WorldWideScience

Sample records for organic carbon characteristics

  1. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    Science.gov (United States)

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  2. [Spatial characteristics of soil organic carbon and nitrogen storages in Songnen Plain maize belt].

    Science.gov (United States)

    Zhang, Chun-Hua; Wang, Zong-Ming; Ren, Chun-Ying; Song, Kai-Shan; Zhang, Bai; Liu, Dian-Wei

    2010-03-01

    By using the data of 382 typical soil profiles from the second soil survey at national and county levels, and in combining with 1:500000 digital soil maps, a spatial database of soil profiles was established. Based on this, the one meter depth soil organic carbon and nitrogen storage in Songnen Plain maize belt of China was estimated, with the spatial characteristics of the soil organic carbon and nitrogen densities as well as the relationships between the soil organic carbon and nitrogen densities and the soil types and land use types analyzed. The soil organic carbon and nitrogen storage in the maize belt was (163.12 +/- 26.48) Tg and (9.53 +/- 1.75) Tg, respectively, mainly concentrated in meadow soil, chernozem, and black soil. The soil organic carbon and nitrogen densities were 5.51-25.25 and 0.37-0.80 kg x m(-2), respectively, and the C/N ratio was about 7.90 -12.67. The eastern and northern parts of the belt had much higher carbon and nitrogen densities than the other parts of the belt, and upland soils had the highest organic carbon density [(19.07 +/- 2.44) kg x m(-2)], forest soils had the highest nitrogen density [(0.82 +/- 0.25) kg x m(-2)], while lowland soils had the lower organic carbon and nitrogen densities.

  3. [Distribution characteristics of soil organic carbon and its composition in Suaeda salsa wetland in the Yellow River delta].

    Science.gov (United States)

    Dong, Hong-Fang; Yu, Jun-Bao; Guan, Bo

    2013-01-01

    Applying the method of physical fractionation, distribution characteristics of soil organic carbon and its composition in Suaeda salsa wetland in the Yellow River delta were studied. The results showed that the heavy fraction organic carbon was the dominant component of soil organic carbon in the studied region. There was a significantly positive relationship between the content of heavy fraction organic carbon, particulate organic carbon and total soil organic carbon. The ranges of soil light fraction organic carbon ratio and content were 0.008% - 0.15% and 0.10-0.40 g x kg(-1), respectively, and the range of particulate organic carbon ratio was 8.83% - 30.58%, indicating that the non-protection component of soil organic carbon was low and the carbon pool was relatively stable in Suaeda salsa wetland of the Yellow River delta.

  4. [Characteristics of organic carbon forms in the sediment of Wuliangsuhai and Daihai Lakes].

    Science.gov (United States)

    Mao, Hai-Fang; He, Jiang; Lü, Chang-Wei; Liang, Ying; Liu, Hua-Lin; Wang, Feng-Jiao

    2011-03-01

    The characteristics and differences of organic carbon forms in the sediments of the Wuliangsuhai and the Daihai Lakes with different eutrophication types were discussed in the present study. The results showed that the range of total organic carbon content (TOC) in Wuliangsuhai Lake was 4.50-22.83 g x kg(-1) with the average of 11.80 g x kg(-1). The range of heavy-fraction organic carbon content was 3.38-21.67 g x kg(-1) with the average of 10.76 g x kg(-1). The range of light-fraction organic carbon content was 0.46-1.80 g x kg(-1) with the average of 1.04 g x kg(-1); The range of ROC content was 0.62-3.64 g x kg(-1) with the average of 2.11 g x kg(-1), while the range of total organic carbon content in Daihai lake was 6.84-23.46 g x kg(-1) with the average of 14.94 g x kg(-1). The range of heavy-fraction organic carbon content was 5.27-22.23 g x kg(-1) with the average of 13.89 g x kg(-1). The range of light-fraction organic carbon content was 0.76-1.57 g x kg(-1). The range of ROC content was 1.54-7.08 g x kg(-1) with the average of 3.62 g x kg(-1). The results indicated that the heavy-fraction organic carbon was the major component of the organic carbon and plays an important role in the accumulation of organic carbon in the sediments of two Lakes. The content of light-fraction organic carbon was similar in the sediments of two lakes, whereas, the contents of total organic carbon and heavy-fraction organic carbon in the sediment of Wuliangsuhai Lake were less than those in the sediment of Daihai Lake, and the value of LFOC/TOC in the Wuliangsuhai Lake was larger than that in the Daihai Lake. The humin was the dominant component of the sediment humus, followed by fulvic acid in the two lakes. The values of HM/HS in the sediments of Wuliangsuhai lake range from 43.06% to 77.25% with the average of 62.15% and values of HM/HS in the sediments of Dahai lake range from 49.23% to 73.85% with the average of 65.30%. The tightly combined humus was the dominant form in

  5. Thermokarst dynamics and soil organic matter characteristics controlling initial carbon release from permafrost soils in the Siberian Yedoma region

    DEFF Research Database (Denmark)

    Weiss, Niels; Blok, Daan; Elberling, Bo

    2016-01-01

    This study relates soil organic matter (SOM) characteristics to initial soil incubation carbon release from upper permafrost samples in Yedoma region soils of northeastern Siberia, Russia. Carbon (C) and nitrogen (N) content, carbon to nitrogen ratios (C:N), δ13C and δ15N values show clear trends...

  6. Concentrations and characteristics of organic carbon in surface water in Arizona: Influence of urbanization

    Science.gov (United States)

    Westerhoff, P.; Anning, D.

    2000-01-01

    Dissolved (DOC) and total (TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (p TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (p<0.05). Reservoir outflows and wastewater-treatment plant effluent were higher in DOC concentration (p<0.05) and exhibited less variability in concentration than inflows to the reservoirs. Specific ultraviolet absorbance values at 254 nm were typically less than 2 m-1(milligram DOC per liter)-1 and lower than values found in most temperate-region rivers, but specific ultraviolet absorbance values increased during runoff events. Fluorescence measurements indicated that DOC in desert streams typically exhibit characteristics of autochthonous sources; however, DOC in unregulated upland rivers and desert streams experienced sudden shifts from autochthonous to allochthonous sources during runoff events. The urban water system (reservoir systems and wastewater-treatment plants) was found to affect temporal variability in DOC concentration and composition.The influence of urbanization, becoming increasingly common in arid regions, on dissolved organic carbon (DOC) concentrations in surface water

  7. Soil-Water Repellency Characteristic Curves for Soil Profiles with Organic Carbon Gradients

    DEFF Research Database (Denmark)

    Wijewardana, Nadeeka Senani; Muller, Karin; Moldrup, Per

    2016-01-01

    Soil water repellency (SWR) of soils is a property with significant consequences for agricultural water management, water infiltration, contaminant transport, and for soil erosion. It is caused by the presence of hydrophobic agents on mineral grain surfaces. Soils were samples in different depths......, and the sessile drop method (SDM). The aim to (i) compare the methods, (ii) characterize the soil-water repellency characteristic curves (SWRCC) being SWR as a function of the volumetric soil-water content (θ) or matric potential (ψ), and (iii) find relationships between SWRCC parameters and SOC content. The WDPT...... at three forest sites in Japan and three pasture sites in New Zealand, covering soil organic carbon (SOC) contents between 1 and 26%. The SWR was measured over a range of water contents by three common methods; the water drop penetration time (WDPT) test, the molarity of an ethanol droplet (MED) method...

  8. RECIPROCAL RELATIONSHIPS BETWEEN AGGREGATE STABILITY AND ORGANIC CARBON CHARACTERISTICS IN A FORESTED ECOSYSTEM OF NORTHERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Halima Mohammed Lawal

    2012-10-01

    Full Text Available Soil organic matter associated with different size aggregates differ in structure and function; therefore, play different roles in soil organic carbon (SOC turnover. This study assessed the relationship between aggregate stability and soil organic carbon fractions in a forested soil. Aggregate stability characterized by mean weight diameter (MWD was correlated with the various pools of SOC in a regression model. Mean weight diameter presented a 46% influence on total organic carbon (TOC while, TOC accounts for 21.8% 0f aggregate stability. The unprotected and physically protected soil organic carbon did not significantly dictate stability of these soils. However, chemically protected and biochemically protected SOC influenced significantly aggregate stability of these forested soils.

  9. [Characteristics of soil organic carbon and enzyme activities in soil aggregates under different vegetation zones on the Loess Plateau].

    Science.gov (United States)

    Li, Xin; Ma, Rui-ping; An, Shao-shan; Zeng, Quan-chao; Li, Ya-yun

    2015-08-01

    In order to explore the distribution characteristics of organic carbon of different forms and the active enzymes in soil aggregates with different particle sizes, soil samples were chosen from forest zone, forest-grass zone and grass zone in the Yanhe watershed of Loess Plateau to study the content of organic carbon, easily oxidized carbon, and humus carbon, and the activities of cellulase, β-D-glucosidase, sucrose, urease and peroxidase, as well as the relations between the soil aggregates carbon and its components with the active soil enzymes were also analyzed. It was showed that the content of organic carbon and its components were in order of forest zone > grass zone > forest-grass zone, and the contents of three forms of organic carbon were the highest in the diameter group of 0.25-2 mm. The content of organic carbon and its components, as well as the activities of soil enzymes were higher in the soil layer of 0-10 cm than those in the 10-20 cm soil layer of different vegetation zones. The activities of cellulase, β-D-glucosidase, sucrose and urease were in order of forest zone > grass zone > forest-grass zone. The peroxidase activity was in order of forest zone > forest-grass zone > grass zone. The activities of various soil enzymes increased with the decreasing soil particle diameter in the three vegetation zones. The activities of cellulose, peroxidase, sucrose and urease had significant positive correlations with the contents of various forms of organic carbon in the soil aggregates.

  10. Response Characteristics of Dissolved Organic Carbon Flushing in a Subarctic Alpine Catchment

    Science.gov (United States)

    Carey, S. K.

    2002-12-01

    Dissolved organic carbon (DOC) is an important part of ecosystem-scale carbon balances and in the transport of contaminants as it interacts with other dissolved substances including trace metals. It also can be used as a surrogate hydrological tracer in permafrost regions as near-surface waters are often DOC enriched due to the presence of thick organic soils. In a small subarctic alpine catchment within the Wolf Creek Research Basin, Yukon, Canada, DOC was studied in the summer of 2001 and spring of 2002 to determine the role frost (both permanent and seasonal), snowmelt and summer storms on DOC flushing. Peak DOC concentrations occurred during the snowmelt period, approximately one week prior to peak discharge. However, peak discharge took place several weeks after snow on south facing exposures had melted. Within the hillslopes, DOC concentrations were three to five times greater in wells underlain with permafrost compared with seasonal frost. Groundwater DOC concentrations declined during snowmelt, yet remained at levels above the streamflow. After peaking, streamflow DOC concentrations declined exponentially suggesting a simple flushing mechanism, however there did not appear to be a relation between DOC and topographic position. Following melt, permafrost underlain slopes had near-surface water tables and retained elevated levels of DOC, whereas slopes without permafrost had rapidly declining water tables at upslope locations with low DOC concentrations at all positions except near-stream riparian zones. The influence of summer rainstorms on DOC was monitored on three occasions. In each case DOC peaked on the ascending limb of the runoff hydrograph and declined exponentially on the receding limb and hysteretic behavior occurred between discharge and DOC during all events. Patterns of DOC within the hillslopes and streams suggest that runoff from permafrost-underlain slopes control DOC flushing within the stream during both snowmelt and summer periods. This

  11. Distribution characteristic of soil organic carbon fraction in different types of wetland in Hongze Lake of China.

    Science.gov (United States)

    Lu, Yan; Xu, Hongwen

    2014-01-01

    Soil organic carbon fractions included microbial biomass carbon (MBC), dissolved organic carbon (DOC), and labile organic carbon (LOC), which was investigated over a 0-20 cm depth profile in three types of wetland in Hongze Lake of China. Their ecoenvironmental effect and the relationships with soil organic carbon (SOC) were analyzed in present experiment. The results showed that both active and SOC contents were in order reduced by estuarine wetland, flood plain, and out-of-lake wetland. Pearson correlative analysis indicated that MBC and DOC were positively related to SOC. The lowest ratios of MBC and DOC to SOC in the estuarine wetland suggested that the turnover rate of microbial active carbon pool was fairly low in this kind of wetland. Our results showed that estuarine wetland had a strong carbon sink function, which played important role in reducing greenhouse gas emissions; besides, changes of water condition might affect the accumulation and decomposition of organic carbon in the wetland soils.

  12. Organic carbon characteristics in density fractions of soils with contrasting mineralogies

    Science.gov (United States)

    Yeasmin, Sabina; Singh, Balwant; Johnston, Cliff T.; Sparks, Donald L.

    2017-12-01

    This study was aimed to evaluate the role of minerals in the preservation of organic carbon (OC) in different soil types. Sequential density fractionation was done to isolate particulate organic matter (POM, 2.6 g cm-3) from four soils, i.e., a Ferralsol, a Luvisol, a Vertisol and a Solonetz. Organic matter (OM) in the density fractions was characterised using diffuse reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and mass spectroscopy in the original states (i.e., without any chemical pre-treatment), and after 6% sodium hypochlorite (NaOCl) and 10% hydrofluoric acid (HF) treatments. The NaOCl oxidation resistant fraction was considered as a relatively stable pool of OC and the HF soluble fraction was presumed as the mineral bound OC. Phyllosilicate-dominated soils, i.e., Vertisol, Luvisol and Solonetz, contained a greater proportion of POM than Fe and Al oxide-dominated Ferralsol. Wider C:N ratio and lower δ13C and δ15N in POM suggest the dominance of labile OC in this fraction and this was also supported by a greater proportion of NaOCl oxidised OC in the same fraction that was enriched with aliphatic C. The sequential density fractionation method effectively isolated OM into three distinct groups in the soils: (i) OM associated with Fe and Al oxides (>1.8 g cm-3 in the Ferralsol); (ii) OM associated with phyllosilicates (1.8-2.6 g cm-3) and (iii) OM associated with quartz and feldspar (>2.6 g cm-3) in the other three soils. Greater oxidation resistance, and more dissolution of OC during the HF treatment in the Fe and Al oxides dominated fractions suggest a greater potential of these minerals to protect OC from oxidative degradation as compared to the phyllosilicates, and quartz and feldspar matrices. OM associated with Fe and Al oxides was predominantly aromatic and carboxylate C. Decreased C:N ratio in the NaOCl oxidation resistant OM and HF soluble OM of phyllosilicates, and quartz and feldspars dominant fractions

  13. Combustion characteristics of water-insoluble elemental and organic carbon in size selected ambient aerosol particles

    Directory of Open Access Journals (Sweden)

    K. Wittmaack

    2005-01-01

    Full Text Available Combustion of elemental carbon (EC and organic carbon (OC contained in ambient aerosol matter was explored using scanning electron microscopy (SEM in combination with energy dispersive X-ray analysis (EDX. To ease identification of the particles of interest and to avoid or at least reduce interaction with simultaneously sampled inorganic oxides and salts, the approach used in this work differed in two ways from commonly applied procedures. First, rather than using a mixture of particles of vastly different sizes, as in PM10 or PM2.5, aerosol matter was collected in a 5-stage impactor. Second, the water soluble fraction of the collected matter was removed prior to analysis. Diesel soot particles, which appeared in the well-known form of chain-type aggregates, constituted the major fraction of EC. In contrast, OC containing particles were observed in a variety of shapes, including a sizable amount of bioaerosol matter appearing mostly in the size range above about 1 µm. During heating in ambient air for 1h, diesel soot particles were found to be stable up to 470°C, but complete combustion occurred in a narrow temperature interval between about 480 and 510°C. After diesel soot combustion, minute quantities of 'ash' were observed in the form of aggregated tiny particles with sizes less than 10 nm. These particles could be due to elemental or oxidic contaminants of diesel soot. Combustion of OC was observed over a wide range of temperatures, from well below 200°C to at least 500°C. Incompletely burnt bioaerosol matter was still found after heating to 600°C. The results imply that the EC fraction in aerosol matter can be overestimated significantly if the contribution of OC to a thermogram is not well separated.

  14. Spatial and Seasonal Variation of dissolved organic carbon (DOC) concentrations in Irish streams: importance of soil and topography characteristics.

    Science.gov (United States)

    Liu, Wen; Xu, Xianli; McGoff, Nicola M; Eaton, James M; Leahy, Paul; Foley, Nelius; Kiely, Gerard

    2014-05-01

    Dissolved organic carbon (DOC) concentrations have increased in many sites in Europe and North America in recent decades. High DOC concentrations can damage the structure and functions of aquatic ecosystems by influencing water chemistry. This study investigated the spatial and seasonal variation of DOC concentrations in Irish streams across 55 sites at seven time occasions over 1 year (2006/2007). The DOC concentrations ranged from 0.9 to 25.9 mg/L with a mean value of 6.8 and a median value of 5.7 mg/L and varied significantly over the course of the year. The DOC concentrations from late winter (February: 5.2 ± 3.0 mg/L across 55 sites) and early spring (April: 4.5 ± 3.5 mg/L) had significantly lower DOC concentrations than autumn (October: mean 8.3 ± 5.6 mg/L) and early winter (December: 8.3 ± 5.1 mg/L). The DOC production sources (e.g., litterfall) or the accumulation of DOC over dry periods might be the driving factor of seasonal change in Irish stream DOC concentrations. Analysis of data using stepwise multiple linear regression techniques identified the topographic index (TI, an indication of saturation-excess runoff potential) and soil conditions (organic carbon content and soil drainage characteristics) as key factors in controlling DOC spatial variation in different seasons. The TI and soil carbon content (e.g., soil organic carbon; peat occurrence) are positively related to DOC concentrations, while well-drained soils are negatively related to DOC concentrations. The knowledge of spatial and seasonal variation of DOC concentrations in streams and their drivers are essential for optimum riverine water resources management.

  15. Activated Carbon Adsorption Characteristics of Multi-component Volatile Organic compounds in a Fixed Bed Adsorption Bed

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jong Hoon; Rhee, Young Woo [Chungnam National University, Daejeon (Korea, Republic of); Lee, Sihyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2016-04-15

    This study aims to examine absorption characteristics of toluene, isopropyl alcohol (IPA), ethyl acetate (EA), and ternary-compounds, all of which are widely used in industrial processes, by means of four types of commercial activated carbon substances. It turned out that among the three types of volatile organic compounds, the breakthrough point of activated carbon and that of IPA, whose affinity was the lowest, were the lowest, and then that of EA and that of toluene in the order. With the breakthrough point of IPA, which was the shortest, as the standard, changes in the breakthrough points of unary-compounds, binary-compounds, and ternary-compounds were examined. As a result, it turned out that the larger the number of elements, the lower the breakthrough point. This resulted from competitive adsorption, that is, substitution of substances with a low level of affinity with those with a high level of affinity. Hence, the adsorption of toluene-IPA-EA and ternary-compounds require a design of the activated carbon bed based on the breakthrough of IPA, and in the design of activated carbon beds in actual industries as well, a substance whose level of affinity is the lowest needs to be the standard.

  16. Exploring the Role of the Spatial Characteristics of Visible and Near-Infrared Reflectance in Predicting Soil Organic Carbon Density

    Directory of Open Access Journals (Sweden)

    Long Guo

    2017-10-01

    Full Text Available Soil organic carbon stock plays a key role in the global carbon cycle and the precision agriculture. Visible and near-infrared reflectance spectroscopy (VNIRS can directly reflect the internal physical construction and chemical substances of soil. The partial least squares regression (PLSR is a classical and highly commonly used model in constructing soil spectral models and predicting soil properties. Nevertheless, using PLSR alone may not consider soil as characterized by strong spatial heterogeneity and dependence. However, considering the spatial characteristics of soil can offer valuable spatial information to guarantee the prediction accuracy of soil spectral models. Thus, this study aims to construct a rapid and accurate soil spectral model in predicting soil organic carbon density (SOCD with the aid of the spatial autocorrelation of soil spectral reflectance. A total of 231 topsoil samples (0–30 cm were collected from the Jianghan Plain, Wuhan, China. The spectral reflectance (350–2500 nm was used as auxiliary variable. A geographically-weighted regression (GWR model was used to evaluate the potential improvement of SOCD prediction when the spatial information of the spectral features was considered. Results showed that: (1 The principal components extracted from PLSR have a strong relationship with the regression coefficients at the average sampling distance (300 m based on the Moran’s I values. (2 The eigenvectors of the principal components exhibited strong relationships with the absorption spectral features, and the regression coefficients of GWR varied with the geographical locations. (3 GWR displayed a higher accuracy than that of PLSR in predicting the SOCD by VNIRS. This study aimed to help people realize the importance of the spatial characteristics of soil properties and their spectra. This work also introduced guidelines for the application of GWR in predicting soil properties by VNIRS.

  17. Organic electrochemistry and carbon electrodes

    International Nuclear Information System (INIS)

    Weinberg, N.

    1983-01-01

    Carbons are often used in organic electrosynthesis and are critical as anodes or cathodes to certain reactions. Too often the surface properties of carbons have been left uncharacterized in relation to the reaction; however, these physical and chemical properties of carbons are important to the nature of the products, and the selectivity. Examples presented include the Kolbe reaction, the oxidation of aromatics in presence of carboxylate salts, electrofluorination of organics, acetamidation of aromatics, the hydrodimerization of formaldehyde and the oxidation of carbon fibers. These reactions apparently involve special surface characteristics: structure, surface area, stabilized surface sites, and the presence or absence of significant ''oxide'' functionality

  18. [Distribution characteristics of soil organic carbon under different forest restoration modes on opencast coal mine dump].

    Science.gov (United States)

    Wen, Yue-rong; Dang, Ting-hui; Tang, Jun; Li, Jun-chao

    2016-01-01

    The content and storage of soil organic carbon (SOC) were compared in six wood restoration modes and adjacent abandoned land on opencast coal mine dump, and the mechanisms behind the differences and their influencing factors were analyzed. Results showed that the contents of SOC in six wood lands were significantly higher (23.8%-53.2%) than that of abandoned land (1.92 g · kg⁻¹) at 0-10 cm soil depth, the index were significantly higher (5.8%-70.4%) at 10-20 cm soil depth than the abandoned land (1.39 g · kg⁻¹), and then the difference of the contents of SOC in the deep soil (20-100 cm) were not significant. The contents of SOC decreased with increase of soil depth, but the decreasing magnitude of the topsoil (0-20 cm) was higher than that of the deep soil (20-100 cm). Compared with the deep soil, the topsoil significant higer storage of SOC in different woods, the SOC storage decreased with the soil depth. Along the 0-100 cm soil layer, the storage of SOC in six wood lands higher (18.1%-42.4%) than that of the abandoned land (17.52 t · hm⁻²). The SOC storage of Amorpha fruticosa land (24.95 t · hm⁻²) was obviously higher than that in the other wood lands. The SOC storage in the shrub lands was 12.4% higher than that of the arbor woods. There were significantly positive correlations among forest litter, fine root biomass, soil water content and SOC on the dump. Consequently, different plantation restorations significantly improved the SOC level on the dump in 0-100 cm soil, especially the topsoil. But there was still a big gap about SOC level between the wood restoration lands and the original landform. To improve the SOC on opencast coal mine dump, A. fruticosa could be selected as the main wood vegetation.

  19. Nutritional Quality and Physicochemical Characteristics of Defatted Bovine Liver Treated by Supercritical Carbon Dioxide and Organic Solvent

    Science.gov (United States)

    Kang, Sung-Won; Kim, Hye-Min; Rahman, M. Shafiur; Kim, Ah-Na; Yang, Han-Sul

    2017-01-01

    Defatted bovine liver (DBL) is a potential source of protein and minerals. Supercritical carbon dioxide (SC-CO2) and a traditional organic solvent method were used to remove lipid from bovine liver, and the quality characteristics of a control bovine liver (CBL), bovine liver defatted by SC-CO2 (DBLSC-CO2) at different pressures, and bovine liver defatted by organic solvent (DBL-OS) were compared. The DBLSC-CO2 samples had significantly higher (pSC-CO2 than the organic solvent method. SDS-PAGE analysis demonstrated that the CBL and DBLSC-CO2 had protein bands of a similar intensity and area, whereas DBL-OS appeared extremely poor bands or no bands due to the degradation of proteins, particularly in the 50 to 75 kDa and 20 to 25 kDa molecular weight ranges. In addition, DBLSC-CO2 was shown to have superior functional properties in terms of total soluble content, water and oil absorption, and foaming and emulsification properties. Therefore, SC-CO2 treatment offers a nutritionally and environmentally friendly approach for the removal of lipid from high protein food sources. In addition, SC-CO2 may be a better substitute of traditional organic solvent extraction for producing more stable and high quality foods with high-protein, fat-free, and low calorie contents. PMID:28316468

  20. Determining Inorganic and Organic Carbon.

    Science.gov (United States)

    Koistinen, Jaana; Sjöblom, Mervi; Spilling, Kristian

    2017-11-21

    Carbon is the element which makes up the major fraction of lipids and carbohydrates, which could be used for making biofuel. It is therefore important to provide enough carbon and also follow the flow into particulate organic carbon and potential loss to dissolved organic forms of carbon. Here we present methods for determining dissolved inorganic carbon, dissolved organic carbon, and particulate organic carbon.

  1. Removal of organic fractions from landfill leachate by casuarina equisetifolia activated carbon: Characteristics and adsorption mechanisms

    Science.gov (United States)

    Alrozi, Rasyidah; Zubir, Nor Aida; Kamaruddin, Mohamad Anuar; Yusof, Siti Noor Faizah Mohd; Yusoff, Mohd Suffian

    2017-09-01

    In this research, the activated carbon prepared from tropical plant waste based Casuarinas Equisetifolia plant was activated through chemical activation by using potassium hydroxide (KOH) as the activating agent. The raw sample was carbonized following conventional heating via electric furnace at 600˚C with the increasing temperature 30˚C/minutes in one hour which was selected as the optimum condition. The prepared activated carbons exhibit mesoporous with the pore diameter within 0.2 µm to 20 µm. From the Scanning Electron Microscopy (SEM) micrographs, the morphology of the activated carbon indicated that they demonstrated high pore development on it surfaces. The effects of initial pH, contact time and adsorbent dosage onto the adsorption performances were evaluated through batch adsorption study. The COD removal increased when the adsorbent dosage was increased. The adsorption of COD and colour were best fitted by the Freundlich isotherm model compared to ammonia, which the correlation regressions, R2 were 0.8451, 0.8315 and 0.6608, respectively. The result of the preliminary of the experimental indicated that the Casuarinas Equisetifolia plant is a promising raw material suitable for turning from waste into wealth.

  2. Impact of catchment geophysical characteristics and climate on the regional variability of dissolved organic carbon (DOC) in surface water.

    Science.gov (United States)

    Cool, Geneviève; Lebel, Alexandre; Sadiq, Rehan; Rodriguez, Manuel J

    2014-08-15

    Dissolved organic carbon (DOC) is a recognized indicator of natural organic matter (NOM) in surface waters. The aim of this paper is twofold: to evaluate the impact of geophysical characteristics, climate and ecological zones on DOC concentrations in surface waters and, to develop a statistical model to estimate the regional variability of these concentrations. In this study, multilevel statistical analysis was used to achieve three specific objectives: (1) evaluate the influence of climate and geophysical characteristics on DOC concentrations in surface waters; (2) compare the influence of geophysical characteristics and ecological zones on DOC concentrations in surface waters; and (3) develop a model to estimate the most accurate DOC concentrations in surface waters. The case study involved 115 catchments from surface waters in the Province of Quebec, Canada. Results showed that mean temperatures recorded 60 days prior to sampling, total precipitation 10 days prior to sampling and percentages of wetlands, coniferous forests and mixed forests have a significant positive influence on DOC concentrations in surface waters. The catchment mean slope had a significant negative influence on DOC concentrations in surface waters. Water type (lake or river) and deciduous forest variables were not significant. The ecological zones had a significant influence on DOC concentrations. However, geophysical characteristics (wetlands, forests and slope) estimated DOC concentrations more accurately. A model describing the variability of DOC concentrations was developed and can be used, in future research, for estimating DBPs in drinking water as well evaluating the impact of climate change on the quality of surface waters and drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Study on characteristics of high frequency dielectric barrier discharge for the removal of organic pollutant adsorbed on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Qu, G.Z.; Li, G.F. [Dalian Univ. of Technology, Dalian (China). Inst. of Electrostatics and Special Power; Li, J.; Lu, N.; Wu, Y.; Li, D. [Dalian Univ. of Technology, Dalian (China). Inst. of Electrostatics and Special Power; Key Lab of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian (China)

    2010-07-01

    Advanced oxidation technologies such as photocatalysis, electrochemical degradation, Fenton oxidation, hydrogen peroxide oxidation, and plasma oxidation are increasingly being used to degrade refractory biodegradable organic contaminants. The plasma oxidation method has the advantage of direct in situ production of multiple types of high-reactive chemical species, including molecules and radicals that facilitate the degradation reaction. In addition, plasma oxidation does not produce any secondary pollution. Compared to other plasma technologies, the dielectric barrier discharge (DBD) plasma has been considered as a promising technology for removing toxic compounds because of its stability and its treatability property of biologically recalcitrant compounds in wastewater. However, the energy efficiency of DBD requires improvement for economic reasons. This paper reported on an experimental study that investigated the electrical characteristics of a parallel plate DBD reactor using a high frequency power supply for the removal of pentachlorophenol (PCP) adsorbed on activated carbon (AC). This study examined the effects of AC with different mass on discharge characteristics and compared the voltage and current waveforms, and discharge images of DBD reactors with different dielectric configurations. When the DBD reactor filled with AC, the applied voltage of discharge decreased regardless of the DBD reactor configuration in terms of having a single barrier or two barriers. The discharge characteristics had no significant change with AC mass increasing. The discharge images and current waveforms showed that DBD reactor configuration consisting of two dielectrics is more homogeneous and stable than the one consisting of a single dielectric. Under the same electric field condition, the degradation efficiency of PCP in two barriers reactor is higher than that in single barrier reactor. It was concluded that the findings from this study may be instrumental in treating

  4. Effects of molecular weight of natural organic matter on cadmium mobility in soil environments and its carbon isotope characteristics

    International Nuclear Information System (INIS)

    Mahara, Y.; Kubota, T.; Wakayama, R.; Nakano-Ohta, T.; Nakamura, T.

    2007-01-01

    We investigated the role of natural organic matter in cadmium mobility in soil environments. We collected the dissolved organic matter from two different types of natural waters: pond surface water, which is oxic, and deep anoxic groundwater. The collected organic matter was fractionated into four groups with molecular weights (unit: Da (Daltons)) of 3 , 1-10 x 10 3 , 10-100 x 10 3 , and > 100 x 10 3 . The organic matter source was land plants, based on the carbon isotope ratios (δ 13 C/ 12 C). The organic matter in surface water originated from presently growing land plants, based on 14 C dating, but the organic matter in deep groundwater originated from land plants that grew approximately 4000 years ago. However, some carbon was supplied by the high-molecular-weight fraction of humic substances in soil or sediments. Cadmium interacted in a system of siliceous sand, fractionated organic matter, and water. The lowest molecular weight fraction of organic matter ( 3 ) bound more cadmium than did the higher molecular weight fractions. Organic matter in deep groundwater was more strongly bound to cadmium than was organic matter in surface water. The binding behaviours of organic matter with cadmium depended on concentration, age, molecular weight, and degradation conditions of the organic matter in natural waters. Consequently, the dissolved, low-molecular-weight fraction in organic matter strongly influences cadmium migration and mobility in the environment

  5. Characteristics of Soil and Organic Carbon Loss Induced by Water Erosion on the Loess Plateau in China.

    Science.gov (United States)

    Li, Zhongwu; Nie, Xiaodong; Chang, Xiaofeng; Liu, Lin; Sun, Liying

    2016-01-01

    Soil erosion has been a common environmental problem in the Loess Plateau in China. This study aims to better understand the losses of soil organic carbon (SOC) induced by water erosion. Laboratory-simulated rainfall experiments were conducted to investigate the characteristics of SOC loss induced by water erosion. The applied treatments included two rainfall intensities (90 and 120 mm h-1), four slope gradients (10°, 15°, 20°, and 25°), and two typical soil types- silty clay loam and silty loam. Results showed that the sediment OC enrichment ratios (ERoc) in all the events were relative stable with values ranged from 0.85 to1.21 and 0.64 to 1.52 and mean values of 0.98 and 1.01 for silty clay loam and silty loam, respectively. Similar to the ERoc, the proportions of different sized particles in sediment showed tiny variations during erosion processes. No significant correlation was observed between ERoc values and the proportions of sediment particles. Slope, rainfall intensity and soil type almost had no impact on ERoc. These results indicate that the transportation of SOC during erosion processes was nonselective. While the mean SOC loss rates for the events of silty clay loam and silty loam were 0.30 and 0.08 g m-2 min-1, respectively. Greater differences in SOC loss rates were found in events among different soil types. Meanwhile, significant correlations between SOC loss and soil loss for all the events were observed. These results indicated that the amount of SOC loss was influenced primarily by soil loss and the SOC content of the original soil. Erosion pattern and original SOC content are two main factors by which different soils can influence SOC loss. It seems that soil type has a greater impact on SOC loss than rainfall characteristics on the Loess Plateau of China. However, more kinds of soils should be further studied due to the special formation processes in the Loess Plateau.

  6. Three-decade long fertilization-induced soil organic carbon sequestration depends on edaphic characteristics in six typical croplands

    Science.gov (United States)

    Liang, Feng; Li, Jianwei; Yang, Xueyun; Huang, Shaomin; Cai, Zejiang; Gao, Hongjun; Ma, Junyong; Cui, Xian; Xu, Minggang

    2016-08-01

    Fertilizations affect soil organic carbon (SOC) content but the relative influences of the edaphic and climate factors on SOC storage are rarely studied across wide spatiotemporal scales. This study synthesized long-term datasets of fertilization experiments in six typical Chinese croplands, and calculated annual C input from crops and manure amendments, changes in SOC storage (ΔSOC) and C sequestration efficiency (i.e. the percentage of soil C change per unit of C input, hereafter referred as CSE) in 0-20 cm soil over three decades. Three fertilization treatments include no fertilization (CK), chemical nitrogen, phosphorus and potassium fertilizers (NPK) and combined chemical fertilizers and manure (NPKM). Results showed significant fertilization effects on C input and ΔSOC (NPKM>NPK>CK), and significantly higher CSE in Qiyang at Hunan than Zhengzhou at Henan and Heihe at Heilongjiang. The variance partitioning analysis (VPA) showed more variance of CSE can be explained by edaphic factors (up to 39.7%) than other factors. Furthermore, soil available N content and pH were identified as the major soil properties explaining CSE variance. This study demonstrated key controls of soil fertility factors on SOC sequestration and informs the need to develop strategic soil management plan to promote soil carbon sequestration under long-term intensive fertilization.

  7. Chemical characteristics and source apportionment of fine particulate organic carbon in Hong Kong during high particulate matter episodes in winter 2003

    Science.gov (United States)

    Li, Yun-Chun; Yu, Jian Zhen; Ho, Steven Sai Hang; Schauer, James J.; Yuan, Zibing; Lau, Alexis K. H.; Louie, Peter K. K.

    2013-02-01

    PM2.5 samples were collected at six general stations and one roadside station in Hong Kong in two periods of high particulate matter (PM) in 2003 (27 October-4 November and 30 November-13 December). The highest PM2.5 reached 216 μg m- 3 during the first high PM period and 113 μg m- 3 during the second high PM period. Analysis of synoptic weather conditions identified individual sampling days under dominant influence of one of three types of air masses, that is, local, regional and long-range transported (LRT) air masses. Roadside samples were discussed separately due to heavy influences from vehicular emissions. This research examines source apportionment of fine organic carbon (OC) and contribution of secondary organic aerosol on high PM days under different synoptic conditions. Six primary OC (POC) sources (vehicle exhaust, biomass burning, cooking, cigarette smoke, vegetative detritus, and coal combustion) were identified on the basis of characteristic organic tracers. Individual POC source contributions were estimated using chemical mass balance model. In the roadside and the local samples, OC was dominated by the primary sources, accounting for more than 74% of OC. In the samples influenced by regional and LRT air masses, secondary OC (SOC), which was approximated to be the difference between the total measured OC and the apportioned POC, contributed more than 54% of fine OC. SOC was highly correlated with water-soluble organic carbon and sulfate, consistent with its secondary nature.

  8. Hydrological processes and permafrost regulate magnitude, source and chemical characteristics of dissolved organic carbon export in a peatland catchment of northeastern China

    Science.gov (United States)

    Guo, Yuedong; Song, Changchun; Tan, Wenwen; Wang, Xianwei; Lu, Yongzheng

    2018-02-01

    Permafrost thawing in peatlands has the potential to alter the catchment export of dissolved organic carbon (DOC), thus influencing the carbon balance and cycling in linked aquatic and ocean ecosystems. Peatlands along the southern margins of the Eurasian permafrost are relatively underexplored despite the considerable risks associated with permafrost degradation due to climate warming. This study examined dynamics of DOC export from a permafrost peatland catchment located in northeastern China during the 2012 to 2014 growing seasons. The estimated annual DOC loads varied greatly between 3211 and 19 022 kg yr-1, with a mean DOC yield of 4.7 g m-2 yr-1. Although the estimated DOC yield was in the lower range compared with other permafrost regions, it was still significant for the net carbon balance in the studied catchment. There were strong linkages between daily discharge and DOC concentrations in both wet and dry years, suggesting a transport-limited process of DOC delivery from the catchment. Discharge explained the majority of both seasonal and interannual variations of DOC concentrations, which made annual discharge a good indicator of total DOC load from the catchment. As indicated by three fluorescence indices, DOC source and chemical characteristics tracked the shift of flow paths during runoff processes closely. Interactions between the flow path and DOC chemical characteristics were greatly influenced by the seasonal thawing of the soil active layer. The deepening of the active layer due to climate warming likely increases the proportion of microbial-originated DOC in baseflow discharge.

  9. Hydrological processes and permafrost regulate magnitude, source and chemical characteristics of dissolved organic carbon export in a peatland catchment of northeastern China

    Directory of Open Access Journals (Sweden)

    Y. Guo

    2018-02-01

    Full Text Available Permafrost thawing in peatlands has the potential to alter the catchment export of dissolved organic carbon (DOC, thus influencing the carbon balance and cycling in linked aquatic and ocean ecosystems. Peatlands along the southern margins of the Eurasian permafrost are relatively underexplored despite the considerable risks associated with permafrost degradation due to climate warming. This study examined dynamics of DOC export from a permafrost peatland catchment located in northeastern China during the 2012 to 2014 growing seasons. The estimated annual DOC loads varied greatly between 3211 and 19 022 kg yr−1, with a mean DOC yield of 4.7 g m−2 yr−1. Although the estimated DOC yield was in the lower range compared with other permafrost regions, it was still significant for the net carbon balance in the studied catchment. There were strong linkages between daily discharge and DOC concentrations in both wet and dry years, suggesting a transport-limited process of DOC delivery from the catchment. Discharge explained the majority of both seasonal and interannual variations of DOC concentrations, which made annual discharge a good indicator of total DOC load from the catchment. As indicated by three fluorescence indices, DOC source and chemical characteristics tracked the shift of flow paths during runoff processes closely. Interactions between the flow path and DOC chemical characteristics were greatly influenced by the seasonal thawing of the soil active layer. The deepening of the active layer due to climate warming likely increases the proportion of microbial-originated DOC in baseflow discharge.

  10. [Characteristics of dissolved organic carbon release under inundation from typical grass plants in the water-level fluctuation zone of the Three Gorges Reservoir area].

    Science.gov (United States)

    Tan, Qiu-Xia; Zhu, Boi; Hua, Ke-Ke

    2013-08-01

    The water-level fluctuation zone of the Three Gorges Reservoir (TGR) exposes in spring and summer, then, green plants especially herbaceous plants grow vigorously. In the late of September, water-level fluctuation zone of TGR goes to inundation. Meanwhile, annually accumulated biomass of plant will be submerged for decaying, resulting in organism decomposition and release a large amount of dissolved organic carbon (DOC). This may lead to negative impacts on water environment of TGR. The typical herbaceous plants from water-level fluctuation zone were collected and inundated in the laboratory for dynamic measurements of DOC concentration of overlying water. According to the determination, the DOC release rates and fluxes have been calculated. Results showed that the release process of DOC variation fitted in a parabolic curve. The peak DOC concentrations emerge averagely in the 15th day of inundation, indicating that DOC released quickly with organism decay of herbaceous plant. The release process of DOC could be described by the logarithm equation. There are significant differences between the concentration of DOC (the maximum DOC concentration is 486.88 mg x L(-1) +/- 35.97 mg x L(-1) for Centaurea picris, the minimum is 4.18 mg x L(-1) +/- 1.07 mg x L(-1) for Echinochloacrus galli) and the release amount of DOC (the maximum is 50.54 mg x g(-1) for Centaurea picris, the minimum is 6.51 mg x g(-1) for Polygonum hydropiper) due to different characteristics of plants, especially, the values of C/N of herbaceous plants. The cumulative DOC release quantities during the whole inundation period were significantly correlated with plants' C/N values in linear equations.

  11. Relationship between structural properties and electrochemical characteristics of monolithic carbon xerogel-based electrochemical double-layer electrodes in aqueous and organic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, Mario [Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany); Institute of Radiology, University Clinic, University of Wuerzburg (Germany); Lorrmann, Volker; Reichenauer, Gudrun; Wiener, Matthias [Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany); Pflaum, Jens [Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany); Department of Experimental Physics VI, Julius-Maximilians-University of Wuerzburg (Germany)

    2012-05-15

    The impact of the micropore width, external surface area, and meso-/macropore size on the charging performance of electrochemical double-layer capacitor (EDLC) electrodes is systematically investigated. Nonactivated carbon xerogels are used as model electrodes in aqueous and organic electrolytes. Monolithic porous model carbons with different structural parameters are prepared using a resorcinol-formaldehyde-based sol-gel process and subsequent pyrolysis of the organic precursors. Electrochemical properties are characterized by utilizing them as EDLC half-cells operated in aqueous and organic electrolytes, respectively. Experimental data derived for organic electrolytes reveals that the respective ions cannot enter the micropores within the skeleton of the meso- and macroporous carbons. Therefore the total capacitance is limited by the external surface formed by the interface between the meso-/macropores and the microporous carbon particles forming the xerogel skeleton. In contrast, for aqueous electrolytes the total capacitance solely depends on the total surface area, including interfaces at the micropore scale. For both types of electrolytes the charging rate of the electrodes is systematically enhanced when increasing the diameter of the carbon xerogel particles from 10 to 75 nm and the meso-/macropore size from 10 to 121 nm. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Characteristics of labile organic carbon fractions in reclaimed mine soils: Evidence from three reclaimed forests in the Pingshuo opencast coal mine, China.

    Science.gov (United States)

    Yuan, Ye; Zhao, Zhongqiu; Li, Xuezhen; Wang, Yangyang; Bai, Zhongke

    2018-02-01

    The reclamation of discarded spoils has the potential to stimulate carbon (C) sequestration in reclaimed mine soils (RMSs). Nevertheless, to date the temporal dynamics of labile organic C fractions have not been sufficiently elucidated in RMSs. In this study, soil organic carbon (SOC) and labile organic C fractions, including microbial biomass organic C (MBC), easily oxidizable organic C (EOC) and dissolved organic C (DOC), were determined in Robinia pseudoacacia monoculture forests (reclamation periods of 0, 8, 10, 13, 15, 18 and 30years), Pinus tabuliformis forests (reclamation periods of 0, 10, 19, 23 and 25years) and Ulmus pumila forests (reclamation periods of 0, 18, 20 and 22years) situated on RMSs in the Pingshuo opencast coal mine, China. Changes in labile organic C fractions within the soil profiles (0-100cm) were also identified at the 18- or 19-year plots under the three monoculture forests. Our results showed that, SOC and labile organic C fractions, together with soil microbial quotient (SMQ) and C management index (CMI), increased with time since reclamation, indicating that the quality of RMSs improved over time after initial reclamation under the three forest types. R. pseudoacacia significantly increased the accretion of SOC and EOC in the early stage of reclamation while P. tabuliformis accelerated the accumulation of the MBC fraction. Results for U. pumila indicated that this species had a better ability to store C in RMSs 10years or more after reclamation. SOC and labile organic C fractions both had S-shaped distributions within the soil profiles (0-100cm), with the 0-20cm layer recording the highest values (Pfractions were closely associated and correlated with soil physicochemical properties; our results also showed that nitrogen played an important role in the development of labile organic C fractions. Overall, reclamation accelerated the accretion of both SOC and labile organic C fractions, results of which varied among the reclaimed forests

  13. Characteristics of differently stabilised soil organic carbon fractions in relation to long-term fertilisation in Brown Earth of Northeast China.

    Science.gov (United States)

    Xu, Xiangru; Zhang, Wenju; Xu, Minggang; Li, Shuangyi; An, Tingting; Pei, Jiubo; Xiao, Jing; Xie, Hongtu; Wang, Jingkuan

    2016-12-01

    Long-term use of artificial fertiliser has a significant impact on soil organic carbon (SOC). We used physical-chemical fractionation methods to assess the impact of long-term (26years) fertilisation in a maize cropping system developed on Brown Earth in Northeast China. Plot treatments consisted of control (CK); nitrogen (N) fertiliser (N2); low-level organic manure combined with inorganic N and phosphorus (P) fertiliser (M1N1P1); medium-level organic manure combined with inorganic N fertiliser (M2N2); and high-level organic manure combined with inorganic N and P fertiliser (M4N2P1). Our objectives were to (1) determine the contents of and variations in the SOC fractions; (2) explore the relationship between total SOC and its fractions. In treatments involving organic manure (M1N1P1, M2N2, and M4N2P1), total SOC and physically protected microaggregate (μagg) and μagg occluded particulate organic carbon (iPOC) contents increased by 9.9-58.9%, 1.3-34.7%, 29.5-127.9% relative to control, respectively. But there no significant differences (P>0.05) were detected for the chemically, physically-chemically, and physically-biochemically protected fractions among the M1N1P1, M2N2, and M4N2P1 treatments. Regression analysis revealed that there was a linear positive correlation between SOC and the unprotected coarse particulate organic carbon (cPOC), physically protected μagg, and iPOC fractions (Pfractions responded negatively to SOC content. The highest rate of C accumulation among the SOC fractions occurred in the cPOC fraction, which accounted for as much as 32% of C accumulation as total SOC increased, suggesting that cPOC may be the most sensitive fraction to fertiliser application. We found that treatments had no effect on C levels in H-μsilt and NH-μsilt, indicating that the microaggregated silt C-fractions may have reached a steady state in terms of C saturation in the Brown Earth of Northeast China. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Organic carbon content of tropical zooplankton

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.

    In the Zuari and Mandovi estuaries variations in organic carbon of zooplankton are 26.4-38.8 and 24-39.9% of dry weight respectively. Maximum carbon content of estuarine zooplankton is observed in November. Organic carbon in nearshore and oceanic...

  15. Organic carbon organic matter and bulk density relationships in arid ...

    African Journals Online (AJOL)

    Soil organic matter (SOM) and soil organic carbon (SOC) constitute usually a small portion of soil, but they are one of the most important components of ecosystems. Bulk density (dB or BD) value is necessary to convert organic carbon (OC) content per unit area. Relationships between SOM, SOC and BD were established ...

  16. Deposition and benthic mineralization of organic carbon

    DEFF Research Database (Denmark)

    Nordi, Gunnvor A.; Glud, Ronnie N.; Simonsen, Knud

    2018-01-01

    Seasonal variations in sedimentation and benthic mineralization of organic carbon (OC) were investigated in a Faroese fjord. Deposited particulate organic carbon (POC) was mainly of marine origin, with terrestrial material only accounting for b1%. On an annual basis the POC export fromthe euphotic...

  17. Organic carbon isotope systematics of coastal marshes

    NARCIS (Netherlands)

    Middelburg, J.J.; Nieuwenhuize, J.; Lubberts, R.K.; Van de Plassche, O.

    1997-01-01

    Measurements of nitrogen, organic carbon and delta(13)C are presented for Spartina-dominated marsh sediments from a mineral marsh in SW Netherlands and from a peaty marsh in Massachusetts, U.S.A. delta(13)C Of organic carbon in the peaty marsh sediments is similar to that of Spartina material,

  18. Acidity controls on dissolved organic carbon mobility in organic soils

    Czech Academy of Sciences Publication Activity Database

    Evans, Ch. D.; Jones, T.; Burden, A.; Ostle, N.; Zielinski, P.; Cooper, M.; Peacock, M.; Clark, J.; Oulehle, Filip; Cooper, D.; Freeman, Ch.

    2012-01-01

    Roč. 18, č. 11 (2012), s. 3317-3331 ISSN 1354-1013 Institutional support: RVO:67179843 Keywords : acidity * dissolved organic carbon * organic soil * peat * podzol * soil carbon * sulphur Subject RIV: EH - Ecology, Behaviour Impact factor: 6.910, year: 2012

  19. Effects of Conservation Tillage on Topsoil Microbial Metabolic Characteristics and Organic Carbon within Aggregates under a Rice (Oryza sativa L.) –Wheat (Triticum aestivum L.) Cropping System in Central China

    Science.gov (United States)

    Liu, Tian-Qi; Cao, Cou-Gui; Li, Cheng-Fang

    2016-01-01

    Investigating microbial metabolic characteristics and soil organic carbon (SOC) within aggregates and their relationships under conservation tillage may be useful in revealing the mechanism of SOC sequestration in conservation tillage systems. However, limited studies have been conducted to investigate the relationship between SOC and microbial metabolic characteristics within aggregate fractions under conservation tillage. We hypothesized that close relationships can exist between SOC and microbial metabolic characteristics within aggregates under conservation tillage. In this study, a field experiment was conducted from June 2011 to June 2013 following a split-plot design of a randomized complete block with tillage practices [conventional intensive tillage (CT) and no tillage (NT)] as main plots and straw returning methods [preceding crop residue returning (S, 2100−2500 kg C ha−1) and removal (NS, 0 kg C ha-1)] as subplots with three replications. The objective of this study was to reveal the effects of tillage practices and residue-returning methods on topsoil microbial metabolic characteristics and organic carbon (SOC) fractions within aggregates and their relationships under a rice–wheat cropping system in central China. Microbial metabolic characteristics investigated using the Biolog system was examined within two aggregate fractions (>0.25 and 0.25 aggregate, and 0.25 mm aggregate (11.3%), and 0.25 mm aggregate, and 0.25 mm aggregate, and tillage (NT and S) increased microbial metabolic activities and Shannon index in >0.25 and directly improved SOC by promoting DOC in >0.25 mm aggregate in the upper (0−5 cm) soil layer under conservation tillage systems, as well as directly and indirectly by promoting DOC and MBC in tillage increased SOC in aggregates in the topsoil by improving microbial metabolic activities. PMID:26731654

  20. Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation

    Science.gov (United States)

    Schobben, Martin; van de Velde, Sebastiaan; Gliwa, Jana; Leda, Lucyna; Korn, Dieter; Struck, Ulrich; Vinzenz Ullmann, Clemens; Hairapetian, Vachik; Ghaderi, Abbas; Korte, Christoph; Newton, Robert J.; Poulton, Simon W.; Wignall, Paul B.

    2017-11-01

    Bulk-carbonate carbon isotope ratios are a widely applied proxy for investigating the ancient biogeochemical carbon cycle. Temporal carbon isotope trends serve as a prime stratigraphic tool, with the inherent assumption that bulk micritic carbonate rock is a faithful geochemical recorder of the isotopic composition of seawater dissolved inorganic carbon. However, bulk-carbonate rock is also prone to incorporate diagenetic signals. The aim of the present study is to disentangle primary trends from diagenetic signals in carbon isotope records which traverse the Permian-Triassic boundary in the marine carbonate-bearing sequences of Iran and South China. By pooling newly produced and published carbon isotope data, we confirm that a global first-order trend towards depleted values exists. However, a large amount of scatter is superimposed on this geochemical record. In addition, we observe a temporal trend in the amplitude of this residual δ13C variability, which is reproducible for the two studied regions. We suggest that (sub-)sea-floor microbial communities and their control on calcite nucleation and ambient porewater dissolved inorganic carbon δ13C pose a viable mechanism to induce bulk-rock δ13C variability. Numerical model calculations highlight that early diagenetic carbonate rock stabilization and linked carbon isotope alteration can be controlled by organic matter supply and subsequent microbial remineralization. A major biotic decline among Late Permian bottom-dwelling organisms facilitated a spatial increase in heterogeneous organic carbon accumulation. Combined with low marine sulfate, this resulted in varying degrees of carbon isotope overprinting. A simulated time series suggests that a 50 % increase in the spatial scatter of organic carbon relative to the average, in addition to an imposed increase in the likelihood of sampling cements formed by microbial calcite nucleation to 1 out of 10 samples, is sufficient to induce the observed signal of carbon

  1. Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation

    Directory of Open Access Journals (Sweden)

    M. Schobben

    2017-11-01

    Full Text Available Bulk-carbonate carbon isotope ratios are a widely applied proxy for investigating the ancient biogeochemical carbon cycle. Temporal carbon isotope trends serve as a prime stratigraphic tool, with the inherent assumption that bulk micritic carbonate rock is a faithful geochemical recorder of the isotopic composition of seawater dissolved inorganic carbon. However, bulk-carbonate rock is also prone to incorporate diagenetic signals. The aim of the present study is to disentangle primary trends from diagenetic signals in carbon isotope records which traverse the Permian–Triassic boundary in the marine carbonate-bearing sequences of Iran and South China. By pooling newly produced and published carbon isotope data, we confirm that a global first-order trend towards depleted values exists. However, a large amount of scatter is superimposed on this geochemical record. In addition, we observe a temporal trend in the amplitude of this residual δ13C variability, which is reproducible for the two studied regions. We suggest that (sub-sea-floor microbial communities and their control on calcite nucleation and ambient porewater dissolved inorganic carbon δ13C pose a viable mechanism to induce bulk-rock δ13C variability. Numerical model calculations highlight that early diagenetic carbonate rock stabilization and linked carbon isotope alteration can be controlled by organic matter supply and subsequent microbial remineralization. A major biotic decline among Late Permian bottom-dwelling organisms facilitated a spatial increase in heterogeneous organic carbon accumulation. Combined with low marine sulfate, this resulted in varying degrees of carbon isotope overprinting. A simulated time series suggests that a 50 % increase in the spatial scatter of organic carbon relative to the average, in addition to an imposed increase in the likelihood of sampling cements formed by microbial calcite nucleation to 1 out of 10 samples, is sufficient to induce the

  2. Mobility of organic carbon from incineration residues

    International Nuclear Information System (INIS)

    Ecke, Holger; Svensson, Malin

    2008-01-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2 6-1 experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO 2 until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon

  3. Radiocarbon in marine dissolved organic carbon (DOC)

    NARCIS (Netherlands)

    Clercq, M. le; Plicht, J. van der; Meijer, H.A.J.; Baar, H.J.W. de

    Dissolved Organic Carbon (DOC) plays an important role in the ecology and carbon cycle in the ocean. Analytical problems with concentration and isotope ratio measurements have hindered its study. We have constructed a new analytical method based on supercritical oxidation for the determination of

  4. Organic carbon spiralling in stream ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Mulholland, P J; Elwood, J W; O' Neill, R V

    1982-01-01

    The term spiralling has been used to describe the combined processes of cycling and longitudinal transport in streams. As a measure or organic carbon spiralling, we introduced organic carbon turnover length, S, defined as the average or expected downstream distance travelled by a carbon atom between its entry or fixation in the stream and its oxidation. Using a simple model for organic carbon dynamics in a stream, we show that S is closely related to fisher and Likens' ecosystem efficiency. Unlike efficiency, however, S is independent of the length of the study reach, and values of S determined in streams of differing lengths can be compared. Using data from three different streams, we found the relationship between S and efficiency to agree closely with the model prediction. Hypotheses of stream functioning are discussed in the context of organic carbeon spiralling theory.

  5. Worldwide organic soil carbon and nitrogen data

    Energy Technology Data Exchange (ETDEWEB)

    Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  6. Organic Carbon Storage in China's Urban Areas

    Science.gov (United States)

    Zhao, Shuqing; Zhu, Chao; Zhou, Decheng; Huang, Dian; Werner, Jeremy

    2013-01-01

    China has been experiencing rapid urbanization in parallel with its economic boom over the past three decades. To date, the organic carbon storage in China's urban areas has not been quantified. Here, using data compiled from literature review and statistical yearbooks, we estimated that total carbon storage in China's urban areas was 577±60 Tg C (1 Tg  = 1012 g) in 2006. Soil was the largest contributor to total carbon storage (56%), followed by buildings (36%), and vegetation (7%), while carbon storage in humans was relatively small (1%). The carbon density in China's urban areas was 17.1±1.8 kg C m−2, about two times the national average of all lands. The most sensitive variable in estimating urban carbon storage was urban area. Examining urban carbon storages over a wide range of spatial extents in China and in the United States, we found a strong linear relationship between total urban carbon storage and total urban area, with a specific urban carbon storage of 16 Tg C for every 1,000 km2 urban area. This value might be useful for estimating urban carbon storage at regional to global scales. Our results also showed that the fraction of carbon storage in urban green spaces was still much lower in China relative to western countries, suggesting a great potential to mitigate climate change through urban greening and green spaces management in China. PMID:23991014

  7. Influencing factors on δ(13C) of organic matter and carbonate in labke sediments on songnen plain

    International Nuclear Information System (INIS)

    Ou Wenjia; Zhang Chengjun

    2009-01-01

    Carbon isotopic compositions of organic matter and carbonate in surface sediments from lakes in Songnen Plain, northeast of China, were carried out.n-alkanes carbon distribution characteristics of the organic matter in lake sediments were also analyzed to identify the source of organic matter and sedimentary environment in these lakes. With the limnological characteristics of water and sediment, the influencing factors on isotopic composition in sedimentary organic matter and carbonate were discussed. The results showed that types of organic matter affected the carbon isotopic composition. 13 C of carbonate depleted by input of biologic organic matter and enriched by input of oil pollution. (authors)

  8. Temperature dependence of photodegradation of dissolved organic matter to dissolved inorganic carbon and particulate organic carbon

    Czech Academy of Sciences Publication Activity Database

    Porcal, Petr; Dillon, P. J.; Molot, L. A.

    2015-01-01

    Roč. 10, č. 6 (2015), e0128884 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP503/12/0781; GA ČR(CZ) GA15-09721S Institutional support: RVO:60077344 Keywords : dissolved organic carbon * particulate organic carbon * photodegradation * temperature Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.057, year: 2015

  9. Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic

    Science.gov (United States)

    Lutz Schirrmeister; Guido Grosse; Sebastian Wetterich; Pier Paul Overduin; Jens Straub; Edward A.G. Schuur; Hans-Wolfgang. Hubberton

    2011-01-01

    Permafrost deposits constitute a large organic carbon pool highly vulnerable to degradation and potential carbon release due to global warming. Permafrost sections along coastal and river bank exposures in NE Siberia were studied for organic matter (OM) characteristics and ice content. OM stored in Quaternary permafrost grew, accumulated, froze, partly decomposed, and...

  10. Characterization of activated carbon produced from urban organic waste

    Directory of Open Access Journals (Sweden)

    Abdul Gani Haji

    2013-10-01

    Full Text Available The difficulties to decompose organic waste can be handled naturally by pyrolisis so it can  decomposes quickly that produces charcoal as the product. This study aims to investigate the characteristics of activated carbon from urban organic waste. Charcoal results of pyrolysis of organic waste activated with KOH 1.0 M at a temperature of 700 and 800oC for 60 to 120 minutes. Characteristics of activated carbon were identified by Furrier Transform Infra Red (FTIR, Scanning Electron Microscopy (SEM, and X-Ray Diffraction (XRD. However, their quality is determined yield, moisture content, ash, fly substances, fixed carbon, and the power of adsorption of iodine and benzene. The identified functional groups on activated carbon, such as OH (3448,5-3436,9 cm-1, and C=O (1639,4 cm-1. In general, the degree and distance between the layers of active carbon crystallites produced activation in all treatments showed no significant difference. The pattern of activated carbon surface topography structure shows that the greater the pore formation in accordance with the temperature increase the more activation time needed. The yield of activated carbon obtained ranged from 72.04 to 82.75%. The results of characterization properties of activated carbon was obtained from 1.11 to 5.41% water, 13.68 to 17.27% substance fly, 20.36 to 26.59% ash, and 56.14 to 62.31% of fixed carbon . Absorption of activated carbon was good enough at 800oC and 120 minutes of activation time, that was equal to 409.52 mg/g of iodine and 14.03% of benzene. Activated carbon produced has less good quality, because only the water content and flying substances that meet the standards.Doi: 10.12777/ijse.5.2.89-94 [How to cite this article: Haji, A.G., Pari, G., Nazar, M., and Habibati.  (2013. Characterization of activated carbon produced from urban organic waste . International Journal of Science and Engineering, 5(2,89-94. Doi: 10.12777/ijse.5.2.89-94

  11. Fertilization increases paddy soil organic carbon density*

    Science.gov (United States)

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-01-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369

  12. Fertilization increases paddy soil organic carbon density.

    Science.gov (United States)

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-04-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.

  13. Relationship between Organic Carbon Runoff to River and Land Cover

    Science.gov (United States)

    Kim, G. S.; Lee, S. G.; Lim, C. H.; Lee, W.; Yoo, S.; Kim, S. J.; Heo, S.; Lee, W. K.

    2017-12-01

    Carbon is an important unit in understanding the ecosystem and energy circulation. Each ecosystem, land, water, and atmosphere, is interconnected through the exchange of energy and organic carbon. In the rivers, primary producers utilize the organic carbon from the land. Understanding the organic carbon uptake into the river is important for understanding the mechanism of river ecosystems. The main organic carbon source of the river is land. However, it is difficult to observe the amount of organic carbon runoff to the river. Therefore, an indirect method should be used to estimate the amount of organic carbon runoff to the river. The organic carbon inflow is caused by the runoff of organic carbon dissolved in water or the inflow of organic carbon particles by soil loss. Therefore, the hydrological model was used to estimate organic carbon runoff through the flow of water. The land cover correlates with soil respiration, soil loss, and so on, and the organic carbon runoff coefficient will be estimated to the river by land cover. Using the organic carbon concentration from water quality data observed at each point in the river, we estimate the amount of organic carbon released from the land. The reason is that the runoff from the watershed converges into the rivers in the watershed, the watershed simulation is conducted based on the water quality data observation point. This defines a watershed that affects organic carbon observation sites. The flow rate of each watershed is calculated by the SWAT (Soil and Water Assessment Tool), and the total organic carbon runoff is calculated by using flow rate and organic carbon concentration. This is compared with the factors related to the amount of organic carbon such as land cover, soil loss, and soil organic carbon, and spatial analysis is carried out to estimate the organic carbon runoff coefficient per land cover.

  14. Factors for Microbial Carbon Sources in Organic and Mineral Soils from Eastern United States Deciduous Forests

    Energy Technology Data Exchange (ETDEWEB)

    Stitt, Caroline R. [Mills College, Oakland, CA (United States)

    2013-09-16

    Forest soils represent a large portion of global terrestrial carbon; however, which soil carbon sources are used by soil microbes and respired as carbon dioxide (CO2) is not well known. This study will focus on characterizing microbial carbon sources from organic and mineral soils from four eastern United States deciduous forests using a unique radiocarbon (14C) tracer. Results from the dark incubation of organic and mineral soils are heavily influenced by site characteristics when incubated at optimal microbial activity temperature. Sites with considerable differences in temperature, texture, and location differ in carbon source attribution, indicating that site characteristics play a role in soil respiration.

  15. Electromagnetic characteristics of carbon nanotube film materials

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2015-08-01

    Full Text Available Carbon nanotube (CNT possesses remarkable electrical conductivity, which shows great potential for the application as electromagnetic shielding material. This paper aims to characterize the electromagnetic parameters of a high CNT loading film by using waveguide method. The effects of layer number of CNT laminate, CNT alignment and resin impregnation on the electromagnetic characteristics were analyzed. It is shown that CNT film exhibits anisotropic electromagnetic characteristic. Pristine CNT film shows higher real part of complex permittivity, conductivity and shielding effectiveness when the polarized direction of incident wave is perpendicular to the winding direction of CNT film. For the CNT film laminates, complex permittivity increases with increasing layer number, and correspondingly, shielding effectiveness decreases. The five-layer CNT film shows extraordinary shielding performance with shielding effectiveness ranging from 67 dB to 78 dB in X-band. Stretching process induces the alignment of CNTs. When aligned direction of CNTs is parallel to the electric field, CNT film shows negative permittivity and higher conductivity. Moreover, resin impregnation into CNT film leads to the decrease of conductivity and shielding effectiveness. This research will contribute to the structural design for the application of CNT film as electromagnetic shielding materials.

  16. Deposition and light absorption characteristics of precipitation dissolved organic carbon (DOC) at three remote stations in the Himalayas and Tibetan Plateau, China.

    Science.gov (United States)

    Li, Chaoliu; Yan, Fangping; Kang, Shichang; Chen, Pengfei; Hu, Zhaofu; Han, Xiaowen; Zhang, Guoshuai; Gao, Shaopeng; Qu, Bin; Sillanpää, Mika

    2017-12-15

    The concentrations, depositions and optical properties of precipitation DOC at three remote stations (Nam Co, Lulang and Everest) were investigated in the Himalayas and Tibetan Plateau (HTP). The results showed that their volume-weighted mean DOC concentrations were 1.05±1.01mgCL -1 , 0.83±0.85mgCL -1 and 0.86±0.91mgCL -1 , respectively, close to those of other remote areas in the world and lower than those of typical polluted urban cities. Combined with precipitation amounts, the DOC depositions at these three stations were calculated to be 0.34±0.32gCm -2 yr -1 , 0.84±0.86gCm -2 yr -1 and 0.16±0.17gCm -2 yr -1 , respectively. The annual DOC deposition in the HTP was approximately 0.94±0.87TgC, the highest and lowest values appeared in the southeastern and northwestern plateau, respectively. The sources of DOC in the precipitation at these three stations were remarkably different, indicating large spatial heterogeneity in the sources of precipitation DOC over the HTP. Nam Co presented combustion sources from South Asia and local residents, Lulang showed biomass combustion source from South Asia, and Everest was mainly influenced by local mineral dust. The values of the MAC DOC at 365nm were 0.48±0.47m 2 g -1 , 0.25±0.15m 2 g -1 , and 0.64±0.49m 2 g -1 , respectively, for the precipitation at the three stations. All of these values were significantly lower than those of corresponding near-surface aerosol samples because precipitation DOC contains more secondary organic aerosol with low light absorption abilities. Additionally, this phenomenon was also observed in seriously polluted urban areas, implying it is universal in the atmosphere. Because precipitation DOC contains information for both particle-bound and gaseous components from the near surface up to the altitude of clouds where precipitation occurs, the MAC DOC of precipitation is more representative than that of near-surface aerosols for a given region. Copyright © 2017 Elsevier B.V. All rights

  17. STRUCTURE AND CHARACTERISTICS OF PATENTED HIGH-CARBON WIRE

    Directory of Open Access Journals (Sweden)

    A. Ju. Borisenko

    2011-01-01

    Full Text Available The influence of bainite structure on mechanical characteristics of wire of steel 80 after patenting is studied. The quantity and structure state of bainite, providing high complex of mechanical characteristics of high-carbon wire, is determined.

  18. Adsorption characteristics of activated carbon hollow fibers

    Directory of Open Access Journals (Sweden)

    B. V. Kaludjerović

    2009-01-01

    Full Text Available Carbon hollow fibers were prepared with regenerated cellulose or polysulfone hollow fibers by chemical activation using sodium phosphate dibasic followed by the carbonization process. The activation process increases the adsorption properties of fibers which is more prominent for active carbone fibers obtained from the cellulose precursor. Chemical activation with sodium phosphate dibasic produces an active carbon material with both mesopores and micropores.

  19. Organic carbon dynamics in mangrove ecosystems: a review

    NARCIS (Netherlands)

    Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C.

    2008-01-01

    Our current knowledge on production, composition, transport, pathways and transformations of organic carbon in tropical mangrove environments is reviewed and discussed. Organic carbon entering mangrove foodwebs is either produced autochthonously or imported by tides and/or rivers. Mangrove litter

  20. Method for obtaining more precise measures of excreted organic carbon

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A new method for concentrating and measuring excreted organic carbon by lyophilization and scintillation counting is efficient, improves measurable radioactivity, and increases precision for estimates of organic carbon excreted by phytoplankton and macrophytes

  1. Distribution of organic carbon in sediments from the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.; Mascarenhas, A.; PrakashBabu, C.

    Many earlier studies on the distribution of organic carbon in the Arabian Sea, sediments have projected contradictory opinions on the factors favouring accumulation and preservation of organic carbon in the Arabian Sea. An attempt is made...

  2. Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Andrzej; Olejniczak, Angelika; Galinski, Maciej; Stepniak, Izabela [Faculty of Chemical Technology, Poznan University of Technology, ul. Piotrowo 3, PL-60 965 Poznan (Poland)

    2010-09-01

    Properties of capacitors working with the same carbon electrodes (activated carbon cloth) and three types of electrolytes: aqueous, organic and ionic liquids were compared. Capacitors filled with ionic liquids worked at a potential difference of 3.5 V, their solutions in AN and PC were charged up to the potential difference of 3 V, classical organic systems to 2.5 V and aqueous to 1 V. Cyclic voltammetry, galvanostatic charging/discharging and impedance spectroscopy were used to characterize these capacitors. The highest specific energy was recorded for the device working with ionic liquids, while the highest power is characteristic for the device filled with aqueous H{sub 2}SO{sub 4} electrolyte. Aqueous electrolytes led to energy density an order of magnitude lower in comparison to that characteristic of ionic liquids. (author)

  3. Electrochemical characteristics of polyacetylene in organic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Padula, A.; Scrosati, B.

    1985-01-15

    The characteristics of the electrochemical doping process of polyacetylene have been investigated in lithium cells using lithium perchlorate in propylene carbonate as electrolytic solution. The kinetics of this process are controlled by the diffusion of the dopant species throughout the polymer. Therefore, polyacetylene samples with a highly porous, extended surface should be selected for the development of efficient, rechargeable lithium batteries. In line with this, we have considered foam-type polyacetylene electrodes which have a lower density than the 'classical' Shirakawa-type film electrodes. The electrochemical behaviour of the polyacetylene foam samples has been examined by cyclic voltametry response and constant current, charge-discharge cycles. The results are described in this work.

  4. Insights in groundwater organic matter from Liquid Chromatography-Organic Carbon Detection

    Science.gov (United States)

    Rutlidge, H.; Oudone, P.; McDonough, L.; Andersen, M. S.; Baker, A.; Meredith, K.; O'Carroll, D. M.

    2017-12-01

    Understanding the processes that control the concentration and characteristics of organic matter in groundwater has important implications for the terrestrial global carbon budget. Liquid Chromatography - Organic Carbon Detection (LC-OCD) is a size-exclusion based chromatography technique that separates the organic carbon into molecular weight size fractions of biopolymers, humic substances, building blocks (degradation products of humic substances), low molecular weight acids and low molecular weight neutrals. Groundwater and surface water samples were collected from a range of locations in Australia representing different surface soil, land cover, recharge type and hydrological properties. At one site hyporheic zone samples were also collected from beneath a stream. The results showed a general decrease in the aromaticity and molecular weight indices going from surface water, hyporheic downwelling and groundwater samples. The aquifer substrate also affected the organic composition. For example, groundwater samples collected from a zone of fractured rock showed a relative decrease in the proportion of humic substances, suggestive of sorption or degradation of humic substances. This work demonstrates the potential for using LC-OCD in elucidating the processes that control the concentration and characteristics of organic matter in groundwater.

  5. Urban tree effects on soil organic carbon.

    Directory of Open Access Journals (Sweden)

    Jill L Edmondson

    Full Text Available Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered.

  6. Characteristics of stable carbon isotopic composition of shale gas

    Directory of Open Access Journals (Sweden)

    Zhenya Qu

    2016-04-01

    Full Text Available A type Ⅱ kerogen with low thermal maturity was adopted to perform hydrocarbon generation pyrolysis experiments in a vacuum (Micro-Scale Sealed Vessel system at the heating rates of 2 °C/h and 20 °C/h. The stable carbon isotopic compositions of gas hydrocarbons were measured to investigate their evolving characteristics and the possible reasons for isotope reversal. The δ13C values of methane became more negative with the increasing pyrolysis temperatures until it reached the lightest point, after which they became more positive. Meanwhile, the δ13C values of ethane and propane showed a positive trend with elevating pyrolysis temperatures. The carbon isotopic compositions of shale gasses were mainly determined by the type of parent organic matter, thermal evolutionary extent, and gas migration in shale systems. Our experiments and study proved that the isotope reversal shouldn't occur in a pure thermogenic gas reservoir, it must be involved with some other geochemical process/es; although mechanisms responsible for the reversal are still vague. Carbon isotopic composition of the Fayetteville and Barnett shale gas demonstrated that the isotope reversal was likely involved with water–gas reaction and Fischer-Tropsch synthesis during its generation.

  7. [Characteristics of carbon storage of Inner Mongolia forests: a review].

    Science.gov (United States)

    Yang, Hao; Hu, Zhong-Min; Zhang, Lei-Ming; Li, Sheng-Gong

    2014-11-01

    Forests in Inner Mongolia account for an important part of the forests in China in terms of their large area and high living standing volume. This study reported carbon storage, carbon density, carbon sequestration rate and carbon sequestration potential of forest ecosystems in Inner Mongolia using the biomass carbon data from the related literature. Through analyzing the data of forest inventory and the generalized allometric equations between volume and biomass, previous studies had reported that biomass carbon storage of the forests in Inner Mongolia was about 920 Tg C, which was 12 percent of the national forest carbon storage, the annual average growth rate was about 1.4%, and the average of carbon density was about 43 t · hm(-2). Carbon storage and carbon density showed an increasing trend over time. Coniferous and broad-leaved mixed forest, Pinus sylvestris var. mongolica forest and Betula platyphylla forest had higher carbon sequestration capacities. Carbon storage was reduced due to human activities such as thinning and clear cutting. There were few studies on carbon storage of the forests in Inner Mongolia with focus on the soil, showing that the soil car- bon density increased with the stand age. Study on the carbon sequestration potential of forest ecosystems was still less. Further study was required to examine dynamics of carbon storage in forest ecosystems in Inner Mongolia, i. e., to assess carbon storage in the forest soils together with biomass carbon storage, to compute biomass carbon content of species organs as 45% in the allometric equations, to build more species-specific and site-specific allometric equations including root biomass for different dominant species, and to take into account the effects of climate change on carbon sequestration rate and carbon sequestration potential.

  8. Organic-inorganic hybrid carbon dots for cell imaging

    Science.gov (United States)

    Liu, Huan; Zhang, Hongwen; Li, Jiayu; Tang, Yuying; Cao, Yu; Jiang, Yan

    2018-04-01

    In this paper, nitrogen-doped carbon dots (CDs) had been synthesized directly by one-step ultrasonic treatment under mild conditions. During the functionalization process, Octa-aminopropyl polyhedral oligomeric silsesquioxane hydrochloride salt (OA-POSS) was used as stabilizing and passivation agent, which lead to self-assembling of CDs in aqueous medium solution. OA-POSS was obtained via hydrolytic condensation of γ-aminopropyl triethoxy silane (APTES). The average size of CDs prepared was approximately 3.3 nm with distribution between 2.5 nm and 4.5 nm. The prepared organic-inorganic hybrid carbon dots have several characteristics such as photoluminescence emission wavelength, efficient cellular uptake, and good biocompatibility. The results indicate that OA-POSS can maintain the fluorescence properties of the carbon dots effectively, and reduced cytotoxicity provides the possibility for biomedical applications. More than 89% of the Hela cells were viable when incubated with 2 mg ml‑1 or lesser organic-inorganic hybrid carbon dots. Thus, it provides a potential for multicolor imaging with HeLa cells.

  9. Stocks of organic carbon in Estonian soils

    Directory of Open Access Journals (Sweden)

    Kõlli, Raimo

    2009-06-01

    Full Text Available The soil organic carbon (SOC stocks (Mg ha–1 ofautomorphic mineral (9 soil groups, hydromorphic mineral (7, and lowland organic soils (4 are given for the soil cover or solum layer as a whole and also for its epipedon (topsoil layer. The SOC stocks for forest, arable lands, and grasslands and for the entire Estonian soil cover were calculated on the basis of the mean SOC stock and distribution area of the respective soil type. In the Estonian soil cover (42 400 km2, a total of 593.8 ± 36.9 Tg of SOC is retained, with 64.9% (385.3 ± 27.5 Tg in the epipedon layer (O, H, and A horizons and 35.1% in the subsoil (B and E horizons. The pedo-ecological regularities of SOC retention in soils are analysed against the background of the Estonian soil ordination net.

  10. Modeling equilibrium adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.; Villacorte, Loreen O.; Verliefde, Arne R. D.; Verberk, Jasper Q J C; Heijman, Bas G J; Amy, Gary L.; Van Dijk, Johannis C.

    2010-01-01

    to these properties occur in parallel, and their respective dominance depends on the solute properties as well as carbon characteristics. In this paper, a model based on multivariate linear regression is described that was developed to predict equilibrium carbon

  11. Driving forces of organic carbon spatial distribution in the tropical seascape

    Science.gov (United States)

    Gillis, L. G.; Belshe, F. E.; Ziegler, A. D.; Bouma, T. J.

    2017-02-01

    An important ecosystem service of tropical coastal vegetation including seagrass beds and mangrove forests is their ability to accumulate carbon. Here we attempt to establish the driving forces for the accumulation of surface organic carbon in southern Thailand coastal systems. Across 12 sites we found that in line with expectations, seagrass beds (0.6 ± 0.09%) and mangrove forests (0.9 ± 0.3%) had higher organic carbon in the surface (top 5 cm) sediment than un-vegetated mudflats (0.4 ± 0.04%). Unexpectedly, however, mangrove forests in this region retained organic carbon, rather than outwell it, under normal tidal conditions. No relationship was found between organic carbon and substrate grain size. The most interesting finding of our study was that climax and pioneer seagrass species retained more carbon than mixed-species meadows, suggesting that plant morphology and meadow characteristics can be important factors in organic carbon accumulation. Insights such as these are important in developing carbon management strategies involving coastal ecosystems such as offsetting of carbon emissions. The ability of tropical coastal vegetation to sequester carbon is an important aspect for valuing the ecosystems. Our results provide some initial insight into the factors affecting carbon sequestration in these ecosystems, but also highlight the need for further research on a global scale.

  12. Memristic Characteristics from Bistable to Tristable Memory with Controllable Charge Trap Carbon Nanotubes.

    Science.gov (United States)

    Li, Lei; Wen, Dianzhong

    2018-02-17

    The incorporation of the one-dimensional carbon nanomaterial carbon nanotubes (CNTs) in poly(methyl methacrylate) (PMMA) was found to successfully develop a resistive switching. It implements memristic characteristics which shift from bistable to tristable memory. The localized current pathways in the organic nanocomposite layers for each intermediate resistive state (IRS) are attributed to the trapping mechanism consistent with the fluorescent measurements. Multi-bit organic memories have attracted considerable interest, which provide an effective way to increase the memory density per unit cell area. This study will be useful for the development and tuning of multi-bit storable organic nanocomposite memory device systems.

  13. Memristic Characteristics from Bistable to Tristable Memory with Controllable Charge Trap Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Lei Li

    2018-02-01

    Full Text Available The incorporation of the one-dimensional carbon nanomaterial carbon nanotubes (CNTs in poly(methyl methacrylate (PMMA was found to successfully develop a resistive switching. It implements memristic characteristics which shift from bistable to tristable memory. The localized current pathways in the organic nanocomposite layers for each intermediate resistive state (IRS are attributed to the trapping mechanism consistent with the fluorescent measurements. Multi-bit organic memories have attracted considerable interest, which provide an effective way to increase the memory density per unit cell area. This study will be useful for the development and tuning of multi-bit storable organic nanocomposite memory device systems.

  14. Habitat characteristics provide insights of carbon storage in seagrass meadows

    KAUST Repository

    Mazarrasa, Inés

    2018-02-17

    Seagrass meadows provide multiple ecosystem services, yet they are among the most threatened ecosystems on earth. Because of their role as carbon sinks, protection and restoration of seagrass meadows contribute to climate change mitigation. Blue Carbon strategies aim to enhance CO2 sequestration and avoid greenhouse gasses emissions through the management of coastal vegetated ecosystems, including seagrass meadows. The implementation of Blue Carbon strategies requires a good understanding of the habitat characteristics that influence Corg sequestration. Here, we review the existing knowledge on Blue Carbon research in seagrass meadows to identify the key habitat characteristics that influence Corg sequestration in seagrass meadows, those factors that threaten this function and those with unclear effects. We demonstrate that not all seagrass habitats have the same potential, identify research priorities and describe the implications of the results found for the implementation and development of efficient Blue Carbon strategies based on seagrass meadows.

  15. Habitat characteristics provide insights of carbon storage in seagrass meadows.

    Science.gov (United States)

    Mazarrasa, Inés; Samper-Villarreal, Jimena; Serrano, Oscar; Lavery, Paul S; Lovelock, Catherine E; Marbà, Núria; Duarte, Carlos M; Cortés, Jorge

    2018-02-16

    Seagrass meadows provide multiple ecosystem services, yet they are among the most threatened ecosystems on earth. Because of their role as carbon sinks, protection and restoration of seagrass meadows contribute to climate change mitigation. Blue Carbon strategies aim to enhance CO 2 sequestration and avoid greenhouse gasses emissions through the management of coastal vegetated ecosystems, including seagrass meadows. The implementation of Blue Carbon strategies requires a good understanding of the habitat characteristics that influence C org sequestration. Here, we review the existing knowledge on Blue Carbon research in seagrass meadows to identify the key habitat characteristics that influence C org sequestration in seagrass meadows, those factors that threaten this function and those with unclear effects. We demonstrate that not all seagrass habitats have the same potential, identify research priorities and describe the implications of the results found for the implementation and development of efficient Blue Carbon strategies based on seagrass meadows. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Characteristics of exogenous carbon monoxide deliveries

    Directory of Open Access Journals (Sweden)

    Hui-jun Hu

    2016-01-01

    Full Text Available Carbon monoxide (CO has long been considered an environmental pollutant and a poison. Exogenous exposure to amounts of CO beyond the physiologic level of the body can result in a protective or adaptive response. However, as a gasotransmitter, endogenous CO is important for multiple physiologic functions. To date, at least seven distinct methods of delivering CO have been utilized in animal and clinical studies. In this mini-review, we summarize the exogenous CO delivery methods and compare their advantages and disadvantages.

  17. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions.

    Science.gov (United States)

    Ersan, Gamze; Kaya, Yasemin; Apul, Onur G; Karanfil, Tanju

    2016-09-15

    The effect of NOM preloading on the adsorption of phenanthrene (PNT) and trichloroethylene (TCE) by pristine graphene nanosheets (GNS) and graphene oxide nanosheet (GO) was investigated and compared with those of a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), and two coal based granular activated carbons (GACs). PNT uptake was higher than TCE by all adsorbents on both mass and surface area bases. This was attributed to the hydrophobicity of PNT. The adsorption capacities of PNT and TCE depend on the accessibility of the organic molecules to the inner regions of the adsorbent which was influenced from the molecular size of OCs. The adsorption capacities of all adsorbents decreased as a result of NOM preloading due to site competition and/or pore/interstice blockage. However, among all adsorbents, GO was generally effected least from the NOM preloading for PNT, whereas there was not observed any trend of NOM competition with a specific adsorbent for TCE. In addition, SWCNT was generally affected most from the NOM preloading for TCE and there was not any trend for PNT. The overall results indicated that the fate and transport of organic contaminants by GNSs and CNTs type of nanoadsorbents and GACs in different natural systems will be affected by water quality parameters, characteristics of adsorbent, and properties of adsorbate. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Erosion of soil organic carbon: implications for carbon sequestration

    Science.gov (United States)

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  19. Isotopic fractionation between organic carbon and carbonate carbon in Precambrian banded ironstone series from Brazil

    International Nuclear Information System (INIS)

    Schidlowski, M.; Eichmann, R.; Fiebiger, W.

    1976-01-01

    37 delta 13 Csub(org) and 9 delta 13 Csub(carb) values furnished by argillaceous and carbonate sediments from the Rio das Velhas and Minas Series (Minas Gerais, Brazil) have yielded means of -24.3 +- 3.9 promille [PDB] and -0.9 +- 1.4 promille [PDB], respectively. These results, obtained from a major sedimentary banded ironstone province with an age between 2 and 3 x 10 9 yr, support previous assumptions that isotopic fractionation between inorganic and organic carbon in Precambrian sediments is about the same as in Phanerozoic rocks. This is consistent with a theoretically expected constancy of the kinetic fractionation factor governing biological carbon fixation and, likewise, with a photosynthetic pedigree of the reduced carbon fraction of Precambrian rocks. (orig.) [de

  20. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    Science.gov (United States)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  1. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    International Nuclear Information System (INIS)

    Brooks, A J; Kilduff, James E; Lim, Hyung-nam

    2012-01-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7–8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π–π electron donor–acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion

  2. Volatile organic carbon/air separation test using gas membranes

    International Nuclear Information System (INIS)

    King, C.V.; Kaschemekat, J.

    1993-08-01

    An estimated 900 metric tons of carbon tetrachloride were discharged to soil columns during the Plutonium Finishing Plant Operations at the Hanford Site. The largest percentage of this volatile organic compound was found in the vadose region of the 200 West Area. Using a Vacuum Extraction System, the volatile organic compound was drawn from the soil in an air mixture at a concentration of about 1,000 parts per million. The volatile organic compounds were absorbed from the air stream using granulated activated carbon canisters. A gas membrane separation system, developed by Membrane Technology and Research, Inc., was tested at the Vacuum Extraction System site to determine if the volatile organic compound load on the granulated activated carbon could be reduced. The Vacuum Extraction System condensed most of the volatile organic compound into liquid carbon tetrachloride and vented the residual gas stream into the granulated activated carbon. This system reduced the cost of operation about $5/kilogram of volatile organic compound removed

  3. Accumulation of organic carbon in northwestern Arabian sea sediments

    International Nuclear Information System (INIS)

    Khan, A.A.

    1999-01-01

    In this study accumulation of organic carbon in marine sediments of northwestern Arabian sea has been discussed. This paper presents the geochemical analysis of Organic carbon content and accumulation, delta 13 stable carbon isotope and Ba/Al. The primary objective was to investigate the high resolution information about the variations in paleoproductivity and source of organic matter in sediments below an upwelling area. Undisturbed sediments (Piston core NIOP-486) of late Pleistocene time were collected during Netherlands Indian Ocean Program (NIOP-1992-93). The core NIOP-486 was raised from a depth of 2077 meters near the Owen Ridge. This core records deposition history of last 200,000 years and includes 4 warm and 3 cold periods. The distribution of organic carbon content in studied core shows a pronounced cyclicity during glacial and interglacial stages. Organic carbon accumulation trends show that high sedimentation rates in glacial stages results in rapid burial and hence increase organic carbon accumulation. Paleoproductivity indicator Ba/Al has been used to compare with the organic carbon content and is correlated with the warm and cold periods variations in monsoons upwelling intensity. Generally, low paleoproductivity is found in glacial stages. The organic carbon content and accumulation, in sediments however seems to differ from the paleoproductivity trends shown by Ba/Al in glacial sediments of stage 6. Delta 13 C.org isotope results of the core NIOP-486 confirm that organic matter in sediments is predominantly marine (-20 to -23% ). (author)

  4. Mangrove litter production and organic carbon pools in the ...

    African Journals Online (AJOL)

    Mngazana Estuary is an important source of mangrove litter and POC for the adjacent marine environment, possibly sustaining nearshore food webs. Keywords: Dissolved organic carbon, harvesting, litter production, mangroves, particulate organic carbon, Rhizophora mucronata, South Africa African Journal of Aquatic ...

  5. State-Space Estimation of Soil Organic Carbon Stock

    Science.gov (United States)

    Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.

    2014-04-01

    Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.

  6. Dilution limits dissolved organic carbon utilization in the deep ocean

    NARCIS (Netherlands)

    Arrieta, J.M.; Mayol, E.; Hansman, R.L.; Herndl, G.J.; Dittmar, T.; Duarte, C.M.

    2015-01-01

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An

  7. Process characteristics for microwave assisted hydrothermal carbonization of cellulose.

    Science.gov (United States)

    Zhang, Junting; An, Ying; Borrion, Aiduan; He, Wenzhi; Wang, Nan; Chen, Yirong; Li, Guangming

    2018-07-01

    The process characteristics of microwave assisted hydrothermal carbonization of cellulose was investigated and a first order kinetics model based on carbon concentration was developed. Chemical properties analysis showed that comparing to conventional hydrothermal carbonization, hydrochar with comparable energy properties can be obtained with 5-10 times decrease in reaction time with assistance of microwave heating. Results from kinetics study was in great agreement with experimental analysis, that they both illustrated the predominant mechanism of the reaction depend on variations in the reaction rates of two co-existent pathways. Particularly, the pyrolysis-like intramolecular dehydration reaction was proved to be the predominant mechanism for hydrochar generation under high temperatures. Finally, the enhancement effects of microwave heating were reflected under both soluble and solid pathways in this research, suggesting microwave-assisted hydrothermal carbonization as a more attracting method for carbon-enriched hydrochar recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Organic carbon accumulation in Brazilian mangal sediments

    Science.gov (United States)

    Sanders, Christian J.; Smoak, Joseph M.; Sanders, Luciana M.; Sathy Naidu, A.; Patchineelam, Sambasiva R.

    2010-12-01

    This study reviews the organic carbon (OC) accumulation rates in mangrove forests, margins and intertidal mudflats in geographically distinct areas along the Brazilian coastline (Northeastern to Southern). Our initial results indicate that the mangrove forests in the Northeastern region of Brazil are accumulating more OC (353 g/m 2/y) than in the Southeastern areas (192 g/m 2/y) being that the sediment accumulation rates, 2.8 and 2.5 mm/y, and OC content ˜7.1% and ˜5.8% (dry sediment weight) were contributing factors to the discrepancies between the forests. The intertidal mudflats on the other hand showed substantially greater OC accumulation rates, sedimentation rates and content 1129 g/m 2/y and 234 g/m 2/y; 7.3 and 3.4 mm/y; 10.3% and ˜2.7% (OC of dry sediment weight content), respectively, in the Northeastern compared to the Southeastern region. Mangrove forests in the South-Southeastern regions of Brazil may be more susceptible to the rising sea level, as they are geographically constricted by the vast mountain ranges along the coastline.

  9. Inferring absorbing organic carbon content from AERONET data

    Directory of Open Access Journals (Sweden)

    A. Arola

    2011-01-01

    Full Text Available Black carbon, light-absorbing organic carbon (often called "brown carbon" and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated the amount of light–absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon levels in biomass burning regions of South America and Africa are relatively high (about 15–20 mg m−2 during biomass burning season, while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30–35 mg m−2 during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by the global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while the opposite is true in urban areas in India and China.

  10. Inferring absorbing organic carbon content from AERONET data

    Science.gov (United States)

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.

    2011-01-01

    Black carbon, light-absorbing organic carbon (often called "brown carbon") and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated the amount of light-absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South America and Africa are relatively high (about 15-20 mg m-2 during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 mg m-2 during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by the global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while the opposite is true in urban areas in India and China.

  11. Single-Walled Carbon-Nanotubes-Based Organic Memory Structures

    Directory of Open Access Journals (Sweden)

    Sundes Fakher

    2016-09-01

    Full Text Available The electrical behaviour of organic memory structures, based on single-walled carbon-nanotubes (SWCNTs, metal–insulator–semiconductor (MIS and thin film transistor (TFT structures, using poly(methyl methacrylate (PMMA as the gate dielectric, are reported. The drain and source electrodes were fabricated by evaporating 50 nm gold, and the gate electrode was made from 50 nm-evaporated aluminium on a clean glass substrate. Thin films of SWCNTs, embedded within the insulating layer, were used as the floating gate. SWCNTs-based memory devices exhibited clear hysteresis in their electrical characteristics (capacitance–voltage (C–V for MIS structures, as well as output and transfer characteristics for transistors. Both structures were shown to produce reliable and large memory windows by virtue of high capacity and reduced charge leakage. The hysteresis in the output and transfer characteristics, the shifts in the threshold voltage of the transfer characteristics, and the flat-band voltage shift in the MIS structures were attributed to the charging and discharging of the SWCNTs floating gate. Under an appropriate gate bias (1 s pulses, the floating gate is charged and discharged, resulting in significant threshold voltage shifts. Pulses as low as 1 V resulted in clear write and erase states.

  12. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments.

    Science.gov (United States)

    Keil, Richard

    2017-01-03

    Carbon preservation in marine sediments, supplemented by that in large lakes, is the primary mechanism that moves carbon from the active surficial carbon cycle to the slower geologic carbon cycle. Preservation rates are low relative to the rates at which carbon moves between surface pools, which has led to the preservation term largely being ignored when evaluating anthropogenic forcing of the global carbon cycle. However, a variety of anthropogenic drivers-including ocean warming, deoxygenation, and acidification, as well as human-induced changes in sediment delivery to the ocean and mixing and irrigation of continental margin sediments-all work to decrease the already small carbon preservation term. These drivers affect the cycling of both carbonate and organic carbon in the ocean. The overall effect of anthropogenic forcing in the modern ocean is to decrease delivery of carbon to sediments, increase sedimentary dissolution and remineralization, and subsequently decrease overall carbon preservation.

  13. Absorption features of chromophoric dissolved organic matter (CDOM) and tracing implication for dissolved organic carbon (DOC) in Changjiang Estuary, China

    OpenAIRE

    Zhang, X. Y.; Chen, X.; Deng, H.; Du, Y.; Jin, H. Y.

    2013-01-01

    Chromophoric dissolved organic matter (CDOM) represents the light absorbing fraction of dissolved organic carbon (DOC). Studies have shown that the optical properties of CDOM can be used to infer the distribution and diffusion characteristics of DOC in the estuary and coastal zone. The inversion of DOC concentrations from remote sensing has been implemented in certain regions. In this study we investigate the potential of tracing DOC from CDOM by the measure...

  14. Organic carbon in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Willingham, C.E.; Heasler, P.G.; Whitney, P.D.

    1994-07-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTS) obtained from a review of the laboratory analytical data. This activity was undertaken at the request of Westinghouse Hanford Company (WHC). The objective of this study is to provide a best estimate, including confidence levels, of total organic carbon (TOC) in each of the 149 SSTs at Hanford. The TOC analyte information presented in this report is useful as part of the criteria to identify SSTs for additional measurements or monitoring for the organic safety program. This report is a precursor to an investigation of TOC and moisture in Hanford SSTS, in order to provide best estimates for each together in one report. Measured laboratory data were obtained for 75 of the 149 SSTS. The data represent a thorough investigation of data from 224 tank characterization datasets, including core-sampling and process laboratory data. Liquid and solid phase TOC values were investigated by examining selected tanks with both reported TOC values in solid and liquid phases. Some relationships were noted, but there was no clustering of data or significance between the solid and liquid phases. A methodology was developed for estimating the distribution and levels of TOC in SSTs using a logarithmic scale and an analysis of variance (ANOVA) technique. The methodology grouped tanks according to waste type using the Sort On Radioactive Waste Type (SORWT) grouping method. The SORWT model categorizes Hanford SSTs into groups of tanks expected to exhibit similar characteristics based on major waste types and processing histories. The methodology makes use of laboratory data for the particular tank and information about the SORWT group of which the tank is a member. Recommendations for a simpler tank grouping strategy based on organic transfer records were made

  15. [Effects of Chinese prickly ash orchard on soil organic carbon mineralization and labile organic carbon in karst rocky desertification region of Guizhou province].

    Science.gov (United States)

    Zhang, Wen-Juan; Liao, Hong-Kai; Long, Jian; Li, Juan; Liu, Ling-Fei

    2015-03-01

    Taking 5-year-old Chinese prickly ash orchard (PO-5), 17-year-old Chinese prickly ash orchard (PO- 17), 30-year-old Chinese prickly ash orchard (PO-30) and the forest land (FL, about 60 years) in typical demonstration area of desertification control test in southwestern Guizhou as our research objects, the aim of this study using a batch incubation experiment was to research the mineralization characteristics of soil organic carbon and changes of the labile soil organic carbon contents at different depths (0-15 cm, 15-30 cm, and 30-50 cm). The results showed that: the cumulative mineralization amounts of soil organic carbon were in the order of 30-year-old Chinese prickly ash orchard, the forest land, 5-year-old Chinese prickly ash orchard and 17-year-old Chinese prickly ash orchard at corresponding depth. Distribution ratios of CO2-C cumulative mineralization amount to SOC contents were higher in Chinese prickly ash orchards than in forest land at each depth. Cultivation of Chinese prickly ash in long-term enhanced the mineralization of soil organic carbon, and decreased the stability of soil organic carbon. Readily oxidized carbon and particulate organic carbon in forest land soils were significantly more than those in Chinese prickly ash orchards at each depth (P < 0.05). With the increasing times of cultivation of Chinese prickly ash, the contents of readily oxidized carbon and particulate organic carbon first increased and then declined at 0-15 cm and 15-30 cm depth, respectively, but an opposite trend was found at 30-50 cm depth. At 0-15 cm and 15-30 cm, cultivation of Chinese prickly ash could be good for improving the contents of labile soil organic carbon in short term, but it was not conducive in long-term. In this study, we found that cultivation of Chinese prickly ash was beneficial for the accumulation of labile organic carbon at the 30-50 cm depth.

  16. CT characteristics of peripheral organizing pneumonia

    International Nuclear Information System (INIS)

    Yang, Seong Oh; Choi, Chul Soon; Kim, Myung Joon; Lee, Kyung Soo; Choi, Hyung Sik; Jun, Young Hwan; Park, Yong Koo

    1988-01-01

    Diagnostic dilemma of persistent mass-forming parenchymal opacity in the lung periphery occurs occasionally in the realm of diagnostic radiology. Until recently, literature on the role of computed tomography in peripheral organizing pneumonia, which is difficult to differentiate from malignancy, has little been published. We experienced one case of pathologically proven organizing pneumonia diagnosed preoperatively by chest CT. When it comes to solitary peripheral mass density in the lung, we think that CT can be proved useful in the diagnosis of benign organizing pneumonia by showing regular and smoothly corrugate margin, peripheral contrast enhancement with inner low density, and air-trapping by intervening normal lung parenchyma.

  17. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    Science.gov (United States)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  18. Carbon isotope ratios of organic matter in Bering Sea settling particles. Extremely high remineralization of organic carbon derived from diatoms

    International Nuclear Information System (INIS)

    Yasuda, Saki; Akagi, Tasuku; Naraoka, Hiroshi; Kitajima, Fumio; Takahashi, Kozo

    2016-01-01

    The carbon isotope ratios of organic carbon in settling particles collected in the highly-diatom-productive Bering Sea were determined. Wet decomposition was employed to oxidize relatively fresh organic matter. The amount of unoxidised organic carbon in the residue following wet decomposition was negligible. The δ 13 C of organic carbon in the settling particles showed a clear relationship against SiO 2 /CaCO 3 ratio of settling particles: approximately -26‰ and -19‰ at lower and higher SiO 2 /CaCO 3 ratios, respectively. The δ 13 C values were largely interpreted in terms of mixing of two major plankton sources. Both δ 13 C and compositional data can be explained consistently only by assuming that more than 98% of diatomaceous organic matter decays and that organic matter derived from carbonate-shelled plankton may remain much less remineralized. A greater amount of diatom-derived organic matter is discovered to be trapped with the increase of SiO 2 /CaCO 3 ratio of the settling particles. The ratio of organic carbon to inorganic carbon, known as the rain ratio, therefore, tends to increase proportionally with the SiO 2 /CaCO 3 ratio under an extremely diatom-productive condition. (author)

  19. Testing the ``Wildfire Hypothesis:'' Terrestrial Organic Carbon Burning as the Cause of the Paleocene-Eocene Boundary Carbon Isotope Excursion

    Science.gov (United States)

    Moore, E. A.; Kurtz, A. C.

    2005-12-01

    The 3‰ negative carbon isotope excursion (CIE) at the Paleocene-Eocene boundary has generally been attributed to dissociation of seafloor methane hydrates. We are testing the alternative hypothesis that the carbon cycle perturbation resulted from wildfires affecting the extensive peatlands and coal swamps formed in the Paleocene. Accounting for the CIE with terrestrial organic carbon rather than methane requires a significantly larger net release of fossil carbon to the ocean-atmosphere, which may be more consistent with the extreme global warming and ocean acidification characteristic of the Paleocene-Eocene Thermal Maximum (PETM). While other researchers have noted evidence of fires at the Paleocene-Eocene boundary in individual locations, the research presented here is designed to test the "wildfire hypothesis" for the Paleocene-Eocene boundary by examining marine sediments for evidence of a global increase in wildfire activity. Such fires would produce massive amounts of soot, widely distributed by wind and well preserved in marine sediments as refractory black carbon. We expect that global wildfires occurring at the Paleocene-Eocene boundary would produce a peak in black carbon abundance at the PETM horizon. We are using the method of Gelinas et al. (2001) to produce high-resolution concentration profiles of black carbon across the Paleocene-Eocene boundary using seafloor sediments from ODP cores, beginning with the Bass River core from ODP leg 174AX and site 1209 from ODP leg 198. This method involves the chemical and thermal extraction of non-refractory carbon followed by combustion of the residual black carbon and measurement as CO2. Measurement of the δ 13C of the black carbon will put additional constraints on the source of the organic material combusted, and will allow us to determine if this organic material was formed prior to or during the CIE.

  20. ORGANIZED CRIME IN ALGERIA: TYPOLOGIES AND CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Hatem BENAZOUZ

    2017-12-01

    Full Text Available This essay tries to analyse the phenomenon of national and transnational organized crime, which focuses the attention of several countries, governments, security and judicial apparatus throughout the world, on its threat to world stability and its destructive impact on the economic, social and security plans. The various aspects of this phenomenon are described through the follow-up of the various stages in which organized crime in Algeria developed. Its impact on the stability of neighbour countries is also worth mentioning, because is increasing in intensity and diversifying national and transnational criminal activities.

  1. Single-walled carbon nanotubes nanocomposite microacoustic organic vapor sensors

    Energy Technology Data Exchange (ETDEWEB)

    Penza, M. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy)]. E-mail: michele.penza@brindisi.enea.it; Tagliente, M.A. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy); Aversa, P. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy); Cassano, G. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy); Capodieci, L. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy)

    2006-07-15

    We have developed highly sensitive microacoustic vapor sensors based on surface acoustic waves (SAWs) configured as oscillators using a two-port resonator 315, 433 and 915 MHz device. A nanocomposite film of single-walled carbon nanotubes (SWCNTs) embedded in a cadmium arachidate (CdA) amphiphilic organic matrix was prepared by Langmuir-Blodgett technique with a different SWCNTs weight filler content onto SAW transducers as nanosensing interface for vapor detection, at room temperature. The structural properties and surface morphology of the nanocomposite have been examined by X-ray diffraction, transmission and scanning electron microscopy, respectively. The sensing properties of SWCNTs nanocomposite LB films consisting of tangled nanotubules have been also investigated by using Quartz Crystal Microbalance 10 MHz AT-cut quartz resonators. The measured acoustic sensing characteristics indicate that the room-temperature SAW sensitivity to polar and nonpolar tested organic molecules (ethanol, ethylacetate, toluene) of the SWCNTs-in-CdA nanocomposite increases with the filler content of SWCNTs incorporated in the nanocomposite; also the SWCNTs-in-CdA nanocomposite vapor sensitivity results significantly enhanced with respect to traditional organic molecular cavities materials with a linearity in the frequency change response for a given nanocomposite weight composition and a very low sub-ppm limit of detection.

  2. Thermal characteristics of carbon fiber reinforced epoxy containing multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Jin-woo Lee

    2018-06-01

    Full Text Available The material with irregular atomic structures such as polymer material exhibits low thermal conductivity because of the complex structural properties. Even materials with same atomic configurations, thermal conductivity may be different based on their structural properties. It is expected that nanoparticles with conductivity will change non-conductive polymer base materials to electrical conductors, and improve the thermal conductivity even with extremely small filling amount. Nano-composite materials contain nanoparticles with a higher surface ratio which makes the higher interface percentage to the total surface of nanoparticles. Therefore, thermal resistance of the interface becomes a dominating factor determines the effective thermal conductivity in nano-composite materials. Carbon fiber has characteristic of resistance or magnetic induction and Also, Carbon nanotube (CNT has electronic and thermal property. It can be applied for heating system. These characteristic are used as heating composite. In this research, the exothermic characteristics of Carbon fiber reinforced composite added CNT were evaluated depend on CNT length and particle size. It was found that the CNT dispersed in the resin reduces the resistance between the interfaces due to the decrease in the total resistance of the heating element due to the addition of CNTs. It is expected to improve the life and performance of the carbon fiber composite material as a result of the heating element resulting from this paper. Keywords: Carbon Nanotube (CNT, Carbon Fiber Reinforcement Plastic (CFRP, Heater, Exothermic characteristics

  3. Organic carbon input in shallow groundwater at Aspo, southeastern Sweden

    International Nuclear Information System (INIS)

    Wallin, B.

    1993-01-01

    The variation in carbon and oxygen isotopes in calcite fissure fillings and dissolved carbonate from shallow groundwaters has been examined at Aspo, southeastern Sweden. The shallow water lens is refilled by meteoric water and is considered as an open system. The σ 13 C-signatures of the dissolved carbonate fall within a narrow range of -15.8 to -17.4 per-thousand, indicative of organic an organic carbon source. The low σ 13 C-values suggest that input of soil-CO 2 is the dominating carbon source for the system. σ 13 C and σ 18 O-values in the calcite fissure fillings show a wide range in values with a possible two end-member mixing of early post glacial atmospheric CO 2 dominated system to a present day soil-CO 2 dominating carbon source

  4. Selection criteria for oxidation method in total organic carbon measurement.

    Science.gov (United States)

    Yoon, GeunSeok; Park, Sang-Min; Yang, Heuiwon; Tsang, Daniel C W; Alessi, Daniel S; Baek, Kitae

    2018-05-01

    During the measurement of total organic carbon (TOC), dissolved organic carbon is converted into CO 2 by using high temperature combustion (HTC) or wet chemical oxidation (WCO). However, the criteria for selecting the oxidation methods are not clear. In this study, the chemical structures of organic material were considered as a key factor to select the oxidation method used. Most non-degradable organic compounds showed a similar oxidation efficiency in both methods, including natural organic compounds, dyes, and pharmaceuticals, and thus both methods are appropriate to measure TOC in waters containing these compounds. However, only a fraction of the carbon in the halogenated compounds (perfluorooctanoic acid and trifluoroacetic acid) were oxidized using WCO, resulting in measured TOC values that are considerably lower than those determined by HTC. This result is likely due to the electronegativity of halogen elements which inhibits the approach of electron-rich sulfate radicals in the WCO, and the higher bond strength of carbon-halogen pairs as compared to carbon-hydrogen bonds, which results in a lower degree of oxidation of the compounds. Our results indicate that WCO could be used to oxidize most organic compounds, but may not be appropriate to quantify TOC in organic carbon pools that contain certain halogenated compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Iron impregnated carbon materials with improved physicochemical characteristics

    International Nuclear Information System (INIS)

    Shah, Irfan; Adnan, Rohana; Wan Ngah, Wan Saime; Mohamed, Norita

    2015-01-01

    Highlights: • The morphology of raw AC was altered upon Fe impregnation and surface oxidation. • Surface modification had increased the pores diameter and surface functionalities. • Development of iron oxides have been expected on Fe impregnated carbon materials. • The M1, M2 and M3 have revealed magnetic susceptibility in applied magnetic field. • Dyes removal efficiency of M3 was notably higher (90–99%) than the raw AC (60–85%). - Abstract: This paper highlights the effect of iron impregnation and surface oxidation on the physicochemical characteristics of iron impregnated carbon materials. These materials were characterized by various techniques like surface area, pore size distribution, SEM/EDX, CHN, XRD, FTIR, TG/DT, VSM and XPS analyses. The increase in the surface functionalities and pores diameter (3.51–5.49 nm) of the iron-impregnated carbon materials was observed with the increase in iron contents and surface oxidation. The saturated magnetization values (0.029–0.034 emu/g) for the iron-impregnated carbon materials reflected the magnetic tendency due to the development of small size iron oxides on their surfaces. The XPS spectra revealed the existence of different oxidation states of the corresponding metals on the iron impregnated carbon materials. The percentage removal of model dyes (Methylene Blue and Methyl Orange) by iron-impregnated carbon materials was enhanced (>90%) with the increase in iron contents and pores diameters.

  6. Supercritical Water Oxidation Total Organic Carbon (TOC) Analysis

    Science.gov (United States)

    The work presented here is the evaluation of the modified wet‐oxidation method described as Supercritical Water Oxidation (SCWO) for the analysis of total organic carbon (TOC) in very difficult oil/gas produced water sample matrices.

  7. Organic carbon in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Willingham, C.E.; Heasler, P.G.; Whitney, P.D.

    1994-04-01

    Safety of Hanford single-shell tanks (SSTs) containing organic carbon is a concern because the carbon in the presence of oxidizers (NO 3 or NO 2 ) is combustible when sufficiently concentrated and exposed to elevated temperatures. A propagating chemical reaction could potentially occur at high temperature (above 200 C). The rapid increase in temperature and pressure within a tank might result in the release of radioactive waste constituents to the environment. The purpose of this study is to gather available laboratory information about the organic carbon waste inventories stored in the Hanford SSTs. Specifically, the major objectives of this investigation are: Review laboratory analytical data and measurements for SST composite core and supernatant samples for available organic data; Assess the correlation of organic carbon estimated utilizing the TRAC computer code compared to laboratory measurements; and From the laboratory analytical data, estimate the TOC content with confidence levels for each of the 149 SSTs

  8. Mini Total Organic Carbon Analyzer (miniTOCA)

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this development is to create a prototype hand-held, 1 to 2 liter size battery-powered Total Organic Carbon Analyzer (TOCA). The majority of...

  9. Development of a Soil Organic Carbon Baseline for Otjozondjupa, Namibia

    OpenAIRE

    Nijbroek, R.; Kempen, B.; Mutua, J.; Soderstrom, M.; Piikki, K.; Hengari, S.; Andreas, A.

    2017-01-01

    Land Degradation Neutrality (LDN) has been piloted in 14 countries and will be scaled up to over 120 countries. As a LDN pilot country, Namibia developed sub-national LDN baselines in Otjozondjupa Region. In addition to the three LDN indicators (soil organic carbon, land productivity and land cover change), Namibia also regards bush encroachment as an important form of land degradation. We collected 219 soil profiles and used Random Forest modelling to develop the soil organic carbon stock ba...

  10. Soil Organic Carbon in the Soil Scapes of Southeastern Tanzania

    OpenAIRE

    Rossi, Joni

    2009-01-01

    Soil organic carbon (SOC) is well known to maintain several functions. On the one hand, being the major component of soil organic matter (SOM),it is a determinant of soil physical and chemical properties, an important proxy for soil biological activity and a measure of soil productivity. Land use management that will enhance soil carbon (C) levels is therefore important for farmers and land use planners, particularly in semiarid and sub-humid Africa where severe soil degradation and desertifi...

  11. Organic carbon, nitrogen and phosphorus contents of some tea soils

    International Nuclear Information System (INIS)

    Ahmed, M.S.; Zamir, M.R.; Sanauallah, A.F.M.

    2005-01-01

    Soil samples were collected from Rungicherra Tea-Estate of Moulvibazar district, Bangladesh. Organic carbon, organic matter, total nitrogen and available phosphorus content of the collected soil of different topographic positions have been determined. The experimental data have been analyzed statistically and plotted against topography and soil depth. Organic carbon and organic matter content varied from 0.79 to 1.24% and 1.37 to 2.14%. respectively. Total nitrogen and available phosphorus content of these soils varied respectively from 0.095 to 0.13% and 2.31 to 4.02 ppm. (author)

  12. Noise characteristics of single-walled carbon nanotube network transistors

    International Nuclear Information System (INIS)

    Kim, Un Jeong; Kim, Kang Hyun; Kim, Kyu Tae; Min, Yo-Sep; Park, Wanjun

    2008-01-01

    The noise characteristics of randomly networked single-walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition (PECVD) are studied with field effect transistors (FETs). Due to the geometrical complexity of nanotube networks in the channel area and the large number of tube-tube/tube-metal junctions, the inverse frequency, 1/f, dependence of the noise shows a similar level to that of a single single-walled carbon nanotube transistor. Detailed analysis is performed with the parameters of number of mobile carriers and mobility in the different environment. This shows that the change in the number of mobile carriers resulting in the mobility change due to adsorption and desorption of gas molecules (mostly oxygen molecules) to the tube surface is a key factor in the 1/f noise level for carbon nanotube network transistors

  13. Exploring Soil Organic Carbon Deposits in a Bavarian Catchment

    Science.gov (United States)

    Kriegs, Stefanie; Hobley, Eleanor; Schwindt, Daniel; Völkel, Jörg; Kögel-Knabner, Ingrid

    2017-04-01

    The distribution of soil organic carbon (SOC) in the landscape is not homogeneous, but shows high variability from the molecular to the landscape scale. The aims of our work are 1.) to detect hot spots of SOC storage within different positions in a landscape; 2.) to outline differences (or similarities) between SOC characteristics of erosional and accumulative landscape positions; and 3.) to determine whether localised SOC deposits are dominated by fresh and labile organic matter (OM) or old and presumably stable OM. These findings are crucial for the evaluation of the landscapés vulnerability towards SOC losses caused by management or natural disturbances such as erosional rainfall events. Sampling sites of our study are located in a catchment at the foothills of the Bavarian Forest in south-east Germany. Within this area three landform positions were chosen for sampling: a) a slope with both erosional depletion and old colluvial deposits, b) a foothill with recent colluvial deposits and c) a floodplain with alluvial deposits. In order to consider both heterogeneity within a single landform position and between landforms several soil profiles were sampled at every position. Samples were taken to a maximal depth of 150 cm, depending on the presence of rocks or ground-water level, and analysed for bulk density, total carbon (TOC), inorganic carbon (IC) and texture. SOC densities and stocks were calculated. A two-step physical density fractionation using Sodium-Polytungstate (1.8 g/cm3 and 2.4 g/cm3) was applied to determine the contribution of the different soil organic matter fractions to the detected SOC deposits. Literature assumes deep buried SOC to be particularly old and stable, so we applied Accelerator Mass Spectrometry Radiocarbon Dating (AMS 14C) to bulk soil samples in order to verify this hypothesis. The results show that the floodplain soils contain higher amounts of SOC compared with slopes and foothills. Heterogeneity within the sites was smaller

  14. Current-voltage characteristics of carbon nanotubes with substitutional nitrogen

    DEFF Research Database (Denmark)

    Kaun, C.C.; Larade, B.; Mehrez, H.

    2002-01-01

    unit cell generates a metallic transport behavior. Nonlinear I-V characteristics set in at high bias and a negative differential resistance region is observed for the doped tubes. These behaviors can be well understood from the alignment/mis-alignment of the current carrying bands in the nanotube leads......We report ab initio analysis of current-voltage (I-V) characteristics of carbon nanotubes with nitrogen substitution doping. For zigzag semiconducting tubes, doping with a single N impurity increases current flow and, for small radii tubes, narrows the current gap. Doping a N impurity per nanotube...

  15. Soil Organic Carbon assessment on two different forest management

    Science.gov (United States)

    Fernández Minguillón, Alex; Sauras Yera, Teresa; Vallejo Calzada, Ramón

    2017-04-01

    Soil Organic Carbon assessment on two different forest management. A.F. Minguillón1, T. Sauras1, V.R: Vallejo1. 1 Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Universidad de Barcelona, Avenida Diagonal 643, 03080 Barcelona, Spain. Soils from arid and semiarid zones are characterized by a low organic matter content from scarce plant biomass and it has been proposed that these soils have a big capacity to carbon sequestration. According to IPCC ARS WG2 (2014) report and WG3 draft, increase carbon storage in terrestrial ecosystems has been identified such a potential tool for mitigation and adaptation to climate change. In ecological restoration context improve carbon sequestration is considered a management option with multiple benefits (win-win-win). Our work aims to analyze how the recently developed restoration techniques contributed to increases in terrestial ecosystem carbon storage. Two restoration techniques carried out in the last years have been evaluated. The study was carried out in 6 localities in Valencian Community (E Spain) and organic horizons of two different restoration techniques were evaluated; slash brush and thinning Aleppo pine stands. For each technique, carbon stock and its physical and chemical stability has been analysed. Preliminary results point out restoration zones acts as carbon sink due to (1) the relevant necromass input produced by slash brush increases C stock on the topsoil ;(2) Thinning increase carbon accumulation in vegetation.

  16. Methods of soil organic carbon determination in Brazilian savannah soils

    Directory of Open Access Journals (Sweden)

    Juliana Hiromi Sato

    2014-08-01

    Full Text Available Several methods exist for determining soil organic carbon, and each one has its own advantages and limitations. Consequently, a comparison of the experimental results obtained when these methods are employed is hampered, causing problems in the comparison of carbon stocks in soils. This study aimed at evaluating the analytical procedures used in the determination of carbon and their relationships with soil mineralogy and texture. Wet combustion methods, including Walkley-Black, Mebius and Colorimetric determination as well as dry combustion methods, such as Elemental and Gravimetric Analysis were used. Quantitative textural and mineralogical (kaolinite, goethite and gibbsite analyses were also carried out. The wet digestion methods underestimated the concentration of organic carbon, while the gravimetric method overestimated. Soil mineralogy interfered with the determination of carbon, with emphasis on the gravimetric method that was greatly influenced by gibbsite.

  17. Infrared Organic Light-Emitting Diodes with Carbon Nanotube Emitters.

    Science.gov (United States)

    Graf, Arko; Murawski, Caroline; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C

    2018-03-01

    While organic light-emitting diodes (OLEDs) covering all colors of the visible spectrum are widespread, suitable organic emitter materials in the near-infrared (nIR) beyond 800 nm are still lacking. Here, the first OLED based on single-walled carbon nanotubes (SWCNTs) as the emitter is demonstrated. By using a multilayer stacked architecture with matching charge blocking and charge-transport layers, narrow-band electroluminescence at wavelengths between 1000 and 1200 nm is achieved, with spectral features characteristic of excitonic and trionic emission of the employed (6,5) SWCNTs. Here, the OLED performance is investigated in detail and it is found that local conduction hot-spots lead to pronounced trion emission. Analysis of the emissive dipole orientation shows a strong horizontal alignment of the SWCNTs with an average inclination angle of 12.9° with respect to the plane, leading to an exceptionally high outcoupling efficiency of 49%. The SWCNT-based OLEDs represent a highly attractive platform for emission across the entire nIR. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Pathways of organic carbon oxidation in three continental margin sediments

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Jørgensen, Bo Barker; Fossing, Henrik

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude...... that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated...... organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most...

  19. Stable isotope compositions of organic carbon and contents of ...

    African Journals Online (AJOL)

    The stable isotope compositions of organic carbon (OC), and contents of OC and nitrogen for four sediment cores recovered from lakes Makat (located in the Ngorongoro Crater), Ndutu and Masek (located in the Serengeti Plains) are used to document sources of organic matter (OM) and climatic changes in sub-arid ...

  20. Organic loss in drained wetland: managing the carbon footprint

    NARCIS (Netherlands)

    Durham, B.; van de Noort, R.; Martens, V.V.; Vorenhout, M.

    2012-01-01

    The recent installation of land drains at Star Carr, Yorkshire, UK, has been linked with loss of preservation quality in this important Mesolithic buried landscape, challenging the PARIS principle. Historically captured organic carbon, including organic artefacts, is being converted to soluble

  1. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Science.gov (United States)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  2. Production of dissolved organic carbon in aquatic sediment suspensions

    NARCIS (Netherlands)

    Koelmans, A.A.; Prevo, L.

    2003-01-01

    In many water quality models production of dissolved organic carbon (DOC) is modelled as mineralisation from particulate organic matter (POM). In this paper it is argued that the DOC production from dessicated sediments by water turbulence may be of similar importance
    In many water quality

  3. Thermal characteristics of spent activated carbon generated from air cleaning units in korean nuclear power plants

    Directory of Open Access Journals (Sweden)

    Ji-Yang So

    2017-06-01

    Full Text Available To identify the feasibility of disposing of spent activated carbon as a clearance level waste, we performed characterization of radioactive pollution for spent activated carbon through radioisotope analysis; results showed that the C-14 concentrations of about half of the spent activated carbon samples taken from Korean NPPs exceeded the clearance level limit. In this situation, we selected thermal treatment technology to remove C-14 and analyzed the moisture content and thermal characteristics. The results of the moisture content analysis showed that the moisture content of the spent activated carbon is in the range of 1.2–23.9 wt% depending on the operation and storage conditions. The results of TGA indicated that most of the spent activated carbon lost weight in 3 temperature ranges. Through py-GC/MS analysis based on the result of TGA, we found that activated carbon loses weight rapidly with moisture desorption reaching to 100°C and desorbs various organic and inorganic carbon compounds reaching to 200°C. The result of pyrolysis analysis showed that the experiment of C-14 desorption using thermal treatment technology requires at least 3 steps of heat treatment, including a heat treatment at high temperature over 850°C, in order to reduce the C-14 concentration below the clearance level.

  4. Thermal characteristics of spent activated carbon generated from air cleaning units in Korean nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hang Rae; So, Ji Yang [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    To identify the feasibility of disposing of spent activated carbon as a clearance level waste, we performed characterization of radioactive pollution for spent activated carbon through radioisotope analysis; results showed that the C-14 concentrations of about half of the spent activated carbon samples taken from Korean NPPs exceeded the clearance level limit. In this situation, we selected thermal treatment technology to remove C-14 and analyzed the moisture content and thermal characteristics. The results of the moisture content analysis showed that the moisture content of the spent activated carbon is in the range of 1.2–23.9 wt% depending on the operation and storage conditions. The results of TGA indicated that most of the spent activated carbon lost weight in 3 temperature ranges. Through py-GC/MS analysis based on the result of TGA, we found that activated carbon loses weight rapidly with moisture desorption reaching to 100°C and desorbs various organic and inorganic carbon compounds reaching to 200°C. The result of pyrolysis analysis showed that the experiment of C-14 desorption using thermal treatment technology requires at least 3 steps of heat treatment, including a heat treatment at high temperature over 850°C, in order to reduce the C-14 concentration below the clearance level.

  5. [Roles of soil dissolved organic carbon in carbon cycling of terrestrial ecosystems: a review].

    Science.gov (United States)

    Li, Ling; Qiu, Shao-Jun; Liu, Jing-Tao; Liu, Qing; Lu, Zhao-Hua

    2012-05-01

    Soil dissolved organic carbon (DOC) is an active fraction of soil organic carbon pool, playing an important role in the carbon cycling of terrestrial ecosystems. In view of the importance of the carbon cycling, this paper summarized the roles of soil DOC in the soil carbon sequestration and greenhouse gases emission, and in considering of our present ecological and environmental problems such as soil acidification and climate warming, discussed the effects of soil properties, environmental factors, and human activities on the soil DOC as well as the response mechanisms of the DOC. This review could be helpful to the further understanding of the importance of soil DOC in the carbon cycling of terrestrial ecosystems and the reduction of greenhouse gases emission.

  6. Electron field emission characteristics of carbon nanotube on tungsten tip

    International Nuclear Information System (INIS)

    Phan Ngoc Hong; Bui Hung Thang; Nguyen Tuan Hong; Phan Ngoc Minh; Lee, Soonil

    2009-01-01

    Electron field emission characteristic of carbon nanotubes on tungsten tip was investigated in 2x10 -6 Torr vacuum. The measurement results showed that the CNTs/W tip could emit electron at 0.7 V/μm (nearly 10 times lower than that of the W tip itself) and reach up to 26 μA at the electric field of 1 V/μm. The emission characteristic follows the Fowler-Nordheim mechanism. Analysis of the emission characteristic showed that the CNTs/W tip has a very high value of field enhancement factor (β = 4.1 x 10 4 cm -1 ) that is much higher than that of the tungsten tip itself. The results confirmed the excellent field emission behavior of the CNTs materials and the CNTs/W tip is a prospective candidate for advanced electron field emitter.

  7. Organic carbon efflux from a deciduous forest catchment in Korea

    Directory of Open Access Journals (Sweden)

    S. J. Kim

    2010-04-01

    Full Text Available Soil infiltration and surface discharge of precipitation are critical processes that affect the efflux of Dissolved Organic Carbon (DOC and Particulate Organic Carbon (POC in forested catchments. Concentrations of DOC and POC can be very high in the soil surface in most forest ecosystems and their efflux may not be negligible particularly under the monsoon climate. In East Asia, however, there are little data available to evaluate the role of such processes in forest carbon budget. In this paper, we address two basic questions: (1 how does stream discharge respond to storm events in a forest catchment? and (2 how much DOC and POC are exported from the catchment particularly during the summer monsoon period? To answer these questions, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge, groundwater level and conducted hydrochemical analyses (including DOC, POC, and six tracers in a deciduous forest catchment in Gwangneung National Arboretum in west-central Korea. Based on the end-member mixing analysis of the six storm events during the summer monsoon in 2005, the surface discharge was estimated as 30 to 80% of the total runoff discharge. The stream discharge responded to precipitation within 12 h during these storm events. The annual efflux of DOC and POC from the catchment was estimated as 0.04 and 0.05 t C ha−1 yr−1, respectively. Approximately 70% of the annual organic carbon efflux occurred during the summer monsoon period. Overall, the annual efflux of organic carbon was estimated to be about 10% of the Net Ecosystem carbon Exchange (NEE obtained by eddy covariance measurement at the same site. Considering the current trends of increasing intensity and amount of summer rainfall and the large interannual variability in NEE, ignoring the organic carbon efflux from forest catchments would result in an inaccurate estimation of the carbon sink strength of forest ecosystems in the monsoon

  8. Modeling soil organic carbon with Quantile Regression: Dissecting predictors' effects on carbon stocks

    KAUST Repository

    Lombardo, Luigi; Saia, Sergio; Schillaci, Calogero; Mai, Paul Martin; Huser, Raphaë l

    2017-01-01

    Soil Organic Carbon (SOC) estimation is crucial to manage both natural and anthropic ecosystems and has recently been put under the magnifying glass after the Paris agreement 2016 due to its relationship with greenhouse gas. Statistical applications

  9. Stable carbon isotope composition of organic material and carbonate in sediment of a swamp and lakes in Honshu island, Japan

    International Nuclear Information System (INIS)

    Ishizuka, Toshio

    1978-01-01

    Recent sediments from a swamp and lakes in Honshu were analyzed for organic carbon and carbonate contents, and stable isotope ratios of carbon in the organic materials and carbonate. delta C 13 values of the carbonate tend to be distinctly larger than those of organic carbon in reducing condition as natural gas field, whereas in oxidizing SO 4 -reducing conditions, they are slightly larger than those of organic carbon within the limited range of a few per mil. Carbon isotopic compositions of organic carbon in sediment of the swamp, Obuchi-numa, were analyzed and compared with habitat analysis of associated fossil diatoms. deltaC 13 values of organic carbon in the sediment vary in correlation with the species abundance in habitat of the associated fossil diatoms, ranging from fresh-water (-0.0282) to coastal marine (-0.0236) via brackish. (auth.)

  10. Chemistry of organic carbon in soil with relationship to the global carbon cycle

    International Nuclear Information System (INIS)

    Post, W.M. III.

    1988-01-01

    Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO 2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs

  11. Dissolved inorganic carbon and organic carbon in mires in the Forsmark area. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Anders [EcoAnalytica, Haegersten (Sweden)

    2011-12-15

    Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are the large dissolved carbon pools in mires. They are both related to a number of factors such as groundwater flow, minerogenic influence and peat properties, which all are more or less related to peatland development stage. In a scenario of a release of radionuclides from an underground repository containing radioactive material, behaviour of these pools during the mire ontogeny will be of importance for the understanding of how C-14 will constitute a potential risk to humans and non-human biota. In this pilot study, DIC and DOC concentrations were investigated for three mires representing a potential sequence of peatland development in a coastal area at Forsmark in central Sweden characterized by land upheaval, a flat topography and calcareous content in the soil. The mires where chosen based on difference in height above the sea level, covering approximate 1000 years, and characteristics based on their vegetation. Water samples were collected during August from all three mires at two different depths in the anoxic layer of the mires, by extracting water from peat obtained with a peat corer. DIC concentrations where related to the age of the mires, with the lowest concentrations in the highest located mire. There was a positive correlation between pH and DIC, where the higher DIC concentrations were found in the 'richer' fens. DIC concentrations were also positively related to the conductivity within and between the mires, where conductivity would be a proxy for the dominating cation Ca{sup 2+} associated to the calcareous-influenced groundwater. DOC concentrations were highest in the oldest mire, but were similar in the younger mires. No patterns were found between DIC and DOC, and the peat bulk density. The report ends with suggestions on how a continued study could be improved.

  12. Dissolved inorganic carbon and organic carbon in mires in the Forsmark area. A pilot study

    International Nuclear Information System (INIS)

    Loefgren, Anders

    2011-12-01

    Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are the large dissolved carbon pools in mires. They are both related to a number of factors such as groundwater flow, minerogenic influence and peat properties, which all are more or less related to peatland development stage. In a scenario of a release of radionuclides from an underground repository containing radioactive material, behaviour of these pools during the mire ontogeny will be of importance for the understanding of how C-14 will constitute a potential risk to humans and non-human biota. In this pilot study, DIC and DOC concentrations were investigated for three mires representing a potential sequence of peatland development in a coastal area at Forsmark in central Sweden characterized by land upheaval, a flat topography and calcareous content in the soil. The mires where chosen based on difference in height above the sea level, covering approximate 1000 years, and characteristics based on their vegetation. Water samples were collected during August from all three mires at two different depths in the anoxic layer of the mires, by extracting water from peat obtained with a peat corer. DIC concentrations where related to the age of the mires, with the lowest concentrations in the highest located mire. There was a positive correlation between pH and DIC, where the higher DIC concentrations were found in the 'richer' fens. DIC concentrations were also positively related to the conductivity within and between the mires, where conductivity would be a proxy for the dominating cation Ca 2+ associated to the calcareous-influenced groundwater. DOC concentrations were highest in the oldest mire, but were similar in the younger mires. No patterns were found between DIC and DOC, and the peat bulk density. The report ends with suggestions on how a continued study could be improved

  13. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink.

    Science.gov (United States)

    Hilton, Robert G; Galy, Valier; Gaillardet, Jérôme; Dellinger, Mathieu; Bryant, Charlotte; O'Regan, Matt; Gröcke, Darren R; Coxall, Helen; Bouchez, Julien; Calmels, Damien

    2015-08-06

    Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO2) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 ± 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of 2.2(+1.3)(-0.9) teragrams of carbon per year from the Mackenzie River, which is three times the CO2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO2 sink.

  14. Maximum organic carbon limits at different melter feed rates (U)

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    This report documents the results of a study to assess the impact of varying melter feed rates on the maximum total organic carbon (TOC) limits allowable in the DWPF melter feed. Topics discussed include: carbon content; feed rate; feed composition; melter vapor space temperature; combustion and dilution air; off-gas surges; earlier work on maximum TOC; overview of models; and the results of the work completed

  15. Methodology guideline. Organization of conference neutral in carbon

    International Nuclear Information System (INIS)

    2007-01-01

    In the framework of the Climate Plan elaborated by the french government, the neutral carbon principle must be applied to conference organization and the international travels. This guide has two main functions: heighten to allow everybody to understand the climate change impacts and problems, and bring some recommendations and tools to implement a neutral carbon conference (transport, welcome, accommodation and meal). (A.L.B.)

  16. Characteristics of Nanoparticles in Drinking Water Treatment using Biological Activated Carbon

    Directory of Open Access Journals (Sweden)

    Desmiarti Reni

    2018-01-01

    Full Text Available Characteristics of nanoparticles in drinking water treatment were performed using five types of biological activated carbon (BAC columns (BAC1-BAC5 in continuous flow experiments. The BAC was created by covering granular activated carbon (GAC with attached microorganisms from water samples taken from the Nagara River in Japan. The total running time was about 2000 h. The characteristics of the nanoparticles were investigated based on size distribution and volume distribution measured by Zetasizer Nano. Total dissolved organic carbon (DOC and ultraviolet absorbance at 260 nm (UV260 were also studied. The important results in this study were that the detached nanoparticles in the effluent were within the size distribution ranges of 0.26~5.62 nm, 0.62~3.62 nm, 0.62~3.12 nm, 0.62~4.19 nm, and 0.62~6.50 for BAC 1, 2, 3, 4 and 5, respectively. The profile of peak size and peak number along the bed depth of the BAC columns was evaluated for better understanding the characteristics of the nanoparticles. This result is very important for improving drinking water treatment using granular activated carbon to remove microorganisms.

  17. Thermal characteristics of carbon fiber reinforced epoxy containing multi-walled carbon nanotubes

    Science.gov (United States)

    Lee, Jin-woo; Park, Soo-Jeong; Kim, Yun-hae; Riichi-Murakami

    2018-06-01

    The material with irregular atomic structures such as polymer material exhibits low thermal conductivity because of the complex structural properties. Even materials with same atomic configurations, thermal conductivity may be different based on their structural properties. It is expected that nanoparticles with conductivity will change non-conductive polymer base materials to electrical conductors, and improve the thermal conductivity even with extremely small filling amount. Nano-composite materials contain nanoparticles with a higher surface ratio which makes the higher interface percentage to the total surface of nanoparticles. Therefore, thermal resistance of the interface becomes a dominating factor determines the effective thermal conductivity in nano-composite materials. Carbon fiber has characteristic of resistance or magnetic induction and Also, Carbon nanotube (CNT) has electronic and thermal property. It can be applied for heating system. These characteristic are used as heating composite. In this research, the exothermic characteristics of Carbon fiber reinforced composite added CNT were evaluated depend on CNT length and particle size. It was found that the CNT dispersed in the resin reduces the resistance between the interfaces due to the decrease in the total resistance of the heating element due to the addition of CNTs. It is expected to improve the life and performance of the carbon fiber composite material as a result of the heating element resulting from this paper.

  18. Compound-specific C- and H-isotope compositions of enclosed organic matter in carbonate rocks: Implications for source identification of sedimentary organic matter and paleoenvironmental reconstruction

    International Nuclear Information System (INIS)

    Xiong Yongqiang; Wang Yanmei; Wang Yongquan; Xu Shiping

    2007-01-01

    The Bohai Bay Basin is one of the most important oil-producing provinces in China. Molecular organic geochemical characteristics of Lower Paleozoic source rocks in this area have been investigated by analyzing chemical and isotopic compositions of solvent extracts and acid-released organic matter from the Lower Paleozoic carbonate rocks in the Jiyang Sub-basin of the Bohai Bay Basin. The results indicate that enclosed organic matter in carbonate rocks has not been recognizably altered by post-depositional processes. Two end-member compositions are suggested for early organic matter trapped in the Lower Paleozoic carbonate rocks: (1) a source dominated by aquatic organisms and deposited in a relatively deep marine environment and (2) a relatively high saline, evaporative marine depositional environment. In contrast, chemical and isotopic compositions of solvent extracts from these Lower Paleozoic carbonate rocks are relatively complicated, not only inheriting original characteristics of their precursors, but also overprinted by various post-depositional alterations, such as thermal maturation, biodegradation and mixing. Therefore, the integration of both organic matter characteristics can provide more useful information on the origin of organic matter present in carbonate rocks and the environments of their deposition

  19. Compound-specific C- and H-isotope compositions of enclosed organic matter in carbonate rocks: Implications for source identification of sedimentary organic matter and paleoenvironmental reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Yongqiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)], E-mail: xiongyq@gig.ac.cn; Wang Yanmei; Wang Yongquan; Xu Shiping [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2007-11-15

    The Bohai Bay Basin is one of the most important oil-producing provinces in China. Molecular organic geochemical characteristics of Lower Paleozoic source rocks in this area have been investigated by analyzing chemical and isotopic compositions of solvent extracts and acid-released organic matter from the Lower Paleozoic carbonate rocks in the Jiyang Sub-basin of the Bohai Bay Basin. The results indicate that enclosed organic matter in carbonate rocks has not been recognizably altered by post-depositional processes. Two end-member compositions are suggested for early organic matter trapped in the Lower Paleozoic carbonate rocks: (1) a source dominated by aquatic organisms and deposited in a relatively deep marine environment and (2) a relatively high saline, evaporative marine depositional environment. In contrast, chemical and isotopic compositions of solvent extracts from these Lower Paleozoic carbonate rocks are relatively complicated, not only inheriting original characteristics of their precursors, but also overprinted by various post-depositional alterations, such as thermal maturation, biodegradation and mixing. Therefore, the integration of both organic matter characteristics can provide more useful information on the origin of organic matter present in carbonate rocks and the environments of their deposition.

  20. Cost effective tools for soil organic carbon monitoring

    Science.gov (United States)

    Shepherd, Keith; Aynekulu, Ermias

    2013-04-01

    There is increasing demand for data on soil properties at fine spatial resolution to support management and planning decisions. Measurement of soil organic carbon has attracted much interest because (i) soil organic carbon is widely cited as a useful indicator of soil condition and (ii) of the importance of soil carbon in the global carbon cycle and climate mitigation strategies. However in considering soil measurement designs there has been insufficient attention given to careful analysis of the specific decisions that the measurements are meant to support and on what measurements have high information value for decision-making. As a result, much measurement effort may be wasted or focused on the wrong variables. A cost-effective measurement is one that reduces risk in decisions and does not cost more than the societal returns to additional evidence. A key uncertainty in measuring soil carbon as a soil condition indicator is what constitutes a good or bad level of carbon on a given soil. A measure of soil organic carbon concentration may have limited value for informing management decisions without the additional information required to interpret it, and so expending further efforts on improving measurements to increase precision may then have no value to improving the decision. Measuring soil carbon stock changes for carbon trading purposes requires high levels of measurement precision but there is still large uncertainty on whether the costs of measurement exceed the benefits. Since the largest cost component in soil monitoring is often travel to the field and physically sampling soils, it is generally cost-effective to meet multiple objectives by analysing a number of properties on a soil sample. Diffuse reflectance infrared spectroscopy is playing a key role in allowing multiple soil properties to be determined rapidly and at low cost. The method provides estimation of multiple soil properties (e.g. soil carbon, texture and mineralogy) in one measurement

  1. Effects of long-term land use change on dissolved carbon characteristics in the permafrost streams of northeast China.

    Science.gov (United States)

    Guo, Yuedong; Song, Changchun; Wan, Zhongmei; Tan, Wenwen; Lu, Yongzheng; Qiao, Tianhua

    2014-11-01

    Permafrost soils act as large sinks of organic carbon but are highly sensitive to interference such as changes in land use, which can greatly influence dissolved carbon loads in streams. This study examines the effects of long-term land reclamation on seasonal concentrations of dissolved carbons in the upper reaches of the Nenjiang River, northeast China. A comparison of streams in natural and agricultural systems shows that the dissolved organic carbon (DOC) concentration is much lower in the agricultural stream (AG) than in the two natural streams (WAF, wetland dominated; FR, forest dominated), suggesting that land use change is associated with reduced DOC exporting capacity. Moreover, the fluorescence indexes and the ratio of dissolved carbon to nitrogen also differ greatly between the natural and agricultural streams, indicating that the chemical characteristics and the origin of the DOC released from the whole reaches are also altered to some extent. Importantly, the exporting concentration of dissolved inorganic carbon (DIC) and its proportion of total dissolved carbon (TDC) substantially increase following land reclamation, which would largely alter the carbon cycling processes in the downstream fluvial system. Although the strong association between the stream discharge and the DOC concentration was unchanged, the reduction in total soil organic carbon following land reclamation led to remarkable decline of the total flux and exporting coefficient of the dissolved carbons. The results suggest that dissolved carbons in permafrost streams have been greatly affected by changes in land use since the 1970s, and the changes in the concentration and chemical characteristics of dissolved carbons will last until the alteration in both the traditional agriculture pattern and the persistent reclamation activities.

  2. AC-driven organic light emission devices with carbon nanotubes

    Science.gov (United States)

    Jeon, So-Yeon; Yu, SeGi

    2017-02-01

    We have investigated alternating current (AC)-driven organic light-emitting devices (OLEDs), with carbon nanotubes (CNTs) incorporated within the emission layer. With CNT incorporation, the brightness of the OLEDs was substantially improved, and the turn-on voltage was reduced by at least a factor of five. Furthermore, the current levels of the CNT-incorporated OLEDs were lower than that of the reference device. A roughly 70% decrease in the current level was obtained for a CNT concentration of 0.03 wt%. This was accomplished by keeping the concentration of CNTs low and the length of CNTs short, which helped to suppress the percolation networking of CNTs within the emitting layer. Strong local electric fields near the end-tips of CNTs and micro-capacitors formed by dispersed CNTs might have caused this high brightness and these low currents. CNT incorporation in the emitting layer can improve the characteristics of AC-driven OLEDs, which are considered to be one of the candidates for flat panel displays and lightning devices.

  3. AC-driven Organic Light Emission Devices with Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, So-Yeon [Sungkyunkwan University, Suwon (Korea, Republic of); Yu, SeGi [Hankuk University of Foreign Studies, Yongin (Korea, Republic of)

    2017-02-15

    We have investigated alternating current (AC)-driven organic light-emitting devices (OLEDs), with carbon nanotubes (CNTs) incorporated within the emission layer. With CNT incorporation, the brightness of the OLEDs was substantially improved, and the turn-on voltage was reduced by at least a factor of five. Furthermore, the current levels of the CNT-incorporated OLEDs were lower than that of the reference device. A roughly 70% decrease in the current level was obtained for a CNT concentration of 0.03 wt%. This was accomplished by keeping the concentration of CNTs low and the length of CNTs short, which helped to suppress the percolation networking of CNTs within the emitting layer. Strong local electric fields near the end-tips of CNTs and micro-capacitors formed by dispersed CNTs might have caused this high brightness and these low currents. CNT incorporation in the emitting layer can improve the characteristics of AC-driven OLEDs, which are considered to be one of the candidates for flat panel displays and lightning devices.

  4. Comparing carbon to carbon: Organic and inorganic carbon balances across nitrogen fertilization gradients in rainfed vs. irrigated Midwest US cropland

    Science.gov (United States)

    Hamilton, S. K.; McGill, B.

    2017-12-01

    The top meter of the earth's soil contains about twice the amount of carbon than the atmosphere. Agricultural management practices influence whether a cropland soil is a net carbon source or sink. These practices affect both organic and inorganic carbon cycling although the vast majority of studies examine the former. We will present results from several rarely-compared carbon fluxes: carbon dioxide emissions and sequestration from lime (calcium carbonate) weathering, dissolved gases emitted from groundwater-fed irrigation, dissolved organic carbon (DOC) leaching to groundwater, and soil organic matter storage. These were compared in a corn-soybean-wheat rotation under no-till management across a nitrogen fertilizer gradient where half of the replicated blocks are irrigated with groundwater. DOC and liming fluxes are also estimated from a complementary study in neighboring plots comparing a gradient of management practices from conventional to biologically-based annuals and perennials. These studies were conducted at the Kellogg Biological Station Long Term Ecological Research site in Michigan where previous work estimated that carbon dioxide emissions from liming accounted for about one quarter of the total global warming impact (GWI) from no-till systems—our work refines that figure. We will present a first time look at the GWI of gases dissolved in groundwater that are emitted when the water equilibrates with the atmosphere. We will explore whether nitrogen fertilizer and irrigation increase soil organic carbon sequestration by producing greater crop biomass and residues or if they enhance microbial activity, increasing decomposition of organic matter. These results are critical for more accurately estimating how intensive agricultural practices affect the carbon balance of cropping systems.

  5. Carbon-14 measurements and characterization of dissolved organic carbon in ground water

    International Nuclear Information System (INIS)

    Murphy, E.M.

    1987-01-01

    Carbon-14 was measured in the dissolved organic carbon (DOC) in ground water and compared with 14 C analyses of dissolved inorganic carbon (DIC). Two field sites were used for this study; the Stripa mine in central Sweden, and the Milk River Aquifer in southern Alberta, Canada. The Stripa mine consists of a Precambrian granite dominated by fracture flow, while the Milk River Aquifer is a Cretaceous sandstone aquifer characterized by porous flow. At both field sites, 14 C analyses of the DOC provide additional information on the ground-water age. Carbon-14 was measured on both the hydrophobic and hydrophilic organic fractions of the DOC. The organic compounds in the hydrophobic and hydrophilic fractions were also characterized. The DOC may originate from kerogen in the aquifer matrix, from soil organic matter in the recharge zone, of from a combination of these two sources. Carbon-14 analyses, along with characterization of the organics, were used to determine this origin. Carbon-14 analyses of the hydrophobic fraction in the Milk River Aquifer suggest a soil origin, while 14 C analyses of the hydrophilic fraction suggest an origin within the Cretaceous sediments (kerogen) or from the shale in contact with the aquifer

  6. [Soil organic carbon fractionation methods and their applications in farmland ecosystem research: a review].

    Science.gov (United States)

    Zhang, Guo; Cao, Zhi-ping; Hu, Chan-juan

    2011-07-01

    Soil organic carbon is of heterogeneity in components. The active components are sensitive to agricultural management, while the inert components play an important role in carbon fixation. Soil organic carbon fractionation mainly includes physical, chemical, and biological fractionations. Physical fractionation is to separate the organic carbon into active and inert components based on the density, particle size, and its spatial distribution; chemical fractionation is to separate the organic carbon into various components based on the solubility, hydrolizability, and chemical reactivity of organic carbon in a variety of extracting agents. In chemical fractionation, the dissolved organic carbon is bio-available, including organic acids, phenols, and carbohydrates, and the acid-hydrolyzed organic carbon can be divided into active and inert organic carbons. Simulated enzymatic oxidation by using KMnO4 can separate organic carbon into active and non-active carbon. Biological fractionation can differentiate microbial biomass carbon and potential mineralizable carbon. Under different farmland management practices, the chemical composition and pool capacity of soil organic carbon fractions will have different variations, giving different effects on soil quality. To identify the qualitative or quantitative relationships between soil organic carbon components and carbon deposition, we should strengthen the standardization study of various fractionation methods, explore the integrated application of different fractionation methods, and sum up the most appropriate organic carbon fractionation method or the appropriate combined fractionation methods for different farmland management practices.

  7. Characteristic numbers of granular activated carbon for the elimination of micropollutants from effluents of municipal wastewater treatment plants.

    Science.gov (United States)

    Benstoem, F; Pinnekamp, J

    2017-07-01

    Adsorption on granular activated carbon (GAC) is a promising step to extend existing treatment trains in municipal wastewater treatment plants (WWTPs) and, thus, to reduce the concentration of micropollutants (MPs) (e.g. pharmaceuticals) in wastewater. It is common practice to use characteristic numbers when choosing GAC for a specific application. In this study, characteristic numbers were correlated for five different GACs, with measured adsorption capacities of these carbons for three pharmaceutical MPs (carbamazepine, diclofenac and sulfamethoxazole) and dissolved organic carbon of a WWTP effluent. The adsorption capacities were measured using rapid small scale column tests. Density of GAC showed the highest correlation to adsorption of MP. All other characteristic numbers (iodine number, Brunauer-Emmett-Teller (BET) surface and methylene blue titre) are not suitable markers for choosing an appropriate activated carbon product for the elimination of MPs from municipal wastewater.

  8. Speleothem records of acid sulphate deposition and organic carbon mobilisation

    Science.gov (United States)

    Wynn, Peter; Fairchild, Ian; Bourdin, Clement; Baldini, James; Muller, Wolfgang; Hartland, Adam; Bartlett, Rebecca

    2017-04-01

    Dramatic increases in measured surface water DOC in recent decades have been variously attributed to either temperature rise, or destabilisation of long-term soil carbon pools following sulphur peak emissions status. However, whilst both drivers of DOC dynamics are plausible, they remain difficult to test due to the restricted nature of the available records of riverine DOC flux (1978 to present), and the limited availability of SO2 emissions inventory data at the regional scale. Speleothems offer long term records of both sulphur and carbon. New techniques to extract sulphur concentrations and isotopes from speleothem calcite have enabled archives of pollution history and environmental acidification to be reconstructed. Due to the large dynamic range in sulphur isotopic values from end member sources (marine aerosol +21 ‰ to continental biogenic emissions -30 ‰) and limited environmental fractionation under oxidising conditions, sulphur isotopes form an ideal tracer of industrial pollution and environmental acidification in the palaeo-record. We couple this acidification history to the carbon record, using organic matter fluorescence and trace metals. Trace metal ratios and abundance can be used to infer the type and size of organic ligand and are therefore sensitive to changes in temperature as a driver of organic carbon processing and biodegradation. This allows fluorescent properties and ratios of trace metals in speleothem carbonate to be used to represent both the flux of organic carbon into the cave as well as the degradation pathway. Here we present some of the first results of this work, exploring sulphur acidification as a mechanistic control on carbon solubility and export throughout the twentieth century.

  9. Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain

    Science.gov (United States)

    F.S. Peterson; K. Lajtha

    2013-01-01

    Factors influencing soil organic matter (SOM) stabilization and dissolved organic carbon (DOC) content in complex terrain, where vegetation, climate, and topography vary over the scale of a few meters, are not well understood. We examined the spatial correlations of lidar and geographic information system-derived landscape topography, empirically measured soil...

  10. Accumulation of soil organic carbon in relation to other soil characteristic during spontaneous succession in non reclaimed colliery spoil heaps after brown coal mining near Sokolov (the Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Kalčík, Jiří

    2006-01-01

    Roč. 25, č. 4 (2006), s. 388-397 ISSN 1335-342X R&D Projects: GA AV ČR 1QS600660505 Institutional research plan: CEZ:AV0Z60660521 Keywords : carbon accumulation * succession * soil formation Subject RIV: EH - Ecology, Behaviour Impact factor: 0.085, year: 2005

  11. Soil organic matter dynamics and the global carbon cycle

    International Nuclear Information System (INIS)

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-01-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C·yr -1 is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world's soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics

  12. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    International Nuclear Information System (INIS)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-01-01

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, f ow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated

  13. Organic carbon production, mineralization and preservation on the Peruvian margin

    Science.gov (United States)

    Dale, A. W.; Sommer, S.; Lomnitz, U.; Montes, I.; Treude, T.; Gier, J.; Hensen, C.; Dengler, M.; Stolpovsky, K.; Bryant, L. D.; Wallmann, K.

    2014-09-01

    Carbon cycling in Peruvian margin sediments (11° S and 12° S) was examined at 16 stations from 74 m on the inner shelf down to 1024 m water depth by means of in situ flux measurements, sedimentary geochemistry and modeling. Bottom water oxygen was below detection limit down to ca. 400 m and increased to 53 μM at the deepest station. Sediment accumulation rates and benthic dissolved inorganic carbon fluxes decreased rapidly with water depth. Particulate organic carbon (POC) content was lowest on the inner shelf and at the deep oxygenated stations (< 5%) and highest between 200 and 400 m in the oxygen minimum zone (OMZ, 15-20%). The organic carbon burial efficiency (CBE) was unexpectedly low on the inner shelf (< 20%) when compared to a global database, for reasons which may be linked to the frequent ventilation of the shelf by oceanographic anomalies. CBE at the deeper oxygenated sites was much higher than expected (max. 81%). Elsewhere, CBEs were mostly above the range expected for sediments underlying normal oxic bottom waters, with an average of 51 and 58% for the 11° S and 12° S transects, respectively. Organic carbon rain rates calculated from the benthic fluxes alluded to a very efficient mineralization of organic matter in the water column, with a Martin curve exponent typical of normal oxic waters (0.88 ± 0.09). Yet, mean POC burial rates were 2-5 times higher than the global average for continental margins. The observations at the Peruvian margin suggest that a lack of oxygen does not affect the degradation of organic matter in the water column but promotes the preservation of organic matter in marine sediments.

  14. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions.

    Science.gov (United States)

    Luo, Zhongkui; Feng, Wenting; Luo, Yiqi; Baldock, Jeff; Wang, Enli

    2017-10-01

    Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (r C , Mg C ha -1  yr -1 ). Among these variables, we found that the most influential variables on r C were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on r C , followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining r C . The direct correlation of r C with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process-based SOC models. © 2017 John Wiley & Sons Ltd.

  15. Evaluation of Soil Quality Using Labile Organic Carbon and Carbon Management Indices in Agricultural Lands of Neyriz, Fars Province

    Directory of Open Access Journals (Sweden)

    Anahid Salmanpour

    2017-02-01

    Full Text Available Introduction: Soil organic matter is considered as an indicator of soil quality, because of its role on the stability of soil structure, water holding capacity, microbial activity, storage and release of nutrients. Although changes and trends of organic matter are assessed on the basis of organic carbon, it responds slowly to changes of soil management. Therefore, identifying sensitive components of organic carbon such as carbon labile lead to better understanding of the effect of land use change and soil management on soil quality. The main components of sustainable agriculture in arid and semi-arid regions are the amount of water; and soil and water salinity. Water deficit and irrigation with saline water are important limiting factors for cropping and result in adverse effects on soil properties and soil quality. Soil carbon changes is a function of addition of plant debris and removal of it from soil by its decomposition. If the amount of organic carbon significantly reduced due to the degradation of the soil physical and chemical properties and soil quality, agricultural production will face serious problems. To this end, this study was done to evaluate soil quality using soil labile carbon and soil carbon management indices in some agricultural lands of Neyriz area, Fars province, Iran. Materials and Methods: Five fields were selected in two regions, Dehfazel and Tal-e-mahtabi, consisted of irrigated wheat and barley with different amount of irrigation water and water salinity levels. Three farms were located in Dehfazel and two farms in Tal-e-Mahtabi region. In each farm, three points were randomly selected and soil samples were collected from 0-40 cm of the surface layer. Plant samples were taken from a 1x1 square meter and grain crop yield was calculated per hectare. Water samples were obtained in each region from the wells at the last irrigation. Physical and chemical characteristics of the soil and water samples were determined. Soil

  16. Minerilization of carbon and nitrogen of organic residues from ...

    African Journals Online (AJOL)

    Minerilization of carbon and nitrogen of organic residues from selected plants in a tropical cropping system. O M Onuh, HA Okorie. Abstract. No Abstract. Journal of Agriculture and Food Sciences Vol. 3 (1) 2005 pp. 11-24. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  17. Estimation of organic carbon loss potential in north of Iran

    Science.gov (United States)

    Shahriari, A.; Khormali, F.; Kehl, M.; Welp, G.; Scholz, Ch.

    2009-04-01

    The development of sustainable agricultural systems requires techniques that accurately monitor changes in the amount, nature and breakdown rate of soil organic matter and can compare the rate of breakdown of different plant or animal residues under different management systems. In this research, the study area includes the southern alluvial and piedmont plains of Gorgan River extended from east to west direction in Golestan province, Iran. Samples from 10 soil series and were collected from cultivation depth (0-30 cm). Permanganate-oxidizable carbon (POC) an index of soil labile carbon, was used to show soil potential loss of organic carbon. In this index shows the maximum loss of OC in a given soil. Maximum loss of OC for each soil series was estimated through POC and bulk density (BD). The potential loss of OC were estimated between 1253263 and 2410813 g/ha Carbon. Stable organic constituents in the soil include humic substances and other organic macromolecules that are intrinsically resistant against microbial attack, or that are physically protected by adsorption on mineral surfaces or entrapment within clay and mineral aggregates. However, the (Clay + Silt)/OC ratio had a negative significant (p < 0.001) correlation with POC content, confirming the preserving effect of fine particle.

  18. Development of a Soil Organic Carbon Baseline for Otjozondjupa, Namibia

    NARCIS (Netherlands)

    Nijbroek, R.; Kempen, B.; Mutua, J.; Soderstrom, M.; Piikki, K.; Hengari, S.; Andreas, A.

    2017-01-01

    Land Degradation Neutrality (LDN) has been piloted in 14 countries and will be scaled up to over 120 countries. As a LDN pilot country, Namibia developed sub-national LDN baselines in Otjozondjupa Region. In addition to the three LDN indicators (soil organic carbon, land productivity and land cover

  19. Organic carbon in the sediments of Mandovi estuary, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Alagarsamy, R.

    Total organic carbon (TOC) in surficial sediments in Mandovi Estuary, Goa, India varies widely from 0.1 to 3% (av. 1.05%). Highest values of TOC (2.4-3%) lie close to the mouth region and indicate no definite trend in its variation in the estuarine...

  20. Organic carbon stocks in the soils of Brazil

    NARCIS (Netherlands)

    Batjes, N.H.

    2005-01-01

    Soil organic carbon stocks to 1 m for Brazil, calculated using an updated Soil and Terrain (SOTER) database and simulation of phenoforms, are 65.9-67.5 Pg C, of which 65% is in the Amazonian region of Brazil. Other researchers have obtained similar gross results, despite very different spatial

  1. Evaluation of the soil organic carbon, nitrogen and available ...

    African Journals Online (AJOL)

    The result obtained indicates that the level of these chemical properties were generally low as compared to standard measures and parameter for ratings soil fertility in the Nigerian Savanna. Keywords: Status of organic carbon, total nitrogen, available phosphorus, top horizons, research farm. Bowen Journal of Agriculture ...

  2. Effects of organic nitrogen and carbon sources on mycelial growth ...

    African Journals Online (AJOL)

    Grifola umbellate is a famous and expensive Chinese herb medicine and the main medicinal component is polysaccharide mainly produced by its mycelia. Effects of organic nitrogen and carbon resources on mycelial growth and polysaccharides production of a medicinal mushroom, G. umbellate were studied in the ...

  3. Spatial distribution of soil organic carbon stocks in France

    Directory of Open Access Journals (Sweden)

    M. P. Martin

    2011-05-01

    Full Text Available Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory.

    We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils.

    The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the

  4. Characteristics of activated carbon remove sulfur particles against smog.

    Science.gov (United States)

    Ge, Shengbo; Liu, Zhenling; Furuta, Yuzo; Peng, Wanxi

    2017-09-01

    Sulfur particles, which could cause diseases, were the main powder of smog. And activated carbon had the very adsorption characteristics. Therefore, five sulfur particles were adsorbed by activated carbon and were analyzed by FT-IR. The optimal adsorption time were 120 min of Na 2 SO 3 , 120 min of Na 2 S 2 O 8 , 120 min of Na 2 SO 4 , 120 min of Fe 2 (SO 4 ) 3 and 120 min of S. FT-IR spectra showed that activated carbon had the eight characteristic absorption of S-S stretch, H 2 O stretch, O-H stretch, -C-H stretch, conjugated C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 O stretch or CC stretch, CH 2 bend, C-O stretch and acetylenic C-H bend vibrations at 3850 cm -1 , 3740 cm -1 , 3430 cm -1 , 2920 cm -1 , 1630 cm -1 , 1390 cm -1 , 1110 cm -1 and 600 cm -1 , respectively. For Na 2 SO 3 , the peaks at 2920 cm -1 , 1630 cm -1 , 1390 cm -1 and 1110 cm -1 achieved the maximum at 20 min. For Na 2 S 2 O 8 , the peaks at 3850 cm -1 , 3740 cm -1 and 2920 cm -1 achieved the maximum at 60 min. The peaks at 1390 cm -1 , 1110 cm -1 and 600 cm -1 achieved the maximum at 40 min. For Na 2 SO 4 , the peaks at 3430 cm -1 , 2920 cm -1 , 1630 cm -1 , 1390 cm -1 , 1110 cm -1 and 600 cm -1 achieved the maximum at 60 min. For Fe 2 (SO 4 ) 3 , the peaks at 1390 cm -1 , 1110 cm -1 and 600 cm -1 achieved the maximum at 20 min. For S, the peaks at 1630 cm -1 , 1390 cm -1 and 600 cm -1 achieved the maximum at 120 min. It provided that activated carbon could remove sulfur particles from smog air to restrain many anaphylactic diseases.

  5. High resolution of black carbon and organic carbon emissions in the Pearl River Delta region, China.

    Science.gov (United States)

    Zheng, Junyu; He, Min; Shen, Xingling; Yin, Shasha; Yuan, Zibing

    2012-11-01

    A high-resolution regional black carbon (BC) and organic carbon (OC) emission inventory for the year 2009 was developed for the Pearl River Delta (PRD) region, China, based on the collected activity data and the latest emission factors. PM(2.5), BC and OC emissions were estimated to be 303 kt, 39 kt and 31 kt, respectively. Industrial processes were major contributing sources to PM(2.5) emissions. BC emissions were mainly from mobile sources, accounting for 65.0%, while 34.1% of OC emissions were from residential combustion. The primary OC/BC ratios for individual cities in the PRD region were dependent on the levels of economic development due to differences in source characteristics, with high ratios in the less developed cities and low ratios in the central and southern developed areas. The preliminary temporal profiles were established, showing the highest OC emissions in winter and relatively constant BC emissions throughout the year. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3 km. Large amounts of BC emissions were distributed over the central-southern PRD city clusters, while OC emissions exhibited a relatively even spatial distribution due to the significant biomass burning emissions from the outlying area of the PRD region. Uncertainties in carbonaceous aerosol emissions were usually higher than in other primary pollutants like SO(2), NO(x), and PM(10). One of the key uncertainty sources was the emission factor, due to the absence of direct measurements of BC and OC emission rates. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Latitudinal gradients in degradation of marine dissolved organic carbon.

    Directory of Open Access Journals (Sweden)

    Carol Arnosti

    Full Text Available Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC. The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars. Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO(2 reservoir, such a change could profoundly affect the global carbon cycle.

  7. Organic carbon production, mineralisation and preservation on the Peruvian margin

    Science.gov (United States)

    Dale, A. W.; Sommer, S.; Lomnitz, U.; Montes, I.; Treude, T.; Liebetrau, V.; Gier, J.; Hensen, C.; Dengler, M.; Stolpovsky, K.; Bryant, L. D.; Wallmann, K.

    2015-03-01

    Carbon cycling in Peruvian margin sediments (11 and 12° S) was examined at 16 stations, from 74 m water depth on the middle shelf down to 1024 m, using a combination of in situ flux measurements, sedimentary geochemistry and modelling. Bottom water oxygen was below detection limit down to ca. 400 m and increased to 53 μM at the deepest station. Sediment accumulation rates decreased sharply seaward of the middle shelf and subsequently increased at the deep stations. The organic carbon burial efficiency (CBE) was unusually low on the middle shelf (60%) at the deep oxygenated sites. In line with other studies, CBE was elevated under oxygen-deficient waters in the mid-water oxygen minimum zone. Organic carbon rain rates calculated from the benthic fluxes alluded to efficient mineralisation of organic matter in the water column compared to other oxygen-deficient environments. The observations at the Peruvian margin suggest that a lack of oxygen does not greatly affect the degradation of organic matter in the water column but promotes the preservation of organic matter in sediments.

  8. Influence of nitric acid concentration on the characteristics of active carbons obtained from a mineral coal

    Energy Technology Data Exchange (ETDEWEB)

    Khelifi, A.; Temdrara, L.; Addoun, A. [Laboratoire d' Etude Physicochimique des Materiaux et Application a l' Environnement, Faculte de Chimie, USTHB, BP. 32 El Alia, Bab Ezzouar 16111, Algiers (Algeria); Almazan-Almazan, M.C.; Perez-Mendoza, M.; Domingo-Garcia, M.; Lopez-Garzon, F.J [Departamento de Quimica Inorganica, Facultad de Ciencias, 18071 Granada (Spain); Lopez-Domingo, F.J. [Departamento de CCIA, ETS de Ingenieria Informatica y Telecomunicacion, Granada, 18071 (Spain)

    2010-10-15

    This paper deals with the effect of the concentration of nitric acid solutions on the properties of activated carbons obtained by the oxidation of a parent activated carbon. For this purpose a mineral coal from Algeria has been used as raw material to prepare the parent active carbon AC. This was further treated with nitric acid solutions. The analysis of the samples includes the chemical and textural characterization. The former was carried out by selective titrations and FTIR spectroscopy. The latter, by nitrogen and carbon dioxide adsorption at 77 and 273 K, respectively, and by adsorption of organic probes (benzene, dichloromethane, cyclohexane and 2,2-dimethyl butane) at 303 K. The nitrogen adsorption isotherms have been analysed by using the BET equation, {alpha}{sub s}-method and molecular simulation. The Dubinin-Radushkevich approach has been applied to the carbon dioxide and vapours adsorption data. The results show that the treatment with 2 N nitric acid solution is very appropriate because it introduces a large amount of oxygen containing groups with a small change of the textural characteristics of the parent AC. More concentrated nitric acid solutions change in large extent the textural properties although they also introduce large amount of chemical groups. (author)

  9. Impact of Wetland Decline on Decreasing Dissolved Organic Carbon Concentrations along the Mississippi River Continuum

    OpenAIRE

    Duan, Shuiwang; He, Yuxiang; Kaushal, Sujay S.; Bianchi, Thomas S.; Ward, Nicholas D.; Guo, Laodong

    2017-01-01

    Prior to discharging to the ocean, large rivers constantly receive inputs of dissolved organic carbon (DOC) from tributaries or fringing floodplains and lose DOC via continuous in situ processing along distances that span thousands of kilometers. Current concepts predicting longitudinal changes in DOC mainly focus on in situ processing or exchange with fringing floodplain wetlands, while effects of heterogeneous watershed characteristics are generally ignored. We analyzed results from a 17-ye...

  10. Methodology guideline. Organization of conference neutral in carbon; Guide methodologique. Organisation de conference neutre en carbone

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    In the framework of the Climate Plan elaborated by the french government, the neutral carbon principle must be applied to conference organization and the international travels. This guide has two main functions: heighten to allow everybody to understand the climate change impacts and problems, and bring some recommendations and tools to implement a neutral carbon conference (transport, welcome, accommodation and meal). (A.L.B.)

  11. Carcass and internal organ characteristics of brioler chickens fed ...

    African Journals Online (AJOL)

    One hundred and forty-four (144) broiler chickens were used to evaluate the carcass and internal organ characteristics of broiler chickens fed soybean diet partially replaced with variable levels of raw jackfruit seed meal (RJFSM). The study lasted for 7 weeks. The inclusion levels of RJFSM were 10, 20 and 30% respectively ...

  12. Growth performance, carcass and organ characteristics of growing ...

    African Journals Online (AJOL)

    An experiment was conducted at the Department of Animal Science teaching and research farm, Bayero University Kano, to evaluate the effect of feeding graded levels of Moringa oleifera leaf meal (MOLM) in diets on growth performance, carcass and organ characteristics of weaned rabbits. Twenty eight grower rabbits of ...

  13. Latitudinal gradients in degradation of marine dissolved organic carbon

    DEFF Research Database (Denmark)

    Arnosti, Carol; Steen, Andrew; Ziervogel, Kai

    2011-01-01

    unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide information......Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely...... about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76 ºS to 79 ºN to hydrolyze a range of high...

  14. 13C-NMR Study on Structure Evolution Characteristics of High-Organic-Sulfur Coals from Typical Chinese Areas

    Directory of Open Access Journals (Sweden)

    Qiang Wei

    2018-02-01

    Full Text Available The structure evolution characteristics of high-organic-sulfur (HOS coals with a wide range of ranks from typical Chinese areas were investigated using 13C-CP/MAS NMR. The results indicate that the structure parameters that are relevant to coal rank include CH3 carbon (fal*, quaternary carbon, CH/CH2 carbon + quaternary carbon (falH, aliphatic carbon (falC, protonated aromatic carbon (faH, protonated aromatic carbon + aromatic bridgehead carbon (faH+B, aromaticity (faCP, and aromatic carbon (farC. The coal structure changed dramatically in the first two coalification jumps, especially the first one. A large number of aromatic structures condensed, and aliphatic structures rapidly developed at the initial stage of bituminous coal accompanied by remarkable decarboxylation. Compared to ordinary coals, the structure evolution characteristics of HOS coals manifest in three ways: First, the aromatic CH3 carbon, alkylated aromatic carbon (faS, aromatic bridgehead carbon (faB, and phenolic ether (faP are barely relevant to rank, and abundant organic sulfur has an impact on the normal evolution process of coal. Second, the average aromatic cluster sizes of some super-high-organic-sulfur (SHOS coals are not large, and the extensive development of cross bonds and/or bridged bonds form closer connections among the aromatic fringes. Moreover, sulfur-containing functional groups are probably significant components in these linkages. Third, a considerable portion of “oxygen-containing functional groups” in SHOS coals determined by 13C-NMR are actually sulfur-containing groups, which results in the anomaly that the oxygen-containing structures increase with coal rank.

  15. Carbon transfer from dissolved organic carbon to the cladoceran Bosmina: a mesocosm study

    Directory of Open Access Journals (Sweden)

    Tang Yali

    2017-01-01

    Full Text Available A mesocosm study illuminated possible transfer pathways for dissolved organic carbon from the water column to zooplankton. Organic carbon was added as 13C enriched glucose to 15 mesocosms filled with natural lake water. Stable isotope analysis and phospholipid fatty acids-based stable isotope probing were used to trace the incorporation of 13C into the cladoceran Bosmina and its potential food items. Glucose-C was shown to be assimilated into phytoplankton (including fungi and heterotrophic protists, bacteria and Bosmina, all of which became enriched with 13C during the experiment. The study suggests that bacteria play an important role in the transfer of glucose-C to Bosmina. Furthermore, osmotic algae, fungi and heterotrophic protists might also contribute to the isotopic signature changes observed in Bosmina. These findings help to clarify the contribution of dissolved organic carbon to zooplankton and its potential pathways.

  16. Key Performance Characteristics of Organic Shrimp Aquaculture in Southwest Bangladesh

    Directory of Open Access Journals (Sweden)

    Christian Reinhard Vogl

    2012-05-01

    Full Text Available In Bangladesh, black tiger shrimp (Penaeus monodon; Fabricius, 1798 aquaculture has come to be one of the most important sectors in both the rural and national economies. Likewise, organic shrimp aquaculture has emerged as an alternative farming enterprise for farmers especially in the southwestern districts of Bangladesh. The present study aims to show key performance characteristics of organic shrimp farmers and farming in a prototypical shrimp farming area in Bangladesh. Data was collected in 2009 from organic shrimp farmers in the Kaligonj and Shyamnagar sub-districts through questionnaire interviews, transect walks and focus group discussions. The mean productivity of organic shrimp farming in the area is 320 kg ha−1 yr−1 (ranging from 120 to 711 kg ha−1year−1. Organic farmers are more likely to have a higher monthly income and less aquaculture experience. Moreover, suitable landholdings and classified labor distribution have been found to play an important role in the development of organic shrimp aquaculture. The most common assets of organic shrimp aquaculture are high yield, low production cost, available post larvae and high market prices. Small business farmers are likely to earn more income benefits from organic shrimp aquaculture than their larger-scale counterparts. Finally, the paper suggests that more research is needed to stimulate the success of organic shrimp aquaculture.

  17. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe

    Science.gov (United States)

    Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.

    2018-03-01

    Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global

  18. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    Science.gov (United States)

    Spencer, Robert G. M.; Butler, Kenna D.; Aiken, George R.

    2012-09-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  19. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    Science.gov (United States)

    Spencer, Robert G.M.; Butler, Kenna D.; Aiken, George R.

    2012-01-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  20. Calculation of the characteristics of carbon dioxide TEA photoionization lasers

    Energy Technology Data Exchange (ETDEWEB)

    Aver' yanov, N E; Baloshin, Yu A; Gerke, M N; Dernyatin, A I; Khurgin, Ya B

    1979-01-01

    A mathematical model is proposed for studying the characteristics of a carbon dioxide photoionization laser with pressures of the active mixture of the order of one atmosphere. The kinetics of the CO/sub 2/ molecules is described in terms of population of the group of lower vibrational levels. The part played by N/sub 2/ molecules in the general system of kinetic equations is accounted for by a harmonic oscillator model with Boltzmann population of vibrational levels and the corresponding vibrational temperature. A diagram is given of the fundamental kinetic processes in the proposed model for a TEA laser. The results of calculations are compared with a previously proposed model and with experimental data for a carbon dioxide TEA photoionization laser using preionization by ultraviolet radiation and operating in the semi-selfmaintained discharge mode. The active mixture was CO/sub 2/:N/sub 2/:He=1:1:8. It was found that optimum mixtures for maximum power are those with ratios of CO/sub 2/:N/sub 2/He=5:45:50, 10:40:50 and 5:55:40. The helium molecules supply most of the photoelectrons, and the additives give a uv spectrum that is optimum for photoionization of He. The CO/sub 2/ is the lasing molecule, but absorbs uv radiation, and therefore the optimum CO/sub 2/ concentration is low. The influence that dissociation of CO/sub 2/ molecules has on the laser depends on the electron concentration in the main discharge. Any model that reliably describes laser characteristics must take account of dissociation of the lasing molecules by means of some factor that shows how many molecules are dissociated by uv radiation, although the dissociation by electron impact can be disregarded.

  1. Soil organic carbon assessments in cropping systems using isotopic techniques

    Science.gov (United States)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, is probably due to the presence of deep roots under pastures in ICLS. Delta carbon-13 values for 0-5 cm were -22.9, -21.2 and -19.9 per mil for REF, ICLS and CCS, respectively (Pis explained by the presence of tree species with high lignin content in natural vegetation. Lignin has lower delta carbon-13 compared to cellulose (dominating in crops and pastures), which is present in greater proportion in plant residues of

  2. Biogeochemical stability and reactions of iron-organic carbon complexes

    Science.gov (United States)

    Yang, Y.; Adhikari, D.; Zhao, Q.; Dunham-Cheatham, S.; Das, K.; Mejia, J.; Huang, R.; Wang, X.; Poulson, S.; Tang, Y.; Obrist, D.; Roden, E. E.

    2017-12-01

    Our core hypothesis is that the degradation rate of soil organic carbon (OC) is governed by the amount of iron (Fe)-bound OC, and the ability of microbial communities to utilize OC as an energy source and electron shuttle for Fe reduction that in turn stimulates reductive release of Fe-bound labile dissolved OC. This hypothesis is being systematically evaluated using model Fe-OC complexes, natural soils, and microcosm system. We found that hematite-bound aliphatic C was more resistant to reduction release, although hematite preferred to sorb more aromatic C. Resistance to reductive release represents a new mechanism that aliphatic soil OC was stabilized by association with Fe oxide. In other studies, pyrogenic OC was found to facilitate the reduction of hematite, by enhancing extracellular electron transport and sorbing Fe(II). For ferrihydrite-OC co-precipitates, the reduction of Fe and release of OC was closely governed by the C/Fe ratio in the system. Based on the XPS, XANES and XAFS analysis, the transformation of Fe speciation was heterogeneous, depending on the conformation and composition of Fe-OC complexes. For natural soils, we investigated the quantity, characteristics, and reactivity of Fe-bound OC in soils collected from 14 forests in the United States. Fe-bound OC contributed up to 57.8% of total OC in the forest soils. Under the anaerobic conditions, the reduction of Fe was positively correlated to the electron accepting capacity of OC. Our findings highlight the closely coupled dynamics of Fe and OC, with broad implications on the turnover of OC and biogeochemical cycles of Fe.

  3. MODEL OF EMERGENCY DEPARTMENT NURSE PERFORMANCE IMPROVEMENT BASED ON ASSOCIATION OF INDIVIDUAL CHARACTERISTIC, ORGANIZATION CHARACTERISTIC AND JOB CHARACTERISTIC

    Directory of Open Access Journals (Sweden)

    Maria Margaretha Bogar

    2017-04-01

    Full Text Available Introduction: Nursing care is integral part of health care and having important role in management of patient with emergency condition. The purpose of this research was to develop nurse performance improvement model based on individual, organization and job characteristics association in Emergency Department of RSUD dr TC Hillers Maumere. Method: This was an explanative survey by cross sectional approach held on July -August 2012. Respondents in this study were 22 nurses and 44 patients were obtained by purposive sampling technique. Data were analyzed by partial least square test and signi fi cant t value > 1.64 (alpha 10%. Result: Results showed that individual characteristic had effect on nurse performance (t = 7.59, organization characteristic had effect on nurse performance (t = 2.03 and job characteristic didn’t have effect on nurse performance (t = 0.88. Nurse performance had effect on patient satisfaction (t = 6.54 but nurse satisfaction didn’t have effect on nurse performance (t = 1.31, and nurse satisfaction didn’t have effect either on patient satisfaction (t = 0.94. Discussion: This research concluded that individual characteristics which in fl uence nurse performance in nursing care were ability and skill, experience, age, sex, attitude and motivation. Organization characteristic that influence nurse performance was reward while job characteristic that include job design and feedback didn’t influence nurse performance in nursing care. Nurse performance influenced patient satisfaction but nurse satisfaction didn’t influence patient satisfaction and nurse performance.

  4. Human induced impacts on soil organic carbon in southwest Iceland

    Science.gov (United States)

    Gísladóttir, Guðrún; Erlendsson, Egill; Lal, Rattan

    2013-04-01

    The Icelandic environment has been strongly influenced by natural processes during the Holocene. Since settlement in AD 874, the introduction of grazing animals and other land use has drastically affected the natural environment. This includes the diminishing of vegetative cover, which has led to soil exposure and accelerated erosion over large areas, especially when in conjunction with harsh climate. This has specifically impacted processes and properties of volcanic soils (Andosols), which are subject to accelerated erosion by wind and water. While approximately 46% of the land surface in Iceland has sustained continuous vegetation cover, large areas have lost some or all of their soil cover formed during the postglacial era. Elsewhere, remaining soils have sparse or no vegetation cover, thus impairing soil carbon (C) sequestration. Among their multifunctional roles, soils support plant growth, increase soil biotic activity, enhance nutrient storage and strengthen the cycling of water and nutrients. In contrast, soil degradation by accelerated erosion and other processes impairs soil quality, reduces soil structure and depletes the soil organic matter (SOM) pool. Depletion of the SOM pool has also global implications because the terrestrial C pool is the third largest pool and strongly impacts the global C cycle. Erosional-depositional processes may deplete soil organic C (SOC) by erosion and increase by deposition. Some SOC-enriched sediments are redistributed over the landscape, while others are deposited in depression sites and transported into aquatic ecosystems. SOC decomposition processes are severely constrained in some environmental settings and any SOC buried under anaerobic conditions is protected against decomposition. Yet, the impact of the SOC transported by erosional processes and redistributed over the landscape is not fully understood because the variability in its turnover characteristics has not been widely studied. Thus, the fate of C

  5. Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes

    Science.gov (United States)

    Jäckel, N.; Weingarth, D.; Zeiger, M.; Aslan, M.; Grobelsek, I.; Presser, V.

    2014-12-01

    This study investigates carbon onions (∼400 m2 g-1) as a conductive additive for supercapacitor electrodes of activated carbon and compares their performance with carbon black with high or low internal surface area. We provide a study of the electrical conductivity and electrochemical behavior between 2.5 and 20 mass% addition of each of these three additives to activated carbon. Structural characterization shows that the density of the resulting film electrodes depends on the degree of agglomeration and the amount of additive. Addition of low surface area carbon black (∼80 m2 g-1) enhances the power handling of carbon electrodes but significantly lowers the specific capacitance even when adding small amounts of carbon black. A much lower decrease in specific capacitance is observed for carbon onions and the best values are seen for carbon black with a high surface area (∼1390 m2 g-1). The overall performance benefits from the addition of any of the studied additives only at either high scan rates and/or electrolytes with high ion mobility. Normalization to the volume shows a severe decrease in volumetric capacitance and only at high current densities nearing 10 A g-1 we can see an improvement of the electrode capacitance.

  6. Aged riverine particulate organic carbon in four UK catchments

    International Nuclear Information System (INIS)

    Adams, Jessica L.; Tipping, Edward; Bryant, Charlotte L.; Helliwell, Rachel C.; Toberman, Hannah; Quinton, John

    2015-01-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO 14 C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO 14 C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 14 C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO 14 C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high- 14 C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO 14 C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO 14 C in rivers draining catchments with low erosion rates. - Highlights:

  7. Aged riverine particulate organic carbon in four UK catchments

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jessica L., E-mail: jesams@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); Tipping, Edward, E-mail: et@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); Bryant, Charlotte L., E-mail: charlotte.bryant@glasgow.ac.uk [NERC Radiocarbon Facility, East Kilbride G75 0QF, Scotland (United Kingdom); Helliwell, Rachel C., E-mail: rachel.helliwell@hutton.ac.uk [The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH Scotland (United Kingdom); Toberman, Hannah, E-mail: hannahtoberman@hotmail.com [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP (United Kingdom); Quinton, John, E-mail: j.quinton@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2015-12-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO{sup 14}C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO{sup 14}C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 {sup 14}C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO{sup 14}C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high-{sup 14}C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO{sup 14}C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO{sup 14}C in rivers draining catchments with low erosion rates

  8. Superconducting characteristics of 4-Å carbon nanotube-zeolite composite

    KAUST Repository

    Lortz, Rolf W.

    2009-04-15

    We have fabricated nanocomposites consisting of 4-A carbon nanotubes embedded in the 0.7-nm pores of aluminophosphate- five (AFI) zeolite that display a superconducting specific heat transition at 15 K. MicroRaman spectra of the samples show strong and spatially uniform radial breathing mode (RBM) signals at 510 cm-1 and 550 cm-1, characteristic of the (4,2) and (5,0) nanotubes, respectively. The specific heat transition is suppressed at >2T, with a temperature dependence characteristic of finite-size effects. Comparison with theory shows the behavior to be consistent with that of a type II BCS superconductor, characterized by a coherence length of 14 ± 2 nm and a magnetic penetration length of 1.5 ± 0.7 μm. Four probe and differential resistance measurements have also indicated a superconducting transition initiating at 15 K, but the magnetoresistance data indicate the superconducting network to be inhomogeneous, with a component being susceptible to magnetic fields below 3 T and other parts capable of withstanding a magnetic field of 5Tor beyond.

  9. Norwegian farmers ceasing certified organic production: characteristics and reasons.

    Science.gov (United States)

    Flaten, Ola; Lien, Gudbrand; Koesling, Matthias; Løes, Anne-Kristin

    2010-12-01

    This article examines the characteristics of and reasons for Norwegian farmers' ceasing or planning to cease certified organic production. We gathered cross-sectional survey data in late 2007 from organic farmers deregistering between January 2004 and September 2007 (n=220), and similar data from a random sample of farmers with certified organic management in 2006 (n=407). Of the respondents deregistering by November 2007, 17% had quit farming altogether, 61% now farmed conventionally, and 21% were still farming by organic principles, but without certification. Nearly one in four organic farmers in 2007 indicated that they planned to cease certification within the next 5-10 years. From the two survey samples, we categorised farmers who expect to be deregistered in 5-10 years into three groups: conventional practices (n=139), continuing to farm using organic principles (uncertified organic deregistrants, n=105), and stopped farming (n=33). Of the numerous differences among these groups, two were most striking: the superior sales of uncertified organic deregistrants through consumer-direct marketing and the lowest shares of organic land among conventional deregistrants. We summarised a large number of reasons for deregistering into five factors through factor analysis: economics, regulations, knowledge-exchange, production, and market access. Items relating to economics and regulations were the primary reasons offered for opting out. The regression analysis showed that the various factors were associated with several explanatory variables. Regulations, for example, figured more highly among livestock farmers than crop farmers. The economic factor strongly reflected just a few years of organic management. Policy recommendations for reducing the number of dropouts are to focus on economics, environmental attitudes, and the regulatory issues surrounding certified organic production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon.

    Science.gov (United States)

    Kipka, Undine; Di Toro, Dominic M

    2011-09-01

    Predicting the association of contaminants with both particulate and dissolved organic matter is critical in determining the fate and bioavailability of chemicals in environmental risk assessment. To date, the association of a contaminant to particulate organic matter is considered in many multimedia transport models, but the effect of dissolved organic matter is typically ignored due to a lack of either reliable models or experimental data. The partition coefficient to dissolved organic carbon (K(DOC)) may be used to estimate the fraction of a contaminant that is associated with dissolved organic matter. Models relating K(DOC) to the octanol-water partition coefficient (K(OW)) have not been successful for many types of dissolved organic carbon in the environment. Instead, linear solvation energy relationships are proposed to model the association of chemicals with dissolved organic matter. However, more chemically diverse K(DOC) data are needed to produce a more robust model. For humic acid dissolved organic carbon, the linear solvation energy relationship predicts log K(DOC) with a root mean square error of 0.43. Copyright © 2011 SETAC.

  11. Retardation of volatile organic compounds in ground water in low organic carbon sediments

    International Nuclear Information System (INIS)

    Hoffman, F.

    1995-04-01

    It is postulated that adsorption onto aquifer matrix surfaces is only one of the processes that retard contaminants in ground water in unconsolidated sediments; others include hydrodynamic dispersion, abiotic/biotic degradation, matrix diffusion, partitioning to organic carbon, diffusion into and retention in dead-end pores, etc. This work aims at these processes in defining the K d of VOCs in sediments with low organic carbon content. Experiments performed include an initial column experiment for VOC (TCE and perchloroethylene(PCE)) retardation tests on geological materials, PCE and TCE data from LLNL sediments, and a preliminary multilayer sampler experiment. The VOC K d s in low organic carbon permeable aquifer materials are dependent on the VOC composition and independent of aquifer grain size, indicating that sorption was not operative and that the primary retarding factors are diffusion controlled. The program of future experiments is described

  12. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes.

    Science.gov (United States)

    Zhang, Shujuan; Shao, Ting; Karanfil, Tanju

    2011-01-01

    Understanding the influence of natural organic matter (NOM) on synthetic organic contaminant (SOC) adsorption by carbon nanotubes (CNTs) is important for assessing the environmental implications of accidental CNT release and spill to natural waters, and their potential use as adsorbents in engineered systems. In this study, adsorption of two SOCs by three single-walled carbon nanotubes (SWNTs), one multi-walled carbon nanotube (MWNT), a microporous activated carbon fiber (ACF) [i.e., ACF10] and a bimodal porous granular activated carbon (GAC) [i.e., HD4000] was compared in the presence and absence of NOM. The NOM effect was found to depend strongly on the pore size distribution of carbons. Minimal NOM effect occurred on the macroporous MWNT, whereas severe NOM effects were observed on the microporous HD4000 and ACF10. Although the single-solute adsorption capacities of the SWNTs were much lower than those of HD4000, in the presence of NOM the SWNTs exhibited adsorption capacities similar to those of HD4000. Therefore, if released into natural waters, SWNTs can behave like an activated carbon, and will be able to adsorb, carry, and transfer SOCs to other systems. However, from an engineering application perspective, CNTs did not exhibit a major advantage, in terms of adsorption capacities, over the GAC and ACF. The NOM effect was also found to depend on molecular properties of SOCs. NOM competition was more severe on the adsorption of 2-phenylphenol, a nonplanar and hydrophilic SOC, than phenanthrene, a planar and hydrophobic SOC, tested in this study. In terms of surface chemistry, both adsorption affinity to SOCs and NOM effect on SOC adsorption were enhanced with increasing hydrophobicity of the SWNTs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Modelling soil organic carbon in Danish agricultural soils suggests low potential for future carbon sequestration

    DEFF Research Database (Denmark)

    Taghizadeh-Toosi, Arezoo; Olesen, Jørgen Eivind

    2016-01-01

    , various agricultural management scenarios were considered including characteristic crop rotations with and without the presence of cover crops, and the application of organic amendments. We compared these simulated management effects with management effects estimated from Danish SOC monitoring network...

  14. An improved method for quantitatively measuring the sequences of total organic carbon and black carbon in marine sediment cores

    Science.gov (United States)

    Xu, Xiaoming; Zhu, Qing; Zhou, Qianzhi; Liu, Jinzhong; Yuan, Jianping; Wang, Jianghai

    2018-01-01

    Understanding global carbon cycle is critical to uncover the mechanisms of global warming and remediate its adverse effects on human activities. Organic carbon in marine sediments is an indispensable part of the global carbon reservoir in global carbon cycling. Evaluating such a reservoir calls for quantitative studies of marine carbon burial, which closely depend on quantifying total organic carbon and black carbon in marine sediment cores and subsequently on obtaining their high-resolution temporal sequences. However, the conventional methods for detecting the contents of total organic carbon or black carbon cannot resolve the following specific difficulties, i.e., (1) a very limited amount of each subsample versus the diverse analytical items, (2) a low and fluctuating recovery rate of total organic carbon or black carbon versus the reproducibility of carbon data, and (3) a large number of subsamples versus the rapid batch measurements. In this work, (i) adopting the customized disposable ceramic crucibles with the microporecontrolled ability, (ii) developing self-made or customized facilities for the procedures of acidification and chemothermal oxidization, and (iii) optimizing procedures and carbon-sulfur analyzer, we have built a novel Wang-Xu-Yuan method (the WXY method) for measuring the contents of total organic carbon or black carbon in marine sediment cores, which includes the procedures of pretreatment, weighing, acidification, chemothermal oxidation and quantification; and can fully meet the requirements of establishing their highresolution temporal sequences, whatever in the recovery, experimental efficiency, accuracy and reliability of the measurements, and homogeneity of samples. In particular, the usage of disposable ceramic crucibles leads to evidently simplify the experimental scenario, which further results in the very high recovery rates for total organic carbon and black carbon. This new technique may provide a significant support for

  15. Dilution limits dissolved organic carbon utilization in the deep ocean

    KAUST Repository

    Arrieta, Jesus

    2015-03-19

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  16. Dilution limits dissolved organic carbon utilization in the deep ocean

    KAUST Repository

    Arrieta, J M; Mayol, Eva; Hansman, Roberta L.; Herndl, Gerhard J.; Dittmar, Thorsten; Duarte, Carlos M.

    2015-01-01

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  17. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil.

    Science.gov (United States)

    Wijesekara, Hasintha; Bolan, Nanthi S; Thangavel, Ramesh; Seshadri, Balaji; Surapaneni, Aravind; Saint, Christopher; Hetherington, Chris; Matthews, Peter; Vithanage, Meththika

    2017-12-01

    A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha -1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ 13 C and δ 15 N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO 2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ 13 C, and enriched δ 15 N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO 2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO 2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Pyroclastic Eruption Boosts Organic Carbon Fluxes Into Patagonian Fjords

    Science.gov (United States)

    Mohr, Christian H.; Korup, Oliver; Ulloa, Héctor; Iroumé, Andrés.

    2017-11-01

    Fjords and old-growth forests store large amounts of organic carbon. Yet the role of episodic disturbances, particularly volcanic eruptions, in mobilizing organic carbon in fjord landscapes covered by temperate rainforests remains poorly quantified. To this end, we estimated how much wood and soils were flushed to nearby fjords following the 2008 eruption of Chaitén volcano in south-central Chile, where pyroclastic sediments covered >12 km2 of pristine temperate rainforest. Field-based surveys of forest biomass, soil organic content, and dead wood transport reveal that the reworking of pyroclastic sediments delivered 66,500 + 14,600/-14,500 tC of large wood to two rivers entering the nearby Patagonian fjords in less than a decade. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits ( 79,900 + 21,100/-16,900 tC) or stored in active river channels (5,900-10,600 tC). We estimate that bank erosion mobilized 132,300+21,700/-30,600 tC of floodplain forest soil. Eroded and reworked forest soils have been accreting on coastal river deltas at >5 mm yr-1 since the eruption. While much of the large wood is transported out of the fjord by long-shore drift, the finer fraction from eroded forest soils is likely to be buried in the fjords. We conclude that the organic carbon fluxes boosted by rivers adjusting to high pyroclastic sediment loads may remain elevated for up to a decade and that Patagonian temperate rainforests disturbed by excessive loads of pyroclastic debris can be episodic short-lived carbon sources.

  19. Hidden cycle of dissolved organic carbon in the deep ocean.

    Science.gov (United States)

    Follett, Christopher L; Repeta, Daniel J; Rothman, Daniel H; Xu, Li; Santinelli, Chiara

    2014-11-25

    Marine dissolved organic carbon (DOC) is a large (660 Pg C) reactive carbon reservoir that mediates the oceanic microbial food web and interacts with climate on both short and long timescales. Carbon isotopic content provides information on the DOC source via δ(13)C and age via Δ(14)C. Bulk isotope measurements suggest a microbially sourced DOC reservoir with two distinct components of differing radiocarbon age. However, such measurements cannot determine internal dynamics and fluxes. Here we analyze serial oxidation experiments to quantify the isotopic diversity of DOC at an oligotrophic site in the central Pacific Ocean. Our results show diversity in both stable and radio isotopes at all depths, confirming DOC cycling hidden within bulk analyses. We confirm the presence of isotopically enriched, modern DOC cocycling with an isotopically depleted older fraction in the upper ocean. However, our results show that up to 30% of the deep DOC reservoir is modern and supported by a 1 Pg/y carbon flux, which is 10 times higher than inferred from bulk isotope measurements. Isotopically depleted material turns over at an apparent time scale of 30,000 y, which is far slower than indicated by bulk isotope measurements. These results are consistent with global DOC measurements and explain both the fluctuations in deep DOC concentration and the anomalous radiocarbon values of DOC in the Southern Ocean. Collectively these results provide an unprecedented view of the ways in which DOC moves through the marine carbon cycle.

  20. Spatial Patterns of Soil Organic Carbon in the United States

    Science.gov (United States)

    Bliss, N. B.

    2005-12-01

    The Department of the Interior (DOI) has jurisdiction influencing approximately 22 percent of the land area of the United States. The poster presents estimates of the current stocks of soil organic carbon (SOC) on all lands and Federal lands. The DOI lands have about 22 percent of the nation's SOC, so the average carbon intensity (8.66 kg C m-2) about matches the average for all lands (8.81 kg C m-2). However the carbon on DOI lands is not evenly distributed. Of the 17.76 Petagrams (1 Pg = 1015 grams) of SOC on DOI lands, 13.07 Pg (74 percent) are in Alaska, and 4.69 Pg (26 percent) are in the Conterminous U.S. The Alaska soils are wetter and colder than the national average, and the DOI lands in the conterminous U.S. are warmer and drier than the average. A set of SOC maps is shown, developed by intersecting the State Soil Geographic (STATSGO) database with data on federal lands from the National Atlas. With 22 percent of the nation's soil carbon, the DOI lands are important in a national accounting of greenhouse gas emission and sequestration. Future behavior of these lands is uncertain, but in scenarios of warming or drying, carbon released by respiration may exceed carbon captured by photosynthesis, resulting in a net release of carbon to the atmosphere. If warming stimulates a net release of greenhouse gases, this represents a positive feedback contributing to future global warming, a very unstable condition for the global climate system.

  1. Storage and release of organic carbon from glaciers and ice sheets

    Science.gov (United States)

    Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.

    2015-02-01

    Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change -- equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

  2. Storage and release of organic carbon from glaciers and ice sheets

    Science.gov (United States)

    Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.

    2015-01-01

    Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change — equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

  3. Aqueous adsorption and removal of organic contaminants by carbon nanotubes

    International Nuclear Information System (INIS)

    Yu, Jin-Gang; Zhao, Xiu-Hui; Yang, Hua; Chen, Xiao-Hong; Yang, Qiaoqin; Yu, Lin-Yan; Jiang, Jian-Hui; Chen, Xiao-Qing

    2014-01-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future. - Highlights: • We summarize the most recent research progress of CNTs for removal of organics. • Adsorption mechanisms between CNTs and organics were elucidated in detail. • The developing trends and prospects of CNTs for removal of organics were discussed

  4. Aqueous adsorption and removal of organic contaminants by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jin-Gang, E-mail: yujg@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Zhao, Xiu-Hui; Yang, Hua [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Chen, Xiao-Hong [Collaborative Innovation Center of Resource-conserving and Environment-friendly Society and Ecological Civilization, Changsha, Hunan 410083 (China); Yang, Qiaoqin [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada); Yu, Lin-Yan [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Jiang, Jian-Hui [College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China); Chen, Xiao-Qing, E-mail: xqchen@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China)

    2014-06-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future. - Highlights: • We summarize the most recent research progress of CNTs for removal of organics. • Adsorption mechanisms between CNTs and organics were elucidated in detail. • The developing trends and prospects of CNTs for removal of organics were discussed.

  5. Validity of estimating the organic carbon content of basin sediment using color measurements

    International Nuclear Information System (INIS)

    Sasaki, Toshinori; Sugai, Toshihiko; Ogami, Takashi; Yanagida, Makoto; Yasue, Ken-ichi

    2010-01-01

    Psychometric lightness (L* value) measured by a colorimeter offers a rapid means of obtaining the organic carbon content of sediment. We measured peat and lacustrine sediments covering the past 300 ka - 106 samples for L* value and 197 samples for organic carbon content. L* values are highly correlated with organic carbon contents. Therefore, L* values are a convenient alternative to measuring organic carbon contents. (author)

  6. Sources and turnover of organic carbon and methane in fjord and shelf sediments off northern Norway

    Science.gov (United States)

    Sauer, Simone; Hong, Wei-Li; Knies, Jochen; Lepland, Aivo; Forwick, Matthias; Klug, Martin; Eichinger, Florian; Baranwal, Soma; Crémière, Antoine; Chand, Shyam; Schubert, Carsten J.

    2016-10-01

    To better understand the present and past carbon cycling and transformation processes in methane-influenced fjord and shelf areas of northern Norway, we compared two sediment cores from the Hola trough and from Ullsfjorden. We investigated (1) the organic matter composition and sedimentological characteristics to study the sources of organic carbon (Corg) and the factors influencing Corg burial, (2) pore water geochemistry to determine the contribution of organoclastic sulfate reduction and methanogenesis to total organic carbon turnover, and (3) the carbon isotopic signature of hydrocarbons to identify the carbon transformation processes and gas sources. High sedimentation and Corg accumulation rates in Ullsfjorden support the notion that fjords are important Corg sinks. The depth of the sulfate-methane-transition (SMT) in the fjord is controlled by the supply of predominantly marine organic matter to the sediment. Organoclastic sulfate reduction accounts for 60% of the total depth-integrated sulfate reduction in the fjord. In spite of the presence of ethane, propane, and butane, we suggest a purely microbial origin of light hydrocarbons in the sediments based on their low δ13C values. In the Hola trough, sedimentation and Corg accumulation rates changed during the deglacial-to-post-glacial transition from approximately 80 cm ka-1 to erosion at present. Thus, Corg burial in this part of the shelf is presently absent. Low organic matter content in the sediment and low rates of organoclastic sulfate reduction (only 3% of total depth-integrated sulfate reduction) entail that the shallow depth of the SMT is controlled mostly by ascending thermogenic methane from deeper sources.

  7. Characteristics of the volatile organic compounds -- Arid Integrated Demonstration Site

    International Nuclear Information System (INIS)

    Last, G.V.; Lenhard, R.J.; Bjornstad, B.N.; Evans, J.C.; Roberson, K.R.; Spane, F.A.; Amonette, J.E.; Rockhold, M.L.

    1991-10-01

    The Volatile Organic Compounds -- Arid Integrated Demonstration Program (VOC-Arid ID) is targeted at demonstration and testing of technologies for the evaluation and cleanup of volatile organic compounds and associated contaminants at arid DOE sites. The initial demonstration site is an area of carbon tetrachloride (CCl 4 ) contamination located near the center of the Hanford Site. The movement of CCl 4 and other volatile organic contaminants in the subsurface is very complex. The problem at the Hanford Site is further complicated by the concurrent discharge of other waste constituents including acids, lard oil, organic phosphates, and transuranic radionuclides. In addition, the subsurface environment is very complex, with large spatial variabilities in hydraulic properties. A thorough understanding of the problem is essential to the selection of appropriate containment, retrieval, and/or in situ remedial technologies. The effectiveness of remedial technologies depends on knowing where the contaminants are, how they are held up in a given physical and chemical subsurface environment; and knowing the physical, chemical, and microbiological changes that are induced by the various remedial technologies

  8. [Effects of different cultivation patterns on soil aggregates and organic carbon fractions].

    Science.gov (United States)

    Qiu, Xiao-Lei; Zong, Liang-Gang; Liu, Yi-Fan; Du, Xia-Fei; Luo, Min; Wang, Run-Chi

    2015-03-01

    Combined with the research in an organic farm in the past 10 years, differences of soil aggregates composition, distribution and organic carbon fractions between organic and conventional cultivation were studied by simultaneous sampling analysis. The results showed that the percentages of aggregates (> 1 mm, 1-0.5 mm, 0.5-0.25 mm and organic cultivation were 9.73%, 18.41%, 24.46% and 43.90%, respectively. The percentage of organic cultivation than that in conventional cultivation. Organic cultivation increased soil organic carbon (average of 17.95 g x kg(-1)) and total nitrogen contents (average of 1.51 g x kg(-1)). Among the same aggregates in organic cultivation, the average content of heavy organic carbon fraction was significantly higher than that in conventional cultivation. This fraction accumulated in organic carbon. In organic cultivation, the content of labile organic carbon in > 1 mm macro-aggregates was significantly higher than that in conventional cultivation, while no significant difference was found among the other aggregates, indicating that the labile organic carbon was enriched in > 1 mm macro-aggregates. Organic cultivation increased the amounts of organic carbon and its fractions, reduced tillage damage to aggregates, and enhanced the stability of organic carbon. Organic cultivation was therefore beneficial for soil carbon sequestration. The findings of this research may provide theoretical basis for further acceleration of the organic agriculture development.

  9. Habitat characteristics provide insights of carbon storage in seagrass meadows

    KAUST Repository

    Mazarrasa, Iné s; Samper-Villarreal, Jimena; Serrano, Oscar; Lavery, Paul S.; Lovelock, Catherine E.; Marbà , Nú ria; Duarte, Carlos M.; Corté s, Jorge

    2018-01-01

    Carbon strategies aim to enhance CO2 sequestration and avoid greenhouse gasses emissions through the management of coastal vegetated ecosystems, including seagrass meadows. The implementation of Blue Carbon strategies requires a good understanding

  10. Release characteristics of selected carbon nanotube polymer composites

    Science.gov (United States)

    Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to improve strength, conductivity, and other attributes. A developing concern is the potential for carbon nanotube polymer nanocomposites to release nanoparticles into the environment as the polymer ...

  11. Current-Voltage Characteristics of the Metal / Organic Semiconductor / Metal Structures: Top and Bottom Contact Configuration Case

    Directory of Open Access Journals (Sweden)

    Šarūnas MEŠKINIS

    2013-03-01

    Full Text Available In present study five synthesized organic semiconductor compounds have been used for fabrication of the planar metal / organic semiconductor / metal structures. Both top electrode and bottom electrode configurations were used. Current-voltage (I-V characteristics of the samples were investigated. Effect of the hysteresis of the I-V characteristics was observed for all the investigated samples. However, strength of the hysteresis was dependent on the organic semiconductor used. Study of I-V characteristics of the top contact Al/AT-RB-1/Al structures revealed, that in (0 – 500 V voltages range average current of the samples measured in air is only slightly higher than current measured in nitrogen ambient. Deposition of the ultra-thin diamond like carbon interlayer resulted in both decrease of the hysteresis of I-V characteristics of top contact Al/AT-RB-1/Al samples. However, decreased current and decreased slope of the I-V characteristics of the samples with diamond like carbon interlayer was observed as well. I-V characteristic hysteresis effect was less pronounced in the case of the bottom contact metal/organic semiconductor/metal samples. I-V characteristics of the bottom contact samples were dependent on electrode metal used.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3816

  12. Modeling equilibrium adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.

    2010-05-01

    Solute hydrophobicity, polarizability, aromaticity and the presence of H-bond donor/acceptor groups have been identified as important solute properties that affect the adsorption on activated carbon. However, the adsorption mechanisms related to these properties occur in parallel, and their respective dominance depends on the solute properties as well as carbon characteristics. In this paper, a model based on multivariate linear regression is described that was developed to predict equilibrium carbon loading on a specific activated carbon (F400) for solutes reflecting a wide range of solute properties. In order to improve prediction accuracy, groups (bins) of solutes with similar solute properties were defined and solute removals were predicted for each bin separately. With these individual linear models, coefficients of determination (R2) values ranging from 0.61 to 0.84 were obtained. With the mechanistic approach used in developing this predictive model, a strong relation with adsorption mechanisms is established, improving the interpretation and, ultimately, acceptance of the model. © 2010 Elsevier Ltd.

  13. Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials

    CERN Document Server

    Levitsky, Igor A; Karachevtsev, Victor A

    2012-01-01

    Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials describes physical, optical and spectroscopic properties of the emerging class of nanocomposites formed from carbon nanotubes (CNTs)  interfacing with organic and inorganic materials. The three main chapters detail novel trends in  photophysics related to the interaction of  light with various carbon nanotube composites from relatively simple CNT/small molecule assemblies to complex hybrids such as CNT/Si and CNT/DNA nanostructures.   The latest experimental results are followed up with detailed discussions and scientific and technological perspectives to provide a through coverage of major topics including: ·   Light harvesting, energy conversion, photoinduced charge separation  and transport  in CNT based nanohybrids · CNT/polymer composites exhibiting photoactuation; and ·         Optical  spectroscopy  and structure of CNT/DNA complexes. Including original data and a short review of recent research, Phot...

  14. Acid-base characteristics of powdered-activated-carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Reed, B.E. (West Virginia Univ., Morgantown (United States)); Jensen, J.N.; Matsumoto, M.R. (State Univ. of New York, Buffalo (United States))

    Adsorption of heavy metals onto activated carbon has been described using the surface-complex-formation (SCF) model, a chemical equilibrium model. The SCF model requires a knowledge of the amphoteric nature of activated carbon prior to metal adsorption modeling. In the past, a single-diprotic-acid-site model had been employed to describe the amphoteric nature of activated-carbon surfaces. During this study, the amphoteric nature of two powdered activated carbons were investigated, and a three-monoprotic site surface model was found to be a plausible alternative. The single-diprotic-acid-site and two-monoprotic-site models did not describe the acid-base behavior of the two carbons studied adequately. The two-diprotic site was acceptable for only one of the study carbons. The acid-base behavior of activated carbon surfaces seem to be best modeled as a series of weak monoprotic acids.

  15. Distribution of soil organic carbon in the conterminous United States

    Science.gov (United States)

    Bliss, Norman B.; Waltman, Sharon; West, Larry T.; Neale, Anne; Mehaffey, Megan; Hartemink, Alfred E.; McSweeney, Kevin M.

    2014-01-01

    The U.S. Soil Survey Geographic (SSURGO) database provides detailed soil mapping for most of the conterminous United States (CONUS). These data have been used to formulate estimates of soil carbon stocks, and have been useful for environmental models, including plant productivity models, hydrologic models, and ecological models for studies of greenhouse gas exchange. The data were compiled by the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) from 1:24,000-scale or 1:12,000-scale maps. It was found that the total soil organic carbon stock in CONUS to 1 m depth is 57 Pg C and for the total profile is 73 Pg C, as estimated from SSURGO with data gaps filled from the 1:250,000-scale Digital General Soil Map. We explore the non-linear distribution of soil carbon on the landscape and with depth in the soil, and the implications for sampling strategies that result from the observed soil carbon variability.

  16. Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in Northern India: Implications to organic mass-to-organic carbon ratio.

    Science.gov (United States)

    Rajput, Prashant; Sarin, M M

    2014-05-01

    This study focuses on characteristics of organic aerosols (polar and non-polar) and total organic mass-to-organic carbon ratio (OM/OC) from post-harvest agricultural-waste (paddy- and wheat-residue) burning emissions in Northern India. Aerosol samples from an upwind location (Patiala: 30.2°N, 76.3°E) in the Indo-Gangetic Plain were analyzed for non-polar and polar fractions of organic carbon (OC1 and OC2) and their respective mass (OM1 and OM2). On average, polar organic aerosols (OM2) contribute nearly 85% of the total organic mass (OM) from the paddy- and wheat-residue burning emissions. The water-soluble-OC (WSOC) to OC2 ratio, within the analytical uncertainty, is close to 1 from both paddy- and wheat-residue burning emissions. However, temporal variability and relatively low WSOC/OC2 ratio (Av: 0.67±0.06) is attributed to high moisture content and poor combustion efficiency during paddy-residue burning, indicating significant contribution (∼30%) of aromatic carbon to OC2. The OM/OC ratio for non-polar (OM1/OC1∼1.2) and polar organic aerosols (OM2/OC2∼2.2), hitherto unknown for open agricultural-waste burning emissions, is documented in this study. The total OM/OC ratio is nearly identical, 1.9±0.2 and 1.8±0.2, from paddy- and wheat-residue burning emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Convective Propagation Characteristics Using a Simple Representation of Convective Organization

    Science.gov (United States)

    Neale, R. B.; Mapes, B. E.

    2016-12-01

    Observed equatorial wave propagation is intimately linked to convective organization and it's coupling to features of the larger-scale flow. In this talk we a use simple 4 level model to accommodate vertical modes of a mass flux convection scheme (shallow, mid-level and deep). Two paradigms of convection are used to represent convective processes. One that has only both random (unorganized) diagnosed fluctuations of convective properties and one with organized fluctuations of convective properties that are amplified by previously existing convection and has an explicit moistening impact on the local convecting environment We show a series of model simulations in single-column, 2D and 3D configurations, where the role of convective organization in wave propagation is shown to be fundamental. For the optimal choice of parameters linking organization to local atmospheric state, a broad array of convective wave propagation emerges. Interestingly the key characteristics of propagating modes are the low-level moistening followed by deep convection followed by mature 'large-scale' heating. This organization structure appears to hold firm across timescales from 5-day wave disturbances to MJO-like wave propagation.

  18. Organic carbon in glacial fjords of Chilean Patagonia

    Science.gov (United States)

    Pantoja, Silvio; Gutiérrez, Marcelo; Tapia, Fabián; Abarzúa, Leslie; Daneri, Giovanni; Reid, Brian; Díez, Beatriz

    2016-04-01

    The Southern Ice Field in Chilean Patagonia is the largest (13,000 km2) temperate ice mass in the Southern hemisphere, yearly transporting ca. 40 km3 of freshwater to fjords. This volume of fresh and cold water likely affects adjacent marine ecosystems by changing circulation, productivity, food web dynamics, and the abundance and distribution of planktonic and benthic organisms. We hypothesize that freshwater-driven availability of inorganic nutrient and transport of organic and inorganic suspended matter, as well as microbes, become a controlling factor for productivity in the fjord associated with the Baker river and Jorge Montt glacier. Both appear to be sources of silicic acid, but not of nitrate and particulate organic carbon, especially during summer, when surface PAR and glacier thawing are maximal. In contrast to Baker River, the Jorge Montt glacier is also a source of dissolved organic carbon towards a proglacial fjord and the Baker Channel, indicating that a thorough chemical description of sources (tidewater glacier and glacial river) is needed. Nitrate in fiord waters reaches ca. 15 μM at 25 m depth with no evidence of mixing up during summer. Stable isotope composition of particulate organic nitrogen reaches values as low as 3 per mil in low-salinity waters near both glacier and river. Nitrogen fixation could be depleting δ15N in organic matter, as suggested by the detection at surface waters of nif H genes belonging to diazotrophs near the Montt glacier. As diazotrophs have also been detected in other cold marine waters (e.g. Baltic Sea, Arctic Ocean) as well as glaciers and polar terrestrial waters, there is certainly a potential for both marine and freshwater microbes to contribute and have a significant impact on the Patagonian N and C budgets. Assessing the impact of freshwater on C and N fluxes and the microbial community structure in Patagonian waters will allow understanding future scenarios of rapid glacier melting. This research was funded

  19. Diagnostic characteristics of sinonasal organizing hematomas: avoiding misdiagnosis.

    Science.gov (United States)

    Wu, Arthur W; Ting, Jonathan Y; Borgie, Roderick C; Busaba, Nicolas Y; Sadow, Peter M; Juliano, Amy F; Gray, Stacey T; Holbrook, Eric H

    2013-07-01

    Organizing hematomas of the paranasal sinuses are diagnostic dilemmas clinically and radiographically, mimicking benign or malignant neoplastic processes and causing patients and clinicians undue worry regarding these diagnoses. Diagnostic criteria for correctly identifying these lesions are not well known. A retrospective case series of 7 patients with sinonasal organizing hematoma was studied. Radiographic imaging, clinical characteristics, and pathology were reviewed for new insights. Three patients presented with a primary complaint of epistaxis, 4 had masses visible on nasal endoscopy, and 2 had vascular malformations or small hemangiomas adjacent to the mass found on final pathology. Biopsy of these masses were consistently nondiagnostic prior to complete resection. The most diagnostic findings were "shells" of T2 hypointensity on magnetic resonance imaging (MRI) surrounding the lobules of each of the masses. These correspond to rims of fibrosis at the periphery of the lobules on pathology. Areas of fresh hemorrhage are located at the center of these lobules. Sinonasal organizing hematomas are rare lesions of the paranasal sinuses whose clinical characteristics lead to misdiagnoses of benign or malignant neoplasms. Endoscopy, preoperative biopsy, and computed tomography (CT) imaging do not lend helpful information in differentiating these lesions from more worrisome neoplastic processes. However, MRI can lead to positive diagnosis by recognizing the distinct outer rims of T2 hypointensity typically seen in these lesions. © 2013 ARS-AAOA, LLC.

  20. Self-organized global control of carbon emissions

    Science.gov (United States)

    Zhao, Zhenyuan; Fenn, Daniel J.; Hui, Pak Ming; Johnson, Neil F.

    2010-09-01

    There is much disagreement concerning how best to control global carbon emissions. We explore quantitatively how different control schemes affect the collective emission dynamics of a population of emitting entities. We uncover a complex trade-off which arises between average emissions (affecting the global climate), peak pollution levels (affecting citizens’ everyday health), industrial efficiency (affecting the nation’s economy), frequency of institutional intervention (affecting governmental costs), common information (affecting trading behavior) and market volatility (affecting financial stability). Our findings predict that a self-organized free-market approach at the level of a sector, state, country or continent can provide better control than a top-down regulated scheme in terms of market volatility and monthly pollution peaks. The control of volatility also has important implications for any future derivative carbon emissions market.

  1. Satellite observation of particulate organic carbon dynamics in ...

    Science.gov (United States)

    Particulate organic carbon (POC) plays an important role in coastal carbon cycling and the formation of hypoxia. Yet, coastal POC dynamics are often poorly understood due to a lack of long-term POC observations and the complexity of coastal hydrodynamic and biogeochemical processes that influence POC sources and sinks. Using field observations and satellite ocean color products, we developed a nw multiple regression algorithm to estimate POC on the Louisiana Continental Shelf (LCS) from satellite observations. The algorithm had reliable performance with mean relative error (MRE) of ?40% and root mean square error (RMSE) of ?50% for MODIS and SeaWiFS images for POC ranging between ?80 and ?1200 mg m23, and showed similar performance for a large estuary (Mobile Bay). Substantial spatiotemporal variability in the satellite-derived POC was observed on the LCS, with high POC found on the inner shelf (satellite data with carefully developed algorithms can greatly increase

  2. [Effects of climate change on forest soil organic carbon storage: a review].

    Science.gov (United States)

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.

  3. Substantial soil organic carbon retention along floodplains of mountain streams

    Science.gov (United States)

    Sutfin, Nicholas A.; Wohl, Ellen

    2017-07-01

    Small, snowmelt-dominated mountain streams have the potential to store substantial organic carbon in floodplain sediment because of high inputs of particulate organic matter, relatively lower temperatures compared with lowland regions, and potential for increased moisture conditions. This work (i) quantifies mean soil organic carbon (OC) content along 24 study reaches in the Colorado Rocky Mountains using 660 soil samples, (ii) identifies potential controls of OC content based on soil properties and spatial position with respect to the channel, and (iii) and examines soil properties and OC across various floodplain geomorphic features in the study area. Stepwise multiple linear regression (adjusted r2 = 0.48, p sample depth, percent sand, distance from the channel, and relative elevation from the channel are significant predictors of OC content in the study area. Principle component analysis indicates limited separation between geomorphic floodplain features based on predictors of OC content. A lack of significant differences among floodplain features suggests that the systematic random sampling employed in this study can capture the variability of OC across floodplains in the study area. Mean floodplain OC (6.3 ± 0.3%) is more variable but on average greater than values in uplands (1.5 ± 0.08% to 2.2 ± 0.14%) of the Colorado Front Range and higher than published values from floodplains in other regions, particularly those of larger rivers.

  4. Elucidating Adsorptive Fractions of Natural Organic Matter on Carbon Nanotubes.

    Science.gov (United States)

    Ateia, Mohamed; Apul, Onur G; Shimizu, Yuta; Muflihah, Astri; Yoshimura, Chihiro; Karanfil, Tanju

    2017-06-20

    Natural organic matter (NOM) is a heterogeneous mixture of organic compounds that is omnipresent in natural waters. To date, the understanding of the adsorption of NOM components by carbon nanotubes (CNTs) is limited because of the limited number of comprehensive studies in the literature examining the adsorption of NOM by CNTs. In this study, 11 standard NOM samples from various sources were characterized, and their adsorption behaviors on four different CNTs were examined side-by-side using total organic carbon, fluorescence, UV-visible spectroscopy, and high-performance size-exclusion chromatography (HPSEC) analysis. Adsorption was influenced by the chemical properties of the NOM, including aromaticity, degree of oxidation, and carboxylic acidity. Fluorescence excitation-emission matrix (EEM) analysis showed preferential adsorption of decomposed and terrestrial-derived NOM compared to freshly produced and microbial-derived NOM. HPSEC analysis revealed preferential adsorption of fractions in the molecular weight range of 0.5-2 kDa for humic acids but in the molecular weight range of 1-3 kDa for all fulvic acids and reverse-osmosis isolates. However, the smallest characterized fraction (MW < 0.4 kDa) in all samples did not adsorb on the CNTs.

  5. The soil organic carbon content of anthropogenically altered organic soils effects the dissolved organic matter quality, but not the dissolved organic carbon concentrations

    Science.gov (United States)

    Frank, Stefan; Tiemeyer, Bärbel; Bechtold, Michel; Lücke, Andreas; Bol, Roland

    2016-04-01

    Dissolved organic carbon (DOC) is an important link between terrestrial and aquatic ecosystems. This is especially true for peatlands which usually show high concentrations of DOC due to the high stocks of soil organic carbon (SOC). Most previous studies found that DOC concentrations in the soil solution depend on the SOC content. Thus, one would expect low DOC concentrations in peatlands which have anthropogenically been altered by mixing with sand. Here, we want to show the effect of SOC and groundwater level on the quantity and quality of the dissolved organic matter (DOM). Three sampling sites were installed in a strongly disturbed bog. Two sites differ in SOC (Site A: 48%, Site B: 9%) but show the same mean annual groundwater level of 15 and 18 cm below ground, respectively. The SOC content of site C (11%) is similar to Site B, but the groundwater level is much lower (-31 cm) than at the other two sites. All sites have a similar depth of the organic horizon (30 cm) and the same land-use (low-intensity sheep grazing). Over two years, the soil solution was sampled bi-weekly in three depths (15, 30 and 60 cm) and three replicates. All samples were analyzed for DOC and selected samples for dissolved organic nitrogen (DON) and delta-13C and delta-15N. Despite differences in SOC and groundwater level, DOC concentrations did not differ significantly (A: 192 ± 62 mg/L, B: 163 ± 55 mg/L and C: 191 ± 97 mg/L). At all sites, DOC concentrations exceed typical values for peatlands by far and emphasize the relevance even of strongly disturbed organic soils for DOC losses. Individual DOC concentrations were controlled by the temperature and the groundwater level over the preceding weeks. Differences in DOM quality were clearer. At site B with a low SOC content, the DOC:DON ratio of the soil solution equals the soil's C:N ratio, but the DOC:DON ratio is much higher than the C:N ratio at site A. In all cases, the DOC:DON ratio strongly correlates with delta-13C. There is no

  6. Amperometric sensor for carbon dioxide: design, characteristics, and perforance

    International Nuclear Information System (INIS)

    Evans, J.; Pletcher, D.; Warburton, P.R.G.; Gibbs, T.K.

    1989-01-01

    A new sensor for atmospheric carbon dioxide is described. It is an amperometric device based on a porous electrode in a three-electrode cell and the electrolyte is a copper diamine complex in aqueous potassium chloride. The platinum cathode, held at constant potential, is used to detect the formation of Cu 2+ following the change in the pH of the solution when the sensor is exposed to an atmosphere containing carbon dioxide. The sensor described is designed to monitor carbon dioxide concentrations in the range 0-5%, although with some modifications, other ranges would be possible. The response to a change in the carbon dioxide content of the atmosphere is rapid (about 10s) while the monitored current is strongly (but nonlinearly) dependent on carbon dioxide concentration. Unlike other amperometric devices for carbon dioxide, there is no interference from oxygen although other acid gases would lead to an interfering response

  7. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    Science.gov (United States)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  8. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    Science.gov (United States)

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  9. Carbon Composition of Particulate Organic Carbon in the Gulf of Mexico

    Science.gov (United States)

    Rogers, K.; Montoya, J. P.; Weber, S.; Bosman, S.; Chanton, J.

    2016-02-01

    The Deepwater Horizon blowout released 5.0x1011 g C from gaseous hydrocarbons and up to 6.0x1011g C from oil into the water column. Another carbon source, adding daily to the water column, leaks from the natural hydrocarbon seeps that pepper the seafloor of the Gulf of Mexico. How much of this carbon from the DWH and natural seeps is assimilated into particulate organic carbon (POC) in the water column? We filtered seawater collected in 2010, 2012, and 2013 from seep and non-seep sites, collecting POC on 0.7µm glass microfiber filters and analyzing the POC for stable and radiocarbon isotopes. Mixing models based on carbon isotopic endmembers of methane, oil, and modern production were used to estimate the percentage of hydrocarbon incorporated into POC. Significant differences were seen between POC from shallow and deep waters and between POC collected from seep, non-seep, and blowout sites; however yearly differences were not as evident suggesting the GOM has a consistent supply of depleted carbon. Stable carbon isotopes signatures of POC in the Gulf averaged -23.7±2.5‰ for shallow samples and -26.65±2.9‰ for deep POC samples, while radiocarbon signatures averaged -100.4±146.1‰ for shallow and -394.6±197‰ for deep samples. POC in the northern Gulf are composed of 23-91% modern carbon, 2-21% methane, and 0-71% oil. Oil plays a major role in the POC composition of the GOM, especially at the natural seep GC600.

  10. The Organic Matter Molecular Characteristics of Pyrogenic Solids and Their Aqueous Leachable Fractions

    Science.gov (United States)

    Wozniak, A. S.; Hatcher, P.; Mitra, S.; Bostick, K. W.; Zimmerman, A. R.

    2016-02-01

    Pyrogenic organic matter (Py-OM), or black carbon (BC), derives from the incomplete combustion of fossil fuels and biomass and is recognized for its impacts on soil chemistry, pollutant transport, climate, and regional and global carbon cycling. In fact, Py-OM is commonly applied to agricultural plots, in the form of "biochars," with the intention of enhancing agricultural production and the expectation of a carbon sequestration side benefit due to Py-OM's refractory and immobile nature. However, several studies of riverine, estuarine, and oceanic waters have detected tracers of dissolved Py-OM in appreciable quantities suggesting that it is more mobile in the environment than previously expected. The quantities and impacts of Py-OM released to aqueous systems are likely dependent on Py-OM molecular characteristics which in turn likely depend on initial combustion conditions and environmental processing. Yet, very little is known about the detailed molecular composition of these materials, let alone their relationships with combustion and environmental processing. Here, pyrophosphate extractable and water leachable components of a range of Py-OM materials (natural charcoals aged in the environment for variable lengths of time, oak and grass combusted over a range of temperatures) are examined by Fourier transform ion cyclotron resonance mass spectrometry. The molecular characteristics of the dissolved and pyrophosphate extractable Py-OM is then compared in the context of production conditions. Results of this study will greatly improve our understanding of Py-OM cycling between watersheds and the oceans.

  11. Reuse of spent granular activated carbon for organic micro-pollutant removal from treated wastewater.

    Science.gov (United States)

    Hu, Jingyi; Shang, Ran; Heijman, Bas; Rietveld, Luuk

    2015-09-01

    Spent granular activated carbons (sGACs) for drinking water treatments were reused via pulverizing as low-cost adsorbents for micro-pollutant adsorption from a secondary treated wastewater effluent. The changes of physicochemical characteristics of the spent carbons in relation to the fresh carbons were determined and were correlated to the molecular properties of the respective GAC influents (i.e. a surface water and a groundwater). Pore size distribution analysis showed that the carbon pore volume decreased over a wider size range due to preloading by surface water, which contains a broader molecular weight distribution of organic matter in contrast to the groundwater. However, there was still considerable capacity available on the pulverized sGACs for atrazine adsorption in demineralized water and secondary effluent, and this was particularly the case for the groundwater spent GAC. However, as compared to the fresh counterparts, the decreased surface area and the induced surface acidic groups on the pulverized sGACs contributed both to the lower uptake and the more impeded adsorption kinetic of atrazine in the demineralized water. Nonetheless, the pulverized sGACs, especially the one preloaded by surface water, was less susceptible to adsorption competition in the secondary effluent, due to its negatively charged surface which can repulse the accessibility of the co-present organic matter. This suggests the reusability of the drinking water spent GACs for micro-pollutant adsorption in the treated wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Model Of Emergency Department Nurse Performance Improvement Based on Association of Individual Characteristic, Organization Characteristic and Job Characteristic

    OpenAIRE

    Bogar, Maria Margaretha; Nursalam, Nursalam; Dewi, Yulis Setiya

    2017-01-01

    Introduction: Nursing care is integral part of health care and having important role in management of patient with emergency condition. The purpose of this research was to develop nurse performance improvement model based on individual, organization and job characteristics association in Emergency Department of RSUD dr TC Hillers Maumere. Method: This was an explanative survey by cross sectional approach held on July -August 2012. Respondents in this study were 22 nurses and 44 patients were ...

  13. Effect of high pressure hydrogen on the mechanical characteristics of single carbon fiber

    Science.gov (United States)

    Jeon, Sang Koo; Kwon, Oh Heon; Jang, Hoon-Sik; Ryu, Kwon Sang; Nahm, Seung Hoon

    2018-02-01

    In this study, carbon fiber was exposed to a pressure of 7 MPa for 24 h in high pressure chamber. The tensile test for carbon fiber was conducted to estimate the effect on the high pressure hydrogen in the atmosphere. To determine the tensile strength and Weibull modulus, approximately thirty carbon fiber samples were measured in all cases, and carbon fiber exposed to high pressure argon was evaluated to verify only the effect of hydrogen. Additionally, carbon fiber samples were annealed at 1950 °C for 1 h for a comparison with normal carbon fiber and then tested under identical conditions. The results showed that the tensile strength scatter of normal carbon fiber exposed to hydrogen was relatively wider and the Weibull modulus was decreased. Moreover, the tensile strength of the annealed carbon fiber exposed to hydrogen was increased, and these samples indicated a complex Weibull modulus because the hydrogen stored in the carbon fiber influenced the mechanical characteristic.

  14. ORGANIC CARBON AND TOTAL NITROGEN IN THE DENSIMETRIC FRACTIONS OF ORGANIC MATTER UNDER DIFFERENT SOIL MANAGEMEN

    Directory of Open Access Journals (Sweden)

    MARCELO RIBEIRO VILELA PRADO

    2016-01-01

    Full Text Available The evaluation of land use and management by the measurement of soil organic matter and its fractions has gained attention since it helps in the understanding of the dynamics of their contribution to soil productivity, especially in tropical environments. This study was conducted in the municipality of Colorado do Oeste, state of Rondônia, Brazil and its aim was to determinethe quantity of organic carbon and total nitrogen in the light and heavy fractions of organic matter in the surface layers of a typic hapludalf under different land use systems: Native Forest: open evergreen forest, reference environment; Agroforestry System 1: teak (Tectona grandis LF and kudzu (Pueraria montana; Agroforestry System 2: coffee (Coffea canephora, marandu palisade grass (Brachiaria brizantha cv. Marandu, “pinho cuiabano” (Parkia multijuga, teak and kudzu.; Agroforestry System 3: teak and cocoa (Theobroma cacao; Silvopasture System: teak, cocoa and marandu palisade grass; and Extensive Grazing System: marandu palisade grass. The experimental design was a randomized block in split-split plots (use systems versus soil layers of 0-0.05 and 0.05-0.10 m with three replications. The results showed that relative to Native Forest, the Agroforestry System 2 had equal- and greater amounts of organic carbon and total nitrogen respectively (light and heavy fractions in the soil organic matter, with the light fraction being responsible for storage of approximately 45% and 70% of the organic carbon and total nitrogen, respectively. Therefore, the light densimetric fraction proved to be useful in the early identification of the general decline of the soil organic matter in the land use systems evaluated.

  15. Soil Organic Carbon Responses to Forest Expansion on Mountain Grasslands

    DEFF Research Database (Denmark)

    Guidi, Claudia

    . Changes in labile soil C were assessed by carbohydrate and thermal analyses of soil samples and fractions. Forest expansion on mountain grasslands caused a decrease in SOC stocks within the mineral soil. The SOC accumulation within the organic layers following forest establishment could not fully...... and thermally labile to resistant components decreased from grassland to forest successional stages, and corresponded to decreased SOC protection within stable aggregates. This PhD thesis showed that mineral SOC stocks and physically protected SOC fractions decreased following forest expansion on mountain......Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties...

  16. Factors controlling soil organic carbon stability along a temperate forest altitudinal gradient

    Science.gov (United States)

    Tian, Qiuxiang; He, Hongbo; Cheng, Weixin; Bai, Zhen; Wang, Yang; Zhang, Xudong

    2016-01-01

    Changes in soil organic carbon (SOC) stability may alter carbon release from the soil and, consequently, atmospheric CO2 concentration. The mean annual temperature (MAT) can change the soil physico-chemical characteristics and alter the quality and quantity of litter input into the soil that regulate SOC stability. However, the relationship between climate and SOC stability remains unclear. A 500-day incubation experiment was carried out on soils from an 11 °C-gradient mountainous system on Changbai Mountain in northeast China. Soil respiration during the incubation fitted well to a three-pool (labile, intermediate and stable) SOC decomposition model. A correlation analysis revealed that the MAT only influenced the labile carbon pool size and not the SOC stability. The intermediate carbon pool contributed dominantly to cumulative carbon release. The size of the intermediate pool was strongly related to the percentage of sand particle. The decomposition rate of the intermediate pool was negatively related to soil nitrogen availability. Because both soil texture and nitrogen availability are temperature independent, the stability of SOC was not associated with the MAT, but was heavily influenced by the intrinsic processes of SOC formation and the nutrient status. PMID:26733344

  17. Stable isotopic constraints on global soil organic carbon turnover

    Science.gov (United States)

    Wang, Chao; Houlton, Benjamin Z.; Liu, Dongwei; Hou, Jianfeng; Cheng, Weixin; Bai, Edith

    2018-02-01

    Carbon dioxide release during soil organic carbon (SOC) turnover is a pivotal component of atmospheric CO2 concentrations and global climate change. However, reliably measuring SOC turnover rates on large spatial and temporal scales remains challenging. Here we use a natural carbon isotope approach, defined as beta (β), which was quantified from the δ13C of vegetation and soil reported in the literature (176 separate soil profiles), to examine large-scale controls of climate, soil physical properties and nutrients over patterns of SOC turnover across terrestrial biomes worldwide. We report a significant relationship between β and calculated soil C turnover rates (k), which were estimated by dividing soil heterotrophic respiration rates by SOC pools. ln( - β) exhibits a significant linear relationship with mean annual temperature, but a more complex polynomial relationship with mean annual precipitation, implying strong-feedbacks of SOC turnover to climate changes. Soil nitrogen (N) and clay content correlate strongly and positively with ln( - β), revealing the additional influence of nutrients and physical soil properties on SOC decomposition rates. Furthermore, a strong (R2 = 0.76; p turnover and thereby improving predictions of multiple global change influences over terrestrial C-climate feedback.

  18. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. DEVELOP NEW TOTAL ORGANIC CARBON/SPECIFIC UV ...

    Science.gov (United States)

    The purpose of this project is to provide a total organic carbon (TOC)/specific ultraviolet absorbance (SUVA) method that will be used by the Office of Ground Water and Drinking Water (OGWDW) to support monitoring requirements of the Stage 2 Disinfectant/Disinfection By-products (D/DBP) Rule. The Stage 2 Rule requires that enhanced water treatment be used if the source water is high in aquatic organic matter prior to the application of a disinfectant. Disinfectants (chlorine, ozone, etc.) are used in the production of drinking water in order to reduce the risk of microbial disease. These disinfectants react with the organic material that is naturally present in the source water to form disinfection by-products (DBPs). Exposure to some of these by-products may pose a long term health risk. The number and nature of DBPs make it impossible to fully characterize all of the by-products formed during the treatment of drinking water and it is more cost effective to reduce formation of DBPs than to remove them from the water after they are formed. Two measurements (TOC and SUVA) are believed to be predictive of the amount of by-products that can be formed during the disinfection of drinking water and are considered to be surrogates for DBP precursors. SUVA is calculated as the ultraviolet absorption at 254nm (UV254) in cm-1 divided by the mg/L dissolved organic carbon (DOC) concentration (measured after filtration of the water through a 0.45um pore-diameter filte

  20. Elemental and stable isotopic approaches for studying the organic and inorganic carbon components in natural samples

    International Nuclear Information System (INIS)

    Helie, J-F

    2009-01-01

    The carbon cycle is an important part of major biogeochemical cycles. Many techniques may be used to characterize carbon amounts and sources in the environment. Here we first review the most popular techniques for the determination of organic and inorganic carbon concentrations. Decarbonatation techniques are also reviewed in details since it is often an important part of organic carbon analysis. The second part of this paper addresses the use of carbon stable isotopes to characterize organic carbon sources and processes in the environment. An overview of general stable isotopes background and terminology is given as well as the most popular analytical techniques.

  1. Desorption behaviors of BDE-28 and BDE-47 from natural soils with different organic carbon contents

    International Nuclear Information System (INIS)

    Liu Wenxin; Cheng Fangfang; Li Weibo; Xing Baoshan; Tao Shu

    2012-01-01

    Desorption kinetic and isothermal characteristics of BDE-28 and BDE-47 were investigated using natural soils with different organic carbon fractions. The results indicated that a two-compartment first-order model with dominant contribution of slow desorption could adequately describe the released kinetics of studied PBDEs. Desorption isotherms of different samples could be fitted well by linear distribution model or nonlinear Freundlich model. Moreover, most desorption procedures roughly exhibited hysteresis with respect to preceding sorption ones. At the statistically significant level of 0.05 or 0.1, total organic carbon content (f OC ) exhibited significant correlations with the fitted parameters by the isothermal models. The correlations of f OC and SOM fractions (e.g., fulvic acid and humin) with the single point desorption coefficients at lower aqueous concentrations of studied PBDEs were significant; while at higher aqueous concentrations, the relationships were less significant or insignificant. Our findings may facilitate a comprehensive understanding on behaviors of PBDEs in soil systems. - Highlights: ► A two-compartment first-order kinetic model for the PBDEs studied was established. ► Isotherm was fitted well by a linear distribution or a nonlinear Freundlich model. ► Desorption commonly exhibited somewhat hysteresis relative to sorption. ► Soil organic carbon fractions showed close correlations with the model parameters. - Two-compartment first-order model, and linear distribution model or nonlinear Freundlich model could well elucidate desorption kinetics and isotherms of PBDEs in natural soils, respectively.

  2. Soil carbon dynamics inferred from carbon isotope compositions of soil organic matter and soil respiration

    International Nuclear Information System (INIS)

    Koarashi, Jun; Asano, Tomohiro; Iida, Takao; Moriizumi, Jun

    2004-01-01

    To better understand 14 C cycling in terrestrial ecosystems, 14 C abundances were evaluated for fractionated soil organic matter (SOM) and soil respiration in an urban forest. In 2001 soil profile, Δ 14 C values of litter and bulk SOM increased rapidly from litter surface (62.7 per mille) to uppermost mineral soil layer (244.9 per mille), and then decreased sharply to 6 cm depth of mineral soil (125.0 per mille). Carbon enriched in 14 C by atmospheric nuclear weapons testing had penetrated to at least 16 cm depth of mineral soil. The average Δ 14 C in atmospheric CO 2 was 58.8 per mille in August 2001, suggesting recent carbon input to the topmost litter layer. Although a similar depth distribution was observed for Δ 14 C values of residual SOM after acid hydrolysis, the Δ 14 C values were slightly lower than those in bulk SOM. This indicates input of 'bomb' C into this organic fraction and higher 14 C abundance in acid-soluble SOM. The most of CO 2 may be derived from the microbial decomposition of the acid-soluble, or labile, SOM. Therefore, the labile SOM may become most influential pool for soil carbon cycling. In contrast, carbon in base-insoluble SOM remained considerably low in 14 C abundance at all depths, suggesting no or little incorporation of 'bomb' C to this fraction. Values of Δ 14 C in soil respiration ranged from 91.9 to 146.4 per mille in August 2001, showing a significant contribution from decomposition of SOM fixed over past 2-40 years. These results indicate that the use of bulk SOM as a representative of soil carbon pool would lead to severe misunderstand of the soil C dynamics on decadal and shorter time scales. (author)

  3. Dissolved organic carbon and its potential predictors in eutrophic lakes.

    Science.gov (United States)

    Toming, Kaire; Kutser, Tiit; Tuvikene, Lea; Viik, Malle; Nõges, Tiina

    2016-10-01

    Understanding of the true role of lakes in the global carbon cycle requires reliable estimates of dissolved organic carbon (DOC) and there is a strong need to develop remote sensing methods for mapping lake carbon content at larger regional and global scales. Part of DOC is optically inactive. Therefore, lake DOC content cannot be mapped directly. The objectives of the current study were to estimate the relationships of DOC and other water and environmental variables in order to find the best proxy for remote sensing mapping of lake DOC. The Boosted Regression Trees approach was used to clarify in which relative proportions different water and environmental variables determine DOC. In a studied large and shallow eutrophic lake the concentrations of DOC and coloured dissolved organic matter (CDOM) were rather high while the seasonal and interannual variability of DOC concentrations was small. The relationships between DOC and other water and environmental variables varied seasonally and interannually and it was challenging to find proxies for describing seasonal cycle of DOC. Chlorophyll a (Chl a), total suspended matter and Secchi depth were correlated with DOC and therefore are possible proxies for remote sensing of seasonal changes of DOC in ice free period, while for long term interannual changes transparency-related variables are relevant as DOC proxies. CDOM did not appear to be a good predictor of the seasonality of DOC concentration in Lake Võrtsjärv since the CDOM-DOC coupling varied seasonally. However, combining the data from Võrtsjärv with the published data from six other eutrophic lakes in the world showed that CDOM was the most powerful predictor of DOC and can be used in remote sensing of DOC concentrations in eutrophic lakes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation–incubation procedure.

    Science.gov (United States)

    X.M. Zoua; H.H. Ruanc; Y. Fua; X.D. Yanga; L.Q. Sha

    2005-01-01

    Labile carbon is the fraction of soil organic carbon with most rapid turnover times and its oxidation drives the flux of CO2 between soils and atmosphere. Available chemical and physical fractionation methods for estimating soil labile organic carbon are indirect and lack a clear biological definition. We have modified the well-established Jenkinson and Powlson’s...

  5. Sorption of organic compounds to activated carbons. Evaluation of isotherm models

    NARCIS (Netherlands)

    Pikaar, I.; Koelmans, A.A.; Noort, van P.C.M.

    2006-01-01

    Sorption to 'hard carbon' (black carbon, coal, kerogen) in soils and sediments is of major importance for risk assessment of organic pollutants. We argue that activated carbon (AC) may be considered a model sorbent for hard carbon. Here, we evaluate six sorption models on a literature dataset for

  6. Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Hartemink, Alfred E.; Minasny, Budiman

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard ...

  7. Climate Variability, Dissolved Organic Carbon, UV Exposure, and Amphibian Decline

    Science.gov (United States)

    Brooks, P. D.; O'Reilly, C. M.; Diamond, S.; Corn, S.; Muths, E.; Tonnessen, K.; Campbell, D. H.

    2001-12-01

    Increasing levels of UV radiation represent a potential threat to aquatic organisms in a wide range of environments, yet controls on in situ variability on UV exposure are relatively unknown. The primary control on the penetration of UV radiation in surface water environments is the amount of photoreactive dissolved organic carbon (DOC). Consequently, biogeochemical processes that control the cycling of DOC also affect the exposure of aquatic organisms to UV radiation. Three years of monitoring UV extinction and DOC composition in Rocky Mountain, Glacier, Sequoia/ Kings Canyon, and Olympic National Parks demonstrate that the amount of fulvic acid DOC is much more important than the total DOC pool in controlling UV attenuation. This photoreactive component of DOC originates primarily in soil, and is subject both to biogeochemical controls (e.g. temperature, moisture, vegetation, soil type) on production, and hydrologic controls on transport to surface water and consequently UV exposure to aquatic organisms. Both of these controls are positively related to precipitation with greater production and transport associated with higher precipitation amounts. For example, an approximately 20 percent reduction in precipitation from 1999 to 2000 resulted in a 27% - 59% reduction in the amount of photoreactive DOC at three sites in Rocky Mountain National Park. These differences in the amount of hydrophobic DOC result in an increase in UV exposure in the aquatic environment by a factor of 2 or more. Implications of these findings for observed patterns of amphibian decline will be discussed.

  8. Monolithic Parallel Tandem Organic Photovoltaic Cell with Transparent Carbon Nanotube Interlayer

    Science.gov (United States)

    Tanaka, S.; Mielczarek, K.; Ovalle-Robles, R.; Wang, B.; Hsu, D.; Zakhidov, A. A.

    2009-01-01

    We demonstrate an organic photovoltaic cell with a monolithic tandem structure in parallel connection. Transparent multiwalled carbon nanotube sheets are used as an interlayer anode electrode for this parallel tandem. The characteristics of front and back cells are measured independently. The short circuit current density of the parallel tandem cell is larger than the currents of each individual cell. The wavelength dependence of photocurrent for the parallel tandem cell shows the superposition spectrum of the two spectral sensitivities of the front and back cells. The monolithic three-electrode photovoltaic cell indeed operates as a parallel tandem with improved efficiency.

  9. Study on the fluorescence characteristics of carbon dots

    Science.gov (United States)

    Mao, Xiao-Jiao; Zheng, Hu-Zhi; Long, Yi-Juan; Du, Juan; Hao, Jian-Yu; Wang, Ling-Ling; Zhou, Dong-Bo

    2010-02-01

    Herein, we prepared water-soluble fluorescent carbon dots with diameter about 1.5 nm from cheap commercial lampblack. These fluorescent carbon nanoparticles are stable toward photobleaching and stable in water for more than half a year without fluorescence decrease. In order to improve its fluorescence properties, we passivated these nanoparticles with bisamino-terminated polyethylene glycol (PEG 1500N). Therefore, both fluorescence quantum yield and lifetime increased after this progress. In addition, the passivated carbon dots were more inert to solvent than the bare one and showed different responses to pH change.

  10. [Effects of land cover change on soil organic carbon and light fraction organic carbon at river banks of Fuzhou urban area].

    Science.gov (United States)

    Zeng, Hong-Da; Du, Zi-Xian; Yang, Yu-Sheng; Li, Xi-Bo; Zhang, Ya-Chun; Yang, Zhi-Feng

    2010-03-01

    By using Vario EL III element analyzer, the vertical distribution characteristics of soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in the lawn, patch plantation, and reed wetland at river banks of Fuzhou urban area were studied in July 2007. For all the three land cover types, the SOC and LFOC contents were the highest in surface soil layer, and declined gradually with soil depth. Compared with reed wetland, the lawn and patch plantation had higher SOC and LFOC contents in each layer of the soil profile (0-60 cm), and the lawn had significantly higher contents of SOC and LFOC in 0-20 cm soil layer, compared with the patch plantation. After the reed wetland was converted into lawn and patch plantation, the SOC stock in the soil profile was increased by 94.8% and 72.0%, and the LFOC stock was increased by 225% and 93%, respectively. Due to the changes of plant species, plant density, and management measure, the conversion from natural wetland into human-manipulated green spaces increased the SOC and LFOC stocks in the soil profile, and improved the soil quality. Compared with the SOC, soil LFOC was more sensitive to land use/cover change, especially for those in 0-20 cm soil layer.

  11. Studies on the translocation and distribution characteristics of carbon assimilates in blackberry

    International Nuclear Information System (INIS)

    Wang Shuyu; Liu Hongjia

    1990-08-01

    The translocation and distribution characteristics of carbon assimilates were studied with the method of 14 CO 2 feeding. The results indicated that there were different translocation and distribution characteristics of carbon assimilates among the upper, middle and lower leaves in a shoot during annual cycle. Taking away leaves, sun-shading and drought could raise the exporting ratio of carbon assimilates in the feeding leaves and could change the distributing model of the tree. Most of the carbon assimilates were translocated to basic born branch after sun-shading and drought

  12. Effect of carbonation on the leaching of organic carbon and of copper from MSWI bottom ash.

    Science.gov (United States)

    Arickx, S; De Borger, V; Van Gerven, T; Vandecasteele, C

    2010-07-01

    In Flanders, the northern part of Belgium, about 31% of the produced amount of MSWI bottom ash is recycled as secondary raw material. In view of recycling a higher percentage of bottom ash, a particular bottom ash fraction (Ø 0.1-2mm) was studied. As the leaching of this bottom ash fraction exceeds some of the Flemish limit values for heavy metals (with Cu being the most critical), treatment is required. Natural weathering and accelerated carbonation resulted in a significant decrease of the Cu leaching. Natural weathering during 3 months caused a decrease of Cu leaching to <50% of its original value, whereas accelerated carbonation resulted in an even larger decrease (to ca. 13% of its initial value) after 2 weeks, with the main decrease taking place within the first 48 h. Total organic carbon decreased to ca. 70% and 55% of the initial concentration in the solid phase, and to 40% and 25% in the leachate after natural weathering and after accelerated carbonation, respectively. In the solid material the decrease of the Hy fraction was the largest, the FA concentration remained essentially constant. The decrease of FA in the leachate can be attributed partly to an enhanced adsorption of FA to Fe/Al (hydr)oxides, due to the combined effect of a pH decrease and the neoformation of Al (hydr)oxides (both due to carbonation). A detailed study of adsorption of FA to Fe/Al (hydr)oxides showed that significant adsorption of FA occurs, that it increases with decreasing pH and started above pH 12 for Fe (hydr)oxides and around 10 for Al (hydr)oxides. Depending whether FA or Hy are considered the controlling factor in enhanced Cu leaching, the decreasing FA or Hy in the leachate explains the decrease in the Cu leaching during carbonation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  13. Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization

    Directory of Open Access Journals (Sweden)

    L. E. Pracht

    2018-03-01

    Full Text Available Bioavailable organic carbon in aquifer recharge waters and sediments can fuel microbial reactions with implications for groundwater quality. A previous incubation experiment showed that sedimentary organic carbon (SOC mobilized off sandy sediment collected from an arsenic-contaminated and methanogenic aquifer in Bangladesh was bioavailable; it was transformed into methane. We used high-resolution mass spectrometry to molecularly characterize this mobilized SOC, reference its composition against dissolved organic carbon (DOC in surface recharge water, track compositional changes during incubation, and advance understanding of microbial processing of organic carbon in anaerobic environments. Organic carbon mobilized off aquifer sediment was more diverse, proportionately larger, more aromatic, and more oxidized than DOC in surface recharge. Mobilized SOC was predominately composed of terrestrially derived organic matter and had characteristics signifying that it evaded microbial processing within the aquifer. Approximately 50 % of identified compounds in mobilized SOC and in DOC from surface recharge water contained sulfur. During incubation, after mobilized SOC was converted into methane, new organosulfur compounds with high S-to-C ratios and a high nominal oxidation state of carbon (NOSC were detected. We reason that these detected compounds formed abiotically following microbial reduction of sulfate to sulfide, which could have occurred during incubation but was not directly measured or that they were microbially synthesized. Most notably, microbes transformed all carbon types during incubation, including those currently considered thermodynamically unviable for microbes to degrade in anaerobic conditions (i.e., those with a low NOSC. In anaerobic environments, energy yields from redox reactions are small and the amount of energy required to remove electrons from highly reduced carbon substrates during oxidation decreases the thermodynamic

  14. Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization

    Science.gov (United States)

    Pracht, Lara E.; Tfaily, Malak M.; Ardissono, Robert J.; Neumann, Rebecca B.

    2018-03-01

    Bioavailable organic carbon in aquifer recharge waters and sediments can fuel microbial reactions with implications for groundwater quality. A previous incubation experiment showed that sedimentary organic carbon (SOC) mobilized off sandy sediment collected from an arsenic-contaminated and methanogenic aquifer in Bangladesh was bioavailable; it was transformed into methane. We used high-resolution mass spectrometry to molecularly characterize this mobilized SOC, reference its composition against dissolved organic carbon (DOC) in surface recharge water, track compositional changes during incubation, and advance understanding of microbial processing of organic carbon in anaerobic environments. Organic carbon mobilized off aquifer sediment was more diverse, proportionately larger, more aromatic, and more oxidized than DOC in surface recharge. Mobilized SOC was predominately composed of terrestrially derived organic matter and had characteristics signifying that it evaded microbial processing within the aquifer. Approximately 50 % of identified compounds in mobilized SOC and in DOC from surface recharge water contained sulfur. During incubation, after mobilized SOC was converted into methane, new organosulfur compounds with high S-to-C ratios and a high nominal oxidation state of carbon (NOSC) were detected. We reason that these detected compounds formed abiotically following microbial reduction of sulfate to sulfide, which could have occurred during incubation but was not directly measured or that they were microbially synthesized. Most notably, microbes transformed all carbon types during incubation, including those currently considered thermodynamically unviable for microbes to degrade in anaerobic conditions (i.e., those with a low NOSC). In anaerobic environments, energy yields from redox reactions are small and the amount of energy required to remove electrons from highly reduced carbon substrates during oxidation decreases the thermodynamic favorability of

  15. Carbon dioxide and water vapour characteristics on the west coast ...

    Indian Academy of Sciences (India)

    Carbon dioxide, water vapour, air temperature and wind measurements at 10 Hz sampling rate were carried out over the ... seasonal and annual variations in the CO2 bal- ance. Hence, it is .... motion below produced by shear stress near the.

  16. [Priming effect of biochar on the minerialization of native soil organic carbon and the mechanisms: A review.

    Science.gov (United States)

    Chen, Ying; Liu, Yu Xue; Chen, Chong Jun; Lyu, Hao Hao; Wa, Yu Ying; He, Li Li; Yang, Sheng Mao

    2018-01-01

    In recent years, studies on carbon sequestration of biochar in soil has been in spotlight owing to the specific characteristics of biochar such as strong carbon stability and well developed pore structure. However, whether biochar will ultimately increase soil carbon storage or promote soil carbon emissions when applied into the soil? This question remains controversial in current academic circles. Further research is required on priming effect of biochar on mineralization of native soil organic carbon and its mechanisms. Based on the analysis of biochar characteristics, such as its carbon composition and stability, pore structure and surface morphology, research progress on the priming effect of biochar on the decomposition of native soil organic carbon was reviewed in this paper. Furthermore, possible mechanisms of both positive and negative priming effect, that is promoting and suppressing the mineralization, were put forward. Positive priming effect is mainly due to the promotion of soil microbial activity caused by biochar, the preferential mineralization of easily decomposed components in biochar, and the co-metabolism of soil microbes. While negative priming effect is mainly based on the encapsulation and adsorption protection of soil organic matter due to the internal pore structure and the external surface of biochar. Other potential reasons for negative priming effect can be the stabilization resulted from the formation of organic-inorganic complex promoted by biochar in the soil, and the inhibition of activity of soil microbes and its enzymes by biochar. Finally, future research directions were proposed in order to provide theoretical basis for the application of biochar in soil carbon sequestration.

  17. Modelling and mapping the topsoil organic carbon content for Tanzania

    Science.gov (United States)

    Kempen, Bas; Kaaya, Abel; Ngonyani Mhaiki, Consolatha; Kiluvia, Shani; Ruiperez-Gonzalez, Maria; Batjes, Niels; Dalsgaard, Soren

    2014-05-01

    Soil organic carbon (SOC), held in soil organic matter, is a key indicator of soil health and plays an important role in the global carbon cycle. The soil can act as a net source or sink of carbon depending on land use and management. Deforestation and forest degradation lead to the release of vast amounts of carbon from the soil in the form of greenhouse gasses, especially in tropical countries. Tanzania has a high deforestation rate: it is estimated that the country loses 1.1% of its total forested area annually. During 2010-2013 Tanzania has been a pilot country under the UN-REDD programme. This programme has supported Tanzania in its initial efforts towards reducing greenhouse gas emission from forest degradation and deforestation and towards preserving soil carbon stocks. Formulation and implementation of the national REDD strategy requires detailed information on the five carbon pools among these the SOC pool. The spatial distribution of SOC contents and stocks was not available for Tanzania. The initial aim of this research, was therefore to develop high-resolution maps of the SOC content for the country. The mapping exercise was carried out in a collaborative effort with four Tanzanian institutes and data from the Africa Soil Information Service initiative (AfSIS). The mapping exercise was provided with over 3200 field observations on SOC from four sources; this is the most comprehensive soil dataset collected in Tanzania so far. The main source of soil samples was the National Forest Monitoring and Assessment (NAFORMA). The carbon maps were generated by means of digital soil mapping using regression-kriging. Maps at 250 m spatial resolution were developed for four depth layers: 0-10 cm, 10-20 cm, 20-30 cm, and 0-30 cm. A total of 37 environmental GIS data layers were prepared for use as covariates in the regression model. These included vegetation indices, terrain parameters, surface temperature, spectral reflectances, a land cover map and a small

  18. Fractionation between inorganic and organic carbon during the Lomagundi (2.22 2.1 Ga) carbon isotope excursion

    Science.gov (United States)

    Bekker, A.; Holmden, C.; Beukes, N. J.; Kenig, F.; Eglinton, B.; Patterson, W. P.

    2008-07-01

    The Lomagundi (2.22-2.1 Ga) positive carbon isotope excursion in shallow-marine sedimentary carbonates has been associated with the rise in atmospheric oxygen, but subsequent studies have demonstrated that the carbon isotope excursion was preceded by the rise in atmospheric oxygen. The amount of oxygen released to the exosphere during the Lomagundi excursion is constrained by the average global fractionation between inorganic and organic carbon, which is poorly characterized. Because dissolved inorganic and organic carbon reservoirs were arguably larger in the Paleoproterozoic ocean, at a time of lower solar luminosity and lower ocean redox state, decoupling between these two variables might be expected. We determined carbon isotope values of carbonate and organic matter in carbonates and shales of the Silverton Formation, South Africa and in the correlative Sengoma Argillite Formation, near the border in Botswana. These units were deposited between 2.22 and 2.06 Ga along the margin of the Kaapvaal Craton in an open-marine deltaic setting and experienced lower greenschist facies metamorphism. The prodelta to offshore marine shales are overlain by a subtidal carbonate sequence. Carbonates exhibit elevated 13C values ranging from 8.3 to 11.2‰ vs. VPDB consistent with deposition during the Lomagundi positive excursion. The total organic carbon (TOC) contents range from 0.01 to 0.6% and δ13C values range from - 24.8 to - 13.9‰. Thus, the isotopic fractionation between organic and carbonate carbon was on average 30.3 ± 2.8‰ ( n = 32) in the shallow-marine environment. The underlying Sengoma shales have highly variable TOC contents (0.14 to 21.94%) and δ13C values (- 33.7 to - 20.8‰) with an average of - 27.0 ± 3.0‰ ( n = 50). Considering that the shales were also deposited during the Lomagundi excursion, and taking δ13C values of the overlying carbonates as representative of the δ13C value of dissolved inorganic carbon during shale deposition, a carbon

  19. Soil organic carbon of an intensively reclaimed region in China: Current status and carbon sequestration potential.

    Science.gov (United States)

    Deng, Xunfei; Zhan, Yu; Wang, Fei; Ma, Wanzhu; Ren, Zhouqiao; Chen, Xiaojia; Qin, Fangjin; Long, Wenli; Zhu, Zhenling; Lv, Xiaonan

    2016-09-15

    Land reclamation has been highly intensive in China, resulting in a large amount of soil organic carbon (SOC) loss to the atmosphere. Evaluating the factors which drive SOC dynamics and carbon sequestration potential in reclaimed land is critical for improving soil fertility and mitigating global warming. This study aims to determine the current status and factors important to the SOC density in a typical reclaimed land located in Eastern China, where land reclamation has been undergoing for centuries. A total of 4746 topsoil samples were collected from 2007 to 2010. The SOC density of the reclaimed land (3.18±0.05kgCm(-2); mean±standard error) is significantly lower than that of the adjacent non-reclaimed land (5.71±0.04kgCm(-2)) (pcarbon sequestration potential of the reclaimed lands may achieve a maximum of 5.80±1.81kgCO2m(-2) (mean±SD) when dryland is converted to flooded land with vegetable-rice cropping system and soil pH of ~5.9. Note that in some scenarios the methane emission substantially offsets the carbon sequestration potential, especially for continuous rice cropping system. With the optimal setting for carbon sequestration, it is estimated that the dryland reclaimed in the last 50years in China is able to sequester 0.12milliontons CO2 equivalent per year. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Aggregate and soil organic carbon dynamics in South Chilean Andisols

    Directory of Open Access Journals (Sweden)

    D. Huygens

    2005-01-01

    Full Text Available Extreme sensitivity of soil organic carbon (SOC to climate and land use change warrants further research in different terrestrial ecosystems. The aim of this study was to investigate the link between aggregate and SOC dynamics in a chronosequence of three different land uses of a south Chilean Andisol: a second growth Nothofagus obliqua forest (SGFOR, a grassland (GRASS and a Pinus radiata plantation (PINUS. Total carbon content of the 0-10cm soil layer was higher for GRASS (6.7 kg C m-2 than for PINUS (4.3 kg C m-2, while TC content of SGFOR (5.8 kg C m-2 was not significantly different from either one. High extractable oxalate and pyrophosphate Al concentrations (varying from 20.3-24.4 g kg-1, and 3.9-11.1 g kg-1, respectively were found in all sites. In this study, SOC and aggregate dynamics were studied using size and density fractionation experiments of the SOC, δ13C and total carbon analysis of the different SOC fractions, and C mineralization experiments. The results showed that electrostatic sorption between and among amorphous Al components and clay minerals is mainly responsible for the formation of metal-humus-clay complexes and the stabilization of soil aggregates. The process of ligand exchange between SOC and Al would be of minor importance resulting in the absence of aggregate hierarchy in this soil type. Whole soil C mineralization rate constants were highest for SGFOR and PINUS, followed by GRASS (respectively 0.495, 0.266 and 0.196 g CO2-Cm-2d-1 for the top soil layer. In contrast, incubation experiments of isolated macro organic matter fractions gave opposite results, showing that the recalcitrance of the SOC decreased in another order: PINUS>SGFOR>GRASS. We deduced that electrostatic sorption processes and physical protection of SOC in soil aggregates were the main processes determining SOC stabilization. As a result, high aggregate carbon concentrations, varying from 148 till 48 g kg-1, were encountered for all land use

  1. Spatial Associations and Chemical Composition of Organic Carbon Sequestered in Fe, Ca, and Organic Carbon Ternary Systems.

    Science.gov (United States)

    Sowers, Tyler D; Adhikari, Dinesh; Wang, Jian; Yang, Yu; Sparks, Donald L

    2018-05-25

    Organo-mineral associations of organic carbon (OC) with iron (Fe) oxides play a major role in environmental OC sequestration, a process crucial to mitigating climate change. Calcium has been found to have high coassociation with OC in soils containing high Fe content, increase OC sorption extent to poorly crystalline Fe oxides, and has long been suspected to form bridging complexes with Fe and OC. Due to the growing realization that Ca may be an important component of C cycling, we launched a scanning transmission X-ray microscopy (STXM) investigation, paired with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, in order to spatially resolve Fe, Ca, and OC relationships and probe the effect of Ca on sorbed OC speciation. We performed STXM-NEXAFS analysis on 2-line ferrihydrite reacted with leaf litter-extractable dissolved OC and citric acid in the absence and presence of Ca. Organic carbon was found to highly associate with Ca ( R 2 = 0.91). Carboxylic acid moieties were dominantly sequestered; however, Ca facilitated the additional sequestration of aromatic and phenolic moieties. Also, C NEXAFS revealed polyvalent metal ion complexation. Our results provide evidence for the presence of Fe-Ca-OC ternary complexation, which has the potential to significantly impact how organo-mineral associations are modeled.

  2. [Variation characteristics of soil carbon sequestration under long-term different fertilization in red paddy soil].

    Science.gov (United States)

    Huang, Jing; Zhang, Yang-zhu; Gao, Ju-sheng; Zhang, Wen-ju; Liu, Shu-jun

    2015-11-01

    The objective of this study was to clarify the changes of soil organic carbon (SOC) content, the saturation capacity of soil carbon sequestration and its cooperation with carbon input (crop source and organic fertilizer source carbon) under long-term (1982-2012) different fertilization in red paddy soil. The results showed that fertilization could increase SOC content. The SOC content of all the fertilization treatments demonstrated a trend of stabilization after applying fertilizer for 30 years. The SOC content in the treatments applying organic manure with mineral fertilizers was between 21.02 and 21.24 g · kg(-1), and the increase rate ranged from 0.41 to 0.59 g · kg(-1) · a(-1). The SOC content in the treatments applying mineral fertilizers only was 15.48 g · kg(-1). The average soil carbon sequestration in the treatments that applied organic manure with mineral fertilizers ranged from 43.61 to 48.43 t C · hm(-2), and the average SOC storage over the years in these treatments was significantly greater than those applying mineral fertilizers only. There was an exponentially positive correlation between C sequestration efficiency and annual average organic C input. It must input exogenous organic carbon at least at 0. 12 t C · hm(-2) · a(-1) to maintain the balance of soil organic carbon under the experimental conditions.

  3. Total organic carbon in aggregates as a soil recovery indicator

    Science.gov (United States)

    Luciene Maltoni, Katia; Rodrigues Cassiolato, Ana Maria; Amorim Faria, Glaucia; Dubbin, William

    2015-04-01

    The soil aggregation promotes physical protection of organic matter, preservation of which is crucial to improve soil structure, fertility and ensure the agro-ecosystems sustainability. The no-tillage cultivation system has been considered as one of the strategies to increase total soil organic carbono (TOC) contents and soil aggregation, both are closely related and influenced by soil management systems. The aim of this study was to evaluate the distribution of soil aggregates and the total organic carbon inside aggregates, with regard to soil recovery, under 3 different soil management systems, i.e. 10 and 20 years of no-tillage cultivation as compared with soil under natural vegetation (Cerrado). Undisturbed soils (0-5; 5-10; and 10-20 cm depth) were collected from Brazil, Central Region. The soils, Oxisols from Cerrado, were collected from a field under Natural Vegetation-Cerrado (NV), and from fields that were under conventional tillage since 1970s, and 10 and 20 years ago were changed to no-tillage cultivation system (NT-10; NT-20 respectively). The undisturbed samples were sieved (4mm) and the aggregates retained were further fractionated by wet sieving through five sieves (2000, 1000, 500, 250, and 50 μm) with the aggregates distribution expressed as percentage retained by each sieve. The TOC was determined, for each aggregate size, by combustion (Thermo-Finnigan). A predominance of aggregates >2000 μm was observed under NV treatment (92, 91, 82 %), NT-10 (64, 73, 61 %), and NT-20 (71, 79, 63 %) for all three depths (0-5; 5-10; 10-20 cm). In addition greater quantities of aggregates in sizes 1000, 500, 250 and 50 μm under NT-10 and NT-20 treatments, explain the lower aggregate stability under these treatments compared to the soil under NV. The organic C concentration for NV in aggregates >2000 μm was 24,4; 14,2; 8,7 mg/g for each depth (0-5; 5-10; 10-20 cm, respectively), higher than in aggregates sized 250-50 μm (7,2; 5,5; 4,4 mg/g) for all depths

  4. Covalent organic polymer functionalization of activated carbon surfaces through acyl chloride for environmental clean-up

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil

    2017-01-01

    Nanoporous networks of covalent organic polymers (COPs) are successfully grafted on the surfaces of activated carbons, through a series of surface modification techniques, including acyl chloride formation by thionyl chloride. Hybrid composites of activated carbon functionalized with COPs exhibit...

  5. Impact of shade and cocoa plant densities on soil organic carbon ...

    African Journals Online (AJOL)

    user

    There were no soil organic carbon sequestration in the highest cocoa plant ... It is concluded that cocoa farming could be an effective means to mitigate carbon dioxide ... growth and yield of cocoa at the CRIG substation Bunso (060 13' N,.

  6. Biofilms' contribution to organic carbon in salt marsh sediments

    Science.gov (United States)

    Valentine, K.; Quirk, T. E.; Mariotti, G.; Hotard, A.

    2017-12-01

    Coastal salt marshes are productive environments with high potential for carbon (C) accumulation. Organic C in salt marsh sediment is typically attributed to plant biomass. Recent field measurements, however, suggest that biofilms - mainly composed of benthic diatoms and their secretion - also contribute to basal C in these environments and can be important contributors to marsh productivity, C cycling, and potentially, C sequestration. The potential for biofilms to soil organic C and the influence of mineral sedimentation of biofilm-based C accumulation is unknown. We conducted controlled laboratory experiments to test (1) whether biofilms add measurable amounts of organic C to the sediment and (2) the effect of mineral sedimentation rate on the amount of biofilm-based C accumulation. Settled beds of pure bentonite mud were created in 10-cm-wide cylinders. Each cylinder was inoculated with biofilms collected from a marsh in Louisiana. A small amount of mud was added weekly for 11 weeks. Control experiments without biofilms were also performed. Biofilms were grown with a 12/12 hours cycle, with a gentle mixing of the water column that did not cause sediment resuspension, with a nutrient-rich medium that was exchanged weekly, and in the absence of metazoan grazing. At the end of the experiment, the sediment columns were analyzed for depth-integrated chl-a, loss on ignition (LOI), and total organic carbon (TOC). Chl-a values ranged from 26-113 mg/cm2, LOI values ranged from 86-456 g/m2/yr, and TOC values ranged from 31-211 g/m2/yr. All three of these metrics (chl-a, LOI, and TOC) increased with the rate of mineral sedimentation. These results show that biofilms, in the absence of erosion and grazing, can significantly contribute to C accumulation in salt marshes, especially with high rates of mineral sedimentation. Given the short time scale of the experiment, the increase in organic C accumulation with the rate of sedimentation is attributed to stimulated biofilm

  7. Thermionic emission and tunneling at carbon nanotube-organic semiconductor interface.

    Science.gov (United States)

    Sarker, Biddut K; Khondaker, Saiful I

    2012-06-26

    We study the charge carrier injection mechanism across the carbon nanotube (CNT)-organic semiconductor interface using a densely aligned carbon nanotube array as electrode and pentacene as organic semiconductor. The current density-voltage (J-V) characteristics measured at different temperatures show a transition from a thermal emission mechanism at high temperature (above 200 K) to a tunneling mechanism at low temperature (below 200 K). A barrier height of ∼0.16 eV is calculated from the thermal emission regime, which is much lower compared to the metal/pentacene devices. At low temperatures, the J-V curves exhibit a direct tunneling mechanism at low bias, corresponding to a trapezoidal barrier, while at high bias the mechanism is well described by Fowler-Nordheim tunneling, which corresponds to a triangular barrier. A transition from direct tunneling to Fowler-Nordheim tunneling further signifies a small injection barrier at the CNT/pentacene interface. Our results presented here are the first direct experimental evidence of low charge carrier injection barrier between CNT electrodes and an organic semiconductor and are a significant step forward in realizing the overall goal of using CNT electrodes in organic electronics.

  8. Susceptibility of Permafrost Soil Organic Carbon under Warming Climate

    Science.gov (United States)

    Yang, Z.; Wullschleger, S. D.; Liang, L.; Graham, D. E.; Gu, B.

    2015-12-01

    Degradation of soil organic carbon (SOC) that has been stored in permafrost is a key concern under warming climate because it could provide a positive feedback. Studies and conceptual models suggest that SOC degradation is largely controlled by the decomposability of SOC, but it is unclear exactly what portions of SOC are susceptible to rapid breakdown and what mechanisms may be involved in SOC degradation. Using a suite of analytical techniques, we examined the dynamic consumption and production of labile SOC compounds, including sugars, alcohols, and small molecular weight organic acids in incubation experiments (up to 240 days at either -2 or 8 °C) with a tundra soil under anoxic conditions, where SOC respiration and iron(III) reduction were monitored. We observe that sugars and alcohols are main components in SOC accounting for initial rapid release of CO2 and CH4 through anaerobic fermentation, whereas the fermentation products such as acetate and formate are subsequently utilized as primary substrates for methanogenesis. Iron(III) reduction is correlated to acetate production and methanogenesis, suggesting its important roles as an electron acceptor in tundra SOC respiration. These observations corroborate strongly with the glucose addition during incubation, in which rapid CO2 and CH4 production is observed concurrently with rapid production and consumption of organics such as acetate. Thus, the biogeochemical processes we document here are pertinent to understanding the accelerated SOC decomposition with temperature and could provide basis for model predicting feedbacks to climate warming in the Arctic.

  9. Black carbon, organic carbon, and co-pollutant emissions and energy efficiency from artisanal brick production in Mexico

    Science.gov (United States)

    Zavala, Miguel; Molina, Luisa T.; Maiz, Pablo; Monsivais, Israel; Chow, Judith C.; Watson, John G.; Munguia, Jose Luis; Cardenas, Beatriz; Fortner, Edward C.; Herndon, Scott C.; Roscioli, Joseph R.; Kolb, Charles E.; Knighton, Walter B.

    2018-04-01

    In many parts of the developing world and economies in transition, small-scale traditional brick kilns are a notorious source of urban air pollution. Many are both energy inefficient and burn highly polluting fuels that emit significant levels of black carbon (BC), organic carbon (OC) and other atmospheric pollutants into local communities, resulting in severe health and environmental impacts. However, only a very limited number of studies are available on the emission characteristics of brick kilns; thus, there is a need to characterize their gaseous and particulate matter (PM) emission factors to better assess their overall contribution to emissions inventories and to quantify their ecological, human health, and climate impacts. In this study, the fuel-, energy-, and brick-based emissions factors and time-based emission ratios of BC, OC, inorganic PM components, CO, SO2, CH4, NOx, and selected volatile organic compounds (VOCs) from three artisanal brick kilns with different designs in Mexico were quantified using the tracer ratio sampling technique. Simultaneous measurements of PM components, CO, and CO2 were also obtained using a sampling probe technique. Additional measurements included the internal temperature of the brick kilns, mechanical resistance of bricks produced, and characteristics of fuels employed. Average fuel-based BC emission factors ranged from 0.15 to 0.58 g (kg fuel)-1, whereas BC/OC mass ratios ranged from 0.9 to 5.2, depending on the kiln type. The results show that both techniques capture similar temporal profiles of the brick kiln emissions and produce comparable emission factors. A more integrated inter-comparison of the brick kilns' performances was obtained by simultaneously assessing emissions factors, energy efficiency, fuel consumption, and the quality of the bricks produced.

  10. Analysis of Seasonal Soil Organic Carbon Content at Bukit Jeriau Forest, Fraser Hill, Pahang

    International Nuclear Information System (INIS)

    Ahmad Adnan Mohamed; Ahmad Adnan Mohamed; Sahibin Abd Rahim; David Allan Aitman; Mohd Khairul Amri Kamarudin; Mohd Khairul Amri Kamarudin

    2016-01-01

    Soil carbon is the carbon held within the soil, primarily in association with its organic content. The total soil organic carbon study was determined in a plot at Bukit Jeriau forest in Bukit Fraser, Pahang, Malaysia. The aim of this study is to determine the changing of soil organic carbon between wet season and dry season. Soil organic carbon was fined out using titrimetric determination. The soil organic carbon content in wet season is 223.24 t/ ha while dry season is 217.90 t/ ha. The soil pH range in wet season is between 4.32 to 4.45 and in dry season in 3.95 to 4.08 which is considered acidic. Correlation analysis showed that soil organic carbon value is influenced by pH value and climate. Correlation analysis between clay and soil organic carbon with depth showed positively significant differences and clay are very much influenced soil organic carbon content. Correlation analysis between electrical conductivity and soil organic carbon content showed negative significantly difference on wet season and positively significant different in dry season. (author)

  11. PHYSICOCHEMICAL CHARACTERISTICS OF TUBERS FROM ORGANIC SWEET POTATO ROOTS

    Directory of Open Access Journals (Sweden)

    KAMILA DE OLIVEIRA DO NASCIMENTO

    2015-01-01

    Full Text Available This work aimed to determine instead at determining chemical composition, nutritional aspects and morphological characteristic of tubers from sweet potato roots (Ipomoea batatas L. of cultivars Rosinha de Verdan, Capivara and orange-fleshed produced under the organic system. The chemical composition of flours from sweet potato (SP roots was different among cultivars. The starch content for SP cultivar ranged from 26-33 % (d. b., and the orange-fleshed roots presented 3182 μg of β-carotene/100 g. The flour yield ob-tained for SPF processing was higher in Rosinha de Verdan (25.40%, and the starch content of roots ranged from 12.48-27.63 % (d.b.. The processing condition modified the starch granular characteristics of the flours and reduced 31% the carotene content and vitamin A value of the orange-fleshed flour. The orange-fleshed flour presented higher levels of carbohydrate, starch and total energy value (TEV than others white fleshed flour. The consumption of serving size of orange-fleshed roots and flour provided higher provitamin A require-ments for children.

  12. Dynamics of dissolved organic carbon in a stream during a quarter century of forest succession

    Science.gov (United States)

    Judy L. Meyer; Jackson Webster; Jennifer Knoepp; E.F. Benfield

    2014-01-01

    Dissolved organic carbon (DOC) is a heterogeneous mixture of compounds that makes up a large fraction of the organic matter transported in streams. It plays a significant role in many ecosystems. Riverine DOC links organic carbon cycles of continental and oceanic ecosystems. It is a significant trophic resource in stream food webs. DOC imparts color to lakes,...

  13. Organic carbon fluxes in stemflow, throughfall and rainfall in an olive orchard

    Science.gov (United States)

    Lombardo, L.; Vanwalleghem, T.; Gomez, J. A.

    2012-04-01

    The importance of rainfall distribution under the vegetation canopy for nutrient cycling of forest ecosystems has been widely studied (e.g. Kolkai et al., 1999, Bath et al., 2011). It has been demonstrated how throughfall and stemflow reach the soil as chemically-enriched water, by incorporating soluble organic and inorganic particles deriving from plant exudates and from atmospheric depositions (dryfall and wetfall) present on the surfaces of the plant (leaves, bark, fruits). Dissolved (DOC) and particulate (POC) organic carbon inputs from stem- and canopy-derived hydrologic fluxes are small but important components of the natural carbon cycle. DOC has also the capability to form complexes that control the transport and solubility of heavy metals in surface and ground waters, being composed for the most part (75-90%) of fulvic, humic or tanninic compounds, and for the resting part of molecules like carbohydrates, hydrocarbons, waxes, fatty acids, amino and hydroxy acids. However, very little data is available for agricultural tree crops, especially olive trees. In this sense, the objective of this work is to investigate the concentration and fluxes of organic carbon in rainfall, throughfall, and stemflow in a mature olive orchard located in Cordoba, in Southern Spain and to relate them to rainfall characteristics and tree physiology. The measurements started in October 2011. Four high density polyethylene bottles with 18-cm-diameter polyethylene funnels for throughfall collection were placed beneath the canopy of each of the three selected olive trees; four more collectors were placed in open spaces in the same orchard for rainfall sampling. Stemflow was collected through PVC spiral tubes wrapped around the trunks and leading into collection bins. The throughflow sampling points were chosen randomly. Total and dissolved organic carbon concentrations in unfiltered (TOC) and filtered (0.45 µm membrane filter, DOC) collected waters were measured using a TOC analyzer

  14. A study of soil organic carbon distribution and storage in the Northeast Plain of China

    Directory of Open Access Journals (Sweden)

    Xiaohuan Xi

    2011-04-01

    Full Text Available Employing the Unit Soil Carbon Amount (USCA approach, soil carbon storage was calculated across the Northeast Plain of China based on the Multi-purpose Regional Geochemical Survey conducted in 2004–2006 (MRGS. The results indicated that the soil organic carbon (SOC storage in topsoil (0–0.2 m, subsoil (0–1 m and deep soil (0–1.8 m was 768.1 Mt, 2978.4 Mt and 3729.2 Mt with densities of 3327.8 t/km2, 12,904.7 t/km2 and 16,157.5 t/km2, respectively. These values were consistent with national averages, whereas the soil carbon densities showed a clear increasing trend from the southern area of the Northeast Plain (Liaoning, to the middle (Jilin and the northern Plain (Heilongjiang — particularly in terms of topsoil carbon density, which increased from 2284.2, to 3436.7 and 3861.5 t/km2, respectively. In comparison to carbon data obtained from the Second National Soil Survey in 1984–1986 (SNSS, the topsoil SOC storage values from the MRGS were found to have decreased by 320.59 Mt (29.4%, with an average annual decline of 16.0 Mt (l.73% over the 20 years. In the southern, middle and northern areas of the plain, soil carbon densities decreased by 1060.6 t/km2, 1646.4 t/km2 and 1300.2 t/km2, respectively, with an average value of 1389.0 t/km2 for the whole plain. These findings indicate that the decrease in soil carbon density varied according to the different ecosystems and land-use types. Therefore, ratios of soil carbon density were calculated in order to study the carbon dynamic balance between ecosystems, and to further explore distribution characteristics, as well as the sequestration potential of SOC.

  15. Mesoscopic kinetic Monte Carlo modeling of organic photovoltaic device characteristics

    Science.gov (United States)

    Kimber, Robin G. E.; Wright, Edward N.; O'Kane, Simon E. J.; Walker, Alison B.; Blakesley, James C.

    2012-12-01

    Measured mobility and current-voltage characteristics of single layer and photovoltaic (PV) devices composed of poly{9,9-dioctylfluorene-co-bis[N,N'-(4-butylphenyl)]bis(N,N'-phenyl-1,4-phenylene)diamine} (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) have been reproduced by a mesoscopic model employing the kinetic Monte Carlo (KMC) approach. Our aim is to show how to avoid the uncertainties common in electrical transport models arising from the need to fit a large number of parameters when little information is available, for example, a single current-voltage curve. Here, simulation parameters are derived from a series of measurements using a self-consistent “building-blocks” approach, starting from data on the simplest systems. We found that site energies show disorder and that correlations in the site energies and a distribution of deep traps must be included in order to reproduce measured charge mobility-field curves at low charge densities in bulk PFB and F8BT. The parameter set from the mobility-field curves reproduces the unipolar current in single layers of PFB and F8BT and allows us to deduce charge injection barriers. Finally, by combining these disorder descriptions and injection barriers with an optical model, the external quantum efficiency and current densities of blend and bilayer organic PV devices can be successfully reproduced across a voltage range encompassing reverse and forward bias, with the recombination rate the only parameter to be fitted, found to be 1×107 s-1. These findings demonstrate an approach that removes some of the arbitrariness present in transport models of organic devices, which validates the KMC as an accurate description of organic optoelectronic systems, and provides information on the microscopic origins of the device behavior.

  16. Sorption of Heterocyclic Organic Compounds to Multiwalled Carbon Nanotubes.

    Science.gov (United States)

    Metzelder, Florian; Funck, Matin; Schmidt, Torsten C

    2018-01-16

    Sorption is an important natural and technical process. Sorption coefficients are typically determined in batch experiments, but this may be challenging for weakly sorbing compounds. An alternative method enabling analysis of those compounds is column chromatography. A column packed with the sorbent is used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. In this study, column chromatography was applied for the first time to study sorption of previously hardly investigated heterocyclic organic compounds to multiwalled carbon nanotubes (MWCNTs). Sorption data for these compounds are very limited in literature, and weak sorption is expected from predictions. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were well described by the Freundlich model and data showed reasonable agreement with predicted values. Sorption was exothermic and physisorption was observed. H-bonding may contribute to overall sorption, which is supported by reduced sorption with increasing ionic strength due to blocking of functional groups. Lowering pH reduced sorption of ionizable compounds, due to electrostatic repulsion at pH 3 where sorbent as well as sorbates were positively charged. Overall, column chromatography was successfully used to study sorption of heterocyclic compounds to MWCNTs and could be applied for other carbon-based sorbents.

  17. Organic Carbon Burial in Brazilian Mangrove Sediments (Invited)

    Science.gov (United States)

    Sanders, C.; Smoak, J. M.; Sanders, L.; Patchineelam, S.

    2010-12-01

    This study reviews the organic carbon (OC) burial rates in mangrove forests, margins and mud flats in geographically distinct areas of the Brazilian coastline. We exam the burial rates, taking into account the geomorphology of each region. Our initial results indicate that the Northeastern region of Brazil is sequestering significantly more OC than in the Southeastern areas, being that the mass sediment accumulation rates remained consistent within the forests as opposed to large variations found in the mudflats. The other pertinent factor was OC content, which differed substantially in respect to region. Given that the mangrove forests of the Southeastern regions of Brazil may be more susceptible to a rising sea level, as these areas are constricted by vast mountain ranges, this work attempts to put in perspective the possible impacts of climate change on mangrove ecosystems and OC burial along the Brazilian coastal ocean. We also compare our result to global averages.

  18. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    Science.gov (United States)

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and

  19. Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate

    International Nuclear Information System (INIS)

    Clough, A.; Skjemstad, J.O.

    2000-01-01

    The amount of organic carbon physically protected by entrapment within aggregates and through polyvalent cation organic matter bridging was determined on non-calcareous and calcareous soils. The composition of organic carbon in whole soils and 13 C NMR analysis. High energy photo-oxidation was carried out on <53 μm fractions and results from the NMR spectra showed 17-40% of organic carbon was in a condensed aromatic form, most likely charcoal (char). The concept that organic material remaining after photo-oxidation may be physically protected within aggregates was investigated by treating soils with a mild acid prior to photo-oxidation. More organic material was protected in the calcareous than the non-calcareous soils, regardless of whether the calcium occurred naturally or was an amendment. Acid treatment indicated that the presence of exchangeable calcium reduced losses of organic material upon photo-oxidation by about 7% due to calcium bridging. These results have implications for N fertiliser recommendations based upon organic carbon content. Firstly, calcium does not impact upon degradability of organic material to an extent likely to affect N fertiliser recommendations. Secondly, standard assessment techniques overestimate active organic carbon content in soils with high char content. Copyright (2000) CSIRO Publishing

  20. Electric double layer capacitance on hierarchical porous carbons in an organic electrolyte

    OpenAIRE

    Yamada, Hirotoshi; Moriguchi, Isamu; Kudo, Tetsuichi

    2008-01-01

    Nanoporous carbons were prepared by using colloidal crystal as a template. Nitrogen adsorption/desorption isotherms and transmission electron microscope images revealed that the porous carbons exhibit hierarchical porous structures with meso/macropores and micropores. Electric double layer capacitor performance of the porous carbons was investigated in an organic electrolyte of 1 M LiClO4 in propylene carbonate and dimethoxy ethane. The hierarchical porous carbons exhibited large specific dou...

  1. Improved automation of dissolved organic carbon sampling for organic-rich surface waters.

    Science.gov (United States)

    Grayson, Richard P; Holden, Joseph

    2016-02-01

    In-situ UV-Vis spectrophotometers offer the potential for improved estimates of dissolved organic carbon (DOC) fluxes for organic-rich systems such as peatlands because they are able to sample and log DOC proxies automatically through time at low cost. In turn, this could enable improved total carbon budget estimates for peatlands. The ability of such instruments to accurately measure DOC depends on a number of factors, not least of which is how absorbance measurements relate to DOC and the environmental conditions. Here we test the ability of a S::can Spectro::lyser™ for measuring DOC in peatland streams with routinely high DOC concentrations. Through analysis of the spectral response data collected by the instrument we have been able to accurately measure DOC up to 66 mg L(-1), which is more than double the original upper calibration limit for this particular instrument. A linear regression modelling approach resulted in an accuracy >95%. The greatest accuracy was achieved when absorbance values for several different wavelengths were used at the same time in the model. However, an accuracy >90% was achieved using absorbance values for a single wavelength to predict DOC concentration. Our calculations indicated that, for organic-rich systems, in-situ measurement with a scanning spectrophotometer can improve fluvial DOC flux estimates by 6 to 8% compared with traditional sampling methods. Thus, our techniques pave the way for improved long-term carbon budget calculations from organic-rich systems such as peatlands. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Simulating the effects of light intensity and carbonate system composition on particulate organic and inorganic carbon production in Emiliania huxleyi.

    Science.gov (United States)

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2015-05-07

    Coccolithophores play an important role in the marine carbon cycle. Variations in light intensity and external carbonate system composition alter intracellular carbon fluxes and therewith the production rates of particulate organic and inorganic carbon. Aiming to find a mechanistic explanation for the interrelation between dissolved inorganic carbon fluxes and particulate carbon production rates, we develop a numerical cell model for Emiliania huxleyi, one of the most abundant coccolithophore species. The model consists of four cellular compartments, for each of which the carbonate system is resolved dynamically. The compartments are connected to each other and to the external medium via substrate fluxes across the compartment-confining membranes. By means of the model we are able to explain several pattern observed in particulate organic and inorganic carbon production rates for different strains and under different acclimation conditions. Particulate organic and inorganic carbon production rates for instance decrease at very low external CO2 concentrations. Our model suggests that this effect is caused mainly by reduced HCO3(-) uptake rates, not by CO2 limitation. The often observed decrease in particulate inorganic carbon production rates under Ocean Acidification is explained by a downregulation of cellular HCO3(-) uptake. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Pre-treatments, characteristics, and biogeochemical dynamics of dissolved organic matter in sediments: A review.

    Science.gov (United States)

    Chen, Meilian; Hur, Jin

    2015-08-01

    Dissolved organic matter (DOM) in sediments, termed here sediment DOM, plays a variety of important roles in global biogeochemical cycling of carbon and nutrients as well as in the fate and transport of xenobiotics. Here we reviewed sediment DOM, including pore waters and water extractable organic matter from inland and coastal sediments, based on recent literature (from 1996 to 2014). Sampling, pre-treatment, and characterization methods for sediment DOM were summarized. The characteristics of sediment DOM have been compared along an inland to coastal ecosystems gradient and also with the overlying DOM in water column to distinguish the unique nature of it. Dissolved organic carbon (DOC) from inland sediment DOM was generally higher than coastal areas, while no notable differences were found for their aromaticity and apparent molecular weight. Fluorescence index (FI) revealed that mixed sources are dominant for inland sediment DOM, but marine end-member prevails for coastal sediment DOM. Many reports showed that sediments operate as a net source of DOC and chromophoric DOM (CDOM) to the water column. Sediment DOM has shown more enrichment of nitrogen- and sulfur-containing compounds in the elemental signature than the overlying DOM. Fluorescent fingerprint investigated by excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) further demonstrated the characteristics of sediment DOM lacking in the photo-oxidized and the intermediate components, which are typically present in the overlying surface water. In addition, the biogeochemical changes in sediment DOM and the subsequent environmental implications were discussed with the focus on the binding and the complexation properties with pollutants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay

    Science.gov (United States)

    Kemp, W.M.; Smith, E.M.; Marvin-DiPasquale, M.; Boynton, W.R.

    1997-01-01

    The major fluxes of organic carbon associated with physical transport and biological metabolism were compiled, analyzed and compared for the mainstem portion of Chesapeake Bay (USA). In addition, 5 independent methods were used to calculate the annual mean net ecosystem metabolism (NEM = production - respiration) for the integrated Bay. These methods, which employed biogeochemical models, nutrient mass-balances anti summation of individual organic carbon fluxes, yielded remarkably similar estimates, with a mean NEM of +50 g C m-2 yr-1 (?? SE = 751, which is approximately 8% of the estimated annual average gross primary production. These calculations suggest a strong cross-sectional pattern in NEM throughout the Bay, wherein net heterotrophic metabolism prevails in the pelagic zones of the main channel, while net autotrophy occurs in the littoral zones which flank the deeper central area. For computational purposes, the estuary was separated into 3 regions along the land-sea gradient: (1) the oligohaline Upper Bay (11% of total area); (2) the mesohaline Mid Bay (36% of area); and (3) the polyhaline Lower Bay (53% of area). A distinct regional trend in NEM was observed along this salinity gradient, with net here(atrophy (NEM = 87 g C m-2 yr-1) in the Upper Bay, balanced metabolism in the Mid Bay and net autotrophy (NEM = +92 g C m-2 yr-1) in the Lower Bay. As a consequence of overall net autotrophy, the ratio of dissolved inorganic nitrogen (DIN) to total organic nitrogen (TON) changed from DIN:TON = 5.1 for riverine inputs to DIN:TON = 0.04 for water exported to the ocean. A striking feature of this organic C mass-balance was the relative dominance of biologically mediated metabolic fluxes compared to physical transport fluxes. The overall ratio of physical TOC inputs (1) to biotic primary production (P) was 0.08 for the whole estuary, but varied dramatically from 2.3 in the Upper Bay to 0.03 in the Mid and Lower Bay regions. Similarly, ecosystem respiration was

  5. Monitoring of organic and elemental carbon (OC/EC) in the atmospheric aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, A.; Fuchs, J.; Jaeschke, W.; Weingartner, E.; Baltensperger, U.

    2003-03-01

    A new instrument for the measurement of ambient carbonaceous aerosol concentrations is described, which enables discrimination between organic and elemental carbon on a semi-continuous basis. (author)

  6. Organic carbon, nitrogen and phosphorus contents of some soils of kaliti tea-estate, Bangladesh

    International Nuclear Information System (INIS)

    Ahmed, M. S.; Shahin, M. M. H.; Sanaullah, A. F. M.

    2005-01-01

    Some soil samples were collected from Kaliti Tea-Estate of Moulvibazar district, Bangladesh. Total nitrogen, organic carbon, organic matter, carbon-nitrogen ratio and available phosphorus content of the collected soil samples of different depths and of different topographic positions have been determined. Total nitrogen was found 0.07 to 0.12 % organic carbon and organic matter content found to vary from 0.79 to 1.25 and 1.36 to 2.15 % respectively. Carbon-nitrogen ratio of these soils varied from 9.84 to 10.69, while available phosphorus content varied from 2.11 to 4.13 ppm. (author)

  7. Dynamics of Intracellular Polymers in Enhanced Biological Phosphorus Removal Processes under Different Organic Carbon Concentrations

    Directory of Open Access Journals (Sweden)

    Lizhen Xing

    2013-01-01

    Full Text Available Enhanced biological phosphorus removal (EBPR may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  8. Modeling Soil Organic Carbon Turnover in Four Temperate Forests Based on Radiocarbon Measurements of Heterotrophic Respiration and Soil Organic Carbon

    Science.gov (United States)

    Ahrens, B.; Borken, W.; Muhr, J.; Schrumpf, M.; Savage, K. E.; Wutzler, T.; Trumbore, S.; Reichstein, M.

    2011-12-01

    Soils of temperate forests store significant amounts of soil organic matter and are considered to be net sinks of atmospheric CO2. Soil organic carbon (SOC) dynamics have been studied using the Δ14C signature of bulk SOC or different SOC fractions as observational constraints in SOC models. Further, the Δ14C signature of CO2 evolved during the incubation of soil and roots has been widely used together with Δ14C of total soil respiration to partition soil respiration into heterotrophic respiration (Rh) and root respiration. However, these data have rarely been used together as observational constraints to determine SOC turnover times. Here, we present a multiple constraints approach, where we used SOC stock and its Δ14C signature, and heterotrophic respiration and its Δ14C signature to estimate SOC turnover times of a simple serial two-pool model via Bayesian optimization. We used data from four temperate forest ecosystems in Germany and the USA with different disturbance and management histories from selective logging to afforestation in the late 19th and early 20th century. The Δ14C signature of the atmosphere with its prominent bomb peak was used as a proxy for the Δ14C signature of aboveground and belowground litterfall. The Δ14C signature of litterfall was lagged behind the atmospheric signal to account for the period between photosynthetic fixation of carbon and its addition to SOC pools. We showed that the combined use of Δ14C measurements of Rh and SOC stocks helped to better constrain turnover times of the fast pool (primarily by Δ14C of Rh) and the slow pool (primarily by Δ14C of SOC). In particular, by introducing two additional parameters that describe the deviation from steady state of the fast and slow cycling pool for both SOC and SO14C, we were able to demonstrate that we cannot maintain the often used steady-state assumption of SOC models in general. Furthermore, a new transport version of our model, including SOC transport via

  9. Use of carbon-14 in soil organic matter studies

    International Nuclear Information System (INIS)

    Vimal, O.P.; Kamath, M.B.

    1974-01-01

    Despite a great deal of research work on various aspects of soil organic matter, there are many gaps in the knowledge of the process of humus formation. These limitations arise mainly from the complex and heterogenous nature of soil humus substances, analytical problems in separating the fresh and decomposable materials from the old stabilized true humus substances and the lack of a clear understanding of the chemical structure of the humic acid molecule. During recent years, the use of carbon-14 has helped to trace within soil, transformation of a number of metabolites upto the point where they turn into humus. These studies have changed the concepts of the formation and stability of soil humus substances, their colloidal chemical properties and the uptake of organomolecules by plant roots. The present paper presents a synoptic view of the use of radiocarbon in studying the kinetics of humification, nature of precursors in humic acid formation, turnover of soil organic matter and the direct effects of humus substances on plant growth. (author)

  10. Nutrient and dissolved organic carbon removal from natural waters using industrial by-products.

    Science.gov (United States)

    Wendling, Laura A; Douglas, Grant B; Coleman, Shandel; Yuan, Zheng

    2013-01-01

    Attenuation of excess nutrients in wastewater and stormwater is required to safeguard aquatic ecosystems. The use of low-cost, mineral-based industrial by-products with high Ca, Mg, Fe or Al content as a solid phase in constructed wetlands potentially offers a cost-effective wastewater treatment option in areas without centralised water treatment facilities. Our objective was to investigate use of water treatment residuals (WTRs), coal fly ash (CFA), and granular activated carbon (GAC) from biomass combustion in in-situ water treatment schemes to manage dissolved organic carbon (DOC) and nutrients. Both CaO- and CaCO(3)-based WTRs effectively attenuated inorganic N species but exhibited little capacity for organic N removal. The CaO-based WTR demonstrated effective attenuation of DOC and P in column trials, and a high capacity for P sorption in batch experiments. Granular activated carbon proved effective for DOC and dissolved organic nitrogen (DON) removal in column trials, but was ineffective for P attenuation. Only CFA demonstrated effective removal of a broad suite of inorganic and organic nutrients and DOC; however, Se concentrations in column effluents exceeded Australian and New Zealand water quality guideline values. Water treated by filtering through the CaO-based WTR exhibited nutrient ratios characteristic of potential P-limitation with no potential N- or Si-limitation respective to growth of aquatic biota, indicating that treatment of nutrient-rich water using the CaO-based WTR may result in conditions less favourable for cyanobacterial growth and more favourable for growth of diatoms. Results show that selected industrial by-products may mitigate eutrophication through targeted use in nutrient intervention schemes. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  11. Accounting for Organic Carbon Change in Deep Soil Altered Carbon Sequestration Efficiency

    Science.gov (United States)

    Li, J.; Liang, F.; Xu, M.; Huang, S.

    2017-12-01

    Study on soil organic carbon (SOC) sequestration under fertilization practices in croplands lacks information of soil C change at depth lower than plow layer (i.e. 20 30-cm). By synthesizing long-term datasets of fertilization experiments in four typical Chinese croplands representing black soil at Gongzhuling(GZL), aquatic Chao soil at Zhengzhou(ZZ), red soil at Qiyang(QY) and purple soil at Chongqing(CQ) city, we calculated changes in SOC storage relative to initial condition (ΔSOC) in 0-20cm and 0-60cm, organic C inputs (OC) from the stubble, roots and manure amendment, and C sequestration efficiency (CSE: the ratio of ΔSOC over OC) in 0-20cm and 0-60cm. The fertilization treatments include cropping with no fertilization (CK), chemical nitrogen, phosphorus and potassium fertilizers (NPK) and combined chemical fertilizers and manure (NPKM). Results showed SOC storage generally decreased with soil depth (i.e. 0-20 > 20-40, 40-60 cm) and increased with fertilizations (i.e. initial fertilizations, soil at depth (>20cm) can act as important soil carbon sinks in intrinsically high fertility soils (i.e. black soil) but less likely at poor fertility soil (i.e. aquatic Chao soil). It thus informs the need to account for C change in deep soils for estimating soil C sequestration capacity particularly with indigenously fertile cropland soils.

  12. Climate and landscape influence on indicators of lake carbon cycling through spatial patterns in dissolved organic carbon.

    Science.gov (United States)

    Lapierre, Jean-Francois; Seekell, David A; Del Giorgio, Paul A

    2015-12-01

    Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2 ), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions. There were various degrees of spatial structure in climate and landscape features that were coherent with the regionally structured patterns observed in lake DOC and indicators of C cycling. These different regions aligned well, albeit nonlinearly along a mean annual temperature gradient; whereas there was a considerable statistical effect of climate and landscape properties on lake C cycling, the direct effect was small and the overall effect was almost entirely overlapping with that of DOC concentration and composition. Our results suggest that key climatic and landscape signals are conveyed to lakes in part via the movement of terrestrial DOC to lakes and that DOC acts both as a driver of lake C cycling and as a proxy for other external signals. © 2015 John Wiley & Sons Ltd.

  13. Springtime carbon emission episodes at the Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles

    Directory of Open Access Journals (Sweden)

    J. Jung

    2011-11-01

    Full Text Available In order to investigate the emission of carbonaceous aerosols at the Gosan background super-site (33.17° N, 126.10° E in East Asia, total suspended particles (TSP were collected during spring of 2007 and 2008 and analyzed for particulate organic carbon, elemental carbon, total carbon (TC, total nitrogen (TN, and stable carbon isotopic composition (δ13C of TC. The stable carbon isotopic composition of TC (δ13CTC was found to be lowest during pollen emission episodes (range: −26.2‰ to −23.5‰, avg. −25.2 ± 0.9‰, approaching those of the airborne pollen (−28.0‰ collected at the Gosan site. Based on a carbon isotope mass balance equation, we found that ~42% of TC in the TSP samples during the pollen episodes was attributed to airborne pollen from Japanese cedar trees planted around tangerine farms in Jeju Island. A negative correlation between the citric acid-carbon/TC ratios and δ13CTC was obtained during the pollen episodes. These results suggest that citric acid emitted from tangerine fruit may be adsorbed on the airborne pollen and then transported to the Gosan site. Thermal evolution patterns of organic carbon during the pollen episodes were characterized by high OC evolution in the OC2 temperature step (450 °C. Since thermal evolution patterns of organic aerosols are highly influenced by their molecular weight, they can be used as additional information on the formation of secondary organic aerosols and the effect of aging of organic aerosols during the long-range atmospheric transport and sources of organic aerosols.

  14. Depositional environments inferred from variations of calcium carbonate, organic carbon, and sulfide sulfur: a core from southeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.; Iyer, S.D.; Chauhan, O.S.; PrakashBabu, C.

    Pleistocene has been inferred. The higher contents of organic carbon and sulfide sulfur and their negative relationship clearly establish the existence of a reducing environment below 65 cm subbottom depth. The occurrence of pyrite framboids and crystals...

  15. Determinants and Characteristics of Korean Companies’ Carbon Management under the Carbon Pricing Scheme

    Directory of Open Access Journals (Sweden)

    Sunhee Suk

    2018-04-01

    Full Text Available In response to the domestic emission trading scheme, Korean companies are required to shift their strategies from voluntary or regulation-driven management approaches to innovative carbon management utilizing their carbon option linked with economic value. Using a questionnaire survey targeting companies subjected to the emission trading scheme, this study explores the status of Korean companies’ carbon management in a series of five strategies and identifies the correlation between companies’ proactive carbon strategies and pre-listed determinant factors. This study found that Korean companies’ practices in accordance with carbon pricing deviate little from conventional energy and environmental management in this phase. They are likely to be affected by the need to appear socially responsible or to make a social contribution, without having to exceed this mandate in terms activities outside of this remit. Yet, only a small proportion of companies have advanced to the stage of proactive carbon management. For them, top managers’ support and understanding are essential factors together with government pressure to factor-in issues related to carbon with their business strategies. This study provides implications for policy and corporate in promoting carbon-oriented management under the carbon policy.

  16. Improvement of clayey soil characteristics by using activated carbon

    Directory of Open Access Journals (Sweden)

    Al-Soudany Kawther

    2018-01-01

    Full Text Available The clay soil is weak and unable to carry the applied loads as a result of the weight of buildings or vehicles on the load performing on the soil. In this research, clay soil was grained and mixed with different percentages of activated carbon additives to investigate its performance. One type of clay soil from Al-Taji city was used. The percentages of activated carbon 3, 5, 7 and 9% were added to the soil and the influence of the admixture was observed by comparing the results with the untreated soil. The selected properties for this comparison were specific gravity, consistency limits, compaction, static compaction, CBR, consolidation, swelling and unconfined compressive strength. The results showed that the plasticity index, maximum dry weight and specific gravity decreased as the percentage of additives increased. The unconfined compressive strength increased as the percentage of additives and curing periods (1, 7, 14 and 28days increased. The amount of increase in soil strength was even more than 100% for the 9% activatedcarbon. The results showed that the addition of activated carbon has a positive effect to the geotechnical properties.

  17. Examining organic carbon transport by the Orinoco River using SeaWiFS imagery

    Science.gov (United States)

    López, Ramón; Del Castillo, Carlos E.; Miller, Richard L.; Salisbury, Joseph; Wisser, Dominik

    2012-09-01

    The Orinoco River is the fourth largest in the world in terms of water discharge and organic carbon export to the ocean. River export of organic carbon is a key component of the carbon cycle and the global carbon budget. Here, we examined the seasonal transport of organic carbon by the Orinoco River into the eastern Caribbean using the conservative relationship of colored dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in low salinity coastal waters influenced by river plumes. In situ measurements of CDOM absorption, DOC, and salinity were used to develop an empirical model for DOC concentration at the Orinoco River Plume. Satellite remote sensing reflectances were used with empirical models to determine DOC and Particulate organic carbon (POC) river transport. Our estimates of CDOM and DOC significantly correlated with in situ measurements and were within the expected ranges for the river. Total organic carbon transport by the Orinoco River during the period of 1998 to 2010 was 7.10 ×1012 g C y-1, from 5.29 × 1012 g C y-1 of DOC and 1.81 × 1012 g C y-1 of POC, representing ˜6% increase to previous published estimates. The variability in organic carbon transport responded to the seasonality in river flow more than to changes in organic carbon concentration in the river. Our results corroborate that is possible to estimate organic carbon transport using ocean color data at global scales. This is needed to reduce the uncertainties of land-ocean carbon fluxes.

  18. Tracing the sources of organic carbon in freshwater systems

    Science.gov (United States)

    Glendell, Miriam; Meersmans, Jeroen; Barclay, Rachel; Yvon-Durocher, Gabriel; Barker, Sam; Jones, Richard; Hartley, Iain; Dungait, Jennifer; Quine, Timothy

    2016-04-01

    Quantifying the lateral fluxes of carbon from land to inland waters is critical for the understanding of the global carbon cycle and climate change mitigation. However, the crucial role of rivers in receiving, transporting and processing the equivalent of terrestrial net primary production in their watersheds has only recently been recognised. In addition, the fluxes of carbon from land to ocean, and the impact of anthropogenic perturbation, are poorly quantified. Therefore, a mechanistic understanding of the processes involved in the loss and preservation of C along the terrestrial-aquatic continuum is required to predict the present and future contribution of aquatic C fluxes to the global C budget. This pilot study examines the effect of land use on the fate of organic matter within two headwater catchments in Cornwall (UK) in order to develop a methodological framework for investigating C-cycling across the entire terrestrial-aquatic continuum. To this end, we aim to characterise the spatial heterogeneity of soil erosion driven lateral fluxes of SOC to identify areas of erosion and deposition using 137Cs radio-isotope and trace the terrestrial versus aquatic origin of C along the river reaches and in lake sediments at the catchment outlet. The 3D spatial distribution of SOC has been investigated by sampling three depth increments (i.e. 0-15cm, 15-30cm and 30-50cm) along 14 hillslope transects within two sub-catchments of ˜km2 each. In total, 80 terrestrial sites were monitored and analysed for total C and N, and bulk stable 13C/15N isotope values, while 137Cs was used to obtain a detailed understanding of the spatial - temporal variability in erosion driven lateral fluxes of SOC within the catchments. The relative contribution of terrestrial and aquatic C was examined along the river reaches as well as in lake sediments at the catchment outlet by considering n-alkane signatures. By linking the C accumulation rates in lake sediments over decadal timescales from

  19. Redox-controlled carbon and phosphorus burial: A mechanism for enhanced organic carbon sequestration during the PETM

    Science.gov (United States)

    Komar, Nemanja; Zeebe, Richard E.

    2017-12-01

    Geological records reveal a major perturbation in carbon cycling during the Paleocene-Eocene Thermal Maximum (PETM, ∼56 Ma), marked by global warming of more than 5 °C and a prominent negative carbon isotope excursion of at least 2.5‰ within the marine realm. The entire event lasted about 200,000 yr and was associated with a massive release of light carbon into the ocean-atmosphere system over several thousands of years. Here we focus on the terminal stage of the PETM, during which the ocean-atmosphere system rapidly recovered from the carbon cycle perturbation. We employ a carbon-cycle box model to examine the feedbacks between surface ocean biological production, carbon, oxygen, phosphorus, and carbonate chemistry during massive CO2 release events, such as the PETM. The model results indicate that the redox-controlled carbon-phosphorus feedback is capable of producing enhanced organic carbon sequestration during large carbon emission events. The locale of carbon oxidation (ocean vs. atmosphere) does not affect the amount of carbon sequestered. However, even though the model produces trends consistent with oxygen, excess accumulation rates of organic carbon (∼1700 Pg C during the recovery stage), export production and δ13 C data, it fails to reproduce the magnitude of change of sediment carbonate content and the CCD over-deepening during the recovery stage. The CCD and sediment carbonate content overshoot during the recovery stage is muted by a predicted increase in CaCO3 rain. Nonetheless, there are indications that the CaCO3 export remained relatively constant during the PETM. If this was indeed true, then an initial pulse of 3,000 Pg C followed by an additional, slow leak of 2,500 Pg C could have triggered an accelerated nutrient supply to the surface ocean instigating enhanced organic carbon export, consequently increasing organic carbon sequestration, resulting in an accelerated restoration of ocean-atmosphere biogeochemistry during the termination

  20. Electrochemical capacitance characteristics of patterned ruthenium dioxide-carbon nanotube nanocomposites grown onto graphene

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Yi-Ting [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Lee, Kuei-Yi, E-mail: kylee@mail.ntust.edu.tw [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Huang, Ying-Sheng [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China)

    2014-03-01

    Highlights: • Graphene was grown on Cu foil by mobile thermal chemical vapor deposition system. • CNT was synthesized on graphene for RuO{sub 2} nanostructure growth by thermal chemical vapor deposition system. • The CNT growth location was fixed through the use of photolithography technique, thereby increasing the specific area. • RuO{sub 2} nanostructures were coated onto CNT bundle arrays through metal organic chemical vapor deposition, in order to utilize its pseudo capacitive property. - Abstract: In this study, graphene was used as a conductive substrate for vertically aligned carbon nanotube (CNT) bundle arrays growth, to be used as an electrode for electrochemical double layer capacitor (EDLC), as graphene and CNT exhibit good conductivity and excellent chemical stability. Both of them are composed of carbon, therefore making a superior adhesion between them. The configuration of bundle arrays provided a relatively higher specific surface area in contact with electrolyte, thereby resulting in demonstratively higher capacitance. Moreover, as the RuO{sub 2} nanostructures have good pseudocapacitance characteristics, they were coated onto vertically aligned CNT bundle arrays in order to effectively enhance the EDLC performances. The characteristics of CNT/graphene, CNT bundle/graphene, and RuO{sub 2}/CNT bundle/graphene electrodes were examined with the use of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Furthermore, their electrochemical properties were investigated by an electrochemical analyzer. The specific capacitances of CNT/graphene, CNT bundle/graphene, and RuO{sub 2}/CNT bundle/graphene were 4.64, 6.65, and 128.40 F/g at the scan rate of 0.01 V/s, respectively.

  1. Electrochemical capacitance characteristics of patterned ruthenium dioxide-carbon nanotube nanocomposites grown onto graphene

    International Nuclear Information System (INIS)

    Shih, Yi-Ting; Lee, Kuei-Yi; Huang, Ying-Sheng

    2014-01-01

    Highlights: • Graphene was grown on Cu foil by mobile thermal chemical vapor deposition system. • CNT was synthesized on graphene for RuO 2 nanostructure growth by thermal chemical vapor deposition system. • The CNT growth location was fixed through the use of photolithography technique, thereby increasing the specific area. • RuO 2 nanostructures were coated onto CNT bundle arrays through metal organic chemical vapor deposition, in order to utilize its pseudo capacitive property. - Abstract: In this study, graphene was used as a conductive substrate for vertically aligned carbon nanotube (CNT) bundle arrays growth, to be used as an electrode for electrochemical double layer capacitor (EDLC), as graphene and CNT exhibit good conductivity and excellent chemical stability. Both of them are composed of carbon, therefore making a superior adhesion between them. The configuration of bundle arrays provided a relatively higher specific surface area in contact with electrolyte, thereby resulting in demonstratively higher capacitance. Moreover, as the RuO 2 nanostructures have good pseudocapacitance characteristics, they were coated onto vertically aligned CNT bundle arrays in order to effectively enhance the EDLC performances. The characteristics of CNT/graphene, CNT bundle/graphene, and RuO 2 /CNT bundle/graphene electrodes were examined with the use of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Furthermore, their electrochemical properties were investigated by an electrochemical analyzer. The specific capacitances of CNT/graphene, CNT bundle/graphene, and RuO 2 /CNT bundle/graphene were 4.64, 6.65, and 128.40 F/g at the scan rate of 0.01 V/s, respectively

  2. Maximum total organic carbon limit for DWPF melter feed

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    DWPF recently decided to control the potential flammability of melter off-gas by limiting the total carbon content in the melter feed and maintaining adequate conditions for combustion in the melter plenum. With this new strategy, all the LFL analyzers and associated interlocks and alarms were removed from both the primary and backup melter off-gas systems. Subsequently, D. Iverson of DWPF- T ampersand E requested that SRTC determine the maximum allowable total organic carbon (TOC) content in the melter feed which can be implemented as part of the Process Requirements for melter feed preparation (PR-S04). The maximum TOC limit thus determined in this study was about 24,000 ppm on an aqueous slurry basis. At the TOC levels below this, the peak concentration of combustible components in the quenched off-gas will not exceed 60 percent of the LFL during off-gas surges of magnitudes up to three times nominal, provided that the melter plenum temperature and the air purge rate to the BUFC are monitored and controlled above 650 degrees C and 220 lb/hr, respectively. Appropriate interlocks should discontinue the feeding when one or both of these conditions are not met. Both the magnitude and duration of an off-gas surge have a major impact on the maximum TOC limit, since they directly affect the melter plenum temperature and combustion. Although the data obtained during recent DWPF melter startup tests showed that the peak magnitude of a surge can be greater than three times nominal, the observed duration was considerably shorter, on the order of several seconds. The long surge duration assumed in this study has a greater impact on the plenum temperature than the peak magnitude, thus making the maximum TOC estimate conservative. Two models were used to make the necessary calculations to determine the TOC limit

  3. The fate of eroded soil organic carbon along a European transect – controls after deposition in terrestrial and aquatic systems

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten

    that the turnover of deposited C is significantly affected by soil and organic matter properties, and whether deposition occurs in terrestrial or aquatic environments. We sampled topsoils from 10 agricultural sites along a European transect, spanning a wide range of SOC and soil characteristics (e.g. texture......The potential fate of eroded soil organic carbon (SOC) after deposition is key to understand carbon cycling in eroding landscapes. Globally, large quantities of sediments and SOC are redistributed by soil erosion on agricul-tural land, particularly after heavy precipitation events. Deposition......, aggregation, C content, etc.). Turnover of SOC was determined for terrestrial and aquatic depositional conditions in a 10-week incubation study. Moreover, we studied the impact of labile carbon inputs (‘priming’) on SOC stability using 13C labelled cellulose. We evaluated potentially important controls...

  4. Estimation of the soil-water partition coefficient normalized to organic carbon for ionizable organic chemicals

    DEFF Research Database (Denmark)

    Franco, Antonio; Trapp, Stefan

    2008-01-01

    The sorption of organic electrolytes to soil was investigated. A dataset consisting of 164 electrolytes, composed of 93 acids, 65 bases, and six amphoters, was collected from literature and databases. The partition coefficient log KOW of the neutral molecule and the dissociation constant pKa were...... calculated by the software ACD/Labs®. The Henderson-Hasselbalch equation was applied to calculate dissociation. Regressions were developed to predict separately for the neutral and the ionic molecule species the distribution coefficient (Kd) normalized to organic carbon (KOC) from log KOW and pKa. The log...... KOC of strong acids (pKa correlated to these parameters. The regressions derived for weak acids and bases (undissociated at environmental pH) were similar. The highest sorption was found for strong bases (pKa > 7.5), probably due to electrical interactions. Nonetheless, their log KOC...

  5. Influence of sample composition on aerosol organic and black carbon determinations

    Energy Technology Data Exchange (ETDEWEB)

    Novakov, T.; Corrigan, C.E.

    1995-07-01

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550{degrees}C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations.

  6. Influence of sample composition on aerosol organic and black carbon determinations

    International Nuclear Information System (INIS)

    Novakov, T.; Corrigan, C.E.

    1995-07-01

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550 degrees C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations

  7. Fractionation and characterization of soil organic carbon during transition to organic farming

    Science.gov (United States)

    Abdelrahman, H.; Olk, D.; Cocozza, C.; Miano, T.

    2012-04-01

    The transition from conventional to organic farming is the most difficult period faced by organic growers as it could be characterized by unstable conditions, such as nutrient availability, production reductions, mineralization extents. As soil organic matter (SOM), specifically soil organic carbon (SOC), is known to play important roles in maintenance and improvement of many soil properties, it is important to define its changes during the transition period. Total SOC might not be the suitable tool to track the changes in organically based soil fertility within a 3- to 5-yr transition period. Labile fractions that are important for nutrient cycling and supply are likely to be controlled by management to a much greater extent than is total SOM. Two field experiments, in south of Italy, were established in 2009 to study the changes in SOC during transition to organic farming. Experiments included a cereal/leguminous rotation with triplicates treatments of permitted amendments (compost and fertilizers). Soils were sampled at the beginning of the project, and after each crop harvest in 2010 and 2011. A sequential fractionation procedure was used to separate different SOC-fractions: light fraction (LF), two size classes of particulate organic matter (POM), mobile humic acid (MHA) and Ca++ bound humic acid (CaHA). Isolated fractions were quantified and analyzed for their content of C, N, carbohydrates and amino compounds fingerprints. The obtained results showed that compost application contributed to significantly higher quantities of LF, POM and MHA than did fertilizers application. Carbohydrates content decreased in LF while increased noticeably in POM and slightly in MHA fractions, which indicates that decomposing materials are converted, within the time span of humification, from young fractions into more mature fractions. Amino compounds were found to provide up to 40% of total soil N with a major contribution of the humified fractions, MHA and CaHA. The utilized

  8. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing

    International Nuclear Information System (INIS)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang; He, Shuqing; An, Feng

    2013-01-01

    An organic solvent-free polyamic acid (PAA) nanoemulsion was obtained by direct ionization of the solid PAA in deionized water, with the average particle size of 261 nm and Zeta potential of −55.1 mV, and used as a carbon fiber sizing to improve the interfacial adhesion between the carbon fiber and polyether sulfone (PES). The surface characteristics of PAA coated carbon fibers were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and dynamic contact angle measurement. The results demonstrated that a continuous and uniform PAA sizing layer was formed on the surface of carbon fibers, and the surface energy of carbon fibers increased from 42.91 to 54.55 mN/m after sizing treatment. The single fiber pull-out testing was also performed, which showed the increased interfacial shear strength (IFSS) of carbon fiber/PES composites from 33.6 to 49.7 MPa by 47.9%. The major reasons for the improved interfacial adhesion were the increased van der Waals forces between the PES matrix and sizing layer as well as the chemical bonding between the sizing layer and carbon fiber surface. Furthermore, the PAA sizing also presented a positive effect on the interfacial adhesion of carbon fiber/PES composites under hydrothermal condition.

  9. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haojie [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Shouchun, E-mail: zschun@sxicc.ac.cn [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, Chunxiang, E-mail: chunxl@sxicc.ac.cn [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); He, Shuqing [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); An, Feng [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2013-08-15

    An organic solvent-free polyamic acid (PAA) nanoemulsion was obtained by direct ionization of the solid PAA in deionized water, with the average particle size of 261 nm and Zeta potential of −55.1 mV, and used as a carbon fiber sizing to improve the interfacial adhesion between the carbon fiber and polyether sulfone (PES). The surface characteristics of PAA coated carbon fibers were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and dynamic contact angle measurement. The results demonstrated that a continuous and uniform PAA sizing layer was formed on the surface of carbon fibers, and the surface energy of carbon fibers increased from 42.91 to 54.55 mN/m after sizing treatment. The single fiber pull-out testing was also performed, which showed the increased interfacial shear strength (IFSS) of carbon fiber/PES composites from 33.6 to 49.7 MPa by 47.9%. The major reasons for the improved interfacial adhesion were the increased van der Waals forces between the PES matrix and sizing layer as well as the chemical bonding between the sizing layer and carbon fiber surface. Furthermore, the PAA sizing also presented a positive effect on the interfacial adhesion of carbon fiber/PES composites under hydrothermal condition.

  10. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion.

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha -1 , were higher than 45.90 Mg C ha -1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  11. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha-1, were higher than 45.90 Mg C ha-1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  12. Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords

    NARCIS (Netherlands)

    Holding, Johnna M.; Duarte, Carlos M.; Delgado-Huertas, Antonio; Soetaert, Karline; Vonk, Jorien E.; Agustí, Susana; Wassmann, Paul; Middelburg, Jack J.

    2017-01-01

    Rising temperatures in the Arctic Ocean are causing sea ice and glaciers to melt at record breaking rates, which has consequences for carbon cycling in the Arctic Ocean that are yet to be fully understood. Microbial carbon cycling is driven by internal processing of in situ produced organic carbon

  13. Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords

    NARCIS (Netherlands)

    Holding, Johna M.; Duarte, Carlos M.; Delgado-Huertas, Antonio; Soetaert, Karline; Vonk, Jorien E.; Agusti, Susana; Wassmann, Paul; Middelburg, Jack J.

    Rising temperatures in the Arctic Ocean are causing sea ice and glaciers to melt at record breaking rates, which has consequences for carbon cycling in the Arctic Ocean that are yet to be fully understood. Microbial carbon cycling is driven by internal processing of in situ produced organic carbon

  14. Pesticide sorption by low organic carbon sediments: A sceening for seven herbicides

    DEFF Research Database (Denmark)

    Madsen, Lene; Lindhardt, Bo; Rosenberg, Per

    2000-01-01

    The sorption of seven pesticides in 10 Danish aquifer sediments has been studied. These sediments all have a total organic carbon (TOC) content below 1 g kg(-1), and include carbonate-bearing and carbonate-free Quatenary sand deposits and a Cretaceous chalk aquifer. Batch experiments were carried...

  15. Transport, preservation and accumulation of organic carbon in the North Sea

    NARCIS (Netherlands)

    Haas, H. de

    1997-01-01

    This thesis contains the results of the research on the burial of organic carbon in the North Sea as it was carried out at the Netherlands Institute for Sea Research in the period 1993-1997. Carbon in the form of carbon dioxide (C02 ) is one of the major contributors to the natural greenhouse

  16. Transport, preservation and accumulation of organic carbon in the North Sea

    NARCIS (Netherlands)

    de Haas, H.

    1997-01-01

    This thesis contains the results of the research on the burial of organic carbon in the North Sea as it was carried out at the Netherlands Institute for Sea Research in the period 1993-1997. Carbon in the form of carbon dioxide (CO2 ) is one of the major contributors to the natural greenhouse

  17. Linking variability in soil solution dissolved organic carbon to climate, soil type, and vegetation type

    NARCIS (Netherlands)

    Camino-Serrano, Marta; Gielen, Bert; Luyssaert, Sebastiaan; Ciais, Philippe; Vicca, Sara; Guenet, Bertrand; Vos, Bruno De; Cools, Nathalie; Ahrens, Bernhard; Altaf Arain, M.; Borken, Werner; Clarke, Nicholas; Clarkson, Beverley; Cummins, Thomas; Don, Axel; Pannatier, Elisabeth Graf; Laudon, Hjalmar; Moore, Tim; Nieminen, Tiina M.; Nilsson, Mats B.; Peichl, Matthias; Schwendenmann, Luitgard; Siemens, Jan; Janssens, Ivan

    2014-01-01

    Lateral transport of carbon plays an important role in linking the carbon cycles of terrestrial and aquatic ecosystems. There is, however, a lack of information on the factors controlling one of the main C sources of this lateral flux, i.e., the concentration of dissolved organic carbon (DOC) in

  18. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions

    NARCIS (Netherlands)

    Xiang, S.C.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B.

    2012-01-01

    Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve

  19. Statistics provide guidance for indigenous organic carbon detection on Mars missions.

    Science.gov (United States)

    Sephton, Mark A; Carter, Jonathan N

    2014-08-01

    Data from the Viking and Mars Science Laboratory missions indicate the presence of organic compounds that are not definitively martian in origin. Both contamination and confounding mineralogies have been suggested as alternatives to indigenous organic carbon. Intuitive thought suggests that we are repeatedly obtaining data that confirms the same level of uncertainty. Bayesian statistics may suggest otherwise. If an organic detection method has a true positive to false positive ratio greater than one, then repeated organic matter detection progressively increases the probability of indigeneity. Bayesian statistics also reveal that methods with higher ratios of true positives to false positives give higher overall probabilities and that detection of organic matter in a sample with a higher prior probability of indigenous organic carbon produces greater confidence. Bayesian statistics, therefore, provide guidance for the planning and operation of organic carbon detection activities on Mars. Suggestions for future organic carbon detection missions and instruments are as follows: (i) On Earth, instruments should be tested with analog samples of known organic content to determine their true positive to false positive ratios. (ii) On the mission, for an instrument with a true positive to false positive ratio above one, it should be recognized that each positive detection of organic carbon will result in a progressive increase in the probability of indigenous organic carbon being present; repeated measurements, therefore, can overcome some of the deficiencies of a less-than-definitive test. (iii) For a fixed number of analyses, the highest true positive to false positive ratio method or instrument will provide the greatest probability that indigenous organic carbon is present. (iv) On Mars, analyses should concentrate on samples with highest prior probability of indigenous organic carbon; intuitive desires to contrast samples of high prior probability and low prior

  20. Crystallization characteristics of ammonium uranyl carbonate (AUC) in ammonium carbonate solutions

    International Nuclear Information System (INIS)

    Kim, T.J.; Jeong, K.C.; Park, J.H.; Chang, I.S.; Choi, C.S.

    1994-01-01

    Ammonium carbonate solutions with an excessive amount of NH 3 were produced in a commercial AUC (ammonium uranyl carbonate) conversion plant. In this study the AUC crystals, precipitated with uranyl nitrate and ammonium carbonate solutions prepared in the laboratory, were characterized to determine the feasibility of recycling ammonium carbonate solution. The AUC crystals were easily agglomerated with the increasing concentration of CO 3 2- and mole ratio of NH 4 + /CO 3 2- in ammonium carbonate solution. Effects of a mixing system for the solution in the AUC crystallizer and the feed location of the solution onthe agglomeration of AUC crystals were also studied along with the effects of agglomerated AUC powders on UO 2 powders. Finally, the feasibility of manufacturing UO 2 fuel with a sintered pellet density of 10.52 g/cm 3 , using the AUC powders generated in this experiment, was demonstrated. (orig.)

  1. Soil respiration and organic carbon dynamics with grassland conversions to woodlands in temperate china.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China's temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007-Dec. 2008 from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR, shrubland (SH, as well as in evergreen coniferous (EC, deciduous coniferous (DC and deciduous broadleaved forest (DB, to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China.

  2. Determination of dynamic characteristics of multi-layer carbon plastic structures of high-resolution scanner

    Directory of Open Access Journals (Sweden)

    В. Н. Маслей

    2017-10-01

    Full Text Available The comparative analysis results for the numerical determination of the dynamic characteristics of multi-layer carbon-fiber plates of the space vehicle scanner design by various types of finite element approximation of the physico-mechanical properties of the composite material are presented. Using the topological structure of the construction of reinforcing layers material in the plate package plane, experimental data for the elastic and mass characteristics of homogeneous carbon-fiber fibers, equivalent structural and orthotropic stiffness and elastic characteristics of the material of composite plates are determined.

  3. Process based modelling of soil organic carbon redistribution on landscape scale

    Science.gov (United States)

    Schindewolf, Marcus; Seher, Wiebke; Amorim, Amorim S. S.; Maeso, Daniel L.; Jürgen, Schmidt

    2014-05-01

    Recent studies have pointed out the great importance of erosion processes in global carbon cycling. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon accumulated over long time in the soil humus fraction. Lal (2003) estimates that 20% of the organic carbon eroded with top soils is emitted into atmosphere, due to aggregate breakdown and carbon mineralization during transport by surface runoff. Furthermore soil erosion causes a progressive decrease of natural soil fertility, since cation exchange capacity is associated with organic colloids. As a consequence the ability of soils to accumulate organic carbon is reduced proportionately to the drop in soil productivity. The colluvial organic carbon might be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Some colluvial sites can act as long-term sinks for organic carbon. The erosional transport of organic carbon may have an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. These sediments might be deposited in the riparian zones of river networks. Erosional losses of organic carbon will not pass over into atmosphere for the most part. But soil erosion limits substantially the potential of soils to sequester atmospheric CO2 by generating humus. The present study refers to lateral carbon flux modelling on landscape scale using the process based EROSION 3D soil loss simulation model, using existing parameter values. The selective nature of soil erosion results in a preferentially transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. For this reason it is essential that EROSION 3D provides the

  4. Simultaneous effect of dissolved organic carbon, surfactant, and organic acid on the desorption of pesticides investigated by response surface methodology

    DEFF Research Database (Denmark)

    Trinh, Ha Thu; Duong, Hanh Thi; Ta, Thao Thi

    2017-01-01

    Desorption of pesticides (fenobucarb, endosulfan, and dichlorodiphenyltrichloroethane (DDT)) from soil to aqueous solution with the simultaneous presence of dissolved organic carbon (DOC), sodium dodecyl sulfate (SDS), and sodium oxalate (Oxa) was investigated in batch test by applying a full...

  5. Evaluation and control of poisoning of impregnated carbons used for organic iodide removal

    International Nuclear Information System (INIS)

    Kovach, J.L.; Rankovic, L.

    1979-01-01

    By the evaluation of the chemical reactions which have taken place on impregnated activated carbon surfaces exposed to nuclear reactor atmospheric environments, the role of various impregnants has been studied. The evaluation shows several different paths for the aging and posioning to take place. The four major causes were found to be: organic solvent contamination; inorganic acid gas contamination; formation of organic acids on carbon surface; and, formation of SO 2 from carbon sulfur content. Prevention of poisoning by the first two paths can be accomplished only by procedural changes within the facility. However the last three poisoning paths can be controlled to some extent by the selection of carbon pretreatment techniques and the type of impregnant used. Results were generated by evaluating used carbons from 14 nuclear power plants and by artificial poisoning of laboratory impregnated carbons. Impregnants which have antioxidant properties, besides reaction with organic iodides, can increase the life of the impregnated activated carbons

  6. Organic carbonates: experiment and ab initio calculations for prediction of thermochemical properties.

    Science.gov (United States)

    Verevkin, Sergey P; Emel'yanenko, Vladimir N; Kozlova, Svetlana A

    2008-10-23

    This work has been undertaken in order to obtain data on thermodynamic properties of organic carbonates and to revise the group-additivity values necessary for predicting their standard enthalpies of formation and enthalpies of vaporization. The standard molar enthalpies of formation of dibenzyl carbonate, tert-butyl phenyl carbonate, and diphenyl carbonate were measured using combustion calorimetry. Molar enthalpies of vaporization of these compounds were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. Molar enthalpy of sublimation of diphenyl carbonate was measured in the same way. Ab initio calculations of molar enthalpies of formation of organic carbonates have been performed using the G3MP2 method, and results are in excellent agreement with the available experiment. Then the group-contribution method has been developed to predict values of the enthalpies of formation and enthalpies of vaporization of organic carbonates.

  7. Review Of Development And Characteristics Of Organic Agriculture In Croatia

    Directory of Open Access Journals (Sweden)

    Kristina Petljak

    2011-12-01

    Full Text Available In the last decade, an ever increasing interest of both foreign and domestic academic and general public for organic agriculture can be observed. Organic agriculture, as a new agricultural production system, enables full utilization of farming potentials while satisfying social and economic needs and preserving natural ecosystem and environment. Act on Organic Production of Agricultural Products and Foodstuffs provides an elementary strategic frame for agricultural production development in Republic of Croatia. This article gives an overview of organic agriculture legislation in Croatia and detailed analysis of development periods of organic agriculture. Special emphasis is put on structure of organic production which highlights data on organic plant and animal production in Croatia. The paper provides a comparison between levels of organic agriculture development in the world (with the special emphasis on Europe and in Croatia, as well as the overview of main obstacles towards more significant development of organic agriculture in Republic of Croatia.

  8. Organic Chemostratigraphic Markers Characteristic of the (Informally Designated) Anthropocene Epoch

    Science.gov (United States)

    Kruge, M. A.

    2008-12-01

    Recognizing the tremendous collective impact of humans on the environment in the industrial age, the proposed designation of the current time period as the Anthropocene Epoch has considerable merit. One of the signature activities during this time continues to be the intensive extraction, processing, and combustion of fossil fuels. While fossil fuels themselves are naturally-occurring, they are most often millions of years old and associated with deeply buried strata. They may be found at the surface, for example, as natural oil seeps or coal seam outcrops, but these are relatively rare occurrences. Fossil fuels and their myriad by- products become the source of distinctive organic chemostratigraphic marker compounds for the Anthropocene when they occur out of their original geological context, i.e., as widespread contaminants in sediments and soils. These persistent compounds have high long-term preservation potential, particularly when deposited under low oxygen conditions. Fossil fuels can occur as environmental contaminants in raw form (e.g., crude petroleum spilled during transport) or as manufactured products (e.g., diesel oil from a leaking storage facility, coal tar from a manufactured gas plant, plastic waste in a landfill, pesticides from petroleum feedstock in agricultural soils). Distinctive assemblages of hydrocarbon marker compounds including acyclic isoprenoids, hopanes, and steranes can be readily detected by gas chromatography/mass spectrometric analysis of surface sediments and soils. Polycyclic aromatic hydrocarbons (PAHs), along with sulfur-, oxygen-, and nitrogen-containing aromatic compounds, are also characteristic of fossil fuels and are readily detectable as well. More widespread is the airfall deposition of fossil fuel combustion products from vehicular, domestic and industrial sources. These occur in higher concentrations in large urban centers, but are also detected in remote areas. Parent (nonmethylated) PAHs such as phenanthrene

  9. Characteristics of dissolved organic matter in the Upper Klamath River, Lost River, and Klamath Straits Drain, Oregon and California

    Science.gov (United States)

    Goldman, Jami H.; Sullivan, Annett B.

    2017-12-11

    Concentrations of particulate organic carbon (POC) and dissolved organic carbon (DOC), which together comprise total organic carbon, were measured in this reconnaissance study at sampling sites in the Upper Klamath River, Lost River, and Klamath Straits Drain in 2013–16. Optical absorbance and fluorescence properties of dissolved organic matter (DOM), which contains DOC, also were analyzed. Parallel factor analysis was used to decompose the optical fluorescence data into five key components for all samples. Principal component analysis (PCA) was used to investigate differences in DOM source and processing among sites.At all sites in this study, average DOC concentrations were higher than average POC concentrations. The highest DOC concentrations were at sites in the Klamath Straits Drain and at Pump Plant D. Evaluation of optical properties indicated that Klamath Straits Drain DOM had a refractory, terrestrial source, likely extracted from the interaction of this water with wetland peats and irrigated soils. Pump Plant D DOM exhibited more labile characteristics, which could, for instance, indicate contributions from algal or microbial exudates. The samples from Klamath River also had more microbial or algal derived material, as indicated by PCA analysis of the optical properties. Most sites, except Pump Plant D, showed a linear relation between fluorescent dissolved organic matter (fDOM) and DOC concentration, indicating these measurements are highly correlated (R2=0.84), and thus a continuous fDOM probe could be used to estimate DOC loads from these sites.

  10. The characteristics of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) in Antarctic sea ice

    Science.gov (United States)

    Norman, Louiza; Thomas, David N.; Stedmon, Colin A.; Granskog, Mats A.; Papadimitriou, Stathys; Krapp, Rupert H.; Meiners, Klaus M.; Lannuzel, Delphine; van der Merwe, Pier; Dieckmann, Gerhard S.

    2011-05-01

    An investigation of coloured dissolved organic matter (CDOM) and its relationships to physical and biogeochemical parameters in Antarctic sea ice and oceanic water have indicated that ice melt may both alter the spectral characteristics of CDOM in Antarctic surface waters and serve as a likely source of fresh autochthonous CDOM and labile DOC. Samples were collected from melted bulk sea ice, sea ice brines, surface gap layer waters, and seawater during three expeditions: one during the spring to summer and two during the winter to spring transition period. Variability in both physical (temperature and salinity) and biogeochemical parameters (dissolved and particulate organic carbon and nitrogen, as well as chlorophyll a) was observed during and between studies, but CDOM absorption coefficients measured at 375 nm (a 375) did not differ significantly. Distinct peaked absorption spectra were consistently observed for bulk ice, brine, and gap water, but were absent in the seawater samples. Correlation with the measured physical and biogeochemical parameters could not resolve the source of these peaks, but the shoulders and peaks observed between 260 and 280 nm and between 320 to 330 nm respectively, particularly in the samples taken from high light-exposed gap layer environment, suggest a possible link to aromatic and mycosporine-like amino acids. Sea ice CDOM susceptibility to photo-bleaching was demonstrated in an in situ 120 hour exposure, during which we observed a loss in CDOM absorption of 53% at 280 nm, 58% at 330 nm, and 30% at 375 nm. No overall coincidental loss of DOC or DON was measured during the experimental period. A relationship between the spectral slope (S) and carbon-specific absorption (a *375) indicated that the characteristics of CDOM can be described by the mixing of two broad end-members; and aged material, present in brine and seawater samples characterised by high S values and low a *375; and a fresh material, due to elevated in situ

  11. Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi Bay, Kenya)

    NARCIS (Netherlands)

    Bouillon, S.; Dehairs, F.; Velimirov, B.; Abril, G.; Borges, A.V.

    2007-01-01

    We report on the water column biogeochemistry in adjacent mangrove and seagrass systems in Gazi Bay (Kenya), with a focus on assessing the sources and cycling of organic and inorganic carbon. Mangrove and seagrass-derived material was found to be the dominant organic carbon sources in the water

  12. Nonconservative behavior of dissolved organic carbon across the Laptev and East Siberian seas

    NARCIS (Netherlands)

    Alling, Vanja; Sanchez-Garcia, Laura; Porcelli, Don; Pugach, Sveta; Vonk, Jorien E.; Van Dongen, Bart; Mörth, Carl Magnus; Anderson, Leif G.; Sokolov, Alexander; Andersson, Per; Humborg, Christoph; Semiletov, Igor P.; Gustafsson, Örjan

    2010-01-01

    Climate change is expected to have a strong effect on the Eastern Siberian Arctic Shelf (ESAS) region, which includes 40% of the Arctic shelves and comprises the Laptev and East Siberian seas. The largest organic carbon pool, the dissolved organic carbon (DOC), may change significantly due to

  13. Biochemical and stable carbon isotope records of mangrove derived organic matter in the sediment cores

    Digital Repository Service at National Institute of Oceanography (India)

    Manju, M.N.; Resmi, P.; RatheeshKumar, C.S.; Gireeshkumar, T.R.; Chandramohanakumar, N.; Joseph, M.M.

    in mangrove sediments. This also confirms the involvement of heterotrophic microorganisms in the organic carbon dynamics of the study area. The bulk elemental ratio (total organic carbon/total nitrogen) varied between 11.39 and 24.14 in the study region...

  14. Selective extraction methods for aluminium, iron and organic carbon from montane volcanic ash soils

    NARCIS (Netherlands)

    Jansen, B.; Tonneijck, F.H.; Verstraten, J.M.

    2011-01-01

    Montane volcanic ash soils contain disproportionate amounts of soil organic carbon and thereby play an often underestimated role in the global carbon cycle. Given the central role of Al and Fe in stabilizing organic matter in volcanic ash soils, we assessed various extraction methods of Al, Fe, and

  15. Mercury and Organic Carbon Relationships in Streams Draining Forested Upland/Peatland Watersheds

    Science.gov (United States)

    R. K. Kolka; D. F. Grigal; E. S. Verry; E. A. Nater

    1999-01-01

    We determined the fluxes of total mecury (HgT), total organic carbon (TOC), and dissolved organic carbon (DOC) from five upland/peatland watersheds at the watershed outlet. The difference between TOC and DOC was defined as particulate OC (POC). Concentrations of HgT showed moderate to strong relationships with POC (R2 = 0.77) when all watersheds...

  16. Soil Organic Matter Accumulation and Carbon Fractions along a Moisture Gradient of Forest Soils

    Directory of Open Access Journals (Sweden)

    Ewa Błońska

    2017-11-01

    Full Text Available The aim of the study was to present effects of soil properties, especially moisture, on the quantity and quality of soil organic matter. The investigation was performed in the Czarna Rózga Reserve in Central Poland. Forty circular test areas were located in a regular grid of points (100 × 300 m. Each plot was represented by one soil profile located at the plot’s center. Sample plots were located in the area with Gleysols, Cambisols and Podzols with the water table from 0 to 100 cm. In each soil sample, particle size, total carbon and nitrogen content, acidity, base cations content and fractions of soil organic matter were determined. The organic carbon stock (SOCs was calculated based on its total content at particular genetic soil horizons. A Carbon Distribution Index (CDI was calculated from the ratio of the carbon accumulation in organic horizons and the amount of organic carbon accumulation in the mineral horizons, up to 60 cm. In the soils under study, in the temperate zone, moisture is an important factor in the accumulation of organic carbon in the soil. The highest accumulation of carbon was observed in soils of swampy variant, while the lowest was in the soils of moist variant. Large accumulation of C in the soils with water table 80–100 cm results from the thick organic horizons that are characterized by lower organic matter decomposition and higher acidity. The proportion of carbon accumulation in the organic horizons to the total accumulation in the mineral horizons expresses the distribution of carbon accumulated in the soil profile, and is a measure of quality of the organic matter accumulated. Studies have confirmed the importance of moisture content in the formation of the fractional organic matter. With greater soil moisture, the ratio of humic to fulvic acids (HA/FA decreases, which may suggest an increase in carbon mobility in soils.

  17. Input related microbial carbon dynamic of soil organic matter in particle size fractions

    Science.gov (United States)

    Gude, A.; Kandeler, E.; Gleixner, G.

    2012-04-01

    This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates. We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favouring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter. Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input

  18. Resonance Raman spectroscopy of volatile organics -- Carbon tetrachloride

    International Nuclear Information System (INIS)

    Barletta, R.E.; Veligdan, J.T.

    1994-09-01

    Volatile organic chemicals are a class of pollutants which are regulated at very low levels by the EPA. Consequently a need exists as a part of site remediation efforts within DOE to develop technologies which will allow for the in situ monitoring of these chemicals. Resonance Raman spectroscopy is a potential technique to accomplish this if the resonance enhancement is sufficiently high. Carbon tetrachloride was selected as a test case. Measurements under resonance conditions at 248 nm showed an enhancement factor of 2 x 10 4 . Using this value an estimate of the sensitivity for both in situ and remote monitoring of CCl 4 was made. It was concluded that resonance Raman could be used to detect these chemicals at levels of regulatory interest. Future effort directed towards the development of a suitable probe as well as a field-portable system would be desirable. Such effort could be directed towards the solution of a particular monitoring problem within a DOE waste remediation project. Once developed, however, it should be easily generalized to the analysis of other VOC's in other environments

  19. Denitrification potential and its relation to organic carbon quality in three coastal wetland soils

    Energy Technology Data Exchange (ETDEWEB)

    Dodla, Syam K. [School of Plant, Environmental and Soil Sciences, Louisiana State Univ. Agricultural Center, Baton Rouge, LA 70803 (United States); Wang, Jim J. [School of Plant, Environmental and Soil Sciences, Louisiana State Univ. Agricultural Center, Baton Rouge, LA 70803 (United States)], E-mail: jjwang@agctr.lsu.edu; DeLaune, Ron D. [Wetland Biogeochemistry Institute, School of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803 (United States); Cook, Robert L. [Chemistry Department, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2008-12-15

    Capacity of a wetland to remove nitrate through denitrification is controlled by its physico-chemical and biological characteristics. Understanding these characteristics will help better to guide beneficial use of wetlands in processing nitrate. This study was conducted to determine the relationship between soil organic carbon (SOC) quality and denitrification rate in Louisiana coastal wetlands. Composite soil samples of different depths were collected from three different wetlands along a salinity gradient, namely, bottomland forest swamp (FS), freshwater marsh (FM), and saline marsh (SM) located in the Barataria Basin estuary. Potential denitrification rate (PDR) was measured by acetylene inhibition method and distribution of carbon (C) moieties in organic C was determined by {sup 13}C solid-state NMR. Of the three wetlands, the FM soil profile exhibited the highest PDR on both unit weight and unit volume basis as compared to FS and SM. The FM also tended to yield higher amount of N{sub 2}O as compared to the FS and SM especially at earlier stages of denitrification, suggesting incomplete reduction of NO{sub 3}{sup -} at FM and potential for emission of N{sub 2}O. Saline marsh soil profile had the lowest PDR on the unit volume basis. Increasing incubation concentration from 2 to 10 mg NO{sub 3}{sup -}-N L{sup -1} increased PDR by 2 to 6 fold with the highest increase in the top horizons of FS and SM soils. Regression analysis showed that across these three wetland systems, organic C has significant effect in regulating PDR. Of the compositional C moieties, polysaccharides positively influenced denitrification rate whereas phenolics (likely phenolic adehydes and ketonics) negatively affected denitrification rate in these wetland soils. These results could have significant implication in integrated assessment and management of wetlands for treating nutrient-rich biosolids and wastewaters, non-point source agricultural runoff, and nitrate found in the diverted

  20. Denitrification potential and its relation to organic carbon quality in three coastal wetland soils

    International Nuclear Information System (INIS)

    Dodla, Syam K.; Wang, Jim J.; DeLaune, Ron D.; Cook, Robert L.

    2008-01-01

    Capacity of a wetland to remove nitrate through denitrification is controlled by its physico-chemical and biological characteristics. Understanding these characteristics will help better to guide beneficial use of wetlands in processing nitrate. This study was conducted to determine the relationship between soil organic carbon (SOC) quality and denitrification rate in Louisiana coastal wetlands. Composite soil samples of different depths were collected from three different wetlands along a salinity gradient, namely, bottomland forest swamp (FS), freshwater marsh (FM), and saline marsh (SM) located in the Barataria Basin estuary. Potential denitrification rate (PDR) was measured by acetylene inhibition method and distribution of carbon (C) moieties in organic C was determined by 13 C solid-state NMR. Of the three wetlands, the FM soil profile exhibited the highest PDR on both unit weight and unit volume basis as compared to FS and SM. The FM also tended to yield higher amount of N 2 O as compared to the FS and SM especially at earlier stages of denitrification, suggesting incomplete reduction of NO 3 - at FM and potential for emission of N 2 O. Saline marsh soil profile had the lowest PDR on the unit volume basis. Increasing incubation concentration from 2 to 10 mg NO 3 - -N L -1 increased PDR by 2 to 6 fold with the highest increase in the top horizons of FS and SM soils. Regression analysis showed that across these three wetland systems, organic C has significant effect in regulating PDR. Of the compositional C moieties, polysaccharides positively influenced denitrification rate whereas phenolics (likely phenolic adehydes and ketonics) negatively affected denitrification rate in these wetland soils. These results could have significant implication in integrated assessment and management of wetlands for treating nutrient-rich biosolids and wastewaters, non-point source agricultural runoff, and nitrate found in the diverted Mississippi River water used for coastal

  1. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean

    OpenAIRE

    Druffel, E. R. M; Bauer, J. E; Griffin, S.

    2005-01-01

    We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters...

  2. Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: a comparative study of waste-polymer-based, coal-based activated carbon, and carbon nanotubes.

    Science.gov (United States)

    Lian, Fei; Chang, Chun; Du, Yang; Zhu, Lingyan; Xing, Baoshan; Liu, Chang

    2012-01-01

    Adsorption of the hydrophobic organic compounds (HOCs) trichloroethylene (TCE), 1,3-dichlorobenzene (DCB), 1,3-dinitrobenzene (DNB) and gamma-hexachlorocyclohexane (HCH) on five different carbonaceous materials was compared. The adsorbents included three polymer-based activated carbons, one coal-based activated carbon (F400) and multiwalled carbon nanotubes (MWNT). The polymer-based activated carbons were prepared using KOH activation from waste polymers: polyvinyl chloride (PVC), polyethyleneterephthalate (PET) and tire rubber (TR). Compared with F400 and MWNT, activated carbons derived from PVC and PET exhibited fast adsorption kinetics and high adsorption capacity toward the HOCs, attributed to their extremely large hydrophobic surface area (2700 m2/g) and highly mesoporous structures. Adsorption of small-sized TCE was stronger on the tire-rubber-based carbon and F400 resulting from the pore-filling effect. In contrast, due to the molecular sieving effect, their adsorption on HCH was lower. MWNT exhibited the lowest adsorption capacity toward HOCs because of its low surface area and characteristic of aggregating in aqueous solution.

  3. Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: A comparative study of waste-polymer-based,coal-based activated carbon, and carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Fei Lian; Chun Chang; Yang Du; Lingyan Zhu; Baoshan Xing; Chang Liu

    2012-01-01

    Adsorption of the hydrophobic organic compounds (HOCs) trichloroethylene (TCE),1,3-dichlorobenzene (DCB),1,3-dinitrobenzene (DNB) and γ-hexachlorocyclohexane (HCH) on five different carbonaceous materials was compared.The adsorbents included three polymer-based activated carbons,one coal-based activated carbon (F400) and multiwalled carbon nanotubes (MWNT).The polymerbased activated carbons were prepared using KOH activation from waste polymers:polyvinyl chloride (PVC),polyethyleneterephthalate (PET) and tire rubber (TR).Compared with F400 and MWNT,activated carbons derived from PVC and PET exhibited fast adsorption kinetics and high adsorption capacity toward the HOCs,attributed to their extremely large hydrophobic surface area (2700 m2/g) and highly mesoporous structures.Adsorption of small-sized TCE was stronger on the tire-rubber-based carbon and F400 resulting from the pore-filling effect.In contrast,due to the molecular sieving effect,their adsorption on HCH was lower.MWNT exhibited the lowest adsorption capacity toward HOCs because of its low surface area and characteristic of aggregating in aqueous solution.

  4. Soil, vegetation and total organic carbon stock development in self-restoring abandoned vineyards

    Science.gov (United States)

    József Novák, Tibor; Incze, József; Spohn, Marie; Giani, Luise

    2016-04-01

    Abandoned vineyard's soil and vegetation development was studied on Tokaj Nagy-Hill, which is one of the traditional wine-producing regions of Hungary, it is declared as UNESCO World Heritage site as cultural landscape. Spatial distribution and pattern of vineyards were changing during the last several hundreds of years, therefore significant part of abandoned vineyards were subjected to long-term spontaneous secondary succession of vegetation and self-restoration of soils in absence of later cultivation. Two chronosequences of spontaneously regenerating vineyard abandonments, one on south (S-sequence) and one on southwest (SW-sequence) slope with differing times since their abandonment (193, 142, 101, 63, 39 and 14 years), were compiled and studied. The S-sequence was 25-35% sloped and strongly eroded, and the SW-sequence was 17-25% sloped and moderately eroded. The sites were investigated in respect of vegetation characteristics, soil physico-chemical characteristics, total organic carbon stocks (TOC stocks), accumulation rates of total organic carbon (TOC accumulation rates), and soil profiles, which were classified according to the World Reference Base (WRB) 2014. Vegetation development resulted in shrub-grassland mosaics, supplemented frequently by protected forb species and forest development at the earliest abandonment in S-sequence, and predominantly to forest vegetation in SW-sequence, where trees were only absent at the 63 and 14 years old abandonment sites. In all sites soils on level of reference groups according to WRB were classified, and Cambisols, Regosols, Calcisols, Leptosols, Chernozems and Phaeozems were found. Soils of the S-sequence show shallow remnants of loess cover with colluvic and redeposited soil materials containing 15-65% skeletal volcanic rock of weathering products coated by secondary calcium carbonates. The SW-sequence profiles are developed on deep loess or loess derivatives. The calcium-carbonate content was higher in profiles of

  5. Critical carbon input to maintain current soil organic carbon stocks in global wheat systems.

    Science.gov (United States)

    Wang, Guocheng; Luo, Zhongkui; Han, Pengfei; Chen, Huansheng; Xu, Jingjing

    2016-01-13

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1° × 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha(-1) yr(-1), with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.

  6. Quantified carbon input for maintaining existing soil organic carbon stocks in global wheat systems

    Science.gov (United States)

    Wang, G.

    2017-12-01

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1°× 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha-1 yr-1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.

  7. Assessment of bacterial growth and total organic carbon removal on granular activated carbon contactors.

    Science.gov (United States)

    Bancroft, K; Maloney, S W; McElhaney, J; Suffet, I H; Pipes, W O

    1983-01-01

    The overall growth rate of bacteria on granular activated carbon (GAC) contactors at the Philadelphia Torresdale Water Treatment Pilot Plant facility was found to decrease until steady state was reached. The growth rate was found to fluctuate between 6.94 X 10(-3) and 8.68 X 10(-4) doublings per h. The microbiological removal of total organic carbon (TOC) was calculated by considering the GAC contactors as semiclosed continuous culture systems and using growth yield factors determined in laboratory experiments. After ozonation, the average TOC entering the contactors was 1,488 micrograms/liter, and the average effluent TOC was 497 micrograms/liter. Microbiological TOC removal was found to average 240 micrograms/liter on GAC contactors, which was not significantly different from microbiological TOC (220 micrograms/liter) removal across a parallel sand contactor where no adsorption took place. Thus, GAC did not appear to enhance biological TOC removal. Bacterial growth and maintenance was responsible for approximately 24% of the TOC removal on GAC under the conditions of this study. PMID:6639023

  8. Adsorption and bioadsorption of granular activated carbon (GAC) for dissolved organic carbon (DOC) removal in wastewater.

    Science.gov (United States)

    Xing, W; Ngo, H H; Kim, S H; Guo, W S; Hagare, P

    2008-12-01

    In this study, the performances of GAC adsorption and GAC bioadsorption in terms of dissolved organic carbon (DOC) removal were investigated with synthetic biologically treated sewage effluent (BTSE), synthetic primary treated sewage effluent (PTSE), real BTSE and real PTSE. The main aims of this study are to verify and compare the efficiency of DOC removal by GAC (adsorption) and acclimatized GAC (bioadsorption). The results indicated that the performance of bioadsorption was significantly better than that of adsorption in all cases, showing the practical use of biological granular activated carbon (BGAC) in filtration process. The most significance was observed at a real PTSE with a GAC dose of 5g/L, having 54% and 96% of DOC removal by adsorption and bioadsorption, respectively. In addition, it was found that GAC adsorption equilibrium was successfully predicted by a hybrid Langmuir-Freundlich model whilst integrated linear driving force approximation (LDFA)+hybrid isotherm model could describe well the adsorption kinetics. Both adsorption isotherm and kinetic coefficients determined by these models will be useful to model the adsorption/bioadsorption process in DOC removal of BGAC filtration system.

  9. Assessment of bacterial growth and total organic carbon removal on granular activated carbon contactors.

    Science.gov (United States)

    Bancroft, K; Maloney, S W; McElhaney, J; Suffet, I H; Pipes, W O

    1983-09-01

    The overall growth rate of bacteria on granular activated carbon (GAC) contactors at the Philadelphia Torresdale Water Treatment Pilot Plant facility was found to decrease until steady state was reached. The growth rate was found to fluctuate between 6.94 X 10(-3) and 8.68 X 10(-4) doublings per h. The microbiological removal of total organic carbon (TOC) was calculated by considering the GAC contactors as semiclosed continuous culture systems and using growth yield factors determined in laboratory experiments. After ozonation, the average TOC entering the contactors was 1,488 micrograms/liter, and the average effluent TOC was 497 micrograms/liter. Microbiological TOC removal was found to average 240 micrograms/liter on GAC contactors, which was not significantly different from microbiological TOC (220 micrograms/liter) removal across a parallel sand contactor where no adsorption took place. Thus, GAC did not appear to enhance biological TOC removal. Bacterial growth and maintenance was responsible for approximately 24% of the TOC removal on GAC under the conditions of this study.

  10. Grasslands and Croplands Have Different Microbial Biomass Carbon Levels per Unit of Soil Organic Carbon

    Directory of Open Access Journals (Sweden)

    Terence P. McGonigle

    2017-07-01

    Full Text Available Primarily using cropped systems, previous studies have reported a positive linear relationship between microbial biomass carbon (MBC and soil organic carbon (SOC. We conducted a meta-analysis to explore this relationship separately for grasslands and croplands using available literature. Studies were limited to those using fumigation–extraction for MBC for field samples. Trials were noted separately where records were distinct in space or time. Grasslands were naturally occurring, restored, or seeded. Cropping systems were typical of the temperate zone. MBC had a positive linear response to increasing SOC that was significant in both grasslands (p < 0.001; r2 = 0.76 and croplands (p < 0.001; r2 = 0.48. However, MBC increased 2.5-fold more steeply per unit of increasing SOC for grassland soils, as compared to the corresponding response in cropland soils. Expressing MBC as a proportion of SOC across the regression overall, slopes corresponded to 2.7% for grasslands and 1.1% for croplands. The slope of the linear relationship for grasslands was significantly (p = 0.0013 steeper than for croplands. The difference between the two systems is possibly caused by a greater proportion of SOC in grasslands being active rather than passive, relative to that in croplands, with that active fraction promoting the formation of MBC.

  11. Influence of environmental factors on spectral characteristic of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China

    Science.gov (United States)

    Wen, Z. D.; Song, K. S.; Zhao, Y.; Du, J.; Ma, J. H.

    2015-06-01

    Spectral characteristics of chromophoric dissolved organic matter (CDOM) were examined in conjunction with environmental factors in the waters of 22 rivers and 26 terminal waters in Hulun Buir plateau, northeast China. Dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorous (TP) were significantly higher in terminal waters than rivers waters (p CDOM absorption in river waters was significantly lower than terminal waters (p CDOM in river waters had higher aromaticity, molecular weight, and vascular plant contribution than in terminal waters. Furthermore, results showed that DOC concentration, CDOM light absorption, and the proportion of autochthonous sources of CDOM in plateau waters were all higher than in other freshwater rivers reported in the literature. The strong evapoconcentration, intense ultraviolet irradiance and landscape features of Hulun Buir plateau may be responsible for the above phenomenon. Redundancy analysis (RDA) indicated that the environmental variables TSM, TN, and EC had a strong correlation with light absorption characteristics, followed by TDS and chlorophyll a. In most sampling locations, CDOM was the dominant non-water light-absorbing substance. Light absorption by non-algal particles often exceeded that by phytoplankton in the plateau waters. Study of these optical-physicochemical correlations is helpful in the evaluation of the potential influence of water quality factors on non-water light absorption in cold plateau water environments. And the study on organic carbon in plateau lakes had a vital contribution to global carbon balance estimation.

  12. Characteristics study of a system for carbon 14 dating

    International Nuclear Information System (INIS)

    Oikawa, H.

    1978-01-01

    The developing of a radiocarbon dating laboratory, specially built to deal with carbonate samples from underground water, at the Institute de Energia Atomica, required the optimization of a benzene synthetizer, and also of the operative conditions of the liquid scintillator counter, used in sample measurements. An average yield of about 70% was obtained in our benzenic synthesis. If more refined conditions were used, better results could have been obtained, but the reported yield is good enough for our necessities. A comparison of the ages of several shell samples was done between the Geochronology Laboratory, belonging to the Instituto de Geociencias, at Sao Paulo University and our dating laboratory. The agreement between the results was fairly good, according to the precision required [pt

  13. Relating Emissions of Carbon to Characteristics of Consumption in India

    Directory of Open Access Journals (Sweden)

    Madhumati Dutta

    2018-06-01

    Full Text Available In order to determine how the average Indian’s emissions may be reduced, one needs to understand the consumption basket and the implications of various categories of household consumption (such as cereals or durables on emissions. With this in mind, this paper looks at consumption choices in India and calculates per capita carbon dioxide emissions of the different categories of consumption during 1987-1988 to 2007-2008. It is seen that both the increase in per person consumption and a change in the product basket have led to an increase in emissions per person. Further, the urban or higher class Indian emits more, not only because he consumes more of everything (compared, respectively, to the rural or lower class Indian, but also because of differences in the composition of consumption. Four products/product groups – fuel for cooking, fuel for lighting, durables and housing – are further explored to identify several problem products.

  14. Defect engineering of the electrochemical characteristics of carbon nanotube varieties

    International Nuclear Information System (INIS)

    Hoefer, Mark A.; Bandaru, Prabhakar R.

    2010-01-01

    The electrochemical behavior of carbon nanotubes (CNTs) containing both intrinsic and extrinsically introduced defects has been investigated through the study of bamboo and hollow multiwalled CNT morphologies. The controlled addition of argon ions was used for varying the charge and type of extrinsic defects. It was indicated from Raman spectroscopy and voltammetry that the electrocatalytic response of hollow type CNTs could be tailored more significantly, compared to bamboo type CNTs which have innately high reactive site densities and are less amenable to modification. An in-plane correlation length parameter was used to understand the variation of the defect density as a function of argon ion irradiation. The work has implications in the design of nanotube based chemical sensors, facilitated through the introduction of suitable reactive sites.

  15. Defect engineering of the electrochemical characteristics of carbon nanotube varieties

    Science.gov (United States)

    Hoefer, Mark A.; Bandaru, Prabhakar R.

    2010-08-01

    The electrochemical behavior of carbon nanotubes (CNTs) containing both intrinsic and extrinsically introduced defects has been investigated through the study of bamboo and hollow multiwalled CNT morphologies. The controlled addition of argon ions was used for varying the charge and type of extrinsic defects. It was indicated from Raman spectroscopy and voltammetry that the electrocatalytic response of hollow type CNTs could be tailored more significantly, compared to bamboo type CNTs which have innately high reactive site densities and are less amenable to modification. An in-plane correlation length parameter was used to understand the variation of the defect density as a function of argon ion irradiation. The work has implications in the design of nanotube based chemical sensors, facilitated through the introduction of suitable reactive sites.

  16. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    Science.gov (United States)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  17. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    Science.gov (United States)

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  18. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation

    International Nuclear Information System (INIS)

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-01-01

    Highlights: • Supported g-C_3N_4 on AC catalysts with different loadings were prepared. • The metal free catalysts exhibited high efficiency for dyes degradation with PMS. • The catalyst presented a long-term stability for multiple runs. • The C=O groups played a key role in the oxidation process. - Abstract: Graphitic carbon nitride supported on activated carbon (g-C_3N_4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C_3N_4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C_3N_4 to C=O was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C_3N_4/AC catalyst within 20 min with PMS, while g-C_3N_4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C_3N_4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO· and SO_4·"−) in AO7 oxidation was proposed in the system. The C=O groups play a key role in the process; while the exposure of more N-(C)_3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants.

  19. Can Carbon Fluxes Explain Differences in Soil Organic Carbon Storage under Aspen and Conifer Forest Overstories?

    Directory of Open Access Journals (Sweden)

    Antra Boča

    2017-04-01

    Full Text Available Climate- and management-induced changes in tree species distributions are raising questions regarding tree species-specific effects on soil organic carbon (SOC storage and stability. Quaking aspen (Populus tremuloides Michx. is the most widespread tree species in North America, but fire exclusion often promotes the succession to conifer dominated forests. Aspen in the Western US have been found to store more SOC in the mineral soil than nearby conifers, but we do not yet fully understand the source of this differential SOC accumulation. We measured total SOC storage (0–50 cm, characterized stable and labile SOC pools, and quantified above- and belowground litter inputs and dissolved organic carbon (DOC fluxes during snowmelt in plots located in N and S Utah, to elucidate the role of foliage vs. root detritus in SOC storage and stabilization in both ecosystems. While leaf litterfall was twice as high under aspen as under conifers, input of litter-derived DOC with snowmelt water was consistently higher under conifers. Fine root (<2 mm biomass, estimated root detritus input, and root-derived DOC fluxes were also higher under conifers. A strong positive relationship between root and light fraction C content suggests that root detritus mostly fueled the labile fraction of SOC. Overall, neither differences in above- and belowground detritus C inputs nor in detritus-derived DOC fluxes could explain the higher and more stable SOC pools under aspen. We hypothesize that root–microbe–soil interactions in the rhizosphere are more likely to drive these SOC pool differences.

  20. A Molecular Investigation of Soil Organic Carbon Composition, Variability, and Spatial Distribution Across an Alpine Catchment

    Science.gov (United States)

    Hsu, H. T.; Lawrence, C. R.; Winnick, M.; Druhan, J. L.; Williams, K. H.; Maher, K.; Rainaldi, G. R.; McCormick, M. E.

    2016-12-01

    The cycling of carbon through soils is one of the least understood aspects of the global carbon cycle and represents a key uncertainty in the prediction of land-surface response to global warming. Thus, there is an urgent need for advanced characterization of soil organic carbon (SOC) to develop and evaluate a new generation of soil carbon models. We hypothesize that shifts in SOC composition and spatial distribution as a function of soil depth can be used to constrain rates of transformation between the litter layer and the deeper subsoil (extending to a depth of approximately 1 m). To evaluate the composition and distribution of SOC, we collected soil samples from East River, a shale-dominated watershed near Crested Butte, CO, and characterized relative changes in SOC species as a function of depth using elemental analysis (EA), Fourier transform infrared spectroscopy (FT-IR) and bulk C X-ray absorption spectroscopy (XAS). Our results show that total organic carbon (TOC) decreases with depth, and high total inorganic carbon (TIC) content was found in deeper soils (after 75 cm), a characteristic of the bedrock (shale). The distribution of aliphatic C relative to the parent material generally decreases with depth and that polysaccharide can be a substantial component of SOC at various depths. On the other hand, the relative distribution of aromatic C, traditionally viewed as recalcitrant, only makes up a very small part of SOC regardless of depth. These observations confirm that molecular structure is not the only determinant of SOC turnover rate. To study other contributors to SOC decomposition, we studied changes in the spatial correlation of SOC and minerals using X-ray fluorescence spectroscopy (XRF) and scanning transmission X-ray microscopy (STXM). We found that aromatics mostly locate on the surface of small soil aggregates (1-10 μm). Polysaccharides and proteins, both viewed as labile traditionally, are more evenly distributed over the interior of the

  1. Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea

    Science.gov (United States)

    Keskitalo, Kirsi; Tesi, Tommaso; Bröder, Lisa; Andersson, August; Pearce, Christof; Sköld, Martin; Semiletov, Igor P.; Dudarev, Oleg V.; Gustafsson, Örjan

    2017-09-01

    Thawing of permafrost carbon (PF-C) due to climate warming can remobilise considerable amounts of terrestrial carbon from its long-term storage to the marine environment. PF-C can be then be buried in sediments or remineralised to CO2 with implications for the carbon-climate feedback. Studying historical sediment records during past natural climate changes can help us to understand the response of permafrost to current climate warming. In this study, two sediment cores collected from the East Siberian Sea were used to study terrestrial organic carbon sources, composition and degradation during the past ˜ 9500 cal yrs BP. CuO-derived lignin and cutin products (i.e., compounds solely biosynthesised in terrestrial plants) combined with δ13C suggest that there was a higher input of terrestrial organic carbon to the East Siberian Sea between ˜ 9500 and 8200 cal yrs BP than in all later periods. This high input was likely caused by marine transgression and permafrost destabilisation in the early Holocene climatic optimum. Based on source apportionment modelling using dual-carbon isotope (Δ14C, δ13C) data, coastal erosion releasing old Pleistocene permafrost carbon was identified as a significant source of organic matter translocated to the East Siberian Sea during the Holocene.

  2. Fate of Trace Organic Compounds in Granular Activated Carbon (GAC Adsorbers for Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    Alexander Sperlich

    2017-06-01

    Full Text Available Granular activated carbon (GAC adsorbers for drinking water treatment were operated for approx. 14 months and the breakthrough of dissolved organic carbon (DOC and trace organic chemicals (TOrCs was monitored. Effluent concentration profiles of gabapentin and valsartan acid increase already at throughputs of <10,000 BV. The corresponding breakthrough curves flatten out without reaching the influent concentration level. This strongly indicates biological degradation of these substances in the GAC adsorbers under aerobic conditions, contributing to a more efficient use of GAC. The observed biodegradation in pilot GAC adsorbers also confirms recent reports of biodegradation of gabapentin and valsartan acid during managed aquifer recharge. Oxypurinol is comparatively well adsorbed and no breakthrough was observed during the experimental period. Adsorption capacity and breakthrough characteristics of oxypurinol appear very similar to carbamazepine. Breakthrough of GAC adsorbers operated with drinking water was compared to those of groundwater-fed adsorbers. The results show, that it is generally advisable to use previously aerated influents for GAC fixed-bed adsorbers because this can substantially improve biological removal of otherwise poorly adsorbable compounds and ensure full GAC accessibility for adsorbates by avoiding the undesirable formation of inorganic precipitates on adsorption sites.

  3. The electro-structural behaviour of yarn-like carbon nanotube fibres immersed in organic liquids

    International Nuclear Information System (INIS)

    Terrones, Jeronimo; Windle, Alan H; Elliott, James A

    2014-01-01

    Yarn-like carbon nanotube (CNT) fibres are a hierarchically-structured material with a variety of promising applications such as high performance composites, sensors and actuators, smart textiles, and energy storage and transmission. However, in order to fully realize these possibilities, a more detailed understanding of their interactions with the environment is required. In this work, we describe a simplified representation of the hierarchical structure of the fibres from which several mathematical models are constructed to explain electro-structural interactions of fibres with organic liquids. A balance between the elastic and surface energies of the CNT bundle network in different media allows the determination of the maximum lengths that open junctions can sustain before collapsing to minimize the surface energy. This characteristic length correlates well with the increase of fibre resistance upon immersion in organic liquids. We also study the effect of charge accumulation in open interbundle junctions and derive expressions to describe experimental data on the non-ohmic electrical behaviour of fibres immersed in polar liquids. Our analyses suggest that the non-ohmic behaviour is caused by progressively shorter junctions collapsing as the voltage is increased. Since our models are not based on any property unique to carbon nanotubes, they should also be useful to describe other hierarchical structures. (paper)

  4. Dissolved organic carbon pools and export from the coastal ocean

    KAUST Repository

    Barrón, Cristina

    2015-10-21

    The distribution of dissolved organic carbon (DOC) concentration across coastal waters was characterized based on the compilation of 3510 individual estimates of DOC in coastal waters worldwide. We estimated the DOC concentration in the coastal waters that directly exchange with open ocean waters in two different ways, as the DOC concentration at the edge of the shelf break and as the DOC concentration in coastal waters with salinity close to the average salinity in the open ocean. Using these estimates of DOC concentration in the coastal waters that directly exchange with open ocean waters, the mean DOC concentration in the open ocean and the estimated volume of water annually exchanged between coastal and open ocean, we estimated a median ± SE (and average ± SE) global DOC export from coastal to open ocean waters ranging from 4.4 ± 1.0 Pg C yr−1 to 27.0 ± 1.8 Pg C yr−1 (7.0 ± 5.8 Pg C yr−1 to 29.0 ± 8.0 Pg C yr−1) depending on the global hydrological exchange. These values correspond to a median and mean median (and average) range between 14.7 ± 3.3 to 90.0 ± 6.0 (23.3 ± 19.3 to 96.7 ± 26.7) Gg C yr−1 per km of shelf break, which is consistent with the range between 1.4 to 66.1 Gg C yr−1 per km of shelf break of available regional estimates of DOC export. The estimated global DOC export from coastal to open ocean waters is also consistent with independent estimates of the net metabolic balance of the coastal ocean. The DOC export from the coastal to the open ocean is likely to be a sizeable flux and is likely to be an important term in the carbon budget of the open ocean, potentially providing an important subsidy to support heterotrophic activity in the open ocean.

  5. Dissolved organic carbon pools and export from the coastal ocean

    KAUST Repository

    Barró n, Cristina; Duarte, Carlos M.

    2015-01-01

    The distribution of dissolved organic carbon (DOC) concentration across coastal waters was characterized based on the compilation of 3510 individual estimates of DOC in coastal waters worldwide. We estimated the DOC concentration in the coastal waters that directly exchange with open ocean waters in two different ways, as the DOC concentration at the edge of the shelf break and as the DOC concentration in coastal waters with salinity close to the average salinity in the open ocean. Using these estimates of DOC concentration in the coastal waters that directly exchange with open ocean waters, the mean DOC concentration in the open ocean and the estimated volume of water annually exchanged between coastal and open ocean, we estimated a median ± SE (and average ± SE) global DOC export from coastal to open ocean waters ranging from 4.4 ± 1.0 Pg C yr−1 to 27.0 ± 1.8 Pg C yr−1 (7.0 ± 5.8 Pg C yr−1 to 29.0 ± 8.0 Pg C yr−1) depending on the global hydrological exchange. These values correspond to a median and mean median (and average) range between 14.7 ± 3.3 to 90.0 ± 6.0 (23.3 ± 19.3 to 96.7 ± 26.7) Gg C yr−1 per km of shelf break, which is consistent with the range between 1.4 to 66.1 Gg C yr−1 per km of shelf break of available regional estimates of DOC export. The estimated global DOC export from coastal to open ocean waters is also consistent with independent estimates of the net metabolic balance of the coastal ocean. The DOC export from the coastal to the open ocean is likely to be a sizeable flux and is likely to be an important term in the carbon budget of the open ocean, potentially providing an important subsidy to support heterotrophic activity in the open ocean.

  6. Distribution of organic carbon and petroleum source rock potential of Cretaceous and lower Tertiary carbonates, South Florida Basin: preliminary results

    Science.gov (United States)

    Palacas, James George

    1978-01-01

    Analyses of 134 core samples from the South Florida Basin show that the carbonates of Comanchean age are relatively richer in average organic carbon (0.41 percent) than those of Coahuilan age (0.28 percent), Gulfian age (0.18 percent) and Paleocene age (0.20 percent). They are also nearly twice as rich as the average world, wide carbonate (average 0.24 percent). The majority of carbonates have organic carbons less than 0.30 percent but the presence of many relatively organic rich beds composed of highly bituminous, argillaceous, highly stylolitic, and algal-bearing limestones and dolomites accounts for the higher percentage of organic carbon in some of the stratigraphic units. Carbonate rocks that contain greater than 0.4 percent organic carbon and that might be considered as possible petroleum sources were noted in almost each subdivision of the Coahuilan and Comanchean Series but particularly the units of Fredericksburg 'B', Trinity 'A', Trinity 'F', and Upper Sunniland. Possible source rocks have been ascribed by others to the Lower Sunniland, but lack of sufficient samples precluded any firm assessment in this initial report. In the shallower section of the basin, organic-rich carbonates containing as much as 3.2 percent organic carbon were observed in the lowermost part of the Gulfian Series and carbonate rocks with oil staining or 'dead' and 'live oil' were noted by others in the uppermost Gulfian and upper Cedar Keys Formation. It is questionable whether these shallower rocks are of sufficient thermal maturity to have generated commercial oil. The South Florida basin is still sparsely drilled and produces only from the Sunniland Limestone at an average depth of 11,500 feet (3500 m). Because the Sunniland contains good reservoir rocks and apparently adequate source rocks, and because the success rate of new oil field discoveries has increased in recent years, the chances of finding additional oil reserves in the Sunniland are promising. Furthermore, the

  7. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands.

    Science.gov (United States)

    Zhao, Yongcun; Wang, Meiyan; Hu, Shuijin; Zhang, Xudong; Ouyang, Zhu; Zhang, Ganlin; Huang, Biao; Zhao, Shiwei; Wu, Jinshui; Xie, Deti; Zhu, Bo; Yu, Dongsheng; Pan, Xianzhang; Xu, Shengxiang; Shi, Xuezheng

    2018-04-17

    China's croplands have experienced drastic changes in management practices, such as fertilization, tillage, and residue treatments, since the 1980s. There is an ongoing debate about the impact of these changes on soil organic carbon (SOC) and its implications. Here we report results from an extensive study that provided direct evidence of cropland SOC sequestration in China. Based on the soil sampling locations recorded by the Second National Soil Survey of China in 1980, we collected 4,060 soil samples in 2011 from 58 counties that represent the typical cropping systems across China. Our results showed that across the country, the average SOC stock in the topsoil (0-20 cm) increased from 28.6 Mg C ha -1 in 1980 to 32.9 Mg C ha -1 in 2011, representing a net increase of 140 kg C ha -1 year -1 However, the SOC change differed among the major agricultural regions: SOC increased in all major agronomic regions except in Northeast China. The SOC sequestration was largely attributed to increased organic inputs driven by economics and policy: while higher root biomass resulting from enhanced crop productivity by chemical fertilizers predominated before 2000, higher residue inputs following the large-scale implementation of crop straw/stover return policy took over thereafter. The SOC change was negatively related to N inputs in East China, suggesting that the excessive N inputs, plus the shallowness of plow layers, may constrain the future C sequestration in Chinese croplands. Our results indicate that cropland SOC sequestration can be achieved through effectively manipulating economic and policy incentives to farmers.

  8. Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: 14C characteristics of sedimentary carbon components and their environmental controls

    Science.gov (United States)

    Feng, Xiaojuan; Gustafsson, Örjan; Holmes, R. Max; Vonk, Jorien E.; van Dongen, Bart E.; Semiletov, Igor P.; Dudarev, Oleg V.; Yunker, Mark B.; Macdonald, Robie W.; Wacker, Lukas; Montluçon, Daniel B.; Eglinton, Timothy I.

    2015-11-01

    Distinguishing the sources, ages, and fate of various terrestrial organic carbon (OC) pools mobilized from heterogeneous Arctic landscapes is key to assessing climatic impacts on the fluvial release of carbon from permafrost. Through molecular 14C measurements, including novel analyses of suberin- and/or cutin-derived diacids (DAs) and hydroxy fatty acids (FAs), we compared the radiocarbon characteristics of a comprehensive suite of terrestrial markers (including plant wax lipids, cutin, suberin, lignin, and hydroxy phenols) in the sedimentary particles from nine major arctic and subarctic rivers in order to establish a benchmark assessment of the mobilization patterns of terrestrial OC pools across the pan-Arctic. Terrestrial lipids, including suberin-derived longer-chain DAs (C24,26,28), plant wax FAs (C24,26,28), and n-alkanes (C27,29,31), incorporated significant inputs of aged carbon, presumably from deeper soil horizons. Mobilization and translocation of these "old" terrestrial carbon components was dependent on nonlinear processes associated with permafrost distributions. By contrast, shorter-chain (C16,18) DAs and lignin phenols (as well as hydroxy phenols in rivers outside eastern Eurasian Arctic) were much more enriched in 14C, suggesting incorporation of relatively young carbon supplied by runoff processes from recent vegetation debris and surface layers. Furthermore, the radiocarbon content of terrestrial markers is heavily influenced by specific OC sources and degradation status. Overall, multitracer molecular 14C analysis sheds new light on the mobilization of terrestrial OC from arctic watersheds. Our findings of distinct ages for various terrestrial carbon components may aid in elucidating fate of different terrestrial OC pools in the face of increasing arctic permafrost thaw.

  9. Creep characteristics of precipitation hardened carbon free martensitic alloys

    International Nuclear Information System (INIS)

    Muneki, S.; Igarashi, M.; Abe, F.

    2000-01-01

    A new attempt has been demonstrated using carbon free Fe-Ni-Co martensitic alloys strengthened by Laves phase such as Fe 2 W or Fe 2 Mo to achieve homogeneous creep deformation at high temperatures under low stress levels. Creep behavior of the alloys is found to be completely different from that of the conventional high-Cr ferritic steels. The alloys exhibit gradual change in the creep rate with strain both in the transient and acceleration creep regions, and give a larger strain for the minimum creep rate. In these alloys the creep deformation takes place very homogeneously and no heterogeneous creep deformation is enhanced even at low stress levels. The minimum creep rates of the Fe-Ni-Co alloys at 700 C are found to be much lower than that of the conventional steel, which is due to fine dispersion strengthening useful even at 700 C in these alloys. It is thus concluded that the Fe-Ni-Co martensite strengthened by Laves phase is very useful to increase the creep resistance at elevated temperatures over 650 C. (orig.)

  10. Characteristics and sources analysis of riverine chromophoric dissolved organic matter in Liaohe River, China.

    Science.gov (United States)

    Shao, Tiantian; Song, Kaishan; Jacinthe, Pierre-Andre; Du, Jia; Zhao, Ying; Ding, Zhi; Guan, Ying; Bai, Zhang

    2016-12-01

    Chromophoric dissolved organic matter (CDOM) in riverine systems can be affected by environmental conditions and land-use, and thus could provide important information regarding human activities in surrounding landscapes. The optical properties of water samples collected at 42 locations across the Liaohe River (LHR, China) watershed were examined using UV-Vis and fluorescence spectroscopy to determine CDOM characteristics, composition and sources. Total nitrogen (TN) and total phosphorus (TP) concentrations at all sampling sites exceeded the GB3838-2002 (national quality standards for surface waters, China) standard for Class V waters of 2.0 mg N/L and 0.4 mg P/L respectively, while trophic state index (TSI M ) indicated that all the sites investigated were mesotrophic, 64% of which were eutrophic at the same time. Redundancy analysis showed that total suspended matter (TSM), dissolved organic carbon (DOC), and turbidity had a strong correlation with CDOM, while the other parameters (Chl a, TN, TP and TSI M ) exhibited weak correlations with CDOM absorption. High spectral slope values and low SUVA254 (the specific UV absorption) values indicated that CDOM in the LHR was primarily comprised of low molecular weight organic substances. Analysis of excitation-emission matrices contour plots showed that CDOM in water samples collected from upstream locations exhibited fulvic-acid-like characteristics whereas protein-like substances were most likely predominant in samples collected in estuarine areas and downstream from large cities. These patterns were interpreted as indicative of water pollution from urban and industrial activities in several downstream sections of the LHR watershed.

  11. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

    2010-11-05

    A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

  12. Carbonation Characteristics of Alkali-Activated Blast-Furnace Slag Mortar

    Directory of Open Access Journals (Sweden)

    Keum-Il Song

    2014-01-01

    Full Text Available Alkali-activated ground granulated blast-slag (AAS is the most obvious alternative material for ordinary Portland cement (OPC. However, to use it as a structural material requires the assessment and verification of its durability. The most important factor for a durability evaluation is the degree of carbonation resistance, and AAS is known to show lower performance than OPC. A series of experiments was conducted with a view to investigate the carbonation characteristics of AAS binder. As a consequence, it was found that the major hydration product of AAS was calcium silicate hydrate (CSH, with almost no portlandite, unlike the products of OPC. After carbonation, the CSH of AAS turned into amorphous silica gel which was most likely why the compressive strength of AAS became weaker after carbonation. An increase of the activator dosage leads AAS to react more quickly and produce more CSH, increasing the compaction, compressive strength, and carbonation resistance of the microstructure.

  13. Current-Voltage Characteristics of the Composites Based on Epoxy Resin and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Iwona Pełech

    2015-01-01

    Full Text Available Polymer composites based on epoxy resin were prepared. Multiwalled carbon nanotubes synthesized on iron-cobalt catalyst were applied as a filler in a polymer matrix. Chlorine or hydroxyl groups were incorporated on the carbon nanotubes surface via chlorination or chlorination followed by hydroxylation. The effect of functionalized carbon nanotubes on the epoxy resin matrix is discussed in terms of the state of CNTs dispersion in composites as well as electrical properties. For the obtained materials current-voltage characteristics were determined. They had a nonlinear character and were well described by an exponential-type equation. For all the obtained materials the percolation threshold occurred at a concentration of about 1 wt%. At a higher filler concentration >2 wt%, better conductivity was demonstrated by polymer composites with raw carbon nanotubes. At a lower filler concentration <2 wt%, higher values of electrical conductivity were obtained for polymer composites with modified carbon nanotubes.

  14. Carbon trading as incentive for conversion to organic agriculture. Case study. Organic peanuts in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Bodnar, F.

    2005-12-15

    In this pilot project, the climate effects of the conversion from conventional to organic cultivation of peanuts are evaluated. We could aim at voluntary carbon credits that do not comply with the CDM (Clean Development Mechanisms) rules, but we try to meet the CDM rules by combining it with a agroforestry component. However, in the example of Tanzania meeting the CDM rules was a problem. The agricultural system in Tanzania consists of a rotation of several years cultivation and several years fallow. This fallow of grass, shrubs and trees could be considered as 'forest'. Taking fallow land into cultivation would then be deforestation, which would make the planting of trees no longer eligible under CDM. This is a shame because the traditional 'slash and burn' system emits a lot of greenhouse gases.

  15. Humin to Human: Organic carbon, sediment, and water fluxes along river corridors in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Sutfin, Nicholas Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-20

    This is a presentation with slides on What does it mean to be human? ...humin?; River flow and Hydrographs; Snake River altered hydrograph (Marston et al., 2005); Carbon dynamics are important in rivers; Rivers and streams as carbon sink; Reservoirs for organic carbon; Study sites in Colorado; River morphology; Soil sample collection; Surveys at RMNP; Soil organic carbon content at RMNP; Abandoned channels and Cutoffs; East River channel migration and erosion; Linking hydrology to floodplain sediment flux; Impact of Extreme Floods on Floodplain Sediment; Channel Geometry: RMNP; Beavers dams and multithread channels; Geomorphology and carbon in N. St. Vrain Creek; Geomorphology and carbon along the East River; Geomorphology and carbon in N. St. Vrain Creek; San Marcos River, etc.

  16. Organic carbon exportation in a tobacco cropped watershed

    Science.gov (United States)

    de Mello, N.; Merten, G.; Pontarolo, E.

    2009-04-01

    The agricultural land use is indispensable for survival of the humankind; but inadequate agricultural use may disturb or modify steady states generating environmental damage. The amount of organic carbon (OC) in the soil is a result of the balance between addition by primary production and carbon losses, mainly by the oxidation and mineralization by microorganisms activity and depletion by erosion process. The losses will ultimately reduce the primary production, affecting the additions and undermining the soil quality, moving it away from the sustainability. Areas under tobacco (Nicotiana tabacum L.) cropping are generally potential for environmental contamination, because they are based on intensive agricultural operations, with low OC addition, due the removal of almost the totality of the biomass of the main crop. In tobacco, the leaves are the part of commercial interest. This removal, associated with the conventional management of soils makes difficult to preserve the soil OC budget which ends up being rapidly degraded. However, the soil management system also can raise the soil OC content, if not to the original levels, as in the areas under native vegetation, at least, in adequate levels to ensure the soil quality. The organic carbon of an agricultural area may be exported associated to sediments in the fraction associated with minerals (CAM) as in the particulate fraction (POC), or in dissolved form (DOC), however the processes of losses and translocation occurs in distinct ways, as a function of different factors, as soil type, slope length, soil management and climate. The results may also be changed when different scale of observation is adopted. This work was carried out in a rural watershed, cropped with tobacco mainly under conventional management system. Tobacco is still a crop of economic importance in developing countries, such as Brazil. The study was conducted during four years in small plots, hillslopes and catchment scale. In the small plots

  17. Dissolved organic carbon in the INDEX area of the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; De

    -Sea Research II 48 (2001) 3353–3361 Dissolved organic carbon in the INDEX area of the Central Indian Basin Sugandha Sardessai*, S.N. de Sousa National Institute of Oceanography, Dona-Paula, Goa 403 004, India Abstract Dissolved organic carbon (DOC..., 1996). While there is substantial information available on the DOC content of sea water throughout the Atlantic, Pacific and southern oceans, there are limited reports on contents and distribution of this organic fraction in the Indian Ocean (Menzel...

  18. Dissolved organic carbon enhances the mass transfer of hydrophobic organic compounds from Nonaqueous Phase Liquids (NAPLs) into the aqueous phase

    NARCIS (Netherlands)

    Smith, K.E.C.; Thullner, M.; Wick, L.Y.; Harms, H.

    2011-01-01

    The hypothesis that dissolved organic carbon (DOC) enhances the mass transfer of hydrophobic organic compounds from nonaqueous phase liquids (NAPLs) into the aqueous phase above that attributable to dissolved molecular diffusion alone was tested. In controlled experiments, mass transfer rates of

  19. Organic carbon burial in fjords: Terrestrial versus marine inputs

    Science.gov (United States)

    Cui, Xingqian; Bianchi, Thomas S.; Savage, Candida; Smith, Richard W.

    2016-10-01

    Fjords have been identified as sites of enhanced organic carbon (OC) burial and may play an important role in regulating climate change on glacial-interglacial timescales. Understanding sediment processes and sources of sedimentary OC are necessary to better constrain OC burial in fjords. In this study, we use Fiordland, New Zealand, as a case study and present data on surface sediments, sediment down-cores and terrestrial end-members to examine dynamics of sediments and the sources of OC in fjord sediments. Sediment cores showed evidence of multiple particle sources, frequent bioturbation and mass-wasting events. A multi-proxy approach (stable isotopes, lignin-phenols and fatty acids) allowed for separation of marine, soil and vascular plant OC in surface sediments. The relationship between mass accumulation rate (MAR) and OC contents in fjord surface sediments suggested that mineral dilution is important in controlling OC content on a global scale, but is less important for specific regions (e.g., New Zealand). The inconsistency of OC budgets calculated by using MAR weighted %OC and OC accumulation rates (AR; 6 vs 21-31 Tg OC yr-1) suggested that sediment flux in fjords was likely underestimated. By using end-member models, we propose that 55% to 62% of total OC buried in fjords is terrestrially derived, and accounts for 17 ± 12% of the OCterr buried in all marine sediments. The strong correlation between MAR and OC AR indicated that OC flux will likely decrease in fjords in the future with global warming due to decrease in sediment flux caused by glacier denudation.

  20. Comparative toxicity of sodium carbonate peroxyhydrate to freshwater organisms.

    Science.gov (United States)

    Geer, Tyler D; Kinley, Ciera M; Iwinski, Kyla J; Calomeni, Alyssa J; Rodgers, John H

    2016-10-01

    Sodium carbonate peroxyhydrate (SCP) is a granular algaecide containing H2O2 as an active ingredient to control growth of noxious algae. Measurements of sensitivities of target and non-target species to hydrogen peroxide are necessary for water resource managers to make informed decisions and minimize risks for non-target species when treating noxious algae. The objective of this study was to measure and compare responses among a target noxious alga (cyanobacterium Microcystis aeruginosa) and non-target organisms including a eukaryotic alga (chlorophyte Pseudokirchneriella subcapitata), microcrustacean (Ceriodaphnia dubia), benthic amphipod (Hyalella azteca), and fathead minnow (Pimephales promelas) to exposures of hydrogen peroxide as SCP. Hydrogen peroxide exposures were confirmed using the I3(-) method. SCP margins of safety for these organisms were compared with published toxicity data to provide context for other commonly used algaecides and herbicides (e.g. copper formulations, endothall, and diquat dibromide). Algal responses (cell density and chlorophyll a concentrations) and animal mortality were measured after 96h aqueous exposures to SCP in laboratory-formulated water to estimate EC50 and LC50 values, as well as potency slopes. Despite a shorter test duration, M. aeruginosa was more sensitive to hydrogen peroxide as SCP (96h EC50:0.9-1.0mgL(-)(1) H2O2) than the eukaryotic alga P. subcapitata (7-d EC50:5.2-9.2mgL(-1) H2O2), indicating potential for selective control of prokaryotic algae. For the three non-target animals evaluated, measured 96-h LC50 values ranged from 1.0 to 19.7mgL(-1) H2O2. C. dubia was the most sensitive species, and the least sensitive species was P. promelas, which is not likely to be affected by concentrations of hydrogen peroxide as SCP that would be used to control noxious algae (e.g. M. aeruginosa). Based on information from peer-reviewed literature, other algaecides could be similarly selective for cyanobacteria. Of the

  1. The mechanics and biocompatibility characteristics of carbon nanotubes-polyurethane composite membranes:a preliminary study

    International Nuclear Information System (INIS)

    Dong Sheng; Yuan Zheng; Wu Shengwei; Li Wenxin

    2011-01-01

    Objective: To discuss the mechanics and biocompatibility characteristics of carbon nanotubes-polyurethane composite membranes. Methods: The mechanics property of carbon nanotubes-polyurethane composite membranes with different carbon nanotubes contents were tested by universal material testing machine. The surface of the membranes was observed by electron microscope when the stent was bent 90 degree. And its cytotoxicity was tested by cultivating study with 7721 cell. The metallic stent that was covered with carbon nanotubes-polyurethane composite membrane by using dip-coating method was inserted in rabbit esophagus in order to evaluate its biocompatibility in vivo. Results: Composite membranes tensile strength (MPa) and elongation at break (%) were 4.62/900, 6.05/730, 8.26/704 and 5.7/450 when the carbon nanotubes contents were 0%, 0.1%, 0.3% and 0.5%, respectively. If the stent was bent at 90 degree, its surface was still smooth without any fractures when it was scanned by electron microscope.Composite membranes had critical cytotoxicity when its carbon nanotubes content was up to 0.5% and 1.0%. No fissure nor degradation of composite membranes occurred at 30 days after composite membrane covered metallic stent was inserted in rabbit esophagus. Conclusion: When moderate carbon nanotubes are added into polyurethane composite membrane, the mechanics and biocompatibility characteristics of the polyurethane composite membrane can be much improved. (authors)

  2. Deposition and Burial Efficiency of Terrestrial Organic Carbon Exported from Small Mountainous Rivers to the Continental Margin, Southwest of Taiwan

    Science.gov (United States)

    Hsu, F.; Lin, S.; Wang, C.; Huh, C.

    2007-12-01

    Terrestrial organic carbon exported from small mountainous river to the continental margin may play an important role in global carbon cycle and it?|s biogeochemical process. A huge amount of suspended materials from small rivers in southwestern Taiwan (104 million tons per year) could serve as major carbon source to the adjacent ocean. However, little is know concerning fate of this terrigenous organic carbon. The purpose of this study is to calculate flux of terrigenous organic carbon deposited in the continental margin, offshore southwestern Taiwan through investigating spatial variation of organic carbon content, organic carbon isotopic compositions, organic carbon deposition rate and burial efficiency. Results show that organic carbon compositions in sediment are strongly influenced by terrestrial material exported from small rivers in the region, Kaoping River, Tseng-wen River and Er-jan Rver. In addition, a major part of the terrestrial materials exported from the Kaoping River may bypass shelf region and transport directly into the deep sea (South China Sea) through the Kaoping Canyon. Organic carbon isotopic compositions with lighter carbon isotopic values are found near the Kaoping River and Tseng-wen River mouth and rapidly change from heavier to lighter values through shelf to slope. Patches of lighter organic carbon isotopic compositions with high organic carbon content are also found in areas west of Kaoping River mouth, near the Kaoshiung city. Furthermore, terrigenous organic carbons with lighter isotopic values are found in the Kaoping canyon. A total of 0.028 Mt/yr of terrestrial organic carbon was found in the study area, which represented only about 10 percent of all terrestrial organic carbon deposited in the study area. Majority (~90 percent) of the organic carbon exported from the Kaoping River maybe directly transported into the deep sea (South China Sea) and become a major source of organic carbon in the deep sea.

  3. Role of organic soils in the world carbon cycle: problem definition and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Armentano, T.V. (ed.)

    1979-01-01

    Findings and recommendations of the workshop on organic soils are summarized. The major finding of the workshop is that organic soils are important in the overall carbon budget. Histosols and gleysols, the major organic soil deposits of the world, normally sequester organic carbon fixed by plants. They may now be releasing enough carbon to account for nearly 10% of the annual rise in atmospheric content of CO/sub 2/. Current annual release of carbon from organic soils is estimated to fall within the range of 0.03 to 0.37 x 10/sup 9/ t, a release equivalent to 1.3% to 16% of the annual increase of carbon in the atmosphere. If half of the released carbon remains airborne, organic soils contribute 0.6% to 8.0% of the annual rise in CO/sub 2/. Uncertainties in data suggest the actual release could lie outside the range. Present annual releases of carbon from the Everglades Agricultural Area in Florida and the Sacramento-San Joaquin Valley in California are estimated at 0.017 x 10/sup 9/ tons. When combined with additional carbon release from other known drainage programs and the possibility of major drainage activity in the tropics, this figure suggests that the lower limit of the world estimate of carbon release from organic soils is too low. Annual sequestering of carbon by undrained organic soils has been estimated at about 0.045 x 10/sup 9/ tons. This estimate is based on only a few studies, however, and precision is probably no better than an order of magnitude. Several strategies for peatland management are available, including creation, preservation, functional designation, and use of wetlands for agriculture and energy supply.

  4. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.

    Science.gov (United States)

    Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2014-02-01

    Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity. © 2013 John Wiley & Sons Ltd.

  5. Production of carbon-14 and preparation of some key precursors for labeling organic molecules

    International Nuclear Information System (INIS)

    Moriya, T.; Motoishi, S.

    1992-01-01

    Production of carbon-14 on 50 GBq scale has been performed by neutron irradiation of aluminium nitride target in the JMTR. This nuclide is separated in carbon dioxide form by combustion of the irradiated target at 1100degC with oxygen. The [ 14 C] carbon dioxide liberated thus is trapped in caustic solution and finally recovered as [ 14 C] barium carbonate. Some precursors useful for incorporating carbon-14 into a given organic molecule have been prepared. Precursors such as [1- 14 C] sodium acetate, [ 14 C] methanol and [ 14 C] potassium cyanide are prepared by rather conventional methods involving carbonation of methyl magnesium iodine, reduction of carbon dioxide with lithium aluminium hydride and reduction of carbonate with metallic potassium in the presence of ammonium salt, respectively. A catalytic polymerization of acetylene is used to prepare benzene. (author)

  6. Potential for long-term transfer of dissolved organic carbon from riparian zones to streams in boreal catchments.

    Science.gov (United States)

    Ledesma, José L J; Grabs, Thomas; Bishop, Kevin H; Schiff, Sherry L; Köhler, Stephan J

    2015-08-01

    Boreal regions store most of the global terrestrial carbon, which can be transferred as dissolved organic carbon (DOC) to inland waters with implications for both aquatic ecology and carbon budgets. Headwater riparian zones (RZ) are important sources of DOC, and often just a narrow 'dominant source layer' (DSL) within the riparian profile is responsible for most of the DOC export. Two important questions arise: how long boreal RZ could sustain lateral DOC fluxes as the sole source of exported carbon and how its hydromorphological variability influences this role. We estimate theoretical turnover times by comparing carbon pools and lateral exports in the DSL of 13 riparian profiles distributed over a 69 km(2) catchment in northern Sweden. The thickness of the DSL was 36 ± 18 (average ± SD) cm. Thus, only about one-third of the 1-m-deep riparian profile contributed 90% of the lateral DOC flux. The 13 RZ exported 8.7 ± 6.5 g C m(-2) year(-1) , covering the whole range of boreal stream DOC exports. The variation could be explained by local hydromorphological characteristics including RZ width (R(2) = 0.90). The estimated theoretical turnover times were hundreds to a few thousands of years, that is there is a potential long-lasting supply of DOC. Estimates of net ecosystem production in the RZ suggest that lateral fluxes, including both organic and inorganic C, could be maintained without drawing down the riparian pools. This was supported by measurements of stream DO(14) C that indicated modern carbon as the predominant fraction exported, including streams disturbed by ditching. The transfer of DOC into boreal inland waters from new and old carbon sources has a major influence on surface water quality and global carbon balances. This study highlights the importance of local variations in RZ hydromorphology and DSL extent for future DOC fluxes under a changing climate. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  7. Influence of natural and novel organic carbon sources on denitrification in forest, degraded urban, and restored streams

    Science.gov (United States)

    Organic carbon is important in regulating ecosystem function, and its source and abundance may be altered by urbanization. We investigated shifts in organic carbon quantity and quality associated with urbanization and ecosystem restoration, and its potential effects on denitrific...

  8. Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions

    Science.gov (United States)

    Lee, Alex K. Y.; Chen, Chia-Li; Liu, Jun; Price, Derek J.; Betha, Raghu; Russell, Lynn M.; Zhang, Xiaolu; Cappa, Christopher D.

    2017-12-01

    Black carbon (BC) emitted from incomplete combustion can result in significant impacts on air quality and climate. Understanding the mixing state of ambient BC and the chemical characteristics of its associated coatings is particularly important to evaluate BC fate and environmental impacts. In this study, we investigate the formation of organic coatings on BC particles in an urban environment (Fontana, California) under hot and dry conditions using a soot-particle aerosol mass spectrometer (SP-AMS). The SP-AMS was operated in a configuration that can exclusively detect refractory BC (rBC) particles and their coatings. Using the -log(NOx / NOy) ratio as a proxy for photochemical age of air masses, substantial formation of secondary organic aerosol (SOA) coatings on rBC particles was observed due to active photochemistry in the afternoon, whereas primary organic aerosol (POA) components were strongly associated with rBC from fresh vehicular emissions in the morning rush hours. There is also evidence that cooking-related organic aerosols were externally mixed from rBC. Positive matrix factorization and elemental analysis illustrate that most of the observed SOA coatings were freshly formed, providing an opportunity to examine SOA coating formation on rBCs near vehicular emissions. Approximately 7-20 wt % of secondary organic and inorganic species were estimated to be internally mixed with rBC on average, implying that rBC is unlikely the major condensation sink of SOA in this study. Comparison of our results to a co-located standard high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) measurement suggests that at least a portion of SOA materials condensed on rBC surfaces were chemically different from oxygenated organic aerosol (OOA) particles that were externally mixed with rBC, although they could both be generated from local photochemistry.

  9. Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction

    KAUST Repository

    Wang, Riming; Sun, Xiaohui; Ould-Chikh, Samy; Osadchii, Dmitrii; Bai, Fan; Kapteijn, Freek; Gascon, Jorge

    2018-01-01

    A nitrogen-doped carbon was synthesized through the pyrolysis of the well-known metal-organic framework ZIF-8, followed by a subsequent acid treatment, and has been applied as a catalyst in the electrochemical reduction of carbon dioxide. The resulting electrode shows Faradaic efficiencies to carbon monoxide as high as ∼78%, with hydrogen being the only byproduct. The pyrolysis temperature determines the amount and the accessibility of N species in the carbon electrode, in which pyridinic-N and quaternary-N species play key roles in the selective formation of carbon monoxide.

  10. Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction

    KAUST Repository

    Wang, Riming

    2018-04-11

    A nitrogen-doped carbon was synthesized through the pyrolysis of the well-known metal-organic framework ZIF-8, followed by a subsequent acid treatment, and has been applied as a catalyst in the electrochemical reduction of carbon dioxide. The resulting electrode shows Faradaic efficiencies to carbon monoxide as high as ∼78%, with hydrogen being the only byproduct. The pyrolysis temperature determines the amount and the accessibility of N species in the carbon electrode, in which pyridinic-N and quaternary-N species play key roles in the selective formation of carbon monoxide.

  11. Characteristics of activated carbon resulted from pyrolysis of the oil palm fronds powder

    Science.gov (United States)

    Maulina, S.; Iriansyah, M.

    2018-02-01

    Activated carbon is the product of a charcoal impregnation process that has a higher absorption capacity and has more benefits than regular char. Therefore, this study aims to cultivate the powder of oil palm fronds into activated carbon that meets the requirements of Standard National Indonesia 06-3730-1995. To do so, the carbonization process of the powder of oil palm fronds was carried out using a pyrolysis reactor for 30 minutes at a temperature of 150 °C, 200 °C, and 250 °C in order to produce activated char. Then, the char was impregnated using Phosphoric Acid activator (H3PO4) for 24 hours. Characteristics of activated carbon indicate that the treatment of char by chemical activation of oil palm fronds powder has an effect on the properties of activated carbon. The activated carbons that has the highest absorption properties to Iodine (822.91 mg/g) were obtained from the impregnation process with 15% concentration of Phosphoric Acid (H3PO4) at pyrolysis temperature of 200 °C. Furthermore, the activation process resulted in activated carbon with water content of 8%, ash content of 4%, volatile matter 39%, and fixed carbon 75%, Iodine number 822.91 mg/g.

  12. Distribution of Organic Carbon in the Sediments of Xinxue River and the Xinxue River Constructed Wetland, China.

    Science.gov (United States)

    Cao, Qingqing; Wang, Renqing; Zhang, Haijie; Ge, Xiuli; Liu, Jian

    2015-01-01

    Wetland ecosystems are represented as a significant reservoir of organic carbon and play an important role in mitigating the greenhouse effect. In order to compare the compositions and distribution of organic carbon in constructed and natural river wetlands, sediments from the Xinxue River Constructed Wetland and the Xinxue River, China, were sampled at two depths (0-15 cm and 15-25 cm) in both upstream and downstream locations. Three types of organic carbon were determined: light fraction organic carbon, heavy fraction organic carbon, and dissolved organic carbon. The results show that variations in light fraction organic carbon are significantly larger between upstream and downstream locations than they are between the two wetland types; however, the opposite trend is observed for the dissolved organic carbon. There are no significant differences in the distribution of heavy fraction organic carbon between the discrete variables (e.g., between the two depths, the two locations, or the two wetland types). However, there are significant cross-variable differences; for example, the distribution patterns of heavy fraction organic carbon between wetland types and depths, and between wetland types and locations. Correlation analysis reveals that light fraction organic carbon is positively associated with light fraction nitrogen in both wetlands, while heavy fraction organic carbon is associated with both heavy fraction nitrogen and the moisture content in the constructed wetland. The results of this study demonstrate that the constructed wetland, which has a relatively low background value of heavy fraction organic carbon, is gradually accumulating organic carbon of different types, with the level of accumulation dependent on the balance between carbon accumulation and carbon decomposition. In contrast, the river wetland has relatively stable levels of organic carbon.

  13. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Mingyu; Gao, Long; Li, Jun [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Fang, Jia [School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073 (China); Cai, Wenxuan [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Li, Xiaoxia [School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073 (China); Xu, Aihua, E-mail: xahspinel@sina.com [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073 (China)

    2016-10-05

    Highlights: • Supported g-C{sub 3}N{sub 4} on AC catalysts with different loadings were prepared. • The metal free catalysts exhibited high efficiency for dyes degradation with PMS. • The catalyst presented a long-term stability for multiple runs. • The C=O groups played a key role in the oxidation process. - Abstract: Graphitic carbon nitride supported on activated carbon (g-C{sub 3}N{sub 4}/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C{sub 3}N{sub 4} was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C{sub 3}N{sub 4} to C=O was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C{sub 3}N{sub 4}/AC catalyst within 20 min with PMS, while g-C{sub 3}N{sub 4}+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C{sub 3}N{sub 4} loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO· and SO{sub 4}·{sup −}) in AO7 oxidation was proposed in the system. The C=O groups play a key role in the process; while the exposure of more N-(C){sub 3} group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants.

  14. Elemental and organic carbon in aerosols over urbanized coastal region (southern Baltic Sea, Gdynia).

    Science.gov (United States)

    Lewandowska, Anita; Falkowska, Lucyna; Murawiec, Dominika; Pryputniewicz, Dorota; Burska, Dorota; Bełdowska, Magdalena

    2010-09-15

    Studies on PM 10, total particulate matter (TSP), elemental carbon (EC) and organic carbon (OC) concentrations were carried out in the Polish coastal zone of the Baltic Sea, in urbanized Gdynia. The interaction between the land, the air and the sea was clearly observed. The highest concentrations of PM 10, TSP and both carbon fractions were noted in the air masses moving from southern and western Poland and Europe. The EC was generally of primary origin and its contribution to TSP and PM 10 mass was on average 2.3% and 3.7% respectively. Under low wind speed conditions local sources (traffic and industry) influenced increases in elemental carbon and PM 10 concentrations in Gdynia. Elemental carbon demonstrated a pronounced weekly cycle, yielding minimum values at the weekend and maximum values on Thursdays. The role of harbors and ship yards in creating high EC concentrations was clearly observed. Concentration of organic carbon was ten times higher than that of elemental carbon, and the average OC contribution to PM 10 mass was very high (31.6%). An inverse situation was observed when air masses were transported from over the Atlantic Ocean, the North Sea and the Baltic Sea. These clean air masses were characterized by the lowest concentrations of all analysed compounds. Obtained results for organic and elemental carbon fluxes showed that atmospheric aerosols can be treated, along with water run-off, as a carbon source for the coastal waters of the Baltic Sea. The enrichment of surface water was more effective in the case of organic carbon (0.27+/-0.19 mmol m(-2) d(-1)). Elemental carbon fluxes were one order of magnitude smaller, on average 0.03+/-0.04 mmol m(-2) d(-1). We suggest that in some situations atmospheric carbon input can explain up to 18% of total carbon fluxes into the Baltic coastal waters. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Determination of 14C age of inorganic and organic carbon in ancient Siberian permafrost

    Science.gov (United States)

    Onstott, T. C.; Liang, R.; Lau, M.; Vishnivetskaya, T. A.; Lloyd, K. G.; Pfiffner, S. M.; Hodgins, G.; Rivkina, E.

    2017-12-01

    Permafrost represents a large reservoir of ancient carbon that could have an important impact on the global carbon budget during climate warming. Due to the low turnover rate of carbon by microorganisms at subzero temperatures, the persistence of ancient carbon in younger permafrost deposits could also pose challenges for radiocarbon dating of permafrost sediment. We utilized Accelerator Mass Spectrometry to determine the 14C age of inorganic carbon, labile and recalcitrant organic carbon in Siberian permafrost sediment sampled at various depths from 2.9 to 5.6m. The fraction of inorganic carbon (CO2) was collected after acidification using phosphoric acid. The labile (younger) and recalcitrant (old) organic carbon in the subsequent residues were collected after combustion at 400 ºC and 800 ºC, respectively. The percentages of inorganic carbon increased from the youngest (2.9m) to the oldest (5.6m), whereas the fractions for organic carbon varied significantly at different depths. The 14C age determined in the inorganic fraction in the top sample (2.9 m) was 21,760 yr BP and gradually increased to 33,900 yr BP in the relative deeper sediment (3.5 and 5.6 m). Surprisingly, the fraction of "younger" carbon liberated at 400 oC was older than the more recalcitrant and presumably older organic carbon liberated at 800 oC in all cases. Moreover, the 14C age of the younger and older organic carbon fractions did not increase with depth as observed in the carbonate fraction. In particular, the 14C age of the organic carbon in the top sample (38,590-41,700 yr BP) was much older than the deeper samples at depth of 3.5m (18,228-20,158 yr BP) and 5.6m (29,040-38,020 yr BP). It should be noticed that the metabolism of ancient carbon in frozen permafrost may vary at different depths due to the different proportion of necromass and metabolically active microbes. Therefore, additional knowledge about the carbon dynamics of permafrost and more investigation would be required to

  16. Factors affecting distribution patterns of organic carbon in sediments at regional and national scales in China.

    Science.gov (United States)

    Cao, Qingqing; Wang, Hui; Zhang, Yiran; Lal, Rattan; Wang, Renqing; Ge, Xiuli; Liu, Jian

    2017-07-14

    Wetlands are an important carbon reservoir pool in terrestrial ecosystems. Light fraction organic carbon (LFOC), heavy fraction organic carbon (HFOC), and dissolved organic carbon (DOC) were fractionated in sediment samples from the four wetlands (ZR: Zhaoniu River; ZRCW: Zhaoniu River Constructed Wetland; XR: Xinxue River; XRCW: Xinxue River Constructed Wetland). Organic carbon (OC) from rivers and coasts of China were retrieved and statistically analyzed. At regional scale, HFOC stably dominates the deposition of OC (95.4%), whereas DOC and LFOC in ZR is significantly higher than in ZRCW. Concentration of DOC is significantly higher in XRCW (30.37 mg/l) than that in XR (13.59 mg/l). DOC and HFOC notably distinguish between two sampling campaigns, and the deposition of carbon fractions are limited by low nitrogen input. At the national scale, OC attains the maximum of 2.29% at precipitation of 800 mm. OC has no significant difference among the three climate zones but significantly higher in river sediments than in coasts. Coastal OC increases from Bohai Sea (0.52%) to South Sea (0.70%) with a decrease in latitude. This study summarizes the factors affecting organic carbon storage in regional and national scale, and have constructive implications for carbon assessment, modelling, and management.

  17. The molecular characteristics of pyrogenic organic materials and their aqueous leachates

    Science.gov (United States)

    Wozniak, A. S.; Hatcher, P.; Mitra, S.; Bostick, K. W.; Zimmerman, A. R.

    2016-12-01

    Pyrogenic organic matter (Py-OM), or black carbon, is known to impact soil chemistry, pollutant transport, regional and global carbon cycling, and climate. Py-OM is incorporated into soils via atmospheric deposition (e.g., from biomass, fossil fuel combustion) or direct applications by humans (e.g., biochars applied for agricultural production). Due to its presumed refractory and immobile nature, soil Py-OM is thought to be efficiently buried, sequestering atmospheric CO2. However, tracers of dissolved Py-OM (Py-DOM) have been detected in appreciable quantities in riverine, estuarine, and oceanic waters suggesting that Py-OM is more mobile in the environment than expected. The molecular characteristics of Py-OM are likely to be a controlling factor in the quantities and impacts of Py-DOM released to aqueous systems. Yet, little is known about the detailed molecular composition of these materials, let alone how those molecular characteristics vary with combustion conditions or are altered by environmental processes. Here, we examine oak and grass Py-OM (combusted over a range of temperatures), natural Py-OM (chars aged in the environment for variable lengths of time), and their Py-DOM leachates via nuclear magnetic resonance spectroscopy (NMR) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Multi-CP 13C NMR analyses of Py-OM materials and 1H NMR analyses of corresponding Py-DOM leachates reveal that Py-OM combustion temperature, environmental exposure, and molecular characteristics are reflected in Py-DOM quantities and characteristics. The relative amounts of aromatic C in Py-OM 1) decreases with environmental exposure, the relative oxygen-content in both Py-OM and Py-DOM, and the amount of Py-DOC released per g of Py-OC but 2) is positively correlated with combustion temperature and the relative contributions of acetate and aliphatic hydrogens (CH2) in Py-DOM. Preliminary FTICR-MS analyses show Py-DOM produced from oak at 400 °C to

  18. Soil organic carbon dynamics of black locust plantations in the middle Loess Plateau area of China

    Science.gov (United States)

    Lu, N.; Liski, J.; Chang, R. Y.; Akujärvi, A.; Wu, X.; Jin, T. T.; Wang, Y. F.; Fu, B. J.

    2013-11-01

    Soil organic carbon (SOC) is the largest terrestrial carbon pool and sensitive to land use and cover change; its dynamics are critical for carbon cycling in terrestrial ecosystems and the atmosphere. In this study, we combined a modeling approach and field measurements to examine the temporal dynamics of SOC following afforestation (Robinia pseudoacacia) of former arable land at six sites under different climatic conditions in the Loess Plateau during 1980-2010, where the annual mean precipitation ranging from 450 mm to 600 mm. The results showed that the measured mean SOC increased to levels higher than before afforestation when taking the last measurements (i.e., at age 25 to 30 yr) at all the sites, although it decreased at the wetter sites in the first few years. The accumulation rates of SOC were 1.58 to 6.22% yr-1 in the upper 20 cm and 1.62 to 5.15% yr-1in the upper 40 cm of soil. The simulations reproduced the basic characteristics of measured SOC dynamics, suggesting that litter input and climatic factors (temperature and precipitation) were the major causes for SOC dynamics and the differences among the sites. They explained 88-96, 48-86 and 57-74% of the variations in annual SOC changes at the soil depths of 0-20, 0-40, and 0-100 cm, respectively. Notably, the simulated SOC decreased during the first few years at all the sites, although the magnitudes of decreases were smaller at the drier sites. This suggested that the modeling may be advantageous in capturing SOC changes at finer timescale. The discrepancy between the simulation and measurement was a result of uncertainties in model structure, data input, and sampling design. Our findings indicated that afforestation promoted soil carbon sequestration at the study sites during 1980-2010. Afforestation activities should decrease soil disturbances to reduce carbon release in the early stage. The long-term strategy for carbon fixation capability of the plantations should also consider the climate and site

  19. Soil organic carbon dynamics following afforestation in the Loess Plateau of China

    Science.gov (United States)

    Lu, N.; Liski, J.; Chang, R. Y.; Akujärvi, A.; Wu, X.; Jin, T. T.; Wang, Y. F.; Fu, B. J.

    2013-07-01

    Soil organic carbon (SOC) is the largest terrestrial carbon pool and sensitive to land use and cover change; its dynamics is critical for carbon cycling in terrestrial ecosystems and the atmosphere. In this study, we combined a modeling approach and field measurements to examine the temporal dynamics of SOC following afforestation of former arable land at six sites under different climatic conditions in the Loess Plateau during 1980-2010. The results showed that the measured mean SOC increased to levels higher than before afforestation when taking the last measurements (i.e., at age 25 to 30 yr), although it decreased in the first few years at the wetter sites. The accumulation rates of SOC were 1.58 to 6.22% yr-1 in the upper 20 cm and 1.62 to 5.15% yr-1 in the upper 40 cm of soil. The simulations reproduced the basic characteristics of measured SOC dynamics, suggesting that litter input and climatic factors (temperature and precipitation) were the major causes for SOC dynamics and the differences among the sites. They explained 88-96, 48-86 and 57-74% of the variations in annual SOC changes at the soil depths of 0-20, 0-40, and 0-100 cm, respectively. Notably, the simulated SOC decreased during the first few years at all the sites, although the magnitudes of decreases were small at the drier sites. This suggested that the modeling may be advantageous in capturing SOC changes at finer time scale. The discrepancy between the simulation and measurement was a result of uncertainties in model structure, data input, and sampling design. Our findings indicated that afforestation promoted soil carbon sequestration at the study sites, which is favorable for further restoration of the vegetation and environment. Afforestation activities should decrease soil disturbances to reduce carbon release in the early stage. The long-term strategy for carbon fixation capability of the plantations should also consider the climate and site conditions, species adaptability, and

  20. Organic carbon sedimentation rates in Asian mangrove coastal ecosystems estimated by 210PB chronology

    International Nuclear Information System (INIS)

    Tateda, Y.; Wattayakorn, G.; Nhan, D.D.; Kasuya, Y.

    2004-01-01

    Organic carbon balance estimation of mangrove coastal ecosystem is important for understanding of Asian coastal carbon budget/flux calculation in global carbon cycle modelling which is powerful tool for the prediction of future greenhouse gas effect and evaluation of countermeasure preference. Especially, the organic carbon accumulation rate in mangrove ecosystem was reported to be important sink of carbon as well as that in boreal peat accumulation. For the estimation of 10 3 years scale organic carbon accumulation rates in mangrove coastal ecosystems, 14 C was used as long term chronological tracer, being useful in pristine mangrove forest reserve area. While in case of mangrove plantation of in coastal area, the 210 Pb is suitable for the estimation of decades scale estimation by its half-life. Though it has possibility of bio-/physical- turbation effect in applying 210 Pb chronology that is offset in case of 10 3 years scale estimation, especially in Asian mangrove ecosystem where the anthropogenic physical turbation by coastal fishery is vigorous.In this paper, we studied the organic carbon and 210 Pb accumulation rates in subtropical mangrove coastal ecosystems in Japan, Vietnam and Thailand with 7 Be analyses to make sure the negligible effect of above turbation effects on organic carbon accumulation. We finally concluded that 210 Pb was applicable to estimate organic carbon accumulation rates in these ecosystems even though the physical-/bio-turbation is expected. The measured organic carbon accumulation rates using 210 Pb in mangrove coastal ecosystems of Japan, Vietnam and Thailand were 0.067 4.0 t-C ha -1 y -1 . (author)

  1. Emission characteristics of refractory black carbon aerosols from fresh biomass burning: a perspective from laboratory experiments

    Science.gov (United States)

    Pan, Xiaole; Kanaya, Yugo; Taketani, Fumikazu; Miyakawa, Takuma; Inomata, Satoshi; Komazaki, Yuichi; Tanimoto, Hiroshi; Wang, Zhe; Uno, Itsushi; Wang, Zifa

    2017-11-01

    The emission characteristics of refractory black carbon (rBC) from biomass burning are essential information for numerical simulations of regional pollution and climate effects. We conducted combustion experiments in the laboratory to investigate the emission ratio and mixing state of rBC from the burning of wheat straw and rapeseed plants, which are the main crops cultivated in the Yangtze River Delta region of China. A single particle soot photometer (SP2) was used to measure rBC-containing particles at high temporal resolution and with high accuracy. The combustion state of each burning case was indicated by the modified combustion efficiency (MCE), which is calculated using the integrated enhancement of carbon dioxide and carbon monoxide concentrations relative to their background values. The mass size distribution of the rBC particles showed a lognormal shape with a mode mass equivalent diameter (MED) of 189 nm (ranging from 152 to 215 nm), assuming an rBC density of 1.8 g cm-3. rBC particles less than 80 nm in size (the lower detection limit of the SP2) accounted for ˜ 5 % of the total rBC mass, on average. The emission ratios, which are expressed as ΔrBC / ΔCO (Δ indicates the difference between the observed and background values), displayed a significant positive correlation with the MCE values and varied between 1.8 and 34 ng m-3 ppbv-1. Multi-peak fitting analysis of the delay time (Δt, or the time of occurrence of the scattering peak minus that of the incandescence peak) distribution showed that rBC-containing particles with rBC MED = 200 ± 10 nm displayed two peaks at Δt = 1.7 µs and Δt = 3.2 µs, which could be attributed to the contributions from both flaming and smoldering combustion in each burning case. Both the Δt values and the shell / core ratios of the rBC-containing particles clearly increased as the MCE decreased from 0.98 (smoldering-dominant combustion) to 0.86 (flaming-dominant combustion), implying the great importance of the

  2. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms

    Czech Academy of Sciences Publication Activity Database

    Raven, John A.; Beardall, J.; Giordano, Mario

    2014-01-01

    Roč. 121, 2-3 (2014), s. 111-124 ISSN 0166-8595 Institutional support: RVO:61388971 Keywords : carbon dioxide * environmental change * radiation Subject RIV: EE - Microbiology, Virology Impact factor: 3.502, year: 2014

  3. Effects of ion implantation on the electrochemical characteristics of carbon electrodes

    International Nuclear Information System (INIS)

    Takahashi, Katsuo; Iwaki, Masaya

    1994-01-01

    Various carbon materials are important electrode materials for electrochemical field. By ion implantation, the surface layer reforming of carbon materials (mainly galssy carbon) was carried out, and the effect that it exerts to their electrode characteristics was investigated. As the results of the ion implantation of Li, N, O, K, Ti, Zn, Cd and others performed so far, it was found that mainly by the change of the surface layer to amorphous state, there were the effects of the lowering of base current and the lowering of electrode reaction rate, and it was known that the surface layers of carbon materials doped with various kinds of ions showed high chemical stability. The use of carbon materials as electrodes in electrochemistry is roughly divided into the electrodes for electrolytic industry and fuel cells for large current and those for the measurement in electrochemical reaction for small current. The structure of carbon materials and electrode characteristics, and the reforming effect by ion implantation are reported. (K.I.)

  4. Characteristic of betel nuts activated carbon and its application to Jumputan wastewater treatment

    Science.gov (United States)

    Cundari, L.; Sari, K. F.; Anggraini, L.

    2018-04-01

    Wastewater from Jumputan production contains synthetic dye which is harmful to the environment. The contaminant can be reduced by adsorption process using activated carbon. The activated carbon was prepared from betel nuts with carbonization temperature of 500°C and 0.5 M HCl as an activator. Batch mode experiments were conducted to study the effect of various factors, such as the size particle of adsorbent, the dosage of adsorbent, and the contact time on Jumputan’s dye adsorption. The volume of treated solution was 200 mL. This solution agitated using a Jar Test at 150 rpm. The objectives of this work were to analyze the characteristic of the betel nuts, to analyze the characteristic of the activated carbon and to determine adsorbent’s ability to dye adsorption. Betel nuts compositions were analyzed with proximate analysis method. The adsorbents were carried out by SEM-EDS analysis. The dye adsorptions were analyzed with a portable spectrophotometer. The result shows betel nuts contains 60.86% carbohydrate, 32.56% water, 2.17% fat, 3.35% protein, and 1.06% ash. The major component of the activated carbon is carbon (C) of 86.27%, and the rest is Oxygen (9.18%) and Aurum (4.55%). The best condition is the adsorbent that has a particle size of 250 pm (60 mesh), the dosage of 20 grams, and the contact time of 15 minutes with dye removal of 76.4%.

  5. Capturing spatial heterogeneity of soil organic carbon under changing climate

    Science.gov (United States)

    Mishra, U.; Fan, Z.; Jastrow, J. D.; Matamala, R.; Vitharana, U.

    2015-12-01

    The spatial heterogeneity of the land surface affects water, energy, and greenhouse gas exchanges with the atmosphere. Designing observation networks that capture land surface spatial heterogeneity is a critical scientific challenge. Here, we present a geospatial approach to capture the existing spatial heterogeneity of soil organic carbon (SOC) stocks across Alaska, USA. We used the standard deviation of 556 georeferenced SOC profiles previously compiled in Mishra and Riley (2015, Biogeosciences, 12:3993-4004) to calculate the number of observations that would be needed to reliably estimate Alaskan SOC stocks. This analysis indicated that 906 randomly distributed observation sites would be needed to quantify the mean value of SOC stocks across Alaska at a confidence interval of ± 5 kg m-2. We then used soil-forming factors (climate, topography, land cover types, surficial geology) to identify the locations of appropriately distributed observation sites by using the conditioned Latin hypercube sampling approach. Spatial correlation and variogram analyses demonstrated that the spatial structures of soil-forming factors were adequately represented by these 906 sites. Using the spatial correlation length of existing SOC observations, we identified 484 new observation sites would be needed to provide the best estimate of the present status of SOC stocks in Alaska. We then used average decadal projections (2020-2099) of precipitation, temperature, and length of growing season for three representative concentration pathway (RCP 4.5, 6.0, and 8.5) scenarios of the Intergovernmental Panel on Climate Change to investigate whether the location of identified observation sites will shift/change under future climate. Our results showed 12-41 additional observation sites (depending on emission scenarios) will be required to capture the impact of projected climatic conditions by 2100 on the spatial heterogeneity of Alaskan SOC stocks. Our results represent an ideal distribution

  6. Effects of ozonation and temperature on the biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2011-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. The removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and

  7. Effects of ozonation and temperature on biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2010-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. Removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and oxygen

  8. Modeling soil organic carbon with Quantile Regression: Dissecting predictors' effects on carbon stocks

    KAUST Repository

    Lombardo, Luigi

    2017-08-13

    Soil Organic Carbon (SOC) estimation is crucial to manage both natural and anthropic ecosystems and has recently been put under the magnifying glass after the Paris agreement 2016 due to its relationship with greenhouse gas. Statistical applications have dominated the SOC stock mapping at regional scale so far. However, the community has hardly ever attempted to implement Quantile Regression (QR) to spatially predict the SOC distribution. In this contribution, we test QR to estimate SOC stock (0-30 $cm$ depth) in the agricultural areas of a highly variable semi-arid region (Sicily, Italy, around 25,000 $km2$) by using topographic and remotely sensed predictors. We also compare the results with those from available SOC stock measurement. The QR models produced robust performances and allowed to recognize dominant effects among the predictors with respect to the considered quantile. This information, currently lacking, suggests that QR can discern predictor influences on SOC stock at specific sub-domains of each predictors. In this work, the predictive map generated at the median shows lower errors than those of the Joint Research Centre and International Soil Reference, and Information Centre benchmarks. The results suggest the use of QR as a comprehensive and effective method to map SOC using legacy data in agro-ecosystems. The R code scripted in this study for QR is included.

  9. Texture and organic carbon contents do not impact amount of carbon protected in Malagasy soils

    Directory of Open Access Journals (Sweden)

    Tantely Razafimbelo

    2013-06-01

    Full Text Available Soil organic carbon (SOC is usually said to be well correlated with soil texture and soil aggregation. These relations generally suggest a physical and physicochemical protection of SOC within soil aggregates and on soil fine particles, respectively. Because there are few experimental evidences of these relations on tropical soils, we tested the relations of soil variables (SOC and soil aggregate contents, and soil texture with the amount of SOC physically protected in aggregates on a set of 15 Malagasy soils. The soil texture, the SOC and water stable macroaggregate (MA contents and the amount of SOC physically protected inside aggregates, calculated as the difference of C mineralized by crushed and intact aggregates, were characterized. The relation between these variables was established. SOC content was significantly correlated with soil texture (clay+fine silt fraction and with soil MA amount while protected SOC content was not correlated with soil MA amount. This lack of correlation might be attributed to the highest importance of physicochemical protection of SOC which is demonstrated by the positive relation between SOC and clay+fine silt fraction.

  10. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study

    Science.gov (United States)

    Maeng, Sung Kyu; Sharma, Saroj K.; Abel, Chol D. T.; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L.

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM.

  11. Organic carbon sequestration under selected land use in Padang city, West Sumatra, Indonesia

    Science.gov (United States)

    Yulnafatmawita; Yasin, S.

    2018-03-01

    Organic carbon is a potential element to build biomass as well as emitting CO2 to the atmosphere and promotes global warming. This research was aimed to calculate the sequestered Carbon (C) within a 1-m soil depth under selected land use from 6 different sites in Padang city, Indonesia. Disturbed and undisturbed soil samples were taken from several horizons until 100 cm depth at each location. Soil parameters observed were organic carbon (OC), bulk density (BD), and soil texture. The result showed that soil OC content tended to decrease by the depth at all land use types, except under rice field in Kurao-Nanggalo which extremely increased at >65 cm soil depth with the highest carbon stock. The soil organic carbon sequestration from the highest to the lowest according to land use and the location is in the following order mix garden- Kayu Aro > mix garden- Aie Pacah > Rangeland- Parak Laweh >seasonal farming- Teluk Sirih > rice field- Kampuang Jua.

  12. High-conductivity polymer nanocomposites obtained by tailoring the characteristics of carbon nanotube fillers

    NARCIS (Netherlands)

    Grossiord, N.; Loos, J.; Laake, van L.C.; Maugey, M.; Zakri, C.; Koning, C.E.; Hart, A.J.

    2008-01-01

    We present a detailed study of the influence of carbon nanotube (CNT) characteristics on the electrical conductivity of polystyrene nanocomposites produced using a latex-based approach. We processed both industrially-produced multi-wall CNT (MWCNT) powders and MWCNTs from vertically-aligned films

  13. In-situ nanomechanical study on bending characteristics of individual multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ping-Chi, E-mail: pctjbenchen@yahoo.com.tw [Department of Mechanical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan (China); Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chia-Yi 621, Taiwan (China); Jeng, Yeau-Ren, E-mail: imeyrj@ccu.edu.tw [Department of Mechanical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan (China); Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chia-Yi 621, Taiwan (China)

    2016-03-21

    Bending characteristics of individual thin-walled carbon nanotubes (CNTs) are investigated through a novel in-situ nanoindentation in transmission electron microscopy. Unlike thick-walled CNTs, the graphitic layers of thin ones buckle into V-shaped kinks rather than Yoshimura ripples. These kinks are found to be entirely reversible without residual plastic deformation following unloading.

  14. Physical and chemical characteristics of melon in organic farming

    Directory of Open Access Journals (Sweden)

    Rosete A. G. Kohn

    2015-07-01

    Full Text Available Melon farming is characterized as an important family agriculture activity and the organic production of fruits and vegetables has shown a large growth in terms of areas in Brazil and around the world. This work aimed to study the postharvest quality of melon cultivated in an organic system. The organic treatments constituted of base fertilizer with cattle manure vermicompost (recommended dose, ½ dose and double dose plus the use of biofertilizer (sprayed or sprayed + irrigated, and an additional treatment with chemical fertilization. The postharvest quality was evaluated through physico-chemical and phytochemical attributes. The organic management with half the recommended dose of vermicompost plus the sprayed biofertilizer and the chemical fertilization management produced fruits with higher levels of sugar, total carotenoids, ascorbic acid and folates, obtaining more balanced fruits, with a better phytochemical quality. The antioxidant capacity was defined mainly by the presence of the phenolic compounds, which were influenced by the type and the dose of the evaluated fertilizers, with superiority in the organic treatments with double the dose of cattle manure vermicompost.

  15. Assessment of the potential of urban organic carbon dynamics to off-set urban anthropogenic emissions

    Science.gov (United States)

    Gottschalk, P.; Churkina, G.; Wattenbach, M.; Cubasch, U.

    2010-12-01

    The impact of urban systems on current and future global carbon emissions has been a focus of several studies. Many mitigation options in terms of increasing energy efficiency are discussed. However, apart from technical mitigation potential urban systems also have a considerable biogenic potential to mitigate carbon through an optimized management of organic carbon pools of vegetation and soil. Berlin city area comprises almost 50% of areas covered with vegetation or largely covered with vegetation. This potentially offers various areas for carbon mitigation actions. To assess the mitigation potentials our first objective is to estimate how large current vegetation and soil carbon stocks of Berlin are. We use publicly available forest and soil inventories to calculate soil organic carbon of non-pervious areas and forest standing biomass carbon. This research highlights data-gaps and assigns uncertainty ranges to estimated carbon resources. The second objective is to assess the carbon mitigation potential of Berlin’s vegetation and soils using a biogeochemical simulation model. BIOME-BGC simulates carbon-, nitrogen- and water-fluxes of ecosystems mechanistically. First, its applicability for Berlin forests is tested at selected sites. A spatial application gives an estimate of current net carbon fluxes. The application of such a model allows determining the sensitivity of key ecosystem processes (e.g. carbon gains through photosynthesis, carbon losses through decomposition) towards external drivers. This information can then be used to optimise forest management in terms of carbon mitigation. Initial results of Berlin’s current carbon stocks and its spatial distribution and preliminary simulations results will be presented.

  16. Assimilation of aged organic carbon in a glacial river food web

    Science.gov (United States)

    Fellman, J.; Hood, E. W.; Raymond, P. A.; Bozeman, M.; Hudson, J.; Arimitsu, M.

    2013-12-01

    Identifying the key sources of organic carbon supporting fish and invertebrate consumers is fundamental to our understanding of stream ecosystems. Recent laboratory bioassays highlight that aged organic carbon from glacier environments is highly bioavailable to stream bacteria relative to carbon originating from ice-free areas. However, there is little evidence suggesting that this aged, bioavailable organic carbon is also a key basal carbon source for stream metazoa. We used natural abundance of Δ14C, δ13C, and δ15N to determine if fish and invertebrate consumers are subsidized by aged organic carbon in a glacial river in southeast Alaska. We collected biofilm, leaf litter, three different species of macroinvertebrates, and resident juvenile salmonids from a reference stream and two sites (one site is directly downstream of the glacial outflow and one site is upstream of the tidal estuary) on the heavily glaciated Herbert River. Key producers, fish, and invertebrate consumers in the reference stream had carbon isotope values that ranged from -26 to -30‰ for δ13C and from -12 to 53‰ for Δ14C, reflecting a food web sustained mainly on contemporary primary production. In contrast, biofilm in the two glacial sites was highly Δ14C depleted (-203 to -215‰) relative to the reference site. Although biofilm may consist of both bacteria and benthic algae utilizing carbon depleted in Δ14C, δ13C values for biofilm (-24.1‰), dissolved inorganic carbon (-5.9‰), and dissolved organic carbon (-24.0‰) suggest that biofilm consist of bacteria sustained in part by glacier-derived, aged organic carbon. Invertebrate consumers (mean Δ14C of -80.5, mean δ13C of -26.5) and fish (mean Δ14C of -63.3, mean δ13C of -25.7) in the two glacial sites had carbon isotope values similar to biofilm. These results similarly show that aged organic carbon is incorporated into the metazoan food web. Overall, our findings indicate that continued watershed deglaciation and

  17. A Contemporary Assessment of Lateral Fluxes of Organic Carbon in Inland Waters of the USA and Delivery to Coastal Waters

    Science.gov (United States)

    Boyer, E. W.; Alexander, R. B.; Smith, R. A.; Shih, J.; Schwarz, G. E.

    2010-12-01

    Organic carbon (OC) is a critical water quality characteristic in surface waters, as it is an important component of the energy balance and food chains in freshwater and estuarine aquatic ecosystems, is significant in the mobilization and transport of contaminants along flow paths, and is associated with the formation of known carcinogens in drinking water supplies. The importance of OC dynamics on water quality has been recognized, but challenges remain in quantitatively addressing processes controlling OC fluxes over broad spatial scales in a hydrological context. Here, we: 1) quantified lateral OC fluxes in rivers, streams, and reservoirs across the nation; 2) partitioned how much organic carbon that is stored in lakes, rivers and streams comes from allochthonous sources (produced in the terrestrial landscape) versus autochthonous sources (produced in-stream by primary production); and 3) estimated the delivery of dissolved and total forms of organic carbon to coastal estuaries and embayments. To accomplish this, we developed national-scale models of organic carbon in U.S. surface waters using the spatially referenced regression on watersheds (SPARROW) technique. This approach uses mechanistic formulations, imposes mass balance constraints, and provides a formal parameter estimation structure to statistically estimate sources and fate of OC in terrestrial and aquatic ecosystems. We make use of a GIS based framework to describe sources of organic matter and characteristics of the landscape that affect its fate and transport, from spatial databases providing characterizations of climate, land cover, primary productivity, topography, soils, geology, and water routing. We calibrated and evaluated the model with statistical estimates of organic carbon loads that were observed at 1,125 monitoring stations across the nation. Our results illustrate spatial patterns and magnitudes OC loadings in rivers and reservoirs, highlighting hot spots and suggesting origins of the

  18. Characteristics of W Doped Nanocrystalline Carbon Films Prepared by Unbalanced Magnetron Sputtering.

    Science.gov (United States)

    Park, Yong Seob; Park, Chul Min; Kim, Nam-Hoon; Kim, Jae-Moon

    2016-05-01

    Nanocrystalline tungsten doped carbon (WC) films were prepared by unbalanced magnetron sputtering. Tungsten was used as the doping material in carbon thin films with the aim of application as a contact strip in an electric railway. The structural, physical, and electrical properties of the fabricated WC films with various DC bias voltages were investigated. The films had a uniform and smooth surface. Hardness and frication characteristics of the films were improved, and the resistivity and sheet resistance decreased with increasing negative DC bias voltage. These results are associated with the nanocrystalline WC phase and sp(2) clusters in carbon networks increased by ion bombardment enhanced with increasing DC bias voltage. Consequently, the increase of sp(2) clusters containing WC nanocrystalline in the carbon films is attributed to the improvement in the physical and electrical properties.

  19. Physicochemical characteristics and droplet impact dynamics of superhydrophobic carbon nanotube arrays.

    Science.gov (United States)

    Aria, Adrianus I; Gharib, Morteza

    2014-06-17

    The physicochemical and droplet impact dynamics of superhydrophobic carbon nanotube arrays are investigated. These superhydrophobic arrays are fabricated simply by exposing the as-grown carbon nanotube arrays to a vacuum annealing treatment at a moderate temperature. This treatment, which allows a significant removal of oxygen adsorbates, leads to a dramatic change in wettability of the arrays, from mildly hydrophobic to superhydrophobic. Such change in wettability is also accompanied by a substantial change in surface charge and electrochemical properties. Here, the droplet impact dynamics are characterized in terms of critical Weber number, coefficient of restitution, spreading factor, and contact time. Based on these characteristics, it is found that superhydrophobic carbon nanotube arrays are among the best water-repellent surfaces ever reported. The results presented herein may pave a way for the utilization of superhydrophobic carbon nanotube arrays in numerous industrial and practical applications, including inkjet printing, direct injection engines, steam turbines, and microelectronic fabrication.

  20. Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords

    OpenAIRE

    Holding, J.M.; Duarte, C.M.; Delgado-Huertas, A.; Soetaert, K.; Vonk, J.E.; Agusti, S.; Wassmann, P.; Middelburg, J.

    2017-01-01

    Rising temperatures in the Arctic Ocean are causing sea ice and glaciers to melt at record breaking rates, which has consequences for carbon cycling in the Arctic Ocean that are yet to be fully understood. Microbial carbon cycling is driven by internal processing of in situ produced organic carbon (OC), however recent research suggests that melt water from sea ice and glaciers could introduce an allochthonous source of OC to the microbial food web with ramifications for the metabolic balance ...

  1. Effects of Rice Straw and Its Biochar Addition on Soil Labile Carbon and Soil Organic Carbon

    Institute of Scientific and Technical Information of China (English)

    YIN Yun-feng; HE Xin-hua; GAO Ren; MA Hong-liang; YANG Yu-sheng

    2014-01-01

    Whether the biochar amendment could affect soil organic matter (SOM) turnover and hence soil carbon (C) stock remains poorly understood. Effects of the addition of 13C-labelled rice straw or its pyrolysed biochar at 250 or 350°C to a sugarcane soil (Ferrosol) on soil labile C (dissolved organic C, DOC;microbial biomass C, MBC;and mineralizable C, MC) and soil organic C (SOC) were investigated after 112 d of laboratory incubation at 25°C. Four treatments were examined as (1) the control soil without amendment (Soil);(2) soil plus 13C-labelled rice straw (Soil+Straw);(3) soil plus 250°C biochar (Soil+B250) and (4) soil plus 350°C biochar (Soil+B350). Compared to un-pyrolysed straw, biochars generally had an increased aryl C, carboxyl C, C and nitrogen concentrations, a decreased O-alkyl C and C:N ratio, but similar alkyl C and d13C (1 742-1 877‰). Among treatments, signiifcant higher DOC, MBC and MC derived from the new C (straw or biochar) ranked as Soil+Straw>Soil+B250>Soil+B350, whilst signiifcant higher SOC from the new C as Soil+B250>Soil+Straw≈Soil+B350. Compared to Soil, DOC and MBC derived from the native soil were decreased under straw or biochar addition, whilst MC from the native soil was increased under straw addition but decreased under biochar addition. Meanwhile, native SOC was similar among the treatments, irrespective of the straw or biochar addition. Compared to Soil, signiifcant higher total DOC and total MBC were under Soil+Straw, but not under Soil+B250 and Soil+B350, whilst signiifcant higher total MC and total SOC were under straw or biochar addition, except for MC under Soil+B350. Our results demonstrated that the application of biochar to soil may be an appropriate management practice for increasing soil C storage.

  2. Dissolved organic carbon in coral-reef lagoons, by high temperature catalytic oxidation and UV spectrometry

    Science.gov (United States)

    Pagès, Jean; Torréton, Jean-Pascal; Sempéré, Richard

    1997-06-01

    Two surveys were carried out on ten atolls in the Tuamotu archipelago (French Polynesia, Pacific Ocean). In vitro UV (250-400 nm) spectra of water samples gave absorption at 254 nm, A 254, and spectrum slope, S ⋆ (computed from In A λ versus λ).These two descriptors are negatively correlated, and data points are arrayed along a hyperbola spanned between an oceanic pole (high S ⋆, low A 254) and a confined pole (low 5 ⋆, high A 254). Dissolved organic carbon (DOC) concentrations, [C], as assessed by HTCO, exhibit a narrow range (0.7-1.0 mg C.L -1 for most lagoons) contrasting with the wide diversity of optical characteristics. [C] and A 254 are positively correlated, with a significant intercept (0.5 mg C.L -1) representing non-chromophoric DOC. Carbon-specific absorption, ɛ 254 increases (from 0.4 to 1.3 m 2.g -1) with increasing [C], mainly according to the literature) owing to increased average molecular weight (MW) of the chromophoric DOC fraction, which also lowers S ⋆. Our optical data thus illustrate a gradient of confinement (or residence time) that corresponds to a continuum in DOC nature, especially in MW and hence in bioavailability. Optical methods are confirmed as quick and effective means of assessing DOM distribution.

  3. Light-absorbing organic carbon from prescribed and laboratory biomass burning and gasoline vehicle emissions.

    Science.gov (United States)

    Xie, Mingjie; Hays, Michael D; Holder, Amara L

    2017-08-04

    Light-absorbing organic carbon (OC), also termed brown carbon (BrC), from laboratory-based biomass burning (BB) has been studied intensively to understand the contribution of BB to radiative forcing. However, relatively few measurements have been conducted on field-based BB and even fewer measurements have examined BrC from anthropogenic combustion sources like motor vehicle emissions. In this work, the light absorption of methanol-extractable OC from prescribed and laboratory BB and gasoline vehicle emissions was examined using spectrophotometry. The light absorption of methanol extracts showed a strong wavelength dependence for both BB and gasoline vehicle emissions. The mass absorption coefficients at 365 nm (MAC 365 , m 2 g -1 C) - used as a measurement proxy for BrC - were significantly correlated (p burn conditions and fuel types may impact BB BrC characteristics. The average MAC 365 of gasoline vehicle emission samples is 0.62 ± 0.76 m 2  g -1 C, which is similar in magnitude to the BB samples (1.27 ± 0.76 m 2  g -1 C). These results suggest that in addition to BB, gasoline vehicle emissions may also be an important BrC source in urban areas.

  4. Probing adsorption sites of carbon dioxide in metal organic framework of [Zn(bdc)(dpds)]n: A molecular simulation study

    Science.gov (United States)

    Lu, Shih-I.; Liao, Jian-Min; Huang, Xiao-Zhuang; Lin, Chia-Hsun; Ke, Szu-Yu; Wang, Chih-Chieh

    2017-11-01

    We used force-field based grand-canonical Monte Carlo simulation method and density functional theory to study adsorption characteristics of carbon dioxide (CO2) molecules in a metal-organic framework (MOF) compound, [Zn(bdc)(dpds)]n. The studied MOF include a metal ion (Zn(II)), an anion organic linker (dianion of benzene dicarboxylicacid, bdc2-) and a neutral organic linker (4,4‧-dipyridyldisulfide, dpds). Results from calculated adsorption isotherms and enthalpies of adsorption agree with the experimental data. The interactions between the adsorbed CO2 and the organic linkers were examined in simulations. Calculated results show available absorption sites are surrounded by two dpds ligands in which an S-S bond as an N-N‧ spacer connect two pyridines. In contrast, the bdc2- ligand does not give a significant contribution to the substantial adsorption amount even though it contains the carboxylate group that provides available bonding site to CO2.

  5. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants.

    Science.gov (United States)

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-03-01

    Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500°C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonized sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants

    International Nuclear Information System (INIS)

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-01-01

    Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500 deg. C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonized sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal.

  7. The role of hydrology in annual organic carbon loads and terrestrial organic matter export from a midwestern agricultural watershed

    Science.gov (United States)

    Dalzell, Brent J.; Filley, Timothy R.; Harbor, Jon M.

    2007-03-01

    Defining the control that hydrology exerts on organic carbon (OC) export at the watershed scale is important for understanding how the source and quantity of OC in streams and rivers is influenced by climate change or by landscape drainage. To this end, molecular (lignin phenol), stable carbon isotope, and dissolved organic carbon (DOC) data were collected over a range of flow conditions to examine the influence of hydrology on annual OC export from an 850 km 2 Midwestern United States agricultural watershed located in west central Indiana. In years 2002 and 2003, modeled annual DOC loads were 19.5 and 14.1 kg ha -1yr -1, while 71% and 85%, respectively, of the total annual OC was exported in flow events occurring during less than 20% of that time. These results highlight the importance of short-duration, high-discharge events (common in smaller watersheds) in controlling annual OC export. Based on reported increases in annual stream discharge coupled with current estimates of DOC export, annual DOC loads in this watershed may have increased by up to 40% over the past 50 years. Molecular (lignin phenol) characterization of quantity and relative degradation state of terrestrial OC shows as much temporal variability of lignin parameters (in high molecular weight dissolved organic carbon) in this one watershed as that demonstrated in previously published studies of dissolved organic matter in the Mississippi and Amazon Rivers. These results suggest that hydrologic variability is at least as important in determining the nature and extent of OC export as geographic variability. Moreover, molecular and bulk stable carbon isotope data from high molecular weight dissolved organic carbon and colloidal organic carbon showed that increased stream flow from the study watershed was responsible for increased export of agriculturally derived OC. When considered in the context of results from other studies that show the importance of flood events and in-stream processing of

  8. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe.

    Science.gov (United States)

    Yigini, Yusuf; Panagos, Panos

    2016-07-01

    Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950-2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. TAILORING ACTIVATED CARBONS FOR ENHANCED REMOVAL OF NATURAL ORGANIC MATTER FROM NATURAL WATERS. (R828157)

    Science.gov (United States)

    Several pathways have been employed to systematically modify two granular activated carbons (GACs), F400 (coal-based) and Macro (wood-based), for examining adsorption of dissolved natural organic matter (DOM) from natural waters. A total of 24 activated carbons with different ...

  10. Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems : A meta-analysis

    NARCIS (Netherlands)

    Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G M; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.

    2015-01-01

    As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the

  11. Light absorbing organic carbon from prescribed and laboratory biomass burning and gasoline vehicle emissions

    Science.gov (United States)

    The light absorption of carbonaceous aerosols plays an important role in the atmospheric radiation balance. Light-absorbing organic carbon (OC), also called brown carbon (BrC), from laboratory-based biomass burning (BB) has been studied intensively to understand the contribution ...

  12. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions

    Directory of Open Access Journals (Sweden)

    Flávia Bottino

    2016-06-01

    Full Text Available Abstract Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40 °C. Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days. After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic. However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity and carbon release.

  13. Comparing soil organic carbon dynamics in plantation and secondary forest in wet tropics in Puerto Rico

    Science.gov (United States)

    LI YIQING; MING XU; ZOU XIAOMING; PEIJUN SHI§; YAOQI ZHANG

    2005-01-01

    We compared the soil carbon dynamics between a pine plantation and a secondary forest, both of which originated from the same farmland abandoned in 1976 with the same cropping history and soil conditions, in the wet tropics in Puerto Rico from July 1996 to June 1997. We found that the secondary forest accumulated the heavy-fraction organic carbon (HF-OC) measured by...

  14. Tracing organic matter sources of estuarine tidal flat nematodes with stable carbon isotopes

    NARCIS (Netherlands)

    Moens, T.; Luyten, C.; Middelburg, J.J.; Herman, P.M.J.; Vincx, M.

    2002-01-01

    The present study explores the use of stable carbon isotopes to trace organic matter sources of intertidal nematodes in the Schelde estuary (SW Netherlands). Stable carbon isotope signatures of nematodes from a saltmarsh and 4 tidal flat stations were determined in spring and winter situations, and

  15. Impacts of soil redistribution on the transport and fate of organic carbon in loess soils

    NARCIS (Netherlands)

    Wang, X.

    2014-01-01

    Soil erosion is an important environmental process leading to loss of topsoil including carbon (C) and nutrients, reducing soil quality and loss of biomass production. So far, the fate of soil organic carbon (SOC) in eroding landscapes is not yet fully understood and remains an important uncertainty

  16. Satellite observation of particulate organic carbon dynamics on the Louisiana continental shelf

    Science.gov (United States)

    Particulate organic carbon (POC) plays an important role in coastal carbon cycling and the formation of hypoxia. Yet, coastal POC dynamics are often poorly understood due to a lack of long-term POC observations and the complexity of coastal hydrodynamic and biogeochemical process...

  17. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.

    Science.gov (United States)

    Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu

    2016-01-01

    Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  18. Measurement of stable isotope ratio of organic carbon in water samples

    International Nuclear Information System (INIS)

    Fujii, Toshihiro; Otsuki, Akira

    1977-01-01

    A new method for the measurement of stable isotope ratios was investigated and applied to organic carbon's isotope ratio measurements in water samples. A few river water samples from Tsuchiura city were tested. After the wet oxidation of organic carbons to carbon dioxide in a sealed ampoule, the isotope ratios were determined with the gas chromatograph-quadrupole mass spectrometer combined with a total organic carbon analyser, under the dynamic conditions. The GC-MS had been equipped with the multiple ion detector-digital integrator system. The ion intensities at m/e 44 and 45 were simultaneously measured at a switching rate of 1 ms. The measurements with carbon dioxide acquired from sodium carbonate (53 μg) gave the isotope ratios with the variation coefficient of 0.62%. However, the variation coefficients obtained from organic carbons in natural water samples were 2 to 3 times as high as that from sodium carbonate. This method is simple and rapid and may be applied to various fields especially in biology and medicine. (auth.)

  19. Chlorophyll 'a' particulate organic carbon and suspended load from the mangrove areas of Cochin backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Sheeba, P.; Devi, K.S.; Balasubramanian, T.; Sankaranarayanan, V.N.

    Chlorophyll 'a' Particulate Organic Carbon and suspended load were estimated for one year from two distinct mangrove areas of Cochin backwaters, viz. Puthuvypeen and Nettoor. Environmental parameters like tau degrees C, S ppt and pH were also...

  20. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest canopy...

  1. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest...

  2. Foraminiferal assemblages and organic carbon relationship in benthic marine ecosystem of Western Indian Continental Shelf

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.; Nigam, R.

    that Ammobaculites agglutinans (d'Orbigny) and Ammonia spp have positive (direct) tendency towards organic carbon while miliolids (Quinqueloqulina spp, Spiroloculina spp and Triloculina spp Florilus-Nonion and Nonionella spp have negative (inverse) tendency...

  3. Studies on structure and organization of calcium carbonate deposits in algae

    Digital Repository Service at National Institute of Oceanography (India)

    Kerkar, V.; Untawale, A.G.

    The structure and organization of calcium carbonate deposits is studied in species of Halimeda, Udotea, Neomeris (Chlorophyta) and Padina (Phaeophyta). It was found that in Halimeda aragonite deposition takes place outside the cell wall...

  4. Distribution of phosphorus and organic carbon in the nearshore sediments of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Rajamanickam, G.V.; Setty, M.G.A.P.

    Samples collected from sediment water interface from the inner shelf region of Goa coast are examined for their phosphorus and organic carbon, which indicate the geochemical environment under which the present day deposits are laid down...

  5. The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers

    KAUST Repository

    Satyawali, Yamini; Seuntjens, Piet; Van Roy, Sandra; Joris, Ingeborg; Vangeel, Silvia; Dejonghe, Winnie; Vanbroekhoven, Karolien

    2011-01-01

    Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy

  6. Response to Comment on "Dilution limits dissolved organic carbon utilization in the deep ocean"

    KAUST Repository

    Arrieta, J M; Mayol, E.; Hansman, R. L.; Herndl, G. J.; Dittmar, T.; Duarte, Carlos M.

    2015-01-01

    Our recent finding that dilution limits dissolved organic carbon (DOC) utilization in the deep ocean has been criticized based on the common misconception that lability equates to rapid and complete utilization. Even when considering

  7. Towards a paradigm shift in the modeling of soil organic carbon decomposition for earth system models

    Science.gov (United States)

    He, Yujie

    Soils are the largest terrestrial carbon pools and contain approximately 2200 Pg of carbon. Thus, the dynamics of soil carbon plays an important role in the global carbon cycle and climate system. Earth System Models are used to project future interactions between terrestrial ecosystem carbon dynamics and climate. However, these models often predict a wide range of soil carbon responses and their formulations have lagged behind recent soil science advances, omitting key biogeochemical mechanisms. In contrast, recent mechanistically-based biogeochemical models that explicitly account for microbial biomass pools and enzyme kinetics that catalyze soil carbon decomposition produce notably different results and provide a closer match to recent observations. However, a systematic evaluation of the advantages and disadvantages of the microbial models and how they differ from empirical, first-order formulations in soil decomposition models for soil organic carbon is still needed. This dissertation consists of a series of model sensitivity and uncertainty analyses and identifies dominant decomposition processes in determining soil organic carbon dynamics. Poorly constrained processes or parameters that require more experimental data integration are also identified. This dissertation also demonstrates the critical role of microbial life-history traits (e.g. microbial dormancy) in the modeling of microbial activity in soil organic matter decomposition models. Finally, this study surveys and synthesizes a number of recently published microbial models and provides suggestions for future microbial model developments.

  8. Spatial Mapping of Organic Carbon in Returned Samples from Mars

    Science.gov (United States)

    Siljeström, S.; Fornaro, T.; Greenwalt, D.; Steele, A.

    2018-04-01

    To map organic material spatially to minerals present in the sample will be essential for the understanding of the origin of any organics in returned samples from Mars. It will be shown how ToF-SIMS may be used to map organics in samples from Mars.

  9. Prediction of energy absorption characteristics of aligned carbon nanotube/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Weidt, D; Figiel, Ł; Buggy, M

    2012-01-01

    This research aims ultimately at improving the impact performance of laminates by applying a coating of epoxy containing carbon nanotubes (CNTs). Here, 2D and 3D computational modelling was carried out to predict energy absorption characteristics of aligned CNT/epoxy nanocomposites subjected to macroscopic compression under different strain rates (quasi-static and impact rates). The influence of the rate-dependent matrix behaviour, CNT aspect ratio and CNT volume fraction on the energy absorption characteristics of the nanocomposites was evaluated. A strong correlation between those parameters was found, which provides an insight into a rate-dependent behaviour of the nanocomposites, and can help to tune their energy absorption characteristics.

  10. Characteristics of peaks of inhalation exposure to organic solvents

    NARCIS (Netherlands)

    Preller, L.; Burstyn, I.; Pater, N. de; Kromhout, H.

    2004-01-01

    Objectives: To determine which exposure metrics are sufficient to characterize 'peak' inhalation exposure to organic solvents (OS) during spraying operations. Methods: Personal exposure measurements (n = 27; duration 5-159 min) were collected during application of paints, primers, resins and glues

  11. Electrical characteristics of top contact pentacene organic thin film

    Indian Academy of Sciences (India)

    Organic thin film transistors (OTFTs) were fabricated using pentacene as the active layer with two different gate dielectrics, namely SiO2 and poly(methyl methacrylate) (PMMA), in top contact geometry for comparative studies. OTFTs with SiO2 as dielectric and gold deposited on the rough side of highly doped silicon (n+ -Si) ...

  12. The Role of Physical and Human Landscape Properties on Carbon Composition of Organic Matter in Tropical Rivers

    Science.gov (United States)

    Ballester, M. R.; Krusche, A. V.; Victoria, R. L.; Richey, J. E.; Deegan, L.; Neill, C.

    2011-12-01

    To evaluate physical and human controls organic matter carbon composition in tropical rivers, we applied an integrated analysis of landscape properties and riverine isotopic composition. Our goal was to establish the relationships between basin attributes and forms and composition of dissolved and particulate organic matter in rivers. A GIS template was developed as tool to support the understanding of the biogeochemistry of the surface waters of the Ji-Paraná (Western Amazonia) and the Piracicaba (southeastern of Brazil)rivers. Each basin was divided into drainage units, organized according to river network morphology and degree of land-use impact. The delineated drainage areas were individually characterized in terms of topography, soils and land use using data sets compiled as layers in ArcGis and ERDAS-IMAGINE software. DOM and POM carbon stable isotopic composition were determined at several sites along the main tributaries and small streams. The effects of these drivers on the fluvial carbon was quantified by a multiple linear regression analysis, relating basin characteristics and river isotopic composition. The results showed that relatively recent land cover changes have already had an impact on the composition of the riverine DOM and POM, indicating that, as in natural ecosystems, the vegetation plays a key role in the composition of the riverine organic matter in agricultural systems.

  13. Processing methods, characteristics and adsorption behavior of tire derived carbons: a review.

    Science.gov (United States)

    Saleh, Tawfik A; Gupta, Vinod Kumar

    2014-09-01

    The remarkable increase in the number of vehicles worldwide; and the lack of both technical and economical mechanisms of disposal make waste tires to be a serious source of pollution. One potential recycling process is pyrolysis followed by chemical activation process to produce porous activated carbons. Many researchers have recently proved the capability of such carbons as adsorbents to remove various types of pollutants including organic and inorganic species. This review attempts to compile relevant knowledge about the production methods of carbon from waste rubber tires. The effects of various process parameters including temperature and heating rate, on the pyrolysis stage; activation temperature and time, activation agent and activating gas are reviewed. This review highlights the use of waste-tires derived carbon to remove various types of pollutants like heavy metals, dye, pesticides and others from aqueous media. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Quality and Distribution of Frozen Organic Matter (Old, Deep, Fossil Carbon) in Siberian Permafrost

    Science.gov (United States)

    Schirrmeister, Lutz; Strauss, Jens; Wetterich, Sebastian; Grosse, Guido; Overduin, Pier Paul

    2013-04-01

    Permafrost deposits constitute a large organic carbon (OC) pool vulnerable to degradation and potential carbon release due to global warming. Permafrost sections along coastal and river bank exposures and subsea cores in northeastern Siberia were studied for organic matter (OM) characteristics and ice content. OM stored in Quaternary permafrost grew, accumulated, froze, partly decomposed, and refroze under different periglacial environments, reflected in specific biogeochemical and cryolithological features. For the studied individual strata (Saalian ice-rich deposits, Pre-Eemian floodplain, Eemian lake deposits, Early to Middle Weichselian fluvial deposits, Middle Weichselian Yedoma, Late Weichselian Yedoma , Taberites, Holocene cover, Holocene thermokarst, Holocene thermoerosional valley and submerged lagoon and fluvial deposits) OM accumulation, preservation, and distribution are strongly linked to a broad variety of paleoenvironmental factors and specific surface and subsurface conditions before inclusion of OM into the permafrost. OM in permafrost includes twigs, leaves, peat, grass roots, plant detritus, and particulate and dissolved OM. The vertical distribution of total OC (TOC) in exposures varies from 0.1 wt % of the dry sediment in fluvial deposits to 45 wt % in Holocene peats. High TOC, high C/N, and low d13C reflect less decomposed OM accumulated under wet, anaerobic soil conditions characteristic of interglacial and interstadial periods. Glacial and stadial periods are characterized by less variable, low TOC, low C/N, and high d13C values indicating stable environments with reduced bioproductivity and stronger OM decomposition under dryer, aerobic soil conditions. Based on TOC data and updated information on bulk densities, we estimate average OC inventories for different stratigraphic units in northeastern Siberia, ranging from 7 kg C/m³ for Early Weichselian fluvial deposits, to 33 kg C/m³ for Middle Weichselian Yedoma deposits, to 75 kg C/m³ for

  15. Fossil organic carbon in wastewater and its fate in treatment plants.

    Science.gov (United States)

    Law, Yingyu; Jacobsen, Geraldine E; Smith, Andrew M; Yuan, Zhiguo; Lant, Paul

    2013-09-15

    This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes ((13)C and (14)C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4-14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88-98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39-65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29-50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4-6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A multi-parametric approach assessing microbial viability and organic matter characteristics during managed aquifer recharge.

    Science.gov (United States)

    Kim, Hyun-Chul; Noh, Jin Hyung; Chae, So-Ryong; Choi, Jaewon; Lee, Yunho; Maeng, Sung Kyu

    2015-08-15

    Soil column (SC) experiments were conducted to investigate the feasibility of using silver nanoparticles (AgNPs) as microbial inhibitors; the microbial viability affecting the degradation of pharmaceutically active compounds (PhACs) and the characteristics of organic matter during managed aquifer recharge were specifically evaluated. Natural surface water samples treated with AgNPs (0, 2.5, 5, and 10 mg L(-1)) were continually fed into the soil columns for 2 years. The adverse impact of AgNPs on the cell membrane integrity and microbial enzymatic activity was quantitatively determined using flow cytometry and adenosine triphosphate analysis. The increase in AgNP concentration in the feed water (up to 10 mg L(-1)) resulted in a corresponding deterioration in the performance of the managed aquifer recharge (MAR), with respect to the removal of organic carbon, oxidation of nitrogenous compounds, and PhAC attenuation. The fluorescence excitation-emission matrices of feed water and treated water showed the favorable removal of protein-like substances compared to humic-like substances regardless of the AgNP concentrations; however, the extent of removed fractions decreased noticeably when the microbial viability was lowered via AgNP treatment. The biological oxidation of organic nitrogen was almost completely inhibited when 10 mg L(-1) AgNP was added during soil passage. The attenuation of bezafibrate, ketoprofen, diclofenac, clofibric acid, and gemfibrozil was strongly associated with the significant deterioration in biodegradation as a result of AgNP activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Evaluation of Anaerobic Biodegradation of Organic Carbon Extracted from Aquifer Sediment

    OpenAIRE

    Kelly, Catherine Aileen

    2006-01-01

    In conjunction with ongoing studies to develop a method for quantifying potentially biodegradable organic carbon (Rectanus et al 2005), this research was conducted to evaluate the extent to which organic carbon extracted using this method will biodegrade in anaerobic environments. The ultimate goal is to use this method for the evaluation of chloroethene contaminated sites in order to estimate the long-term sustainability of monitored natural attenuation (MNA) as a remediation strategy. Alt...

  18. INFORMATION TRANSPARENCY AS THE QUALITY CHARACTERISTICS OF ORGANIZATION CULTURE COMPANY

    Directory of Open Access Journals (Sweden)

    Svetlana M. Maksimova

    2015-01-01

    Full Text Available The article is about the question of information transparency as the quality characteristics of the organizational culture.The author describes the new propertiesof the organizational culture arising in theconditions of informatization of economic relations, the relation between information content and organizational culture, the roleand functions of information transparencyin a modern company. In study elaborated a model of interaction between the components of organizational culture throughinformation transparency.

  19. Leadership and characteristics of nonprofit mental health peer-run organizations nationwide.

    Science.gov (United States)

    Ostrow, Laysha; Hayes, Stephania L

    2015-04-01

    Mental health peer-run organizations are nonprofits providing venues for support and advocacy among people diagnosed as having mental disorders. It has been proposed that consumer involvement is essential to their operations. This study reported organizational characteristics of peer-run organizations nationwide and how these organizations differ by degree of consumer control. Data were from the 2012 National Survey of Peer-Run Organizations. The analyses described the characteristics of the organizations (N=380) on five domains of nonprofit research, comparing results for organizations grouped by degree of involvement by consumers in the board of directors. Peer-run organizations provided a range of supports and educational and advocacy activities and varied in their capacity and resources. Some variation was explained by the degree of consumer control. These organizations seemed to be operating consistently with evidence on peer-run models. The reach of peer-run organizations, and the need for in-depth research, continues to grow.

  20. Land Cover Land Use Change and Soil Organic Carbon under Climate Variability in the Semi-Arid West African Sahel (1960-2050)

    Science.gov (United States)

    Dieye, Amadou M.

    2016-01-01

    Land Cover Land Use (LCLU) change affects land surface processes recognized to influence climate change at local, national and global levels. Soil organic carbon is a key component for the functioning of agro-ecosystems and has a direct effect on the physical, chemical and biological characteristics of the soil. The capacity to model and project…

  1. Continuum study on the oscillatory characteristics of carbon nanocones inside single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Ansari, R.; Sadeghi, F.; Darvizeh, M.

    2016-01-01

    This article aims to present a comprehensive study on the oscillatory behavior of concentric carbon nanocones (CNCs) inside carbon nanotubes (CNTs) using a continuum approach. To this end, the optimum radius of nanotube for which the nanocone lies on the tube axis is determined based on the distribution of suction energy. Using the Runge–Kutta numerical integration scheme, the equation of motion is solved numerically to attain the time history of displacement and velocity of nanocone. It is observed that the oscillation of nanocone occurs with respect to its axial equilibrium distance which moves further away from the middle axis of nanotube as the number of pentagons increases. A novel semi-analytical expression as a function of geometrical parameters, initial conditions and cone vertex direction is also proposed for the precise evaluation of oscillation frequency. With respect to the proposed frequency expression, a detailed parametric study is conducted to get an insight into the effects of number of pentagons, cone vertex direction and initial conditions on the oscillatory behavior of CNC–CNT oscillators. It is found that nanocones with more pentagons generate greater maximum frequencies inside nanotubes. Furthermore, it is shown that higher maximum frequencies can be achieved if the nanocone enters the nanotube from base.

  2. The Unified North American Soil Map and Its Implication on the Soil Organic Carbon Stock in North America

    Science.gov (United States)

    Wei, Y.; Liu, S.; Huntzinger, D. N.; Michalak, A. M.; Post, W. M.; Cook, R. B.; Schaefer, K. M.; Thornton, M.

    2014-12-01

    The Unified North American Soil Map (UNASM) was developed by Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled by using the Harmonized World Soil Database version 1.21 (HWSD1.21). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the topsoil layer (0-30 cm) and the subsoil layer (30-100 cm), respectively, of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 365.96 Pg, of which 23.1% is under trees, 14.1% is in shrubland, and 4.6% is in grassland and cropland. This UNASM data has been provided as a resource for use in terrestrial ecosystem modeling of MsTMIP both for input of soil characteristics and for benchmarking model output.

  3. 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors

    Science.gov (United States)

    Bao, Weizhai; Mondal, Anjon Kumar; Xu, Jing; Wang, Chengyin; Su, Dawei; Wang, Guoxiu

    2016-09-01

    We report a rational design and synthesis of 3D hybrid-porous carbon with a hierarchical pore architecture for high performance supercapacitors. It contains micropores (<2 nm diameter) and mesopores (2-4 nm), derived from carbonization of unique porous metal organic frameworks (MOFs). Owning to the synergistic effect of micropores and mesopores, the hybrid-porous carbon has exceptionally high ion-accessible surface area and low ion diffusion resistance, which is desired for supercapacitor applications. When applied as electrode materials in supercapacitors, 3D hybrid-porous carbon demonstrates a specific capacitance of 332 F g-1 at a constant charge/discharge current of 500 mA g-1. The supercapacitors can endure more than 10,000 cycles without degradation of capacitance.

  4. Activated carbon enhancement with covalent organic polymers: An innovative material for application in water purification and carbon dioxide capture

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil

    Covalent organic polymers (COPs) have emerged as one of the leading advanced materials for environmental applications, such as the capture and recovery of carbon dioxide and the removal of contaminants from polluted water.1–4 COPs exhibit many remarkable properties that other leading advanced mat...

  5. Impact of exotic earthworms on organic carbon sorption on mineral surfaces and soil carbon inventories in a northern hardwood forest

    Science.gov (United States)

    Amy Lyttle; Kyungsoo Yoo; Cindy Hale; Anthony Aufdenkampe; Stephen D. Sebestyen; Kathryn Resner; Alex. Blum

    2015-01-01

    Exotic earthworms are invading forests in North America where native earthworms have been absent since the last glaciation. These earthworms bioturbate soils and may enhance physical interactions between minerals and organic matter (OM), thus affecting mineral sorption of carbon (C) which may affect C cycling. We quantitatively show how OM-mineral sorption and soil C...

  6. Effects of land use change on soil organic carbon: a pan-tropic study

    Science.gov (United States)

    van Straaten, O.; Veldkamp, E.; Wolf, K.; Corre, M. D.

    2012-04-01

    Tropical forest deforestation is recognized as one of the major contributors to anthropogenic greenhouse gas emissions. In contrast to aboveground carbon stocks, comparatively little is known on deforestation's effect on the magnitude and the factors affecting soil organic carbon (SOC). In this regional scale study, we focused on tropical sites with deeply weathered, low-activity clays soils in three countries: Indonesia, Cameroon and Peru. Using a clustered sampling design we compared soil carbon stocks in the top 3 m of soil in undisturbed forests (the reference) with converted land uses that had been deforested. The most predominant land use trajectories relevant for each region were investigated. These included (a) conversions from forest to cash-crop plantations (rubber, oil palm, cacoa), (b) conversions from forest to cattle grazing pastures and (c) conversion from forest to shifting cultivation. Preliminary results from the Indonesian case study, found that the conversion of forests to oil palm plantation caused a loss of 20.1 ± 4.4 Mg C ha-1 within 20 years from the top 3 m of soil, while deforestation followed by the establishment of rubber plantations caused a release of 7.2 ± 4.2 Mg C ha-1 for the same time period and depth. SOC losses were most pronounced in the top 30 cm, and less so below. Additionally, regional scale constraints such as soil physical and chemical characteristics (texture, CEC, pH) and climate (precipitation, temperature) effect on SOC emissions have been identified using multivariate statistical methods. The results from the Cameroon and Peru case studies are expected imminently.

  7. Assessment of Soil Organic Carbon Stock of Temperate Coniferous Forests in Northern Kashmir

    Directory of Open Access Journals (Sweden)

    Davood A. Dar

    2015-02-01

    Full Text Available  Soil organic carbon (SOC estimation in temperate forests of the Himalaya is important to estimate their contribution to regional, national and global carbon stocks. Physico chemical properties of soil were quantified to assess soil organic carbon density (SOC and SOC CO2 mitigation density at two soil depths (0-10 and 10-20 cms under temperate forest in the Northern region of Kashmir Himalayas India. The results indicate that conductance, moisture content, organic carbon and organic matter were significantly higher while as pH and bulk density were lower at Gulmarg forest site. SOC % was ranging from 2.31± 0.96 at Gulmarg meadow site to 2.31 ± 0.26 in Gulmarg forest site. SOC stocks in these temperate forests were from 36.39 ±15.40 to 50.09 ± 15.51 Mg C ha-1. The present study reveals that natural vegetation is the main contributor of soil quality as it maintained the soil organic carbon stock. In addition, organic matter is an important indicator of soil quality and environmental parameters such as soil moisture and soil biological activity change soil carbon sequestration potential in temperate forest ecosystems.DOI: http://dx.doi.org/10.3126/ije.v4i1.12186International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15; page: 161-178

  8. The Role of Reactive Iron in Organic Carbon Burial of the Wax Lake Delta, Louisiana

    Science.gov (United States)

    Bianchi, T. S.; Shields, M. R.; Gelinas, Y.; Allison, M. A.; Twilley, R.

    2016-02-01

    Deltaic systems are responsible for 41% of the total organic carbon buried on continental shelves (Smith et al., 2015). Furthermore, 21.5 ± 8.6% of the organic carbon in marine sediments is reported to be associated to reactive iron phases (Lalonde et al., 2012). Here, we examine the role of reactive iron in preserving organic carbon across a chronosequence in deltaic soils/sediments of the Wax Lake Delta, Louisiana. This prograding delta is part of the youngest subdelta of the Mississippi River Delta and serves as a model for deltas in an active progradational stage. We report the proportion, δ13C, lignin phenol content, and fatty acid content of organic carbon associated to iron in three unique environments along the delta topset. We found that over 15 % of the organic carbon in the top 0.5 meters was associated to reactive iron phases at our sampling locations. However, this amount varied between the mudflat, meadow, and canopy dominated sites. Moreover, the type of binding shifts from 1:1 sorption in the sediment dominated (mudflat) region to chelation/co-precipitation in the more soil-dominated regions. Acidic lignin phenols are preferentially sorbed in the mudflat region, which likely occurs pre-depositionally. These results add to our knowledge of the carbon burial processes in young deltas and present new questions about the selective preservation of organic compounds in deltaic sediments.

  9. Influence of disorder on transfer characteristics of organic electrochemical transistors

    KAUST Repository

    Friedlein, Jacob T.; Rivnay, Jonathan; Dunlap, David H.; McCulloch, Iain; Shaheen, Sean E.; McLeod, Robert R.; Malliaras, George G.

    2017-01-01

    Organic electrochemical transistors (OECTs) are receiving a great deal of attention as transducers of biological signals due to their high transconductance. A ubiquitous property of these devices is the non-monotonic dependence of transconductance on gate voltage. However, this behavior is not described by existing models. Using OECTs made of materials with different chemical and electrical properties, we show that this behavior arises from the influence of disorder on the electronic transport properties of the organic semiconductor and occurs even in the absence of contact resistance. These results imply that the non-monotonic transconductance is an intrinsic property of OECTs and cannot be eliminated by device design or contact engineering. Finally, we present a model based on the physics of electronic conduction in disordered materials. This model fits experimental transconductance curves and describes strategies for rational material design to improve OECT performance in sensing applications.

  10. Influence of disorder on transfer characteristics of organic electrochemical transistors

    KAUST Repository

    Friedlein, Jacob T.

    2017-07-13

    Organic electrochemical transistors (OECTs) are receiving a great deal of attention as transducers of biological signals due to their high transconductance. A ubiquitous property of these devices is the non-monotonic dependence of transconductance on gate voltage. However, this behavior is not described by existing models. Using OECTs made of materials with different chemical and electrical properties, we show that this behavior arises from the influence of disorder on the electronic transport properties of the organic semiconductor and occurs even in the absence of contact resistance. These results imply that the non-monotonic transconductance is an intrinsic property of OECTs and cannot be eliminated by device design or contact engineering. Finally, we present a model based on the physics of electronic conduction in disordered materials. This model fits experimental transconductance curves and describes strategies for rational materia