess permafrost: Modeling the age of ancient ice

    Science.gov (United States)

    Ewing, Stephanie A.; Paces, James B.; O'Donnell, J.A.; Jorgenson, M.T.; Kanevskiy, M.Z.; Aiken, George R.; Shur, Y.; Harden, Jennifer W.; Striegl, Robert G.

    2015-01-01

    fluctuations in climate, fire disturbance and vegetation. Radiocarbon (14C) analysis of dissolved organic carbon (DOC) in thaw waters supports ages greater than ∼40 ky BP below 10 m. DOC concentrations in thaw waters increased with depth to maxima of >1000 ppm, despite little change in ice content or cryostructures. These relations suggest time-dependent production of old DOC that will be released upon permafrost thaw at a rate that is mediated by sediment transport, among other factors.

  10. Constraining the thermal history of the North American Midcontinent Rift System using carbonate clumped isotopes and organic thermal maturity indices

    Science.gov (United States)

    Gallagher, Timothy M.; Sheldon, Nathan D.; Mauk, Jeffrey L.; Petersen, Sierra V.; Gueneli, Nur; Brocks, Jochen J.

    2017-01-01

    The Midcontinent Rift System (MRS) is a Late Mesoproterozoic (∼1.1 Ga) sequence of volcanic and sedimentary rocks exposed in the Lake Superior Region of North America. The MRS continues to be the focus of much research due to its economic mineral deposits as well as its archive of Precambrian life and tectonic processes. In order to constrain the post-depositional thermal history of the MRS, samples were analyzed for carbonate clumped isotope composition and organic thermal maturity. Clumped isotope values from sedimentary/early-diagenetic samples were partially reset during burial to temperatures between 68 and 75 °C. Solid-state reordering models indicate that maximum burial temperatures of 125–155 °C would reset the clumped isotope values to the observed temperature range prior to the onset of regional cooling and uplift. Clumped isotope results from late-stage veins in the White Pine Mine encompass a greater temperature range (49–116 °C), indicative of spatially variable hydrothermal activity and vein emplacement after burial temperatures fell below 100 °C during regional cooling and uplift. Clumped isotope and organic thermal maturity data do not indicate significant spatial differences in thermal history along the MRS. Observed variability in bulk organic matter composition and biomarker indices are therefore more likely a result of shifts in primary productivity or early-degradation processes. These results demonstrate that the MRS experienced a spatially consistent, relatively mild thermal history (125–155 °C) and is therefore a valuable archive for understanding the Late Mesoproterozoic environment.

  11. Carbon isotopic ratio of suspended organic matter of the Gironde estuary. Application to particulate Zn and Pb distribution

    International Nuclear Information System (INIS)

    Fontugne, Michel; Jouanneau, J.M.

    1981-01-01

    In the Gironde estuary, the isotopic ratio of particulate organic carbon (P.O.C.), and the ratio metal/P.O.C. indicate the occurrence of two zones. Up-river, the concentration decreases due to the consumption of the organo-metallic phase and by mixing in the ''mud plug'' with terrestrial particles impoverished in metal and P.O.C. Down-stream, the mixing of metal rich terrestrial P.O.C. with poorer marine particles determines the metal concentrations [fr

  12. Application of natural Ra isotopes and 234Th as tracers of organic carbon export in Bransfield Strait, Antarctica

    International Nuclear Information System (INIS)

    Vieira, Lucia Helena

    2011-01-01

    The Southern Ocean is the largest of several high-nutrient, low-chlorophyll (HNLC) regions in the world's oceans. This region plays a major role in regulating the global net transfer of carbon dioxide between the ocean and the atmosphere, in part because the annual photosynthetic uptake of CO 2 by phytoplankton and resulting export of particulate organic carbon (POC) to the deep ocean. The element thorium has multiple radioisotopes that have emerged collectively as a powerful set of tracers for particle associated processes in the oceans. Of all the Th isotopes, 234 Th (half-life 24.1 d) has been the focus of increasing attention and application in the past years. The production of 234 Th from 238 U, coupled with the conservative behavior of 238 U in seawater, makes the source of 234 Th easy to characterize. Moreover, the half-life of 234 Th is sufficiently short to make it sensitive to the short-term (e.g. seasonal) changes that occur in the upper water column of the open ocean or in sediments or water column in coastal areas. Because of its very particle reactive behavior, 234 Th is removed from a parcel of water in only two ways, through decay and through particle flux. Therefore, a steady-state 1D activity balance can be used to calculate its flux. Natural Ra isotopes have been also widely used in marine studies to trace water masses and to quantify mixing processes. This work presents results of a collaborative research on organic carbon fluxes distribution in the Bransfield Strait in order to evaluate its influence in the CO 2 drawdown. Macro-nutrients, micro-nutrients and chlorophyll-a distributions were used to examine the pathway sources. Natural radium isotopes were applied as tracers to study the movement of shelf water, while 234 Th was used as a tracer of particle flux in the upper ocean, since POC export via sinking particles is the primary mechanism of carbon sequestration in the Southern Ocean. Sea water samples for total 234 Th and natural Ra

  13. Carbon and nitrogen isotopic signatures and nitrogen profile to identify adulteration in organic fertilizers.

    Science.gov (United States)

    Verenitch, Sergei; Mazumder, Asit

    2012-08-29

    Recently it has been shown that stable isotopes of nitrogen can be used to discriminate between organic and synthetic fertilizers, but the robustness of the approach is questionable. This work developed a comprehensive method that is far more robust in identifying an adulteration of organic nitrogen fertilizers. Organic fertilizers of various types (manures, composts, blood meal, bone meal, fish meal, products of poultry and plant productions, molasses and seaweed based, and others) available on the North American market were analyzed to reveal the most sensitive criteria as well as their quantitative ranges, which can be used in their authentication. Organic nitrogen fertilizers of known origins with a wide δ(15)N range between -0.55 and 28.85‰ (n = 1258) were characterized for C and N content, δ(13)C, δ(15)N, viscosity, pH, and nitrogen profile (urea, ammonia, organic N, water insoluble N, and NO3). A statistically significant data set of characterized unique organic nitrogen fertilizers (n = 335) of various known origins has been assembled. Deliberately adulterated samples of different types of organic fertilizers mixed with synthetic fertilizers at a wide range of proportions have been used to develop the quantitative critical characteristics of organic fertilizers as the key indicators of their adulteration. Statistical analysis based on the discriminant functions of the quantitative critical characteristics of organic nitrogen fertilizers from 14 different source materials revealed a very high average rate of correct classification. The developed methodology has been successfully used as a source identification tool for numerous commercial nitrogen fertilizers available on the North American market.

  14. Carbon and nitrogen isotopic compositions of particulate organic matter and biogeochemical processes in the eutrophic Danshuei Estuary in northern Taiwan

    International Nuclear Information System (INIS)

    Liu, K.-K.; Kao, S.-J.; Wen, L.-S.; Chen, K.-L.

    2007-01-01

    The Danshuei Estuary is distinctive for the relatively short residence time (1-2 d) of its estuarine water and the very high concentration of ammonia, which is the dominant species of dissolved inorganic nitrogen in the estuary, except near the river mouth. These characteristics make the dynamics of nitrogen cycling distinctively different from previously studied estuaries and result in unusual isotopic compositions of particulate nitrogen (PN). The δ 15 N PN values ranging from - 16.4 per mille to 3.8 per mille lie in the lower end of nitrogen isotopic compositions (- 16.4 to + 18.7 per mille ) of suspended particulate matter observed in estuaries, while the δ 13 C values of particulate organic carbon (POC) and the C/N (organic carbon to nitrogen) ratios showed rather normal ranges from - 25.5 per mille to - 19.0 per mille and from 6.0 to 11.3, respectively. There were three major types of particulate organic matter (POM) in the estuary: natural terrigenous materials consisting mainly of soils and bedrock-derived sediments, anthropogenic wastes and autochthonous materials from the aquatic system. During the typhoon induced flood period in August 2000, the flux-weighted mean of δ 13 C POC values was - 24.4 per mille , that of δ 15 N PN values was + 2.3 per mille and that of C/N ratio was 9.3. During non-typhoon periods, the concentration-weighted mean was - 23.6 per mille for δ 13 C POC , - 2.6 per mille for δ 15 N PN and 8.0 for C/N ratio. From the distribution of δ 15 N PN values of highly polluted estuarine waters, we identified the waste-dominated samples and calculated their mean properties: δ 13 C POC value of - 23.6 ± 0.7 per mille , δ 15 N PN value of - 3.0 ± 0.1 per mille and C/N ratio of 8.0 ± 1.4. Using a three end-member mixing model based on δ 15 N PN values and C/N ratios, we calculated contributions of the three major allochthonous sources of POC, namely, wastes, soils and bedrock-derived sediments, to the estuary. Their contributions

  15. Following Carbon Isotopes from Methane to Molecules

    Science.gov (United States)

    Freeman, K. H.

    2017-12-01

    Continuous-flow methods introduced by Hayes (Matthews and Hayes, 1978; Freeman et al., 1990; Hayes et al., 1990) for compound-specific isotope analyses (CSIA) transformed how we study the origins and fates of organic compounds. This analytical revolution launched several decades of research in which researchers connect individual molecular structures to diverse environmental and climate processes affecting their isotopic profiles. Among the first applications, and one of the more dramatic isotopically, was tracing the flow of natural methane into cellular carbon and cellular biochemical constituents. Microbial oxidation of methane can be tracked by strongly 13C-depleted organic carbon in early Earth sedimentary environments, in marine and lake-derived biomarkers in oils, and in modern organisms and their environments. These signatures constrain microbial carbon cycling and inform our understanding of ocean redox. The measurement of molecular isotopes has jumped forward once again, and it is now possible to determine isotope abundances at specific positions within increasingly complex organic structures. In addition, recent analytical developments have lowered sample sensitivity limits of CSIA to picomole levels. These new tools have opened new ways to measure methane carbon in the natural environment and within biochemical pathways. This talk will highlight how molecular isotope methods enable us to follow the fate of methane carbon in complex environments and along diverse metabolic pathways, from trace fluids to specific carbon positions within microbial biomarkers.

  16. Multiscale Organization and Isotopic Composition of Carbons in Acapulco and Lodran as Fingerprints of Their Parent Body Story

    Science.gov (United States)

    Charon, E.; Aléon, J.; Rouzaud, J. N.

    2012-09-01

    New structural and isotopic data recorded on carbon components of Acapulco and Lodran meteorites allow to propose a scenario of their parent body thermal story, with an impact induced introduction of CI-CM like IOM.

  17. Automated determination of the stable carbon isotopic composition (δ13C) of total dissolved inorganic carbon (DIC) and total nonpurgeable dissolved organic carbon (DOC) in aqueous samples: RSIL lab codes 1851 and 1852

    Science.gov (United States)

    Révész, Kinga M.; Doctor, Daniel H.

    2014-01-01

    The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon (δ13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.

  18. Nitrogen isotopic analysis of carbonate-bound organic matter in modern and fossil fish otoliths

    Science.gov (United States)

    Lueders-Dumont, Jessica A.; Wang, Xingchen T.; Jensen, Olaf P.; Sigman, Daniel M.; Ward, Bess B.

    2018-03-01

    The nitrogen isotopic composition (δ15N) of otolith-bound organic matter (OM) is a potential source of information on dietary history of bony fishes. In contrast to the δ15N of white muscle tissue, the most commonly used tissue for ecological studies, the δ15N of otolith-bound OM (δ15Noto) provides a record of whole life history. More importantly, δ15Noto can be measured in contexts where tissue is not available, for example, in otolith archives and sedimentary deposits. The utility and robustness of otolith δ15N analysis was heretofore limited by the low N content of otoliths, which precluded the routine measurement of individual otoliths as well as the thorough cleaning of otolith material prior to analysis. Here, we introduce a new method based on oxidation to nitrate followed by bacterial conversion to N2O. The method requires 200-fold less N compared to traditional combustion approaches, allowing for thorough pre-cleaning and replicated analysis of individual otoliths of nearly any size. Long term precision of δ15Noto is 0.3‰. Using an internal standard of Atlantic cod (Gadus morhua) otoliths, we examine the parameters of the oxidative cleaning step with regard to oxidant (potassium persulfate and sodium hypochlorite), temperature, and time. We also report initial results that verify the usefulness of δ15Noto for ecological studies. For three salmonid species, left and right otoliths from the same fish are indistinguishable. We find that the δ15Noto of pink salmon (Oncorhynchus gorbuscha) is related to the size of the fish for this species. We find that intra-cohort δ15Noto standard deviation for wild pink salmon, farmed brown trout (Salmo trutta), and farmed rainbow trout (Oncorhynchus mykiss) are all 0.4‰ or less, suggesting that δ15Noto will be valuable for population-level studies. Lastly, our protocol yields reproducible data for both δ15Noto and otolith N content in 17th century Atlantic cod otoliths. We find that 17th century cod are

  19. Long-term fertilization alters chemically-separated soil organic carbon pools: Based on stable C isotope analyses

    Science.gov (United States)

    Dou, Xiaolin; He, Ping; Cheng, Xiaoli; Zhou, Wei

    2016-01-01

    Quantification of dynamics of soil organic carbon (SOC) pools under the influence of long-term fertilization is essential for predicting carbon (C) sequestration. We combined soil chemical fractionation with stable C isotope analyses to investigate the C dynamics of the various SOC pools after 25 years of fertilization. Five types of soil samples (0-20, 20-40 cm) including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, IN; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into recalcitrant and labile fractions, and the fractions were analysed for C content, C:N ratios, δ13C values, soil C and N recalcitrance indexes (RIC and RIN). Chemical fractionation showed long-term MNPK fertilization strongly increased the SOC storage in both soil layers (0-20 cm = 1492.4 gC m2 and 20-40 cm = 1770.6 gC m2) because of enhanced recalcitrant C (RC) and labile C (LC). The 25 years of inorganic fertilizer treatment did not increase the SOC storage mainly because of the offsetting effects of enhanced RC and decreased LC, whereas no clear SOC increases under the SNPK fertilization resulted from the fast decay rates of soil C.

  20. The organic carbon isotope of lacustrine sediments of the Upper Shahejie formation in Huanghua Depression: a record of sedimentary environment and productivity of an ancient lake

    International Nuclear Information System (INIS)

    Fei, Weiwei; Huang, Xiaoyan; Dai, Na; Zhong, Ningning

    2013-01-01

    Huanghua depression was one of the largest Paleogene rift lakes in Bohai Bay basin, eastern China. The lake had broad area and deep water in the period of development peak—Oligocene 36~38Ma B.C., when organic-rich mudstones of upper Shahejie Formation formed. Twenty eight distal lake facie samples of the upper Shahejie Formation from Well GS35 were analyzed for organic carbon isotope, TOC, hydrogen index and trace elements in order to investigate the controls of organic carbon accumulation in the lake. The results show that lacustrine mudstones in the middile member of the upper Shahejie Formation have a heavy organic carbon isotope (-28.6 ‰ to -21.1 ‰) and a intense fractionation which is more than 7‰. In addition, it shows a good positive correlation with the total organic carbon (TOC) (Figure 1). Organic petrographic and organic geochemical analysis indicate that the biological inputs of the mudstone is dominated by algae and other aquatic organisms, and a low content of gammacerane prove the water is freshwater-brackish, so terrigenous organic matter and water salinity have little effect on its organic carbon isotope composition (δ"1"3C_o_r_g). It has well been documented that the climate in Bohai Bay basin was warm and humid during deposition of the upper Shahejie Formation, and the temperature did not change dramatically at that time (TaoZ et al., 2005). Ultimately, the heavy carbon isotope values of lacustrine organic matter may indicate the high productivity of ancient lakes. The good correlation between total organic carbon (TOC) and organic carbon isotope (δ"1"3C_o_r_g) as well as the widely existed organic-rich lamellae of the mudstone are the strong evidence for high paleoproductivity of the upper Shahejie Formation in Huanghua Depression during the deposition period. (1) Organic-rich lamellae of the mudstone formed in anoxia and stable environment have been recognized as the best evidence of high paleoproductivity. The presence of organic

  1. Intercontinental correlation of organic carbon and carbonate stable isotope records: evidence of climate and sea-evel change during the Turonian (Cretaceous)

    Czech Academy of Sciences Publication Activity Database

    Jarvis, I.; Trabucho-Alexandre, J.; Gröcke, D. R.; Uličný, David; Laurin, Jiří

    2015-01-01

    Roč. 1, č. 2 (2015), s. 53-90 ISSN 2055-4877 R&D Projects: GA ČR GAP210/10/1991; GA MŠk LH12041 Institutional support: RVO:67985530 Keywords : carbon isotopes * chemostratigraphy * climate change * Cretaceous * oxygen isotopes Subject RIV: DB - Geology ; Mineralogy

  2. Insights into Mechanistic Models for Evaporation of Organic Liquids in the Environment Obtained by Position-Specific Carbon Isotope Analysis.

    Science.gov (United States)

    Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gérald S; Parinet, Julien; Höhener, Patrick

    2015-11-03

    Position-specific isotope effects (PSIEs) have been measured by isotope ratio monitoring (13)C nuclear magnetic resonance spectrometry during the evaporation of 10 liquids of different polarities under 4 evaporation modes (passive evaporation, air-vented evaporation, low pressure evaporation, distillation). The observed effects are used to assess the validity of the Craig-Gordon isotope model for organic liquids. For seven liquids the overall isotope effect (IE) includes a vapor-liquid contribution that is strongly position-specific in polar compounds but less so in apolar compounds and a diffusive IE that is not position-specific, except in the alcohols, ethanol and propan-1-ol. The diffusive IE is diminished under forced evaporation. The position-specific isotope pattern created by liquid-vapor IEs is manifest in five liquids, which have an air-side limitation for volatilization. For the alcohols, undefined processes in the liquid phase create additional PSIEs. Three other liquids with limitations on the liquid side have a lower, highly position-specific, bulk diffusive IE. It is concluded that evaporation of organic pollutants creates unique position-specific isotope patterns that may be used to assess the progress of remediation or natural attenuation of pollution and that the Craig-Gordon isotope model is valid for the volatilization of nonpolar organic liquids with air-side limitation of the volatilization rate.

  3. Isotopic evidence for the influence of typhoons and submarine canyons on the sourcing and transport behavior of biospheric organic carbon to the deep sea

    Science.gov (United States)

    Zheng, Li-Wei; Ding, Xiaodong; Liu, James T.; Li, Dawei; Lee, Tsung-Yu; Zheng, Xufeng; Zheng, Zhenzhen; Xu, Min Nina; Dai, Minhan; Kao, Shuh-Ji

    2017-05-01

    Export of biospheric organic carbon from land masses to the ocean plays an important role in regulating the global carbon cycle. High-relief islands in the western Pacific are hotspots for such land-to-ocean carbon transport due to frequent floods and active tectonics. Submarine canyon systems serve as a major conduit to convey terrestrial organics into the deep sea, particularly during episodic floods, though the nature of ephemeral sediment transportation through such canyons remains unclear. In this study, we deployed a sediment trap in southwestern Taiwan's Gaoping submarine canyon during summer 2008, during which Typhoon Kalmaegi impacted the study area. We investigated sources of particulate organic carbon and quantified the content of fossil organic carbon (OCf) and biospheric non-fossil carbon (OCnf) during typhoon and non-typhoon periods, based on relations between total organic carbon (TOC), isotopic composition (δ13 C, 14C), and nitrogen to carbon ratios (N/C) of newly and previously reported source materials. During typhoons, flooding connected terrestrial rivers to the submarine canyon. Fresh plant debris was not found in the trap except in the hyperpycnal layer, suggesting that only hyperpycnal flow is capable of entraining plant debris, while segregation had occurred during non-hyperpycnal periods. The OCnf components in typhoon flood and trapped samples were likely sourced from aged organics buried in ancient landslides. During non-typhoon periods, the canyon is more connected to the shelf, where waves and tides cause reworking, thus allowing abiotic and biotic processes to generate isotopically uniform and similarly aged OCnf for transport into the canyon. Therefore, extreme events coupled with the submarine canyon system created an efficient method for deep-sea burial of freshly produced organic-rich material. Our results shed light on the ephemeral transport of organics within a submarine canyon system on an active tectonic margin.

  4. Carbon isotopes in mollusk shell carbonates

    Science.gov (United States)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  5. Physical and Human Controls on the Carbon Composition of Organic Matter in Tropical Rivers: An Integrated Analysis of Landscape Properties and River Isotopic Composition

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, M. V.R.; Victoria, R. L.; Krusche, A. V. [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Piracicaba (Brazil); Bernardes, M. [Universidade Federal Fluminense, Rio de Janeiro (Brazil); Neill, C.; Deegan, L. [Marine Biological Laboratory, Woods Hole, MA (United States); Richey, J. E. [University of Washington, Seatle, WA (United States)

    2013-05-15

    We applied an integrated analysis of landscape properties including soil properties, land cover and riverine isotopic composition. To evaluate physical and human controls on the carbon composition of organic matter in tropical rivers, we applied an integrated analysis of landscape properties including soil properties, land cover and riverine isotopic composition. Our main objective was to establish the relationship between basin attributes and forms, fluxes and composition of dissolved and particulate organic matter in river channels. A physical template was developed as a GIS-based comprehensive tool to support the understanding of the biogeochemistry of the surface waters of two tropical rivers: the Ji-Parana (Western Amazonia) and the Piracicaba (southeastern of Brazil). For each river we divided the basin into drainage units, organized according to river network morphology and degree of land use impact. Each sector corresponded to a sampling point where river isotopic composition was analysed. River sites and basin characteristics were calculated using datasets compiled as layers in ArcGis Geographical Information System and ERDAS-IMAGINE (Image Processing) software. Each delineated drainage area was individually characterized in terms of topography, soils, river network and land use. Carbon stable isotopic composition of dissolved organic matter (DOM) and particulate organic matter (POM) was determined at several sites along the main tributaries and small streams. The effects of land use on fluvial carbon composition were quantified by a linear regression analysis, relating basin cover and river isotopic composition. The results showed that relatively recent land cover changes have already had an impact on the composition of the riverine DOM and POM, indicating that, as in natural ecosystems, vegetation plays a key role in the composition of riverine organic matter in agricultural ecosystems. (author)

  6. Carbon Isotope Chemostratigraphy, the Baby and the Bathwater

    Science.gov (United States)

    Arthur, M. A.

    2008-12-01

    Secular variations in the carbon isotopic values of carbonate sediments and rocks and their individual components have been applied successfully to problems of stratigraphic correlation and for interpretation of past changes in the global carbon cycle. However, this methodology is not without problems. A major tenet of stable isotope chemostratigraphy involves sampling and analyzing multiple, widely separated sequences, and, if possible, multiple carbon-bearing components (e.g., carbonate and organic carbon) in order to demonstrate a global signal. In some cases, this methodology has been short-circuited in the zeal to reveal a new event or excursion, particularly for time intervals for which adequate sequences are somewhat rare. Likewise, although most carbonate researchers are quite aware of the possible importance of diagenesis, particularly in organic-carbon rich sequences or in shoal-water carbonate sequences with longer-term subaerial exposure events, such overprints commonly go unrecognized or are considered of minor impact. Studies of stable isotope variations in carbonate sequences should always employ textural and geochemical methodologies for detecting and even quantifying diagenesis, if possible. Although some diagenetically overprinted or misinterpreted geochemical data have undoubtedly appeared in the literature, there are many excellent examples of global carbon isotope variations in records expressed in pelagic biogenic carbonate, marine organic carbon, platform carbonates, and terrestrial organic matter. Arguably, one of the best-documented examples is the Cenomanian-Turonian (ca. 93 Ma) positive carbon isotope excursion. The amplitude of the Cenomanian-Turonian carbon isotope excursion is similar among all types of records, but there are subtle pattern differences that arise from differences in sedimentation rate among and within sequences. Organic carbon and carbonate carbon isotope signals also may differ in phasing and amplitude for certain

  7. Development of new and improved labelling procedures for introducing isotopic hydrogen and carbon-11 into organic compounds

    International Nuclear Information System (INIS)

    Al-Qahtani, M.H.S.

    1999-10-01

    New and improved methods for introducing radioisotopic hydrogen (tritium) and carbon (positron-emitting short-lived carbon-11, t 1/ 2 = 20.4 min) into organic molecules for application in biological research have been explored. In Chapter 1 the applications of radioactive isotopes in biological and clinical research is surveyed, with particular emphasis on the value of β-emitting tritium and positron-emitting carbon-11. In Chapter 2 we report the use of the non-radioactive hydrogen isotope, deuterium, as a surrogate for tritium in the development of microwave-enhanced labelling procedures, based on catalytic hydrogen transfer to olefins (e.g. styrene, styrene derivatives, cinnamic acid and its derivatives). Hydrogen or deuterium donors (e.g. formate salts) were used alone or in combination with other sources (e.g. D 2 O). The method was found to give fully hydrogenated products using very short microwave irradiation times (∼ 2 min) and was highly reproducible. Importantly, the method is environmentally clean, as when extended to tritiated formates little or no radioactive waste is produced. In Chapter 3 we explored the labelling of CGP 62349 {3-[1-(R)-[3-(4-methoxybenzyl)phosphinyl-2-(S)-hydroxy-propyl- amino]ethyl]benzoic acid}, a γ-aminobutyric acid type B (GABA B ) receptor antagonist, with carbon-11 in order to provide a prospective radioligand for medical imaging with positron emission tomography (PET). Labelling agents, [ 11 C]iodomethane and [ 11 C]methyl triflate, prepared by improved methods, were used in the rapid methylation of desmethyl-CGP 62349. Substantially higher radiochemical yields (78%) of [ 11 C]CGP 62349 were achieved by the new methods compared to that produced in a previously published procedure (9%). In addition, the use of [ 11 C]methyl triflate rather than [ 11 C]iodomethane has the advantage of giving a high radiochemical yield and a lower amount of carrier. In Chapter 4 we report on the use of [ 11 C]carbon monoxide as a labelling

  8. Soil Carbon: Compositional and Isotopic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Alexander, M. L.; Laskin, Alexander

    2016-11-01

    This is a short chapter to be included in the next edition of the Encyclopedia of Soil Science. The work here describes techniques being developed at PNNL for investigating organic carbon in soils. Techniques discussed include: laser ablation isotope ratio mass spectrometry, laser ablation aerosol mass spectrometry, and nanospray desorption electrospray ionization mass spectrometry.

  9. Final Technical Report: Fundamental Research on the Fractionation of Carbon Isotopes during Photosynthesis, New Interpretations of Terrestrial Organic Carbon within Geologic Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Brian [Univ. of Louisiana, Lafayette (United States); Jahren, A. Hope [Univ. of Louisiana, Lafayette (United States)

    2017-11-30

    The goal for the current grant period (2013 – 2016) was to quantify the effect of changing atmospheric carbon dioxide concentration (pCO2) on published terrestrial carbon isotope excursion events. This work supported four scientists across multiple career stages, and resulted in 5 published papers.

  10. Final Report: Fundamental Research on the Fractionation of Carbon Isotopes during Photosynthesis, New Interpretations of Terrestrial Organic Carbon within Geologic Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jahren, A. Hope [Univ. of Hawaii, Honolulu, HI (United States); Schubert, Brian A. [Univ. of Louisiana, Lafayette, LA (United States)

    2017-08-02

    The goal for the current grant period (2013 – 2016) was to quantify the effect of changing atmospheric carbon dioxide concentration (pCO2) on published terrestrial carbon isotope excursion events. This work supported four scientists across multiple career stages, and resulted in 5 published papers.

  11. Water column distribution and carbon isotopic signal of cholesterol, brassicasterol and particulate organic carbon in the Atlantic sector of the Southern Ocean

    Directory of Open Access Journals (Sweden)

    A.-J. Cavagna

    2013-04-01

    Full Text Available The combination of concentrations and δ13C signatures of Particulate Organic Carbon (POC and sterols provides a powerful approach to study ecological and environmental changes in both the modern and ancient ocean. We applied this tool to study the biogeochemical changes in the modern ocean water column during the BONUS-GoodHope survey (February–March 2008 from Cape Basin to the northern part of the Weddell Gyre. Cholesterol and brassicasterol were chosen as ideal biomarkers of the heterotrophic and autotrophic carbon pools, respectively, because of their ubiquitous and relatively refractory nature. We document depth distributions of concentrations (relative to bulk POC and δ13C signatures of cholesterol and brassicasterol combined with CO2 aq. surface concentration variation. While the relationship between CO2 aq. and δ13C of bulk POC and biomarkers have been reported by others for the surface water, our data show that this persists in mesopelagic and deep waters, suggesting that δ13C signatures of certain biomarkers in the water column could be applied as proxies for surface water CO2 aq. We observed a general increase in sterol δ13C signatures with depth, which is likely related to a combination of particle size effects, selective feeding on larger cells by zooplankton, and growth rate related effects. Our data suggest a key role of zooplankton fecal aggregates in carbon export for this part of the Southern Ocean (SO. Additionally, in the southern part of the transect south of the Polar Front (PF, the release of sea-ice algae during the ice demise in the Seasonal Ice Zone (SIZ is hypothesized to influence the isotopic signature of sterols in the open ocean. Overall, the combined use of δ13C values and concentrations measurements of both bulk organic C and specific sterols throughout the water column offers the promising potential to explore the recent history of plankton and the fate of organic matter in the SO.

  12. The Paleocene Eocene carbon isotope excursion in higher plant organic matter: Differential fractionation of angiosperms and conifers in the Arctic

    Science.gov (United States)

    Schouten, Stefan; Woltering, Martijn; Rijpstra, W. Irene C.; Sluijs, Appy; Brinkhuis, Henk; Sinninghe Damsté, Jaap S.

    2007-06-01

    A study of upper Paleocene-lower Eocene (P-E) sediments deposited on the Lomonosov Ridge in the central Arctic Ocean reveals relatively high abundances of terrestrial biomarkers. These include dehydroabietane and simonellite derived from conifers (gymnosperms) and a tetra-aromatic triterpenoid derived from angiosperms. The relative percentage of the angiosperm biomarker of the summed angiosperm + conifer biomarkers was increased at the end of the Paleocene-Eocene thermal maximum (PETM), different when observed with pollen counts which showed a relative decrease in angiosperm pollen. Stable carbon isotopic analysis of these biomarkers shows that the negative carbon isotope excursion (CIE) during the PETM amounts to 3‰ for both conifer biomarkers, dehydroabietane and simonellite, comparable to the magnitude of the CIE inferred from marine carbonates, but significantly lower than the 4.5‰ of the terrestrial C 29n-alkane [M. Pagani, N. Pedentchouk, M. Huber, A. Sluijs, S. Schouten, H. Brinkhuis, J.S. Sinninghe Damsté, G.R. Dickens, and the IODP Expedition 302 Expedition Scientists (2006), Arctic's hydrology during global warming at the Paleocene-Eocene thermal maximum. Nature, 442, 671-675.], which is a compound sourced by both conifers and angiosperms. Conspicuously, the angiosperm-sourced aromatic triterpane shows a much larger CIE of 6‰ and suggests that angiosperms increased in their carbon isotopic fractionation during the PETM. Our results thus indicate that the 4.5‰ C 29n-alkane CIE reported previously represents the average CIE of conifers and angiosperms at this site and suggest that the large and variable CIE observed in terrestrial records may be partly explained by the variable contributions of conifers and angiosperms. The differential response in isotopic fractionation of angiosperms and conifers points to different physiological responses of these vegetation types to the rise in temperature, humidity, and greenhouse gases during the PETM.

  13. Stable carbon isotope analysis of soil organic matter illustrates vegetation change at the grassland/woodland boundary in southeastern Arizona, USA.

    Science.gov (United States)

    McPherson, G R; Boutton, T W; Midwood, A J

    1993-02-01

    In southeastern Arizona, Prosopis juliflora (Swartz) DC. and Quercus emoryi Torr. are the dominant woody species at grassland/woodland boundaries. The stability of the grassland/woodland boundary in this region has been questioned, although there is no direct evidence to confirm that woodland is encroaching into grassland or vice versa. We used stable carbon isotope analysis of soil organic matter to investigate the direction and magnitude of vegetation change along this ecotone. δ 13 C values of soil organic matter and roots along the ecotone indicated that both dominant woody species (C 3 ) are recent components of former grasslands (C 4 ), consistent with other reports of recent increases in woody plant abundance in grasslands and savannas throughout the world. Data on root biomass and soil organic matter suggest that this increase in woody plant abundance in grasslands and savannas may increase carbon storage in these ecosystems, with implications for the global carbon cycle.

  14. Stable carbon isotope response to oceanic anoxic events

    International Nuclear Information System (INIS)

    Hu Xiumian; Wang Chengshan; Li Xianghui

    2001-01-01

    Based on discussion of isotope compositions and fractionation of marine carbonate and organic carbon, the author studies the relationship between oceanic anoxic events and changes in the carbon isotope fractionation of both carbonate and organic matter. During the oceanic anoxic events, a great number of organisms were rapidly buried, which caused a kind of anoxic conditions by their decomposition consuming dissolved oxygen. Since 12 C-rich organism preserved, atmosphere-ocean system will enrich relatively of 13 C. As a result, simultaneous marine carbonate will record the positive excursion of carbon isotope. There is a distinctive δ 13 C excursion during oceanic anoxic events in the world throughout the geological time. In the Cenomanian-Turonian anoxic event. this positive excursion arrived at ∼0.2% of marine carbonate and at ∼0.4% of organic matter, respectively. Variations in the carbon isotopic compositions of marine carbonate and organic carbon record the changes in the fraction of organic carbon buried throughout the geological time and may provide clues to the changes in rates of weathering and burial of organic carbon. This will provide a possibility of interpreting not only the changes in the global carbon cycle throughout the geological time, but also that in atmospheric p CO 2

  15. 14C dating and stable carbon isotopes of soil organic matter in the Southeastern region of Sao Paulo State

    International Nuclear Information System (INIS)

    Mofatto, Milene; Pessenda, Luiz Carlos Ruiz; Bendassoli, Jose Albertino; Leite, Acacio Zuniga; Oliveira, Paulo de Oliveira; Garcia, Ricardo Jose Francischetti

    2005-01-01

    The objective of this research is to characterize the isotopic composition ( 13 C, 14 C) of soil organic matter (SOM) in the Parque Estadual da Serra do Mar-Nucleo Curucutu, Sao Paulo state, Southeastern Brazil. The isotopic composition (δ 13 C) of SOM will be used as an indicator of vegetation types from the local ecosystems and 14 C dating (humin fraction) used to determine the chronology. The results from SOM indicated vegetation changes in the last 10,000 years, where, a less dense vegetation occurred in the past, with C 3 plant predominant and/or a mixture of C 3 and C 4 . (author)

  16. Temporal variation in organic carbon stable isotope compositions of lacustrine sediments from sub-arid northern Tanzania

    International Nuclear Information System (INIS)

    Muzuka, A.N.N.; Nyandwi, N.

    2002-01-01

    The stable isotope compositions for four sediment cores recovered from three shallow lakes located in the Ngorongoro crater (Lake Magat) and head of the Olduvai Gorge (Lakes Ndutu and Messak) are used to document climatic changes in sub-arid northern Tanzania during the late Pleistocene-Holocene period. The two lakes, which are located on the head of the Olduvai Gorge about 1 km apart and 100 km from the Ngorongoro Crater, were probably once one lake during periods of high precipitation. All four cores were collected using a flow-through type of corer, and sub-sampled every 10 cm with each sample representing a homogenate of 1 cm. Two cores (40 cm and 500 cm long) were collected from Lake Magat, and AMS 14 C age on total organic matter (OM) for a nearby core collected about 1 m apart indicate that the sedimentation rate at these sites is approximately 17 cm/ka. Assuming that these sites have a constant rate of sedimentation, the analysed long core represents sediments that were deposited during the late Pleistocene-Holocene period. The δ 13 C for 40 cm long core shows a downcore increase, with δ-values ranging from -21 per mille to -12.5 per mille. A similar downcore increase in 13 C values is observable for the 500 cm long core. Apart from this general tend, this core also shows three peaks of low δ-values centred at 200 cm, 380 cm and 490 cm. A general downcore increase in the 13 C for the two cores from the Ngorongoro crater suggests changes in the relative proportion of C 3 and C 4 , probably indicating changes in precipitation and lake levels in the area. High precipitation and lake levels being associated with deposition of OM depleted in 13 C. Although, diagenetic changes might have contributed to the observed trend, but a change of up to 7 per mille cannot solely be attributed to diagenetic changes. High content of organic carbon and nitrogen in sections enriched in 13 C excludes the possibility of diagenetic effects. Although record from Lake Ndutu is

  17. Stable isotopes of bulk organic matter to trace carbon and nitrogen dynamics in an estuarine ecosystem in Babitonga Bay (Santa Catarina, Brazil)

    International Nuclear Information System (INIS)

    Barros, Grace Virginia; Martinelli, Luiz Antonio; Oliveira Novais, Therezinha M.; Ometto, Jean Pierre H.B.; Zuppi, Gian Maria

    2010-01-01

    The biogeochemical processes affecting the transport and cycling of terrestrial organic carbon in coastal and transition areas are still not fully understood. One means of distinguishing between the sources of organic materials contributing to particulate organic matter (POM) in Babitonga Bay waters and sediments is by the direct measurement of δ 13 C of dissolved inorganic carbon (DIC) and δ 13 C and δ 15 N in the organic constituents. An isotopic survey was taken from samples collected in the Bay in late spring of 2004. The results indicate that the δ 13 C and δ 15 N compositions of OM varied from - 21.7 per mille to - 26.2 per mille and from + 9.2 per mille to - 0.1 per mille , respectively. δ 13 C from DIC ranges from + 0.04 per mille to - 12.7 per mille . The difference in the isotope compositions enables the determination of three distinct end-members: terrestrial, marine and urban. Moreover, the evaluation of source contribution to the particulate organic matter (POM) in the Bay, enables assessment of the anthropogenic impact. Comparing the depleted values of δ 13 C DIC and δ 13 C POC it is possible to further understand the carbon dynamic within Babitonga Bay.

  18. Tracing the source of soil organic matter eroded from temperate forest catchments using carbon and nitrogen isotopes

    Science.gov (United States)

    Emma P. McCorkle; Asmeret Asefaw Berhe; Carolyn T. Hunsaker; Dale W. Johnson; Karis J. McFarlane; Marilyn L. Fogel; Stephen C. Hart

    2016-01-01

    Soil erosion continuously redistributes soil and associated soil organic matter (SOM) on the Earth's surface, with important implications for biogeochemical cycling of essential elements and terrestrial carbon sequestration. Despite the importance of soil erosion, surprisingly few studies have evaluated the sources of eroded carbon (C). We used natural abundance...

  19. An assessment, using stable isotopes, of the importance of allochthonous organic carbon sources to the pelagic food web in Loch Ness

    Science.gov (United States)

    Jones, R. I.; Grey, J.; Sleep, D.; Quarmby, C.

    1998-01-01

    The natural abundance of stable isotopes (δ13C and δ1315N) was determined for components of the pelagic food web in Loch Ness, a deep oligotrophic lake in northern Scotland, and compared with values from the inflow rivers and the catchment vegetation. Phytoplankton δ13C was low compared to values reported from other lakes, possibly reflecting a high use of 13C-depleted carbon dioxide from respired organic matter before further isotopic fractionation during photosynthesis. Phytoplankton δ13C was appreciably lower than that of dissolved and particulate organic matter (DOM and POM) in the loch. The DOM and POM were evidently overwhelmingly of allochthonous origin and ultimately derived from terrestrial plant detritus. The distinctive δ13C values for phytoplankton and detritus in the loch allowed the use of food sources by grazing crustacean zooplankton to be assessed, and the contributions of phytoplankton carbon and detrital carbon to zooplankton total body carbon appeared to be about equal. Comparison of δ13C and δ15N values for zooplankton and fish allowed assessment of trophic structure in the loch. The very high dependence of the pelagic food web in Loch Ness on allochthonous organic matter inputs from the catchment may be exceptional in a large lake, but has important implications for our understanding of lake ecosystem processes as well as for lake management.

  20. A carbon isotope budget for an anoxic marine sediment

    International Nuclear Information System (INIS)

    Boehme, S.E.; Blair, N.E.

    1991-01-01

    A carbon isotope budget has been determined for the coastal marine site, Cape Lookout Bight, NC. Isotope measurements of methane and σCO 2 fluxing out and buried in these sediments were applied to previously measured flux data (Martens et al., in press) to predict the isotopic composition of the incoming metabolizable organic matter. Methane leaves the sediment predominantly via ebullition with an isotopic composition of -60 per mil. Less than 2% of the methane produced is buried with an average diffusional flux value of -17 per mil and a burial value of +11 per mil. The isotope budget predicts a metabolizable organic carbon isotope signature of -19.3 per mil which is in excellent agreement with the measured total organic carbon value of -19.2 ± 0.3 per mil implying that the dominant remineralization processes have been identified

  1. Natural sulfurization of carbohydrates in marine sediments : consequences for the chemical and carbon isotopic composition of sedimentary organic matter

    NARCIS (Netherlands)

    Dongen, B.E. van

    2003-01-01

    Carbohydrates make up the largest part of the organic matter in the biosphere and are used by living organism for many different reasons. They serve, among others, as carbon and energy source as well as metabolic intermediates. Carbohydrates are generally thought to be remineralized during early

  2. Variation of the isotopic composition of dissolved organic carbon during the runoff cycle in the Amazon River and the floodplains

    Science.gov (United States)

    Albéric, Patrick; Pérez, Marcela A. P.; Moreira-Turcq, Patricia; Benedetti, Marc F.; Bouillon, Steven; Abril, Gwenaël

    2018-01-01

    Given the relative scarcity of stable isotope data on dissolved organic carbon (DOC) in the Amazon Basin, we hypothesized that the variability in DOC sources may be underestimated in such major river basins. To explore the links between the mainstem and tributaries and the floodplain, particular efforts were made during five distinct cruises at different stages of the hydrograph between October 2008 and January 2011, to document the spatial and temporal variation of DOC concentrations and δ13C-DOC in the central Amazon River system (Brazil). Based on more than 200 data, the spatial and temporal variability of δ13C-DOC values was found to be larger than previously reported in the same area. Although a small range of variation was observed throughout the hydrological cycle in the upper reach of the studied section (-29.2 to -29.5‰ in the Rio Negro and -28.7 to -29.0‰ in the Rio Solimões), a much larger one (-28.0 to -34.6‰) was found in the lower reach of the river, as the proportion of open lakes increased downstream in the floodplains. The low variability in the upper reaches suggests constant and homogeneous DOC sources from upland soils and flooded forest, while lower δ13C-DOC values recorded in the lower reach mainstem at high and falling waters can be attributed to a greater export of plankton-derived 13C-depleted DOC from flooded lakes. Noteworthy are the higher δ13C-DOC values measured in the Rio Madeira and the associated flooded lakes (-26.5 to -28.8‰), which may reflect the imprint from upland headwaters and a weaker density of flooded forest in the watershed. The higher δ13C-DOC values observed in the lower reach during low waters are still not fully understood. Floating meadows principally consisting of C4 macrophytes were found to increase δ13C-DOC values by ∼1.5‰ in their vicinity, but this impact was no longer noticeable at distances of ∼10 m from the plant rafts. This rather modest 13C-enrichment suggests rapid decomposition and

  3. Carbon isotope ratios of atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Sakai, Hitoshi; Kishima, Noriaki; Tsutaki, Yasuhiro.

    1982-01-01

    The delta 13 C values relative to PDB were measured for carbon dioxide in air samples collected at various parts of Japan and at Mauna Loa Observatory, Hawaii in the periods of 1977 and 1978. The delta 13 C values of the ''clean air'' are -7.6 % at Hawaii and -8.1 per mille Oki and Hachijo-jima islands. These values are definitely lighter than the carbon isotope ratios (-6.9 per mille) obtained by Keeling for clean airs collected at Southern California in 1955 to 1956. The increase in 12 C in atmospheric carbon dioxide is attributed to the input of the anthropogenic light carbon dioxides (combustion of fossil fuels etc.) Taking -7.6 per mille to be the isotope ratio of CO 2 in the present clean air, a simple three box model predicts that the biosphere has decreased rather than increased since 1955, implying that it is acting as the doner of carbon rather than the sink. (author)

  4. Carbon stable isotope composition of charophyte organic matter in a small and shallow Spanish water body as a baseline for future trophic studies

    Directory of Open Access Journals (Sweden)

    María Antonia Rodrigo

    2015-12-01

    Full Text Available Quantitative descriptions of foodweb structure based on isotope niche space require knowledge of producers’ isotopic signatures. In freshwater ecosystems charophytes are one of the main components of submerged vegetation and the feeding base for many herbivorous consumers, but knowledge about their organic carbon isotopic signatures is sparse. In this study, the δ13C organic values (and organic %C and %N of the four species of submerged macrophytes (three charophytes - Chara hispida, Nitella hyalina and Tolypella glomerata - and one angiosperm, Myriophyllum spicatum growing in a newly created shallow pond were measured monthly over a period of one year, to discern if i all charophyte species susceptible to being food for consumers and growing in the same waterbody have the same C isotopic composition; ii the δ13C values of a charophyte species change on a seasonal and spatial scale; iii the different parts (apical nodes, internodes, rhizoids, reproductive organs, oospores of a charophyte species have the same isotopic composition. The δ13C, %C and %N values of organic matter in the sediments where the plants were rooted were also measured as well as several limnological variables. The δ13C values for the angiosperm (-13.7±0.7‰ indicated 13C-enrichment, whereas the N. hyalina δ13C values were the most negative (-22.4±0.7‰. The mean δ13C value for C. hispida was -19.0±1.0‰ and -20.7±0.8‰ for T. glomerata. C. hispida δ13C values had a significant seasonal variation with 13C-poor values in the cold season, and slight spatial differences. Statistically significant differences were found between charophyte rhizoids (13C-enriched and the other parts of the thalli. The δ13C values in the sediments varied throughout time (-13‰ to -26‰. The C content was lower in the charophytes than in the angiosperm and there were no large differences among the charophytes. Charophyte fructifications were enriched in organic C compared to the

  5. Stable carbon isotope biogeochemistry of lakes along a trophic gradient

    NARCIS (Netherlands)

    de Kluijver, A.; Schoon, P.L.; Downing, J.A.; Schouten, S.; Middelburg, J.J.

    2014-01-01

    The stable carbon (C) isotope variability of dissolved inorganic and organic C (DIC and DOC), particulate organic carbon (POC), glucose and polar-lipid derived fatty acids (PLFAs) was studied in a survey of 22 North American oligotrophic to eutrophic lakes. The d13C of different PLFAs were used as

  6. Increase in soil stable carbon isotope ratio relates to loss of organic carbon: results from five long-term bare fallow experiments

    DEFF Research Database (Denmark)

    Menichetti, Lorenzo; Houot, Sabine; van Oort, Folkert

    2015-01-01

    Changes in the 12C/13C ratio (expressed as δ13C) of soil organic C (SOC) has been observed over long time scales and with depth in soil profiles. The changes are ascribed to the different reaction kinetics of 12C and 13C isotopes and the different isotopic composition of various SOC pool components...... examined. The overall estimate of the fractionation coefficient (ε) was −1.2 ± 0.3 ‰. This coefficient represents an important input to studies of long-term SOC dynamics in agricultural soils that are based on variations in 13C natural abundance. The variance of ε may be ascribed to site characteristics...... some impact on isotope abundance and fractionation....

  7. Impact delivery of organic matter on the acapulcoite-lodranite parent-body deduced from C, N isotopes and nanostructures of carbon phases in Acapulco and Lodran

    Science.gov (United States)

    Charon, E.; Aléon, J.; Rouzaud, J.-N.

    2014-10-01

    The structure and nanostructures of carbon phases from the Acapulco and Lodran meteorites and their carbon and nitrogen isotopic composition were investigated at the nanometer and micrometer scale using a systematic combination of Raman microspectrometry, high-resolution transmission electron microscopy and secondary ion mass spectrometry to determine their origin and thermal evolution. Several morphological types were recognized belonging to roughly two isotopic and structural families: coarse carbon grains and rosettes, only found in Acapulco, and vein-like carbon occurrences present in both Acapulco and Lodran. Carbon phases in Acapulco are highly graphitized, and show a genetic relationship with metal indicative of metal-assisted graphitization. By contrast, carbon phases in Lodran are exclusively disordered mesoporous turbostratic carbons, in spite of their inclusion in metal and the higher peak temperature experienced by the Lodran parent body. δ13C values range between -59‰ and +37‰ in Acapulco and between -38‰ and -1‰ in Lodran and show in both cases a peak in their distribution at the value of chondritic insoluble organic matter (IOM, -10‰ to -15‰). N concentrations together with δ15N values indicate a mixing between a component akin to chondritic IOM in Lodran with a δ15N value around +10‰ to +20‰ and a component akin to that in the most N-poor Acapulco graphites. The latter are systematically depleted in 15N with a δ15N value constant at ∼-140‰ for N concentrations below ∼1.4 wt%. These observations can be explained if carbon phases in Acapulco and Lodran result from the late impact introduction of CI-CM like IOM, after significant cooling of the parent-body, and subsequent carbonization and graphitization of IOM by interaction with FeNi metal by the heat wave induced by the impact. Temperatures probably reached 900 °C in Acapulco, enough to achieve metal-assisted graphitization but were not significantly higher than 650 °C in

  8. Influence of organic carbon sources and isotope exchange processes between water and nitrate on the fractionation of the stable isotopes 15N/14N and 18O/16O in dissolved nitrate during microbial dentrification in groundwater

    International Nuclear Information System (INIS)

    Wunderlich, Anja A.L.

    2012-01-01

    Stable isotopes of nitrate are commonly used to determine sources and degradation of nitrate. In this study, nitrite oxidizing bacteria were found to promote an oxygen isotope exchange between water and nitrate under anoxic conditions. Also, different carbon sources were found to influence the enrichment of stable isotopes in nitrate during microbial denitrification. Both results refine the stable isotope model of nitrate in respect to nitrate source determination and microbial nitrate reduction.

  9. ASE extraction method for simultaneous carbon and nitrogen stable isotope analysis in soft tissues of aquatic organisms

    International Nuclear Information System (INIS)

    Bodin, Nathalie; Budzinski, Helene; Le Menach, Karyn; Tapie, Nathalie

    2009-01-01

    Since lipids are depleted in 13 C relative to proteins and carbohydrates, variations in lipid composition among species and within individuals significantly influence δ 13 C and may result in misleading ecological interpretations. Whereas lipid extraction before IRMS analysis constitutes a way of stable isotope result lipid-normalisation, such a procedure was given up because of the un-controlled effects of the methods used (i.e., 'Bligh and Dyer', Soxhlet, etc.) on δ 15 N. The aim of this work was to develop a simple, rapid and efficient lipid extraction method allowing for simultaneous C and N stable isotope analysis in the biological soft tissues of aquatic organisms. The goal was to be free from the lipid influence on δ 13 C values without interfering with δ 15 N values. For that purpose, the modern automated pressurized liquid extraction technique ASE (accelerated solvent extraction) was selected. Eel muscles representative of a broad range of fat contents were extracted via ASE by using different semi-polar solvents (100% dichloromethane and 80% n-hexane/20% acetone) and by operating at different temperature (ambient temperature and 100 deg. C) and pressure (750 and 1900 psi) conditions. The results were discussed in terms of lipid extraction efficiency as well as δ 13 C and δ 15 N variability.

  10. Transfer of organic carbon through marine water columns to sediments – insights from stable and radiocarbon isotopes of lipid biomarkers

    OpenAIRE

    S. G. Wakeham; A. P. McNichol

    2014-01-01

    Compound-specific 13C and 14C compositions of diverse lipid biomarkers (fatty acids, alkenones, hydrocarbons, sterols and fatty alcohols) were measured in sinking particulate matter collected in sediment traps and from underlying surface sediments in the Black Sea, the Arabian Sea and the Ross Sea. The goal was to develop a multiparameter approach to constrain relative inputs of organic carbon (OC) from marine biomass, terrigenous vascular-plant and relict-kerogen sources. U...

  11. Transformation of soil organic matter in a Japanese larch forest. Radiocarbon and stable carbon isotope compositions versus soil depth

    International Nuclear Information System (INIS)

    Liu Wei; Moriizumi, Jun; Yamazawa, Hiromi; Iida, Takao

    2008-01-01

    Soil organic matter at a depth of 0-55 cm, collected from a Japanese larch forest area, was separated into particulate organic matter (size >53 μm), particulate organic matter (size 14 C and δ 13 C values were determined. The Δ 14 C values of particulate matters decreased greatly from 128 per mille to -278 per mille, indicating a relative increase of resistant organic components in particulate matters. That of humic acid matter decreased from 183 per mille to -139 per mille. For these of organic matter fractions at the same depth, the Δ 14 C values of particulate matter (size >53μm) are smallest and those of humic acid matter are the largest. That indicates that a high contribution of young organic matter to the humic acid matter exists and transformation tendency of particulate matter may be from coarse to small in the particulate size. Positive Δ 14 C values appeared at a depth of 10 cm, 25 cm, and 35 cm for the particulate organic matter (size >53μm), particulate organic matter (size 14 C values of the humic acid matter also infects that the bomb carbon has reached the depth of 35 cm. Additionally, the Δ 14 C values of these three kinds of organic matters ranged from 50 per mille to 183 per mille at a depth of 0-7 cm, which were not smaller than that of litter in the forest area, indicating high proportion of modern, plants-derived soil organic matter in this depth ranges. The δ 13 C values increased from -28 per mille to -23 per mille with the increase depth of 0-55 cm. The δ 13 C values of humic acid matter are approximately less than that of particulate matters at the same depth, which may be explained as a high contribution of young organic matter to the humic acid matter. (author)

  12. Combining Old and New Stable Isotope Techniques to Evaluate the Impact of Conservation Tillage on Soil Organic Carbon Dynamics and Stability

    International Nuclear Information System (INIS)

    De Clercq, T.; Xu, H.; Mercklx, R.; Heiling, M.; Dercon, G.; Resch, C.

    2016-01-01

    Soil organic matter (SOM) is a major carbon pool. It is a crucial factor for soil quality including several soil physical properties and a major nutrient source for crops. It also plays a significant role in the global carbon cycle. Soils can act as a carbon sink or source depending on land use and agricultural management practices. Some practices such as conservation tillage or no-tillage could increase SOM stocks, particularly in the topsoil, but in the long term it remains to be seen if and how this SOM is stabilized (De Clercq et al., 2015; Govaerts et al., 2009). In order to evaluate the sustainability and efficiency of soil carbon sequestration measures and the impact of different management and environmental factors, information on SOM stability and mean residence time (MRT) is required. However, this information on SOM stability and MRT is expensive to determine via radiocarbon dating, precluding a wide spread use of stability measurements in soil science. But alternative methods based on stable carbon and nitrogen isotopes, can provide this information at a fraction of the cost

  13. Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning

    Directory of Open Access Journals (Sweden)

    P. Q. Fu

    2012-09-01

    Full Text Available Organic tracer compounds, as well as organic carbon (OC, elemental carbon (EC, water-soluble organic carbon (WSOC, and stable carbon isotope ratios (δ13C of total carbon (TC have been investigated in aerosol samples collected during early and late periods of the Mount Tai eXperiment 2006 (MTX2006 field campaign in the North China Plain. Total solvent-extractable fractions were investigated by gas chromatography/mass spectrometry. More than 130 organic compounds were detected in the aerosol samples. They were grouped into twelve organic compound classes, including biomass burning tracers, biogenic primary sugars, biogenic secondary organic aerosol (SOA tracers, and anthropogenic tracers such as phthalates, hopanes and polycyclic aromatic hydrocarbons (PAHs. In early June when the field burning activities of wheat straws in the North China Plain were very active, the total identified organics (2090 ± 1170 ng m−3 were double those in late June (926 ± 574 ng m−3. All the compound classes were more abundant in early June than in late June, except phthalate esters, which were higher in late June. Levoglucosan (88–1210 ng m−3, mean 403 ng m−3 was found as the most abundant single compound in early June, while diisobutyl phthalate was the predominant species in late June. During the biomass-burning period in early June, the diurnal trends of most of the primary and secondary organic aerosol tracers were characterized by the concentration peaks observed at mid-night or in early morning, while in late June most of the organic species peaked in late afternoon. This suggests that smoke plumes from biomass burning can uplift the aerosol particulate matter to a certain altitude, which could be further transported to and encountered the summit of Mt. Tai during nighttime. On the basis of the tracer-based method for the estimation of biomass-burning OC, fungal-spore OC and biogenic secondary

  14. Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning

    Science.gov (United States)

    Fu, P. Q.; Kawamura, K.; Chen, J.; Li, J.; Sun, Y. L.; Liu, Y.; Tachibana, E.; Aggarwal, S. G.; Okuzawa, K.; Tanimoto, H.; Kanaya, Y.; Wang, Z. F.

    2012-09-01

    Organic tracer compounds, as well as organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and stable carbon isotope ratios (δ13C) of total carbon (TC) have been investigated in aerosol samples collected during early and late periods of the Mount Tai eXperiment 2006 (MTX2006) field campaign in the North China Plain. Total solvent-extractable fractions were investigated by gas chromatography/mass spectrometry. More than 130 organic compounds were detected in the aerosol samples. They were grouped into twelve organic compound classes, including biomass burning tracers, biogenic primary sugars, biogenic secondary organic aerosol (SOA) tracers, and anthropogenic tracers such as phthalates, hopanes and polycyclic aromatic hydrocarbons (PAHs). In early June when the field burning activities of wheat straws in the North China Plain were very active, the total identified organics (2090 ± 1170 ng m-3) were double those in late June (926 ± 574 ng m-3). All the compound classes were more abundant in early June than in late June, except phthalate esters, which were higher in late June. Levoglucosan (88-1210 ng m-3, mean 403 ng m-3) was found as the most abundant single compound in early June, while diisobutyl phthalate was the predominant species in late June. During the biomass-burning period in early June, the diurnal trends of most of the primary and secondary organic aerosol tracers were characterized by the concentration peaks observed at mid-night or in early morning, while in late June most of the organic species peaked in late afternoon. This suggests that smoke plumes from biomass burning can uplift the aerosol particulate matter to a certain altitude, which could be further transported to and encountered the summit of Mt. Tai during nighttime. On the basis of the tracer-based method for the estimation of biomass-burning OC, fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 24% (up to 64%) of the

  15. Diurnal variations of organic molecular tracers and stable carbon isotopic compositions in atmospheric aerosols over Mt. Tai in North China Plain: an influence of biomass burning

    Science.gov (United States)

    Fu, P. Q.; Kawamura, K.; Chen, J.; Li, J.; Sun, Y. L.; Liu, Y.; Tachibana, E.; Aggarwal, S. G.; Okuzawa, K.; Tanimoto, H.; Kanaya, Y.; Wang, Z. F.

    2012-04-01

    Organic tracer compounds of tropospheric aerosols, as well as organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and stable carbon isotope ratios (δ13C) of total carbon (TC) have been investigated for aerosol samples collected during early and late periods of Mount Tai eXperiment 2006 (MTX2006) field campaign in North China Plain. Total solvent extracts were investigated by gas chromatography/mass spectrometry. More than 130 organic compounds were detected in the aerosol samples. They were grouped into twelve organic compound classes, including biomass burning tracers, biogenic primary sugars, biogenic secondary organic aerosol (SOA) tracers, and anthropogenic tracers such as phthalates, hopanes and polycyclic aromatic hydrocarbons (PAHs). In early June when the field burning activities of wheat straws in North China Plain were very active, the total identified organics (2090 ± 1170 ng m-3) were double those in late June (926 ± 574 ng m-3). All the compound classes were more abundant in early June than in late June, except phthalate esters, which were higher in late June. Levoglucosan (88-1210 ng m-3, 403 ng m-3) was found as the most abundant single compound in early June, while diisobutyl phthalate was the predominant species in late June. During the biomass-burning period in early June, the diurnal trends of most of the primary and secondary organic aerosol tracers were characterized by the concentration peaks observed at mid-night or in early morning, while in late June most of the organic species peaked in late afternoon. This suggests that smoke plumes from biomass burning can uplift the aerosol particulate matter to a certain altitude and then transported to and encountered the summit of Mt. Tai during nighttime. On the basis of the tracer-based method for the estimation of biomass-burning OC, fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 24% (up to 64%) of the OC in the Mt. Tai

  16. Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Cuicui Mu

    2016-01-01

    Full Text Available Thermokarst lakes are widely distributed on the Qinghai-Tibetan Plateau (QTP, which accounts for 8% of the global permafrost area. These lakes probably promote organic matter biodegradation and thus accelerate the emission of carbon-based greenhouse gases. However, little is known about greenhouse gas concentrations and their stable isotopes characteristics of these lakes. In this study, we measured the concentrations of dissolved organic carbon (DOC, dissolved CO2 and CH4, as well as the distribution of δ13CCO2, δ13CCH4, and δ13COM (organic matter of lake sediments in thermokarst lakes on the QTP. Results showed that the OM of the lake sediments was highly decomposed. The concentrations of DOC, CO2 and CH4 in the lake water on the QTP were 1.2–49.6 mg L–1, 3.6–45.0 μmol L–1 and 0.28–3.0 μmol L–1, respectively. The highest CO2 and CH4 concentrations were recorded in July while the lowest values in September, which suggested that temperature had an effect on greenhouse gas production, although this pattern may also relate to thermal stratification of the water column. The results implied that thermokast lakes should be paid more attention to regarding carbon cycle and greenhouse gas emissions on the QTP.

  17. The effects of anthropogenic organic matter inputs on stable carbon and nitrogen isotopes in organisms from different trophic levels in a southern Mediterranean coastal area

    International Nuclear Information System (INIS)

    Vizzini, Salvatrice; Mazzola, Antonio

    2006-01-01

    Stable isotope ratios were used to determine the impact of anthropogenically derived organic matter from onshore and offshore fish farming and a sewage outfall on organisms at different trophic levels (primary producers and consumers) on the south-east coast of Sicily (Italy, Mediterranean). Representative macroalgae and consumers were collected in three sampling locations: 'Impact' and two putative 'Controls' sited to the north of the impacted location. While δ 13 C values of both organic matter sources and consumers varied little between locations, δ 15 N spatial variability was higher and δ 15 N was shown to be a good descriptor of organic enrichment and uptake of anthropogenically derived material within coastal food webs. Isotopic data were analysed using a multivariate approach. Organic matter sources and benthic components were more sensitive to pollution than nektobenthic species and revealed that the effects of anthropogenic activities seem to be detectable over a wide area. The study site is characterised by wide waste dispersal, which brings a reduction in impact in the area directly affected by organic matter inputs and enlarges the area of moderate impact

  18. Combined Stable Carbon Isotope and C/N Ratios as Indicators of Source and Fate of Organic Matter in the Bang Pa kong River Estuary, Thailand

    International Nuclear Information System (INIS)

    Boonphakdee, Thanomsak; Kasai, Akihide; Fujiwara, Tateki; Sawangwong, Pichan; Cheevaporn, Voravit

    2007-08-01

    Full text: Stable carbon isotopes and C/N ratios of particulate organic matter (POM) in suspended solids and surficial sediment were used to define the spatial and temporal variability in an anthropogenic tropical river estuary, the Bang Pa kong River Estuary. Samples were taken along salinity gradients during the four different river discharges in the beginning, high river discharge and at the end of the wet season, and low river discharge during the dry season. The values of [C/N]a ratio and d13C in the river estuary revealed significant differences from those of the offshore station. Conservative behaviors of [C/N]a and d13C in the estuary during the wet season indicated major contribution of terrigenous C3 plants derived OM. By contrast, during the dry season, marine input mainly dominated OM contribution with an evidence of anthropogenic input to the estuary. These compositions of the bulk sedimentary OM were dominated by paddy rice soils and marine derived OM during the wet and dry seasons, respectively. These results show that the combined stable carbon isotopes and C/N ratios can be used to identify the source and fate of OM even in a river estuary. This tool will be useful to achieve sustainable management in coastal zone

  19. Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea

    Directory of Open Access Journals (Sweden)

    E. S. Karlsson

    2011-07-01

    Full Text Available The world's largest continental shelf, the East Siberian Shelf Sea, receives substantial input of terrestrial organic carbon (terr-OC from both large rivers and erosion of its coastline. Degradation of organic matter from thawing permafrost in the Arctic is likely to increase, potentially creating a positive feedback mechanism to climate warming. This study focuses on the Buor-Khaya Bay (SE Laptev Sea, an area with strong terr-OC input from both coastal erosion and the Lena river. To better understand the fate of this terr-OC, molecular (acyl lipid biomarkers and isotopic tools (stable carbon and radiocarbon isotopes have been applied to both particulate organic carbon (POC in surface water and sedimentary organic carbon (SOC collected from the underlying surface sediments.

    Clear gradients in both extent of degradation and differences in source contributions were observed both between surface water POC and surface sediment SOC as well as over the 100 s km investigation scale (about 20 stations. Depleted δ13C-OC and high HMW/LMW n-alkane ratios signaled that terr-OC was dominating over marine/planktonic sources.

    Despite a shallow water column (10–40 m, the isotopic shift between SOC and POC varied systematically from +2 to +5 per mil for δ13C and from +300 to +450 for Δ14C from the Lena prodelta to the Buor-Khaya Cape. At the same time, the ratio of HMW n-alkanoic acids to HMW n-alkanes as well as HMW n-alkane CPI, both indicative of degradation, were 5–6 times greater in SOC than in POC. This suggests that terr-OC was substantially older yet less degraded in the surface sediment than in the surface waters. This unusual vertical degradation trend was only recently found also for the central East Siberian Sea.

    Numerical modeling (Monte Carlo simulations with δ13C and Δ14C in both POC and SOC was applied to deduce the relative

  20. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, glyoxylic acid and glyoxal in tropical aerosols: implications for photochemical processes of organic aerosols

    Directory of Open Access Journals (Sweden)

    Stelyus L. Mkoma

    2014-10-01

    Full Text Available Tropical aerosols of PM2.5 and PM10 were collected at a rural site in Morogoro, Tanzania (East Africa, and analysed for stable carbon isotopic composition (δ13C of dicarboxylic acids (C2–C9, glyoxylic acid (ωC2 and glyoxal (Gly using gas chromatography/isotope ratio mass spectrometer. PM2.5 samples showed that δ13C of oxalic (C2 acid are largest (mean, −18.3±1.7‰ followed by malonic (C3, −19.6±1.0‰ and succinic (C4, −21.8±2.2‰ acids, whereas those in PM10 are a little smaller: −19.9±3.1‰ (C2, −20.2±2.7‰ (C3 and −23.3±3.2‰ (C4. The δ13C of C2–C4 diacids showed a decreasing trend with an increase in carbon numbers. The higher δ13C values of oxalic acid can be explained by isotopic enrichment of 13C in the remaining C2 due to the atmospheric decomposition of oxalic acid or its precursors. δ13C of ωC2 and Gly that are precursors of oxalic acid also showed larger values (mean, −22.5‰ and −20.2‰, respectively in PM2.5 than those (−26.7‰ and −23.7‰ in PM10. The δ13C values of ωC2 and Gly are smaller than those of C2 in both PM2.5 and PM10. On the other hand, azelaic acid (C9; mean, −28.5‰ is more depleted in 13C, which is consistent with the previous knowledge; that is, C9 is produced by the oxidation of unsaturated fatty acids emitted from terrestrial higher plants. A significant enrichment of 13C in oxalic acid together with its negative correlations with relative abundance of C2 in total diacids and ratios of water-soluble organic carbon and organic carbon further support that a photochemical degradation of oxalic acid occurs during long-range transport from source regions.

  1. Relationships between tree height and carbon isotope discrimination

    Science.gov (United States)

    Nate G. McDowell; Barbara J. Bond; Lee T. Dickman; Michael G. Ryan; David Whitehead

    2011-01-01

    Understanding how tree size impacts leaf- and crown-level gas exchange is essential to predicting forest yields and carbon and water budgets. The stable carbon isotope ratio of organic matter has been used to examine the relationship of gas exchange to tree size for a host of species because it carries a temporally integrated signature of foliar photosynthesis and...

  2. Increase in soil stable carbon isotope ratio relates to loss of organic carbon: results from five long-term bare fallow experiments.

    Science.gov (United States)

    Menichetti, Lorenzo; Houot, Sabine; van Oort, Folkert; Kätterer, Thomas; Christensen, Bent T; Chenu, Claire; Barré, Pierre; Vasilyeva, Nadezda A; Ekblad, Alf

    2015-03-01

    Changes in the (12)C/(13)C ratio (expressed as δ(13)C) of soil organic C (SOC) has been observed over long time scales and with depth in soil profiles. The changes are ascribed to the different reaction kinetics of (12)C and (13)C isotopes and the different isotopic composition of various SOC pool components. However, experimental verification of the subtle isotopic shifts associated with SOC turnover under field conditions is scarce. We determined δ(13)C and SOC in soil sampled during 1929-2009 in the Ap-horizon of five European long-term bare fallow experiments kept without C inputs for 27-80 years and covering a latitudinal range of 11°. The bare fallow soils lost 33-65% of their initial SOC content and showed a mean annual δ(13)C increase of 0.008-0.024‰. The (13)C enrichment could be related empirically to SOC losses by a Rayleigh distillation equation. A more complex mechanistic relationship was also examined. The overall estimate of the fractionation coefficient (ε) was -1.2 ± 0.3‰. This coefficient represents an important input to studies of long-term SOC dynamics in agricultural soils that are based on variations in (13)C natural abundance. The variance of ε may be ascribed to site characteristics not disclosed in our study, but the very similar kinetics measured across our five experimental sites suggest that overall site-specific factors (including climate) had a marginal influence and that it may be possible to isolate a general mechanism causing the enrichment, although pre-fallow land use may have some impact on isotope abundance and fractionation.

  3. Online Stable Isotope Analysis of Dissolved Organic Carbon Size Classes Using Size Exclusion Chromatography Coupled to an Isotope Ratio Mass Spectrometer

    Digital Repository Service at National Institute of Oceanography (India)

    Malik, A.; Scheibe, A.; LokaBharathi, P.A.; Gleixner, G.

    size classes by coupling high-performance liquid chromatography (HPLC) - size exclusion chromatography (SEC) to online isotope ratio mass spectrometry (IRMS). This represents a significant methodological contribution to DOC research. The interface...

  4. Intra-annual variability of carbon and nitrogen stable isotopes in suspended organic matter in waters of the western continental shelf of India

    Directory of Open Access Journals (Sweden)

    M. V. Maya

    2011-11-01

    Full Text Available Intra-annual variations of δ13C and δ15N of water-column suspended particulate organic matter (SPOM have been investigated to understand the biogeochemical cycling of C and N in the Western Continental Shelf of India (WCSI. The key issues being addressed are: how the δ15N of SPOM is affected by seasonally varying processes of organic matter production and respiration and how it relates to the δ15N of sedimentary organic matter that appears to show a decreasing trend despite an apparent intensification of seasonal oxygen deficiency over the past few decades? A secondary objective was to evaluate the sources of organic carbon. Elemental carbon and nitrogen concentrations, C/N ratios in SPOM, along with ancillary chemical and biological variables including phytoplankton pigment abundance were also determined on a seasonal basis (from March 2007 to September 2008, with the partial exception of the southwest (SW monsoon period. The results reveal significant shifts in isotopic signatures, especially δ15N, of SPOM before and after the onset of SW monsoon. Very low δ15N values, reaching a minimum of −4.17 ‰, are found during the pre-monsoon period. Our results provide the first direct evidence for the addition of substantial amounts of isotopically light nitrogen by the diazotrophs, especially Trichodesmium, in the region. The δ15N of SPOM is generally lower than the mean value (7.38 ‰ for surficial sediments, presumably because of diagenetic enrichment. The results support the view that sedimentary δ15N may not necessarily reflect denitrification intensity in the overlying waters due to diverse sources of nitrogen and variability of its isotopic composition. The observed intra-annual variability of δ13C of SPOM during the pre-monsoon and post-monsoon periods is generally small. Phytoplankton production and probably species

  5. Isotopic composition of cellulose from aquatic organisms

    International Nuclear Information System (INIS)

    DeNiro, M.J.; Epstein, S.

    1981-01-01

    The stable isotopic ratios of oxygen, carbon and the non-exchangeable carbon-bound hydrogen of cellulose from marine plants and animals collected in their natural habitats and from freshwater vascular plants grown in the laboratory under controlled conditions were determined. The delta 18 O values of cellulose from all the plants and animals were 27 +- 3 parts per thousand more positive than the delta 18 O values of the waters in which the organisms grew. Temperature had little or no influence on this relationship for three species of freshwater vascular plants that were analyzed. The deltaD values of the non-exchangeable hydrogen of cellulose from different organisms that grew in the same environment differed by large amounts. This difference ranged up to 200 parts per thousand for different species of algae collected at a single site; the corresponding difference for different species of tunicates and vascular plants was 60 and 20 parts per thousand respectively. The deltaD values of cellulose nitrate from different species of freshwater vascular plants grown in water of constant temperature and isotopic composition differed by as much as 60 parts per thousand. The relationship between the deltaD values of the carbon-bound hydrogen of cellulose and the water used in its synthesis displayed a significant temperature dependence for four species of freshwater vascular plants that were analyzed. (author)

  6. The role of isotopes in studying nutrient and organic matter dynamics in livestock/cropping systems, with emphasis on carbon and nitrogen

    International Nuclear Information System (INIS)

    Ledgard, Stewart F.

    2002-01-01

    Integration of livestock and cropping systems can increase the efficiency of use and recycling of nutrients and other resources. In developing countries, a key goal in mixed animal/cropping systems is maximising production of animals and crops, possibly including grain for human consumption, while minimising the need for inputs of resources such as fertilisers, irrigation water and energy. Low organic N levels in soil in some developing countries, such as in Africa, mean that achievement and maintenance of high yielding crops requires appropriate inputs of organic and/or fertiliser N sources. Improvement in organic matter and N levels in cropping soils are generally achieved via crop rotations or inter-cropping with grain legumes or green manures, or by importing external sources of organic material. Recycling of crop residues is also important for retaining organic matter and nutrients in cropped soils. Increases in the efficiency of these farming systems require a detailed knowledge of the limiting factors or resources for maximising productivity. Isotopes can play a valuable role in identifying, understanding and testing new methodologies associated with soil, water and nutrient resources. Isotopes (particularly 15 N) have been widely used in field studies for determining fertiliser use efficiency, N 2 fixation, and more recently for studying the fate of nutrients from organic materials and crop residues. The major benefit in using isotopes in studies of nutrient use efficiency is that it enables the fate of the nutrient to be traced throughout the soil/plant system even where there are large reserves of the nutrient in soil pools. Most research with isotopes has been restricted to above-ground plant components but some recent studies have targeted plant roots. Foliar 15 N labelling has been used to better quantify root N yields and to determine the uptake of 15 N-labelled root N by subsequent crops. Similarly, 13 CO 2 pulse labelling studies have provided

  7. Modeling the carbon isotope composition of bivalve shells (Invited)

    Science.gov (United States)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., 90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope fractionation

  8. Isotope geochemistry and fluxes of carbon and organic matter in tropical small mountainous river systems and adjacent coastal waters of the Caribbean

    Science.gov (United States)

    Moyer, Ryan; Bauer, James; Grottoli, Andrea

    2012-01-01

    Recent studies have shown that small mountainous rivers (SMRs) may act as sources of aged and/or refractory carbon (C) to the coastal ocean, which may increase organic C burial at sea and subsidize coastal food webs and heterotrophy. However, the characteristics and spatial and temporal variability of C and organic matter (OM) exported from tropical SMR systems remain poorly constrained. To address this, the abundance and isotopic character (δ13C and Δ14C) of the three major C pools were measured in two Puerto Rico SMRs with catchments dominated by different land uses (agricultural vs. non-agricultural recovering forest). The abundance and character of C pools in associated estuaries and adjacent coastal waters were also examined. Riverine dissolved and particulate organic C (DOC and POC, respectively) concentrations were highly variable with respect to land use and sampling month, while dissolved inorganic C (DIC) was significantly higher at all times in the agricultural catchment. In both systems, riverine DOC and POC ranged from modern to highly aged (2,340 years before present), while DIC was always modern. The agricultural river and irrigation canals contained very old DOC (1,184 and 2,340 years before present, respectively), which is consistent with findings in temperate SMRs and indicates that these tropical SMRs provide a source of aged DOC to the ocean. During months of high river discharge, OM in estuarine and coastal waters had C isotope signatures reflective of direct terrestrial input, indicating that relatively unaltered OM is transported to the coastal ocean at these times. This is also consistent with findings in temperate SMRs and indicates that C transported to the coastal ocean by SMRs may differ from that of larger rivers because it is exported from smaller catchments that have steeper terrains and fewer land-use types.

  9. A 1000-year record of dry conditions in the eastern Canadian prairies reconstructed from oxygen and carbon isotope measurements on Lake Winnipeg sediment organics

    Science.gov (United States)

    Buhay, W.M.; Simpson, S.; Thorleifson, H.; Lewis, M.; King, J.; Telka, A.; Wilkinson, Philip M.; Babb, J.; Timsic, S.; Bailey, D.

    2009-01-01

    A short sediment core (162 cm), covering the period AD 920-1999, was sampled from the south basin of Lake Winnipeg for a suite of multi-proxy analyses leading towards a detailed characterisation of the recent millennial lake environment and hydroclimate of southern Manitoba, Canada. Information on the frequency and duration of major dry periods in southern Manitoba, in light of the changes that are likely to occur as a result of an increasingly warming atmosphere, is of specific interest in this study. Intervals of relatively enriched lake sediment cellulose oxygen isotope values (??18Ocellulose) were found to occur from AD 1180 to 1230 (error range: AD 1104-1231 to 1160-1280), 1610-1640 (error range: AD 1571-1634 to 1603-1662), 1670-1720 (error range: AD 1643-1697 to 1692-1738) and 1750-1780 (error range: AD 1724-1766 to 1756-1794). Regional water balance, inferred from calculated Lake Winnipeg water oxygen isotope values (??18Oinf-lw), suggest that the ratio of lake evaporation to catchment input may have been 25-40% higher during these isotopically distinct periods. Associated with the enriched d??18Ocellulose intervals are some depleted carbon isotope values associated with more abundantly preserved sediment organic matter (d??13COM). These suggest reduced microbial oxidation of terrestrially derived organic matter and/or subdued lake productivity during periods of minimised input of nutrients from the catchment area. With reference to other corroborating evidence, it is suggested that the AD 1180-1230, 1610-1640, 1670-1720 and 1750-1780 intervals represent four distinctly drier periods (droughts) in southern Manitoba, Canada. Additionally, lower-magnitude and duration dry periods may have also occurred from 1320 to 1340 (error range: AD 1257-1363), 1530-1540 (error range: AD 1490-1565 to 1498-1572) and 1570-1580 (error range: AD 1531-1599 to 1539-1606). ?? 2009 John Wiley & Sons, Ltd.

  10. Organic synthesis with stable isotopes

    International Nuclear Information System (INIS)

    Daub, G.H.; Kerr, V.N.; Williams, D.L.; Whaley, T.W.

    1978-01-01

    Some general considerations concerning organic synthesis with stable isotopes are presented. Illustrative examples are described and discussed. The examples include DL-2-amino-3-methyl- 13 C-butanoic-3,4- 13 C 2 acid (DL-valine- 13 C 3 ); methyl oleate-1- 13 C; thymine-2,6- 13 C 2 ; 2-aminoethanesulfonic- 13 C acid (taurine- 13 C); D-glucose-6- 13 C; DL-2-amino-3-methylpentanoic-3,4- 13 C 2 acid (DL-isoleucine- 13 C 2 ); benzidine- 15 N 2 ; and 4-ethylsulfonyl-1-naphthalene-sulfonamide- 15 N

  11. Influence of chemical structure on carbon isotope composition of lignite

    Science.gov (United States)

    Erdenetsogt, Bat-Orshikh; Lee, Insung; Ko, Yoon-Joo; Mungunchimeg, Batsaikhan

    2017-04-01

    During the last two decades, a number of studies on carbon isotopes in terrestrial organic matter (OM) have been carried out and used to determine changes in paleoatmospheric δ13C value as well as assisting in paleoclimate analysis. Coal is abundant terrestrial OM. However, application of its δ13C value is very limited, because the understanding of changes in isotopic composition during coalification is relatively insufficient. The purpose of this study was to examine the influence of the chemical structure on the carbon isotope composition of lignite. Generally, lignite has more complex chemical structures than other higher rank coal because of the existence of various types of oxygen-containing functional groups that are eliminated at higher rank level. A total of sixteen Lower Cretaceous lignite samples from Baganuur mine (Mongolia) were studied by ultimate, stable carbon isotope and solid-state 13C CP/MAS NMR analyses. The carbon contents of the samples increase with increase in depth, whereas oxygen content decreases continuously. This is undoubtedly due to normal coalification process and also consistent with solid state NMR results. The δ13C values of the samples range from -23.54‰ to -21.34‰ and are enriched in 13C towards the lowermost samples. Based on the deconvolution of the NMR spectra, the ratios between carbons bonded to oxygen (60-90 ppm and 135-220 ppm) over carbons bonded to carbon and hydrogen (0-50 ppm and 90-135 ppm) were calculated for the samples. These correlate well with δ13C values (R2 0.88). The results indicate that the δ13C values of lignite are controlled by two mechanisms: (i) depletion in 13C as a result of loss of isotopically heavy oxygen-bounded carbons and (ii) enrichment in 13C caused by a loss of isotopically light methane from aliphatic and aromatic carbons. At the rank of lignite, coal is enriched in 13C because the amount of isotopically heavy CO2 and CO, released from coal as a result of changes in the chemical

  12. Radiocarbon in marine dissolved organic carbon (DOC)

    NARCIS (Netherlands)

    Clercq, M. le; Plicht, J. van der; Meijer, H.A.J.; Baar, H.J.W. de

    Dissolved Organic Carbon (DOC) plays an important role in the ecology and carbon cycle in the ocean. Analytical problems with concentration and isotope ratio measurements have hindered its study. We have constructed a new analytical method based on supercritical oxidation for the determination of

  13. Determining Inorganic and Organic Carbon.

    Science.gov (United States)

    Koistinen, Jaana; Sjöblom, Mervi; Spilling, Kristian

    2017-11-21

    Carbon is the element which makes up the major fraction of lipids and carbohydrates, which could be used for making biofuel. It is therefore important to provide enough carbon and also follow the flow into particulate organic carbon and potential loss to dissolved organic forms of carbon. Here we present methods for determining dissolved inorganic carbon, dissolved organic carbon, and particulate organic carbon.

  14. Gluconeogenesis from labeled carbon: estimating isotope dilution

    International Nuclear Information System (INIS)

    Kelleher, J.K.

    1986-01-01

    To estimate the rate of gluconeogenesis from steady-state incorporation of labeled 3-carbon precursors into glucose, isotope dilution must be considered so that the rate of labeling of glucose can be quantitatively converted to the rate of gluconeogenesis. An expression for the value of this isotope dilution can be derived using mathematical techniques and a model of the tricarboxylic acid (TCA) cycle. The present investigation employs a more complex model than that used in previous studies. This model includes the following pathways that may affect the correction for isotope dilution: 1) flux of 3-carbon precursor to the oxaloacetate pool via acetyl-CoA and the TCA cycle; 2) flux of 4- or 5-carbon compounds into the TCA cycle; 3) reversible flux between oxaloacetate (OAA) and pyruvate and between OAA and fumarate; 4) incomplete equilibrium between OAA pools; and 5) isotope dilution of 3-carbon tracers between the experimentally measured pool and the precursor for the TCA-cycle OAA pool. Experimental tests are outlined which investigators can use to determine whether these pathways are significant in a specific steady-state system. The study indicated that flux through these five pathways can significantly affect the correction for isotope dilution. To correct for the effects of these pathways an alternative method for calculating isotope dilution is proposed using citrate to relate the specific activities of acetyl-CoA and OAA

  15. Particle-size fractionation and stable carbon isotope distribution applied to the study of soil organic matter dynamics

    International Nuclear Information System (INIS)

    Cerri, C.; Feller, C.; Balesdent, J.; Victoria, R.; Plenecassagne, A.

    1985-01-01

    The present Note concerns the dynamics of organic matter in soils under forest (C 3 -type vegetation) and 12 and 50 years old sugar-cane (C 4 -type vegetation) cultivation. The decomposition rate of ‘forest organic matter” and the accumulation rate of “sugar-cane organic matter” are estimated through 13 C measurements of total soil and different organic fractions (particle-size, fractionation) [fr

  16. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    Energy Technology Data Exchange (ETDEWEB)

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  17. Palaeovegetation dynamics of an ecotone forest-savanna in southern Brazilian Amazon during the late Pleistocene and Holocene based on carbon isotopes of soil organic matter

    International Nuclear Information System (INIS)

    Pessenda, L.C.R.; Gouveia, S.E.M.; Freitas, H.A. de; Bendassoli, J.A.; Gomes, B.M.; Aravena, R.; Ribeiro, A.S.; Boulet, R.

    2002-01-01

    This study was carried out in the Brazilian southern Amazon region (Rondonia state and Humaita, southern Amazon state). Carbon isotope data on soil organic matter have been collected along an ecosystem transect of about 750 km that includes a savanna, a wooded savanna (cerrado), a tropical semideciduous forest (cerradao), a forest transition type and a tropical forest. The main objective is to evaluate the expansion-regression dynamics of these vegetation units in relation to climate changes during the Late Pleistocene (Late Glacial) and Holocene. Large ranges in δ 13 values were observed in soil organic matter collected from profiles in the savanna (-27 to -14 per mille and forest regions (-26 to -19 per mille) reflecting changing distribution of 13 C-depleted C 3 forest and 13 C enriched C 4 savanna vegetation in response to climate change. 14 C data of humin fraction and buried charcoal indicate that the organic matter in these soils is at least 17,000 years BP at 300-cm depth. In this period, the entire ecosystem transect are characterized by δ 13 C soil depth profiles, generated typically by C 3 plants (forest), inferring a humid climate in the southern Amazon region after the end of last glaciation. 13 C data also indicate that C 4 plants (grasses) have influenced significantly the vegetation at the transitional forest and the cerrado sites of southern Rondonia state and two distinct points in the forest ecosystem in the southern Amazon state. These typical C 4 type isotopic signatures probably reflect a drier climate during about 9000-8000 yr BP to 3000 yr BP and the savanna and wooded savanna expansion in distinct points of the transect. The 13 C records representing the 3000 yr show an expansion of the forest, due to a climatic improvement, in areas previously occupied by savanna vegetation. This study adds to the mounting evidence that extensive forested areas existed in the Amazon during the last glacial and that savanna vegetation expanded in response

  18. Biomarker and carbon isotope constraints (δ13C, Δ14C) on sources and cycling of particulate organic matter discharged by large Siberian rivers draining permafrost areas

    International Nuclear Information System (INIS)

    Winterfeld, Maria

    2014-08-01

    Circumpolar permafrost soils store about half of the global soil organic carbon pool. These huge amounts of organic matter (OM) could accumulate due to low temperatures and water saturated soil conditions over the course of millennia. Currently most of this OM remains frozen and therefore does not take part in the active carbon cycle, making permafrost soils a globally important carbon sink. Over the last decades mean annual air temperatures in the Arctic increased stronger than the global mean and this trend is projected to continue. As a result the permafrost carbon pool is under climate pressure possibly creating a positive climate feedback due to the thaw-induced release of greenhouse gases to the atmosphere. Arctic warming will lead to increased annual permafrost thaw depths and Arctic river runoff likely resulting in enhanced mobilization and export of old, previously frozen soil-derived OM. Consequently, the great arctic rivers play an important role in global biogeochemical cycles by connecting the large permafrost carbon pool of their hinterlands with the arctic shelf seas and the Arctic Ocean. The first part of this thesis deals with particulate organic matter (POM) from the Lena Delta and adjacent Buor Khaya Bay. The Lena River in central Siberia is one of the major pathways translocating terrestrial OM from its southernmost reaches near Lake Baikal to the coastal zone of the Laptev Sea. The permafrost soils from the Lena catchment area store huge amounts of pre-aged OM, which is expected to be remobilized due to climate warming. To characterize the composition and vegetation sources of OM discharged by the Lena River, the lignin phenol and carbon isotopic composition (δ 13 C and Δ 14 C) in total suspended matter (TSM) from surface waters, surface sediments from the Buor Khaya Bay along with soils from the Lena Delta's first (Holocene) and third terraces (Pleistocene ice complex) were analyzed. The lignin compositions of these samples are

  19. Characteristics of stable carbon isotopic composition of shale gas

    Directory of Open Access Journals (Sweden)

    Zhenya Qu

    2016-04-01

    Full Text Available A type Ⅱ kerogen with low thermal maturity was adopted to perform hydrocarbon generation pyrolysis experiments in a vacuum (Micro-Scale Sealed Vessel system at the heating rates of 2 °C/h and 20 °C/h. The stable carbon isotopic compositions of gas hydrocarbons were measured to investigate their evolving characteristics and the possible reasons for isotope reversal. The δ13C values of methane became more negative with the increasing pyrolysis temperatures until it reached the lightest point, after which they became more positive. Meanwhile, the δ13C values of ethane and propane showed a positive trend with elevating pyrolysis temperatures. The carbon isotopic compositions of shale gasses were mainly determined by the type of parent organic matter, thermal evolutionary extent, and gas migration in shale systems. Our experiments and study proved that the isotope reversal shouldn't occur in a pure thermogenic gas reservoir, it must be involved with some other geochemical process/es; although mechanisms responsible for the reversal are still vague. Carbon isotopic composition of the Fayetteville and Barnett shale gas demonstrated that the isotope reversal was likely involved with water–gas reaction and Fischer-Tropsch synthesis during its generation.

  20. Source apportionment of organic pollutants of a highway-traffic-influenced urban area in Bayreuth (Germany) using biomarker and stable carbon isotope signatures.

    Science.gov (United States)

    Glaser, Bruno; Dreyer, Annekatrin; Bock, Michael; Fiedler, Stefan; Mehring, Marion; Heitmann, Tobias

    2005-06-01

    Traffic- and urban-influenced areas are prone to enhanced pollution with products of incomplete combustion of fossil fuels and biomass such as black carbon or polycyclic aromatic hydrocarbons (PAHs). Black carbon is composed of aromatic and graphitic structures and may act as a carrier for pollutants such as PAHs and heavy metals. However, little is known about possible contributions of traffic-derived black carbon to the black carbon inventory in soils. Similar uncertainties exist regarding the contribution of different pollutant sources to total PAH and black carbon contents. Therefore, the objective of this study was to quantify the importance of traffic pollution to black carbon and PAH inventories in soils. PAH contamination of soils adjacent to a major German highway in the urban area of Bayreuth with about 50,000 vehicles per day was in the same order of magnitude compared to highway-close soils reported in other studies. Using molecular (black carbon and PAHs) and compound-specific stable carbon isotope evidence (PAHs) it was demonstrated that this contamination originated not only from automobile exhausts, here primarily diesel, but also from tire abrasion and tailpipe soot which significantly contributed to the traffic-caused black carbon and PAH contamination. Low molecular weight PAHs were more widely transported than their heavy molecular counterparts (local distillation), whereas highway-traffic-caused black carbon contamination was distributed to at least 30 m from the highway. On the other hand, urban fire exhausts were distributed more homogeneously among the urban area.

  1. How the oxygen isotope ratio of rain water influences the isotope ratio of chicken eggshell carbonate

    Science.gov (United States)

    Price, Gregory; Grimes, Stephen

    2015-04-01

    The stable oxygen isotope ratio of chicken eggshell carbonate was analysed from chicken eggs laid under free range, and organic farming regimes from across the UK. The eggshell carbonate oxygen isotope data shows a clear depletion in delta18O distribution from the southwest to the northeast. Although consistently offset by around 1 permil, the same isotopic distribution as that seen in eggshell carbonate is observed in the delta18O ratio of rainfall and groundwater from across the UK. This distribution is related to the Rayleigh distillation of rainfall driven by westerly winds across the UK landmass. The clear relationship observed between eggshell delta18O values and that of rainwater presumably reflects the nature of free range chickens which must be drinking locally derived rainwater and supplementing their diet and water intake with locally derived food. These results suggest that the oxygen isotope value of chicken eggshells can be used as a forensic tool to identify the locality that free range and organic eggs were laid within the UK. Furthermore, if suitable material is preserved in the archaeological and geological record then such a relationship can potentially be used to establish the oxygen isotope value of rainwater from which ancient and / or ancestral birds lived.

  2. Carbon and oxygen isotope compositions of the carbonate facies

    Indian Academy of Sciences (India)

    The Vindhyan sedimentary succession in central India spans a wide time bracket from the Paleopro- terozoic to the Neoproterozoic period.Chronostratigraphic significance of stable carbon and oxygen isotope ratios of the carbonate phase in Vindhyan sediments has been discussed in some recent studies.However,the ...

  3. Nature, origin and average age of estuarine ultrafiltered dissolved organic matter as determined by molecular and carbon isotope characterization

    NARCIS (Netherlands)

    van Heemst, JDH; Megens, L; Hatcher, PG; de Leeuw, JW

    2000-01-01

    The Ems-Dollart estuary (on the border of the Netherlands and Germany) was chosen for a pilot study to characterize ultrafiltered dissolved organic matter (UDOM) in estuarine systems. UDOM samples were taken from four locations with salinities varying from 0.43 to 20 parts per thousand. The UDOM in

  4. The fate of river organic carbon in coastal areas: A study in the Rhône River delta using multiple isotopic (δ13C, Δ14C) and organic tracers

    Science.gov (United States)

    Cathalot, C.; Rabouille, C.; Tisnérat-Laborde, N.; Toussaint, F.; Kerhervé, P.; Buscail, R.; Loftis, K.; Sun, M.-Y.; Tronczynski, J.; Azoury, S.; Lansard, B.; Treignier, C.; Pastor, L.; Tesi, T.

    2013-10-01

    A significant fraction of the global carbon flux to the ocean occurs in River-dominated Ocean Margins (RiOMar) although large uncertainties remain in the cycle of organic matter (OM) in these systems. In particular, the OM sources and residence time have not been well clarified. Surface (0-1 cm) and sub-surface (3-4 cm) sediments and water column particles (bottom and intermediate depth) from the Rhône River delta system were collected in June 2005 and in April 2007 for a multi-proxy study. Lignin phenols, black carbon (BC), proto-kerogen/BC mixture, polycyclic aromatic hydrocarbons (PAHs), carbon stable isotope (δ13COC), and radiocarbon measurements (Δ14COC) were carried out to characterize the source of sedimentary organic material and to address degradation and transport processes. The bulk OM in the prodelta sediment appears to have a predominantly modern terrigenous origin with a significant contribution of modern vascular C3 plant detritus (Δ14COC = 27.9‰, δ13COC = -27.4‰). In contrast, the adjacent continental shelf, below the river plume, seems to be dominated by aged OM (Δ14COC = -400‰, δ13COC = -24.2‰), and shows no evidence of dilution and/or replacement by freshly produced marine carbon. Our data suggest an important contribution of black carbon (50% of OC) in the continental shelf sediments. Selective degradation processes occur along the main dispersal sediment system, promoting the loss of a modern terrestrial OM but also proto-kerogen-like OM. In addition, we hypothesize that during the transport across the shelf, a long term resuspension/deposition loop induces efficient long term degradation processes able to rework such refractory-like material until the OC is protected by the mineral matrix of particles.

  5. Multiproxy Holocene paleoclimate records from the southern Peruvian Andes - what new can we learn from the stable carbon isotope composition of high altitude organic matter deposits?

    Science.gov (United States)

    Skrzypek, Grzegorz; Engel, Zbyněk

    2015-04-01

    Interpretation of the Central Andean paleoclimate over the last millennia still represents a research challenge demanding deeper studies [1,2]. Several high-resolution paleoclimate proxies for the last 10,000 years have been developed for the northern hemisphere. However, similar proxies are very limited for South America, particularly for high altitudes where, for example, tree-ring chronologies are not available and instrumental records are very limited. Consequently, our knowledge of high altitude climate changes in arid regions of the Peruvian Andes mainly relies on ice-core and lake deposit studies. In our study, we used a new alternative proxy for interpretation of palaeoclimate conditions based on a peat core taken from the Carhuasanta Valley at the foot of Nevado Mismi in the southern Peruvian Andes (15° 30'S, 71° 43'W, 4809m a.s.l.). The stable carbon isotope composition (δ13C) of Distichia peat reflects mainly the relative variation of the mean air temperature during subsequent growing seasons [3], and allows reconstructions of palaeotemperature changes. In contrast, peat organic carbon concentration (C % wt) records mainly wetness in the valley, directly corresponding to the changes in runoff in the upper part of the catchment. The most prominent climate changes recorded in the peat over last 4ka occurred between 3040 and 2750 cal. yrs BP. The initial warming turned to a very rapid cooling to temperatures at least 2° C lower than the mean for the Late Holocene. Initially drier conditions within this event turned to a short wet phase after 2780 cal. yrs BP, when the temperature increased again. This event coincides with significant changes in peat and ice core records in the Central Andes that match the timing of the global climate event around 2.8 cal. ka BP. Climatic conditions in the study area became relatively dry and stable after the event for about 800 years. Highly variable temperatures and humidity prevailed during the last 2000 years, when

  6. Vegetation dynamics during the late Pleistocene in the Barreirinhas region, Maranhão State, northeastern Brazil, based on carbon isotopes in soil organic matter

    Science.gov (United States)

    Pessenda, Luiz Carlos Ruiz; Ribeiro, Adauto de Souza; Gouveia, Susy Eli Marques; Aravena, Ramon; Boulet, Rene; Bendassolli, José Albertino

    2004-09-01

    The study place is in the Barreirinhas region, Maranhão State, northeastern Brazil. A vegetation transect of 78 km was studied among four vegetation types: Restinga (coastal vegetation), Cerrado (woody savanna), Cerradão (dense woody savanna), and Forest, as well as three forested sites around Lagoa do Caçó, located approximately 10 km of the transect. Soil profiles in this transect were sampled for δ13C analysis, as well as buried charcoal fragments were used for 14C dating. The data interpretation indicated that approximately between 15,000 and ˜9000 14C yr B.P., arboreal vegetation prevailed in the whole transect, probably due to the presence of a humid climate. Approximately between ˜9000 and 4000-3000 14C yr B.P., there was the expansion of the savanna, probably related to the presence of drier climate. From ˜4000-3000 14C yr B.P. to the present, the results indicated an increase in the arboreal density in the area, due to the return to a more humid and probably similar climate to the present. The presence of buried charcoal fragments in several soil depths suggested the occurrence of palaeofires during the Holocene. The vegetation dynamic inferred in this study for northeastern Brazil is in agreement with the results obtained in areas of Amazon region, based on pollen analysis of lake sediments and carbon isotope analysis of soil organic matter (SOM), implying than similar climatic conditions have affected these areas during the late Pleistocene until the present.

  7. Soil organic carbon dynamics in wheat-maize cropping systems of north China: application of isotope approach to long-term experiments

    Science.gov (United States)

    Wang, J.; Wang, X.; Xu, M.; Zhang, W.

    2013-12-01

    Soil organic carbon (SOC) in agro-ecosystem is largely influencedby agricultural practices such as croppingand fertilization. However, quantifying the contributions of various crops has been lacking. Here, we applied isotopic approachto study SOC dynamics under wheat-maize rotation with variousfertilization treatments atthree long-term experiment sites innorth China. Three treatments were chosen: no fertilizer (control), chemical nitrogen-phosphorus-potassium (NPK) and NPK plus straw (NPKS).Soil samples were collected from0-20, 20-40, 40-60, 60-80 and 80-100cm after 13 and 20 years of treatment, and SOC and its stable 13C compositions were determined. Generally, SOC content significantly decreased with depths, from 8.2 ×1.4 g kg-1 (in 0-20 cm) to 3.3×1.0 g kg-1 (in 80-100 cm) across all treatments and sites. Soil δ13C values at all depths, treatments and sites ranged from -24.2‰ to -21.6‰, averaged -22.8‰, indicating that ~70% of SOC was derived from wheat and previous C3 plant, and ~30% from maize and previous C4 plant.Both SOC and soil δ13C were significantly affected by fertilization managements, especiallyin 0-40 cm where linear relationship occurred between SOC and estimated C input. Overall, the slop of the linear equation, i.e., conversion efficiency, was four times greater for wheat-derived C relative to that for maize residue C. Our study indicated that maize-derived C contributed less to C sequestration in wheat-maize rotation system of north China. Figure 1. Relationships between SOC stock (0-40 cm) and accumulated C input for wheat (C3), maize (C4) and total. Significance is marked with one (P < 0.05), two (P < 0.01) and three (P < 0.001) asterisks.

  8. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    Science.gov (United States)

    McConnaughey, Ted A.; Burdett, Jim; Whelan, Joseph F.; Paull, Charles K.

    1997-02-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO 2/O 2 ratios appear to be the major controlling variable. Atmospheric CO 2/O 2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO 2 in the course of obtaining 0 2. Tissue CO 2 therefore, does not isotopically equilibrate with environmental CO 2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO 2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO 2 uptake is several times faster than respiratory CO 2 release. Photosynthesis, therefore, affects skeletal δ13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects.

  9. Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes

    2015-01-01

    Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenviro......Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track...

  10. Biomineralization and the carbon isotope record

    International Nuclear Information System (INIS)

    Degens, E.T.; Ittekkot, V.; Kazmierczak, J.

    1986-01-01

    The advent of biomineralization at the turn of the Precambrian/Cambrian boundary has been a major event in the Earth's evolutionary history. With this there has been a major shift from abiotic to biotic formation of minerals such as phosphates and carbonates and, subsequently, silica. The dominant factor which effected this shift is a change in ocean's chemistry with respect to its Ca 2+ and mineral nutrient contents. Mechanism controlling the biotic mineral formation is different from that controlling the abiotic one in that the former is enzymically controlled. It is suggested that this difference is also manifested in the stable carbon isotope fractionation between the two processes and has implication for the interpretation of stable carbon isotope record. (Author)

  11. Biosynthetic effects on the stable carbon isotopic compositions of agal lipids: Implications for deciphering the carbon isotopic biomarker record

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Klein Breteler, W.C.M.; Blokker, P.; Schogt, N.; Rijpstra, W.I.C.; Grice, K.; Baas, M.

    1998-01-01

    Thirteen species of algae covering an extensive range of classes were cultured and stable carbon isotopic compositions of their lipids were analysed in order to assess carbon isotopic fractionation effects during their biosynthesis. The fatty acids were found to have similar stable carbon isotopic

  12. Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; Gaye, B.; Shirodkar, P.V.; Rao, P.S.; Chivas, A.R.; Wheeler, D.; Thwin, S.

    Total organic carbon (TOC), total nitrogen (TN) and their delta sup(13) C and delta sup (15) N values were determined from 110 sediment samples from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea to decipher the concentration...

  13. Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea

    NARCIS (Netherlands)

    Karlsson, E. S.; Charkin, A. N.; Dudarev, O.; Semiletov, I.; Vonk, J. E.; Sánchez-García, L.; Andersson, A.

    2011-01-01

    The world's largest continental shelf, the East Siberian Shelf Sea, receives substantial input of terrestrial organic carbon (terr-OC) from both large rivers and erosion of its coastline. Degradation of organic matter from thawing permafrost in the Arctic is likely to increase, potentially creating

  14. Chromium isotope uptake in carbonates

    DEFF Research Database (Denmark)

    Rodler, Alexandra

    related to the rise of oxygen and the evolution of the biosphere. However, before the Cr isotopesystem can be applied to faithfully delineate paleo-environmental changes, careful assessment of the signal robustness and a thorough understanding of the Cr cycle in Earth system processes is necessary...... composition of contemporaneous seawater. Marine carbonates are ubiquitous throughout Earth’s rock record rendering them a particularly interesting archive for constraining past changes in ocean chemistry. This thesis includes an investigation of the fractionation behavior of Cr isotopesduring coprecipitation...

  15. Carbon Isotope Chemistry in Molecular Clouds

    Science.gov (United States)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  16. Carbon isotopic composition of deep carbon gases in an ombrogenous peatland, northwestern Ontario, Canada

    International Nuclear Information System (INIS)

    Aravena, R.; Dinel, H.

    1993-01-01

    Radiocarbon dating and carbon isotope analyses of deep peat and gases in a small ombrogenous peatland in northwestern Ontario reveals the presence of old gases at depth that are 1000-2000 yr younger than the enclosing peat. The authors suggest that the most likely explanation to account for this age discrepancy is the downward movement by advection of younger dissolved organic carbon for use by fermentation and methanogens bacteria. This study identifies a potentially large supply of old carbon gases in peatlands that should be considered in global carbon models of the terrestrial biosphere

  17. Geochemistry of organic carbon and nitrogen in surface sediments of coastal Bohai Bay inferred from their ratios and stable isotopic signatures

    International Nuclear Information System (INIS)

    Gao Xuelu; Yang Yuwei; Wang Chuanyuan

    2012-01-01

    Total organic carbon (TOC), total nitrogen (TN) and their δ 13 C and δ 15 N values were determined for 42 surface sediments from coastal Bohai Bay in order to determine the concentration and identify the source of organic matter. The sampling sites covered both the marine region of coastal Bohai Bay and the major rivers it connects with. More abundant TOC and TN in sediments from rivers than from the marine region reflect the situation that most of the terrestrial organic matter is deposited before it meets the sea. The spatial variation in δ 13 C and δ 15 N signatures implies that the input of organic matter from anthropogenic activities has a more significant influence on its distribution than that from natural processes. Taking the area as a whole, surface sediments in the marine region of coastal Bohai Bay are dominated by marine derived organic carbon, which on average accounts for 62 ± 11% of TOC.

  18. Carbon and its isotopes in mid-oceanic basaltic glasses

    International Nuclear Information System (INIS)

    Des Marais, D.J.

    1984-01-01

    Three carbon components are evident in eleven analyzed mid-oceanic basalts: carbon on sample surfaces (resembling adsorbed gases, organic matter, or other non-magmatic carbon species acquired by the glasses subsequent to their eruption), mantle carbon dioxide in vesicles, and mantle carbon dissolved in the glasses. The combustion technique employed recovered only reduced sulfur, all of which appears to be indigenous to the glasses. The dissolved carbon concentration (measured in vesicle-free glass) increases with the eruption depth of the spreading ridge, and is consistent with earlier data which show that magma carbon solubility increases with pressure. The total glass carbon content (dissolved plus vesicular carbon) may be controlled by the depth of the shallowest ridge magma chamber. Carbon isotopic fractionation accompanies magma degassing; vesicle CO 2 is about 3.8per mille enriched in 13 C, relative to dissolved carbon. Despite this fractionation, delta 13 Csub(PDB) values for all spreading ridge glasses lie within the range -5.6 and -7.5, and the delta 13 Csub(PDB) of mantle carbon likely lies between -5 and -7. The carbon abundances and delta 13 Csub(PDB) values of Kilauea East Rift glasses apparently are influences by the differentiation and movement of magma within that Hawaiian volcano. Using 3 He and carbon data for submarine hydrothermal fluids, the present-day mid-oceanic ridge mantle carbon flux is estimated very roughly to be about 1.0 x 10 13 g C/yr. Such a flux requires 8 Gyr to accumulate the earth's present crustal carbon inventory. (orig.)

  19. Stable carbon isotope ratios: implications for the source of sediment carbon and for phytoplankton carbon assimilation in Lake Memphremagog, Quebec

    International Nuclear Information System (INIS)

    LaZerte, B.D.

    1983-01-01

    The stable carbon isotope (SCI) ratio of the sediment of Lake Memphremagog, Quebec is compared with that ot terrestrial sources and the phytoplankton to determine the relative proportion of allochthonous carbon incorporated into the sediments. Approximately 40-50% of the organic carbon in the main basins' pelagic sediment was terrestrial in origin, whereas up to 100% was terrestrial in littoral areas. The SCI method of determining the organic carbon source of sediments appears more reliable than the C/N method. A comparison of the SCI fractionation of the phytoplankton with laboratory cultures under different degrees of carbon limitation indicates that the phytoplankton of Lake Memphremagog are not carbon limited and fix carbon primarily by the C 3 pathway

  20. Rate of uptake and distribution of Hg in dissolved organic carbon compounds in darkwater ecosystems by ICP-MS and enriched stable isotope spiking

    International Nuclear Information System (INIS)

    Telmer, Kevin; Dario Bermudez, Rafael; Veiga, Marcello M.; Souza, Terezinha Cid da

    2001-01-01

    The role of natural organic acids on mercury binding, transportation, net uptake rates and possibly net methylation rates will be evaluated by tracing these processes with isotope enriched mercury and ICP-MS technology. The correlation between dissolved organic matter and Hg in waters is well documented. It appears that organic acids can react with mercury residing in or emitted from different sources such as soils (particularly hydromorphic soils), laterites, natural degassing, forest fires, fuel combustion, gold mining activities, etc. to form soluble Hg-organo-complexes. The formation of these complexes is believed to greatly enhance Hg transport and be an important preliminary step in the formation of Methyl-Hg and biological uptake. The rates of these reactions and the key organic compounds involved in mercury binding will be determined by reacting isotopically-enriched Hg with samples containing a variety of concentrations and types of organic acids and subsequently analysing both reactants and organisms exposed to the reactants (bioassays) for Hg isotopes by ICP-MS. The Hg spike will allow the precise determination of rates of uptake and the most active agents of uptake. Initially, the method will be used to examine total Hg uptake and distribution but if technological limitations are overcome, this same approach can be used to determine net rates of methylation and net MeHg uptake. After the method is validated the experimental design can be altered to test the relative effects of such things as the addition of CO 2 (pH change), or adding a substrate such as Fe-Mn oxyhydroxides. The addition of synthetic materials such as mulched automobile tires, can also be tested with the goal developing a pragmatic remedial method for Hg containment. Ultimately, this research should contribute to an understanding of mercury mobilization, transport and bio-concentration mechanisms, and provide a basis for developing management and treatment strategies. Emphasis will be

  1. 长江口外海域沉积物中有机物的来源及分布%Spatial distributions of organic carbon and nitrogen and their isotopic compositions in sediments of the Changjiang Estuary and its adjacent sea area

    Institute of Scientific and Technical Information of China (English)

    高建华; 汪亚平; 潘少明; 张瑞; 李军; 白风龙

    2008-01-01

    The spatial distribution patterns of total organic carbon and total nitrogen show significant correlations with currents of the East China Sea Shelf. Corresponding to distributions of these currents, the study area could be divided into four different parts. Total organic carbon, total nitrogen, and organic carbon and nitrogen stable isotopes in sediments show linear correlations with mean grain size, respectively, thus "grain size effect" is an important factor that influences their distributions. C/N ratios can reflect source information of organic matter to a certain degree. In contrast, nitrogen stable isotope shows different spatial distribution patterns with C/N and organic carbon stable isotope, according to their relationships and regional distributions. The highest contribution (up to 50%) of terrestrial organic carbon appears near the Changjiang Estuary with isolines projecting towards northeast, indicating the influence of the Changjiang dilution water. Terrestrial particulate organic matter suffers from effects of diagenesis, benthos and incessant inputting of dead organic matter of plankton,after depositing in seabed. Therefore, the contribution of terrestrial organic carbon to particulate organic matter is obviously greater than that to organic matter in sediments in the same place.

  2. C isotope fractionation during heterotrophic activity driven carbonate precipitation

    Science.gov (United States)

    Balci, Nurgul; Demirel, Cansu

    2016-04-01

    Stable carbon isotopic fractionation during carbonate precipitation induced by environmentally enriched heterotrophic halophilic microorganims was experimentally investigated under various salinity (% 4.5, %8, %15) conditions at 30 °C. Halophilic heterotrophic microorganims were enriched from a hypersaline Lake Acigöl located in SW Turkey (Balci et al.,2015) and later used for the precipitation experiments (solid and liquid medium). The carbonate precipitates had relatively high δ13C values (-4.3 to -16.9 ‰) compared to the δ13C values of the organic compounds that ranged from -27.5 to -25.4 ‰. At salinity of 4.5 % δ13C values of carbonate ranged from -4.9 ‰ to -10.9 ‰ with a 13C-enrichment factor of +20 to +16 ‰ higher than the δ13C values of the associated DOC (-27.5) . At salinity 8 % δ13C values of carbonate ranged from -16.3 ‰ to -11.7 ‰ with a 13C-enrichment factor of+11.3 to+15.9 ‰ higher than the δ13C values of the associated DOC. The respected values for 15 % salinity ranged from -12.3 ‰ to -9.7 ‰ with a 13C-enrichment factor of +15.2 to+16.8 ‰ higher than the δ13C values of the associated DOC. The carbonate precipitates produced in the solid medium are more enriched in 13C relative to liquid culture experiments. These results suggest that the carbon in the solid was derived from both the bacterial oxidation of organic compounds in the medium and from the atmospheric CO2. A solid medium used in the experiments may have suppressed convective and advective mass transport favouring diffusion-controlled system. This determination suggests that the rate and equilibration of CO2 exchange with the atmosphere is the major control on C isotope composition of carbonate minerals precipitated in the experiments. Key words: Lake Acıgöl, halophilic bacteria, carbonate biomineralization, C isotopes References Nurgul Balci, Meryem Menekşe, Nevin Gül Karagüler, M. Şeref Sönmez,Patrick Meister 2015.Reproducing authigenic carbonate

  3. Carbon Isotopic tests on the Origins of the Shuram Anomaly from the San Juan Fm., Peru

    Science.gov (United States)

    Hodgin, E. B.

    2015-12-01

    Carbon isotope anomalies are associated with perturbations to the carbon cycle that offer insight into the geochemical evolution of the Earth. The largest Carbon isotope anomaly in earth history is the Shuram, which remains poorly understood in spite of being linked to the oxygenation of earth, the rise of metazoans, and a complete reorganization of the carbon cycle. From a basin transect of the carbonate-dominated San Juan Formation in southern Peru, we present evidence for the first clear example of the Shuram isotope anomaly in South America. Unique to this succession are ~140 meters of organic-rich black shale within the anomaly, containing as much as 4% TOC. Preliminary data from the organic-rich black shales of the San Juan Fm. confirm that δ13Corg is relatively invariant and does not covary with δ13Ccarb. These observations are consistent with other Shuram sections and support various models: an exogenous carbon source, an enlarged dissolved organic carbon pool, as well as authigenic carbonate production in organic-rich anoxic sediments. Critical tests of these models have been complicated by a paucity of organics in Shuram facies worldwide. Further analyses of the robust organics from the Shuram facies of the San Juan Fm. therefore hold promise in shedding light on the origin of the Shuram isotope anomaly and critical earth history events to which it has been linked.

  4. Soil and vegetation dynamics in a forest-savannah boundary in Southern Amazon state during the holocene, using 14C dating and stable carbon isotopes of soil organic matter

    International Nuclear Information System (INIS)

    Vidotto, Elaine; Pessenda, Luiz Carlos Ruiz; Ribeiro, Adauto de Souza; Bendassolli, Jose Albertino

    2005-01-01

    This work presents a comparative study between organic soil horizons formed in depressions, distant ca. 500 meters from each sampling site, in a forest/savannah boundary in the Southern Amazon Basin. The influence of the paleovegetation and soil dynamics, based on carbon isotope ( 12 C, 13 C, 14 C) data of soil organic matter (SOM) was evaluated. The soils were classified as Dystropept (Cambissolo) and were considered as clayey. The total organic carbon contents decreased from the surface to deeper parts of the soils profiles. At deeper parts of the soil profiles in the savannah site, between 100 cm and 30 cm, the δ 13 C values characterized the influence of C 4 plants (around -18,0 per mille). From about 20 cm to the surface the δ 13 C values characterized the mixture of C 3 and C 4 plants. The soil δ 13 C values in the forest site ranged from -25,0 per mille at deeper parts of the profile to -26,0 per mille in the surface, characterizing the dominance of C 3 plants in this location. 13 C and 14 C data from soil samples indicated a predominance of C 3 plants in the early Holocene. From ca. 7000 to 3000 years BP the influence of C 4 plants increased, characterizing a savannah expansion probably related to a drier climate in the region. Since 3000 years 14 C BP, the carbon isotope data suggest the forest expansion, probably due to a return to wetter climate. 14 C data in the 40-50 cm and 100 cm soil depth were contemporary, showing no difference on the soil organic matter deposition in the savannah and in the forest locations. (author)

  5. Robust optical carbon dioxide isotope analyzer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Isotopic analysis of carbon dioxide is an important tool for characterization of the exchange and transformation of carbon between the biosphere and the atmosphere....

  6. Carbon isotope analysis in apple nectar beverages

    Directory of Open Access Journals (Sweden)

    Ricardo Figueira

    2013-03-01

    Full Text Available The aims of this study were to use the isotope analysis method to quantify the carbon of C3 photosynthetic cycle in commercial apple nectars and to determine the legal limit to identify the beverages that do not conform to the safety standards established by the Brazilian Ministry of Agriculture, Livestock and Food Supply. These beverages (apple nectars were produced in the laboratory according to the Brazilian legislation. Adulterated nectars were also produced with an amount of pulp juice below the permitted threshold limit value. The δ13C values of the apple nectars and their fractions (pulp and purified sugar were measured to quantify the C3 source percentage. In order to demonstrate the existence of adulteration, the values found were compared to the limit values established by the Brazilian Law. All commercial apple nectars analyzed were within the legal limits, which enabled to identify the nectars that were in conformity with the Brazilian Law. The isotopic methodology developed proved efficient to quantify the carbon of C3 origin in commercial apple nectars.

  7. Stable carbon, nitrogen and sulfur isotopes in non-carbonate fractions of cold-seep carbonates

    Science.gov (United States)

    Feng, Dong; Peng, Yongbo; Peckmann, Jörn; Roberts, Harry; Chen, Duofu

    2017-04-01

    Sulfate-driven anaerobic oxidation of methane (AOM) supports chemosynthesis-based communities and limits the release of methane from marine sediments. This process promotes the formation of carbonates close to the seafloor along continental margins. The geochemical characteristics of the carbonate minerals of these rocks are increasingly understood, questions remain about the geochemical characteristics of the non-carbonate fractions. Here, we report stable carbon, nitrogen and sulfur isotope patterns in non-carbonate fractions of seep carbonates. The authigenic carbonates were collected from three modern seep provinces (Black Sea, Gulf of Mexico, and South China Sea) and three ancient seep deposits (Marmorito, northern Italy, Miocene; SR4 deposit of the Lincoln Creek Formation and Whiskey Creek, western Washington, USA, Eocene to Oligocene). The δ13C values of non-carbonate fractions range from ˜-25‰ to -80‰ VPDB. These values indicate that fossil methane mixed with varying amounts of pelagic organic matter is the dominant source of carbon in these fractions. The relatively small offset between the δ34S signatures of the non-carbonate fractions and the respective sulfide minerals suggests that locally produced hydrogen sulfide is the main source of sulfur in seep environments. The δ15N values of the non-carbonate fractions are generally lower than the corresponding values of deep-sea sediments, suggesting that organic nitrogen is mostly of a local origin. This study reveals the potential of using δ13C, δ15N, δ34S values to discern seep and non-seep deposits. In cases where δ13Ccarbonate values are only moderately low due to mixing processes and lipid biomarkers have been erased in the course of burial, it is difficult to trace back AOM owing to the lack of other records. This problem is even more pronounced when authigenic carbonate is not available in ancient seep environments. Acknowledgments: The authors thank BOEM and NOAA for their years' support

  8. Hidden cycle of dissolved organic carbon in the deep ocean.

    Science.gov (United States)

    Follett, Christopher L; Repeta, Daniel J; Rothman, Daniel H; Xu, Li; Santinelli, Chiara

    2014-11-25

    Marine dissolved organic carbon (DOC) is a large (660 Pg C) reactive carbon reservoir that mediates the oceanic microbial food web and interacts with climate on both short and long timescales. Carbon isotopic content provides information on the DOC source via δ(13)C and age via Δ(14)C. Bulk isotope measurements suggest a microbially sourced DOC reservoir with two distinct components of differing radiocarbon age. However, such measurements cannot determine internal dynamics and fluxes. Here we analyze serial oxidation experiments to quantify the isotopic diversity of DOC at an oligotrophic site in the central Pacific Ocean. Our results show diversity in both stable and radio isotopes at all depths, confirming DOC cycling hidden within bulk analyses. We confirm the presence of isotopically enriched, modern DOC cocycling with an isotopically depleted older fraction in the upper ocean. However, our results show that up to 30% of the deep DOC reservoir is modern and supported by a 1 Pg/y carbon flux, which is 10 times higher than inferred from bulk isotope measurements. Isotopically depleted material turns over at an apparent time scale of 30,000 y, which is far slower than indicated by bulk isotope measurements. These results are consistent with global DOC measurements and explain both the fluctuations in deep DOC concentration and the anomalous radiocarbon values of DOC in the Southern Ocean. Collectively these results provide an unprecedented view of the ways in which DOC moves through the marine carbon cycle.

  9. A Comparison of Recent Organic and Inorganic Carbon Isotope Records: Why Do They Covary in Some Settings and Not In Others?

    Science.gov (United States)

    Oehlert, A. M.; Swart, P. K.

    2013-12-01

    Covariance between inorganic and organic δ13C records has been used to determine whether a deposit has been altered by diagenesis, how the dynamics of the global carbon cycle changed during the production of the sediments in the deposit, and also for chronostratigraphic correlations. Although covariant records are observed in the ancient geologic record in a variety of depositional environments, such comparisons are not widely applied to modern deposits where definitive data regarding sediment producers, sea level fluctuations, and changes in the global carbon cycle are available. This study uses paired δ13C records from cores collected by the Ocean Drilling Program from three modern periplatform settings (the Great Bahama Bank, the Great Australian Bight, and the Great Barrier Reef), and two pelagic settings (the Walvis Ridge, and the Madingley Rise). These sites were selected in order to assess the influence of several different environmental factors including; sediment and organic matter producers, sediment mineralogy, margin architecture, sea level oscillations, and sediment transport pathways. In the three periplatform settings, multiple cores arranged in a margin to basin transect were analyzed in order to provide insights into the effects of downslope sediment transport. The preliminary results of this study suggest that sea level oscillations and margin architecture may artificially generate a covarying relationship in periplatform sediments that is unrelated to changes in the global carbon cycle. Furthermore, preliminary results from the Walvis Ridge and the Madingley Rise sediments suggest that the relationship between inorganic and organic δ13C records may not always exhibit a positive covariance as is currently assumed for pelagic carbonates.

  10. Measurements of flux and isotopic composition of soil carbon dioxide

    International Nuclear Information System (INIS)

    Gorczyca, Z.; Rozanski, K.; Kuc, T.

    2002-01-01

    The flux and isotope composition of soil CO 2 has been regularly measured at three sites located in the southern Poland, during the time period: January 1998 - October 2000. They represent typical ecosystems appearing in central Europe: (i) mixed forest; (ii) cultivated agricultural field; (iii) grassland. To monitor the flux and isotopic composition of soil CO 2 , a method based on the inverted cup principle was adopted. The flux of soil CO 2 reveals distinct seasonal fluctuations, with maximum values up to ca. 25 mmol/m 2 /h during sommer months and around ten times lower values during winter time. Also significant differences among the monitored sites were detected, the flux density of this gas being highest for the mixed forest site and ca. two times lower for the cultivated grassland. Carbon-13 content of the soil CO 2 reveals little seasonal variability, with δ 13 C values essentially reflecting the isotopic composition of the soil organic matter and the vegetation type. The carbon-14 content of soil CO 2 flux also reveals slight seasonality, with lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values were recorded at depth. (author)

  11. Lipid Biomarkers and Molecular Carbon Isotopes for Elucidating Carbon Cycling Pathways in Hydrothermal Vents

    Science.gov (United States)

    Zhang, C. L.; Dai, J.; Campbell, B.; Cary, C.; Sun, M.

    2003-12-01

    Increasing molecular evidence suggests that hydrothermal vents in mid-ocean ridges harbor large populations of free-living bacteria, particularly the epsilon Proteobacteria. However, pathways for carbon metabolism by these bacteria are poorly known. We are addressing this question by analyzing the lipid biomarkers and their isotope signatures in environments where the epsilon Proteobacteria are likely predominant. Solid materials were collected from hydrothermal vents in the East Pacific Rise and at the Guaymas Basin in the Gulf of California. Fatty acids extracted from these samples are dominated by 16:0 (27-41%), 18:0 (16-48%), 18:1 (11-42%), 16:1 (7-12%), and 14:0 (5-28%). In addition, 15:0 and anteiso-15:0 are significantly present (2-3%) in samples from the Guaymas Basin. The isotopic compositions of these fatty acids range from -15.0\\permil to -33.1\\permil with the most positive values occurring only in monounsaturated fatty acids (16:1 and 18:1). We are currently unable to assign these biomarkers to any of the epsilon Proteobacteria because biomarkers are poorly known for these organisms isolated from the vents. However, no polyunsaturated fatty acids were detected in these samples, which are consistent with the absence of vent animals at the sampling sites. Signature biomarkers of 20:1 and cy21:0, which are characteristic of the thermophilic chemolithoautotrophs such as Aquificales, are also absent in these samples. These results imply that the deeply branched Aquificales species do not constitute the major microbial community in these vent environments. The large range of molecular isotopic compositions suggests that these lipids are synthesized from various carbon sources with different isotopic compositions or through different biosynthetic pathways, or both. We are currently measuring the isotopic compositions of the total organic carbon in the bulk samples and will determine the fractionations between lipid biomarkers and the total organic carbon

  12. Isotopic exchange of carbon-bound hydrogen over geologic timescales

    Science.gov (United States)

    Sessions, Alex L.; Sylva, Sean P.; Summons, Roger E.; Hayes, John M.

    2004-04-01

    The increasing popularity of compound-specific hydrogen isotope (D/H) analyses for investigating sedimentary organic matter raises numerous questions about the exchange of carbon-bound hydrogen over geologic timescales. Important questions include the rates of isotopic exchange, methods for diagnosing exchange in ancient samples, and the isotopic consequences of that exchange. This article provides a review of relevant literature data along with new data from several pilot studies to investigate such issues. Published experimental estimates of exchange rates between organic hydrogen and water indicate that at warm temperatures (50-100°C) exchange likely occurs on timescales of 104 to 108 yr. Incubation experiments using organic compounds and D-enriched water, combined with compound-specific D/H analyses, provide a new and highly sensitive method for measuring exchange at low temperatures. Comparison of δD values for isoprenoid and n-alkyl carbon skeletons in sedimentary organic matter provides no evidence for exchange in young (exchange in ancient (>350 Ma) rocks. Specific rates of exchange are probably influenced by the nature and abundance of organic matter, pore-water chemistry, the presence of catalytic mineral surfaces, and perhaps even enzymatic activity. Estimates of equilibrium fractionation factors between organic H and water indicate that typical lipids will be depleted in D relative to water by ∼75 to 140‰ at equilibrium (30°C). Thus large differences in δD between organic molecules and water cannot be unambiguously interpreted as evidence against hydrogen exchange. A better approach may be to use changes in stereochemistry as a proxy for hydrogen exchange. For example, estimated rates of H exchange in pristane are similar to predicted rates for stereochemical inversion in steranes and hopanes. The isotopic consequences of this exchange remain in question. Incubations of cholestene with D2O indicate that the number of D atoms incorporated during

  13. CARBON ISOTOPE FRACTIONATION IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Woods, Paul M.; Willacy, Karen

    2009-01-01

    We investigate the gas-phase and grain-surface chemistry in the inner 30 AU of a typical protoplanetary disk (PPD) using a new model which calculates the gas temperature by solving the gas heating and cooling balance and which has an improved treatment of the UV radiation field. We discuss inner-disk chemistry in general, obtaining excellent agreement with recent observations which have probed the material in the inner regions of PPDs. We also apply our model to study the isotopic fractionation of carbon. Results show that the fractionation ratio, 12 C/ 13 C, of the system varies with radius and height in the disk. Different behavior is seen in the fractionation of different species. We compare our results with 12 C/ 13 C ratios in the solar system comets, and find a stark contrast, indicative of reprocessing.

  14. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    One possible process responsible for methane generation on Mars is abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions. Measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane by tracing the geochemical pathway during formation. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible hydrogen isotope measurements. Reported here are results of experiments to characterize the hydrogen isotope composition of low molecular weight organic acids and alcohols. The presence of these organic compounds has been suggested by others as intermeadiary products made during mineral surface catalyzed reactions. This work compliments our previous study characterizing the carbon isotope composition of similar low molecular weight intermediary organic compounds (Socki, et al, American Geophysical Union Fall meeting, Abstr. #V51B-2189, Dec., 2010). Our hydrogen isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). Our technique is unique in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II? quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  15. Use of stable isotope techniques in soil organic matter studies

    International Nuclear Information System (INIS)

    Gerzabek, M.H.

    1998-01-01

    Plants differ distinctly in their C-isotopic composition. The largest differences occur between plant species with different photosynthetic pathways. C 3 - and C 4 -plants are differentiated by approximately 1.4% on the δ-scale (approx. -2.7% 13 C versus -1.3% 13 C). Modern elemental analyser - mass spectrometer combinations reach accuracies of at least 0.01% δ 13 C. Therefore, the difference between C 3 and C 4 plants is sufficient to be used for tracer studies. Several investigations of soil organic mater (SOM) turnover under field conditions were undertaken using the fact that the vegetation cover changed between C 3 and C 4 plants. The discrimination between SOM originating from indigenous vegetation (forest, C 3 ) and sugar cane (C 4 ) after 50 years of cropping introducing two SOM compartments of different stability was described. Another example is the change from prairie vegetation (C 4 ) to different C 3 -crops and the evaluation of the carbon origin at or near equilibrium. More recent studies use 15 N-labelled C 4 -plant residues or 13 C-labelled C 3 -plants to elucidate the fate of carbon and nitrogen in soils developed under C 3 -vegetation. Both in situ experiments and laboratory incubations were used to evaluate carbon and nitrogen fluxes from crop residues. Physical fractionation of bulk soil into particle sizes proved to be of advantage to follow short and long-term dynamics of crop residues within SOM. Changes in the natural abundance of 13 C and 15 N within soil profiles can elucidate leaching or mineralization of humic substances. Changes in the natural abundance of stable isotopes are also possible due to the application of organic manures, quantification, however is not easy because of the small isotopic differences between soil and manure carbon and nitrogen. 15 N labelling of soil nitrogen has been widely used in the last two decades to quantify biological nitrogen fixation. Considerable progress has been made due to the isotope dilution

  16. Diamond carbon sources: a comparison of carbon isotope models

    International Nuclear Information System (INIS)

    Kirkley, M.B.; Otter, M.L.; Gurney, J.J.; Hill, S.J.

    1990-01-01

    The carbon isotope compositions of approximately 500 inclusion-bearing diamonds have been determined in the past decade. 98 percent of these diamonds readily fall into two broad categories on the basis of their inclusion mineralogies and compositions. These categories are peridotitic diamonds and eclogitic diamonds. Most peridotitic diamonds have δ 13 C values between -10 and -1 permil, whereas eclogitic diamonds have δ 13 C values between -28 and +2 permil. Peridotitic diamonds may represent primordial carbon, however, it is proposed that initially inhomogeneous δ 13 C values were subsequently homogenized, e.g. during melting and convection that is postulated to have occurred during the first billion years of the earth's existence. If this is the case, then the wider range of δ 13 C values exhibited by eclogitic diamonds requires a different explanation. Both the fractionation model and the subduction model can account for the range of observed δ 13 C values in eclogitic diamonds. 16 refs., 2 figs

  17. The depth distribution functions of the natural abundances of carbon isotopes in Alfisols thoroughly sampled by thin-layer sampling, and their relation to the dynamics of organic matter in theses soils

    International Nuclear Information System (INIS)

    Becker-Heidmann, P.

    1989-01-01

    The aim of this study was to gain fundamental statements on the relationship between the depth distributions of the natural abundances of 13 C and 14 C isotopes and the dynamics of the organic matter in Alfisols. For this purpose, six Alfisols were investigated: four forest soils from Northern Germany, two of them developed in Loess and two in glacial loam, one West German Loess soil used for fruit-growing and one agricultural granite-gneiss soil from the semiarid part of India. The soil was sampled as succesive horizontal layers of 2 cm depth from an area of 0.5 to 1 m 2 size, starting from the organic down to the C horizon or the lower part of the Bt. This kind of completely thin-layer-wise sampling was applied here for the first time. The carbon content and the natural abundances of the 13 C and the 14 C isotopes of each sample were determined. The δ 13 C value was measured by mass spectrometry. A vacuum preparation line with an electronically controlled cooling unit was constructed thereto. For the determination of the 14 C content, the sample carbon was transferred into benzene, and its activity was measured by liquid scintillation spectrometry. From the combination of the depth distribution functions of the 14 C activity and the δ 13 C value, and with the aid of additional analyses like C/N ratio and particle size distribution, a conclusive interpretation as to the dynamics of the organic matter in the investigated Alfisols is given. (orig./BBR)

  18. Composition and fate of terrigenous organic matter along the Arctic land-ocean continuum in East Siberia: Insights from biomarkers and carbon isotopes

    Science.gov (United States)

    Tesi, Tommaso; Semiletov, Igor; Hugelius, Gustaf; Dudarev, Oleg; Kuhry, Peter; Gustafsson, Örjan

    2014-05-01

    Climate warming is predicted to translocate terrigenous organic carbon (TerrOC) to the Arctic Ocean and affect the marine biogeochemistry at high latitudes. The magnitude of this translocation is currently unknown, so is the climate response. The fate of the remobilized TerrOC across the Arctic shelves represents an unconstrained component of this feedback. The present study investigated the fate of permafrost carbon along the land-ocean continuum by characterizing the TerrOC composition in three different terrestrial carbon pools from Siberian permafrost (surface organic rich horizon, mineral soil active layer, and Ice Complex deposit) and marine sediments collected on the extensive East Siberian Arctic Shelf (ESAS). High levels of lignin phenols and cutin acids were measured in all terrestrial samples analyzed indicating that these compounds can be used to trace the heterogeneous terrigenous material entering the Arctic Ocean. In ESAS sediments, comparison of these terrigenous biomarkers with other TerrOC proxies (bulk δ13C/Δ14C and HMW lipid biomarkers) highlighted contrasting across-shelf trends. These differences could indicate that TerrOC in the ESAS is made up of several pools that exhibit contrasting reactivity toward oxidation during the transport. In this reactive spectrum, lignin is the most reactive, decreasing up to three orders of magnitude from the inner- to the outer-shelf while the decrease of HMW wax lipid biomarkers was considerably less pronounced. Alternatively, degradation might be negligible while sediment sorting during the across-shelf transport could be the major physical forcing that redistributes different TerrOC pools characterized by different matrix-association.

  19. Analysis of carbon stable isotope to determine the origin and migration of gaseous hydrocarbon in the Brazilian sedimentary basins

    International Nuclear Information System (INIS)

    Takaki, T.; Rodrigues, R.

    1986-01-01

    The carbon isotopic composition of natural gases to determine the origin and gaseous hydrocarbon migration of Brazilian sedimentar basins is analysed. The carbon isotopic ratio of methane from natural gases depends on the process of gas formation and stage of organic matter maturation. In the geochemical surface exploration the biogenic gases are differentiated from thermogenic gases, because the last one is isotopically heavier. As the isotopic composition of methane has not changed during migration, the migrated gases from deeper and more mature source rocks are identified by its relative 13 C enrichment. The methane was separated from chromatography and and the isotopic analysis was done with mass spectrometer. (M.C.K.) [pt

  20. Assessment of primary production in a eutrophic lake from carbon and nitrogen isotope ratios of a carnivorous fish

    International Nuclear Information System (INIS)

    Yoshioka, Takahito

    1991-01-01

    The carbon and nitrogen isotope ratios of Hypomesus transpacificus (a pond smelt) in a eutrophic lake, Lake Suwa, were measured from April to September in 1986 and 1987. The differences in the isotope ratios between these two years were observed. The stable isotopes were transferred from phytoplankton to zooplankton and pond smelt, associated with organic matters. Therefore, the difference in the isotope ratios in two years seemed to reflect the differences of the proceeding of primary production. It was suggested that the carbon and nitrogen isotope ratios of animal, whose trophic level is far from primary producer, can be the qualitative indicators for assessing the primary production in a lake ecosystem. (author)

  1. Carbon isotopes of dissolved inorganic carbon reflect utilization of different carbon sources by microbial communities in two limestone aquifer assemblages

    Directory of Open Access Journals (Sweden)

    M. E. Nowak

    2017-08-01

    Full Text Available Isotopes of dissolved inorganic carbon (DIC are used to indicate both transit times and biogeochemical evolution of groundwaters. These signals can be complicated in carbonate aquifers, as both abiotic (i.e., carbonate equilibria and biotic factors influence the δ13C and 14C of DIC. We applied a novel graphical method for tracking changes in the δ13C and 14C of DIC in two distinct aquifer complexes identified in the Hainich Critical Zone Exploratory (CZE, a platform to study how water transport links surface and shallow groundwaters in limestone and marlstone rocks in central Germany. For more quantitative estimates of contributions of different biotic and abiotic carbon sources to the DIC pool, we used the NETPATH geochemical modeling program, which accounts for changes in dissolved ions in addition to C isotopes. Although water residence times in the Hainich CZE aquifers based on hydrogeology are relatively short (years or less, DIC isotopes in the shallow, mostly anoxic, aquifer assemblage (HTU were depleted in 14C compared to a deeper, oxic, aquifer complex (HTL. Carbon isotopes and chemical changes in the deeper HTL wells could be explained by interaction of recharge waters equilibrated with post-bomb 14C sources with carbonates. However, oxygen depletion and δ13C and 14C values of DIC below those expected from the processes of carbonate equilibrium alone indicate considerably different biogeochemical evolution of waters in the upper aquifer assemblage (HTU wells. Changes in 14C and 13C in the upper aquifer complexes result from a number of biotic and abiotic processes, including oxidation of 14C-depleted OM derived from recycled microbial carbon and sedimentary organic matter as well as water–rock interactions. The microbial pathways inferred from DIC isotope shifts and changes in water chemistry in the HTU wells were supported by comparison with in situ microbial community structure based on 16S rRNA analyses. Our findings

  2. Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis

    International Nuclear Information System (INIS)

    McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P.; Moscati, R.J.

    1994-01-01

    Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the 13 C content of soil CO 2 , CaCO 3 , precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The 13 C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing 13 C content with depth decreasing 13 C with altitude and reduced 13 C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO 2 loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids

  3. Influence of organic carbon sources and isotope exchange processes between water and nitrate on the fractionation of the stable isotopes {sup 15}N/{sup 14}N and {sup 18}O/{sup 16}O in dissolved nitrate during microbial dentrification in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Anja A.L.

    2012-11-02

    Stable isotopes of nitrate are commonly used to determine sources and degradation of nitrate. In this study, nitrite oxidizing bacteria were found to promote an oxygen isotope exchange between water and nitrate under anoxic conditions. Also, different carbon sources were found to influence the enrichment of stable isotopes in nitrate during microbial denitrification. Both results refine the stable isotope model of nitrate in respect to nitrate source determination and microbial nitrate reduction.

  4. Quantification of the carbonaceous matter origin in submicron marine aerosol particles by dual carbon isotope analysis

    Science.gov (United States)

    Ceburnis, D.; Garbaras, A.; Szidat, S.; Rinaldi, M.; Fahrni, S.; Perron, N.; Wacker, L.; Leinert, S.; Remeikis, V.; Facchini, M. C.; Prevot, A. S. H.; Jennings, S. G.; O'Dowd, C. D.

    2011-01-01

    Dual carbon isotope analysis has been performed for the first time demonstrating a potential in organic matter apportionment between three principal sources: marine, terrestrial (non-fossil) and fossil fuel due to unique isotopic signatures. The results presented here, utilising combinations of dual carbon isotope analysis, provides a conclusive evidence of a dominant biogenic organic fraction to organic aerosol over biologically active oceans. In particular, the NE Atlantic, which is also subjected to notable anthropogenic influences via pollution transport processes, was found to contain 80% organic aerosol matter of biogenic origin directly linked to plankton emissions. The remaining carbonaceous aerosol was of fossil-fuel origin. By contrast, for polluted air advecting out from Europe into the NE Atlantic, the source apportionment is 30% marine biogenic, 40% fossil fuel, and 30% continental non-fossil fuel. The dominant marine organic aerosol source in the atmosphere has significant implications for climate change feedback processes.

  5. Carbon isotope variations in the upper Carboniferous - Permian Mallemuk Mountain Group, eastern North Greenland

    International Nuclear Information System (INIS)

    Stemmerik, L.; Magaritz, M.

    1989-01-01

    Isotope data from Late Palaeozoic limestones of the Wandel Sea Basin in eastern North Greenland show a variation of δ 13 C from 0.0 0/00 to 5.7 0/00 vs PDB. Carbonates depleted in 13 C occur in the basal part of lower Moscovian, upper Moscovian and middle Gzhelian transgressive sequences. 13 C enriched limestones occur later in the cycles. The most 13 C enriched limestones occur in the youngest (late Early Permian-early Late Permian) part of the sequence in Amdrup Land. The isotopic data is believed to represent changes in the global carbon cycle. Thus 13 C enriched carbonates correlate to periods of burial of organic carbon mostly as coal, while 13 C depleted carbonates formed as the result of erosion and oxidation of organic carbon during sea-level low stands. (author)

  6. Influencing factors on δ(13C) of organic matter and carbonate in labke sediments on songnen plain

    International Nuclear Information System (INIS)

    Ou Wenjia; Zhang Chengjun

    2009-01-01

    Carbon isotopic compositions of organic matter and carbonate in surface sediments from lakes in Songnen Plain, northeast of China, were carried out.n-alkanes carbon distribution characteristics of the organic matter in lake sediments were also analyzed to identify the source of organic matter and sedimentary environment in these lakes. With the limnological characteristics of water and sediment, the influencing factors on isotopic composition in sedimentary organic matter and carbonate were discussed. The results showed that types of organic matter affected the carbon isotopic composition. 13 C of carbonate depleted by input of biologic organic matter and enriched by input of oil pollution. (authors)

  7. Use of Carbon Isotopic Tracers in Investigating Soil Carbon Sequestration and Stabilization in Agroecosystems

    International Nuclear Information System (INIS)

    2017-09-01

    The global surface temperatures have been reported to increase at an average rate of 0.06 C (0.11 F) per decade. This observed climate change known as the greenhouse effect is attributed to the emission of greenhouse gases (GHGs), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) to the atmosphere, resulting in trapping the heat near the earth’s surface causing global warming. World soils are the largest reservoir of terrestrial carbon and that soils are a source or sink of GHGs depending on land use management. Recognizing the urgent need to address the soil organic matter constraints for a sustainable agricultural production to ensure food security, this publication provides an integrated view on conventional and isotopic methods of measuring and modelling soil carbon dynamics, and the use nuclear and radioisotope tracer techniques in in-situ glasshouse and field labelling techniques to assess soil organic matter turnover and sequestration.

  8. Isotopic and chemical variation of organic nanoglobules in primitive meteorites

    Science.gov (United States)

    de Gregorio, Bradley T.; Stroud, Rhonda M.; Nittler, Larry R.; Alexander, Conel M. O'd.; Bassim, Nabil D.; Cody, George D.; Kilcoyne, A. L. David; Sandford, Scott A.; Milam, Stefanie N.; Nuevo, Michel; Zega, Thomas J.

    2013-05-01

    Organic nanoglobules are microscopic spherical carbon-rich objects present in chondritic meteorites and other astromaterials. We performed a survey of the morphology, organic functional chemistry, and isotopic composition of 184 nanoglobules in insoluble organic matter (IOM) residues from seven primitive carbonaceous chondrites. Hollow and solid nanoglobules occur in each IOM residue, as well as globules with unusual shapes and structures. Most nanoglobules have an organic functional chemistry similar to, but slightly more carboxyl-rich than, the surrounding IOM, while a subset of nanoglobules have a distinct, highly aromatic functionality. The range of nanoglobule N isotopic compositions was similar to that of nonglobular 15N-rich hotspots in each IOM residue, but nanoglobules account for only about one third of the total 15N-rich hotspots in each sample. Furthermore, many nanoglobules in each residue contained no 15N enrichment above that of bulk IOM. No morphological indicators were found to robustly distinguish the highly aromatic nanoglobules from those that have a more IOM-like functional chemistry, or to distinguish 15N-rich nanoglobules from those that are isotopically normal. The relative abundance of aromatic nanoglobules was lower, and nanoglobule diameters were greater, in more altered meteorites, suggesting the creation/modification of IOM-like nanoglobules during parent-body processing. However, 15N-rich nanoglobules, including many with highly aromatic functional chemistry, likely reflect preaccretionary isotopic fractionation in cold molecular cloud or protostellar environments. These data indicate that no single formation mechanism can explain all of the observed characteristics of nanoglobules, and their properties are likely a result of multiple processes occurring in a variety of environments.

  9. Is it really organic? – Multi-isotopic analysis as a tool to discriminate between organic and conventional plants

    DEFF Research Database (Denmark)

    Laursen, K.H.; Mihailova, A.; Kelly, S.D.

    2013-01-01

    for discrimination of organically and conventionally grown plants. The study was based on wheat, barley, faba bean and potato produced in rigorously controlled long-term field trials comprising 144 experimental plots. Nitrogen isotope analysis revealed the use of animal manure, but was unable to discriminate between......Novel procedures for analytical authentication of organic plant products are urgently needed. Here we present the first study encompassing stable isotopes of hydrogen, carbon, nitrogen, oxygen, magnesium and sulphur as well as compound-specific nitrogen and oxygen isotope analysis of nitrate...... plants that were fertilised with synthetic nitrogen fertilisers or green manures from atmospheric nitrogen fixing legumes. This limitation was bypassed using oxygen isotope analysis of nitrate in potato tubers, while hydrogen isotope analysis allowed complete discrimination of organic and conventional...

  10. Textural and isotopic evidence for Ca-Mg carbonate pedogenesis

    Science.gov (United States)

    Diaz-Hernandez, J. L.; Sánchez-Navas, A.; Delgado, A.; Yepes, J.; Garcia-Casco, A.

    2018-02-01

    Models for evaluating the terrestrial carbon cycle must take into account not only soil organic carbon, represented by a mixture of plant and animal remains, but also soil inorganic carbon, contained in minerals, mainly in calcite and dolomite. Thick soil caliches derived from weathering of mafic and ultramafic rocks must be considered as sinks for carbon storage in soils. The formation of calcite and dolomite from pedogenic alteration of volcanic tephras under an aridic moisture regime is studied in an unusually thick 3-m soil profile on Gran Canaria island (Canary Islands, Spain). The biological activity of the pedogenic environment (soil respiration) releases CO2 incorporated as dissolved inorganic carbon (DIC) in waters. It drives the formation of low-magnesian calcite and calcian dolomite over basaltic substrates, with a δ13C negative signature (-8 to -6‰ vs. V-PDB). Precipitation of authigenic carbonates in the soil is accompanied by the formation of Mg-rich clay minerals and quartz after the weathering of basalts. Mineralogical, textural, compositional, and isotopic variations throughout the soil profile studied indicate that dolomite formed at greater depths and earlier than the calcite. The isotopic signatures of the surficial calcite and deeper dolomite crusts are primary and resulted from the dissolution-precipitation cycles that led to the formation of both types of caliches under different physicochemical conditions. Dolomite formed within a clay-rich matrix through diffusive transport of reactants. It is precipitated from water with more negative δ18O values (-1.5 to -3.5‰ vs. V-SMOW) in the subsoil compared to those of water in equilibrium with surficial calcite. Thus, calcite precipitated after dolomite, and directly from percolating solutions in equilibrium with vadose water enriched in δ18O (-0.5 to +1.5‰) due to the evaporation processes. The accumulation of inorganic carbon reaches 586.1 kg m-2 in the soil studied, which means that the

  11. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis

    Science.gov (United States)

    Macavoy, S. E.; Jamil, T.; Macko, S. A.; Arneson, L. S.

    2003-12-01

    Stable isotope analysis is becoming an extensively used tool in animal ecology. The isotopes most commonly used for analysis in terrestrial systems are those of carbon and nitrogen, due to differential carbon fractionation in C3 and C4 plants, and the approximately 3‰ enrichment in 15N per trophic level. Although isotope signatures in animal tissues presumably reflect the local food web, analysis is often complicated by differential nutrient routing and fractionation by tissues, and by the possibility that large organisms are not in isotopic equilibrium with the foods available in their immediate environment. Additionally, the rate at which organisms incorporate the isotope signature of a food through both growth and metabolic tissue replacement is largely unknown. In this study we have assessed the rate of carbon and nitrogen isotopic turnover in liver, muscle and blood in mice following a diet change. By determining growth rates, we were able to determine the proportion of tissue turnover caused by growth versus that caused by metabolic tissue replacement. Growth was found to account for approximately 10% of observed tissue turnover in sexually mature mice (Mus musculus). Blood carbon was found to have the shortest half-life (16.9 days), followed by muscle (24.7 days). Liver carbon turnover was not as well described by the exponential decay equations as other tissues. However, substantial liver carbon turnover was observed by the 28th day after diet switch. Surprisingly, these tissues primarily reflect the carbon signature of the protein, rather than carbohydrate, source in their diet. The nitrogen signature in all tissues was enriched by 3 - 5‰ over their dietary protein source, depending on tissue type, and the isotopic turnover rates were comparable to those observed in carbon.

  12. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Porowska, Dorota, E-mail: dorotap@uw.edu.pl

    2015-05-15

    Highlights: • Research showed the origin of DIC in the groundwater around a reclaimed landfill. • Carbon isotope was used to evaluate the contributions of carbon from different sources. • The leachate-contaminated water was isotopically distinct from the natural groundwater. • DIC in the natural groundwater comes from organic matter and dissolution of carbonates. • In the contaminated water, DIC comes from organic matter in the aquifer and landfill. - Abstract: Chemical and isotopic analyses of groundwater from piezometers located around a reclaimed landfill in Otwock (Poland) were performed in order to trace the origin of dissolved inorganic carbon (DIC) in the groundwater. Due to differences in the isotopic composition of carbon from different sources, an analysis of stable carbon isotopes in the groundwater, together with the Keeling plot approach and a two-component mixing model allow us to evaluate the relative contributions of carbon from these sources in the groundwater. In the natural (background) groundwater, DIC concentrations and the isotopic composition of DIC (δ{sup 13}C{sub DIC}) comes from two sources: decomposition of organic matter and carbonate dissolution within the aquifer sediments, whereas in the leachate-contaminated groundwater, DIC concentrations and δ{sup 13}C{sub DIC} values depend on the degradation of organic matter within the aquifer sediments and biodegradation of organic matter stored in the landfill. From the mixing model, about 4–54% of the DIC pool is derived from organic matter degradation and 96–46% from carbonate dissolution in natural conditions. In the leachate-contaminated groundwater, about 20–53% of the DIC is derived from organic matter degradation of natural origin and 80–47% from biodegradation of organic matter stored in the landfill. Partial pressure of CO{sub 2} (P CO{sub 2}) was generally above the atmospheric, hence atmospheric CO{sub 2} as a source of carbon in DIC pool was negligible in the

  13. Late Carboniferous to Late Permian carbon isotope stratigraphy

    DEFF Research Database (Denmark)

    Buggisch, Werner; Krainer, Karl; Schaffhauser, Maria

    2015-01-01

    An integrated study of the litho-, bio-, and isotope stratigraphy of carbonates in the Southern Alps was undertaken in order to better constrain δ13C variations during the Late Carboniferous to Late Permian. The presented high resolution isotope curves are based on 1299 δ13Ccarb and 396 δ13Corg...

  14. Accumulation of organic carbon in northwestern Arabian sea sediments

    International Nuclear Information System (INIS)

    Khan, A.A.

    1999-01-01

    In this study accumulation of organic carbon in marine sediments of northwestern Arabian sea has been discussed. This paper presents the geochemical analysis of Organic carbon content and accumulation, delta 13 stable carbon isotope and Ba/Al. The primary objective was to investigate the high resolution information about the variations in paleoproductivity and source of organic matter in sediments below an upwelling area. Undisturbed sediments (Piston core NIOP-486) of late Pleistocene time were collected during Netherlands Indian Ocean Program (NIOP-1992-93). The core NIOP-486 was raised from a depth of 2077 meters near the Owen Ridge. This core records deposition history of last 200,000 years and includes 4 warm and 3 cold periods. The distribution of organic carbon content in studied core shows a pronounced cyclicity during glacial and interglacial stages. Organic carbon accumulation trends show that high sedimentation rates in glacial stages results in rapid burial and hence increase organic carbon accumulation. Paleoproductivity indicator Ba/Al has been used to compare with the organic carbon content and is correlated with the warm and cold periods variations in monsoons upwelling intensity. Generally, low paleoproductivity is found in glacial stages. The organic carbon content and accumulation, in sediments however seems to differ from the paleoproductivity trends shown by Ba/Al in glacial sediments of stage 6. Delta 13 C.org isotope results of the core NIOP-486 confirm that organic matter in sediments is predominantly marine (-20 to -23% ). (author)

  15. Carbon isotopic composition of fossil leaves from the Early ...

    Indian Academy of Sciences (India)

    considerable variation in carbon isotopic composition. The Trambau ... One of the most significant changes in the ocean atmosphere .... cryogenic separation of water, CO2 was dynami- .... light condition, nutrients and temperature are low,.

  16. Rare earth elements and neodymium isotopes in sedimentary organic matter

    Science.gov (United States)

    Freslon, Nicolas; Bayon, Germain; Toucanne, Samuel; Bermell, Sylvain; Bollinger, Claire; Chéron, Sandrine; Etoubleau, Joel; Germain, Yoan; Khripounoff, Alexis; Ponzevera, Emmanuel; Rouget, Marie-Laure

    2014-09-01

    We report rare earth element (REE) and neodymium (Nd) isotope data for the organic fraction of sediments collected from various depositional environments, i.e. rivers (n = 25), estuaries (n = 18), open-ocean settings (n = 15), and cold seeps (n = 12). Sedimentary organic matter (SOM) was extracted using a mixed hydrogen peroxide/nitric acid solution (20%-H2O2-0.02 M-HNO3), after removal of carbonate and oxy-hydroxide phases with dilute hydrochloric acid (0.25 M-HCl). A series of experimental tests indicate that extraction of sedimentary organic compounds using H2O2 may be complicated occasionally by partial dissolution of sulphide minerals and residual carbonates. However, this contamination is expected to be minor for REE because measured concentrations in H2O2 leachates are about two-orders of magnitude higher than in the above mentioned phases. The mean REE concentrations determined in the H2O2 leachates for samples from rivers, estuaries, coastal seas and open-ocean settings yield relatively similar levels, with ΣREE = 109 ± 86 ppm (mean ± s; n = 58). The organic fractions leached from cold seep sediments display even higher concentration levels (285 ± 150 ppm; mean ± s; n = 12). The H2O2 leachates for most sediments exhibit remarkably similar shale-normalized REE patterns, all characterized by a mid-REE enrichment compared to the other REE. This suggests that the distribution of REE in leached sedimentary organic phases is controlled primarily by biogeochemical processes, rather than by the composition of the source from which they derive (e.g. pore, river or sea-water). The Nd isotopic compositions for organic phases leached from river sediments are very similar to those for the corresponding detrital fractions. In contrast, the SOM extracted from marine sediments display εNd values that typically range between the εNd signatures for terrestrial organic matter (inferred from the analysis of the sedimentary detrital fractions) and marine organic matter

  17. Spatially-resolved isotopic study of carbon trapped in ∼3.43 Ga Strelley Pool Formation stromatolites

    Science.gov (United States)

    Flannery, David T.; Allwood, Abigail C.; Summons, Roger E.; Williford, Kenneth H.; Abbey, William; Matys, Emily D.; Ferralis, Nicola

    2018-02-01

    The large isotopic fractionation of carbon associated with enzymatic carbon assimilation allows evidence for life's antiquity, and potentially the early operation of several extant metabolic pathways, to be derived from the stable carbon isotope record of sedimentary rocks. Earth's organic carbon isotope record extends to the Late Eoarchean-Early Paleoarchean: the age of the oldest known sedimentary rocks. However, complementary inorganic carbon reservoirs are poorly represented in the oldest units, and commonly reported bulk organic carbon isotope measurements do not capture the micro-scale isotopic heterogeneities that are increasingly reported from younger rocks. Here, we investigated the isotopic composition of the oldest paired occurrences of sedimentary carbonate and organic matter, which are preserved as dolomite and kerogen within textural biosignatures of the ∼3.43 Ga Strelley Pool Formation. We targeted least-altered carbonate phases in situ using microsampling techniques guided by non-destructive elemental mapping. Organic carbon isotope values were measured by spatially-resolved bulk analyses, and in situ using secondary ion mass spectrometry to target microscale domains of organic material trapped within inorganic carbon matrixes. Total observed fractionation of 13C ranges from -29 to -45‰. Our data are consistent with studies of younger Archean rocks that host biogenic stromatolites and organic-inorganic carbon pairs showing greater fractionation than expected for Rubisco fixation alone. We conclude that organic matter was fixed and/or remobilized by at least one metabolism in addition to the CBB cycle, possibly by the Wood-Ljungdahl pathway or methanogenesis-methanotrophy, in a shallow-water marine environment during the Paleoarchean.

  18. Isotope dependence of chemical erosion of carbon

    International Nuclear Information System (INIS)

    Reinhold, C.O.; Krstic, P.S.; Stuart, S.J.; Zhang, H.; Harris, P.R.; Meyer, F.W.

    2010-01-01

    We study the chemical erosion of hydrogen-supersaturated carbon due to bombardment by hydrogen isotopes H, D, and T at energies of 1-30 eV using classical molecular dynamics simulations. The chemical structure at the hydrogen-saturated interface (the distribution of terminal hydrocarbon moieties, in particular) shows a weak dependence on the mass of the impinging atoms. However, the sputtering yields increase considerably with increasing projectile mass. We analyze the threshold energies of chemical sputtering reaction channels and show that they are nearly mass independent, as expected from elementary bond-breaking chemical reactions involving hydrocarbons. Chemical sputtering yields for D impact are compared with new experimental data. Good agreement is found for small hydrocarbons but the simulations overestimate the production of large hydrocarbons for energies larger than 15 eV. We present a thorough analysis of the dependence of our simulations on the parameters of the bombardment schemes and discuss open questions and possible avenues for development.

  19. Late Neogene benthic stable isotope record of ODP Site 999: Implications for Caribbean paleoceanography, organic carbon burial and the Messininian salinity crisis

    Science.gov (United States)

    Bickert, T.; Haug, G.; Tiedemann, R.

    2003-04-01

    The late Neogene closure of the seaway between the North and South American continents is thought to have caused extensive changes in ocean circulation and Northern Hemisphere climate. The timing and consequences of the emergence of the Isthmus of Panama for the ocean circulation have been addressed in several papers which indicate a marked reorganization of surface and deep ocean circulation starting 4.6 million years ago. However, the biogeographic development of marine faunas and floras on both sides of the Panama Isthmus suggests that the paleoceanographic changes related to the closing of the isthmus started much earlier. Furthermore, the closing history of the Panama Seaway overlaps with the tectonic evolution of other ocean gateways in the late Miocene, especially the closure of the Strait of Gibraltar, which led to a transient isolation of the Mediterranean Sea from the Atlantic Ocean, known as the Messinian Salinity Crisis. We report on epibenthic foraminiferal d18O and d13C and percentage sand records of the carbonate fraction from Caribbean ODP Site 999 (12°44´N, 78° 44´W, water depth 2828 m) spanning the interval from 8.6 to 5.3 Ma. Low epibenthic d13C values and low sand contents indicate a poorly ventilated deep Caribbean throughout the late Miocene. At this time the deep Caribbean was dominated by a nutrient-rich Southern Ocean water mass. A mostly constant d13C gradient between the Caribbean and deep Atlantic records suggests that the fluctuations in d13C reflect rather global changes in d13C of the dissolved inorganic carbon due to varying erosion of organic carbon from terrigenous soils and shelf sediments. The observed 100-ky cyclicity of epibenthic d13C is in well accordance with the variability of the terrigenous input to the equatorial Atlantic as recorded by susceptibility records of the Ceara Rise. However, some gradient changes between 6.8 and 5.6 Ma indicate a poorer ventilation of the deep Atlantic related to a reduced production of

  20. Organic electrochemistry and carbon electrodes

    International Nuclear Information System (INIS)

    Weinberg, N.

    1983-01-01

    Carbons are often used in organic electrosynthesis and are critical as anodes or cathodes to certain reactions. Too often the surface properties of carbons have been left uncharacterized in relation to the reaction; however, these physical and chemical properties of carbons are important to the nature of the products, and the selectivity. Examples presented include the Kolbe reaction, the oxidation of aromatics in presence of carboxylate salts, electrofluorination of organics, acetamidation of aromatics, the hydrodimerization of formaldehyde and the oxidation of carbon fibers. These reactions apparently involve special surface characteristics: structure, surface area, stabilized surface sites, and the presence or absence of significant ''oxide'' functionality

  1. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes.

    Science.gov (United States)

    Porowska, Dorota

    2015-05-01

    Chemical and isotopic analyses of groundwater from piezometers located around a reclaimed landfill in Otwock (Poland) were performed in order to trace the origin of dissolved inorganic carbon (DIC) in the groundwater. Due to differences in the isotopic composition of carbon from different sources, an analysis of stable carbon isotopes in the groundwater, together with the Keeling plot approach and a two-component mixing model allow us to evaluate the relative contributions of carbon from these sources in the groundwater. In the natural (background) groundwater, DIC concentrations and the isotopic composition of DIC (δ(13)CDIC) comes from two sources: decomposition of organic matter and carbonate dissolution within the aquifer sediments, whereas in the leachate-contaminated groundwater, DIC concentrations and δ(13)CDIC values depend on the degradation of organic matter within the aquifer sediments and biodegradation of organic matter stored in the landfill. From the mixing model, about 4-54% of the DIC pool is derived from organic matter degradation and 96-46% from carbonate dissolution in natural conditions. In the leachate-contaminated groundwater, about 20-53% of the DIC is derived from organic matter degradation of natural origin and 80-47% from biodegradation of organic matter stored in the landfill. Partial pressure of CO2 (P CO2) was generally above the atmospheric, hence atmospheric CO2 as a source of carbon in DIC pool was negligible in the aquifer. P CO2 values in the aquifer in Otwock were always one to two orders of magnitude above the atmospheric P CO2, and thus CO2 escaped directly into the vadose zone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Stable-carbon isotope variability in tree foliage and wood

    International Nuclear Information System (INIS)

    Leavitt, S.W.; Long, A.

    1986-01-01

    This study documents variation of stable-carbon isotope ratios ( 13 C/ 12 C) in trees of genera Juniperus and Pinus under field conditions. Results are from cellulose analysis on leaves, twigs, and wood from a number of localities in the southwestern US. Substantial variability, typically 1-3%, exists among leaves, within wood (radially, vertically, circumferentially), and between individuals at a site. These results may help guide sampling in tracer-type studies with stable-carbon isotope ratios and aid in the interpretation of isotopic results from such studies

  3. Isotopes of carbon and oxygen in the carbonate impurities of coal have potential as palaeoenvironmental indicators

    International Nuclear Information System (INIS)

    Verhagen, B.T.; Falcon, R.M.

    1990-01-01

    The nature and systematics of impurities such as carbonates need to be established in order to understand their provenance in coal seams with reference to mining, beneficiation and ultimately their elimination or reduction. To this end, mineralogical and carbon-13 and oxygen-18 isotopic studies were undertaken on carbonate occurrences in coal from the eastern Transvaal highveld. Isotopic variations of considerable amplitude and individual values of extreme ''lightness'' are to be found in the carbonates in coal of the Witbank and adjacent basins. The observed isotopic ratios have a clear bearing on the nature and origins of the carbonates. 1 tab., 1 fig

  4. Carbon and hydrogen isotopic effects of stomatal density in Arabidopsis thaliana

    Science.gov (United States)

    Lee, Hyejung; Feakins, Sarah J.; Sternberg, Leonel da S. L.

    2016-04-01

    Stomata are key gateways mediating carbon uptake and water loss from plants. Varied stomatal densities in fossil leaves raise the possibility that isotope effects associated with the openness of exchange may have mediated plant wax biomarker isotopic proxies for paleovegetation and paleoclimate in the geological record. Here we use Arabidopsis thaliana, a widely used model organism, to provide the first controlled tests of stomatal density on carbon and hydrogen isotopic compositions of cuticular waxes. Laboratory grown wildtype and mutants with suppressed and overexpressed stomatal densities allow us to directly test the isotope effects of stomatal densities independent of most other environmental or biological variables. Hydrogen isotope (D/H) measurements of both plant waters and plant wax n-alkanes allow us to directly constrain the isotopic effects of leaf water isotopic enrichment via transpiration and biosynthetic fractionations, which together determine the net fractionation between irrigation water and n-alkane hydrogen isotopic composition. We also measure carbon isotopic fractionations of n-alkanes and bulk leaf tissue associated with different stomatal densities. We find offsets of +15‰ for δD and -3‰ for δ13C for the overexpressed mutant compared to the suppressed mutant. Since the range of stomatal densities expressed is comparable to that found in extant plants and the Cenozoic fossil record, the results allow us to consider the magnitude of isotope effects that may be incurred by these plant adaptive responses. This study highlights the potential of genetic mutants to isolate individual isotope effects and add to our fundamental understanding of how genetics and physiology influence plant biochemicals including plant wax biomarkers.

  5. Carbon and Oxygen isotopic composition in paleoenvironmental determination

    International Nuclear Information System (INIS)

    Silva, J.R.M. da.

    1978-01-01

    This work reports that the carbon and oxygen isotopic composition separate the mollusks from marine environment of the mollusks from continental environment in two groups isotopically different, making the biological control outdone by environment control, in the isotopic fragmentation mechanisms. The patterns from the continental environment are more rich in O 16 than the patterns from marine environments. The C 12 is also more frequent in the mollusks from continental environments. The carbon isotopic composition in paterns from continental environments is situated betwen - 10.31 and - 4,05% and the oxygen isotopic composition is situated between - 6,95 and - 2,41%. To the marine environment patterns the carbon isotopic composition is between - 2,08 and + 2,65% and the oxigen isotopic composition is between - 2,08 and + 0,45%. Was also analysed fossil marine mollusks shells and their isotopic composition permit the formulation of hypothesis about the environment which they lived. (C.D.G.) [pt

  6. Chromium isotope fractionation during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes

    The chromium (Cr) isotopic composition of carbonates can potentially be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenvironmental changes, for example related to the rise of oxygen during the Ar...... et al., 2007, Water Air Soil Poll. 179, 381-390. [2] Sánchez-Pastor et al., 2011, Cryst. Growth Des. 11, 3081-3089.......The chromium (Cr) isotopic composition of carbonates can potentially be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenvironmental changes, for example related to the rise of oxygen during...... the Archaean and Protoerozoic, needs careful assessment of the signal robustness and necessitates a thorough understanding of the Cr cycle in Earth system processes. We conducted experiments testing the incorporation and isotopic fractionation of chromate into the calcite lattice. Our experiments indicate...

  7. Short-term measurement of carbon isotope fractionation in plants

    International Nuclear Information System (INIS)

    O'Leary, M.H.; Treichel, I.; Rooney, M.

    1986-01-01

    Combustion-based studies of the carbon-13 content of plants give only an integrated, long-term value for the isotope fractionation associated with photosynthesis. A method is described here which permits determination of this isotope fractionation in 2 to 3 hours. To accomplish this, the plant is enclosed in a glass chamber, and the quantity and isotopic content of the CO 2 remaining in the atmosphere are monitored during photosynthesis. Isotope fractionation studies by this method give results consistent with what is expected from combustion studies of C 3 , C 4 , and Crassulacean acid metabolism plants. This method will make possible a variety of new studies of environmental and species effects in carbon isotope fractionation

  8. Evaluation of Dissolved Inorganic and Organic Carbon Concentrations (DIC, DOC and Their Isotopic Compositions (δ 13C-DOC, δ 13C-DIC in Water Resources of the Karde Catchment (North of Mashhad

    Directory of Open Access Journals (Sweden)

    Hossein Mohammadzadeh

    2015-07-01

    Full Text Available In this paper, the variations of dissolved inorganic and organic carbon (DIC, DOC concentrations and their isotopic compositions (δ13C- DIC, δ13C- DOC were evaluated in both surface and ground water resources in the Karde catchment area (with an area of about 547 Km2, located in the North of Mashhad. To identify the sources of the dissolved carbon (DIC and DOC, samples were collected in June 2011 from surface and ground water resources (river, dam’s lake, springs, wells, and Qanat and from depths of 1, 5, 10, 15, and 20 meters of Karde dam lakeat a point located near the dam outlet. Field parameters (T, EC, and TDS were measured during sampling. All measurements were performed in the G.G. Hatch Stable Isotope Laboratory at the University of Ottawa, Canada. The concentrations and isotopic compositions of DIC and DOC were determined using TCA and CF-IRMS instruments, respectively. Based on the results obt 1-دانشیار،مرکزتحقیقاتآبهایزیرزمینی متآب،دانشکدهعلوم،دانشگاهفردوسی مشهد،،مشهد، ایران 2- دانشجوی کارشناسی ارشدهیدروژئولوژی، مرکزتحقیقاتآبهایزیرزمینی متآب،دانشکده علوم،دانشگاهفردوسیمشهد، مشهد، ایران *نویسنده مسئول، پست الکترونیکی:mohammadzadeh@um.ac.ir           ained, the average values of DIC are 54.1 mg/l and 66.8 mg/l in the surface and ground water resources in the Karde catchment area, respectively; the average values of DOC are 2.2 mg/l and 0.45 mg/l; the average values of δ13C-DIC are -7‰ and -11 ‰; and the average values of δ13C-DOC are -31.6‰ and -29.5 ‰, respectively. In general, the concentrations of DIC, DOC, and their isotopic compositions (δ13C-DIC, δ13C-DOC are different in the various water resources (surface and ground water in the catchment and the major source of dissolved carbon in the catchment area is

  9. Stable isotopes of pedogenic carbonates from the Somma-Vesuvius area, southern Italy, over the past 18 kyr: palaeoclimatic implications

    Science.gov (United States)

    Zanchetta, G.; di Vito, M.; Fallick, A. E.; Sulpizio, R.

    2000-12-01

    Stable isotopes were measured in the carbonate and organic matter of palaeosols in the Somma-Vesuvius area, southern Italy in order to test whether they are suitable proxy records for climatic and ecological changes in this area during the past 18000 yr. The ages of the soils span from ca. 18 to ca. 3 kyr BP. Surprisingly, the Last Glacial to Holocene climate transition was not accompanied by significant change in 18O of pedogenic carbonate. This could be explained by changes in evaporation rate and in isotope fractionation between water and precipitated carbonate with temperature, which counterbalanced the expected change in isotope composition of meteoric water. Because of the rise in temperature and humidity and the progressive increase in tree cover during the Holocene, the Holocene soil carbonates closely reflect the isotopic composition of meteoric water. A cooling of about 2°C after the Avellino eruption (3.8 ka) accounts for a sudden decrease of about 1 in 18O of pedogenic carbonate recorded after this eruption. The 13C values of organic matter and pedogenic carbonate covary, indicating an effective isotope equilibrium between the organic matter, as the source of CO2, and the pedogenic carbonate. Carbon isotopes suggest prevailing C3 vegetation and negligible mixing with volcanogenic or atmospheric CO2.

  10. Carbonate stable isotope constraints on sources of arsenic contamination in Neogene tufas and travertines of Attica, Greece

    Science.gov (United States)

    Kampouroglou, Evdokia E.; Tsikos, Harilaos; Economou-Eliopoulos, Maria

    2017-11-01

    We presented new C and O isotope data of rockforming calcite in terrestrial carbonate deposits from Neogene basins of Attica (Greece), coupled with standard mineralogical and bulk geochemical results. Whereas both isotope datasets [δ18O from -8.99 to -3.20‰(VPDB); δ13C from -8.17 to +1.40‰(VPDB)] could be interpreted in principle as indicative of a meteoric origin, the clear lack of a statistical correlation between them suggests diverse sources for the isotopic variation of the two elements. On the basis of broad correlations between lower carbon isotope data with increasing Fe and bulk organic carbon, we interpreted the light carbon isotope signatures and As enrichments as both derived mainly from a depositional process involving increased supply of metals and organic carbon to the original basins. Periodically augmented biological production and aerobic cycling of organic matter in the ambient lake waters, would have led to the precipitation of isotopically light calcite in concert with elevated fluxes of As-bearing iron oxy-hydroxide and organic matter to the initial terrestrial carbonate sediment. The terrestrial carbonate deposits of Attica therefore represented effective secondary storage reservoirs of elevated As from the adjacent mineralized hinterland; hence these and similar deposits in the region ought to be regarded as key geological candidates for anomalous supply of As to local soils, groundwater and related human activities.

  11. Carbon isotopic record from Upper Devonian carbonates at Dongcun in Guilin, southern China, supporting the world-wide pattern of carbon isotope excursions during Frasnian-Famennian transition

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Two positive δ13C excursions are presented in records from the Frasnian-Famennian (F-F) marine carbonate sediments in Europe, America, Africa, and Australia, having been considered as a worldwide pattern, and attributed to enhanced organic carbon burial during the F-F biological mass extinction. However, this worldwide pattern has not been revealed from the well-deposited Late Devonian sequences in southern China. In this paper, a detailed investigation has been made on the Late Devonian section at Dongcun, Guilin, southern China to constrain perturbations in δ13C of carbonates in the F-F deposited sequence. The result from this section also indicates two positive δ13C excursions during the F-F transition. The first excursion with an amplitude of 1.5‰ occurred at the bottom of linguiformis Zone, later than the early excursion existing in the Late rhenana Zone of the Late Devonian profiles in other continents, especially, in central Europe. This difference has been expected to be a result as conodont Palmatolepis linguiformis occurred earlier in southern China than other sites. The second excursion with an amplitude of 2.1‰ is located at the F-F boundary, same as the records from other continents. This result strongly supports the view that two carbon isotope positive excursions during the F-F transition are common in carbonate sediments, resulting from worldwide increases of organic carbon burial intensity.

  12. Carbon transfer from dissolved organic carbon to the cladoceran Bosmina: a mesocosm study

    Directory of Open Access Journals (Sweden)

    Tang Yali

    2017-01-01

    Full Text Available A mesocosm study illuminated possible transfer pathways for dissolved organic carbon from the water column to zooplankton. Organic carbon was added as 13C enriched glucose to 15 mesocosms filled with natural lake water. Stable isotope analysis and phospholipid fatty acids-based stable isotope probing were used to trace the incorporation of 13C into the cladoceran Bosmina and its potential food items. Glucose-C was shown to be assimilated into phytoplankton (including fungi and heterotrophic protists, bacteria and Bosmina, all of which became enriched with 13C during the experiment. The study suggests that bacteria play an important role in the transfer of glucose-C to Bosmina. Furthermore, osmotic algae, fungi and heterotrophic protists might also contribute to the isotopic signature changes observed in Bosmina. These findings help to clarify the contribution of dissolved organic carbon to zooplankton and its potential pathways.

  13. Variation of carbon isotope fractionation in hydrogenotrophic methanogenic microbial cultures and environmental samples at different energy status

    NARCIS (Netherlands)

    Penning, H.; Plugge, C.M.; Galand, P.E.; Conrad, R.

    2005-01-01

    Methane is a major product of anaerobic degradation of organic matter and an important greenhouse gas. Its stable carbon isotope composition can be used to reveal active methanogenic pathways, if associated isotope fractionation factors are known. To clarify the causes that lead to the wide

  14. Variations in the stable carbon isotope compositions of individual lipids from the leaves of modern angiosperms: implications for the study of higher land plant-derived sedimentary organic matter

    International Nuclear Information System (INIS)

    Lockheart, M.J.; Bergen, P.F. van; Evershed, R.P.

    1997-01-01

    Seasonal changes in δ 13 C values for individual lipids from the leaves of several species of tree have been studied in order to provide essential background information for use in future investigations of the isotopic signatures of terrigenous sedimentary organic matter. The n-alkanes of Betula ermanii, Quercus castaneifolia and Fagus japonica revealed increased δ 13 C in autumn leaves compared with leaves sampled at the start of the growing season. Samples taken from Q. castaneifolia and F. sylvatica at monthly intervals showed gradual depletion of 13 C in bulk tissues and n-alkanes through the growing season. This may be a consequence of either recycling of depleted internal carbon in order to replace weathered waxes, or increased fractionation against 13 C by the enzyme ribulose 1,5-bisphosphate carboxylase in response to increasing summer temperatures. Sitosterol exhibited similar isotopic trends as the n-alkanes in F. sylvatica, but showed the opposite behaviour in Q. castaneifolia. The effect of sunlight intensity on δ 13 C was investigated in foliage sampled at different compass positions around two trees, Q. robur and F. sylvatica. Bulk tissue and lipids from inner shade leaves were consistently more depleted in 13 C than those from the corresponding sun leaf. The leaves receiving the highest sunlight irradiance on average, i.e. southern foliage, exhibited the lowest δ 13 C in lipids and bulk tissues. The variability of δ 13 C values with irradiance level may be due to changes in photosynthetic assimilation rates and the adaptation of the leaf epidermis and stomata in response to its light environment. Lipids and bulk tissues from leaves of Quercus species were found to possess slightly more depleted δ 13 C values than those in Fagus species, although interspecies variability was quite large. This study has important implications for the study of terrestrially derived organic matter preserved in ancient sediments. The results demonstrate the

  15. FATTY ACID STABLE ISOTOPE INDICATORS OF MICROBIAL CARBON SOURCE IN TROPICAL SOILS

    Science.gov (United States)

    The soil microbial community plays an important role in tropical ecosystem functioning because of its importance in the soil organic matter (SOM) cycle. We have measured the stable carbon isotopic ratio (delta13C) of individual phospholipid fatty acids (PLFAs) in a variety of tr...

  16. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    Directory of Open Access Journals (Sweden)

    N. Brüggemann

    2011-11-01

    Full Text Available The terrestrial carbon (C cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual, including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as

  17. Modeling of the global carbon cycle - isotopic data requirements

    International Nuclear Information System (INIS)

    Ciais, P.

    1994-01-01

    Isotopes are powerful tools to constrain carbon cycle models. For example, the combinations of the CO 2 and the 13 C budget allows to calculate the net-carbon fluxes between atmosphere, ocean, and biosphere. Observations of natural and bomb-produced radiocarbon allow to estimate gross carbon exchange fluxes between different reservoirs and to deduce time scales of carbon overturning in important reservoirs. 18 O in CO 2 is potentially a tool to make the deconvolution of C fluxes within the land biosphere (assimilation vs respirations). The scope of this article is to identify gaps in our present knowledge about isotopes in the light of their use as constraint for the global carbon cycle. In the following we will present a list of some future data requirements for carbon cycle models. (authors)

  18. Carbon Monoxide Stable Isotopes: Extraction Technique Development and Urban Atmospheric Analysis

    Science.gov (United States)

    Vimont, Isaac Josef

    We have developed an extraction system to analyze isotopes of carbon monoxide (CO). We then analyzed CO isotopes for two years at Indianapolis, IN, USA. These measurements were done at three towers, one of which measured incoming, background air into the city. We quantitatively removed the background signal and determined the urban CO mole fraction and isotopic enhancements. During the winter months, we constrained the isotopic signature and concluded that the majority of CO produced during the winter was produced by fossil fuel combustion. We found that the Indianapolis fossil fuel signature differed from that of studies done in Europe. Further, we performed a limited traffic study to look at CO isotopes from traffic. While this was not conclusive, it did support our hypothesis that a larger fraction of the Indianapolis vehicle fleet may have malfunctioning catalytic systems, which biases the isotopic results, particularly for delta18O. We used the wintertime fossil fuel isotopic signature to help constrain the summertime budget. It was hypothesized that a second source of CO was significant during the summer months. Oxidation of biogenically produced volatile organic compounds (BVOC's) was one possible source. Oxidized BVOC's were consistent with the changes between our winter and summer isotopic source signatures. We then used the isotopic signatures to determine that between zero and sixty percent of the summertime CO budget was produced from oxidized VOC's. This provided the first direct evidence of a larger percentage of urban CO being produced by oxidized VOC's.

  19. Isotopic labelling with carbon-14 and tritium

    International Nuclear Information System (INIS)

    Evans, E.A.

    1980-01-01

    In this paper general methods of isotopic labelling with 14 C and with 3 H are briefly reviewed with special attention to examples of compounds likely to be of wide interest in biological research. (author)

  20. Online stable carbon isotope ratio measurement in formic acid, acetic acid, methanol and ethanol in water by high performance liquid chromatography-isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo

    2008-01-01

    A suitable analysis condition was determined for high performance liquid chromatography-isotope ratio mass spectrometry (HPLC-IRMS) while making sequential measurements of stable carbon isotope ratios of δ 13 C in formic acid, acetic acid, methanol and ethanol dissolved in water. For this online column separation method, organic reagents are not applicable due to carbon contamination; thus, water and KH 2 PO 4 at low concentrations were tested as mobile phase in combination with a HyPURITY AQUASTAR TM column. Formic acid, acetic acid, methanol and ethanol were separated when 2 mM KH 2 PO 4 aqueous solution was used. Under the determined analysis condition for HPLC-IRMS, carbon concentrations could be measured quantitatively as well as carbon isotope ratio when carbon concentration was higher than 0.4 mM L for each chemical

  1. Observations of Carbon Isotopic Fractionation in Interstellar Formaldehyde

    Science.gov (United States)

    Wirstrom, E. S.; Charnley, S. B.; Geppert, W. D.; Persson, C. M.

    2012-01-01

    Primitive Solar System materials (e.g. chondrites. IDPs, the Stardust sample) show large variations in isotopic composition of the major volatiles (H, C, N, and O ) even within samples, witnessing to various degrees of processing in the protosolar nebula. For ex ample. the very pronounced D enhancements observed in IDPs [I] . are only generated in the cold. dense component of the interstellar medium (ISM), or protoplanetary disks, through ion-molecule reactions in the presence of interstellar dust. If this isotopic anomaly has an interstellar origin, this leaves open the possibility for preservation of other isotopic signatures throughout the form ation of the Solar System. The most common form of carbon in the ISM is CO molecules, and there are two potential sources of C-13 fractionation in this reservoir: low temperature chemistry and selective photodissociation. While gas-phase chemistry in cold interstellar clouds preferentially incorporates C-13 into CO [2], the effect of self-shielding in the presence of UV radiation instead leads to a relative enhancement of the more abundant isotopologue, 12CO. Solar System organic material exhibit rather small fluctuations in delta C-13 as compared to delta N-15 and delta D [3][1], the reason for which is still unclear. However, the fact that both C-13 depleted and enhanced material exists could indicate an interstellar origin where the two fractionation processes have both played a part. Formaldehyde (H2CO) is observed in the gas-phase in a wide range of interstellar environments, as well as in cometary comae. It is proposed as an important reactant in the formation of more complex organic molecules in the heated environments around young stars, and formaldehyde polymers have been suggested as the common origin of chondritic insoluable organic matter (IOM) and cometary refractory organic solids [4]. The relatively high gas-phase abundance of H2CO observed in molecular clouds (10(exp- 9) - 10(exp- 8) relative to H2) makes

  2. Temperature dependence of carbon isotope fractionation in CAM plants

    International Nuclear Information System (INIS)

    Deleens, E.; Treichel, I.; O'Leary, M.H.

    1985-01-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoë daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17 degrees C nights, 23 degrees C days), the isotope fractionation for both plants is -4 per thousand (that is, malate is enriched in (13)C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0 per thousand at 27 degrees C/33 degrees C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process

  3. Temperature dependence of carbon isotope fractionation in CAM plants

    Energy Technology Data Exchange (ETDEWEB)

    Deleens, E.; Treichel, I.; O' Leary, M.H.

    1985-09-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoe daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17/sup 0/C nights, 23/sup 0/C days), the isotope fractionation for both plants is -4% per thousand (that is, malate is enriched in /sup 13/C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0% per thousand at 27/sup 0/C/33/sup 0/C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process. 28 references, 1 figure, 4 tables.

  4. Isotope-geochemical studies on fractions of dissolved organic carbon (DOC) for determining the origin and evolution of DOC for purposes of groundwater dating

    International Nuclear Information System (INIS)

    Geyer, S.

    1994-01-01

    The laboratory work consisted in developing and testing methods of extraction and enrichment of individual high-purity DOC fractions (fulvic acids, humic acids, and low-molecular substances) with the aim of preparing large quantities of groundwaters (> 1000 l) with low DOC concentrations so as to obtain sufficient sampling material. Chemical characterisation of DOC consisted in an analysis of humic and fulvic acids with regard to element composition (C, H, N, O, S) and inorganic trace elements. Isotopic characterization of the DOC fractions consisted in determining 14 C, 13 C, and 2 H levels. For the first time δ 34 S and δ 15 N relations in humic and fulvic acids dissolved in groundwater were determined. (orig./DG) [de

  5. Carbon and hydrogen isotope fractionation during aerobic biodegradation of quinoline and 3-methylquinoline.

    Science.gov (United States)

    Cui, Mingchao; Zhang, Wenbing; Fang, Jun; Liang, Qianqiong; Liu, Dongxuan

    2017-08-01

    Compound-specific isotope analysis has been used extensively to investigate the biodegradation of various organic pollutants. To date, little isotope fractionation information is available for the biodegradation of quinolinic compounds. In this study, we report on the carbon and hydrogen isotope fractionation during quinoline and 3-methylquinoline aerobic microbial degradation by a Comamonas sp. strain Q10. Degradation of quinoline and 3-methylquinoline was accompanied by isotope fractionation. Large hydrogen and small carbon isotope fractionation was observed for quinoline while minor carbon and hydrogen isotope fractionation effects occurred for 3-methylquinoline. Bulk carbon and hydrogen enrichment factors (ε bulk ) for quinoline biodegradation were -1.2 ± 0.1 and -38 ± 1‰, respectively, while -0.7 ± 0.1 and -5 ± 1‰ for 3-methylquinoline, respectively. This reveals a potential advantage for employing quinoline as the model compound and hydrogen isotope analysis for assessing aerobic biodegradation of quinolinic compounds. The apparent kinetic isotope effects (AKIE C ) values of carbon were 1.008 ± 0.0005 for quinoline and 1.0048 ± 0.0005 for 3-methylquinoline while AKIE H values of hydrogen of 1.264 ± 0.011 for quinoline and 1.0356 ± 0.0103 for 3-methylquinoline were obtained. The combined evaluation of carbon and hydrogen isotope fractionation yields Λ values (Λ = Δδ 2 H/Δδ 13 C ≈ εH bulk /εC bulk ) of 29 ± 2 for quinoline and 8 ± 2 for 3-methylquinoline. The results indicate that the substrate specificity may have a significant influence on the isotope fractionation for the biodegradation of quinolinic compounds. The substrate-specific isotope enrichment factors would be important for assessing the behavior and fate of quinolinic compounds in the environment.

  6. Organic and Isotopic Signatures of Life: Lessons from the Early Earth

    Science.gov (United States)

    Freeman, K. H.; Eigenbrode, J. L.; House, C. H.

    2002-12-01

    In the study of life on earth, isotopic analyses of organic biomarkers provide essential insight to their biological and environmental provenance. Isotopic analyses of organic materials on other planets present a number of challenges, both analytical and interpretive. Prebiotic planetary organic materials can derive from condensation reactions and by delivery through meteorites or interplanetary dust, with the relative importance of each influenced by the oxidation state of the atmosphere. Material delivered to planets can have an interstellar origin, although it is dominated by compounds influenced by the formation of the solar system. Each of these processes impact molecular isotopic signatures and must be considered in life-detection strategies. Pronounced effects are observed for hydrogen isotopes, with smaller fractionations observed for other elements. Theoretical, laboratory and observational studies of non-terrean materials are essential to further understand molecular isotopic heterogeneity associated with these exclusively abiotic processes. Studies of Archean-aged samples provide an important resource for interpreting molecular isotopic patterns as signatures of life processes. Carbon assimilation and biomass synthesis from simple precursor compounds typically discriminate against 13C. This generality, however, is complicated by the observations of a wide range of fractionation factors associated with important microbial carbon-uptake processes. Metabolic processes further distribute isotopic signatures, such that wide isotopic heterogeneity is observed among cellular biochemical constituents. In addition, preservation/contamination concerns dominate studies of very ancient organic matter, as they likely will in life-detection studies. However, both biochemical heterogeneity and sample integrity can be addressed by considering patterns from different paleoenvironments. Molecular results demonstrate that Late Archean microbial life on this planet was

  7. Biomarker and carbon isotope constraints (δ{sup 13}C, Δ{sup 14}C) on sources and cycling of particulate organic matter discharged by large Siberian rivers draining permafrost areas

    Energy Technology Data Exchange (ETDEWEB)

    Winterfeld, Maria

    2014-08-15

    Circumpolar permafrost soils store about half of the global soil organic carbon pool. These huge amounts of organic matter (OM) could accumulate due to low temperatures and water saturated soil conditions over the course of millennia. Currently most of this OM remains frozen and therefore does not take part in the active carbon cycle, making permafrost soils a globally important carbon sink. Over the last decades mean annual air temperatures in the Arctic increased stronger than the global mean and this trend is projected to continue. As a result the permafrost carbon pool is under climate pressure possibly creating a positive climate feedback due to the thaw-induced release of greenhouse gases to the atmosphere. Arctic warming will lead to increased annual permafrost thaw depths and Arctic river runoff likely resulting in enhanced mobilization and export of old, previously frozen soil-derived OM. Consequently, the great arctic rivers play an important role in global biogeochemical cycles by connecting the large permafrost carbon pool of their hinterlands with the arctic shelf seas and the Arctic Ocean. The first part of this thesis deals with particulate organic matter (POM) from the Lena Delta and adjacent Buor Khaya Bay. The Lena River in central Siberia is one of the major pathways translocating terrestrial OM from its southernmost reaches near Lake Baikal to the coastal zone of the Laptev Sea. The permafrost soils from the Lena catchment area store huge amounts of pre-aged OM, which is expected to be remobilized due to climate warming. To characterize the composition and vegetation sources of OM discharged by the Lena River, the lignin phenol and carbon isotopic composition (δ{sup 13}C and Δ{sup 14}C) in total suspended matter (TSM) from surface waters, surface sediments from the Buor Khaya Bay along with soils from the Lena Delta's first (Holocene) and third terraces (Pleistocene ice complex) were analyzed. The lignin compositions of these samples are

  8. Carbon isotope fractionation by sulfate-reducing bacteria using different pathways for the oxidation of acetate.

    Science.gov (United States)

    Goevert, Dennis; Conrad, Ralf

    2008-11-01

    Acetate is a key intermediate in the anaerobic degradation of organic matter. In anoxic environments, available acetate is a competitive substrate for sulfate-reducing bacteria (SRB) and methane-producing archaea. Little is known about the fractionation of carbon isotopes by sulfate reducers. Therefore, we determined carbon isotope compositions in cultures of three acetate-utilizing SRB, Desulfobacter postgatei, Desulfobacter hydrogenophilus, and Desulfobacca acetoxidans. We found that these species showed strong differences in their isotope enrichment factors (epsilon) of acetate. During the consumption of acetate and sulfate, acetate was enriched in 13C by 19.3% per hundred in Desulfobacca acetoxidans. By contrast, both D. postgatei and D. hydrogenophilus showed a slight depletion of 13C resulting in epsilon(ac)-values of 1.8 and 1.5% per hundred, respectively. We suggest that the different isotope fractionation is due to the different metabolic pathways for acetate oxidation. The strongly fractionating Desulfobacca acetoxidans uses the acetyl-CoA/carbon monoxide dehydrogenase pathway, which is also used by acetoclastic methanogens that show a similar fractionation of acetate (epsilon(ac) = -21 to -27% per hundred). In contrast, Desulfobacter spp. oxidize acetate to CO2 via the tricarboxylic acid (TCA) cycle and apparently did not discriminate against 13C. Our results suggestthat carbon isotope fractionation in environments with sulfate reduction will strongly depend on the composition of the sulfate-reducing bacterial community oxidizing acetate.

  9. Tracing estuarine organic matter sources into the southern North Sea using C and N isotopic signatures

    DEFF Research Database (Denmark)

    Bristow, Laura A.; Jickells, Timothy D.; Weston, Keith

    2013-01-01

    Sources and distribution of particulate organic matter in surface waters of the Humber and Thames estuaries and in the East Anglian plume in the southern North Sea were investigated in winter 2006/2007. Carbon (C) and nitrogen (N) stable isotopes provided evidence for the presence of three partic...

  10. Testing Urey's carbonate-silicate cycle using the calcium isotopic composition of sedimentary carbonates

    Science.gov (United States)

    Blättler, Clara L.; Higgins, John A.

    2017-12-01

    Carbonate minerals constitute a major component of the sedimentary geological record and an archive of a fraction of the carbon and calcium cycled through the Earth's surface reservoirs for over three billion years. For calcium, carbonate minerals constitute the ultimate sink for almost all calcium liberated during continental and submarine weathering of silicate minerals. This study presents >500 stable isotope ratios of calcium in Precambrian carbonate sediments, both limestones and dolomites, in an attempt to characterize the isotope mass balance of the sedimentary carbonate reservoir through time. The mean of the dataset is indistinguishable from estimates of the calcium isotope ratio of bulk silicate Earth, consistent with the Urey cycle being the dominant mechanism exchanging calcium among surface reservoirs. The variability in bulk sediment calcium isotope ratios within each geological unit does not reflect changes in the global calcium cycle, but rather highlights the importance of local mineralogical and/or diagenetic effects in the carbonate record. This dataset demonstrates the potential for calcium isotope ratios to help assess these local effects, such as the former presence of aragonite, even in rocks with a history of neomorphism and recrystallization. Additionally, 29 calcium isotope measurements are presented from ODP (Ocean Drilling Program) Site 801 that contribute to the characterization of altered oceanic crust as an additional sink for calcium, and whose distinct isotopic signature places a limit on the importance of this subduction flux over Earth history.

  11. Stable isotope analysis of Dacryoconarid carbonate microfossils: a new tool for Devonian oxygen and carbon isotope stratigraphy.

    Science.gov (United States)

    Frappier, Amy Benoit; Lindemann, Richard H; Frappier, Brian R

    2015-04-30

    Dacryoconarids are extinct marine zooplankton known from abundant, globally distributed calcite microfossils in the Devonian, but their shell stable isotope composition has not been previously explored. Devonian stable isotope stratigraphy is currently limited to less common invertebrates or bulk rock analyses of uncertain provenance. As with Cenozoic planktonic foraminifera, isotopic analysis of dacryoconarid shells could facilitate higher-resolution, geographically widespread stable isotope records of paleoenvironmental change, including marine hypoxia events, climate changes, and biocrises. We explored the use of Dacryoconarid isotope stratigraphy as a viable method in interpreting paleoenvironments. We applied an established method for determining stable isotope ratios (δ(13) C, δ(18) O values) of small carbonate microfossils to very well-preserved dacryoconarid shells. We analyzed individual calcite shells representing five common genera using a Kiel carbonate device coupled to a MAT 253 isotope ratio mass spectrometer. Calcite shell δ(13) C and δ(18) O values were compared by taxonomic group, rock unit, and locality. Single dacryoconarid calcite shells are suitable for stable isotope analysis using a Kiel-IRMS setup. The dacryoconarid shell δ(13) C values (-4.7 to 2.3‰) and δ(18) O values (-10.3 to -4.8‰) were consistent across taxa, independent of shell size or part, but varied systematically through time. Lower fossil δ(18) O values were associated with warmer water temperature and more variable δ(13) C values were associated with major bioevents. Dacryoconarid δ(13) C and δ(18) O values differed from bulk rock carbonate values. Dacryoconarid individual microfossil δ(13) C and δ(18) O values are highly sensitive to paleoenvironmental changes, thus providing a promising avenue for stable isotope chemostratigraphy to better resolve regional to global paleoceanographic changes throughout the upper Silurian to the upper Devonian. Our results

  12. An attempt to characterize certain organic and mineral substances by their stable isotope composition

    International Nuclear Information System (INIS)

    Bricout, J.; Fontes, J.C.; Letolle, R.; Mariotti, A.; Merlivat, L.

    1975-01-01

    The determination of the relative abundance of various stable isotopes - deuterium, oxygen-18, carbon-13, nitrogen-15, sulphur-34 - can be used to characterize the origin of a water body and of an organic or mineral substance in the environment. This results from the discovery that isotopic fractioning by living organisms occurs. The stable isotope composition of any substance reflects, at least partly, the various stages of its formation. A number of examples supporting this hypothesis are given. The passage of water through plants, or alcoholic fermentation, substantially modifies the stable isotope composition of water. The assimilation of atmospheric carbon dioxide involves a reduction in the carbon-13 content which varies depending on the enzymatic mechanism of photosynthesis. The enzymatic reactions that cause the biosynthesis of various organic substances in higher plants are accompanied by partial exclusion of deuterium, an exclusion which is greater or smaller depending on the biosynthesis pathway followed. The bacterial reduction of sulphur compounds involves a high rate of isotopic fractioning. As a result, industrial sulphates obtained by oxidation of reduced sulphur associated with hydrocarbon deposits are depleted in 34 S in comparison with natural sulphates. Similarly, the authors have observed that nitrates produced by the plant biological cycle are rich in nitrogen-15 compared to synthesized nitrates

  13. Molybdenum isotope fractionation during adsorption to organic matter

    Science.gov (United States)

    King, Elizabeth K.; Perakis, Steven; Pett-Ridge, Julie C.

    2018-01-01

    Organic matter is of emerging interest as a control on molybdenum (Mo) biogeochemistry, and information on isotope fractionation during adsorption to organic matter can improve interpretations of Mo isotope variations in natural settings. Molybdenum isotope fractionation was investigated during adsorption onto insolubilized humic acid (IHA), a surrogate for organic matter, as a function of time (2–170 h) and pH (2–7). For the time series experiment performed at pH 4.2, the average Mo isotope fractionation between the solution and the IHA (Δ98Mosolution-IHA) was 1.39‰ (± 0.16‰, 2σ, based on 98Mo/95Mo relative to the NIST 3134 standard) at steady state. For the pH series experiment, Mo adsorption decreased as pH increased from 2.0 to 6.9, and the Δ98Mosolution-IHA increased from 0.82‰ to 1.79‰. We also evaluated natural Mo isotope patterns in precipitation, foliage, organic horizon, surface mineral soil, and bedrock from 12 forested sites in the Oregon Coast Range. The average Mo isotope offset observed between precipitation and organic (O) horizon soil was 2.1‰, with light Mo isotopes adsorbing preferentially to organic matter. Fractionation during adsorption to organic matter is similar in magnitude and direction to prior observations of Mo fractionation during adsorption to Fe- and Mn- (oxyhydr)oxides. Our finding that organic matter influences Mo isotope composition has important implications for the role of organic matter as a driver of trace metal retention and isotopic fractionation.

  14. CARBON ISOTOPE DISCRIMINATION AND GROWTH RESPONSE TO STAND DENSITY REDUCTIONS IN OLD PINUS PONDEROSA TREES

    Science.gov (United States)

    Carbon isotope ratios ( 13C) of tree rings are commonly used for paleoclimatic reconstruction and for inferring canopy water-use efficiency (WUE). However, the responsiveness of carbon isotope discrimination ( ) to site disturbance and resource availability has only rarely been ...

  15. Stable carbon isotopes as an indicator for soil degradation in an alpine environment (Urseren Valley, Switzerland).

    Science.gov (United States)

    Schaub, Monika; Alewell, Christine

    2009-05-01

    Analyses of soil organic carbon (SOC) content and stable carbon isotope signatures (delta(13)C) of soils were assessed for their suitability to detect early stage soil erosion. We investigated the soils in the alpine Urseren Valley (southern central Switzerland) which are highly impacted by soil erosion. Hill slope transects from uplands (cambisols) to adjacent wetlands (histosols and histic to mollic gleysols) differing in their intensity of visible soil erosion, and reference wetlands without erosion influence were sampled. Carbon isotopic signature and SOC content of soil depth profiles were determined. A close correlation of delta(13)C and carbon content (r > 0.80) is found for upland soils not affected by soil erosion, indicating that depth profiles of delta(13)C of these upland soils mainly reflect decomposition of SOC. Long-term disturbance of an upland soil is indicated by decreasing correlation of delta(13)C and SOC (r soil erosion in hill slope transects from uplands to adjacent wetlands is documented as an intermediate delta(13)C value (-27.5 per thousand) for affected wetland soil horizons (0-12 cm) between upland (aerobic metabolism, relatively heavier delta(13)C of -26.6 per thousand) and wetland isotopic signatures (anaerobic metabolism, relatively lighter delta(13)C of -28.6 per thousand). Carbon isotopic signature and SOC content are found to be sensitive indicators of short- and long-term soil erosion processes. Copyright (c) 2009 John Wiley & Sons, Ltd.

  16. New Carbonate Standard Reference Materials for Boron Isotope Geochemistry

    Science.gov (United States)

    Stewart, J.; Christopher, S. J.; Day, R. D.

    2015-12-01

    The isotopic composition of boron (δ11B) in marine carbonates is well established as a proxy for past ocean pH. Yet, before palaeoceanographic interpretation can be made, rigorous assessment of analytical uncertainty of δ11B data is required; particularly in light of recent interlaboratory comparison studies that reported significant measurement disagreement between laboratories [1]. Well characterised boron standard reference materials (SRMs) in a carbonate matrix are needed to assess the accuracy and precision of carbonate δ11B measurements throughout the entire procedural chemistry; from sample cleaning, to ionic separation of boron from the carbonate matrix, and final δ11B measurement by multi-collector inductively coupled plasma mass spectrometry. To date only two carbonate reference materials exist that have been value-assigned by the boron isotope measurement community [2]; JCp-1 (porites coral) and JCt-1 (Giant Clam) [3]. The National Institute of Standards and Technology (NIST) will supplement these existing standards with new solution based inorganic carbonate boron SRMs that replicate typical foraminiferal and coral B/Ca ratios and δ11B values. These new SRMs will not only ensure quality control of full procedural chemistry between laboratories, but have the added benefits of being both in abundant supply and free from any restrictions associated with shipment of biogenic samples derived from protected species. Here we present in-house δ11B measurements of these new boron carbonate SRM solutions. These preliminary data will feed into an interlaboratory comparison study to establish certified values for these new NIST SRMs. 1. Foster, G.L., et al., Chemical Geology, 2013. 358(0): p. 1-14. 2. Gutjahr, M., et al., Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses. Geophysical Research Abstracts, EGU General Assembly 2014, 2014. 16(EGU2014-5028-1). 3. Inoue, M., et al., Geostandards and

  17. Stable isotope composition of bulk and secondary carbonates from the Quaternary loess-paleosol sequence in Sutto, Hungary

    DEFF Research Database (Denmark)

    Koeniger, Paul; Barta, Gabriella; Thiel, Christine

    2014-01-01

    reveal pedogenetic information during the different climatic phases. Carbon and oxygen isotope analyses are valuable to classify secondary carbonates and to serve as proxies for the interpretation of paleoenvironmental conditions, e.g. moisture conditions, leaching, the role of organic matter...

  18. Organic carbon input in shallow groundwater at Aspo, southeastern Sweden

    International Nuclear Information System (INIS)

    Wallin, B.

    1993-01-01

    The variation in carbon and oxygen isotopes in calcite fissure fillings and dissolved carbonate from shallow groundwaters has been examined at Aspo, southeastern Sweden. The shallow water lens is refilled by meteoric water and is considered as an open system. The σ 13 C-signatures of the dissolved carbonate fall within a narrow range of -15.8 to -17.4 per-thousand, indicative of organic an organic carbon source. The low σ 13 C-values suggest that input of soil-CO 2 is the dominating carbon source for the system. σ 13 C and σ 18 O-values in the calcite fissure fillings show a wide range in values with a possible two end-member mixing of early post glacial atmospheric CO 2 dominated system to a present day soil-CO 2 dominating carbon source

  19. Springtime carbon emission episodes at the Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles

    Directory of Open Access Journals (Sweden)

    J. Jung

    2011-11-01

    Full Text Available In order to investigate the emission of carbonaceous aerosols at the Gosan background super-site (33.17° N, 126.10° E in East Asia, total suspended particles (TSP were collected during spring of 2007 and 2008 and analyzed for particulate organic carbon, elemental carbon, total carbon (TC, total nitrogen (TN, and stable carbon isotopic composition (δ13C of TC. The stable carbon isotopic composition of TC (δ13CTC was found to be lowest during pollen emission episodes (range: −26.2‰ to −23.5‰, avg. −25.2 ± 0.9‰, approaching those of the airborne pollen (−28.0‰ collected at the Gosan site. Based on a carbon isotope mass balance equation, we found that ~42% of TC in the TSP samples during the pollen episodes was attributed to airborne pollen from Japanese cedar trees planted around tangerine farms in Jeju Island. A negative correlation between the citric acid-carbon/TC ratios and δ13CTC was obtained during the pollen episodes. These results suggest that citric acid emitted from tangerine fruit may be adsorbed on the airborne pollen and then transported to the Gosan site. Thermal evolution patterns of organic carbon during the pollen episodes were characterized by high OC evolution in the OC2 temperature step (450 °C. Since thermal evolution patterns of organic aerosols are highly influenced by their molecular weight, they can be used as additional information on the formation of secondary organic aerosols and the effect of aging of organic aerosols during the long-range atmospheric transport and sources of organic aerosols.

  20. The features of the isotope composition of carbon in the Paleozoic and Mesozoic oils of Western Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Golyshev, S.I.; Lebedena, L.V.

    1984-01-01

    The isotope composition of the carbon in the oils from the Mesozoic and Paleozoic deposits is measured. The variations in the isotope composition of carbon for the Paleozoic oils is between 27.5 and 30.8 percent, while for the oils from the lower Jurassic and Triassic levels it is between 27.7 and 31.2 percent and for the upper Jurassic oils it is between 30.1 and 34.5 percent. The dependence of the isotope composition of the carbon in the oils on the type of original organic matter and its metamorphosis conditions during lithogenesis is analyzed. A softening in the isotope composition of the carbon in the oils from the oceanic deposits relative to continental deposits is found, together with a genetic individualism of the oils from the Paleozoic deposits and their difference from the oils in the Mesozoic deposits.

  1. Carbon allocation belowground in Pinus pinaster using stable carbon isotope pulse labeling technique

    Science.gov (United States)

    Dannoura, M.; Bosc, A.; Chipeaux, C.; Sartore, M.; Lambrot, C.; Trichet, P.; Bakker, M.; Loustau, D.; Epron, D.

    2010-12-01

    Carbon allocation belowground competes with aboveground growth and biomass production. In the other hand, it contributes to resource acquisition such as nutrient, water and carbon sequestration in soil. Thus, a better characterization of carbon flow from plant to soil and its residence time within each compartment is an important issue for understanding and modeling forest ecosystem carbon budget. 13C pulse labeling of whole crown was conducted at 4 seasons to study the fate of assimilated carbon by photosynthesis into the root on 12 year old Pinus pinaster planted in the INRA domain of Pierroton. Maritime pine is the most widely planted species in South-West Europe. Stem, root and soil CO2 effluxes and their isotope composition were measured continuously by tunable diode laser absorption spectroscopy with a trace gas analyzer (TGA 100A; Campbell Scientific) coupled to flow-through chambers. 13CO2 recovery and peak were observed in respiration of each compartment after labeling. It appeared sequentially from top of stem to bottom, and to coarse root. The maximum velocity of carbon transfer was calculated as the difference in time lag of recovery between two positions on the trunk or on the root. It ranged between 0.08-0.2 m h-1 in stem and between 0.04-0.12 m h-1 in coarse root. This velocity was higher in warmer season, and the difference between time lag of recovery and peak increased after first frost. Photosynthates arrived underground 1.5 to 5 days after labeling, at similar time in soil CO2 effluxes and coarse root respiration. 0.08-1.4 g of carbon was respired per tree during first 20 days following labeling. It presented 0.6 -10% of 13C used for labeling and it is strongly related to seasons. The isotope signal was detected in fine root organs and microbial biomass by periodical core sampling. The peak was observed 6 days after labeling in early summer while it was delayed more than 10 days in autumn and winter with less amount of carbon allocated

  2. Control strategies for laser separation of carbon isotopes

    Indian Academy of Sciences (India)

    Laser isotope separation (LIS) by infrared laser chemistry of polyatomic molecules has come a long way since its discovery. The last decade has seen considerable efforts in scaling up of the process for light elements like carbon, oxygen and silicon. These efforts aim at ways to improve both the enrichment factor and the ...

  3. Control strategies for laser separation of carbon isotopes

    Indian Academy of Sciences (India)

    Unknown

    Control strategies for laser separation of carbon isotopes. V PARTHASARATHY*, A K ... The emerging market for medical applications of C-13 is projected to be in the range of hundreds of ..... thermal effects during irradiation. In the absence of ...

  4. Global Cr-isotope distributions in surface seawater and incorporation of Cr isotopes into carbonate shells

    DEFF Research Database (Denmark)

    Paulukat, Cora Stefanie; Frei, Robert; Vögelin, Andrea Regula

    produced carbonate shells (bivalves, gastropods) and corals. Our preliminary data set ranges approximately from d53Cr = -0.2 to +0.7‰. They are isotopically lighter than local seawater. This is in good agreement with [6], who measured a negative offset from seawater in corals. These offsets indicate some...

  5. ISOTOPIC CHARACTERIZATION OF ORGANIC MATERIALS LEACHED FROM LEAVES IN WATER OF MUNDARING WEIR DAM

    Directory of Open Access Journals (Sweden)

    Markus Heryanto Langsa

    2010-06-01

    Full Text Available This study examined the organic constituents aquatically leached from leaf components of two tree species (wandoo eucalyptus and pinus radiate. In particular this study aimed to assess the stable isotope composition behaviour of dissolved organic carbon (DOC from the residue leaves after leaching over five months. The changes in the stable carbon and nitrogen isotope compositions of the leached leaves materials were investigated using an elemental analyzer-isotope ratio mass spectrometry (EA-irMS. The stable isotope compositions were found to vary according to microbially-mediated alteration and decomposition. The average  d13C content of the raw plant elements was consistent with the  d13C values of terrestrial plants using a C3 photosynthetic pathway. The isotope compositions of leached materials of wandoo eucalyptus fresh leaf were continually depleted in d13C over the leaching period of three months. These variations correlated well with its DOC profile. Changes in  d13C values may also relate to the differential leaching of the macromolecular precursors of the original material. Lignin, for example, has a typically low  d13C and probably contributed to the decrease of  d13C in residue of the plant materials.   Keywords: isotope composition, leached materials, C3 plant

  6. Intra-annual variability of carbon and nitrogen stable isotopes in suspended organic matter in waters of the western continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Maya, M.V.; Karapurkar, S.G.; Naik, H.; Roy, R.; Shenoy, D.M.; Naqvi, S.W.A.

    receives large runoff from land during the SW monsoon and the associated terrestrial organic matter inputs may possibly play a role in biogeochemical cycling. 2 Methods 2.1 Sampling Time series measurements were carried out at the Candolim Time Series (CaTS...) station (aka Sta. G5), which is located CaTS~10 km Fig. 1. Map of the study area showing the location of Candolim Time Series (CaTS) station (G5) off Goa. at Lat. 15◦31prime N, Long. 73◦39prime E, approximately 10 km off Candolim Beach (Goa), central...

  7. Carbon isotopic composition in components of a mangrove ecosystem in the Sepetiba Bay, Rio de Janeiro, Brazil

    International Nuclear Information System (INIS)

    Lacerda, L.D. de; Rezende, C.E. de; Ovalle, A.R.C.; Aragon, G.T.; Cunha, C.T. da; Ramos e Souza, C.A.; Martinelli, L.A.; Victoria, R.L.; Mozeto, A.A.; Nogueira, F.

    1986-01-01

    The carbon isotopic ratios ( 13 C/ 12 C) for various components of a mangrove ecosystem in the Sepetiba Bay, RJ, in order to evaluate the possibility of its use a tracer for organic matter in these environments are presented. The results showed consistent differences of ( 13 C/ 12 C) isotopic ratio between the organic matter from mangrove (+-26%0, PDB) and the one from marine origin (+-20%0, PDB). These results suggest that this ratio can be used as tracer of organic carbon in the studied environment. (Author) [pt

  8. Carbon isotope geochemistry of the Cretaceous-Tertiary section of the Wasserfallgraben, Lattengebirge, southeast Germany

    International Nuclear Information System (INIS)

    Arneth, J.D.; Matzigkeit, U.; Boos, A.

    1985-01-01

    Carbonates and organic matter in sediments of the Cretaceous-Tertiary (C/T) section of the Wasserfallgraben, Lattengebirge (Bavaria) have been investigated. All parameters - the carbonate content (Csub(carb)), its isotopic composition (delta 13 Csub(carb),delta 18 Osub(carb)) as well as the organic carbon content (Csub(org)), its isotopic composition (delta 13 Csub(org)) and the H/C ratio of the sedimentary organic matter - display systematic variations across the C/T boundary which cannot be attributed to a single cause. The boundary zone as a whole is tectonically disturbed and shows significant features of detrital contaminations. Unidirectional shift in delta 13 Csub(carb) and delta 13 Csub(org) are observed when directly comparing Maastrichtian (latest Cretaceous) and Danian (earliest Tertiary) sediments. These synchronous isotope displacements towards more negative readings are interpreted to reflect the reduced photosynthetic activity as consequence of the mass extinction at the C/T boundary. The results may have some bearings on other C/T profiles investigated where measurements on the reduced carbon species are still lacking. (orig.)

  9. A carbon isotope challenge to the snowball Earth.

    Science.gov (United States)

    Sansjofre, P; Ader, M; Trindade, R I F; Elie, M; Lyons, J; Cartigny, P; Nogueira, A C R

    2011-10-05

    The snowball Earth hypothesis postulates that the planet was entirely covered by ice for millions of years in the Neoproterozoic era, in a self-enhanced glaciation caused by the high albedo of the ice-covered planet. In a hard-snowball picture, the subsequent rapid unfreezing resulted from an ultra-greenhouse event attributed to the buildup of volcanic carbon dioxide (CO(2)) during glaciation. High partial pressures of atmospheric CO(2) (pCO2; from 20,000 to 90,000 p.p.m.v.) in the aftermath of the Marinoan glaciation (∼635 Myr ago) have been inferred from both boron and triple oxygen isotopes. These pCO2 values are 50 to 225 times higher than present-day levels. Here, we re-evaluate these estimates using paired carbon isotopic data for carbonate layers that cap Neoproterozoic glacial deposits and are considered to record post-glacial sea level rise. The new data reported here for Brazilian cap carbonates, together with previous ones for time-equivalent units, provide estimates lower than 3,200 p.p.m.v.--and possibly as low as the current value of ∼400 p.p.m.v. Our new constraint, and our re-interpretation of the boron and triple oxygen isotope data, provide a completely different picture of the late Neoproterozoic environment, with low atmospheric concentrations of carbon dioxide and oxygen that are inconsistent with a hard-snowball Earth.

  10. New Organic Stable Isotope Reference Materials for Distribution through the USGS and the IAEA

    Science.gov (United States)

    Schimmelmann, Arndt; Qi, Haiping

    2014-05-01

    The widespread adoption of relative stable isotope-ratio measurements in organic matter by diverse scientific disciplines is at odds with the dearth of international organic stable isotopic reference materials (RMs). Only two of the few carbon (C) and nitrogen (N) organic RMs, namely L-glutamic acids USGS40 and USGS41 [1], both available from the U.S. Geological Survey (USGS) and the International Atomic Energy Agency (IAEA), provide an isotopically contrasting pair of organic RMs to enable essential 2-point calibrations for δ-scale normalization [2, 3]. The supply of hydrogen (H) organic RMs is even more limited. Numerous stable isotope laboratories have resorted to questionable practices, for example by using 'CO2, N2, and H2 reference gas pulses' for isotopic calibrations, which violates the principle of identical treatment of sample and standard (i.e., organic unknowns should be calibrated directly against chemically similar organic RMs) [4], or by using only 1 anchor instead of 2 for scale calibration. The absence of international organic RMs frequently serves as an excuse for indefensible calibrations. In 2011, the U.S. National Science Foundation (NSF) funded an initiative of 10 laboratories from 7 countries to jointly develop much needed new organic RMs for future distribution by the USGS and the IAEA. The selection of targeted RMs attempts to cover various common compound classes of broad technical and scientific interest. We had to accept compromises to approach the ideal of high chemical stability, lack of toxicity, and low price of raw materials. Hazardous gases and flammable liquids were avoided in order to facilitate international shipping of future RMs. With the exception of polyethylene and vacuum pump oil, all organic RMs are individual, chemically-pure substances, which can be used for compound-specific isotopic measurements in conjunction with liquid and gas chromatographic interfaces. The compounds listed below are under isotopic calibration by

  11. Deposition and Burial Efficiency of Terrestrial Organic Carbon Exported from Small Mountainous Rivers to the Continental Margin, Southwest of Taiwan

    Science.gov (United States)

    Hsu, F.; Lin, S.; Wang, C.; Huh, C.

    2007-12-01

    Terrestrial organic carbon exported from small mountainous river to the continental margin may play an important role in global carbon cycle and it?|s biogeochemical process. A huge amount of suspended materials from small rivers in southwestern Taiwan (104 million tons per year) could serve as major carbon source to the adjacent ocean. However, little is know concerning fate of this terrigenous organic carbon. The purpose of this study is to calculate flux of terrigenous organic carbon deposited in the continental margin, offshore southwestern Taiwan through investigating spatial variation of organic carbon content, organic carbon isotopic compositions, organic carbon deposition rate and burial efficiency. Results show that organic carbon compositions in sediment are strongly influenced by terrestrial material exported from small rivers in the region, Kaoping River, Tseng-wen River and Er-jan Rver. In addition, a major part of the terrestrial materials exported from the Kaoping River may bypass shelf region and transport directly into the deep sea (South China Sea) through the Kaoping Canyon. Organic carbon isotopic compositions with lighter carbon isotopic values are found near the Kaoping River and Tseng-wen River mouth and rapidly change from heavier to lighter values through shelf to slope. Patches of lighter organic carbon isotopic compositions with high organic carbon content are also found in areas west of Kaoping River mouth, near the Kaoshiung city. Furthermore, terrigenous organic carbons with lighter isotopic values are found in the Kaoping canyon. A total of 0.028 Mt/yr of terrestrial organic carbon was found in the study area, which represented only about 10 percent of all terrestrial organic carbon deposited in the study area. Majority (~90 percent) of the organic carbon exported from the Kaoping River maybe directly transported into the deep sea (South China Sea) and become a major source of organic carbon in the deep sea.

  12. Sulfur and carbon isotope biogeochemistry of a rewetted brackish fen

    Science.gov (United States)

    Koebsch, Franziska; Gehre, Matthias; Winkel, Matthias; Koehler, Stefan; Koch, Marian; Jurasinski, Gerald; Spitzy, Alejandro; Liebner, Susanne; Sachs, Torsten; Schmiedinger, Iris; Kretzschmann, Lisett; Saborowski, Anke; Böttcher, Michael E.

    2015-04-01

    Coastal wetlands are at the interface between terrestrial freshwater and marine and exhibit very specific biogeochemical conditions. Intermittent sea water intrusion affects metabolic pathways, i. e. anaerobic carbon metabolism is progressively dominated by sulfate reduction with lower contribution of methanogenesis whilst methane production is increasingly shifted from acetoclastic to hydrogenotrophic. Due to expanding anthropogenic impact a large proportion of coastal ecosystems is degraded with severe implications for the biogeochemical processes. We use concentration patterns and stable isotope signatures of water, sulfate, dissolved carbonate, and methane (δ2H, δ13C, δ18O, δ34S) to investigate the S and C metabolic cycle in a rewetted fen close to the southern Baltic Sea border. Such studies are crucial to better predict dynamic ecosystem feedback to global change like organic matter (OM) decomposition or greenhouse gas emissions. Yet, little is known about the metabolic pathways in such environments. The study site is part of the TERENO Observatory "Northeastern German Lowlands' and measurements of methane emissions have run since 2009. High methane fluxes up to 800 mg m-2 hr-1 indicate that methanogenesis is the dominant C metabolism pathway despite of high sulfate concentrations (up to 37 mM). The presented data are part of a comprehensive biogeochemical investigation that we conducted in autumn 2014 and that comprises 4 pore water profiles and sediment samples within a transect of 300-1500 m distance to the Baltic Sea. Depth of organic layers ranged from 25 to 140 cm with high OM contents (up to 90 dwt.%). Sulfate/chloride ratios in the pore waters were lower than in the Baltic Sea for most sites and sediment depths indicated a substantial net sulfate loss. Sulfide concentrations were negligible at the top and increased parallel to the sulfate concentrations with depth to values of up to 0.3 mM. One pore water profiles situated 1150 m from the Baltic

  13. Carbon Isotopic Ratios of Amino Acids in Stardust-Returned Samples

    Science.gov (United States)

    Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here. we present the carbon isotopic ratios of glycine and E-aminocaproic acid (EACH), the two most abundant amino acids observed, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio crass spectrometry coupled with quadrupole mass spectrometry (GC-QMS/IRMS).

  14. Magnesium isotope fractionation in bacterial mediated carbonate precipitation experiments

    Science.gov (United States)

    Parkinson, I. J.; Pearce, C. R.; Polacskek, T.; Cockell, C.; Hammond, S. J.

    2012-12-01

    Magnesium is an essential component of life, with pivotal roles in the generation of cellular energy as well as in plant chlorophyll [1]. The bio-geochemical cycling of Mg is associated with mass dependant fractionation (MDF) of the three stable Mg isotopes [1]. The largest MDF of Mg isotopes has been recorded in carbonates, with foraminiferal tests having δ26Mg compositions up to 5 ‰ lighter than modern seawater [2]. Magnesium isotopes may also be fractionated during bacterially mediated carbonate precipitation and such carbonates are known to have formed in both modern and ancient Earth surface environments [3, 4], with cyanobacteria having a dominant role in carbonate formation during the Archean. In this study, we aim to better constrain the extent to which Mg isotope fractionation occurs during cellular processes, and to identify when, and how, this signal is transferred to carbonates. To this end we have undertaken biologically-mediated carbonate precipitation experiments that were performed in artificial seawater, but with the molar Mg/Ca ratio set to 0.6 and with the solution spiked with 0.4% yeast extract. The bacterial strain used was marine isolate Halomonas sp. (gram-negative). Experiments were run in the dark at 21 degree C for two to three months and produced carbonate spheres of various sizes up to 300 μm in diameter, but with the majority have diameters of ~100 μm. Control experiments run in sterile controls (`empty` medium without bacteria) yielded no precipitates, indicating a bacterial control on the precipitation. The carbonate spheres are produced are amenable to SEM, EMP and Mg isotopic analysis by MC-ICP-MS. Our new data will shed light on tracing bacterial signals in carbonates from the geological record. [1] Young & Galy (2004). Rev. Min. Geochem. 55, p197-230. [2] Pogge von Strandmann (2008). Geochem. Geophys. Geosys. 9 DOI:10.1029/2008GC002209. [3] Castanier, et al. (1999). Sed. Geol. 126, 9-23. [4] Cacchio, et al. (2003

  15. Isotopic investigation of the late neoproterozoic and early cambrian carbon cycle on the northern Yangtze platform, south China

    International Nuclear Information System (INIS)

    Guo Qingjun; Liu Congqiang; Harald Strauss; Tatiana Goldberg

    2003-01-01

    The Precambrian-Cambrian transition is one of the critical time intervals in Earth history. Profound geotectonic, climatic and biological changes occur during the late Neoproterozoic and its transition into the early Cambrian. This study has researched on paired carbonate and organic carbon isotope determinations from Nanjiang, Sichuan Province of the Yangtze Platform, and provided a preliminary geochemical explanation for environmental variations and bio-events observed on the northern Yangtze Platform during the Precambrian-Cambrian transitional interval and their causal relationship. Organic carbon isotopic compositions on sediments vary from -35.8 to -30.1‰ at Nanjiang section; carbonate carbon isotopic compositions change between -3.5 and +0.5‰. Various carbon and sulphur isotopic compositions, different pyrite and organic matter content reflect changing environment and burial of organic matter in the Dengying Fm., the lower and upper part of Niutitang Fm. Anoxic conditions result in widespread preservation of organic rich sediments and pyrites in the black shales on the Yangtze Platform. (authors)

  16. Investigating Pathways of Nutrient and Energy Flows Through Aquatic Food Webs Using Stable Isotopes of Carbon and Nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hadwen, W. L.; Bunn, S. E. [Australian Rivers Institute, Griffith School of Environment, Griffith University, Nathan Campus, Brisbane, Queensland (Australia)

    2013-05-15

    Carbon and nitrogen stable isotopes can provide valuable insights into pathways of nutrient and energy flows in aquatic ecosystems. Carbon stable isotopes are principally used to trace pathways of organic matter transfer through aquatic food webs, particularly with regard to identifying the dominant sources of nutrition for aquatic biota. Stable isotopes of carbon have been widely used to answer one of the most pressing questions in aquatic food web ecology - to what degree do in-stream (autochthonous) and riparian (allochthonous) sources of energy fuel riverine food webs? In conjunction with carbon stable isotopes, nitrogen stable isotopes have been used to determine the trophic position of consumers and to identify the number of trophic levels in aquatic food webs. More recently, stable nitrogen isotopes have been recommended as indicators of anthropogenic disturbances. Specifically, agricultural land uses and/or sewage effluent discharge have been shown to significantly increase {delta}{sup 15}N signatures in primary producers and higher order consumers in freshwater, estuarine and marine environments. Together, carbon and nitrogen stable isotopes can be used to examine natural food web functions as well as the degree to which human modifications to catchments and aquatic environments can influence aquatic ecosystem function. (author)

  17. [Carbon isotope fractionation in plants]: Annual technical progress report

    International Nuclear Information System (INIS)

    O'Leary, M.H.

    1988-01-01

    Plants fractionate carbon isotopes during photosynthesis in ways which reflect photosynthetic pathway and environment. The fractionation is product of contributions from diffusion, carboxylation and other factors which can be understood using models which have been developed in our work. The object of our work is to use this fractionation to learn about the factors which control the efficiency of photosynthesis. Unlike previous studies, we do not rely principally on combustion methods, but instead develop more specific methods with substantially higher resolving power. We have recently developed a new short-term method for studying carbon isotope fractionation which promises to provide a level of detail about temperature, species, and light intensity effects on photosynthesis which has not been available until now. We are studying the isotopic compositions of metabolites (particularly aspartic acid) in C 3 plants in order to determine the role of phosphoenolpyruvate carboxylase in C 3 photosynthesis. We are studying the relative roles of diffusion and carboxylation in nocturnal CO 2 fixation in CAM plants. We are studying the use of isotopic content as an index of water-use efficiency in C 3 plants. We are developing new methods for studying carbon metabolism in plants. 3 refs

  18. Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate

    International Nuclear Information System (INIS)

    Versteegh, E.A.A.; Black, S.; Hodson, M.E.

    2017-01-01

    In this study we investigate carbon isotope fractionation during the crystallization of biogenic calcium carbonate. Several species of earthworm including Lumbricus terrestris secrete CaCO_3. Initially a milky fluid comprising micro-spherules of amorphous CaCO_3 (ACC) is secreted into pouches of the earthworm calciferous gland. The micro-spherules coalesce and crystalize to form millimetre scale granules, largely comprising calcite. These are secreted into the earthworm intestine and from there into the soil. L. terrestris were cultured for 28 days in two different soils, moistened with three different mineral waters at 10, 16 and 20 °C. The milky fluid in the calciferous glands, granules in the pouches of the calciferous glands and granules excreted into the soil were collected and analysed by FTIR spectroscopy to determine the form of CaCO_3 present and by IRMS to determine δ"1"3C values. The milky fluid was ACC. Granules removed from the pouches and soil were largely calcite; the granules removed from the pouches contained more residual ACC than those recovered from the soil. The δ"1"3C values of milky fluid and pouch granules became significantly more negative with increasing temperature (p ≤ 0.001). For samples from each temperature treatment, δ"1"3C values became significantly (p ≤ 0.001) more negative from the milky fluid to the pouch granules to the soil granules (−13.77, −14.69 and −15.00 respectively at 10 °C; −14.37, −15.07 and −15.18 respectively at 16 °C and −14.89, −15.41 and −15.65 respectively at 20 °C). Fractionation of C isotopes occurred as the ACC recrystallized to form calcite with the fractionation factor ε_c_a_l_c_i_t_e_-_A_C_C = −1.20 ± 0.52‰. This is consistent with the crystallization involving dissolution and reprecipitation rather than a solid state rearrangement. Although C isotopic fractionation has previously been described between different species of dissolved inorganic carbon

  19. What Drives Carbon Isotope Fractionation by the Terrestrial Biosphere?

    Science.gov (United States)

    Still, Christopher; Rastogi, Bharat

    2017-11-01

    During photosynthesis, terrestrial plants preferentially assimilate the lighter and much more abundant form of carbon, 12C, which accounts for roughly 99% of naturally occurring forms of this element. This photosynthetic preference for lighter carbon is driven principally by differences in molecular diffusion of carbon dioxide with differing 13C/12C across stomatal pores on leaves, followed by differences in carboxylation rates by the Rubisco enzyme that is central to the process of photosynthesis. As a result of these slight preferences, which work out to about a 2% difference in the fixation rates of 12CO2 versus 13CO2 by C3 vegetation, plant tissues are depleted in the heavier form of carbon (13C) relative to atmospheric CO2. This difference has been exploited in a wide range of scientific applications, as the photosynthetic isotope signature is passed to ecosystem carbon pools and through ecological food webs. What is less appreciated is the signature that terrestrial carbon exchanges leave on atmospheric CO2, as the net uptake of carbon by land plants during their growing season not only draws down the local CO2 concentration, it also leaves behind relatively more CO2 molecules containing 13C. The converse happens outside the growing season, when autotrophic and heterotrophic respiration predominate. During these periods, atmospheric CO2 concentration increases and its corresponding carbon isotope composition becomes relatively depleted in 13C as the products of photosynthesis are respired, along with some small isotope fractionation that happen downstream of the initial photosynthetic assimilation. Similar phenomena were first observed at shorter time scales by the eminent carbon cycle scientist, Charles (Dave) Keeling. Keeling collected samples of air in glass flasks from sites along the Big Sur coast that he later measured for CO2 concentration and carbon isotope composition (δ13C) in his lab (Keeling, 1998). From these samples, Keeling observed increasing

  20. Isotopic Hg in an Allende carbon-rich residue

    Science.gov (United States)

    Reed, G. W., Jr.; Jovanovic, S.

    1990-01-01

    A carbon-rich residue from Allende subjected to stepwise heating yielded two isotopically resolvable types of Hg: one with an (Hg-196)/(Hg-202) concentration ratio the same as terrestrial (monitor) Hg; the other enriched in Hg-196 relative to Hg-202 by about 60 percent. Hg with the 202 isotope enriched relative to 196, as is found in bulk Allende, was not observed. Whether the result of mass fractionation or nucleosynthesis, the distinct types of Hg entered different carrier phases and were not thermally mobilized since the accretion of the Allende parent body.

  1. Isotopic Hg in an Allende carbon-rich residue

    International Nuclear Information System (INIS)

    Reed, G.W. Jr.; Jovanovic, S.

    1990-01-01

    A carbon-rich residue from Allende subjected to stepwise heating yielded two isotopically resolvable types of Hg: one with an (Hg-196)/(Hg-202) concentration ratio the same as terrestrial (monitor) Hg; the other enriched in Hg-196 relative to Hg-202 by about 60 percent. Hg with the 202 isotope enriched relative to 196, as is found in bulk Allende, was not observed. Whether the result of mass fractionation or nucleosynthesis, the distinct types of Hg entered different carrier phases and were not thermally mobilized since the accretion of the Allende parent body. 9 refs

  2. Isotopic characteristics of two kinds of hydrothermal carbonation in the Maria Lazara gold deposit. Goias Estate of Central Brazil

    International Nuclear Information System (INIS)

    Pulz, G.; Fuck, R.

    1998-01-01

    In the hydrothermal halo of the Maria Lazara gold deposit, two kinds of carbonation were identified: pervasive carbonation, which corresponds to the disseminations of calcite in the hydrothermal halo represented by the biotite-sulfide and carbonate-chlorite zones and, venular carbonation expressed by quartz and calcite veins inserted in the inner biotite-sulfide zone show an organic carbon component depleted in C. In the carbonate-chlorite zone the calcite isotopic behavior reflects the Co2 derived from the metamorphism o the basic host-rocks. (author)

  3. Studies of carbon--isotope fractionation. Annual progress report, December 1, 1974--November 30, 1975

    International Nuclear Information System (INIS)

    Ishida, T.

    1975-01-01

    The vapor pressure isotope effect of 13 C/ 12 C-substitution in CClF 3 was measured at temperatures between 169 0 and 206 0 K by means of cryogenic distillation. The 13 C/ 12 C-vapor pressure isotope effect in CHF 3 was also studied at temperatures between 161 0 and 205 0 K by a similar method. The construction of a cryostat has progressed as scheduled. The investigation of carbon isotope exchange equilibria between carbon dioxide and various carbamates dissolved in various organic solvents has continued. The five-stage system of Taylor-Ghate design was improved to shorten the transient time. A single stage apparatus was designed, built, and tested. These systems are used to measure the equilibrium constants and various phase equilibria involved in the carbon dioxide--carbamate system. The investigation of the explicit method of total isotope effect has made progress. A satisfactory approximation was found for the classical partition function of a Morse oscillator. The method gives a reasonable result at rho identical with 1 / 2 √(u/sub e//x/sub e/) greater than 1.5. The medium cluster approach was applied to isotopic methanes to investigate the effects of intermolecular distance and mutual orientations of molecules in the liquid upon vapor pressure isotope effect. It was found that all geometrical effects studied tend to vanish as the size of clusters is increased. Isotope effect in the zero-point energy shifts on condensation was calculated on the basis of London dispersion forces in liquid and a semi-empirical molecular orbital theory, and was favorably compared with experimental results

  4. Influence of diet on the distribution of carbon isotopes in animals

    International Nuclear Information System (INIS)

    DeNiro, M.J.; Epstein, S.

    1978-01-01

    The influence of diet on the distribution of carbon isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant carbon isotopic composition. The isotopic composition of the whole body of an animal reflects the isotopic composition of its diet, but the animal is on average enriched in delta 13 C by about 1 part per thousand relative to the diet. In three of the four cases examined the 13 C enrichment of the whole body relative to the diet is balanced by a 13 C depletion of the respired CO 2 . The isotopic relationships between the whole bodies of animals and their diets are similar for different species raised on the same diet and for the same species raised on different diets. However, the delta 13 C values of whole bodies of individuals of a species raised on the same diet may differ by up to 2 parts per thousand. The relationship between the 13 C/ 12 C ratio of a tissue and the 13 C/ 12 C ratio of the diet depends both on the type of tissue and on the nature of the diet. Many of the isotopic relationships among the major biochemical fractions, namely the lipid, carbohydrate and protein fractions, are qualitatively preserved as diet carbon is incorporated into the animal. However, the difference between the delta 13 C values of a biochemical fraction in an animal and in its diet may be as large as 3 parts per thousand. The delta 13 C values of the biochemical components collagen chitin and the insoluble organic fraction of shells, all of which are often preserved in fossil material, are related to the isotopic composition of the diet. (author)

  5. CO2-dependent carbon isotope fractionation in the dinoflagellate Alexandrium tamarense

    Science.gov (United States)

    Wilkes, Elise B.; Carter, Susan J.; Pearson, Ann

    2017-09-01

    The carbon isotopic composition of marine sedimentary organic matter is used to resolve long-term histories of pCO2 based on studies indicating a CO2-dependence of photosynthetic carbon isotope fractionation (εP). It recently was proposed that the δ13C values of dinoflagellates, as recorded in fossil dinocysts, might be used as a proxy for pCO2. However, significant questions remain regarding carbon isotope fractionation in dinoflagellates and how such fractionation may impact sedimentary records throughout the Phanerozoic. Here we investigate εP as a function of CO2 concentration and growth rate in the dinoflagellate Alexandrium tamarense. Experiments were conducted in nitrate-limited chemostat cultures. Values of εP were measured on cells having growth rates (μ) of 0.14-0.35 d-1 and aqueous carbon dioxide concentrations of 10.2-63 μmol kg-1 and were found to correlate linearly with μ/[CO2(aq)] (r2 = 0.94) in accord with prior, analogous chemostat investigations with eukaryotic phytoplankton. A maximum fractionation (εf) value of 27‰ was characterized from the intercept of the experiments, representing the first value of εf determined for an algal species employing Form II RubisCO-a structurally and catalytically distinct form of the carbon-fixing enzyme. This value is larger than theoretical predictions for Form II RubisCO and not significantly different from the ∼25‰ εf values observed for taxa employing Form ID RubisCO. We also measured the carbon isotope contents of dinosterol, hexadecanoic acid, and phytol from each experiment, finding that each class of biomarker exhibits different isotopic behavior. The apparent CO2-dependence of εP values in our experiments strengthens the proposal to use dinocyst δ13C values as a pCO2 proxy. Moreover, the similarity between the εf value for A. tamarense and the consensus value of ∼25‰ indicates that the CO2-sensitivity of carbon isotope fractionation saturates at similar CO2 levels across all three

  6. Clumped-isotope geochemistry of carbonates: A new tool for the reconstruction of temperature and oxygen isotope composition of seawater

    Energy Technology Data Exchange (ETDEWEB)

    Bernasconi, Stefano M., E-mail: Stefano.bernasconi@erdw.ethz.ch [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Schmid, Thomas W.; Grauel, Anna-Lena [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Mutterlose, Joerg [Institut fuer Geologie, Mineralogie und Geophysik, Ruhr Universitaet Bochum, Universitaetsstr. 150, 44801 Bochum (Germany)

    2011-06-15

    Highlights: > Clumped-isotope thermometry of carbonates is discussed. > Clumped isotopes of Belemnites show higher sea surface temperatures than commonly assumed for the lower Cretaceous. > The potential of clumped-isotope measurement on foraminifera is discussed. - Abstract: Clumped-isotope geochemistry deals with State of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes rather than with the most abundant ones. Among its possible applications, carbonate clumped-isotope thermometry is the one that has gained most attention because of the wide potential of applications in many disciplines of the earth sciences. In particular, it allows reconstructing the temperature of formation of carbonate minerals without knowledge of the isotopic composition of the water from which they were formed. In addition, the O isotope composition of the waters from which they were formed can be calculated using the {delta}{sup 18}O of the same carbonate sample. This feature offers new approaches in paleoclimatology for reconstructing past global geochemical cycles. In this contribution two applications of this method are presented. First the potential of a new analytical method of measurement of clumped isotopes on small samples of foraminifera, for high-resolution SST and seawater {delta}{sup 18}O reconstructions from marine sediments is shown. Furthermore the potential of clumped isotope analysis of belemnites, for reconstructing seawater {delta}{sup 18}O and temperatures in the Cretaceous is shown.

  7. Assessing the stability of soil organic matter by fractionation and 13C isotope techniques

    Science.gov (United States)

    Larionova, A. A.; Zolotareva, B. N.; Kvitkina, A. K.; Evdokimov, I. V.; Bykhovets, S. S.; Stulin, A. F.; Kuzyakov, Ya. V.; Kudeyarov, V. N.

    2015-02-01

    Carbon pools of different stabilities have been separated from the soil organic matter of agrochernozem and agrogray soil samples. The work has been based on the studies of the natural abundance of the carbon isotope composition by C3-C4 transition using the biokinetic, size-density, and chemical fractionation (6 M HCl hydrolysis) methods. The most stable pools with the minimum content of new carbon have been identified by particle-size and chemical fractionation. The content of carbon in the fine fractions has been found to be close to that in the nonhydrolyzable residue. This pool makes up 65 and 48% of Corg in the agrochernozems and agrogray soils, respectively. The combination of the biokinetic approach with particle-size fractionation or 6 M HCl hydrolysis has allowed assessing the size of the medium-stable organic carbon pool with a turnover time of several years to several decades. The organic matter pool with this turnover rate is usually identified from the variation in the 13C abundance by C3-C4 transition. In the agrochernozems and agrogray soils, the medium-stable carbon pool makes up 35 and 46% of Corg, respectively. The isotope indication may be replaced by a nonisotope method to significantly expand the study of the inert and mediumstable organic matter pools in the geographical aspect, but this requires a comparative analysis of particle-size and chemical fractionation data for all Russian soils.

  8. Cavity Ring-down Spectroscopy for Carbon Isotope Analysis with 2 μm Diode Laser

    International Nuclear Information System (INIS)

    Hiromoto, K.; Tomita, H.; Watanabe, K.; Kawarabayashi, J.; Iguchi, T.

    2009-01-01

    We have made a prototype based on CRDS with 2 μm diode laser for carbon isotope analysis of CO 2 in air. The carbon isotope ratio was obtained to be (1.085±0.012)x10 -2 which shows good agreement with the isotope ratio measured by the magnetic sector-type mass spectrometer within uncertainty. Hence, we demonstrated the carbon isotope analysis based on CRDS with 2 μm tunable diode laser.

  9. Elemental and isotope behavior of macromolecular organic matter from CM chondrites during hydrous pyrolysis

    Science.gov (United States)

    Oba, Y.; Naraoka, H.

    2009-08-01

    A new insight into carbon and hydrogen isotope variations of insoluble organic matter (IOM) is provided from seven CM chondrites, including Murchison and six Antarctic meteorites (Y-791198, Y-793321, A-881280, A-881334, A-881458 and B-7904) as well as Murchison IOM residues after hydrous pyrolysis at 270-330 °C for 72 h. Isotopic compositions of bulk carbon (δ13Cbulk) and hydrogen (δD) of the seven IOMs vary widely, ranging from -15.1 to -7.6‰ and +133 to +986‰, respectively. Intramolecular carboxyl carbon (δ13CCOOH) is more enriched in 13C by 7.5 -11‰ than bulk carbon. After hydrous pyrolysis of Murchison IOM at 330 °C, H/C ratio, δ13Cbulk, δ13CCOOH, and δD values decrease by up to 0.31, 3.5‰, 5.5‰, and 961‰, respectively. The O/C ratio increases from 0.22 to 0.46 at 270 °C and to 0.25 at 300 °C, and decreases to 0.10 at 330 °C. δ13Cbulk- δD cross plot of Murchison IOM and its pyrolysis residues shows an isotopic sequence. Of the six Antarctic IOMs, A-881280, A-881458, Y-791198 and B-7904 lie on or near the isotopic sequence depending on the degree of hydrous and/or thermal alteration, while A-881334 and Y-793321 consist of another distinct isotope group. A δ13Cbulk-δ13CCOOH cross-plot of IOMs, including Murchison pyrolysis residues, has a positive correlation between them, implying that the oxidation process to produce carboxyls is similar among all IOMs. These isotope distributions reflect various degree of alteration on the meteorite parent bodies and/or difference in original isotopic compositions before the parent body processes.

  10. Triple oxygen isotopes in biogenic and sedimentary carbonates

    Science.gov (United States)

    Passey, Benjamin H.; Hu, Huanting; Ji, Haoyuan; Montanari, Shaena; Li, Shuning; Henkes, Gregory A.; Levin, Naomi E.

    2014-09-01

    The 17O anomaly (Δ17O) of natural waters has been shown to be sensitive to evaporation in a way analogous to deuterium excess, with evaporated bodies of water (e.g., leaf waters, lake waters, animal body waters) tending to have lower Δ17O than primary meteoric waters. In animal body water, Δ17O relates to the intake of evaporated waters, evaporative effluxes of water, and the Δ17O value of atmospheric O2, which itself carries signatures of global carbon cycling and photochemical reactions in the stratosphere. Carbonates have the potential to record the triple oxygen isotope compositions of parent waters, allowing reconstruction of past water compositions, but such investigations have awaited development of methods for high-precision measurement of Δ17O of carbonate. We describe optimized methods based on a sequential acid digestion/reduction/fluorination approach that yield Δ17O data with the high precision (∼0.010‰, 1σ) needed to resolve subtle environmental signals. We report the first high-precision Δ17O dataset for terrestrial carbonates, focusing on vertebrate biogenic carbonates and soil carbonates, but also including marine invertebrates and high-temperature carbonates. We determine apparent three-isotope fractionation factors between the O2 analyte derived from carbonate and the parent waters of the carbonate. These in combination with appropriate temperature estimates (from clumped isotope thermometry, or known or estimated body temperatures) are used to calculate the δ18O and Δ17O of parent waters. The clearest pattern to emerge is the strong 17O-depletion in avian, dinosaurian, and mammalian body water (from analyses of eggshell and tooth enamel) relative to meteoric waters, following expected influences of evaporated water (e.g., leaf water) and atmospheric O2 on vertebrate body water. Parent waters of the soil carbonates studied here have Δ17O values that are similar to or slightly lower than global precipitation. Our results suggest

  11. Speleothem records of acid sulphate deposition and organic carbon mobilisation

    Science.gov (United States)

    Wynn, Peter; Fairchild, Ian; Bourdin, Clement; Baldini, James; Muller, Wolfgang; Hartland, Adam; Bartlett, Rebecca

    2017-04-01

    Dramatic increases in measured surface water DOC in recent decades have been variously attributed to either temperature rise, or destabilisation of long-term soil carbon pools following sulphur peak emissions status. However, whilst both drivers of DOC dynamics are plausible, they remain difficult to test due to the restricted nature of the available records of riverine DOC flux (1978 to present), and the limited availability of SO2 emissions inventory data at the regional scale. Speleothems offer long term records of both sulphur and carbon. New techniques to extract sulphur concentrations and isotopes from speleothem calcite have enabled archives of pollution history and environmental acidification to be reconstructed. Due to the large dynamic range in sulphur isotopic values from end member sources (marine aerosol +21 ‰ to continental biogenic emissions -30 ‰) and limited environmental fractionation under oxidising conditions, sulphur isotopes form an ideal tracer of industrial pollution and environmental acidification in the palaeo-record. We couple this acidification history to the carbon record, using organic matter fluorescence and trace metals. Trace metal ratios and abundance can be used to infer the type and size of organic ligand and are therefore sensitive to changes in temperature as a driver of organic carbon processing and biodegradation. This allows fluorescent properties and ratios of trace metals in speleothem carbonate to be used to represent both the flux of organic carbon into the cave as well as the degradation pathway. Here we present some of the first results of this work, exploring sulphur acidification as a mechanistic control on carbon solubility and export throughout the twentieth century.

  12. The carbon isotopic compositions of individual compounds from ancient and modern depositional environments

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, K.H.

    1991-01-01

    This work examines factors influencing the isotopic compositions of individual compounds and, consequently, that of preserved sedimentary organic matter. Specifically, isotope effects associated with reactions resulting in the production and degradation of organic matter in the water column and reactions affecting preservation during diagenesis are considered in three projects. The first documents the preservation of the isotopic compositions of hydrocarbons altered by diagenetic reaction. Isotopic compositions of structurally-related polycyclic aromatic hydrocarbons (PAH) from the Messel Shale show little variation with increased unsaturation. The influence of environmental conditions on the isotopic composition of sedimentary organic carbon is documented by a comparison of the {delta}{sup 13}C of hydrocarbons in the marine Julia Creek Oil Shale and the lacustrine Condor Oil Shale. A model is proposed for identifying relative degrees of oxygenation and productivity within a paleoenvironment based on the observed {sup 13}C contents of biomarkers. Effects of processes proposed in the environmental model are documented by an examination of hydrocarbons from the waters and sediments of the Black Sea and of the Cariaco Trench. Sources of individual compounds are identified by comparison of their {sup 13}C content with that predicted for autotrophic biomass calculated from the concentration and {sup 13}C content of CO{sub 2}(aq) in the surface waters.

  13. Boron isotope fractionation in magma via crustal carbonate dissolution.

    Science.gov (United States)

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  14. Boron isotope fractionation in magma via crustal carbonate dissolution

    Science.gov (United States)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to -41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  15. Stable carbon isotope fractionation in the search for life on early Mars

    Science.gov (United States)

    Rothschild, L. J.; Desmarais, D.

    1989-01-01

    The utility of measurements of C-13/C-12 ratios in organic vs inorganic deposits for searching for signs of life on early Mars is considered. It is suggested that three assumptions are necessary. First, if there was life on Mars, it caused the fractionation of carbon isotopes in analogy with past biological activity on earth. Second, the fractionation would be detectable. Third, if a fractionation would be observed, there exist no abiotic explanations for the observed fractionation pattern.

  16. A carbon isotope survey of South African honey

    International Nuclear Information System (INIS)

    Thorp, J.A.L.; Lanham, J.L.; Wenner, D.B.; Van der Merwe, N.J.

    1987-01-01

    Stable carbon isotope analysis has been successfully employed in various fields, including botany, geochemistry, archaeology and, more recently, as an analytical tool in the food industry. In the analysis of food, it has been primarily directed at quality control and the detection of cheap adulterants to 'natural' foods. The method is based on the known characteristic of differences in the 13 C to 12 C ratios produced by two groups of plants with different photosynthetic mechanisms, known as C 3 and C 4 . This patterning is useful because the cheapest sources of alcohol, sweeteners and flavourings are derived from C 4 plants, maize and sugar cane, whereas traditional Old World sources such as grapes, nectar and fruit are derived from C 3 plants. The results of an informal isotopic survey of South African honeys are reported. This isotopic method is particularly useful in that it is not possible to circumvent it by manipulation of the sugars or any of the other constituents

  17. Patterns in Stable Isotope Values of Nitrogen and Carbon in ...

    Science.gov (United States)

    Stable isotope measurements of nitrogen and carbon (15N, 13ddC) are often used to characterize estuarine, nearshore, and open ocean ecosystems. Reliable information about the spatial distribution of base-level stable isotope values, often represented by primary producers, is critical to interpreting values in these ecosystems. While base-level isotope data are generally readily available for estuaries, nearshore coastal waters, and the open ocean, the continental shelf is less studied. To address this, and as a first step toward developing a surrogate for base-level isotopic signature in this region, we collected surface and deep water samples from the United States’ eastern continental shelf in the Western Atlantic Ocean, from the Gulf of Maine to Cape Hatteras, periodically between 2000 and 2013. During the study, particulate matter 15dN values ranged from 0.8 to 17.4‰, and 13dC values from −26.4 to −15.6‰over the region. We used spatial autocorrelation analysis and random forest modeling to examine the spatial trends and potential environmental drivers of the stable isotope values. We observed general trends toward lower values for both nitrogen and carbon isotopes at the seaward edge of the shelf. Conversely, higher 15dN and 13dC values were observed on the landward edge of the shelf, in particular in the southern portion of the sampling area. Across all sites, the magnitude of the difference between the 15dN of subsurface and surface particulate m

  18. Carbon isotopes and concentrations in mid-oceanic ridge basalts

    International Nuclear Information System (INIS)

    Pineau, F.; Javoy, M.

    1983-01-01

    In order to estimate carbon fluxes at mid-ocean ridges and carbon isotopic compositions in the convective mantle, we have studied carbon concentrations and isotopic compositions in tholeiitic glasses from the FAMOUS zone (Mid-Atlantic Ridge at 36 0 N) and East Pacific Rise from 21 0 N (RITA zone) to 20 0 S. These samples correspond essentially to the whole spectrum of spreading rates (2-16 cm/yr). The contain: -CO 2 vesicles in various quantities (3-220 ppm C) with delta 13 C between -4 and -9per mille relative to PDB, in the range of carbonatites and diamonds. - Carbonate carbon (3-100 ppm C) with delta 13 C between -2.6 and -20.0per mille relative to PDB. - Dissolved carbon at a concentration of 170+-10 ppm under 250 bar pressure with delta 13 C from -9 to -21per mille relative to PDB. This dissolved carbon, not contained in large CO 2 vesicles, corresponds to a variety of chemical forms among which part of the above carbonates, microscopic CO 2 bubbles and graphite. The lightest portions of this dissolved carbon are extracted at low temperatures (400-600 0 C) whereas the CO 2 from the vesicles is extracted near fusion temperature. These features can be explained by outgassing processes in two steps from the source region of the magma: (1) equilibrium outgassing before the second percolation threshold, where micron size bubbles are continuously reequilibrated with the magma; (2) distillation after the second percolation threshold when larger bubbles travel faster than magma concentrations to the surface. The second step may begin at different depths apparently related to the spreading rate, shallower for fast-spreading ridges than for slow-spreading ridges. (orig./WL)

  19. Descriptions of carbon isotopes within the energy density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Atef [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia and Department of Physics, Al-Azhar University, 71524 Assiut (Egypt); Cheong, Lee Yen; Yahya, Noorhana [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Tammam, M. [Department of Physics, Al-Azhar University, 71524 Assiut (Egypt)

    2014-10-24

    Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.

  20. Descriptions of carbon isotopes within the energy density functional theory

    International Nuclear Information System (INIS)

    Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana; Tammam, M.

    2014-01-01

    Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in 15 C, 17 C and 19 C, and the two-neutron halo structures in 16 C and 22 C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations

  1. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    Science.gov (United States)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-09-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.

  2. The use of carbon stable isotope ratios in drugs characterization

    Energy Technology Data Exchange (ETDEWEB)

    Magdas, D. A., E-mail: gabriela.cristea@itim-cj.ro; Cristea, G., E-mail: gabriela.cristea@itim-cj.ro; Bot, A., E-mail: gabriela.cristea@itim-cj.ro; Mirel, V., E-mail: gabriela.cristea@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Str., 400293 Cluj-Napoca (Romania)

    2013-11-13

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ{sup 13}C between batches from −29.7 to −31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between −31.3 to −34.9% for the same type of analgesic, but from different manufactures.

  3. Tests of intestinal absorption using carbon-14-labeled isotopes

    International Nuclear Information System (INIS)

    Fromm, H.; Sarva, R.P.

    1983-01-01

    Beta radiation-emitting isotopes are being used increasingly in diagnostic gastroenterology for the study of absorption. The major reason for the popularity of radioisotopes is that their use is convenient for patient and physician alike. They often obviate naso- or orointestinal intubation and the collection, storage, and analysis of stool. The radioactivity used for the studies of digestive and absorptive processes is small and is not hazardous. In spite of the safety of the radiolabeled compounds, their use is restricted in children and pregnant women. Therefore, for most tests, promising alternative methods that make use of the stable isotope of carbon, /sup 13/C, instead of the radioactive /sup 14/C have been developed. The analysis of stable isotopes requires more sophisticated technology than that of radioactive compounds, however. Only a few centers presently are equipped and staffed to analyze stable isotopes on a routine basis. In contrast, the analysis of radioactive isotopes has become a routine procedure in almost ever major laboratory. The last decade has brought the development of several radioactive absorption tests. The clinically most useful tests relate to the study of bile acid, fat, lactose, and xylose absorption. All of these tests utilize the excretion rate of /sup 14/CO/sub 2/ in breath after ingestion of a /sup 14/C-labeled compound as a measure of the rate of its absorption or malabsorption

  4. Elemental and isotopic (C, O, Sr, Nd) compositions of Late Paleozoic carbonated eclogite and marble from the SW Tianshan UHP belt, NW China: Implications for deep carbon cycle

    Science.gov (United States)

    Zhu, Jianjiang; Zhang, Lifei; Lü, Zeng; Bader, Thomas

    2018-03-01

    Subduction zones are important for understanding of the global carbon cycle from the surface to deep part of the mantle. The processes involved the metamorphism of carbonate-bearing rocks largely control the fate of carbon and contribute to local carbon isotopic heterogeneities of the mantle. In this study, we present petrological and geochemical results for marbles and carbonated eclogites in the Southwestern Tianshan UHP belt, NW China. Marbles are interlayered with coesite-bearing pelitic schists, and have Sr-Nd isotopic values (εNd (T=320Ma) = -3.7 to -8.9, 87Sr/86Sr (i) = 0.7084-0.7089), typical of marine carbonates. The marbles have dispersed low δ18OVSMOW values (ranging from 14 to 29‰) and unaffected carbon isotope (δ13CVPDB = -0.2-3.6‰), possibly due to infiltration of external H2O-rich fluids. Recycling of these marbles into mantle may play a key role in the carbon budget and contributed to the mantle carbon isotope heterogeneity. The carbonated eclogites have high Sr isotopic compositions (87Sr/86Sr (i) = 0.7077-0.7082) and positive εNd (T = 320 Ma) values (from 7.6 to 8.2), indicative of strong seafloor alteration of their protolith. The carbonates in the carbonated eclogites are mainly dolomite (Fe# = 12-43, Fe# = Fe2+/(Fe2+ + Mg)) that were added into oceanic basalts during seafloor alteration and experienced calcite - dolomite - magnesite transformation during the subduction metamorphic process. The uniformly low δ18O values (∼11.44‰) of carbonates in the carbontaed eclogites can be explained by closed-system equilibrium between carbonate and silicate minerals. The low δ13C values (from -3.3 to -7.7‰) of the carbonated eclogites most likely reflect contribution from organic carbon. Recycling of these carbonated eclogites with C isotope similar to typical mantle reservoirs into mantle may have little effect on the mantle carbon isotope heterogeneity.

  5. Carbon isotope ratios in field Population II giant stars

    International Nuclear Information System (INIS)

    Sneden, C.; Pilachowski, C.A.; Vandenberg, D.A.; Kitt Peak National Observatory, Tucson, AZ; Victoria Univ., Canada)

    1986-01-01

    Carbon isotope ratios have been derived from high-resolution spectra of the CH G-band in 15 very metal-poor Population II giant stars and two similar dwarf stars. Many of the giants possess very low C-12/C-13 ratios, some approaching the CN cycle equilibrium value. The metal-poor dwarfs do not have detectable CH-13 features; thus the low carbon isotope ratios in the giants probably are due to their internal evolutions. These results strongly support the idea that at least part of the anomalously low C/N values in Population II giants arises from very efficient mixing of their envelopes into the CN cycle burning layers. Detailed calculations of the expected CNO surface abundances in Population II giants in different evolutionary states have been performed. These computations demonstrate that the observed carbon isotope ratios cannot be produced during the first dredge-up mixing phases in low-mass, low metal abundance stars. Numerical experiments show that theoretical and observational results can be brought into agreement with artificially induced extra mixing. An agent to provoke this additional mixing has not been identified with certainty yet, although internal stellar rotation is a promising candidate. 63 references

  6. Carbon isotope ratios and isotopic correlations between components in fruit juices

    Science.gov (United States)

    Wierzchnicki, Ryszard

    2013-04-01

    Nowadays food products are defined by geographical origin, method of production and by some regulations concerning terms of their authenticity. Important data for confirm the authenticity of product are providing by isotopic methods of food control. The method checks crucial criteria which characterize the authenticity of inspected product. The European Union Regulations clearly show the tendency for application of the isotopic methods for food authenticity control (wine, honey, juice). The aim of the legislation steps is the protection of European market from possibility of the commercial frauds. Method of isotope ratio mass spectrometry is very effective tool for the use distinguishably the food products of various geographical origin. The basic problem for identification of the sample origin is the lack of databases of isotopic composition of components and information about the correlations of the data. The subject of the work was study the isotopic correlations existing between components of fruits. The chemical and instrumental methods of separation: water, sugars, organic acids and pulp from fruit were implemented. IRMS technique was used to measure isotopic composition of samples. The final results for original samples of fruits (apple, strawberry etc.) will be presented and discussed. Acknowledgement: This work was supported by the Polish Ministry of Science and Higher Education under grant NR12-0043-10/2010.

  7. Isotopic and chemical composition (δ13C, Δ14C, δ15N, C:N, SUVA254nm, % HPOA) of aquatic carbon and field conditions (water temperature, pH, discharge) in the Upper Mississippi River Basin, October 2014 – February 2016

    Data.gov (United States)

    Department of the Interior — This dataset contains stable isotope (δ13C) and radioisotope (Δ14C) compositions of dissolved inorganic carbon, dissolved organic carbon, particulate organic carbon,...

  8. Biomarkers, carbon isotopic composition and source rock potentials of Awgu coals, middle Benue trough, Nigeria

    Science.gov (United States)

    Adedosu, Taofik A.; Sonibare, Oluwadayo O.; Tuo, Jincai; Ekundayo, Olusegun

    2012-05-01

    Coal and carbonaceous shale samples were collected from two boreholes (BH 94 and BH 120) in Awgu formation of Middle Benue Trough, Nigeria. Source rock potentials of the samples were studied using biomarkers and carbon isotopic composition. Biomarkers in the aliphatic fractions in the samples were studied using Gas Chromatography-Mass Spectrometry (GC-MS). The Carbon isotope analysis of individual n-alkanes in the aliphatic fraction was performed using Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometer (GC-IRMS). The abundance of hopanes, homohopanes (C31-C35), and C29 steranes in the samples indicate terrestrial plant, phytoplankton and cyanobacteria contributions to the organic matter that formed the coal. High (Pr/Ph) ratio (3.04-11.07) and isotopic distribution of individual alkanes showed that the samples consisted of mixed terrestrial/marine organic matter deposited under oxic condition in lacustrine-fluvial/deltaic depositional environment. The maturity parameters derived from biomarker distributions showed that the samples are in the main phase of oil window.

  9. Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale

    Science.gov (United States)

    Hayes, J. M.; Takigiku, Ray; Ocampo, Ruben; Callot, Enry J.; Albrecht, Pierre

    1987-01-01

    It is shown here that the carbon isotopic compositions of biomarkers from the Eocene Messel shale, accumulated 47 + or - 2 million years ago in anaerobic waters at the bottom of a lake, allow identification of specific sources for some materials and reconstruction of carbon flows within the lake and its sediments. The C-13 content of organic matter synthesized by lacustrine primary producers can be estimated from the observed C-13 content of the geoporphyrins derived from their chlorophylls. Total organic material in the shale is depleted in C-13 by six parts per thousand relative to that input. This difference cannot be explained by selective loss of components enriched in C-13, nor, as shown by isotopic compositions of other biomarkers, by inputs from land plants surrounding the lake or from methanogenic bacteria.

  10. Position-specific isotope modeling of organic micropollutants transformations through different reaction pathways

    Science.gov (United States)

    Jin, Biao; Rolle, Massimo

    2016-04-01

    ., 2013. Integrated carbon and chlorine isotope modeling: Applications to chlorinated aliphatic hydrocarbons dechlorination. Environ. Sci. Technol. 47, 1443-1451. doi:10.1021/es304053h. [3] Jin, B., Rolle, M., 2014. Mechanistic approach to multi-element isotope modeling of organic contaminant degradation. Chemosphere 95, 131-139. doi:10.1016/j.chemosphere.2013.08.050.

  11. BIOGENIC VS. ABIOGENIC ISOTOPE SIGNATURES OF REDUCED CARBON COMPOUNDS: A LESSON FROM HYDROTHERMAL SYNTHESIS EXPERIMENTS

    International Nuclear Information System (INIS)

    Horita, J.

    2001-01-01

    With growing interest in and demonstrated cases of inorganic hydrothermal synthesis of reduced or organic carbon compounds from CO and CO(sub 2), it becomes crucial to establish geochemical criteria to distinguish reduced/organic carbon compounds of abiogenic origin from those of biogenic origin with overwhelming abundances on the surface and in subsurface of the Earth. Chemical and isotopic compositions, particularly(sup 13)C/(sup 12)C ratios, of reduced/organic carbon compounds have been widely utilized for deducing the origins and formation pathways of these compounds. An example is isotopic and C(sub 1)/(C(sub 2)+C(sub 3)) ratios of natural gases, which have been used to distinguish bacterial, thermogenic, and possible abiogenic origins. Another example is that ancient graphitic carbon with(delta)(sup 13)C values c-25per thousand has been considered of biogenic origin. Although these criteria could be largely valid, growing data including those from our hydrothermal experiments suggest that a great caution must be exercised

  12. Absorption of carbon dioxide and isotope exchange rate of carbon in a reaction system between carbon dioxide and carbamic acid

    International Nuclear Information System (INIS)

    Takeshita, Kenji; Kitamoto, Asashi

    1985-01-01

    The performance of isotope separation of carbon-13 by chemical exchange between carbon dioxide and carbamic acid was studied. The working fluid used in the study was a solution of DNBA, (C 4 H 9 ) 2 NH and n-octane mixture. Factors related to the isotope exchange rate were measured, such as the absorption rate of carbon dioxide into the solution of DNBA and n-octane, the isotope exchange rate and the separation factor in the reaction between CO 2 and carbamic acid. The absorption of CO 2 into the working fluid was the sum of chemical absorption by DNBA and physical absorption by n-octane. The absorption of carbon dioxide into the working fluid was negligible at temperatures over 90 0 C, but increased gradually at lower temperatures. Carbon dioxide was absorbed into DNBA by chemical absorption, and DNBA was converted to carbamic acid by the reaction. The reaction for synthesis and decomposition of carbamic acid was reversible. The separation factor in equilibrium reached a large value at lower temperatures. The isotope exchange rate between gas and liquid was proportional to the product of the concentration of carbamic acid and the concentration of CO 2 by physical absorption. The isotope separation of carbon by chemical exchange reaction is better operated under the conditions of lower temperature and higher pressure. (author)

  13. Organic carbon content of tropical zooplankton

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.

    In the Zuari and Mandovi estuaries variations in organic carbon of zooplankton are 26.4-38.8 and 24-39.9% of dry weight respectively. Maximum carbon content of estuarine zooplankton is observed in November. Organic carbon in nearshore and oceanic...

  14. Strontium isotopes in carbonate deposits at Crater Flat, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.D.; Futa, K.; Peterman, Z.E.; Stuckless, J.S.

    1991-01-01

    Strontium isotope studies of carbonates from soils, veins, eolian dust and Paleozoic basement sampled near Crater Flat, southwest of Yucca Mountain, provide evidence for the origins of these materials. Vein and soil carbonates have nearly identical ranges of 87 Sr/ 86 Sr, and eolian material has 87 Sr/ 86 Sr ratios at the lower end of the pedogenic range. The average 87 Sr/ 86 Sr of Paleozoic basement from Black Marble Hill is similar to the 87 Sr/ 86 Sr in the eolian dust, perhaps indicating a local source for this material. Possible spring deposits have generally higher 87 Sr/ 86 Sr than the other carbonates. These data are compared with similar data from areas east of Yucca Mountain

  15. Strontium isotopes in carbonate deposits at Crater Flat, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.D.; Futa, K.; Peterman, Z.E.; Stuckless, J.S.

    1991-01-01

    Strontium isotope studies of carbonates from soils, veins, eolian dust and Paleozoic basement samples near Crater Flat, southwest of Yucca Mountain, provide evidence for the origins of these materials. Vein and soil carbonates have nearly identical ranges of 87 Sr/ 86 Sr ratios at the lower end of the pedogenic range. The average 87 Sr/ 86 Sr of Paleozoic basement from Black Marble Hill is similar to the 87 Sr/ 86 Sr in the eolian dust, perhaps indicating a local source for this material. Possible spring deposits have generally higher 87 Sr/ 86 Sr than the other carbonates. These data are compared with similar data from areas east of Yucca Mountain. 7 refs., 5 figs

  16. On-line coupling of the MAT 251 with a Carlo Erba elemental analyzer for carbon isotope ratio measurements

    International Nuclear Information System (INIS)

    Pichlmayer, F.

    1986-06-01

    For carbon isotope investigations with a moderate precision demand of about 0.2 per mil in the isotope ratio fast and reliable results are attained by on line combination of the ANA 1500 Elemental Analyzer and the MAT 251 Isotope Mass Spectrometer. The crucial point hereof is the gas splitting device. By proper design and adjustment of the analytical parameters, good sample efficiency and a sharp CO 2 bulk within the He stream is reached. The main characteristics of this combined equipment are described and some isotopic results of organic and anorganic carbon in lake sediment-samples are given as well as deltasup1 3 C-analyses of spiritous liquors. (Author)

  17. Stable carbon isotopic composition of gasolines determined by isotope ratio monitoring gas chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, B.J.; Philp, R.P.; Allen, J.D. [University of Oklahoma, Norman, OK (United States). School of Geology and Geophysics

    2002-07-01

    A large number of underground gasoline storage facilities in the United States continuously leak gasoline into the subsurface, which makes gasoline a major groundwater contaminant. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) are used currently to characterize contaminated groundwater and soils. Correlations of contaminants with suspected source(s) are extremely difficult by these techniques because many gasolines have similar hydrocarbon distributions. The present study applied the technique of isotope ratio monitoring gas chromatography-mass spectrometry (irmGC-MS) to 19 gasoline samples from different areas of the USA. This allows a much better correlation of gasoline contaminants to source. Data obtained indicate a wide range of {sup {delta}}{sup 13}C values for 16 ubiquitous compounds in the gasolines. The majority of samples could be distinguished from each other on the basis of {sup {delta}}{sup 13}C hydrocarbon composition. The oxygenated additive methyl tertiary butyl ether (MTBE) was present in ten of the gasolines analyzed, and had a relatively narrow range of {sup {delta}}{sup 13}C values (-30.4 to -28.3 per mille). Preliminary investigations were also made to determine the extent of carbon isotopic fractionation after simple water washing and evaporation experiments. Results indicate that the majority of compounds did not undergo significant carbon isotopic fractionation as a result of these processes. (author)

  18. Correlating carbon and oxygen isotope events in early to middle Miocene shallow marine carbonates in the Mediterranean region using orbitally tuned chemostratigraphy and lithostratigraphy

    Science.gov (United States)

    Auer, Gerald; Piller, Werner E.; Reuter, Markus; Harzhauser, Mathias

    2015-04-01

    During the Miocene prominent oxygen isotope events (Mi-events) reflect major changes in glaciation, while carbonate isotope maxima (CM-events) reflect changes in organic carbon burial, particularly during the Monterey carbon isotope excursion. However, despite their importance to the global climate history they have never been recorded in shallow marine carbonate successions. The Decontra section on the Maiella Platform (central Apennines, Italy), however, allows to resolve them for the first time in such a setting during the early to middle Miocene. The present study improves the stratigraphic resolution of parts of the Decontra section via orbital tuning of high-resolution gamma ray (GR) and magnetic susceptibility data to the 405 kyr eccentricity metronome. The tuning allows, within the established biostratigraphic, sequence stratigraphic, and isotope stratigraphic frameworks, a precise correlation of the Decontra section with pelagic records of the Mediterranean region, as well as the global paleoclimatic record and the global sea level curve. Spectral series analyses of GR data further indicate that the 405 kyr orbital cycle is particularly well preserved during the Monterey Event. Since GR is a direct proxy for authigenic uranium precipitation during increased burial of organic carbon in the Decontra section, it follows the same long-term orbital pacing as observed in the carbon isotope records. The 405 kyr GR beat is thus correlated with the carbon isotope maxima observed during the Monterey Event. Finally, the Mi-events can now be recognized in the δ18O record and coincide with plankton-rich, siliceous, or phosphatic horizons in the lithology of the section.

  19. Stable isotope composition of atmospheric carbon monoxide. A modelling study

    International Nuclear Information System (INIS)

    Gromov, Sergey S.

    2014-01-01

    This study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ 13 C, δ 18 O and Δ 17 O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC-1 measurement platform. The systematically underestimated 13 CO/ 12 CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in 13 C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH 4 ) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH 4 to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in 13 C, were found significant when explicitly simulated. The

  20. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean

    OpenAIRE

    Druffel, E. R. M; Bauer, J. E; Griffin, S.

    2005-01-01

    We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters...

  1. Carbon isotope fractionation by thermophilic phototrophic sulfur bacteria: evidence for autotrophic growth in natural populations

    Science.gov (United States)

    Madigan, M. T.; Takigiku, R.; Lee, R. G.; Gest, H.; Hayes, J. M.

    1989-01-01

    Purple phototrophic bacteria of the genus Chromatium can grow as either photoautotrophs or photoheterotrophs. To determine the growth mode of the thermophilic Chromatium species, Chromatium tepidum, under in situ conditions, we have examined the carbon isotope fractionation patterns in laboratory cultures of this organism and in mats of C. tepidum which develop in sulfide thermal springs in Yellowstone National Park. Isotopic analysis (13C/12C) of total carbon, carotenoid pigments, and bacteriochlorophyll from photoautotrophically grown cultures of C. tepidum yielded 13C fractionation factors near -20%. Cells of C. tepidum grown on excess acetate, wherein synthesis of the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase ribulose bisphosphate carboxylase) was greatly repressed, were isotopically heavier, fractionation factors of ca. -7% being observed. Fractionation factors determined by isotopic analyses of cells and pigment fractions of natural populations of C. tepidum growing in three different sulfide thermal springs in Yellowstone National Park were approximately -20%, indicating that this purple sulfur bacterium grows as a photoautotroph in nature.

  2. Organic carbon organic matter and bulk density relationships in arid ...

    African Journals Online (AJOL)

    Soil organic matter (SOM) and soil organic carbon (SOC) constitute usually a small portion of soil, but they are one of the most important components of ecosystems. Bulk density (dB or BD) value is necessary to convert organic carbon (OC) content per unit area. Relationships between SOM, SOC and BD were established ...

  3. Carbon isotope analysis of n-alkanes in dust from the lower atmosphere over the eastern Atlantic

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schefuß, E.; Ratmeyer, V.; Stuut, J-B.W.; Jansen, J.H.F.

    2003-01-01

    Atmospheric dust samples collected along a transect off the West African coast have been investigated for their lipid content and compound-specific stable carbon isotope compositions. The saturated hydrocarbon fractions of the organic solvent extracts consist mainly of long-chain n-alkanes derived

  4. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone

    Science.gov (United States)

    Nelson, Bruce K.; Deniro, Michael J.; Schoeninger, Margaret J.; De Paolo, Donald J.; Hare, P. E.

    1986-09-01

    Paleodietary analysis based on variations in the trace element and stable isotopic composition of inorganic and organic phases in fossil bone depends on the assumption that measured values reflect in vivo values. To test for postmortem alteration, we measured 87Sr /86Sr , 13C /12C , 18O /16O and 15N /14N ratios and Sr concentrations in modern and prehistoric (610 to 5470 yr old) bones of animals with marine or terrestrial diets from Greenland. Bones from modern terrestrial feeders have substantially lower Sr concentrations and more radiogenic 87Sr /86Sr ratios than those from modern marine feeders. This contrast was not preserved in the prehistoric samples, which showed almost complete overlap for both Sr concentration and isotopic composition in bones from the two types of animals. Leaching experiments, X-ray diffraction analysis and infrared spectroscopy indicate that alteration of the Sr concentration and isotopic composition in prehistoric bone probably results from nearly complete exchange with groundwater. Oxygen isotope ratios in fossil apatite carbonate also failed to preserve the original discrimination between modern terrestrial and marine feeders. The C isotope ratio of apatite carbonate did not discriminate between animals with marine or terrestrial diets in the modern samples. Even so, the ranges of apatite δ 13C values in prehistoric bone are more scattered than in modern samples for both groups, suggesting alteration had occurred. δ 13C and δ 15N values of collagen in modern bone are distinctly different for the two feeding types, and this distinction is preserved in most of the prehistoric samples. Our results suggest that postmortem alteration of dietary tracers in the inorganic phases of bone may be a problem at all archaeological sites and must be evaluated in each case. While collagen analyzed in this study was resistant to alteration, evaluation of the possibility of diagenetic alteration of its isotopic composition in bones from other

  5. Application of natural Ra isotopes and {sup 234}Th as tracers of organic carbon export in Bransfield Strait, Antarctica; Aplicacao dos isotopos naturais de Ra e do Th-234 como tracadores do carbono organico exportado para o Estreito de Bransfield, Antartica

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Lucia Helena

    2011-07-01

    The Southern Ocean is the largest of several high-nutrient, low-chlorophyll (HNLC) regions in the world's oceans. This region plays a major role in regulating the global net transfer of carbon dioxide between the ocean and the atmosphere, in part because the annual photosynthetic uptake of CO{sub 2} by phytoplankton and resulting export of particulate organic carbon (POC) to the deep ocean. The element thorium has multiple radioisotopes that have emerged collectively as a powerful set of tracers for particle associated processes in the oceans. Of all the Th isotopes, {sup 234}Th (half-life 24.1 d) has been the focus of increasing attention and application in the past years. The production of {sup 234}Th from {sup 238}U, coupled with the conservative behavior of {sup 238}U in seawater, makes the source of {sup 234}Th easy to characterize. Moreover, the half-life of {sup 234}Th is sufficiently short to make it sensitive to the short-term (e.g. seasonal) changes that occur in the upper water column of the open ocean or in sediments or water column in coastal areas. Because of its very particle reactive behavior, {sup 234}Th is removed from a parcel of water in only two ways, through decay and through particle flux. Therefore, a steady-state 1D activity balance can be used to calculate its flux. Natural Ra isotopes have been also widely used in marine studies to trace water masses and to quantify mixing processes. This work presents results of a collaborative research on organic carbon fluxes distribution in the Bransfield Strait in order to evaluate its influence in the CO{sub 2} drawdown. Macro-nutrients, micro-nutrients and chlorophyll-a distributions were used to examine the pathway sources. Natural radium isotopes were applied as tracers to study the movement of shelf water, while {sup 234}Th was used as a tracer of particle flux in the upper ocean, since POC export via sinking particles is the primary mechanism of carbon sequestration in the Southern Ocean

  6. The effects of atmospheric [CO2] on carbon isotope fractionation and magnesium incorporation into biogenic marine calcite

    Science.gov (United States)

    Vieira, Veronica

    1997-01-01

    The influences of atmospheric carbon dioxide on the fractionation of carbon isotopes and the magnesium incorporation into biogenic marine calcite were investigated using samples of the calcareous alga Amphiroa and benthic foraminifer Sorites grown in the Biosphere 2 Ocean system under variable atmospheric CO2 concentrations (approximately 500 to 1200 ppm). Carbon isotope fractionation was studied in both the organic matter and the skeletal carbonate. Magnesium analysis was to be performed on the carbonate removed during decalcification. These data have not been collected due to technical problems. Carbon isotope data from Amphiroa yields a linear relation between [CO2] and Delta(sup 13)C(sub Corg)values suggesting that the fractionation of carbon isotopes during photosynthesis is positively correlated with atmospheric [CO2]. [CO2] and Delta(sup 13)C(sub Corg) values for Sorites produce a relation that is best described by a hyperbolic function where Delta(sup 13)C(sub Corg) values increase between 300 and 700 ppm and decrease from 700 to 1200 ppm. Further investigation of this relation and Sorites physiology is needed.

  7. Insights into deep-time terrestrial carbon cycle processes from modern plant isotope ecology

    Science.gov (United States)

    Sheldon, N. D.; Smith, S. Y.

    2012-12-01

    While the terrestrial biosphere and soils contain much of the readily exchangeable carbon on Earth, how those reservoirs function on long time scales and at times of higher atmospheric CO2 and higher temperatures is poorly understood, which limits our ability to make accurate future predictions of their response to anthropogenic change. Recent data compilation efforts have outlined the response of plant carbon isotope compositions to a variety of environmental factors including precipitation amount and timing, elevation, and latitude. The compilations involve numerous types of plants, typically only found at a limited number of climatic conditions. Here, we expand on those efforts by examining the isotopic response of specific plant groups found both globally and across environmental gradients including: 1) ginkgo, 2) conifers, and 3) C4 grasses. Ginkgo is presently widely distributed as a cultivated plant and the ginkgoalean fossil record spans from the Permian to the present, making it an ideal model organism to understand climatic influence on carbon cycling both in modern and ancient settings. Ginkgo leaves have been obtained from a range of precipitation conditions (400-2200 mm yr-1), including dense sampling from individuals and populations in both Mediterranean and temperate climate areas and samples of different organs and developmental stages. Ginkgo carbon isotope results plot on the global C3 plant array, are consistent among trees at single sites, among plant organs, and among development stages, making ginkgo a robust recorder of both climatic conditions and atmospheric δ13C. In contrast, a climate-carbon isotope transect in Arizona highlights that conifers (specifically, pine and juniper) record large variability between organs and have a very different δ13C slope as a function of climate than the global C3 plant array, while C4 plants have a slope with the opposite sign as a function of climate. This has a number of implications for paleo

  8. Culture of microalgae Spirulina platensis with isotope stable Carbon-13

    International Nuclear Information System (INIS)

    Cronemberger, Luiz C.A.; Costa, Vladimir E.

    2017-01-01

    Gastric emptying time abnormalities cause complications that affect the quality of life in humans and scintigraphy is the gold standard for this diagnosis. However its application has restrictions due to the use of the radiopharmaceutical 99m Tc. An alternative to this method is the stable carbon isotope respiratory test. This is a non-radioactive, noninvasive technique with no contraindications. Its application varies according to the substrate used. For evaluation of gastric emptying time one of the substrates that can be used in the respiratory test is Spirulina platensis labeled at 97% carbon atoms with the stable isotope carbon-13 ( 13 C). In Brazil, there is no production of this substrate and its high cost (US$475.00/g, excluding import taxes) makes it difficult to apply the test. Thus, the objective of the work is to cultivate labeled S. platensis at 97% of 13 C for use in the respiratory test for gastric emptying and to establish optimization parameters for the best cost-benefit of this culture. In the cultivation process the microalgae will be kept in a closed sterilized glass volumetric flask, with deionized water and a pure 13 C source. The light (photoperiod 12h light / dark), pH (∼ 9.5) and temperature (30 deg C) will be controlled and after 35-40 days of growth, the cyanobacteria will be lyophilized and ground for the acquisition of a powder that will be analyzed by IRMS and compared to S. platensis, which will be our reference standard

  9. Determination of hydrogen isotope composition in organic compounds

    International Nuclear Information System (INIS)

    Ordzhonikidze, K.G.; Parulava, L.P.; Vakhaniya, G.V.; Tarielashvili, V.O.

    1989-01-01

    method for determination of hydrogen isotope composition just in organic compounds using mass-spectrometer of the second class is suggested. The method enables to determine atomic fraction of hydrogen without multiplet separation. The accuracy of determination of deuterium atomic fraction in acetone in 1-99% range was equal to 3-0.2% respectively

  10. A revised inoceramid biozonation for the Upper Cretaceous based on high-resolution carbon isotope stratigraphy in northwestern Hokkaido, Japan

    Science.gov (United States)

    Hayakawa, Tatsuya; Hirano, Hiromichi

    2013-06-01

    Hayakawa, T., Hirano, H. 2013. A revised inoceramid biozonation for the Upper Cretaceous based on high-resolution carbon isotope stratigraphy in northwestern Hokkaido, Japan. Acta Geologica Polonica, 63 (2), 239-263. Warszawa. Biostratigraphic correlations of inoceramid bivalves between the North Pacific and Euramerican provinces have been difficult because the inoceramid biostratigraphy of the Japanese strata has been based on endemic species of the northwest Pacific. In this study, carbon stable isotope fluctuations of terrestrial organic matter are assembled for the Upper Cretaceous Yezo Group in the Haboro and Obira areas, Hokkaido, Japan, in order to revise the chronology of the inoceramid biozonation in Japan. The carbon isotope curves are correlated with those of marine carbonates in English and German sections with the aid of age-diagnostic taxa. According to the correlations of the carbon isotope curves, 11 isotope events are recognised in the sections studied. As a result of these correlations, the chronology of the inoceramid biozones of the Northwest Pacific has been considerably revised. The revised inoceramid biozones suggest that the timing of the origination and extinction of the inoceramids in the North Pacific biotic province is different from the stage/substage boundaries defined by inoceramids, as used in Europe and North America.

  11. Methodologies for extraction of dissolved inorganic carbon for stable carbon isotope studies : evaluation and alternatives

    Science.gov (United States)

    Hassan, Afifa Afifi

    1982-01-01

    The gas evolution and the strontium carbonate precipitation techniques to extract dissolved inorganic carbon (DIC) for stable carbon isotope analysis were investigated. Theoretical considerations, involving thermodynamic calculations and computer simulation pointed out several possible sources of error in delta carbon-13 measurements of the DIC and demonstrated the need for experimental evaluation of the magnitude of the error. An alternative analytical technique, equilibration with out-gassed vapor phase, is proposed. The experimental studies revealed that delta carbon-13 of the DIC extracted from a 0.01 molar NaHC03 solution by both techniques agreed within 0.1 per mil with the delta carbon-13 of the DIC extracted by the precipitation technique, and an increase of only 0.27 per mil in that extracted by the gas evolution technique. The efficiency of extraction of DIC decreased with sulfate concentration in the precipitation technique but was independent of sulfate concentration in the gas evolution technique. Both the precipitation and gas evolution technique were found to be satisfactory for extraction of DIC from different kinds of natural water for stable carbon isotope analysis, provided appropriate precautions are observed in handling the samples. For example, it was found that diffusion of atmospheric carbon dioxide does alter the delta carbon-13 of the samples contained in polyethylene bottles; filtration and drying in the air change the delta carbon-13 of the samples contained in polyethylene bottles; filtration and drying in the air change the delta carbon-13 of the precipitation technique; hot manganese dioxide purification changes the delta carbon-13 of carbon dioxide. (USGS)

  12. Cerium anomaly across the mid-Tournaisian carbon isotope excursion (TICE)

    Science.gov (United States)

    Jiang, G.; Morales, D. C.; Maharjan, D. K.

    2015-12-01

    The Early Mississippian (ca. 359-345 Ma) represents one of the most important greenhouse-icehouse climate transitions in Earth history. Closely associated with this critical transition is a prominent positive carbon isotope excursion (δ13C ≥ +5‰) that has been documented from numerous stratigraphic successions across the globe. This δ13C excursion, informally referred to as the TICE (mid-Tournaisian carbon isotope excursion) event, has been interpreted as resulting from enhanced organic carbon burial, with anticipated outcomes including the lowering of atmospheric CO2 and global cooling, the growth of continental ice sheets and sea-level fall, and the increase of ocean oxygenation and ocean redox changes. The casual relationship between these events has been addressed from various perspectives but not yet clearly demonstrated. To document the potential redox change associated with the perturbation of the carbon cycle, we have analyzed rare earth elements (REE) and trace elements across the TICE in two sections across a shallow-to-deep water transect in the southern Great Basin (Utah and Nevada), USA. In both sections, the REE data show a significant positive cerium (Ce) anomaly (Ce/Ce* = Ce/(0.5La+0.5Pr)). Prior to the positive δ13C shift, most Ce/Ce* values are around 0.3 (between 0.2 and 0.4). Across the δ13C peak, Ce/Ce* values increase up to 0.87, followed by a decrease back to 0.2~0.3 after the δ13C excursion (Figure 1). The positive Ce anomaly is best interpreted as recording expansion of oxygen minimum zone and anoxia resulted from increased primary production. This is consistent with a significant increase of nitrogen isotopes (δ15N) across the δ13C peak. Integration of the carbon, nitrogen, and REE data demonstrates a responsive earth systems change linked to the perturbation of the Early Mississippian carbon cycle.

  13. A new record of the Paleocene Carbon Isotope Maximum from the Mississippi Embayment

    Science.gov (United States)

    Platt, B. F.; Gerweck, E. D.

    2017-12-01

    The Paleocene-Eocene interval is well known as a time of climatic transitions, especially hyperthermals associated with disturbances in the carbon cycle that are used as proxies for impacts of projected anthropogenic global climate change. A recent roadcut in Benton County, Mississippi exposes a disconformity between the Paleocene Naheola Formation and the Eocene Meridian Sand. The disconformity is developed on a thick, kaolinitic paleosol, which we interpret as a mature Oxisol that supported tropical rainforest vegetation (as evidenced by associated well preserved leaf fossils). The nature of the paleosol at the disconformity led us to hypothesize that the strata might contain evidence of the Paleocene Eocene Thermal Maximum (PETM). We sampled two Mississippi Mineral Resources Institute (MMRI) cores from the equivalent stratigraphic interval from Benton and Tippah Counties, Mississippi, for bulk organic carbon stable isotopes at 25-cm intervals. Results showed no evidence of the negative excursion characteristic of the PETM. Instead, we found a gradual upsection enrichment that we interpret as the positive trend characteristic of the lower Paleocene Carbon Isotope Maximum (PCIM). This is reasonable based on published biostratigraphy and absolute ages from elsewhere in the Naheola Formation. Further analyses will be performed to determine whether the PCIM trend continues throughout the remainder of the core. The identification of the PCIM in Mississippi Embayment (ME) sediments is important because stable carbon isotope data may be useful for improving chronostratigraphy in the ME. Also, the PCIM is associated with a gradual warming trend as indicated by previously published stable oxygen isotopes from benthic foraminifera. Studying successive ME paleosols throughout the PCIM may yield information about the impacts of gradual atmospheric warming on soils and associated terrestrial systems.

  14. Application of carbon isotope analyses in food technology

    International Nuclear Information System (INIS)

    Szanto, Zsuzsa; Svingor, E.; Futo, I.; Palcsu, L.; Molnar, M.

    2001-01-01

    The vast economic size of the food market offers great temptations for the production and sale of fraudulent products, adulterated products and synthetic products that are labeled as natural ones. Conventional techniques of chemical analyses have served the food industry well for many years but are limited in their ability to detect certain types of fraudulent or mislabelled products. The aversion to added sugar and the demand for 'all natural' food products among consumers has led to a great deal of mislabelling on the part of food processors in order to achieve greater economic gain. The nature of deceptions detectable by carbon Stable Isotope Ratio Analysis (SIRA) in food technology falls into three broad categories. The most common is the adulteration of an expensive natural product, such as apple juice, with a much cheaper natural product such as cane sugar or high fructose corn syrup (HFCS). The second is outright falsification of a food. An example is maple syrup produced by simple addition of maple flavoring to a sugar syrup or HFCS. The third general category is the sale of synthetic materials as natural ones or the addition of synthetic materials to natural ones in order to increase the volume of the product. The procedure for using carbon SIRA in monitoring food products involves two stages. It must first be established that the product to be analyzed, or some specific component of it, has a particular isotopic composition that can be distinguished from that of the materials that might be used to adulterate it. Potential adulterating components are then analyzed to establish their isotopic identity. The carbon SIRA method cannot, in general, be used to establish purity unequivocally but it can be used to establish impurity or adulteration with a high degree of success. The overall process of carbon SIRA consists of three stages: selection of the sample or the isolation of the particular compound to be analyzed, conversion of this compound into CO 2 gas

  15. Covalently bound molecular states in beryllium and carbon isotopes

    International Nuclear Information System (INIS)

    Wolfram von, Oertzen; Hans-Gerhard, Bohlen; Wolfram von, Oertzen

    2003-01-01

    Nuclear clustering in N=Z nuclei has been studied since many decades. States close to the decay thresholds, as described by the Ikeda diagram, are of particular interest. Recent studies in loosely bound systems, as observed with neutron-rich nuclei has revived the interest in cluster structures in nuclei, with additional valence neutrons, which give rise to pronounced covalent molecular structures. The Beryllium isotopes represent the first example of such unique states in nuclear physics with extreme deformations. In the deformed shell model these are referred to as super- and hyper-deformation. These states can be described explicitly by molecular concepts, with neutrons in covalent binding orbits. Examples of recent experiments performed at the HMI-Berlin demonstrating the molecular structure of the rotational bands in Beryllium isotopes are presented. Further work on chain states (nuclear polymers) in the carbon isotopes is in progress, these are the first examples of deformed structures in nuclei with an axis ratio of 3:1. A threshold diagram with clusters bound via neutrons in covalent molecular configurations can be established, which can serve as a guideline for future work. (authors)

  16. Fractionation of carbon isotopes by thermophilic methanogenic bacteria

    International Nuclear Information System (INIS)

    Ivanov, M.V.; Belyaev, S.S.; Zyakun, A.M.; Bondar, V.A.; Shipin, O.P.; Laurinavichus, K.S.

    1985-01-01

    The authors investigated the pattern of fractionation of stable carbon isotopes by the thermophilic methane-forming bacteria under different growth conditions and at various rates of formation of methane. A pure culture of Methanobacterium thermoautotrophicum was used in the experiments under the following growth conditions: temperature 65-70 0 C; pH 7.2-7.6; NaCl content 0-0.9 g/liter. The methanogenic bacteria were cultivated in 0.15 liter flasks in mineral medium. A mixture of CO 2 and H 2 in a 1:4 ratio by volume served as the sole carbon and energy source. In all experiments, not more than 5% of the initial CO 2 level was utilized. The rate of methane generation was altered by adjusting the physicochemical growth parameters (temperature from 45-70 0 C, salinity from 0.9 to 40 g/liter NaCl, pH from 6.3 to 7.2). Methane in the samples was quantitatively determined in a chromatograph which had a flame-ionization detector and a column containing Porapak Q sorbent at T = 120 0 C. The carrier gas was CO 2 . The average specific rate of methane formation was calculated as ml CH 4 per mg dry biomass of bacteria per h. Soluble mineral carbon was isolated form the acidified culture liquid in the form of CO 2 and was quantitatively determined in a Chrom-4 chromatography provided with a katharometer and a column containing activated charcoal at T = 150 0 . The gas carrier was helium. The isotopic composition of carbon was determined in a CH-7 mass-spectrometer and was expressed in 13 C values (per thousand) with respect to the international PDB standard

  17. Assessment of Bacterial Degradation of Aromatic Hydrocarbons in the Environment by Analysis of Stable Carbon Isotope Fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Meckenstock, Rainer U. [Eberhard-Karls University of Tuebingen, Center for Applied Geoscience (Germany)], E-mail: rainer.meckenstock@uni-tuebingen.de; Morasch, Barbara [University of Konstanz, Faculty of Biology (Germany); Kaestner, Matthias; Vieth, Andrea; Richnow, Hans Hermann [Center for Environmental Research, Department of Remediation Research (Germany)

    2002-05-15

    {sup 13}C/{sup 12}C stable carbon isotope fractionation was used to assess biodegradation in contaminated aquifers with toluene as a model compound. Different strains of anaerobic bacteria (Thauera aromatica, Geobacter metallireducens, and the sulfate-reducing strain TRM1) showed consistent {sup 13}C/{sup 12}C carbon isotope fractionation with fractionation factors between {alpha}C = 1.0017 and 1.0018. In contrast, three cultures of aerobic organisms, using different mono- and dioxygenase enzyme systems to initiate toluene degradation, showed variable isotope fractionation factors of {alpha}C = 1.0027 (Pseudomonasputida strain mt-2), {alpha}C = 1.0011 (Ralstonia picketii), and{alpha}C = 1.0004 (Pseudomonas putida strain F1). The great variability of isotope fractionation between different aerobic bacterial strains suggests that interpretation of isotope data in oxic habitats can only be qualitative. A soil column was run as a model system for contaminated aquifers with toluene as the carbon source and sulfate as the electron acceptor and samples were taken at different ports along the column. Microbial toluene degradation was calculated based on the {sup 13}C/{sup 12}C isotope fractionation factors of the batch culture experiments together with the observed {sup 13}C/{sup 12}C isotope shifts of the residual toluene fractions. The calculated percentage of biodegradation, B, correlated well with the decreasing toluene concentrations at the sampling ports and indicated the increasing extent of biodegradation along the column. The theoretical toluene concentrations as calculated based on the isotope values matched the measured concentrations at the different sampling ports indicating that the Rayleigh equation can be used to calculate biodegradation in quasi closed systems based on measured isotope shifts. A similar attempt was performed to assess toluene degradation in a contaminated, anoxic aquifer. A transect of groundwater wells was monitored along the main

  18. Assessment of Bacterial Degradation of Aromatic Hydrocarbons in the Environment by Analysis of Stable Carbon Isotope Fractionation

    International Nuclear Information System (INIS)

    Meckenstock, Rainer U.; Morasch, Barbara; Kaestner, Matthias; Vieth, Andrea; Richnow, Hans Hermann

    2002-01-01

    13 C/ 12 C stable carbon isotope fractionation was used to assess biodegradation in contaminated aquifers with toluene as a model compound. Different strains of anaerobic bacteria (Thauera aromatica, Geobacter metallireducens, and the sulfate-reducing strain TRM1) showed consistent 13 C/ 12 C carbon isotope fractionation with fractionation factors between αC = 1.0017 and 1.0018. In contrast, three cultures of aerobic organisms, using different mono- and dioxygenase enzyme systems to initiate toluene degradation, showed variable isotope fractionation factors of αC = 1.0027 (Pseudomonasputida strain mt-2), αC = 1.0011 (Ralstonia picketii), andαC = 1.0004 (Pseudomonas putida strain F1). The great variability of isotope fractionation between different aerobic bacterial strains suggests that interpretation of isotope data in oxic habitats can only be qualitative. A soil column was run as a model system for contaminated aquifers with toluene as the carbon source and sulfate as the electron acceptor and samples were taken at different ports along the column. Microbial toluene degradation was calculated based on the 13 C/ 12 C isotope fractionation factors of the batch culture experiments together with the observed 13 C/ 12 C isotope shifts of the residual toluene fractions. The calculated percentage of biodegradation, B, correlated well with the decreasing toluene concentrations at the sampling ports and indicated the increasing extent of biodegradation along the column. The theoretical toluene concentrations as calculated based on the isotope values matched the measured concentrations at the different sampling ports indicating that the Rayleigh equation can be used to calculate biodegradation in quasi closed systems based on measured isotope shifts. A similar attempt was performed to assess toluene degradation in a contaminated, anoxic aquifer. A transect of groundwater wells was monitored along the main direction of the groundwater flow and revealed decreasing

  19. Carbon isotope effects associated with Fenton-like degradation of toluene: Potential for differentiation of abiotic and biotic degradation

    International Nuclear Information System (INIS)

    Ahad, Jason M.E.; Slater, Greg F.

    2008-01-01

    Hydrogen peroxide (H 2 O 2 )-mediated oxygenation to enhance subsurface aerobic biodegradation is a frequently employed remediation technique. However, it may be unclear whether observed organic contaminant mass loss is caused by biodegradation or chemical oxidation via hydroxyl radicals generated during catalyzed Fenton-like reactions. Compound-specific carbon isotope analysis has the potential to discriminate between these processes. Here we report laboratory experiments demonstrating no significant carbon isotope fractionation during Fenton-like hydroxyl radical oxidation of toluene. This implies that observation of significant isotopic fractionation of toluene at a site undergoing H 2 O 2 -mediated remediation would provide direct evidence of biodegradation. We applied this approach at a field site that had undergone 27 months of H 2 O 2 -mediated subsurface oxygenation. Despite substantial decreases (> 68%) in groundwater toluene concentrations carbon isotope signatures of toluene (δ 13 C tol ) showed no significant variation (mean = - 27.5 ±0.3 per mille, n = 13) over a range of concentrations from 11.1 to 669.0 mg L -1 . Given that aerobic degradation by ring attack has also been shown to result in no significant isotopic fractionation during degradation, at this site we were unable to discern the mechanism of degradation. However, such differentiation is possible at sites where aerobic degradation by methyl group attack results in significant isotopic fractionation

  20. Seasonality of Leaf Carbon Isotopic Composition and Leaf Water Isotopic Enrichment in a Mixed Evergreen Forest in Southern California

    Science.gov (United States)

    Santiago, L. S.; Sickman, J. O.; Goulden, M.; DeVan, C.; Pasquini, S. C.; Pivovaroff, A. L.

    2011-12-01

    Leaf carbon isotopic composition and leaf water isotopic enrichment reflect physiological processes and are important for linking local and regional scale processes to global patterns. We investigated how seasonality affects the isotopic composition of bulk leaf carbon, leaf sugar carbon, and leaf water hydrogen under a Mediterranean climate. Leaf and stem samples were collected monthly from four tree species (Calocedrus decurrens, Pinus lambertiana, Pinus ponderosa, and Quercus chrysolepis) at the James San Jacinto Mountain Reserve in southern California. Mean monthly bulk leaf carbon isotopic composition varied from -34.5 % in P. ponderosa to -24.7 % in P. lambertiana and became more depleted in 13C from the spring to the summer. Mean monthly leaf sugar varied from -29.3 % in P. ponderosa to -21.8 % in P. lambertiana and was enriched in 13C during the winter, spring and autumn, but depleted during the mid-summer. Leaf water hydrogen isotopic composition was 28.4 to 68.8 % more enriched in deuterium than source water and this enrichment was greater as seasonal drought progressed. These data indicate that leaf carbon and leaf water hydrogen isotopic composition provide sensitive measures that connect plant physiological processes to short-term climatic variability.

  1. Evaluating the consequences of salmon nutrients for riparian organisms: Linking condition metrics to stable isotopes.

    Science.gov (United States)

    Vizza, Carmella; Sanderson, Beth L; Coe, Holly J; Chaloner, Dominic T

    2017-03-01

    Stable isotope ratios (δ 13 C and δ 15 N) have been used extensively to trace nutrients from Pacific salmon, but salmon transfer more than carbon and nitrogen to stream ecosystems, such as phosphorus, minerals, proteins, and lipids. To examine the importance of these nutrients, metrics other than isotopes need to be considered, particularly when so few studies have made direct links between these nutrients and how they affect riparian organisms. Our study specifically examined δ 13 C and δ 15 N of riparian organisms from salmon and non-salmon streams in Idaho, USA, at different distances from the streams, and examined whether the quality of riparian plants and the body condition of invertebrates varied with access to these nutrients. Overall, quality and condition metrics did not mirror stable isotope patterns. Most notably, all riparian organisms exhibited elevated δ 15 N in salmon streams, but also with proximity to both stream types suggesting that both salmon and landscape factors may affect δ 15 N. The amount of nitrogen incorporated from Pacific salmon was low for all organisms (1950s. In addition, our results support those of other studies that have cautioned that inferences from natural abundance isotope data, particularly in conjunction with mixing models for salmon-derived nutrient percentage estimates, may be confounded by biogeochemical transformations of nitrogen, physiological processes, and even historical legacies of nitrogen sources. Critically, studies should move beyond simply describing isotopic patterns to focusing on the consequences of salmon-derived nutrients by quantifying the condition and fitness of organisms putatively using those resources.

  2. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink.

    Science.gov (United States)

    Hilton, Robert G; Galy, Valier; Gaillardet, Jérôme; Dellinger, Mathieu; Bryant, Charlotte; O'Regan, Matt; Gröcke, Darren R; Coxall, Helen; Bouchez, Julien; Calmels, Damien

    2015-08-06

    Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO2) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 ± 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of 2.2(+1.3)(-0.9) teragrams of carbon per year from the Mackenzie River, which is three times the CO2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO2 sink.

  3. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in northeast China

    Science.gov (United States)

    Cao, F.; Zhang, Y.; Kawamura, K.

    2015-12-01

    To better characterize the sources of fine particulate matter (i.e. PM2.5) in Sanjiang Plain, Northeast China, aerosol chemical composition such total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied as well as stable carbon isotopic composition (δ13C) of TC. Intensively open biomass burning episodes were identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass burning episodes, concentrations of PM2.5, OC, EC, and WSOC increased by a factor of 4-12 compared to non-biomass-burning periods. Non-sea-salt potassium is strongly correlated with PM2.5, OC, EC and WSOC, suggesting an important contribution of biomass burning emission. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, indicating that biomass burning aerosols in Sanjiang Plain is mostly fresh and less aged. In addition, WSOC to OC ratio is relatively lower compared to that reported in biomass burning aerosols in tropical regions, supporting that biomass burning aerosols in Sanjiang Plain is mostly primary and secondary organic aerosols is not significant. A lower average δ13C value (-26.2‰) is found for the biomass-burning aerosols, suggesting a dominant contribution from combustion of C3 plants in the studied region.

  4. Carbonate and carbon isotopic evolution of groundwater contaminated by produced water brine with hydrocarbons

    International Nuclear Information System (INIS)

    Atekwana, Eliot A.; Seeger, Eric J.

    2015-01-01

    The major ionic and dissolved inorganic carbon (DIC) concentrations and the stable carbon isotope composition of DIC (δ"1"3C_D_I_C) were measured in a freshwater aquifer contaminated by produced water brine with petroleum hydrocarbons. Our aim was to determine the effects of produced water brine contamination on the carbonate evolution of groundwater. The groundwater was characterized by three distinct anion facies: HCO_3"−-rich, SO_4"2"−-rich and Cl"−-rich. The HCO_3"−-rich groundwater is undergoing closed system carbonate evolution from soil CO_2_(_g_) and weathering of aquifer carbonates. The SO_4"2"−-rich groundwater evolves from gypsum induced dedolomitization and pyrite oxidation. The Cl"−-rich groundwater is contaminated by produced water brine and undergoes common ion induced carbonate precipitation. The δ"1"3C_D_I_C of the HCO_3"−-rich groundwater was controlled by nearly equal contribution of carbon from soil CO_2_(_g_) and the aquifer carbonates, such that the δ"1"3C of carbon added to the groundwater was −11.6‰. In the SO_4"2"−-rich groundwater, gypsum induced dedolomitization increased the "1"3C such that the δ"1"3C of carbon added to the groundwater was −9.4‰. In the produced water brine contaminated Cl"−-rich groundwater, common ion induced precipitation of calcite depleted the "1"3C such that the δ"1"3C of carbon added to the groundwater was −12.7‰. The results of this study demonstrate that produced water brine contamination of fresh groundwater in carbonate aquifers alters the carbonate and carbon isotopic evolution. - Highlights: • We studied carbonate and δ"1"3C evolution in groundwater contaminated by produced water brine. • Multiple processes affect the carbonate and δ"1"3C evolution of the groundwater. • The processes are carbonate weathering, dedolomitization and common ion induce calcite precipitation. • The δ"1"3C added to DIC was −11.6‰ for weathering, −9.4‰ for dedolomitization

  5. Deposition and benthic mineralization of organic carbon

    DEFF Research Database (Denmark)

    Nordi, Gunnvor A.; Glud, Ronnie N.; Simonsen, Knud

    2018-01-01

    Seasonal variations in sedimentation and benthic mineralization of organic carbon (OC) were investigated in a Faroese fjord. Deposited particulate organic carbon (POC) was mainly of marine origin, with terrestrial material only accounting for b1%. On an annual basis the POC export fromthe euphotic...

  6. Acidity controls on dissolved organic carbon mobility in organic soils

    Czech Academy of Sciences Publication Activity Database

    Evans, Ch. D.; Jones, T.; Burden, A.; Ostle, N.; Zielinski, P.; Cooper, M.; Peacock, M.; Clark, J.; Oulehle, Filip; Cooper, D.; Freeman, Ch.

    2012-01-01

    Roč. 18, č. 11 (2012), s. 3317-3331 ISSN 1354-1013 Institutional support: RVO:67179843 Keywords : acidity * dissolved organic carbon * organic soil * peat * podzol * soil carbon * sulphur Subject RIV: EH - Ecology, Behaviour Impact factor: 6.910, year: 2012

  7. Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate clumped isotope thermometry

    Science.gov (United States)

    Henkes, Gregory A.; Passey, Benjamin H.; Grossman, Ethan L.; Shenton, Brock J.; Yancey, Thomas E.; Pérez-Huerta, Alberto

    2018-05-01

    Surface temperature is among the most important parameters describing planetary climate and habitability, and yet there remains considerable debate about the temperature evolution of the Earth's oceans during the Phanerozoic Eon (541 million years ago to present), the time during which complex metazoan life radiated on Earth. Here we critically assess the emerging record of Phanerozoic ocean temperatures based on carbonate clumped isotope thermometry of fossil brachiopod and mollusk shells, and we present new data that fill important gaps in the Late Paleozoic record. We evaluate and reject the hypothesis that solid-state reordering of 13C-18O bonds has destroyed the primary clumped isotope temperature signal of most fossils during sedimentary burial at elevated temperatures. The resulting Phanerozoic record, which shows a general coupling between tropical seawater temperatures and atmospheric carbon dioxide (CO2) levels since the Paleozoic, indicates that tropical temperatures during the icehouse climate of the Carboniferous period were broadly similar to present (∼25-30 °C), and suggests that benthic metazoans were able to thrive at temperatures of 35-40 °C during intervals of the early and possibly the latest Paleozoic when CO2 levels were likely 5-10× higher than present-day values. Equally important, there is no resolvable trend in seawater oxygen isotope ratios (δ18 O) over the past ∼500 million years, indicating that the average temperature of oxygen exchange between seawater and the oceanic crust has been high (∼270 °C) since at least the early Paleozoic, which points to mid-ocean ridges as the dominant locus of water-rock interaction over the past half-billion years.

  8. Isotopic Anomalies in Organic Nanoglobules from Comet 81P/Wild 2: Comparison to Murchison Nanoglobules and Isotopic Anomalies Induced in Terrestrial Organics by Electron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    De Gregorio, B.; Stroud, R; Nittler, L; Alexander, C; Kilcoyne, A; Zega, T

    2010-01-01

    Nanoglobules are a form of organic matter found in interplanetary dust particles and primitive meteorites and are commonly associated with {sup 15}N and D isotopic anomalies that are suggestive of interstellar processes. We report the discovery of two isotopically-anomalous organic globules from the Stardust collection of particles from Comet 81P/Wild 2 and compare them with nanoglobules from the Murchison CM2 meteorite. One globule from Stardust Cometary Track 80 contains highly aromatic organic matter and a large {sup 15}N anomaly ({delta}{sup 15}N = 1120{per_thousand}). Associated, non-globular, organic matter from this track is less enriched in {sup 15}N and contains a mixture of aromatic and oxidized carbon similar to bulk insoluble organic material (IOM) from primitive meteorites. The second globule, from Cometary Track 2, contains non-aromatic organic matter with abundant nitrile ({single_bond}C{triple_bond}N) and carboxyl ({single_bond}COOH) functional groups. It is significantly enriched in D ({delta}D = 1000{per_thousand}) but has a terrestrial {sup 15}N/{sup 14}N ratio. Experiments indicate that similar D enrichments, unaccompanied by {sup 15}N fractionation, can be reproduced in the laboratory by electron irradiation of epoxy or cyanoacrylate. Thus, a terrestrial origin for this globule cannot be ruled out, and, conversely, exposure to high-energy electron irradiation in space may be an important factor in producing D anomalies in organic materials. For comparison, we report two Murchison globules: one with a large {sup 15}N enrichment and highly aromatic chemistry analogous to the Track 80 globule and the other only moderately enriched in {sup 15}N with IOM-like chemistry. The observation of organic globules in Comet 81P/Wild 2 indicates that comets likely sampled the same reservoirs of organic matter as did the chondrite parent bodies. The observed isotopic anomalies in the globules are most likely preserved signatures of low temperature (<10 K

  9. Isotopic anomalies in organic nanoglobules from Comet 81P/Wild 2: Comparison to Murchison nanoglobules and isotopic anomalies induced in terrestrial organics by electron irradiation

    Science.gov (United States)

    De Gregorio, Bradley T.; Stroud, Rhonda M.; Nittler, Larry R.; Alexander, Conel M. O.'D.; Kilcoyne, A. L. David; Zega, Thomas J.

    2010-08-01

    Nanoglobules are a form of organic matter found in interplanetary dust particles and primitive meteorites and are commonly associated with 15N and D isotopic anomalies that are suggestive of interstellar processes. We report the discovery of two isotopically-anomalous organic globules from the Stardust collection of particles from Comet 81P/Wild 2 and compare them with nanoglobules from the Murchison CM2 meteorite. One globule from Stardust Cometary Track 80 contains highly aromatic organic matter and a large 15N anomaly (δ 15N = 1120‰). Associated, non-globular, organic matter from this track is less enriched in 15N and contains a mixture of aromatic and oxidized carbon similar to bulk insoluble organic material (IOM) from primitive meteorites. The second globule, from Cometary Track 2, contains non-aromatic organic matter with abundant nitrile ( sbnd C tbnd N) and carboxyl ( sbnd COOH) functional groups. It is significantly enriched in D (δD = 1000‰) but has a terrestrial 15N/ 14N ratio. Experiments indicate that similar D enrichments, unaccompanied by 15N fractionation, can be reproduced in the laboratory by electron irradiation of epoxy or cyanoacrylate. Thus, a terrestrial origin for this globule cannot be ruled out, and, conversely, exposure to high-energy electron irradiation in space may be an important factor in producing D anomalies in organic materials. For comparison, we report two Murchison globules: one with a large 15N enrichment and highly aromatic chemistry analogous to the Track 80 globule and the other only moderately enriched in 15N with IOM-like chemistry. The observation of organic globules in Comet 81P/Wild 2 indicates that comets likely sampled the same reservoirs of organic matter as did the chondrite parent bodies. The observed isotopic anomalies in the globules are most likely preserved signatures of low temperature (<10 K) chemistry in the interstellar medium or perhaps the outer regions of the solar nebula. In other

  10. Simulation of carbon isotope discrimination of the terrestrial biosphere

    Science.gov (United States)

    Suits, N. S.; Denning, A. S.; Berry, J. A.; Still, C. J.; Kaduk, J.; Miller, J. B.; Baker, I. T.

    2005-03-01

    We introduce a multistage model of carbon isotope discrimination during C3 photosynthesis and global maps of C3/C4 plant ratios to an ecophysiological model of the terrestrial biosphere (SiB2) in order to predict the carbon isotope ratios of terrestrial plant carbon globally at a 1° resolution. The model is driven by observed meteorology from the European Centre for Medium-Range Weather Forecasts (ECMWF), constrained by satellite-derived Normalized Difference Vegetation Index (NDVI) and run for the years 1983-1993. Modeled mean annual C3 discrimination during this period is 19.2‰; total mean annual discrimination by the terrestrial biosphere (C3 and C4 plants) is 15.9‰. We test simulation results in three ways. First, we compare the modeled response of C3 discrimination to changes in physiological stress, including daily variations in vapor pressure deficit (vpd) and monthly variations in precipitation, to observed changes in discrimination inferred from Keeling plot intercepts. Second, we compare mean δ13C ratios from selected biomes (Broadleaf, Temperate Broadleaf, Temperate Conifer, and Boreal) to the observed values from Keeling plots at these biomes. Third, we compare simulated zonal δ13C ratios in the Northern Hemisphere (20°N to 60°N) to values predicted from high-frequency variations in measured atmospheric CO2 and δ13C from terrestrially dominated sites within the NOAA-Globalview flask network. The modeled response to changes in vapor pressure deficit compares favorably to observations. Simulated discrimination in tropical forests of the Amazon basin is less sensitive to changes in monthly precipitation than is suggested by some observations. Mean model δ13C ratios for Broadleaf, Temperate Broadleaf, Temperate Conifer, and Boreal biomes compare well with the few measurements available; however, there is more variability in observations than in the simulation, and modeled δ13C values for tropical forests are heavy relative to observations

  11. Improving crop water use efficiency using carbon isotope discrimination

    International Nuclear Information System (INIS)

    Serraj, R.

    2006-01-01

    Water scarcity, drought and salinity are among the most important environmental constraints challenging crop productivity in the arid and semi-arid regions of the world, especially the rain-fed production systems. The current challenge is to enhance food security in water-limited and/or salt-affected areas for the benefit of resource-poor farmers in developing countries. There is also an increasing need that water use in agriculture should focus on improvement in the management of existing water resources and enhancing crop water productivity. The method based on carbon-13 discrimination in plant tissues has a potentially important role in the selection and breeding of some crop species for increased water use efficiency in some specific environments. Under various water-limited environments, low delta in the plants, indicating low carbon isotope discrimination has been generally associated with high transpiration efficiency (TE). In contrast, for well-watered environments many positive genotypic correlations have been reported between delta and grain yield indicating potential value in selecting for greater delta in these environments. Few studies have been reported on the impact of selection for delta on adaptation and grain yield in saline environments. Studies of the impact of genetic selection for greater and lower delta are currently coordinated by the Soil and water Management and Crop Nutrition Section (SWMCN) of the Joint FAO/IAEA Division. A Coordinated Research Project (CRP) is currently on-going on the Selection for Greater Agronomic Water-Use Efficiency in Wheat and Rice using Carbon Isotope Discrimination (D1-20 08). The overall objective of this project is to contribute to increasing the agronomic water-use efficiency of wheat and rice production, where agronomic water-use efficiency is defined as grain yield/total water use including both transpiration and evaporation. The CRP is also aiming at increasing wheat productivity under drought and rice

  12. Carbon isotope analysis of carbonaceous compounds in Puget Sound and Lake Washington

    International Nuclear Information System (INIS)

    Swanson, J.R.

    1980-01-01

    A new method has been developed and tested for determining chronological profiles of organic pollutants. This method, Carbon Isotope Analysis (CIA), involves measurements of 12 C, 13 C and 14 C in carbonaceous compounds found in layers of sediment. Lipids, total aliphatic hydrocarbons (TAHs) and polycyclic aromatic hydrocarbons (PAHs) are separated from kg quantities of sediment. Large Soxhlet extractors are used to remove the extractable organics, using ultra-pure benzene-methanol solution and having an extraction efficiency of about 86% for compounds with boiling points higher than n-tetradecane (n-C 14 ). The basic steps in compound separation include freeze-drying, extraction, fractionation, column chromatography and evaporation. Isolating the TAH and PAH fractions is accomplished by eluting samples from Sephadex and alumina/silica-gel columns. The amount of each fraction recovered is determined by converting the hydrocarbons to carbon dioxide and measuring this gas manometrically. Variations in 12 C and 13 C abundances for carbonaceous compounds are primarily due to thermodynamic, photosynthetic and metabolic fractionation processes. Thus, the source of a particular organic compound can often be determined by measuring its 13 C/ 12 C ratio. Combining the information from both the 13 C analysis and 14 C analysis makes source identification more certain. In addition, this investigation reviews carbon isotopic data and carbon cycling and analyzes organic pollution in two limited ecosystems (Puget Sound and Lake Washington). Specifically, distinct carbonaceous species are analyzed for pollution in sediments of Lake Washington, Elliott Bay, Commencement Bay, central Puget Sound and northern Puget Sound near the Cherry Point oil refineries

  13. An analytical system for the measurement of stable hydrogen isotopes in ambient volatile organic compounds

    Science.gov (United States)

    Meisehen, T.; Bühler, F.; Koppmann, R.; Krebsbach, M.

    2015-10-01

    Stable isotope measurements in atmospheric volatile organic compounds (VOCs) are an excellent tool to analyse chemical and dynamical processes in the atmosphere. While up to now isotope studies of VOCs in ambient air have mainly focussed on carbon isotopes, we herein present a new measurement system to investigate hydrogen isotope ratios in atmospheric VOCs. This system, consisting of a gas chromatography pyrolysis isotope ratio mass spectrometer (GC-P-IRMS) and a pre-concentration system, was thoroughly characterised using a VOC test mixture. A precision of better than 9 ‰ (in δ 2H) is achieved for n-pentane, 2-methyl-1,3-butadiene (isoprene), n-heptane, 4-methyl-pentane-2-one (4-methyl-2-pentanone), methylbenzene (toluene), n-octane, ethylbenzene, m/p-xylene and 1,2,4-trimethylbenzene. A comparison with independent measurements via elemental analysis shows an accuracy of better than 9 ‰ for n-pentane, n-heptane, 4-methyl-2-pentanone, toluene and n-octane. Above a minimum required pre-concentrated compound mass the obtained δ 2H values are constant within the standard deviations. In addition, a remarkable influence of the pyrolysis process on the isotope ratios is found and discussed. Reliable measurements are only possible if the ceramic tube used for the pyrolysis is sufficiently conditioned, i.e. the inner surface is covered with a carbon layer. It is essential to verify this conditioning regularly and to renew it if required. Furthermore, influences of a necessary H3+ correction and the pyrolysis temperature on the isotope ratios are discussed. Finally, the applicability to measure hydrogen isotope ratios in VOCs at ambient levels is demonstrated with measurements of outside air on 5 different days in February and March 2015. The measured hydrogen isotope ratios range from -136 to -105 ‰ forn-pentane, from -86 to -63 ‰ for toluene, from -39 to -15 ‰ for ethylbenzene, from -99 to -68 ‰ for m/p-xylene and from -45 to -34 ‰ for o-xylene.

  14. Estimation of pollutant source contribution to the Pampanga River Basin using carbon and nitrogen isotopes

    International Nuclear Information System (INIS)

    Castaneda, Solidad S.; Sta Maria, Efren J.; Ramirez, Jennyvi D.; Collado, Mario B.; Samar, Edna D.

    2013-01-01

    This study assessed and estimated the percentage contribution of potential pollution sources in Pampanga River Basin using carbon and nitrogen isotopes as environmental tracers. The δ 13 C and δ 15 N values were determined in particulate organic matter, surface sediment, and plant tissue samples from point and non-point sources from several land use areas, namely domestic, croplands, livestock, fishery and forestry. Investigations were conducted in the wet and dry seasons (2012 and 2013). Some N sources do not have unique δ 15 N and there is overlapping among different N- sources type. δ 13 C data from the N sources provided an additional dimension which distinguished animal manure, human waste (septic and sewage), leaf litter, and synthetic fertilizer. Characterization of the non-point N-sources based on the isotopic fingerprints obtained from the point sources revealed that domestic, cropland, livestock, and fishery, influenced the isotopic composition of the materials but domestic and cropland land use provided the most significant influence. Livestock also contributed to a lesser extent. Isotope mixing model revealed that cropland sources generally contributed the most to pollutant loading during the wet season, from 22% to 98%, while domestic waste contributed higher in the dry season, from 55% to 65%. (author)

  15. Carbon Composition of Particulate Organic Carbon in the Gulf of Mexico

    Science.gov (United States)

    Rogers, K.; Montoya, J. P.; Weber, S.; Bosman, S.; Chanton, J.

    2016-02-01

    The Deepwater Horizon blowout released 5.0x1011 g C from gaseous hydrocarbons and up to 6.0x1011g C from oil into the water column. Another carbon source, adding daily to the water column, leaks from the natural hydrocarbon seeps that pepper the seafloor of the Gulf of Mexico. How much of this carbon from the DWH and natural seeps is assimilated into particulate organic carbon (POC) in the water column? We filtered seawater collected in 2010, 2012, and 2013 from seep and non-seep sites, collecting POC on 0.7µm glass microfiber filters and analyzing the POC for stable and radiocarbon isotopes. Mixing models based on carbon isotopic endmembers of methane, oil, and modern production were used to estimate the percentage of hydrocarbon incorporated into POC. Significant differences were seen between POC from shallow and deep waters and between POC collected from seep, non-seep, and blowout sites; however yearly differences were not as evident suggesting the GOM has a consistent supply of depleted carbon. Stable carbon isotopes signatures of POC in the Gulf averaged -23.7±2.5‰ for shallow samples and -26.65±2.9‰ for deep POC samples, while radiocarbon signatures averaged -100.4±146.1‰ for shallow and -394.6±197‰ for deep samples. POC in the northern Gulf are composed of 23-91% modern carbon, 2-21% methane, and 0-71% oil. Oil plays a major role in the POC composition of the GOM, especially at the natural seep GC600.

  16. Spectral isotopic methods of determining nitrogen and carbon in plant specimens with laser volatization

    International Nuclear Information System (INIS)

    Lazeeva, G.S.

    1986-01-01

    Methods have been devised for the local determination of nitrogen and carbon isotope compositions in plant specimens, which provide separate and joint determination. Local laser evaporation has been combined with spectroscopic determination of the isotope compositions in the gas phase. A continuous-wave CO 2 laser is preferable for the local evaporation; the carbon isotope composition may be determined directly on the sum of the evaporation products, whereas nitrogen must first be separated as N 2 . Methods have also been developed for the local determination of total nitrogen and carbon in a sample with isotope dilution on the basis of laser evaporation. In order to eliminate systematic errors in determining total carbon in plant material, an evaporation method free from a rim has been devised. These methods have been used in determining isotope concentration profiles in plant specimens grown in experiments employing labeled nitrogen and carbon

  17. In Situ Carbon Isotope Analysis by Laser Ablation MC-ICP-MS.

    Science.gov (United States)

    Chen, Wei; Lu, Jue; Jiang, Shao-Yong; Zhao, Kui-Dong; Duan, Deng-Fei

    2017-12-19

    Carbon isotopes have been widely used in tracing a wide variety of geological and environmental processes. The carbon isotope composition of bulk rocks and minerals was conventionally analyzed by isotope ratio mass spectrometry (IRMS), and, more recently, secondary ionization mass spectrometry (SIMS) has been widely used to determine carbon isotope composition of carbon-bearing solid materials with good spatial resolution. Here, we present a new method that couples a RESOlution S155 193 nm laser ablation system with a Nu Plasma II MC-ICP-MS, with the aim of measuring carbon isotopes in situ in carbonate minerals (i.e., calcite and aragonite). Under routine operating conditions for δ 13 C analysis, instrumental bias generally drifts by 0.8‰-2.0‰ in a typical analytical session of 2-3 h. Using a magmatic calcite as the standard, the carbon isotopic composition was determined for a suite of calcite samples with δ 13 C values in the range of -6.94‰ to 1.48‰. The obtained δ 13 C data are comparable to IRMS values. The combined standard uncertainty for magmatic calcite is ICP-MS can serve as an appropriate method to analyze carbon isotopes of carbonate minerals in situ.

  18. Mobility of organic carbon from incineration residues

    International Nuclear Information System (INIS)

    Ecke, Holger; Svensson, Malin

    2008-01-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2 6-1 experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO 2 until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon

  19. Cryogenic Calcite: A Morphologic and Isotopic Analog to the ALH84001 Carbonates

    Science.gov (United States)

    Niles, P. B.; Leshin, L. A.; Socki, R. A.; Guan, Y.; Ming, D. W.; Gibson, E. K.

    2004-01-01

    Martian meteorite ALH84001 carbonates preserve large and variable microscale isotopic compositions, which in some way reflect their formation environment. These measurements show large variations (>20%) in the carbon and oxygen isotopic compositions of the carbonates on a 10-20 micron scale that are correlated with chemical composition. However, the utilization of these data sets for interpreting the formation conditions of the carbonates is complex due to lack of suitable terrestrial analogs and the difficulty of modeling under non-equilibrium conditions. Thus, the mechanisms and processes are largely unknown that create and preserve large microscale isotopic variations in carbonate minerals. Experimental tests of the possible environments and mechanisms that lead to large microscale isotopic variations can help address these concerns. One possible mechanism for creating large carbon isotopic variations in carbonates involves the freezing of water. Carbonates precipitate during extensive CO2 degassing that occurs during the freezing process as the fluid s decreasing volume drives CO2 out. This rapid CO2 degassing results in a kinetic isotopic fractionation where the CO2 gas has a much lighter isotopic composition causing an enrichment of 13C in the remaining dissolved bicarbonate. This study seeks to determine the suitability of cryogenically formed carbonates as analogs to ALH84001 carbonates. Specifically, our objective is to determine how accurately models using equilibrium fractionation factors approximate the isotopic compositions of cryogenically precipitated carbonates. This includes determining the accuracy of applying equilibrium fractionation factors during a kinetic process, and determining how isotopic variations in the fluid are preserved in microscale variations in the precipitated carbonates.

  20. Mineral associations and character of isotopically anomalous organic material in the Tagish Lake carbonaceous chondrite

    Science.gov (United States)

    Zega, Thomas J.; Alexander, Conel M. O.'D.; Busemann, Henner; Nittler, Larry R.; Hoppe, Peter; Stroud, Rhonda M.; Young, Andrea F.

    2010-10-01

    We report a coordinated analytical study of matrix material in the Tagish Lake carbonaceous chondrite in which the same small (⩽20 μm) fragments were measured by secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS), and X-ray absorption near-edge spectroscopy (XANES). SIMS analysis reveals H and N isotopic anomalies (hotspots), ranging from hundreds to thousands of nanometers in size, which are present throughout the fragments. Although the differences in spatial resolution of the SIMS techniques we have used introduce some uncertainty into the exact location of the hotspots, in general, the H and N isotopic anomalies are spatially correlated with C enrichments, suggesting an organic carrier. TEM analysis, enabled by site-specific extraction using a focused-ion-beam scanning-electron microscope, shows that the hotspots contain an amorphous component, Fe-Ni sulfides, serpentine, and mixed-cation carbonates. TEM imaging reveals that the amorphous component occurs in solid and porous forms, EDS indicates that it contains abundant C, and EELS and XANES at the C K edge reveal that it is largely aromatic. This amorphous component is probably macromolecular C, likely the carrier of the isotopic anomalies, and similar to the material extracted from bulk samples as insoluble organic matter. However, given the large sizes of some of the hotspots, the disparity in spatial resolution among the various techniques employed in our study, and the phases with which they are associated, we cannot entirely rule out that some of the isotopic anomalies are carried by inorganic material, e.g., sheet silicates. The isotopic composition of the organic matter points to an initially primitive origin, quite possibly within cold interstellar clouds or the outer reaches of the solar protoplanetary disk. The association of organic material with secondary phases, e.g., serpentine

  1. Geochemistry of carbon stable isotopes in the sea

    International Nuclear Information System (INIS)

    Duplessy, Jean-Claude

    1972-01-01

    This paper describes geochemical process which affect the distribution in the sea of the 13 C/ 12 C ratio of total inorganic dissolved CO 2 ; synthesis of the biomass and respiratory phenomena; oxidation of organic matter; dissolution of carbonates; run off waters; exchange of CO 2 between sea and atmosphere. Some applications to the paleoclimatology are presented. (author) [fr

  2. The magnesium isotope record of cave carbonate archives

    Science.gov (United States)

    Riechelmann, S.; Buhl, D.; Schröder-Ritzrau, A.; Riechelmann, D. F. C.; Richter, D. K.; Vonhof, H. B.; Wassenburg, J. A.; Geske, A.; Spötl, C.; Immenhauser, A.

    2012-11-01

    Here we explore the potential of magnesium (δ26Mg) isotope time-series data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco), the warm-temperate (Germany), the equatorial-humid (Peru) and the cold-humid (Austria) climate zones. Changes in the calcite magnesium isotope signature with time are compared against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and disequilibrium processes governs the δ26Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rainwater or snow as well as soil and host rock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ26Mg values (GDA: -4.26 ± 0.07‰ and HK3: -4.17 ± 0.15‰), and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value of all stalagmites (NC-A and NC-B δ26Mg: -3.96 ± 0.04‰) but only minor variations in Mg-isotope composition, which is consistent with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ26Mg: -4.01 ± 0.07‰; BU 4 mean δ26Mg: -4.20 ± 0.10‰) suggest changes in outside air temperature was the principal driver rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: -3.00 ± 0.73‰; SPA 59: -3.70 ± 0.43‰) are affected by glacial versus interglacial climate change with outside air temperature affecting soil zone activity and weathering balance. Several δ26Mg values of the Austrian and two

  3. The magnesium isotope record of cave carbonate archives

    Directory of Open Access Journals (Sweden)

    S. Riechelmann

    2012-11-01

    Full Text Available Here we explore the potential of magnesium (δ26Mg isotope time-series data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco, the warm-temperate (Germany, the equatorial-humid (Peru and the cold-humid (Austria climate zones. Changes in the calcite magnesium isotope signature with time are compared against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and disequilibrium processes governs the δ26Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rainwater or snow as well as soil and host rock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ26Mg values (GDA: −4.26 ± 0.07‰ and HK3: −4.17 ± 0.15‰, and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value of all stalagmites (NC-A and NC-B δ26Mg: −3.96 ± 0.04‰ but only minor variations in Mg-isotope composition, which is consistent with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ26Mg: −4.01 ± 0.07‰; BU 4 mean δ26Mg: −4.20 ± 0.10‰ suggest changes in outside air temperature was the principal driver rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: −3.00 ± 0.73‰; SPA 59: −3.70 ± 0.43‰ are affected by glacial versus interglacial climate change with outside air temperature

  4. Stable isotope (δ"1"3C and δ"1"5N) based interpretation of organic matter source and paleoenvironmental conditions in Al-Azraq basin, Jordan

    International Nuclear Information System (INIS)

    Ahmad, Khaldoun; Davies, Caroline

    2017-01-01

    This study examines the stable isotopes of carbon and nitrogen from cored lacustrine sediments of the Al-Azraq, an arid lake basin on the Jordan Plateau. Lacustrine sediments contain valuable records of paleoenvironmental conditions, recording local and regional responses to environmental change. Previous paleo-reconstructions on the Jordan Plateau are based on archaeology, pollen, mineralogy, and stratigraphy. The application of organic geochemistry analyses to these lake sediments identifies multiple sources of organic matter, biological production, and contributes to understanding the paleoenvironments of the Al-Azraq basin during the mid-Pleistocene period. Organic carbon concentration (Corg) provides an overview of the organic matter distribution. Carbon isotopic composition (δ13Corg) and nitrogen isotopic composition (δ15N) are indicators of organic matter sources and paleoproductivity. Magnetic susceptibility (MGSUS) measured the concentration of ferromagnetic minerals and indicated aeolian inputs. Organic geochemistry differentiated five paleoenvironmental zones with specific sources of organic matter, both aquatic and terrestrial. It identified a long period of climate wetter than the present, punctuated by a short intense period of aridity. Diagenesis plays an important role in the decomposition of organic matter and studies indicate this degradation can alter the isotopic signals of organic matter. Analyses of the isotopic signals and statistical analyses demonstrate diagenesis is not a factor in the Al-Azraq sediments in all but Zone 4 of the paleoenvironmental zones. This Zone is defined by less negative carbon isotopic composition and the presence of thick primary gypsum layers, in addition to the influx of high peaks of aeolian sediment as reflected in the magnetic susceptibility data. Stable isotope geochemistry provides detailed information on the paleoenvironments of lake sediments, and is applicable to typically challenging arid basin sediments

  5. Stable-carbon isotopic composition of maple sap and foliage

    International Nuclear Information System (INIS)

    Leavitt, S.W.; Long, A.

    1985-01-01

    The 13 C/ 12 C ratios of Acer grandidentatum sap sugar collected during the dormant period are compared to those of buds, leaves, and wood developed over the following growing season. As the primary carbon source for cellulose manufacture at initiation of annual growth in deciduous trees, sap sucrose would be expected to have an isotopic composition similar to first-formed cellulose. Although constancy in concentration and 13 C/ 12 C ratios of the maple sap sugar suggests any gains or losses (e.g. to maintenance metabolism) do not appreciably alter composition, the 13 C/ 12 C ratios of cellulose of the enlarging buds in the spring are quite distinct from those of the sap sugar, seemingly precluding a simple direct biochemical pathway of sap sucrose→glucose→cellulose in favor of a more complex pathway with greater likelihood of isotopic fractionation. The 13 C/ 12 C ratios of the leaves and in the growth ring were initially similar to the sap sugar but decreased steadily over the growing season. (author)

  6. Carbon-13 and oxygen-18 isotope effects in the decarboxylation of nicotinic acid of natural isotopic composition

    International Nuclear Information System (INIS)

    Zielinski, M.; Zielinska, A.; Papiernik-Zielinska, H.; McKenzie, J.A.; Bernasconi, S.; Paul, H.

    1998-01-01

    Carbon-13 and oxygen-18 isotope effects in the decarboxylation of nicotinic acid of natural isotopic composition above and below its melting temperature have been studied and compared with the primary (PKIE) and secondary kinetic isotope effects (SKIE) of 13 C and 18 O, respectively, in the decarboxylation of other heterocyclic acids. The temperature dependence of the secondary oxygen-18 isotope effects is negative in the total 221-255 deg C temperature interval investigated initially. The 13 C KIE measured above melting point of N.A. (temperature interval 235-270 deg C) are located in the range 1.007-1.009. Below melting point of nicotinic acid the 13 C KIE are larger and reveal the negative temperature dependence ( 13 C KIE decreases with decreasing the reaction temperature from 1.013/at 230 deg C to 1.0114/at 221 deg C). A discussion of the above isotopic results is presented. (author)

  7. Kalahari groundwaters: Their hydrogen, carbon and oxygen isotopes

    International Nuclear Information System (INIS)

    Mazor, E.; Verhagen, B.T.; Sellschop, J.P.F.; Robins, N.S.; Hutton, L.G.

    1974-01-01

    Tritium and 14 C measurements have revealed several cases of post-nuclear bomb-test rain recharge of local groundwaters, along with values indicating recharge over larger, yet hydrologically active, time scales. In general, recharge seems to follow rain distribution in being more intense in the northern rather than in the southern Kalahari. Initial δ 13 C values vary over a wide range and reveal some correlation to pH and chemical composition of the water. They cannot be used to correct for fossil carbon dilution in 14 C-age calculations. Radiocarbon-deduced ages range from recent to 30,000 years. Stable hydrogen and oxygen isotopes indicate recharge from direct rain infiltration. (author)

  8. The Strontium Isotope Record of Zavkhan Terrane Carbonates: Strontium Isotope Stability Through the Ediacaran-Cambrian Transition

    OpenAIRE

    Petach, Tanya N.

    2015-01-01

    First order trends in the strontium isotopic (87Sr/86Sr) composition of seawater are controlled by radiogenic inputs from the continent and non-radiogenic inputs from exchange at mid-ocean ridges. Carbonates precipitated in seawater preserve trace amounts of strontium that record this isotope ratio and therefore record the relative importance of mid-ocean ridge and weathering chemical inputs to sea water composition. It has been proposed that environmental changes during the Ediacaran-Cambria...

  9. Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover

    Science.gov (United States)

    Leshin, L. A.; Mahaffy, P. R.; Webster, C. R.; Cabane, M.; Coll, P.; Conrad, P. G.; Archer, P. D.; Atreya, S. K.; Brunner, A. E.; Buch, A.; Eigenbrode, J. L.; Flesch, G. J.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; McAdam, A. C.; Miller, K. E.; Ming, D. W.; Morris, R. V.; Navarro-González, R.; Niles, P. B.; Owen, T.; Pepin, R. O.; Squyres, S.; Steele, A.; Stern, J. C.; Summons, R. E.; Sumner, D. Y.; Sutter, B.; Szopa, C.; Teinturier, S.; Trainer, M. G.; Wray, J. J.; Grotzinger, J. P.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Coscia, David; Israël, Guy; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Stalport, Fabien; François, Pascaline; Raulin, François; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Dworkin, Jason P.; Floyd, Melissa; Garvin, James; Harpold, Daniel; Jones, Andrea; Martin, David K.; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Tan, Florence; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Vasavada, Ashwin R.; Yen, Albert; Cucinotta, Francis; Jones, John H.; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Bower, Hannah; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2013-09-01

    Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity’s Sample Analysis at Mars instrument suite. H2O, SO2, CO2, and O2 were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H2O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO2. Evolved O2 is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin.

  10. Carbon isotope discrimination by photosynthesis: implications for the bio- and geosciences

    International Nuclear Information System (INIS)

    Lerman, J.C.; Troughton, J.H.

    1975-01-01

    Land plants are depleted in the heavy isotopes of natural carbon 14 C (radioactive) and 13 C (stable) compared with the isotope composition of atmospheric CO 2 . These depletions can be assayed on milligram quantities of organic matter converted to CO 2 and analyzed in a double inlet-double collector mass spectrometer, the ratio 13 C/ 12 C usually being expressed as delta 13 C vs. PDB, in per mil ( 0 / 00 ). The delta value in higher plants ranges between -39 and -9 0 / 00 . The variations of this delta value are mainly determined by the type of carbon fixation reaction, e.g., the delta value allows us to distinguish between C 3 (Calvin-Benson) plants typically -28 0 / 00 , and C 4 (Hatch-Slack) plants typically -13 0 / 00 . These corrections are important for archaeologic and groundwater dating. Since the carbon delta values persist in dead and ancient plant remains such as wood, pollen, peat, soil, coal and oil, it is possible to investigate previous environmental conditions, past climate, paleoecology, plant interaction with the environment and evolution of photosynthetic mechanisms. The delta value also tags the commercial products derived from plants and animals allowing their origin to be traced in investigations of fraud. Some of these naturally labeled products have medical applications

  11. Combined simulation of carbon and water isotopes in a global ocean model

    Science.gov (United States)

    Paul, André; Krandick, Annegret; Gebbie, Jake; Marchal, Olivier; Dutkiewicz, Stephanie; Losch, Martin; Kurahashi-Nakamura, Takasumi; Tharammal, Thejna

    2013-04-01

    Carbon and water isotopes are included as passive tracers in the MIT general circulation model (MITgcm). The implementation of the carbon isotopes is based on the existing MITgcm carbon cycle component and involves the fractionation processes during photosynthesis and air-sea gas exchange. Special care is given to the use of a real freshwater flux boundary condition in conjunction with the nonlinear free surface of the ocean model. The isotopic content of precipitation and water vapor is obtained from an atmospheric GCM (the NCAR CAM3) and mapped onto the MITgcm grid system, but the kinetic fractionation during evaporation is treated explicitly in the ocean model. In a number of simulations, we test the sensitivity of the carbon isotope distributions to the formulation of fractionation during photosynthesis and compare the results to modern observations of δ13C and Δ14C from GEOSECS, WOCE and CLIVAR. Similarly, we compare the resulting distribution of oxygen isotopes to modern δ18O data from the NASA GISS Global Seawater Oxygen-18 Database. The overall agreement is good, but there are discrepancies in the carbon isotope composition of the surface water and the oxygen isotope composition of the intermediate and deep waters. The combined simulation of carbon and water isotopes in a global ocean model will provide a framework for studying present and past states of ocean circulation such as postulated from deep-sea sediment records.

  12. Application of carbon and oxygen stable isotopes to the study of Brazilian precambrian

    International Nuclear Information System (INIS)

    Torquato, J.R.F.

    1980-01-01

    Samples of carbonated rocks of precambrian age are studied. The stable carbon and oxygen isotopes are applied to the study of terrestrial materials considering the variations of some element isotopic composition in function of the environment of sedimentation. The isotopic analysis was done using mass spectrometers. The analytical results and the description of region geology of the site of each sample are presented. The isotopic data are interpreted aiming to the environment of sedimentation. New techniques for better improvement of carbon and oxygen ratios, are proposed, such as: to use the analysis of surface trend and the isotopic logging in mapping of surface and subsurface. A new method for approximated determination of the ages of precambrian carbonated rocks, considering the limitations of their new technique, is also presented. (M.C.K.) [pt

  13. Organic Rankine Kilowatt Isotope Power System. Final phase I report

    International Nuclear Information System (INIS)

    1978-01-01

    On 1 August 1975 under Department of Energy Contract EN-77-C-02-4299, Sundstrand Energy Systems commenced development of a Kilowatt Isotope Power System (KIPS) directed toward satisfying the higher power requirements of satellites of the 1980s and beyond. The KIPS is a 238 PuO 2 fueled organic Rankine cycle turbine power system which will provide design output power in the range of 500 to 2000 W/sub (e)/ with a minimum of system changes. The principal objectives of the Phase 1 development effort were to: conceptually design a flight system; design a Ground Demonstration System (GDS) that is prototypic of the flight system in order to prove the feasibility of the flight system design; fabricate and assemble the GDS; and performance and endurance test the GDS using electric heaters in lieu of the isotope heat source. Results of the work performed under the Phase 1 contract to 1 July 1978 are presented

  14. Deciphering Complex Carbon Cycle Changes Across the K-Pg Boundary Using Compound-Specific Carbon Isotopic Analyses

    Science.gov (United States)

    Pancost, R. D.; Taylor, K. W.; Hollis, C. J.; Crouch, E. M.

    2014-12-01

    The consequences of the Cretaceous-Paleogene (K/Pg) boundary event on the Earth system have been the subject of much scrutiny. Postulated climate events include a brief (10 - 2000 yr) period of global cooling induced by sulphate aerosols (the so-called 'impact winter'), an interval of warming caused by impact-induced CO2release, as well as longer-term climatic oscillations during the subsequent 1 to 3Myr. Associated with these were putative changes in the biogeochemical cycle, manifested as carbon isotope excursions on both short- and long-term timescales. In this study we develop new biomarker-based climate and biogeochemical records for the mid-Waipara River and Branch Stream sections, NZ. At Branch Stream, a pronounced negative (ca 6 to 8 permil) carbon isotope excursion occurs at the K/Pg; the excursion is recorded by higher plant biomarkers, consistent with some terrestrial records and suggesting that the immediate aftermath of the K/Pg boundary event was characterised by the massive release of 13C-depleted reduced carbon into the ocean-atmosphere reservoir. Mixing across the K/Pg boundary at the Waipara section precludes a similar high-resolution investigation. Lower-resolution, longer-term records, however, also reveal a negative carbon istope excursion documented by both algal and higher plant biomarkers. This event appears to be distinct from that recorded at Branch Stream, being of lower magnitude and longer duration. It coincided with a transient terrestrial and marine warming and appears to have lasted at least 100 kyr and perhaps longer. We argue that this protracted negative CIE reflects a secondary and longer-term consequence of the K/Pg on the global carbon cycle. There is little evidence for an algal extinction as a range of C27 to C30 sterols continued to be deposited throughout the entire section, but changes in GDGT distributions do suggest a change in carbon export dynamics which could have impacted burial of 13C-depleted marine organic matter

  15. Organic carbon spiralling in stream ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Mulholland, P J; Elwood, J W; O' Neill, R V

    1982-01-01

    The term spiralling has been used to describe the combined processes of cycling and longitudinal transport in streams. As a measure or organic carbon spiralling, we introduced organic carbon turnover length, S, defined as the average or expected downstream distance travelled by a carbon atom between its entry or fixation in the stream and its oxidation. Using a simple model for organic carbon dynamics in a stream, we show that S is closely related to fisher and Likens' ecosystem efficiency. Unlike efficiency, however, S is independent of the length of the study reach, and values of S determined in streams of differing lengths can be compared. Using data from three different streams, we found the relationship between S and efficiency to agree closely with the model prediction. Hypotheses of stream functioning are discussed in the context of organic carbeon spiralling theory.

  16. Radiocarbon measurements of dissolved organic carbon in sewage-treatment-plant effluent and domestic sewage

    International Nuclear Information System (INIS)

    Nara, Fumiko Watanabe; Imai, Akio; Matsushige, Kazuo; Komatsu, Kazuhiro; Kawasaki, Nobuyuki; Shibata, Yasuyuki

    2010-01-01

    In an attempt to better characterize dissolved organic carbon (DOC) in several specific sources to Lake Kasumigaura, such as sewage-treatment-plant effluent (STPE), domestic sewage (DS) and forest stream (FS), we analyzed radiocarbon ( 14 C) and stable carbon isotopic compositions ( 13 C) of the DOCs. The measurements of 14 C for DOC were performed by an accelerator mass spectrometer (AMS) at the National Institute for Environmental Studies (NIES-TERRA) in Japan. The Δ 14 C and δ 13 C values of the DOCs in several sources to Lake Kasumigaura, have low carbon isotopic values, ranging from -470 per mille to -79 per mille and from -27.9 per mille to -24.2 per mille , respectively. These carbon isotopic values are substantially different from those of Lake Kasumigaura. These results imply different origins for the DOC in Lake Kasumigaura. The 14 C and 13 C analyses of DOC led to a useful classification for DOCs in Lake Kasumigaura, Japan.

  17. Release of hydrogen isotopes from carbon based fusion reactor materials

    International Nuclear Information System (INIS)

    Vainonen-Ahlgren, E.

    2000-01-01

    The purpose of this study is to understand the annealing behavior of hydrogen isotopes in carbon based materials. Also, the density of the material and structural changes after thermal treatment and ion irradiation are examined. The study of hydrogen diffusion in diamondlike carbon films revealed an activation energy of 2.0 eV, while the deuterium diffusion, due to better measuring sensitivity, is found to be concentration dependent with the effective diffusion coefficient becoming smaller with decreasing deuterium concentration. To explain the experimentally observed profiles, a model according to which atomic deuterium diffuses and deuterium in clusters is immobile is developed. The concentration of immobile D was assumed to be an analytical function of the total D concentration. To describe the annealing behavior of D incorporated in diamondlike carbon films during the deposition process, a model taking into account diffusion of free D and thermal detrapping and trapping of D was developed. The difference in the analysis explains the disagreement of activation energy (1.5 ± 0.2 eV) with the value of 2,9± 0.1 eV obtained for D implanted samples earlier. The same model was applied to describe the experimental profiles in Si doped diamondlike carbon films. Si affects the retention of D in diamondlike carbon films. The amount of D depends on Si content in the co-deposited but not implanted samples. Besides, Si incorporation into carbon coating decreases to some extent the graphitization of the films and leads to formation of a structure which is stable under thermal treatment and ion irradiation. Hydrogen migration in the hydrogen and methane co-deposited films was also studied. In samples produced in methane atmosphere and annealed at different temperatures, the hydrogen concentration level decreases in the bulk, with more pronounced release at the surface region. In the case of coatings deposited by a methane ion beam, the H level also decreases with increasing

  18. The use of carbon isotopes in the study of groundwater of the Bambui calcareous-central region of Bahia (Brazil)

    International Nuclear Information System (INIS)

    Cabral, F.C.F.

    1978-06-01

    Groundwater of 34 wells and of a spring of the Bambui limestone aquifer, in central Bahia, Brazil, were analized for the 14 C and 13 C content. One sample of soil CO 2 and four of soil organic matter were analized for 13 C. From these data were calculated the 14 C ages of these waters. A major difficulty in the use of radiocarbon in groundwater hydrology is the estimation of the initial 14 C concentration. In many cases, this can be simply determined by the fraction of carbon derived from soil gas, relative to the total carbon dissolved, by the use of Δ 13 C of the soil organic matter, limestone and dissolved carbon in water. This approach does not seem to be completely valid in arid ou semi-arid regions, specially where the pH of the soil is relatively high. In this case, the isotopic composition of the soil water can be determined if the pCO 2 and pH of the soil can be estimated and if the isotopic composition of the soil CO 2 can be known. The final isotopic composition of the groundwater is a combination of the isotopic composition of the soil water and any limestone thereafter dissolved. The 14 C ages of the water samples analized ranged from modern to about 13000 years. The recharge areas of the aquifer are clearly indicated, as the probable underground flow directions. The interpretation of the radiocarbon data is in accord with the hydrologic data. (Author) [pt

  19. Carbon Isotope Analyses of Individual Hydrocarbon Molecules in Bituminous Coal, Oil Shale and Murchison Meteorite

    Directory of Open Access Journals (Sweden)

    Kyoungsook Kim

    1998-06-01

    Full Text Available To study the origin of organic matter in meteorite, terrestrial rocks which contain organic compounds similar to the ones found in carbonaceous chondrites are studied and compared with Murchison meteorite. Hydrocarbon molecules were extracted by benzene and methanol from bituminous coal and oil shale and the extracts were partitioned into aliphatic, aromatic, and polar fractions by silica gel column chromatography. Carbon isotopic ratios in each fractions were analysed by GC-C-IRMS. Molecular compound identifications were carried by GC-MS Engine. Bituminous coal and oil shale show the organic compound composition similar to that of meteorite. Oil shale has a wide range of δ(13C, -20.1%_0 - -54.4%_0 compared to bituminous coal, -25.2%_0 - -34.3%_0. Delta values of several molecular compounds in two terrestrial samples are different. They show several distinct distributions in isotopic ratios compared to those of meteorite; Murchison meteorite has a range of δ(13C from -13%_0 to +30%_0. These results provide interpretation for the source and the formation condition of each rock, in particular alteration and migration processes of organic matter. Especially, they show an important clue whether some hydrocarbon molecules observed in meteorite are indigenous or not.

  20. Short-term carbon isotopic fractionation in plants

    International Nuclear Information System (INIS)

    Rooney, M.A.

    1988-01-01

    A system was developed for measuring carbon isotopic fractionation in plants over a time interval of 1-3 hours, in contrast to leaf combustion studies which give long-term, integrated discrimination measurements. The system was used to study environmental effects on soybean (Glycine max) and corn (Zea mays) discrimination. Changes in leaf temperature, photon flux density (PFD), O 2 concentration, and CO 2 concentration produced little or no change in measured discrimination (Δ). For soybean, Δ increased with decreasing PFD. For corn, Δ decreased with decreasing O 2 concentration. For both soybean and corn, Δ increased with increasing CO 2 concentration. These changes in Δ were interpreted as environmental effects on stomatal conductance and photosynthetic capacity, which indirectly affect Δ by altering C i /C a . Respiratory discrimination in the dark and light was also investigated. Respired CO 2 was 5 per-thousand and 0-1 per-thousand more positive than leaf carbon for soybean and corn, respectively. Photorespiratory discrimination was 6-7 per-thousand for soybean, supporting the contention that glycine decarboxylase may be the source of discrimination in the photorespiratory pathway

  1. Morphology, molecular structure, and stable carbon isotopic composition of black carbon (BC) in urban topsoils.

    Science.gov (United States)

    Zong, Yutong; Xiao, Qing; Lu, Shenggao

    2018-02-01

    Urban soils contain significant amounts of black carbon (BC) from biomass and fossil fuel combustion and regard to be a pool of BC. BC in urban soils has multiple effects on environmental processes in urban system, such as global climate change, air quality, and public health. Urban topsoil samples (0-10 cm) were collected from Anshan, Liaoning Province, northeast China, which is one of the most important old steel industrial bases in China. The BC in urban topsoils was extracted using the density method. Their chemical composition, morphology, molecular structure, and stable carbon isotopic composition were examined using elemental analysis, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and stable carbon isotope (δ 13 C). Elemental analysis shows that carbon content in the BC of studied soils ranged from 64.5 to 78.4%, with the average more than 70%. The O/C atomic ratio of BC is on average 0.18. The BC particle displays different morphology, including porous spherical, irregular porous fragmentary, and blocky shapes. The porous spherical BC particles has atomic molar O/C ratio determined by SEM-EDS ranging from 0.04 to 0.37. XRD indicates that BC exists in mainly combining with mineral phases hematite (Fe 2 O 3 ), kaolinite (Al 2 Si 2 O 5 (OH) 4 ), quartz (SiO 2 ), and calcite (CaCO 3 ). The FTIR spectra of BC particles show major bands at approximately 3400 cm -1 (O-H), 2920 cm -1 (C = H), 1600 cm -1 (C = C), 1230 cm -1 (C = O), and 1070 cm -1 (C = O). The stable carbon isotope (δ 13 C) of BC ranges from -24.48 to -23.18‰ with the average of -23.79 ± 0.39‰. The concentration of BC in the industrial area is significantly (p fuel combustion. Results indicated that a combination of atomic O/C ratio, porous structure, and stable carbon isotopic (δ 13 C) of BC could reflect effectively the origin of BC

  2. Inheritance of carbon isotope discrimination and water-use efficiency in cowpea

    International Nuclear Information System (INIS)

    Ismail, A.M.; Hall, A.E.

    1993-01-01

    Theory has been developed predicting an association between water-use efficiency (WUE = total biomass/transpiration) and leaf discrimination against 13C carbon isotope discrimination which could be used to indirectly select for WUE in C3 plants. Previous studies indicated variation in WUE and carbon isotope discrimination among genotypes of cowpea [Vigna unguiculata (L.) Walp.] and due to drought. Moreover, a highly significant negative correlation between WUE and carbon isotope discrimination was observed for both genotypic and drought effects, as expected based on theory. Present studies were conducted to investigate whether the inheritance of WUE and carbon isotope discrimination is nuclear or maternal, and whether any dominance is present. Contrasting cowpea accessions and hybrids were grown over 2 yr in two outdoor pot experiments, subjected to wet or dry treatments, and under full irrigation in natural soil conditions in 1 yr. Highly significant differences in WUE were observed among cowpea parents and hybrids, and due to drought, which were strongly and negatively correlated with carbon isotope discrimination as expected based on theory. Data from reciprocal crosses indicated that both WUE and carbon isotope discrimination are controlled by nuclear genes. High WUE and low carbon isotope discrimination exhibited partial dominance under pot conditions. In contrast, high carbon isotope discrimination was partially dominant for plants grown under natural soil conditions but in a similar aerial environment as in the pot studies. We speculate that differences in rooting conditions were responsible for the differences in extent of dominance for carbon isotope discrimination of plants growing under pot conditions compared with natural soil conditions in a similar field aerial environment

  3. The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin

    Science.gov (United States)

    Heuer, Verena B.; Pohlman, John W.; Torres, Marta E.; Elvert, Marcus; Hinrichs, Kai-Uwe

    2009-01-01

    Ocean drilling has revealed the existence of vast microbial populations in the deep subseafloor, but to date little is known about their metabolic activities. To better understand the biogeochemical processes in the deep biosphere, we investigate the stable carbon isotope chemistry of acetate and other carbon-bearing metabolites in sediment pore-waters. Acetate is a key metabolite in the cycling of carbon in anoxic sediments. Its stable carbon isotopic composition provides information on the metabolic processes dominating acetate turnover in situ. This study reports our findings for a methane-rich site at the northern Cascadia Margin (NE Pacific) where Expedition 311 of the Integrated Ocean Drilling Program (IODP) sampled the upper 190 m of sediment. At Site U1329, δ13C values of acetate span a wide range from −46.0‰ to −11.0‰ vs. VPDB and change systematically with sediment depth. In contrast, δ13C values of both the bulk dissolved organic carbon (DOC) (−21.6 ± 1.3‰ vs. VPDB) and the low-molecular-weight compound lactate (−20.9 ± 1.8‰ vs. VPDB) show little variability. These species are interpreted to represent the carbon isotopic composition of fermentation products. Relative to DOC, acetate is up to 23.1‰ depleted and up to 9.1‰ enriched in 13C. Broadly, 13C-depletions of acetate relative to DOC indicate flux of carbon from acetogenesis into the acetate pool while 13C-enrichments of pore-water acetate relative to DOC suggest consumption of acetate by acetoclastic methanogenesis. Isotopic relationships between acetate and lactate or DOC provide new information on the carbon flow and the presence and activity of specific functional microbial communities in distinct biogeochemical horizons of the sediment. In particular, they suggest that acetogenic CO2-reduction can coexist with methanogenic CO2-reduction, a notion contrary to the hypothesis that hydrogen levels are controlled by the thermodynamically most favorable electron

  4. Carbon isotope chemostratigraphy of the Llandovery in northern peri-Gondwana: new data from the Barrandian area, Czech Republic

    Directory of Open Access Journals (Sweden)

    Jiří Frýda

    2014-12-01

    Full Text Available The first complete δ13Corg record of the uppermost Hirnantian to lower Telychian strata of the Barrandian area (northern peri-Gondwana is presented based on 168 new samples. The new data from the study area reveal that the evolution of the Llandoverian organic carbon isotope reservoir was similar to that on other palaeoplates, but it differs from the development of the coeval carbonate carbon isotope reservoir in the absence of two δ13C excursions (i.e. the early Aeronian positive excursion in the upper part of the Demirastrites triangulatus graptolite Biozone and a negative excursion occurring close to the boundary between the Cystograptus vesiculosus and Coronograptus cyphus graptolite biozones.

  5. Carbon isotopes and charcoal in soils, vegetation changes and climate inferences in the southeastern Brazil

    International Nuclear Information System (INIS)

    Pessenda, L.C.R.; Gouveia, S.E.M; Aravena, R; Boulet, R; Bendassolli, J.A

    2001-01-01

    The use of carbon isotopes in studies of soil organic matter (SOM) dynamics have been applied to infer information about vegetation and climate changes during the late Quaternary (Schwartz et al., 1986; Pessenda et al., 1996). This approach had also been used in different areas in Brazil to document vegetation changes during the Holocene (Desjardins et al., 1996; Gouveia et al., 1997; Pessenda et al., 1998a, b, 2001) and late Pleistocene/Holocene (Freitas et al., 2001). The application of carbon isotopes is based on the different 13 C composition of C 3 and C 4 plants and its preservation in SOM. 13 C values of C 3 plant species range from approximately -32% o to -20% o PDB, with a mean of -27% o . In contrast, δ 13 C of C 4 species range from -17% o to -9% o with mean of -13% o . Thus, C 3 and C 4 plant species have distinct δ 13 C values and differ from each other by approximately 14% o (Boutton, 1991). The study of charcoal fragments found in sediments and soils also supplies information about climatic conditions. Charcoal distribution in the soil profiles can provide information about the occurrence of paleofires (Pessenda et al., 1996), possibly associated with drier climate periods and/or human disturbance. In this paper we report δ 13 C data of soil and 14 C dates on charcoal from five soil profiles collected under natural vegetation in the Parana and Sao Paulo states, southeastern Brazil. Carbon isotopes are used to evaluate vegetation changes during the late Pleistocene and Holocene. Charcoal distribution in the soil and its dating are used to infer linkage between forest fires and climate changes and to establish the chronology (au)

  6. Light hydrogen isotopes in the single - walled carbon nano tube

    International Nuclear Information System (INIS)

    Khugaev, A.V.; Sultanov, R.A.; Guster, D.

    2007-01-01

    Full text: Progress of our understanding of the molecular hydrogen behavior in the nano tube interior open an intriguing possibility for the applications of these knowledge's to the solution of the hydrogen storage problem and light isotopes gas selectivity. That can strongly change the situation at the energy production in the world and completely change our civil life. These investigations underline the influence of the quantum effects on the properties of molecular hydrogen in the nano tube interior and it leads to the pure quantum-mechanical reformulation of the problem for the hydrogen behavior inside carbon nano tube as a problem of molecular quantum system behavior in the external field induced by the regular nano tube surface. In the present paper the molecular hydrogen behavior in the carbon nano tube was considered in the simple quantum mechanical manner. The main attention was paid to the investigation of the quantum sieving selectivity in the dependence of nano tube composition, radius and symmetry properties. For the interaction potential between hydrogen and nano tube surface was taken some phenomenological LJ(12,6) - (Lennard - Jones) potential and the external field induced by the nano tube in its interior is considered as a simple sum over the all nano tube carbon atoms. Influence of the structure of rotation (vibration) spectrum of the energy levels of diatomic molecules, such as H 2 , HD and D 2 on the final results and finite size of the nano tube along the axis of symmetry, its boundary effects is discussed in details. Thermal oscillations of nano tube surface were considered separately in the dependence of the temperature gradient along of the axis of symmetry

  7. Worldwide organic soil carbon and nitrogen data

    Energy Technology Data Exchange (ETDEWEB)

    Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  8. Environmental forcing of terrestrial carbon isotope excursion amplification across five Eocene hyperthermals

    Science.gov (United States)

    Bowen, G. J.; Abels, H.

    2015-12-01

    Abrupt changes in the isotope composition of exogenic carbon pools accompany many major episodes of global change in the geologic record. The global expression of this change in substrates that reflect multiple carbon pools provides important evidence that many events reflect persistent, global redistribution of carbon between reduced and oxidized stocks. As the diversity of records documenting any event grows, however, discrepancies in the expression of carbon isotope change among substrates are almost always revealed. These differences in magnitude, pace, and pattern of change can complicate interpretations of global carbon redistribution, but under ideal circumstances can also provide additional information on changes in specific environmental and biogeochemical systems that accompanied the global events. Here we evaluate possible environmental influences on new terrestrial records of the negative carbon isotope excursions (CIEs) associated with multiple hyperthermals of the Early Eocene, which show a common pattern of amplified carbon isotope change in terrestrial paleosol carbonate records relative to that recorded in marine substrates. Scaling relationships between climate and carbon-cycle proxies suggest that that the climatic (temperature) impact of each event scaled proportionally with the magnitude of its marine CIE, likely implying that all events involved release of reduced carbon with a similar isotopic composition. Amplification of the terrestrial CIEs, however, does not scale with event magnitude, being proportionally less for the first, largest event (the PETM). We conduct a sensitivity test of a coupled plant-soil carbon isotope model to identify conditions that could account for the observed CIE scaling. At least two possibilities consistent with independent lines of evidence emerge: first, varying effects of pCO2 change on photosynthetic carbon isotope discrimination under changing background pCO2, and second, contrasting changes in regional

  9. Organic Carbon Storage in China's Urban Areas

    Science.gov (United States)

    Zhao, Shuqing; Zhu, Chao; Zhou, Decheng; Huang, Dian; Werner, Jeremy

    2013-01-01

    China has been experiencing rapid urbanization in parallel with its economic boom over the past three decades. To date, the organic carbon storage in China's urban areas has not been quantified. Here, using data compiled from literature review and statistical yearbooks, we estimated that total carbon storage in China's urban areas was 577±60 Tg C (1 Tg  = 1012 g) in 2006. Soil was the largest contributor to total carbon storage (56%), followed by buildings (36%), and vegetation (7%), while carbon storage in humans was relatively small (1%). The carbon density in China's urban areas was 17.1±1.8 kg C m−2, about two times the national average of all lands. The most sensitive variable in estimating urban carbon storage was urban area. Examining urban carbon storages over a wide range of spatial extents in China and in the United States, we found a strong linear relationship between total urban carbon storage and total urban area, with a specific urban carbon storage of 16 Tg C for every 1,000 km2 urban area. This value might be useful for estimating urban carbon storage at regional to global scales. Our results also showed that the fraction of carbon storage in urban green spaces was still much lower in China relative to western countries, suggesting a great potential to mitigate climate change through urban greening and green spaces management in China. PMID:23991014

  10. Peatland Microbial Carbon Use Under Warming using Isotopic Fractionation

    Science.gov (United States)

    Gutknecht, J.

    2016-12-01

    Peatlands are a critical natural resource, especially in their role as carbon sinks. Most of the world's peatlands are located in Northern ecosystems where the climate is changing at a rapid pace, and there is great interest and concern with how climate change will influence them. Although studies regarding the response of peatlands to climate change have emerged, the microbial mediation of C cycling in these systems is still less well understood. In this study, 13CPLFA analysis was used to characterize the microbial community and it's carbon use at the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) Project. The SPRUCE project is an extensive study of the response of peatlands to climatic manipulation in the Marcell Experimental Forest in northern Minnesota. Heating rods were installed in peatland plots where peat is being warmed at several levels including ambient, +2.5, +4.5, +6.75, and +9 degrees Celsius, at a depth of 3 meters, beginning July of 2014. Samples were taken June 2014, September 2014, and June 2015, throughout the depth profile. We found very high microbial, and especially fungal growth at shallow depths, owing in part to the influence of fungal-like lipids present in Sphagnum stems, and in part to dense mycorrhizal colonization in shrub and tree species. Isotopic data shows that microbial biomass has an enriched δ13C lower in the peat profile, indicating as expected that microbes at depth utilize older carbon or carbon more enriched in 13C. The increase over depth in the δ13C signature may also reflect the increased dominance of pre-industrial carbon that is more enriched in 13C. In this early period of warming we did not see clear effects of warming, either due to the highly heterogeneous microbial growth across the bog, or to the short term deep warming only. We expect that with the initiation of aboveground warming in July 2016, warming will begin to show stronger effects on microbial C cycling.

  11. Carbon-13 kinetic isotope effects in the decarbonylation of lactic acid of natural isotopic composition in phosphoric acid medium

    International Nuclear Information System (INIS)

    Zielinski, M.; Czarnota, G.; Papiernik-Zielinska, H.; Kasprzyk, G.; Gumolka, L.; Staedter, W.

    1993-01-01

    The 13 C kinetic isotope effect fractionation in the decarbonylation of lactic acid (LA) of natural isotopic composition by concentrated phosphoric acids (PA) and by 85% H 3 PO 4 has been studied in the temperature interval of 60-150 deg C. The values of the 13 C (1) isotope effects in the decarbonylation of lactic acid in 100% H 3 PO 4 , in pyrophosphoric acid and in more concentrated phosphoric acids are intermediate between the values calculated assuming that the C (1)- OH bond is broken in the rate-controlling step of dehydration and those calculated for rupture of the carbon-carbon bond in the transition state. In the temperature interval of 90-130 deg C the experimental 13 C fractionation factors determined in concentrated PA approach quite closely the 13 C fractionation corresponding to C (2)- C (1) bond scission. The 13 C (1) kinetic isotope effects in the decarbonylation of LA in 85% orthophosphoric acid in the temperature range of 110-150 deg C coincide with the 13 C isotope effects calculated assuming that the frequency corresponding to the C (1) -OH vibration is lost in the transition state of decarbonylation. A change of the mechanism of decarbonylation of LA in going from concentrated PA medium to 85% H 3 PO 4 has been suggested. A possible secondary 18 O and a primary 18 O kinetic isotope effect in decarbonylation of lactic acid in phosphoric acids media have been discussed, too. (author) 21 refs.; 3 tabs

  12. Study of intramolecular isotope heterogeneity of organic oxy acids in order to detect sophisticated wines and juice drinks

    Directory of Open Access Journals (Sweden)

    Kuzmina Helen

    2014-01-01

    Full Text Available According to International Code of Oenological Practices it is allowed to use acide L(+tartrique for wine acidification, while use of synthetic dihydroxysuccinic acid is forbidden. Today it is impossible to differentiate natural dihydroxysuccinic acid from synthetic one by standard techniques. Even by using very sensitive method of isotope mass spectrometry certain difficulties emerge because total isotope characteristics of carbon of dihydroxysuccinic acid of different nature have the same values. However, isotope characteristics of carbon of intramolecular structural groups of dihydroxysuccinic acid made of different raw materials differ significantly. This allows specifying the nature of dihydroxysuccinic acid that is used for making of wines and juice drinks. In Russia, scientific and research institute of beer brewing and wine-making industry carried out a work for studying isotope characteristics of intramolecular isotope heterogeneity of dihydroxysuccinic acid from different origins in order to identify wines and juice drinks. Isotope characteristics of organic oxy acids from different origins were studied including them obtained by synthetic way and numeric range of value δ13 C,‰ were specified. The obtained results allow performing identification tests of wines and juice drinks to find out the products that contain not specified additives as that allowed for its use in production process.

  13. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    Science.gov (United States)

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  14. Carbon isotopes in the ocean model of the Community Earth System Model (CESM1

    Directory of Open Access Journals (Sweden)

    A. Jahn

    2015-08-01

    Full Text Available Carbon isotopes in the ocean are frequently used as paleoclimate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized data set, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM, containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "abiotic" case, the 14C tracer is only subject to air–sea gas exchange, physical transport, and radioactive decay, while in the "biotic" version, the 14C additionally follows the 13C tracer through all biogeochemical and ecological processes. Thus, the abiotic 14C tracer can be run without the ecosystem module, requiring significantly fewer computational resources. The carbon isotope module calculates the carbon isotopic fractionation during gas exchange, photosynthesis, and calcium carbonate formation, while any subsequent biological process such as remineralization as well as any external inputs are assumed to occur without fractionation. Given the uncertainty associated with the biological fractionation during photosynthesis, we implemented and tested three parameterizations of different complexity. Compared to present-day observations, the model is able to simulate the oceanic 14C bomb uptake and the 13C Suess effect reasonably well compared to observations and other model studies. At the same time, the carbon isotopes reveal biases in the physical model, for example, too sluggish ventilation of the deep Pacific Ocean.

  15. Carbon isotopes in the ocean model of the Community Earth System Model (CESM1)

    Science.gov (United States)

    Jahn, A.; Lindsay, K.; Giraud, X.; Gruber, N.; Otto-Bliesner, B. L.; Liu, Z.; Brady, E. C.

    2015-08-01

    Carbon isotopes in the ocean are frequently used as paleoclimate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized data set, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM), containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "abiotic" case, the 14C tracer is only subject to air-sea gas exchange, physical transport, and radioactive decay, while in the "biotic" version, the 14C additionally follows the 13C tracer through all biogeochemical and ecological processes. Thus, the abiotic 14C tracer can be run without the ecosystem module, requiring significantly fewer computational resources. The carbon isotope module calculates the carbon isotopic fractionation during gas exchange, photosynthesis, and calcium carbonate formation, while any subsequent biological process such as remineralization as well as any external inputs are assumed to occur without fractionation. Given the uncertainty associated with the biological fractionation during photosynthesis, we implemented and tested three parameterizations of different complexity. Compared to present-day observations, the model is able to simulate the oceanic 14C bomb uptake and the 13C Suess effect reasonably well compared to observations and other model studies. At the same time, the carbon isotopes reveal biases in the physical model, for example, too sluggish ventilation of the deep Pacific Ocean.

  16. Stable carbon and oxygen isotope studies of Late Weichselian lake sediments in southern Sweden and northern Poland, with palaeoclimatic implications

    International Nuclear Information System (INIS)

    Hammarlund, D.

    1994-04-01

    Late Weichselian lacustrine sediment sequences from southern Sweden and northern Poland were studied by means of stable isotope analysis in order to reconstruct the climatic development and climatically induced environmental changes in the respective regions. The methods used include analyses of the stable carbon isotope composition (δ 13 C) of bulk organic material, and the stable carbon and oxygen isotope compositions (δ 13 C, δ 18 O) of bulk carbonates and carbonate shells of aquatic organisms. These results were complemented and supported by lithological, chemical and biostratigraphic data (plant macrofossils, insects, molluscs). Chronological data were obtained by AMS radiocarbon dates and correlations based on pollen analysis. At c. 12.400 BP a climatic change from arctic, dry, and continental, to subarctic and more humid and maritime conditions occurred in southern Sweden. The Older Dryas stadial (c.12.200-12.000 BP) is characterized by a temporary return to generally colder , drier, and more continental conditions, followed by generally favourable (subarctic), although unstable, climatic conditions. At c. 11.300 BP a gradual transition towards a colder and more continental climate was initiated, followed by total absence of limnic carbonates during the Younger Dryas stadial (c. 11.000-10.200 BP), indicating arctic and continental conditions. The transition to the Holocene is characterized by a rapid and strong climatic warming. The results from northern Poland point to some important differences compared to this development. A climatic warming around 13.000 BP was followed by generally favourable climatic conditions enabling continuous sedimentation of limnic carbonates during the Late Weichselian. Distinct depletions of 13 C in lacustrine organic material at the transition to the Holocene were recorded in southern Sweden, also demonstrated by decreasing mean values obtained from an extensive compilation of δ 13 C data. A number of processes that may

  17. Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean's soft-tissue biological pump

    Science.gov (United States)

    Schmittner, A.; Somes, C. J.

    2016-06-01

    A three-dimensional, process-based model of the ocean's carbon and nitrogen cycles, including 13C and 15N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run (piCtrl) and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rate μmax, which accelerates biological nutrient utilization mimicking iron fertilization. The default LGM simulation, without increasing μmax and with a shallower and weaker Atlantic Meridional Overturning Circulation and increased sea ice cover, leads to 280 Pg more respired organic carbon (Corg) storage in the deep ocean with respect to piCtrl. Dissolved oxygen concentrations in the colder glacial thermocline increase, which reduces water column denitrification and, with delay, nitrogen fixation, thus increasing the ocean's fixed nitrogen inventory and decreasing δ15NNO3 almost everywhere. This simulation already fits sediment reconstructions of carbon and nitrogen isotopes relatively well, but it overestimates deep ocean δ13CDIC and underestimates δ15NNO3 at high latitudes. Increasing μmax enhances Corg and lowers deep ocean δ13CDIC, improving the agreement with sediment data. In the model's Antarctic and North Pacific Oceans modest increases in μmax result in higher δ15NNO3 due to enhanced local nutrient utilization, improving the agreement with reconstructions there. Models with moderately increased μmax fit both isotope data best, whereas large increases in nutrient utilization are inconsistent with nitrogen isotopes although they still fit the carbon isotopes reasonably well. The best fitting models reproduce major features of the glacial δ13CDIC, δ15N, and oxygen reconstructions while simulating increased Corg by 510-670 Pg compared with the preindustrial ocean. These results are consistent with the idea that the soft-tissue pump was more efficient

  18. Bicarbonate adsorption band of the chromatography for carbon isotope separation using anion exchangers

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Obanawa, Heiichiro; Hata, Masahisa; Sato, Katsuya

    1985-01-01

    The equilibria of bicarbonate ion between two phases were studied for the carbon isotope separation using anion exchangers. The condition of the formation of a bicarbonate adsorption band was quantitatively discussed. The formation of the adsorption band depends on the difference of S-potential which is the sum of the standard redection chemical potentials and L-potential which is the sum of the reduction chemical potential. The isotopic separation factor observed was about 1.012, independent of the concentrations of acid and alkali in the solutions. The isotopic separation factor was considered to be determined by the reaction of bicarbonate ion on anion exchangers and carbon dioxide dissolved in solutions. The enriched carbon isotope whose isotopic abundance ratio ( 13 C/ 12 C) was 1.258 was obtained with the column packed with anion exchangers. (author)

  19. Dissolution of barite for the analysis of strontium isotopes and other chemical and isotopic variations using aqueous sodium carbonate

    Science.gov (United States)

    Breit, G.N.; Simmons, E.C.; Goldhaber, M.B.

    1985-01-01

    A simple procedure for preparing barite samples for chemical and isotopic analysis is described. Sulfate ion, in barite, in the presence of high concentrations of aqueous sodium carbonate, is replaced by carbonate. This replacement forms insoluble carbonates with the cations commonly in barite: Ba, Sr, Ca and Pb. Sulfate is released into the solution by the carbonate replacement and is separated by filtration. The aqueous sulfate can then be reprecipitated for analysis of the sulfur and oxygen isotopes. The cations in the carbonate phase can be dissolved by acidifying the solid residue. Sr can be separated from the solution for Sr isotope analysis by ion-exchange chromatography. The sodium carbonate used contains amounts of Sr which will affect almost all barite 87Sr 86Sr ratios by less than 0.00001 at 1.95?? of the mean. The procedure is preferred over other techniques used for preparing barite samples for the determination of 87Sr 86Sr ratios because it is simple, rapid and enables simultaneous determination of many compositional parameters on the same material. ?? 1985.

  20. A sorghum (Sorghum bicolor mutant with altered carbon isotope ratio.

    Directory of Open Access Journals (Sweden)

    Govinda Rizal

    Full Text Available Recent efforts to engineer C4 photosynthetic traits into C3 plants such as rice demand an understanding of the genetic elements that enable C4 plants to outperform C3 plants. As a part of the C4 Rice Consortium's efforts to identify genes needed to support C4 photosynthesis, EMS mutagenized sorghum populations were generated and screened to identify genes that cause a loss of C4 function. Stable carbon isotope ratio (δ13C of leaf dry matter has been used to distinguishspecies with C3 and C4 photosynthetic pathways. Here, we report the identification of a sorghum (Sorghum bicolor mutant with a low δ13C characteristic. A mutant (named Mut33 with a pale phenotype and stunted growth was identified from an EMS treated sorghum M2 population. The stable carbon isotope analysis of the mutants showed a decrease of 13C uptake capacity. The noise of random mutation was reduced by crossing the mutant and its wildtype (WT. The back-cross (BC1F1 progenies were like the WT parent in terms of 13C values and plant phenotypes. All the BC1F2 plants with low δ13C died before they produced their 6th leaf. Gas exchange measurements of the low δ13C sorghum mutants showed a higher CO2 compensation point (25.24 μmol CO2.mol-1air and the maximum rate of photosynthesis was less than 5μmol.m-2.s-1. To identify the genetic determinant of this trait, four DNA pools were isolated; two each from normal and low δ13C BC1F2 mutant plants. These were sequenced using an Illumina platform. Comparison of allele frequency of the single nucleotide polymorphisms (SNPs between the pools with contrasting phenotype showed that a locus in Chromosome 10 between 57,941,104 and 59,985,708 bps had an allele frequency of 1. There were 211 mutations and 37 genes in the locus, out of which mutations in 9 genes showed non-synonymous changes. This finding is expected to contribute to future research on the identification of the causal factor differentiating C4 from C3 species that can be used

  1. Use of isotopes in organic matter studies: a discussion illustrated by recent applications

    International Nuclear Information System (INIS)

    Warembourg, F.R.

    1982-01-01

    After a presentation of the various concepts leading to the advantageous use of isotope tracers in soil organic matter and related studies, a discussion is proposed around three main types of methods which are related to the time scale of the processes occurring in the soil organic matter transformations. Examples help to illustrate the purpose. Static methods describing the state of soil organic matter such as carbon dating. Long term dynamic studies involving the use of labelled plant materials and their applications in situ. Short term dynamic studies as an insight into the short term lived processes such as biotic and abiotic energetic activivation, flushes, priming effect, nitrogen fixation. More than an exhaustive enumeration of the litterature, the main objective of this presentation will tend to be a comprehensive analysis of the many problems arising from the study of soil activities and of the modern approaches of investigation. (Author) [pt

  2. Carbon, Chlorine, and Hydrogen Isotope Fractionation in Transformation of TCE to Ethene by a Dehalococcoides Culture

    NARCIS (Netherlands)

    Kuder, T.; van Breukelen, B.M.; Vanderford, M.; Philip, P.

    2013-01-01

    Carbon (C), chlorine (Cl), and hydrogen (H) isotope effects were determined during dechlorination of TCE to ethene by a mixed Dehalococcoides (Dhc) culture. The C isotope effects for the dechlorination steps were consistent with data published in the past for reductive dechlorination (RD) by Dhc.

  3. Soil drying effects on the carbon isotope composition of soil respiration

    Science.gov (United States)

    Stable isotopes are used widely as a tool for determining sources of carbon (C) fluxes in ecosystem C studies. Environmental factors that change over time, such as moisture, can create dynamic changes in the isotopic composition of C assimilated by plants, and offers a unique opp...

  4. Carbon and oxygen isotopes in carbonatites from Puna, Jujuy and Salta, Argentina

    International Nuclear Information System (INIS)

    Zappettini, Eduardo O.; Rubiolo, Daniel

    1998-01-01

    δ 13 and δ 18 O data from carbonatites indicate that bodies formed by crystallization of carbonate magma with subsequent formation of metasomatic and hydrothermal carbonatitic veins. The isotopic data are consistent with the available geochemical and petrologic information. (author)

  5. Stable carbon isotope discrimination in the smut fungus Ustilago violacea

    International Nuclear Information System (INIS)

    Will, O.H. III; Tieszen, L.L.; Kellen, M.; Gerlach, T.

    1986-01-01

    Haploid strains 15.10, I.C429, and I.C2y and diploid strain JK2 of Ustilago Piolacea were grown on one or more of the following carbon sources: glucose, sucrose, maltose, inulin, starch, inositol, glycerol, casein, and yeast extract. The media, both before and after fungal growth, and the fungal cells were analyzed for 13 C/ 12 C content (δ 13 values) using an isotope ratio mass spectrometer after combustion to CO 2 . In all cases, the used and unused media had identical δ 13 C values. Strain 15.10 had significantly less 13 C than the media when grown on glucose, sucrose, maltose, and inositol; significantly more 13 C when grown on inulin, starch, and glycerol; and no significant difference in δ 13 C values when grown on casein and yeast extract media. Other haploid strains responded similarly to 15.10. Diploid strain JK2 was also depleted in 13 C when grown on glucose and enriched in 13 C when grown on glycerol; however, JK2 was slightly depleted in 13 C when grown on casein, whereas all the tested haploid strains were enriched in 13 C

  6. Distinguishing feral and managed honeybees (Apis mellifera) using stable carbon isotopes

    OpenAIRE

    Anderson , Lucy; Dynes , Travis; Berry , Jennifer; Delaplane , Keith; McCormick , Lydia; Brosi , Berry

    2014-01-01

    International audience; The ability to distinguish feral and managed honeybees (Apis mellifera) has applications in studies of population genetics, parasite transmission, pollination, interspecific interactions, and bee breeding. We evaluated a diagnostic test based on theoretical differences in stable carbon isotope ratios generated by supplemental feeding. We evaluated (1) if carbon isotope ratios can distinguish feral and managed honeybees and (2) the temporal persistence of the signal aft...

  7. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil.

    Science.gov (United States)

    Wijesekara, Hasintha; Bolan, Nanthi S; Thangavel, Ramesh; Seshadri, Balaji; Surapaneni, Aravind; Saint, Christopher; Hetherington, Chris; Matthews, Peter; Vithanage, Meththika

    2017-12-01

    A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha -1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ 13 C and δ 15 N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO 2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ 13 C, and enriched δ 15 N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO 2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO 2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Some carbonates from Lagoa Real uranium province, State of Bahia: studies on fluid inclusion and stable isotope

    International Nuclear Information System (INIS)

    Fuzikawa, K.

    1982-01-01

    The geochemical conditions of the uraniferous carbonates of Lagoa Real province were studied using the fluid inclusions method and the isotopic determinations of the carbon and oxygen of these carbonates. (A.B.) [pt

  9. Temperature dependence of photodegradation of dissolved organic matter to dissolved inorganic carbon and particulate organic carbon

    Czech Academy of Sciences Publication Activity Database

    Porcal, Petr; Dillon, P. J.; Molot, L. A.

    2015-01-01

    Roč. 10, č. 6 (2015), e0128884 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP503/12/0781; GA ČR(CZ) GA15-09721S Institutional support: RVO:60077344 Keywords : dissolved organic carbon * particulate organic carbon * photodegradation * temperature Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.057, year: 2015

  10. Treated Wastewater Changes the Export of Dissolved Inorganic Carbon and Its Isotopic Composition and Leads to Acidification in Coastal Oceans.

    Science.gov (United States)

    Yang, Xufeng; Xue, Liang; Li, Yunxiao; Han, Ping; Liu, Xiangyu; Zhang, Longjun; Cai, Wei-Jun

    2018-04-25

    Human-induced changes in carbon fluxes across the land-ocean interface can influence the global carbon cycle, yet the impacts of rapid urbanization and establishment of wastewater treatment plants (WWTPs) on coastal ocean carbon cycles are poorly known. This is unacceptable as at present ∼64% of global municipal wastewater is treated before discharge. Here, we report surface water dissolved inorganic carbon (DIC) and sedimentary organic carbon concentrations and their isotopic compositions in the rapidly urbanized Jiaozhou Bay in northeast China as well as carbonate parameters in effluents of three large WWTPs around the bay. Using DIC, δ 13 C DIC and total alkalinity (TA) data and a tracer model, we determine the contributions to DIC from wastewater DIC input, net ecosystem production, calcium carbonate precipitation, and CO 2 outgassing. Our study shows that high-DIC and low-pH wastewater effluent represents an important source of DIC and acidification in coastal waters. In contrast to the traditional view of anthropogenic organic carbon export and degradation, we suggest that with the increase of wastewater discharge and treatment rates, wastewater DIC input may play an increasingly more important role in the coastal ocean carbon cycle.

  11. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS: Application to Analysis of Experimentally Derived Hydrothermal Mineral-Catalyzed Organic Products

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.

    2012-01-01

    We report results of experiments to measure the H isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high temperature extraction furnace to make quantitative H isotope measurements. This work compliments our previous work that focused on the extraction and analysis of C isotopes from the same compounds [1]. Together with our carbon isotope analyses our experiments serve as a "proof of concept" for making C and H isotope measurements on more complex mixtures of organic compounds on mineral surfaces in abiotic hydrocarbon formation processes at elevated temperatures and pressures. Our motivation for undertaking this work stems from observations of methane detected within the Martian atmosphere [2-5], coupled with evidence showing extensive water-rock interaction during Mars history [6-8]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization [9,10]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [11-13]. Our H isotope measurements utilize an analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). This technique is designed to carry a split of the pyrolyzed GC-separated product to a Thermo DSQII quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  12. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa

    Science.gov (United States)

    Beukes, N. J.; Klein, C.; Kaufman, A. J.; Hayes, J. M.

    1990-01-01

    The transition zone comprises Campbellrand microbialaminated (replacing "cryptalgalaminate") limestone and shale, with minor dolomite, conformably overlain by the Kuruman Iron Formation of which the basal part is characterized by siderite-rich microbanded iron-formation with minor magnetite and some hematite-containing units. The iron-formation contains subordinate intraclastic and microbialaminated siderite mesobands and was deposited in deeper water than the limestones. The sequence is virtually unaltered with diagenetic mineral assemblages reflecting a temperature interval of about 110 degrees to 170 degrees C and pressures of 2 kbars. Carbonate minerals in the different rock types are represented by primary micritic precipitates (now recrystallized to microsparite), early precompactional sparry cements and concretions, deep burial limpid euhedral sparites, and spar cements precipitated from metamorphic fluids in close contact with diabase sills. Paragenetic pathways of the carbonate minerals are broadly similar in all lithofacies with kerogen intimately associated with them. Kerogen occurs as pigmentation in carbonate crystals, as reworked organic detritus in clastic-textured carbonate units, and as segregations of kerogen pigment around late diagenetic carbonate crystals. Locally kerogen may also be replaced by carbonate spar. Carbon isotope compositions of the carbonate minerals and kerogen are dependent on their mode of occurrence and on the composition of the dominant carbonate species in a specific lithofacies. Integration of sedimentary, petrographic, geochemical, and isotopic results makes it possible to distinguish between depositional, early diagenetic, deep burial, and metamorphic effects on the isotopic compositions of the carbonate minerals and the kerogen in the sequence. Major conclusions are that deep burial thermal decarboxylation led to 13C depletion in euhedral ferroan sparites and 13C enrichment in kerogen (organic carbon). Metamorphic

  13. GasBench/isotope ratio mass spectrometry: a carbon isotope approach to detect exogenous CO(2) in sparkling drinks.

    Science.gov (United States)

    Cabañero, Ana I; San-Hipólito, Tamar; Rupérez, Mercedes

    2007-01-01

    A new procedure for the determination of carbon dioxide (CO(2)) (13)C/(12)C isotope ratios, using direct injection into a GasBench/isotope ratio mass spectrometry (GasBench/IRMS) system, has been developed to improve isotopic methods devoted to the study of the authenticity of sparkling drinks. Thirty-nine commercial sparkling drink samples from various origins were analyzed. Values of delta(13)C(cava) ranged from -20.30 per thousand to -23.63 per thousand, when C3 sugar addition was performed for a second alcoholic fermentation. Values of delta(13)C(water) ranged from -5.59 per thousand to -6.87 per thousand in the case of naturally carbonated water or water fortified with gas from the spring, and delta(13)C(water) ranged from -29.36 per thousand to -42.09 per thousand when industrial CO(2) was added. It has been demonstrated that the addition of C4 sugar to semi-sparkling wine (aguja) and industrial CO(2) addition to sparkling wine (cava) or water can be detected. The new procedure has advantages over existing methods in terms of analysis time and sample treatment. In addition, it is the first isotopic method developed that allows (13)C/(12)C determination directly from a liquid sample without previous CO(2) extraction. No significant isotopic fractionation was observed nor any influence by secondary compounds present in the liquid phase. Copyright (c) 2007 John Wiley & Sons, Ltd.

  14. Isotopic composition of carbon of natural gases in the sedimentary basins of Kamchatka and Chukotka

    Energy Technology Data Exchange (ETDEWEB)

    Lobkov, V.A.; Kudriavtseva, E.I.

    1981-01-01

    A study was carried out on the chemical and isotopic compositions of carbon of natural gases, which are prospective for oil and gas structures. An isotopic composition of the carbon of gases, covered by wells in possible oil and gas bearing basins (Eastern Kamchatka Central Kamchatka, Western Kamchatka, Anadyrsk, and Khatyrsk), created by terrigenic rock of the cretaceous, paleogenic, and neogenic ages, with dimensions of three to six kilometers, is presented. Investigation is made of the isotopic carbon of methane, ethane, and propane in 36 gas specimens. The plan of the distribution of the tested structures is shown, and an analysis is given of the chemical and isotopic composition of carbon of the prospected areas of Kamchatka and Chukotka and the interconnection of the isotopic composition of the carbon of methane with ethane and propane. A supposition is made concerning the existence of a single equilibrious volumetric system of CH/sub 4/--C/sub 2/H/sub 6/--C/sub 3/H/sub 8/--CO/sub 2/, in which ethane and propane are by-products, and owing to this, equilibrium establish according to this more slowly. The study of the isotopic composition of carbon of methane shows, that at various areas of depth formation of hydrocarbon gases is different. A conclusion is made that the gases formed at high temperatures. This points to a significant distance in the vertical migration of gases in the given region.

  15. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand

    International Nuclear Information System (INIS)

    Rogers, Karyne M.

    2003-01-01

    Stable carbon and nitrogen isotopes have been used to assess sewage contamination of a sewage outfall, discharging milli-screened effluent into Moa Point Bay, New Zealand, and monitor the recovery of flora and fauna after the outfall's closure. An initial study characterising the extent of the discharge and the effects on seaweed (Ulva lactuca L.), blue mussels (Mytilus galloprovincialis) and limpets (Cellana denticulata) from the area, showed effects of the sewage discharge on flora and fauna were localised within in the bay. The immediate area surrounding the discharge area was found to contain limited biodiversity, with an abundance of Ulva lactuca, a bright green lettuce-like seaweed, typically found in areas with high nutrient input, limpets and small blue mussels. The nitrogen isotopic signature (δ 15 N) is shown to be a good tracer of sewage pollution in seaweed and associated grazers (i.e. limpets) as a result of the increased contribution of urea and ammonia to seawater nitrogen derived from the effluent. The carbon isotopic signature (δ 13 C) is suggested as a more appropriate sewage tracer for mussels, which filter feed the effluent's particulate organic matter from the water. Lower carbon:nitrogen ratios were found in Ulva lactuca sampled from around the outfall region compared to uncontaminated control sites. However carbon:nitrogen ratios do not vary significantly amongst shellfish species. After closure, monitoring continued for 9 months and showed that the carbon and nitrogen isotopic signatures of algae (Ulva lactuca L.) returned to similar control site levels within 3 months. Limpet and blue mussels (Cellana denticulata and Mytilus galloprovincialis) showed slower recovery times than the Ulva lactuca, with detectable levels of the sewage-derived carbon and nitrogen remaining in the animal's tissue for up to 9 months

  16. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Karyne M

    2003-07-01

    Stable carbon and nitrogen isotopes have been used to assess sewage contamination of a sewage outfall, discharging milli-screened effluent into Moa Point Bay, New Zealand, and monitor the recovery of flora and fauna after the outfall's closure. An initial study characterising the extent of the discharge and the effects on seaweed (Ulva lactuca L.), blue mussels (Mytilus galloprovincialis) and limpets (Cellana denticulata) from the area, showed effects of the sewage discharge on flora and fauna were localised within in the bay. The immediate area surrounding the discharge area was found to contain limited biodiversity, with an abundance of Ulva lactuca, a bright green lettuce-like seaweed, typically found in areas with high nutrient input, limpets and small blue mussels. The nitrogen isotopic signature ({delta}{sup 15}N) is shown to be a good tracer of sewage pollution in seaweed and associated grazers (i.e. limpets) as a result of the increased contribution of urea and ammonia to seawater nitrogen derived from the effluent. The carbon isotopic signature ({delta}{sup 13}C) is suggested as a more appropriate sewage tracer for mussels, which filter feed the effluent's particulate organic matter from the water. Lower carbon:nitrogen ratios were found in Ulva lactuca sampled from around the outfall region compared to uncontaminated control sites. However carbon:nitrogen ratios do not vary significantly amongst shellfish species. After closure, monitoring continued for 9 months and showed that the carbon and nitrogen isotopic signatures of algae (Ulva lactuca L.) returned to similar control site levels within 3 months. Limpet and blue mussels (Cellana denticulata and Mytilus galloprovincialis) showed slower recovery times than the Ulva lactuca, with detectable levels of the sewage-derived carbon and nitrogen remaining in the animal's tissue for up to 9 months.

  17. Carbon and Noble Gas Isotopes in the Tengchong Volcanic Geothermal Area, Yunnan, Southwestern China

    Institute of Scientific and Technical Information of China (English)

    XU Sheng; Shun'ich NAKAI; Hiroshi WAKITA; WANG Xianbin

    2004-01-01

    Carbon and noble gas isotope analyses are reported for bubbling gas samples from the Tengchong volcanic geothermal area near the Indo-Eurasian suture zone. All samples contain a resolvable component of mantle-derived 3He.Occurrence of mantle-derived 3He coincides with surface volcanism. However, 3He occurs over a larger geographic area than do surface volcanics. δ13C values for CO2 and CH4 vary from -33.4 ‰ to 1.6 ‰ and from -52.8 ‰ to -2.8 ‰,respectively. He and C isotope systematics indicate that CO2 and CH4 in the CO2-rich gases originated predominantly from magmatic component mixed with crustal CO2 produced from carbonate. However, breakdown of organic matter and nearsurface processes accounts for the CH4 and CO2 in N2-rich gases. 3He/4He ratio distribution pattern suggests that mantlederived He and heat sources of high-temperature system in central Tengchong originate from a hidden magma reservoir at subsurface. CO2-rich gases with the highest 3He/4He ratio (5.2 Ra) may be representative of the Tengchong magmatic component. Compared with MORB, this relative low 3He/4He ratio could be fully attributed to either deep crustal contamination, or radioactive aging, or past contamination of the local mantle by U- and Th-rich subducted crustal material.However, a combination of low 3He/4He, high radiogenic 4He/40Ar ratio and identical CO2/3He and δ13Cco2 relative to MORB may suggest addition of prior subductedd crsustal material (ca 1%-2%) to the MORB reservoir around 1.3 Ga ago,which is essentially compatible with the LIL-elements, and Sr-Nd-Pb isotopes of volcanic rocks.

  18. Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunde [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences, Wuhan 430074 (China); Zhou, Aiguo, E-mail: aiguozhou@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Gan, Yiqun; Li, Xiaoqian [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2016-05-05

    Highlights: • The effect of inorganic anions on carbon isotope fractionation was evaluated. • The enrichment factors was independent concentration of NO{sub 3}{sup −}, or SO{sub 4}{sup 2−}. • Cl{sup −} significantly influenced the carbon isotope fractionation. - Abstract: Understanding the magnitude and variability in isotope fractionation with respect to specific processes is crucial to the application of stable isotopic analysis as a tool to infer and quantify transformation processes. The variability of carbon isotope fractionation during Fenton-like degradation of trichloroethene (TCE) in the presence of different inorganic ions (nitrate, sulfate, and chloride), was investigated to evaluate the potential effects of inorganic anions on carbon isotope enrichment factor (ε value). A comparison of ε values obtained in deionized water, nitrate solution, and sulfate solution demonstrated that the ε values were identical and not affected by the presence of nitrate and sulfate. In the presence of chloride, however, the ε values (ranging from −6.3 ± 0.8 to 10 ± 1.3‰) were variable and depended on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during Fenton-like degradation of TCE. Thus, caution should be exercised in selecting appropriate ε values for the field application of stable isotope analysis, as various chloride concentrations may be present due to naturally present or introduced with pH adjustment and iron salts during Fenton-like remediation. Furthermore, the effects of chloride on carbon isotope fractionation may be able to provide new insights about reaction mechanisms of Fenton-like processes.

  19. Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene

    International Nuclear Information System (INIS)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-01-01

    Highlights: • The effect of inorganic anions on carbon isotope fractionation was evaluated. • The enrichment factors was independent concentration of NO_3"−, or SO_4"2"−. • Cl"− significantly influenced the carbon isotope fractionation. - Abstract: Understanding the magnitude and variability in isotope fractionation with respect to specific processes is crucial to the application of stable isotopic analysis as a tool to infer and quantify transformation processes. The variability of carbon isotope fractionation during Fenton-like degradation of trichloroethene (TCE) in the presence of different inorganic ions (nitrate, sulfate, and chloride), was investigated to evaluate the potential effects of inorganic anions on carbon isotope enrichment factor (ε value). A comparison of ε values obtained in deionized water, nitrate solution, and sulfate solution demonstrated that the ε values were identical and not affected by the presence of nitrate and sulfate. In the presence of chloride, however, the ε values (ranging from −6.3 ± 0.8 to 10 ± 1.3‰) were variable and depended on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during Fenton-like degradation of TCE. Thus, caution should be exercised in selecting appropriate ε values for the field application of stable isotope analysis, as various chloride concentrations may be present due to naturally present or introduced with pH adjustment and iron salts during Fenton-like remediation. Furthermore, the effects of chloride on carbon isotope fractionation may be able to provide new insights about reaction mechanisms of Fenton-like processes.

  20. Fossil organic carbon in wastewater and its fate in treatment plants.

    Science.gov (United States)

    Law, Yingyu; Jacobsen, Geraldine E; Smith, Andrew M; Yuan, Zhiguo; Lant, Paul

    2013-09-15

    This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes ((13)C and (14)C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4-14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88-98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39-65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29-50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4-6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Simultaneous determination of stable carbon, oxygen, and hydrogen isotopes in cellulose.

    Science.gov (United States)

    Loader, N J; Street-Perrott, F A; Daley, T J; Hughes, P D M; Kimak, A; Levanič, T; Mallon, G; Mauquoy, D; Robertson, I; Roland, T P; van Bellen, S; Ziehmer, M M; Leuenberger, M

    2015-01-06

    A technological development is described through which the stable carbon-, oxygen-, and nonexchangeable hydrogen-isotopic ratios (δ(13)C, δ(18)O, δ(2)H) are determined on a single carbohydrate (cellulose) sample with precision equivalent to conventional techniques (δ(13)C 0.15‰, δ(18)O 0.30‰, δ(2)H 3.0‰). This triple-isotope approach offers significant new research opportunities, most notably in physiology and medicine, isotope biogeochemistry, forensic science, and palaeoclimatology, when isotopic analysis of a common sample is desirable or when sample material is limited.

  2. A Novel Airborne Carbon Isotope Analyzer for Methane and Carbon Dioxide Source Fingerprinting

    Science.gov (United States)

    Berman, E. S.; Huang, Y. W.; Owano, T. G.; Leifer, I.

    2014-12-01

    Recent field studies on major sources of the important greenhouse gas methane (CH4) indicate significant underestimation of methane release from fossil fuel industrial (FFI) and animal husbandry sources, among others. In addition, uncertainties still exist with respect to carbon dioxide (CO2) measurements, especially source fingerprinting. CO2 isotopic analysis provides a valuable in situ measurement approach to fingerprint CH4 and CO2as associated with combustion sources, leakage from geologic reservoirs, or biogenic sources. As a result, these measurements can characterize strong combustion source plumes, such as power plant emissions, and discriminate these emissions from other sources. As part of the COMEX (CO2 and MEthane eXperiment) campaign, a novel CO2 isotopic analyzer was installed and collected data aboard the CIRPAS Twin Otter aircraft. Developing methods to derive CH4 and CO2 budgets from remote sensing data is the goal of the summer 2014 COMEX campaign, which combines hyperspectral imaging (HSI) and non-imaging spectroscopy (NIS) with in situ airborne and surface data. COMEX leverages the synergy between high spatial resolution HSI and moderate spatial resolution NIS. The carbon dioxide isotope analyzer developed by Los Gatos Research (LGR) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures CO2 concentration as well as δ13C, δ18O, and δ17O from CO2 at natural abundance (100-3000 ppm). The laboratory accuracy is ±1.2 ppm (1σ) in CO2 from 370-1000 ppm, with a long-term (1000 s) precision of ±0.012 ppm. The long-term precision for both δ13C and δ18O is 0.04 ‰, and for δ17O is 0.06 ‰. The analyzer was field-tested as part of the COWGAS campaign, a pre-cursor campaign to COMEX in March 2014, where it successfully discriminated plumes related to combustion processes associated with

  3. CARBON AND OXYGEN ISOTOPIC RATIOS FOR NEARBY MIRAS

    Energy Technology Data Exchange (ETDEWEB)

    Hinkle, Kenneth H. [National Optical Astronomy Observatory P.O. Box 26732, Tucson, AZ 85726 (United States); Lebzelter, Thomas [Department of Astrophysics, University of Vienna Türkenschanzstrasse 17, A-1180 Vienna (Austria); Straniero, Oscar, E-mail: khinkle@noao.edu, E-mail: thomas.lebzelter@univie.ac.at, E-mail: straniero@oa-teramo.inaf.it [INAF, Osservatorio Astronomico di Collurania I-64100 Teramo (Italy)

    2016-07-01

    Carbon and oxygen isotopic ratios are reported for a sample of 46 Mira and SRa-type variable asymptotic giant branch (AGB) stars. Vibration–rotation first and second-overtone CO lines in 1.5–2.5 μ m spectra were measured to derive isotopic ratios for {sup 12}C/{sup 13}C, {sup 16}O/{sup 17}O, and {sup 16}O/{sup 18}O. Comparisons with previous measurements for individual stars and with various samples of evolved stars, as available in the extant literature, are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of M-stars have main sequence masses ≤2 M {sub ⊙} and have not experienced sizable third dredge-up (TDU) episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the six C-stars in the sample three have clear evidence relating their origin to the occurrence of TDU. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars, as represented by our sample of long period variables (LPVs), shows a large spread of {sup 16}O/{sup 17}O ratios, similar to that of group 1 presolar grains and in agreement with theoretical expectations for the composition of mass 1.2–2 M {sub ⊙} stars after the first dredge-up. In contrast, the {sup 16}O/{sup 18}O ratios of present-day LPVs are definitely smaller than those of group 1 grains. This is most probably a consequence of the the decrease with time of the {sup 16}O/{sup 18}O ratio in the interstellar medium due to the chemical evolution of the Milky Way. One star in our sample has an O composition similar to that of group 2 presolar grains originating in an AGB star undergoing extra-mixing. This may indicate that the extra-mixing process is hampered at high metallicity, or, equivalently, favored at low metallicity. Similarly to O

  4. The synthesis of a tritium, carbon-14, and stable isotope-labeled cathepsin C inhibitors.

    Science.gov (United States)

    Allen, Paul; Bragg, Ryan A; Caffrey, Moya; Ericsson, Cecilia; Hickey, Michael J; Kingston, Lee P; Elmore, Charles S

    2017-02-01

    As part of a medicinal chemistry program aimed at developing a highly potent and selective cathepsin C inhibitor, tritium, carbon-14, and stable isotope-labeled materials were required. The synthesis of tritium-labeled methanesulfonate 5 was achieved via catalytic tritiolysis of a chloro precursor, albeit at a low radiochemical purity of 67%. Tritium-labeled AZD5248 was prepared via a 3-stage synthesis, utilizing amide-directed hydrogen isotope exchange. Carbon-14 and stable isotope-labeled AZD5248 were successfully prepared through modifications of the medicinal chemistry synthetic route, enabling the use of available labeled intermediates. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Alteration of the Carbon and Nitrogen Isotopic Composition in the Martian Surface Rocks Due to Cosmic Ray Exposure

    Science.gov (United States)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-01-01

    C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is <10 ppm, then the "light," potentially "biological" C-13/C-12 ratio would be effectively erased by cosmic rays over 3.5 billion years of exposure. We found that for the rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  6. The role of fossil organic matter in the ecosystem development of post-mining sites revealed by isotope analyses

    Science.gov (United States)

    Jandova, Katerina; Hyodo, Fujio; Vindušková, Olga; Moradi, Jabbar; Frouz, Jan

    2017-04-01

    Sediments rich in kerogen ( 19 Ma old, 14C-free) are present in the overburden at post-mining area in Western Bohemia, near Sokolov city, the Czech Republic. There are two successional chronosequences, an alder reclamation and spontaneous succession, consisting of sites that differ in time since heaping. Both chronosequences accumulate recent organic matter over time, although the process is initially faster at reclamation. We hypothesized that (i) radiocarbon age of soil organic matter would be decreasing with time since spoil heaping; (ii) the detrital food web would show the assimilation of fossil carbon by heterotrophic organisms in the initial stages of succession when fossil organic matter is the predominant source of carbon; (iii) the isotopic track of fossil organic matter in the detrital food web would be more prominent at sites with lower vegetation cover and litter production. Nitrogen isotopic ratios of soils were high at the young sites and the decrease in δ15N was correlated with the increase in content of recent organic carbon. Nitrogen isotopic ratios of soil detritivores equalled to that of tree leaves at reclamation but were higher at successional sites. Possibly, other food sources were used apart from tree leaves litter at the latter. Interestingly, soil animals but not primary producers were 14C depleted in the youngest relative to the oldest sites. The depletion in 14C of detritivores relative to primary producers was likely due to the geophagy behaviour of the millipedes at the young sites where fossil organic matter is the largest carbon pool.

  7. Elemental, stable isotopic and biochemical characterization of soil organic matter alteration across a natural peatland gradient

    Science.gov (United States)

    Cowie, G.; Mowbray, S.; Belyea, L.; Laing, C.; Allton, K.; Abbott, G.; Muhammad, A.

    2010-12-01

    Northern peatlands store around one third of global soil C and thus represent a key reservoir. To elucidate how these systems might respond to climate change, field- and laboratory-based experimental incubation studies are being conducted at sites across a natural peatland gradient in the boreonemoral zone of central Sweden (Ryggmossen). The site comprises four successional stages, from edge to centre; Swamp Forest (SF), Lagg Fen (LF), Bog Margin (BM) and Bog Plateau (BP). The well-preserved succession shows strong decreases in mineral cations and pH, and distinct changes in vegetation and water-table depth. As an underpinning to these experiments, comprehensive characterization of natural soil organic matter (SOM) alteration has been carried out through detailed analyses of vegetation and downcore profiles at contrasting topographic sites (hummock vs hollow) in each of the four locations. As illustrated in Figure 1, while some similarities occur in downcore trends, contrasts are observed in C and N elemental and stable isotopic compositions, between stages and, in some cases, between microtopographic settings. Downcore trends and intersite differences are also observed in biochemical yields and molecular composition (carbohydrates, amino acids, phenols, lipids and D/L amino acid ratios). These reflect SOM decay and alteration combined with the effects of contrasting hydrologic, redox and nutrient regimes and differing vegetation and microbial inputs at each of the study sites. Multivariate analysis is used to to elucidate compositional patterns that characterize and delineate progressive SOM decay, specific vegetation types, and the effects of contrasting environmental conditions at the different sites. Figure 1. A. Organic carbon content (wt %), B. Atomic ratio of organic C to total N, C. Stable C isotopic composition of organic C (d13Corg), and D. Stable N isotopic composition of total nitrogen (d15N), all for core profiles from contrasting settings (hummock and

  8. Changes of stable isotopes carbon-13 and nitrogen-15 in different tissues of cattle

    International Nuclear Information System (INIS)

    Sun Fengmei; Yu Hongxia; Wu Wei; Yang Shuming

    2009-01-01

    Stable isotope analysis is a potential tool for tracing food origin. The stable carbon and nitrogen isotope composition in different tissues of two varieties of cattle under the same culture condition were investigated. δ 13 C and δ 15 N values of different defatted muscle and crude fat, cattle tail hair, blood, liver and feed were determined by isotope ratio mass spectrometry, and statistical analysis was carried out. The results showed that stable isotopes of carbon and nitrogen composition was not affected by cattle variety; the δ 13 C values between different defatted muscle, blood, liver and cattle hair were not significantly different, but δ 15 N value in the liver was much higher than other muscle and the δ 13 C values didn't show difference among all the crude fat samples. So these results indicated that isotope fractionation in the various tissue was discrepant. (authors)

  9. Fertilization increases paddy soil organic carbon density*

    Science.gov (United States)

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-01-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369

  10. Fertilization increases paddy soil organic carbon density.

    Science.gov (United States)

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-04-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.

  11. Chemical and isotopic composition of marine organic matter as indicators of its origin

    International Nuclear Information System (INIS)

    Malej, A.

    1989-07-01

    The present study was carried out to evaluate the relative importance of marine and terrestrial sources of Particulate Organic Matter (POM) in the Northern Adriatic Sea. Samples of POM were obtained from the water column at 14 stations using Niskin bottles at 4 depths and sediment traps (placed near the sea floor). Additional samples were obtained of likely source organic matter: sewage, river POM, phytoplankton bloom material, zooplankton, jelly-fish and bethic macrophytes. All samples were analyzed for total carbon and nitrogen and the delta C-13/C-12 ratio (by mass spectrometry). Marine and terrestrial sources of POM were clearly distinguished by their isotopic ratios. A linear model was set up to evaluate the relative importance of these sources at each sampling station. Except in the immediate vicinity of river sources, the marine component appears to dominate. 7 refs, 5 figs, 1 tab

  12. Chemisorption of organic iodine compounds forming from fission isotopes of radioactive iodine

    International Nuclear Information System (INIS)

    Tot, G.; Galina, F.; Zel'd, E.

    1977-01-01

    Studied is ethyl iodine adsorption, labelled by iodine 131, on palladium black and on aluminium oxide activized by palladium. The desorption of adsorbed iodine in the temperature range of 20-600 deg C by the mass spectroscopy and thermal gravimetric methods was investigated. At the ethyl iodine and palladium interaction the bond between carbon and iodine in the ethyl iodine molecule breaks down and extracting iodine reacts with palladium, forming a stable compound at high temperatures. Desorption of adsorbed iodine is insignificant up to the temperatures of 250-300 deg C. Thus, sorbents, containing palladium, may be successfully applied for iodine absorption from the organic iodine compounds. These compounds spontaneously appear from the iodine fragment ratio isotopes during their interaction with some environmental organic impurities

  13. Investigation of the microbial metabolism of carbon dioxide and hydrogen in the kangaroo foregut by stable isotope probing.

    Science.gov (United States)

    Godwin, Scott; Kang, Alicia; Gulino, Lisa-Maree; Manefield, Mike; Gutierrez-Zamora, Maria-Luisa; Kienzle, Marco; Ouwerkerk, Diane; Dawson, Kerri; Klieve, Athol V

    2014-09-01

    Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to investigate the organisms and biochemical pathways involved in the metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. Our results clearly demonstrate that the activity of bacterial reductive acetogens is a key factor in the reduced methane output of kangaroos. In in vitro fermentations, the microbial community of the kangaroo foregut produced very little methane, but produced a significantly greater proportion of acetate derived from carbon dioxide than the microbial community of the bovine rumen. A bacterial operational taxonomic unit closely related to the known reductive acetogen Blautia coccoides was found to be associated with carbon dioxide and hydrogen metabolism in the kangaroo foregut. Other bacterial taxa including members of the genera Prevotella, Oscillibacter and Streptococcus that have not previously been reported as containing hydrogenotrophic organisms were also significantly associated with metabolism of hydrogen and carbon dioxide in the kangaroo forestomach.

  14. Compound-specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction

    Science.gov (United States)

    Whiteside, Jessica H.; Olsen, Paul E.; Eglinton, Timothy; Brookfield, Michael E.; Sambrotto, Raymond N.

    2010-01-01

    A leading hypothesis explaining Phanerozoic mass extinctions and associated carbon isotopic anomalies is the emission of greenhouse, other gases, and aerosols caused by eruptions of continental flood basalt provinces. However, the necessary serial relationship between these eruptions, isotopic excursions, and extinctions has never been tested in geological sections preserving all three records. The end-Triassic extinction (ETE) at 201.4 Ma is among the largest of these extinctions and is tied to a large negative carbon isotope excursion, reflecting perturbations of the carbon cycle including a transient increase in CO2. The cause of the ETE has been inferred to be the eruption of the giant Central Atlantic magmatic province (CAMP). Here, we show that carbon isotopes of leaf wax derived lipids (n-alkanes), wood, and total organic carbon from two orbitally paced lacustrine sections interbedded with the CAMP in eastern North America show similar excursions to those seen in the mostly marine St. Audrie’s Bay section in England. Based on these results, the ETE began synchronously in marine and terrestrial environments slightly before the oldest basalts in eastern North America but simultaneous with the eruption of the oldest flows in Morocco, a CO2 super greenhouse, and marine biocalcification crisis. Because the temporal relationship between CAMP eruptions, mass extinction, and the carbon isotopic excursions are shown in the same place, this is the strongest case for a volcanic cause of a mass extinction to date. PMID:20308590

  15. Assessing dissolved carbon transport and transformation along an estuarine river with stable isotope analyses

    Science.gov (United States)

    He, Songjie; Xu, Y. Jun

    2017-10-01

    Estuaries play an important role in the dynamics of dissolved carbon from rivers to coastal oceans. However, our knowledge of dissolved carbon transport and transformation in mixing zones of the world's coastal rivers is still limited. This study aims to determine how dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) concentrations and stable isotopes (δ13CDIC and δ13CDOC) change along an 88-km long estuarine river, the Calcasieu River in Louisiana, southern USA, with salinity ranging from 0.02 to 21.92. The study is expected to elucidate which processes most likely control carbon dynamics in a freshwater-saltwater mixing system, and to evaluate the net metabolism of this estuary. Between May 2015 and February 2016, water samples were collected and in-situ measurements on ambient water conditions were performed during five field trips at six sites from upstream to downstream of the Calcasieu River, which enters the Northern Gulf of Mexico (NGOM). The DIC concentration and δ13CDIC increased rapidly with increasing salinity in the mixing zone. The average DIC concentration and δ13CDIC at the site closest to the NGOM (site 6) were 1.31 mM and -6.34‰, respectively, much higher than those at the site furthest upstream (site 1, 0.42 mM and -20.83‰). The DIC concentrations appeared to be largely influenced by conservative mixing, while high water temperature may have played a role in deviating DIC concentration from the conservative line due likely to increased respiration and decomposition. The δ13CDIC values were close to those suggested by the conservative mixing model for May, June and November, but lower than those for July and February, suggesting that an estuarine river can fluctuate from a balanced to a heterotrophic system (i.e., production/respiration (P/R) aquatic photosynthesis from carbon produced by terrestrial photosynthesis in a river-ocean continuum.

  16. Mineral dissolution and precipitation in carbonate dominated terranes assessed using Mg isotopes

    Science.gov (United States)

    Tipper, E.; Calmels, D.; Gaillardet, J.; Galy, A.

    2013-12-01

    Carbonate weathering by carbonic acid consumes atmospheric CO2 during mineral dissolution, fixing it as aqueous bicarbonate over millennial time-scales. Ocean acidification has increased the solubility of CO2 in seawater by changing the balance of pH to alkalinity (the oceanic reservoir of carbon). This has lengthened the time-scale for CO2 sequestration by carbonate weathering to tens of thousands of years. At a global scale, the net consumption of CO2 is at least equal to that from silicate weathering, but there is far less work on carbonate weathering compared to silicate weathering because it has generally been assumed to be CO2 neutral on geological time-scales. Carbonate rocks are more readily dissolved than silicate rocks, meaning that their dissolution will likely respond much more rapidly to global environmental change when compared with the dissolution of silicate minerals. Although far less concentrated than Ca in many carbonates, Mg substitutes for Ca and is more concentrated than any other metal ion. Tracing the behavior of Mg in river waters, using Mg stable isotopes (26Mg/24Mg ratio expressed as delta26Mg in per mil units) is therefore a novel way to understand the complex series of dissolution/precipitation reactions that govern solute concentrations of Ca and Mg, and hence CO2 transfer by carbonate weathering. We present new Mg isotope data on a series of river and spring waters from the Jura mountains in North-East France. The stratigraphic column is relatively uniform throughout the Jura mountains and is dominated by limestones. As the limestone of the Jura Mountains were deposited in high-energy shallow water environments (shore line, lagoon and coral reefs), they are usually clay and organic poor. The delta26Mg of the local rocks is very constant at circa -4permil. The delta26Mg of the river waters is also fairly constant, but offset from the rock at -2.5permil. This is an intriguing observation because the dissolution of limestones is expected

  17. Grasland Stable Isotope Flux Measurements: Three Isotopomers of Carbon Dioxide Measured by QCL Spectroscopy

    Science.gov (United States)

    Zeeman, M. J.; Tuzson, B.; Eugster, W.; Werner, R. A.; Buchmann, N.; Emmenegger, L.

    2007-12-01

    To improve our understanding of greenhouse gas dynamics of managed ecosystems such as grasslands, we not only need to investigate the effects of management (e.g., grass cuts) and weather events (e.g., rainy days) on carbon dioxide fluxes, but also need to increase the time resolution of our measurements. Thus, for the first time, we assessed respiration and assimilation fluxes with high time resolution (5Hz) stable isotope measurements at an intensively managed farmland in Switzerland (Chamau, 400m ASL). Two different methods were used to quantify fluxes of carbon dioxide and associated fluxes of stable carbon isotopes: (1) the flux gradient method, and (2) the eddy covariance method. During a week long intensive measurement campaign, we (1) measured mixing ratios of carbon dioxide isotopomers (12C16O2, 12C16O18O, 13C16O2) with a Quantum Cascade Laser (QCL, Aerodyne Inc.) spectroscope and (2) collected air samples for isotope analyses (13C/12C) and (18O/16O) of carbon dioxide by Isotope Ratio Mass Spectrometry (IRMS, Finnigan) every two hours, concurrently along a height profile (z = 0.05; 0.10; 0.31; 2.15m). In the following week, the QCL setup was used for closed-path eddy covariance flux measurement of the carbon dioxide isotopomers, with the air inlet located next to an open-path Infra Red Gas Analyzers (IRGA, LiCor 7500) used simultaneously for carbon dioxide measurements. During this second week, an area of grass inside the footprint was cut and harvested after several days. The first results of in-field continuous QCL measurements of carbon dioxide mixing ratios and their stable isotopic ratios show good agreement with IRGA measurements and isotope analysis of flask samples by IRMS. Thus, QCL spectroscopy is a very promising tool for stable isotope flux investigations.

  18. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunde [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Zhou, Aiguo, E-mail: aiguozhou@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Gan, Yiqun; Li, Xiaoqian [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2016-04-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from − 3.4 ± 0.3 to − 4.3 ± 0.3 ‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from − 7.0 ± 0.4 to − 13.6 ± 1.2 ‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO{sub 4}·{sup −}). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). - Highlights: • Significant C isotope fractionation for TCE degradation by Fe{sup 0} activated persulfate. • The enrichment factors was independent of Fe{sup 0}, SO{sub 4}{sup 2−}, or HCO{sub 3}{sup −} concentration. • Cl{sup −} significantly influenced the carbon isotope fractionation.

  19. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions

    International Nuclear Information System (INIS)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-01-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from − 3.4 ± 0.3 to − 4.3 ± 0.3 ‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from − 7.0 ± 0.4 to − 13.6 ± 1.2 ‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO_4·"−). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). - Highlights: • Significant C isotope fractionation for TCE degradation by Fe"0 activated persulfate. • The enrichment factors was independent of Fe"0, SO_4"2"−, or HCO_3"− concentration. • Cl"− significantly influenced the carbon isotope fractionation.

  20. A biomarker stable isotope record of late Quaternary climate and organic matter export in Southwestern Taiwan

    Science.gov (United States)

    Chang, Q.; Hren, M. T.; Lin, A. T.; Eley, Y.; Yu, S. W.; Harris, G.

    2017-12-01

    We present new leaf wax n-alkane hydrogen (δD) and carbon (δ13C) isotopic data from a 36-m-long core from off-shore southwestern Taiwan to evaluate late Quaternary changes in climate and the source of organic matter exported from the landscape. The core (MD178-3291) is located on the flank of the Gaoping Submarine Canyon that connects with the Gaoping river catchment in southwestern Taiwan. The sediment deposition in this core spans the last 26 kyr, providing a unique record of glacial-interglacial changes in organic matter export from the Taiwan orogen. The δD and δ13C both show a shift in isotopic compositions at 15 kyr, that coincides with the shift in planktonic foraminifera δ18O record from the same core as well as the global sea level. We therefore interpret this dominant shift as affected by the global glacial to interglacial transition. Following by this transition and through the interglacial period, both biomarker δD and δ13C data record fluctuations that we suggest result from short timescale changes in the distribution of organic inputs to the offshore site. This change in source is most likely caused by increases in storm and landslide frequency or intensity during warmer intervals. This interpretation is supported by terrestrial records that show an increase in landslides in the Gaoping catchment and evidence for enhanced rainfall intensity and a corresponding increase in the frequency of turbidity currents.

  1. Relationship between Organic Carbon Runoff to River and Land Cover

    Science.gov (United States)

    Kim, G. S.; Lee, S. G.; Lim, C. H.; Lee, W.; Yoo, S.; Kim, S. J.; Heo, S.; Lee, W. K.

    2017-12-01

    Carbon is an important unit in understanding the ecosystem and energy circulation. Each ecosystem, land, water, and atmosphere, is interconnected through the exchange of energy and organic carbon. In the rivers, primary producers utilize the organic carbon from the land. Understanding the organic carbon uptake into the river is important for understanding the mechanism of river ecosystems. The main organic carbon source of the river is land. However, it is difficult to observe the amount of organic carbon runoff to the river. Therefore, an indirect method should be used to estimate the amount of organic carbon runoff to the river. The organic carbon inflow is caused by the runoff of organic carbon dissolved in water or the inflow of organic carbon particles by soil loss. Therefore, the hydrological model was used to estimate organic carbon runoff through the flow of water. The land cover correlates with soil respiration, soil loss, and so on, and the organic carbon runoff coefficient will be estimated to the river by land cover. Using the organic carbon concentration from water quality data observed at each point in the river, we estimate the amount of organic carbon released from the land. The reason is that the runoff from the watershed converges into the rivers in the watershed, the watershed simulation is conducted based on the water quality data observation point. This defines a watershed that affects organic carbon observation sites. The flow rate of each watershed is calculated by the SWAT (Soil and Water Assessment Tool), and the total organic carbon runoff is calculated by using flow rate and organic carbon concentration. This is compared with the factors related to the amount of organic carbon such as land cover, soil loss, and soil organic carbon, and spatial analysis is carried out to estimate the organic carbon runoff coefficient per land cover.

  2. Biological fractionation of oxygen and carbon isotopes by recent benthic foraminifera

    International Nuclear Information System (INIS)

    Woodruff, F.; Douglas, R.G.

    1980-01-01

    Recent deep-sea benthic foraminifera from five East Pacific Rise box core tops have been analyzed for oxygen and carbon isotopic composition. The five equatorial stations, with water depths of between 3200 and 4600 m, yielded fourteen specific and generic taxonomic groups. Of the taxa analyzed, Uvigerina spp. most closely approaches oxygen isotopic equilibrium with ambient sea water. Pyrgo spp. was next closest to isotopic equilibrium, being on the average 0.59 per thousand depleted in 18 O relative to Uvigerina spp. Oridorsalis umbonatus also has relatively high delta 18 O values. Most other taxa were depleted in 18 O by large amounts. In no taxa was the carbon in the CaCO 3 secreted in carbon isotopic equilibrium with the dissolved HCO 3 - of ambient sea water. (Auth.)

  3. Measurement of natural carbon isotopic composition of acetone in human urine.

    Science.gov (United States)

    Yamada, Keita; Ohishi, Kazuki; Gilbert, Alexis; Akasaka, Mai; Yoshida, Naohiro; Yoshimura, Ryoko

    2016-02-01

    The natural carbon isotopic composition of acetone in urine was measured in healthy subjects using gas chromatography-combustion-isotope ratio mass spectrometry combined with headspace solid-phase microextraction (HS-SPME-GC-C-IRMS). Before applying the technique to a urine sample, we optimized the measurement conditions of HS-SPME-GC-C-IRMS using aqueous solutions of commercial acetone reagents. The optimization enabled us to determine the carbon isotopic compositions within ±0.2 ‰ of precision and ±0.3‰ of error using 0.05 or 0.2 mL of aqueous solutions with acetone concentrations of 0.3-121 mg/L. For several days, we monitored the carbon isotopic compositions and concentrations of acetone in urine from three subjects who lived a daily life with no restrictions. We also monitored one subject for 3 days including a fasting period of 24 h. These results suggest that changes in the availability of glucose in the liver are reflected in changes in the carbon isotopic compositions of urine acetone. Results demonstrate that carbon isotopic measurement of metabolites in human biological samples at natural abundance levels has great potential as a tool for detecting metabolic changes caused by changes in physiological states and disease.

  4. Isotopic-spectral determination of hydrogen, nitrogen, oxygen and carbon in semiconductor materials

    International Nuclear Information System (INIS)

    Dudich, G.K.; Eremeev, V.A.; Li, V.N.; Nemets, V.M.

    1981-01-01

    Techniques of low-temperature isotopic-spectral determination of impurities of hydrogen, nitrogen, oxygen and carbon in semiconductor materials Bi, Ge, Pb tellurides are developed. The techniques include selection into special vessel with the known volume (exchanger) of sample analyzed, dosed introduction into exchanger of rare isotope of the element determined ( 2 H, 15 N, 18 O, 13 C) in the form of isotope-containing gas, balancing of the determined element isotopes in the system sample-isotope, containing gas, spectroscopic, determination of its isotope composition in gaseous phase of the system and calculation of the amount of the element determined in the sample. The lower boundaries of the amounts determined constitute 10 -7 , 10 -7 , 10 -6 and 10 -5 mass % respectively when sample of 20 g are used [ru

  5. The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood

    International Nuclear Information System (INIS)

    Spiker, E.C.; Hatcher, P.G.

    1987-01-01

    Studies of modern and ancient buried wood show that there is a linear correlation between carbohydrate content and the stable carbon isotope composition as carbohydrates are preferentially degraded during early diagenesis. As the carbohydrate content decreases, the delta 13 C value of the degraded wood decreases 1 to 2 per mil, approaching the value of the residual lignin. These results indicate that carbohydrate degradation products are lost and not incorporated into the aromatic structure as lignin is selectively preserved during early diagenesis of wood. These results also indicate that attempts to quantify terrestrial inputs to modern sedimentary organic matter based on delta 13 C values should consider the possibility of a 1 to 2 per mil decrease in the delta 13 C value of degraded wood. (author)

  6. Deposition of carbon nanotubes by a marine suspension feeder revealed by chemical and isotopic tracers

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, Shannon K., E-mail: hanna.shannonk@gmail.com [Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106 (United States); Miller, Robert J. [Marine Science Institute, University of California, Santa Barbara, CA 93106 (United States); Lenihan, Hunter S. [Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106 (United States)

    2014-08-30

    Highlights: • CNTs decrease the filtration rate of mussels by as much as 24%. • Metals in CNTs and their δ{sup 13}C can be used to quantify CNTs in biological samples. • Mussels exposed to CNTs deposit high concentrations of them in biodeposits. • CNTs accumulate mainly in gut tissue of mussels during exposure. - Abstract: Carbon nanotubes (CNTs) are one of the few truly novel nanomaterials and are being incorporated into a wide range of products, which will lead to environmental release and potential ecological impacts. We examined the toxicity of CNTs to marine mussels and the effect of mussels on CNT fate and transport by exposing mussels to 1, 2, or 3 mg CNTs l{sup −1} for four weeks and measuring mussel clearance rate, shell growth, and CNT accumulation in tissues and deposition in biodeposits. We used metal impurities and carbon stable isotope ratios of the CNTs as tracers of CNT accumulation. Mussels decreased clearance rate of phytoplankton by 24% compared with control animals when exposed to CNTs. However, mussel growth rate was unaffected by CNT concentrations up to 3 mg l{sup −1}. Based on metal concentrations and carbon stable isotope values, mussels deposited most CNTs in biodeposits, which contained >110 mg CNTs g{sup −1} dry weight, and accumulated about 1 mg CNTs g{sup −1} dry weight of tissue. We conclude that extremely high concentrations of CNTs are needed to illicit a toxic response in mussels but the ability of mussels to concentrate and deposit CNTs in feces and pseudofeces may impact infaunal organisms living in and around mussel beds.

  7. Aged riverine particulate organic carbon in four UK catchments

    International Nuclear Information System (INIS)

    Adams, Jessica L.; Tipping, Edward; Bryant, Charlotte L.; Helliwell, Rachel C.; Toberman, Hannah; Quinton, John

    2015-01-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO 14 C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO 14 C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 14 C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO 14 C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high- 14 C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO 14 C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO 14 C in rivers draining catchments with low erosion rates. - Highlights:

  8. Aged riverine particulate organic carbon in four UK catchments

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jessica L., E-mail: jesams@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); Tipping, Edward, E-mail: et@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); Bryant, Charlotte L., E-mail: charlotte.bryant@glasgow.ac.uk [NERC Radiocarbon Facility, East Kilbride G75 0QF, Scotland (United Kingdom); Helliwell, Rachel C., E-mail: rachel.helliwell@hutton.ac.uk [The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH Scotland (United Kingdom); Toberman, Hannah, E-mail: hannahtoberman@hotmail.com [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP (United Kingdom); Quinton, John, E-mail: j.quinton@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2015-12-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO{sup 14}C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO{sup 14}C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 {sup 14}C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO{sup 14}C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high-{sup 14}C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO{sup 14}C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO{sup 14}C in rivers draining catchments with low erosion rates

  9. Quasimolecular states in a reaction with carbon isotopes

    Czech Academy of Sciences Publication Activity Database

    Torilov, S. Yu.; Maltsev, N. A.; Goldberg, V. Z.; Gridnev, K. A.; Zherebchevsky, V. I.; Lönnroth, T.; Novatskii, B. G.; Slotte, J. M. K.; Sobolev, Yuri, G.; Trzaska, W. H.; Tyurin, G. P.; Khlebnikov, S. V.

    2015-01-01

    Roč. 102, č. 2 (2015), s. 69-72 ISSN 0021-3640 R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : rich Be isotope * C isotope * C-14+C-12 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.172, year: 2015

  10. Carbon isotopic evidence for the associations of decreasing atmospheric CO2 level with the Frasnian-Famennian mass extinction

    Science.gov (United States)

    Xu, Bing; Gu, Zhaoyan; Wang, Chengyuan; Hao, Qingzhen; Han, Jingtai; Liu, Qiang; Wang, Luo; Lu, Yanwu

    2012-03-01

    A perturbation of the global carbon cycle has often been used for interpreting the Frasnian-Famennian (F-F) mass extinction. However, the changes of atmospheric CO2 level (pCO2) during this interval are much debatable. To illustrate the carbon cycle during F-F transition, paired inorganic (δ13Ccarb) and organic (δ13Corg) carbon isotope analyses were carried out on two late Devonian carbonate sequences (Dongcun and Yangdi) from south China. The larger amplitude shift of δ13Corg compared to δ13Ccarb and its resultant Δ13C (Δ13C = δ13Ccarb - δ13Corg) decrease indicate decreased atmospheric CO2level around the F-F boundary. The onset ofpCO2 level decrease predates that of marine regressions, which coincide with the beginning of conodont extinctions, suggesting that temperature decrease induced by decreased greenhouse effect of atmospheric CO2might have contributed to the F-F mass extinction.

  11. New Insights into the Carbon Isotope Variations in Coral Skeletons (Invited)

    Science.gov (United States)

    Swart, P. K.

    2010-12-01

    The origin of the carbon isotopic composition of coral skeletons has been a subject of speculation and controversy since the first stable C and O isotopic measurements were made on corals in the 1960s and the first models of fractionation were proposed by Weber and coworkers. Early models focused on the interactions between the zooxanthellae and the coral organism and the relationship with insolation. Models were proposed that linked higher levels of photosynthesis to both 13C enriched and 13C depleted skeletal material. While the model which showed elevated 13C values related to enhanced photosynthesis generally has found favor and fits the majority of the data from experimental and field studies, more recent work has also shown the importance of the natural variability of the δ13C of the dissolved inorganic carbon on interannual and longer time scales. This variability can overwhelm photosynthetic induced variability. For example, changes over the time period of 100s of years, caused by the addition of fossil fuel CO2 to the atmosphere, has resulted in a general decline in the δ13C of coral skeletons since ~1800. These changes are even larger in instances in which local variations in δ13C are related to land use changes and the openness of the environment. Recently there has been concern regarding the decrease in the pH of the oceans related to increases in oceanic pCO2. This also has potential to changes the δ13C of the coral skeleton. Finally there are seasonal variations in the types of organic compounds being oxidized by the coral. This may be related to the types of materials being translocated between the zooxanthellae and the coral. All these factors make changes in the δ13C of coral skeletons much more than a reflection of the influence of insolation.

  12. Soil moisture effects on the carbon isotopic composition of soil respiration

    Science.gov (United States)

    The carbon isotopic composition ( 13C) of recently assimilated plant carbon is known to depend on water-stress, caused either by low soil moisture or by low atmospheric humidity. Air humidity has also been shown to correlate with the 13C of soil respiration, which suggests indir...

  13. Soil moisture effects on the carbon isotope composition of soil respiration

    Science.gov (United States)

    Claire L. Phillips; Nick Nickerson; David Risk; Zachary E. Kayler; Chris Andersen; Alan Mix; Barbara J. Bond

    2010-01-01

    The carbon isotopic composition (δ13C) of recently assimilated plant carbon is known to depend on water-stress, caused either by low soil moisture or by low atmospheric humidity. Air humidity has also been shown to correlate with the δ13C of soil respiration, which suggests indirectly that recently fixed photosynthates...

  14. Seasonal variation in kangaroo tooth enamel oxygen and carbon isotopes in southern Australia

    Science.gov (United States)

    Brookman, Tom H.; Ambrose, Stanley H.

    2012-09-01

    Serial sampling of tooth enamel growth increments for carbon and oxygen isotopic analyses of Macropus (kangaroo) teeth was performed to assess the potential for reconstructing paleoseasonality. The carbon isotope composition of tooth enamel apatite carbonate reflects the proportional intake of C3 and C4 vegetation. The oxygen isotopic composition of enamel reflects that of ingested and metabolic water. Tooth enamel forms sequentially from the tip of the crown to the base, so dietary and environmental changes during the tooth's formation can be detected. δ13C and δ18O values were determined for a series of enamel samples drilled from the 3rd and 4th molars of kangaroos that were collected along a 900 km north-south transect in southern Australia. The serial sampling method did not yield pronounced seasonal isotopic variation patterns in Macropus enamel. The full extent of dietary isotopic variation may be obscured by attenuation of the isotopic signal during enamel mineralisation. Brachydont (low-crowned) Macropus teeth may be less sensitive to seasonal variation in isotopic composition due to time-averaging during mineralisation. However, geographic variations observed suggest that there may be potential for tracking latitudinal shifts in vegetation zones and seasonal environmental patterns in response to climate change.

  15. Stable calcium isotope