WorldWideScience

Sample records for organic acids production

  1. Biobased organic acids production by metabolically engineered microorganisms

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2016-01-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further...... expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high...... performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed...

  2. Acidic organic compounds in beverage, food, and feed production.

    Science.gov (United States)

    Quitmann, Hendrich; Fan, Rong; Czermak, Peter

    2014-01-01

    Organic acids and their derivatives are frequently used in beverage, food, and feed production. Acidic additives may act as buffers to regulate acidity, antioxidants, preservatives, flavor enhancers, and sequestrants. Beneficial effects on animal health and growth performance have been observed when using acidic substances as feed additives. Organic acids could be classified in groups according to their chemical structure. Each group of organic acids has its own specific properties and is used for different applications. Organic acids with low molecular weight (e.g. acetic acid, lactic acid, and citric acid), which are part of the primary metabolism, are often produced by fermentation. Others are produced more economically by chemical synthesis based on petrochemical raw materials on an industrial scale (e.g. formic acid, propionic and benzoic acid). Biotechnology-based production is of interest due to legislation, consumer demand for natural ingredients, and increasing environmental awareness. In the United States, for example, biocatalytically produced esters for food applications can be labeled as "natural," whereas identical conventional acid catalyst-based molecules cannot. Natural esters command a price several times that of non-natural esters. Biotechnological routes need to be optimized regarding raw materials and yield, microorganisms, and recovery methods. New bioprocesses are being developed for organic acids, which are at this time commercially produced by chemical synthesis. Moreover, new organic acids that could be produced with biotechnological methods are under investigation for food applications.

  3. Organic acid production in Aspergillus niger and other filamentous fungi

    NARCIS (Netherlands)

    Odoni, Dorett I.

    2017-01-01

    The aim of the thesis was to increase the understanding of organic acid production in Aspergillus niger and other filamentous fungi, with the ultimate purpose to improve A. niger as biotechnological production host.

    In Chapter 1, the use of microbial

  4. Fermentation process for the production of organic acids

    Science.gov (United States)

    Hermann, Theron; Reinhardt, James; Yu, Xiaohui; Udani, Russell; Staples, Lauren

    2018-05-01

    This invention relates to improvements in the fermentation process used in the production of organic acids from biological feedstock using bacterial catalysts. The improvements in the fermentation process involve providing a fermentation medium comprising an appropriate form of inorganic carbon, an appropriate amount of aeration and a biocatalyst with an enhanced ability to uptake and assimilate the inorganic carbon into the organic acids. This invention also provides, as a part of an integrated fermentation facility, a novel process for producing a solid source of inorganic carbon by sequestering carbon released from the fermentation in an alkali solution.

  5. Production of Valuables Organic Acids from Organic Wastes with Hydrothermal Treatment Process

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal

    2009-06-01

    Full Text Available This article reports production of valuables organic acids from the hydrothermal treatment of representative organic wastes and compounds (i. e. domestic sludge, proteinaceous, cellulosic and plastic wastes with or without oxidant (H2O2. Organic acids such as acetic, formic, propionic, succinic and lactic acids were obtained in significant amounts. At 623 K (16.5 MPa, acetic acid of about 26 mg/g-dry waste fish entrails was obtained. This increased to 42 mg/g dry waste fish entrails in the presence of H2O2. Experiments on glucose to represent cellulosic wastes were also carried out, getting acetic acid of about 29 mg/g-glucose. The study was extended to terephthalic acid and glyceraldehyde, reaction intermediates of hydrothermal treatment of PET plastic wastes and glucose, respectively. Studies on temperature dependence of formation of organic acids showed thermal stability of acetic acid, whereas, formic acid decomposed readily under hydrothermal conditions. In general, results demonstrated that the presence of oxidants favored formation of organic acids with acetic acid being the major product. Keywords: hydrothermal treatment, organic acids, organic wastes, oxidant, supercritical water oxidation

  6. Production of organic acids in an immobilized cell reactor using ...

    African Journals Online (AJOL)

    Immobilized cell reactor (ICR) was developed as a novel bioreactor to convert hydrolyzed sugars to organic acids. Sugar fermentation by Propionibacterium acid-propionici entraped by calcium alginate was carried out in continuous mode to produce propionic and acetic acids. In continuous fermentation, more than 90 ...

  7. Biotechnological Production of Organic Acids from Renewable Resources.

    Science.gov (United States)

    Pleissner, Daniel; Dietz, Donna; van Duuren, Jozef Bernhard Johann Henri; Wittmann, Christoph; Yang, Xiaofeng; Lin, Carol Sze Ki; Venus, Joachim

    2017-03-07

    Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.

  8. Organic acid production from starchy waste by rumen derived microbial communities

    OpenAIRE

    Ayudthaya, S. P. N.; Van De Weijer, Antonius H. P.; Van Gelder, Antonie H.; Stams, Alfons Johannes Maria; De Vos, Willem M.; Plugge, Caroline M.

    2017-01-01

    Microbiology Centennial Symposium 2017 - Exploring Microbes for the Quality of Life (Book of Abstracts) Converting organic waste to energy carriers and valuable products such as organic acids (OA) using microbial fermentation is one of the sustainable options of renewable energy. Substrate and inoculum are important factors in optimizing the fermentation. In this study, we investigated organic acid production and microbial composition shift during the fermentation of starchy (p...

  9. Top value platform chemicals: bio-based production of organic acids.

    Science.gov (United States)

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; Nielsen, Michael Lynge; Olsson, Lisbeth

    2009-01-01

    With the availability of the genome sequence of the filamentous fungus Aspergillus niger, the use of targeted genetic modifications has become feasible. This, together with the fact that A. niger is well established industrially, makes this fungus an attractive micro-organism for creating a cell...... factory platform for production of chemicals. Using molecular biology techniques, this study focused on metabolic engineering of A. niger to manipulate its organic acid production in the direction of succinic acid. The gene target for complete gene deletion was cytosolic ATP: citrate lyase (acl), which...... the acl gene. Additionally, the total amount of organic acids produced in the deletion strain was significantly increased. Genome-scale stoichiometric metabolic model predictions can be used for identifying gene targets. Deletion of the acl led to increased succinic acid production by A. niger....

  11. Organic acid production from potato starch waste fermentation by rumen microbial communities from Dutch and Thai dairy cows

    NARCIS (Netherlands)

    Palakawong Na Ayudthaya, Susakul; De Weijer, Van Antonius H.P.; Gelder, Van Antonie H.; Stams, Alfons J.M.; Vos, De Willem M.; Plugge, Caroline M.

    2018-01-01

    Background: Exploring different microbial sources for biotechnological production of organic acids is important. Dutch and Thai cow rumen samples were used as inocula to produce organic acid from starch waste in anaerobic reactors. Organic acid production profiles were determined and microbial

  12. Biotechnological production of caffeic acid derivatives from cell and organ cultures of Echinacea species.

    Science.gov (United States)

    Murthy, Hosakatte Niranjana; Kim, Yun-Soo; Park, So-Young; Paek, Kee-Yoeup

    2014-09-01

    Caffeic acid derivatives (CADs) are a group of bioactive compounds which are produced in Echinacea species especially Echinacea purpurea, Echinacea angustifolia, and Echinacea pallida. Echinacea is a popular herbal medicine used in the treatment of common cold and it is also a prominent dietary supplement used throughout the world. Caffeic acid, chlorogenic acid (5-O-caffeoylquinic acid), caftaric acid (2-O-caffeoyltartaric acid), cichoric acid (2, 3-O-dicaffeoyltartaric acid), cynarin, and echinacoside are some of the important CADs which have varied pharmacological activities. The concentrations of these bioactive compounds are species specific and also they vary considerably with the cultivated Echinacea species due to geographical location, stage of development, time of harvest, and growth conditions. Due to these reasons, plant cell and organ cultures have become attractive alternative for the production of biomass and caffeic acid derivatives. Adventitious and hairy roots have been induced in E. pupurea and E. angustifolia, and suspension cultures have been established from flask to bioreactor scale for the production of biomass and CADs. Tremendous progress has been made in this area; various bioprocess methods and strategies have been developed for constant high-quality productivity of biomass and secondary products. This review is aimed to discuss biotechnological methods and approaches employed for the sustainable production of CADs.

  13. ORGANIC ACIDS PRODUCTION OF RICE STRAW FERMENTED WITH SEVERAL TYPES OF MICROORGANISM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Surahmanto

    2012-09-01

    Full Text Available The experiment was carried out to examine the organic acids production of rice straw fermented with some types of microorganisms at different temperatures. The experiment was designed as Split Plot-Completely Randomized Design. The main plot was temperatures treatments (25, 35, 45°C and the sub plot were microorganisms (Control, Control+Mollases, Lactobacillus fermentum, Bacillus subtilis, Bacillus coagulant, Saccharomyces cerevisiae, Aspergillus niger. The highest lactic acid productions was in B. coagulans treatment at 35°C (53.79 g/kg DM. The highest acetic acid productions was in L. fermentum at 35°C (13.20 g/kg DM, while the highest propionic acid productions were in Control treatment at 35°C (0.37 g/kg DM.

  14. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chao; Cao, Yujin; Zou, Huibin; Xian, Mo [Chinese Academy of Sciences, Qingdao (China). Key Lab. of Biofuels

    2011-02-15

    Confronted with the gradual and inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now. (orig.)

  15. ORGANIC ACIDS PRODUCTION OF RICE STRAW FERMENTED WITH SEVERAL TYPES OF MICROORGANISM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Y. Yanti

    2014-10-01

    Full Text Available The experiment was carried out to examine the organic acids production of rice straw fermentedwith some types of microorganisms at different temperatures. The experiment was designed as SplitPlot-Completely Randomized Design. The main plot was temperatures treatments (25, 35, 45°C and thesub plot were microorganisms (Control, Control+Mollases, Lactobacillus fermentum, Bacillus subtilis,Bacillus coagulant, Saccharomyces cerevisiae, Aspergillus niger. The highest lactic acid productionswas in B. coagulans treatment at 35°C (53.79 g/kg DM. The highest acetic acid productions was in L.fermentum at 35°C (13.20 g/kg DM, while the highest propionic acid productions were in Controltreatment at 35°C (0.37 g/kg DM.

  16. Anaerobic acidification of sugar-containing wastewater for biotechnological production of organic acids and ethanol.

    Science.gov (United States)

    Darwin; Charles, Wipa; Cord-Ruwisch, Ralf

    2018-05-03

    Anaerobic acidification of sugars can produce some useful end-products such as alcohol, volatile fatty acids (e.g. acetate, propionate, and butyrate) and lactic acid. The production of end-products is highly dependent on factors including pH, temperature, hydraulic retention time and the types of sugar being fermented. Results of this current study indicate that the pH and hydraulic retention time played significant roles in determining the end products from the anaerobic acidification of maltose and glucose. Under uncontrolled pH, the anaerobic acidification of maltose ceased when pH in the reactor dropped below 5 while anaerobic acidification of glucose continued and produced ethanol as the main end-product. Under controlled pH, lactic acid was found to be the dominant end-product produced from both maltose and glucose at pH 5. Acetate was the main end-product from both maltose and glucose fermented at neutral pH (6 and 7). Short hydraulic retention time (HRT) of 2 days could induce the production of ethanol from the anaerobic acidification of glucose. However, the anaerobic acidification of maltose could stop when short HRT of 2 days was applied in the reactor. This finding is significant for industrial fermentation and waste management systems, and selective production of different types of organic acids could be achieved by managing pH and HRT in the reactor.

  17. Sustainable carbon sources for microbial organic acid production with filamentous fungi.

    Science.gov (United States)

    Dörsam, Stefan; Fesseler, Jana; Gorte, Olga; Hahn, Thomas; Zibek, Susanne; Syldatk, Christoph; Ochsenreither, Katrin

    2017-01-01

    The organic acid producer Aspergillus oryzae and Rhizopus delemar are able to convert several alternative carbon sources to malic and fumaric acid. Thus, carbohydrate hydrolysates from lignocellulose separation are likely suitable as substrate for organic acid production with these fungi. Before lignocellulose hydrolysate fractions were tested as substrates, experiments with several mono- and disaccharides, possibly present in pretreated biomass, were conducted for their suitability for malic acid production with A. oryzae. This includes levoglucosan, glucose, galactose, mannose, arabinose, xylose, ribose, and cellobiose as well as cheap and easy available sugars, e.g., fructose and maltose. A. oryzae is able to convert every sugar investigated to malate, albeit with different yields. Based on the promising results from the pure sugar conversion experiments, fractions of the organosolv process from beechwood ( Fagus sylvatica ) and Miscanthus giganteus were further analyzed as carbon source for cultivation and fermentation with A. oryzae for malic acid and R. delemar for fumaric acid production. The highest malic acid concentration of 37.9 ± 2.6 g/L could be reached using beechwood cellulose fraction as carbon source in bioreactor fermentation with A. oryzae and 16.2 ± 0.2 g/L fumaric acid with R. delemar . We showed in this study that the range of convertible sugars for A. oryzae is even higher than known before. We approved the suitability of fiber/cellulose hydrolysate obtained from the organosolv process as carbon source for A. oryzae in shake flasks as well as in a small-scale bioreactor. The more challenging hemicellulose fraction of F. sylvatica was also positively evaluated for malic acid production with A. oryzae .

  18. Initial pH of medium affects organic acids production but do not affect phosphate solubilization.

    Science.gov (United States)

    Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S

    2015-06-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization.

  19. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids.

    Science.gov (United States)

    Aasen, Inga Marie; Ertesvåg, Helga; Heggeset, Tonje Marita Bjerkan; Liu, Bin; Brautaset, Trygve; Vadstein, Olav; Ellingsen, Trond E

    2016-05-01

    Thraustochytrids have been applied for industrial production of the omega-3 fatty acid docosahexaenoic (DHA) since the 1990s. During more than 20 years of research on this group of marine, heterotrophic microorganisms, considerable increases in DHA productivities have been obtained by process and medium optimization. Strains of thraustochytrids also produce high levels of squalene and carotenoids, two other commercially interesting compounds with a rapidly growing market potential, but where yet few studies on process optimization have been reported. Thraustochytrids use two pathways for fatty acid synthesis. The saturated fatty acids are produced by the standard fatty acid synthesis, while DHA is synthesized by a polyketide synthase. However, fundamental knowledge about the relationship between the two pathways is still lacking. In the present review, we extract main findings from the high number of reports on process optimization for DHA production and interpret these in the light of the current knowledge of DHA synthesis in thraustochytrids and lipid accumulation in oleaginous microorganisms in general. We also summarize published reports on squalene and carotenoid production and review the current status on strain improvement, which has been hampered by the yet very few published genome sequences and the lack of tools for gene transfer to the organisms. As more sequences now are becoming available, targets for strain improvement can be identified and open for a system-level metabolic engineering for improved productivities.

  20. The effect of dietary supplementation of salts of organic acid on production performance of laying hens

    Directory of Open Access Journals (Sweden)

    Ravinder Dahiya

    2016-12-01

    Full Text Available Aim: An experiment was conducted to evaluate the effect of supplementing different levels of salts of organic acid in the laying hen’s diet on their production performance and egg quality parameters during a period of 16-week. Materials and Methods: A total of 140 white leghorn laying hens at 24 weeks of age were randomly distributed to seven dietary treatment groups, i.e. T1 (control, T2 (0.5% sodium-butyrate, T3 (1.0% sodium-butyrate, T4 (1.5% sodium-butyrate, T5 (0.5% calcium-propionate, T6 (1.0% calcium-propionate and T7 (1.5% calcium-propionate consisting of 5 replications of 4 birds each in each treatment and housed in individual cages from 24 to 40 weeks of age. Feed intake, percent hen-day egg production, egg weight, egg mass production, feed conversion ratio (FCR, and economics of supplementation of salts of organic acids in layers’ ration were evaluated. Results: The dietary supplementation of salts of organic acids did not significantly affect the feed intake (g/day/hen and body weight gain (g. Different levels of supplementation significantly (p<0.05 improved production performance (percent hen-day egg production and egg mass production as compared to control group. FCR in terms of feed intake (kg per dozen eggs was lowest (1.83±0.05 in T4 and feed intake (kg per kg egg mass was lowest (2.87±0.05 in T5 as comparison to control (T1 group. Salts of organic acids supplementation resulted in significant (p<0.05 improvement in FCR. Egg weight was significantly (p<0.05 increased at 0.5% level of salts of organic acids in the diet. The cumulative mean values of feed cost per dozen egg production were Rs. 44.14, 42.40, 42.85, 43.26, 42.57, 43.29 and 43.56 in treatment groups T1, T2, T3, T4, T5, T6 and T7, respectively, and reduction in feed cost per kg egg mass production for Rs. 0.52 and 0.99 in groups T2 and T5, respectively, in comparison to T1 group. Conclusions: It can be concluded that supplementation of salts of organic acids

  1. Solvent extraction of organic acids from stillage for its re-use in ethanol production process.

    Science.gov (United States)

    Castro, G A; Caicedo, L A; Alméciga-Díaz, C J; Sanchez, O F

    2010-06-01

    Stillage re-use in the fermentation stage in ethanol production is a technique used for the reduction of water and fermentation nutrients consumption. However, the inhibitory effect on yeast growth of the by-products and feed components that remains in stillage increases with re-use and reduces the number of possible recycles. Several methods such as ultrafiltration, electrodialysis and advanced oxidation processes have been used in stillage treatment prior its re-use in the fermentation stage. Nevertheless, few studies evaluating the effect of solvent extraction as a stillage treatment option have been performed. In this work, the inhibitory effect of serial stillage recycling over ethanol and biomass production was determined, using acetic acid as a monitoring compound during the fermentation and solvent extraction process. Raw palm oil methyl ester showed the highest acetic acid extraction from the aqueous phase, presenting a distribution coefficient of 3.10 for a 1:1 aqueous phase mixture:solvent ratio. Re-using stillage without treatment allowed up to three recycles with an ethanol production of 53.7 +/- 2.0 g L(-1), which was reduced 25% in the fifth recycle. Alternatively, treated stillage allowed up to five recycles with an ethanol final concentration of 54.7 +/- 1.3 g L(- 1). These results show that reduction of acetic acid concentration by an extraction process with raw palm oil methyl ester before re-using stillage improves the number of recycles without a major effect on ethanol production. The proposed process generates a palm oil methyl ester that contains organic acids, among other by-products, that could be used for product recovery and as an alternative fuel.

  2. Towards an understanding of feedbacks between plant productivity, acidity and dissolved organic matter

    Science.gov (United States)

    Rowe, Ed; Tipping, Ed; Davies, Jessica; Monteith, Don; Evans, Chris

    2014-05-01

    The recent origin of much dissolved organic carbon (DOC) (Tipping et al., 2010) implies that plant productivity is a major control on DOC fluxes. However, the flocculation, sorption and release of potentially-dissolved organic matter are governed by pH, and widespread increases in DOC concentrations observed in northern temperate freshwater systems seem to be primarily related to recovery from acidification (Monteith et al., 2007). We explore the relative importance of changes in productivity and pH using a model, MADOC, that incorporates both these effects (Rowe et al., 2014). The feedback whereby DOC affects pH is included. The model uses an annual timestep and relatively simple flow-routing, yet reproduces observed changes in DOC flux and pH in experimental (Evans et al., 2012) and survey data. However, the first version of the model probably over-estimated responses of plant productivity to nitrogen (N) deposition in upland semi-natural ecosystems. There is a strong case that plant productivity is an important regulator of DOC fluxes, and theoretical reasons for suspecting widespread productivity increases in recent years due not only to N deposition but to temperature and increased atmospheric CO2 concentrations. However, evidence that productivity has increased in upland semi-natural ecosystems is sparse, and few studies have assessed the major limitations to productivity in these habitats. In systems where phosphorus (P) limitation prevails, or which are co-limited, productivity responses to anthropogenic drivers will be limited. We present a revised version of the model that incorporates P cycling and appears to represent productivity responses to atmospheric N pollution more realistically. Over the long term, relatively small fluxes of nutrient elements into and out of ecosystems can profoundly affect productivity and the accumulation of organic matter. Dissolved organic N (DON) is less easily intercepted by plants and microbes than mineral N, and DON

  3. Pretreatment of various feedstocks for lactic acid production: detection of sugars, organic acids and furanics in liquid fractions

    NARCIS (Netherlands)

    Harmsen, P.F.H.; Lips, S.J.J.; Bakker, R.R.C.

    2012-01-01

    Barley straw, sugarcane bagasse and empty fruit bunches were pretreated under acid- and alkaline conditions. Solid phase was separated from the liquid phase and the concentration of dissolved monomeric sugars, organic acids and furanics was determined. Acid hydrolysis yielded monomeric xylose

  4. Production of hydrogen and volatile fatty acid by Enterobacter sp. T4384 using organic waste materials.

    Science.gov (United States)

    Kim, Byung-Chun; Deshpande, Tushar R; Chun, Jongsik; Yi, Sung Chul; Kim, Hyunook; Um, Youngsoon; Sang, Byoung-In

    2013-02-01

    In a study of hydrogen-producing bacteria, strain T4384 was isolated from rice field samples in the Republic of Korea. The isolate was identified as Enterobacter sp. T4384 by phylogenetic analysis of 16S rRNA and rpoB gene sequences. Enterobacter sp. T4384 grew at a temperature range of 10-45 degrees C and at an initial pH range of 4.5-9.5. Strain T4384 produced hydrogen at 0-6% NaCl by using glucose, fructose, and mannose. In serum bottle cultures using a complete medium, Enterobacter sp. T4384 produced 1,098 ml/l H2, 4.0 g/l ethanol, and 1.0 g/l acetic acid. In a pH-regulated jar fermenter culture with the biogas removed, 2,202 ml/l H2, 6.2 g/l ethanol, and 1.0 g/l acetic acid were produced, and the lag-phase time was 4.8 h. Strain T4384 metabolized the hydrolysate of organic waste for the production of hydrogen and volatile fatty acid. The strain T4384 produced 947 ml/l H2, 3.2 g/l ethanol, and 0.2 g/l acetic acid from 6% (w/v) food waste hydrolysate; 738 ml/l H2, 4.2 g/l ethanol, and 0.8 g/l acetic acid from Miscanthus sinensis hydrolysate; and 805 ml/l H2, 5.0 g/l ethanol, and 0.7 g/l acetic acid from Sorghum bicolor hydrolysate.

  5. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger

    Science.gov (United States)

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-04-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03.

  6. Organic acid production from potato starch waste fermentation by rumen microbial communities from Dutch and Thai dairy cows.

    Science.gov (United States)

    Palakawong Na Ayudthaya, Susakul; van de Weijer, Antonius H P; van Gelder, Antonie H; Stams, Alfons J M; de Vos, Willem M; Plugge, Caroline M

    2018-01-01

    Exploring different microbial sources for biotechnological production of organic acids is important. Dutch and Thai cow rumen samples were used as inocula to produce organic acid from starch waste in anaerobic reactors. Organic acid production profiles were determined and microbial communities were compared using 16S ribosomal ribonucleic acid gene amplicon pyrosequencing. In both reactors, lactate was the main initial product and was associated with growth of Streptococcus spp. (86% average relative abundance). Subsequently, lactate served as a substrate for secondary fermentations. In the reactor inoculated with rumen fluid from the Dutch cow, the relative abundance of Bacillus and Streptococcus increased from the start, and lactate, acetate, formate and ethanol were produced. From day 1.33 to 2, lactate and acetate were degraded, resulting in butyrate production. Butyrate production coincided with a decrease in relative abundance of Streptococcus spp. and increased relative abundances of bacteria of other groups, including Parabacteroides , Sporanaerobacter , Helicobacteraceae, Peptostreptococcaceae and Porphyromonadaceae. In the reactor with the Thai cow inoculum, Streptococcus spp. also increased from the start. When lactate was consumed, acetate, propionate and butyrate were produced (day 3-4). After day 3, bacteria belonging to five dominant groups, Bacteroides, Pseudoramibacter _ Eubacterium , Dysgonomonas , Enterobacteriaceae and Porphyromonadaceae, were detected and these showed significant positive correlations with acetate, propionate and butyrate levels. The complexity of rumen microorganisms with high adaptation capacity makes rumen fluid a suitable source to convert organic waste into valuable products without the addition of hydrolytic enzymes. Starch waste is a source for organic acid production, especially lactate.

  7. Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw.

    Science.gov (United States)

    Drake, Travis W; Wickland, Kimberly P; Spencer, Robert G M; McKnight, Diane M; Striegl, Robert G

    2015-11-10

    Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high-temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low-molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters.

  8. Ancient low–molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw

    Science.gov (United States)

    Drake, Travis W.; Wickland, Kimberly P.; Spencer, Robert G. M.; McKnight, Diane M.; Striegl, Robert G.

    2015-01-01

    Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high–temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low–molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters.

  9. The effect of cocoa fermentation and weak organic acids on growth and ochratoxin A production by Aspergillus species

    DEFF Research Database (Denmark)

    Copetti, Marina V.; Iamanaka, Beatriz T.; Mororó, Raimundo C.

    2012-01-01

    The acidic characteristics of cocoa beans have influence on flavor development in chocolate. Cocoa cotyledons are not naturally acidic, the acidity comes from organic acids produced by the fermentative microorganisms which grow during the processing of cocoa. Different concentrations of these met...... by Aspergillus carbonarius in cocoa, and the effect of weak organic acids such as acetic, lactic and citric at different pH values on growth and ochratoxin A production by A. carbonarius and Aspergillus niger in culture media. A statistical difference (ρ......The acidic characteristics of cocoa beans have influence on flavor development in chocolate. Cocoa cotyledons are not naturally acidic, the acidity comes from organic acids produced by the fermentative microorganisms which grow during the processing of cocoa. Different concentrations...... of these metabolites can be produced according to the fermentation practices adopted in the farms, which could affect the growth and ochratoxin A production by fungi. This work presents two independent experiments carried out to investigate the effect of some fermentation practices on ochratoxin A production...

  10. Production of starch with antioxidative activity by baking starch with organic acids.

    Science.gov (United States)

    Miwa, Shoji; Nakamura, Megumi; Okuno, Michiko; Miyazaki, Hisako; Watanabe, Jun; Ishikawa-Takano, Yuko; Miura, Makoto; Takase, Nao; Hayakawa, Sachio; Kobayashi, Shoichi

    2011-01-01

    A starch ingredient with antioxidative activity, as measured by the DPPH method, was produced by baking corn starch with an organic acid; it has been named ANOX sugar (antioxidative sugar). The baking temperature and time were fixed at 170 °C and 60 min, and the organic acid used was selected from preliminary trials of various kinds of acid. The phytic acid ANOX sugar preparation showed the highest antioxidative activity, but the color of the preparation was almost black; we therefore selected L-tartaric acid which had the second highest antioxidative activity. The antioxidative activity of the L-tartaric acid ANOX sugar preparation was stable against temperature, light, and enzyme treatments (α-amylase and glucoamylase). However, the activity was not stable against variations in water content and pH value. The antioxidative activity of ANOX sugar was stabilized by treating with boiled water or nitrogen gas, or by pH adjustment.

  11. Response surface optimization of ethanol production from banana peels by organic acid hydrolysis and fermentation

    Directory of Open Access Journals (Sweden)

    Sininart Chongkhong

    2017-04-01

    Full Text Available The production of ethanol from banana peels was optimized by response surface methodology in a two-step process. The steps were vinegar hydrolysis of banana peels using microwave heating, and fermentation of the peel hydrolysate by commercial baker’s yeast. The sugar (glucose content in the hydrolysate was maximized over ranges of vinegar concentration, microwave power and hydrolysis time. The maximal 15.3 g/L glucose content was reached using 1.47 %w/w vinegar and 465 W microwave power for 10 min, and was used in maximizing the ethanol content from the second step. The maximal 9.2 %v/v ethanol was obtained with 4 %w/w yeast, an initial pH of 4.8, at 28°C for 192 hrs. The results suggest that a combination of microwave application and organic acid hydrolysis might contribute cost-efficiently in the production of ethanol from biological waste.

  12. The acid-catalyzed hydrolysis of an α-pinene-derived organic nitrate: kinetics, products, reaction mechanisms, and atmospheric impact

    Science.gov (United States)

    Rindelaub, Joel D.; Borca, Carlos H.; Hostetler, Matthew A.; Slade, Jonathan H.; Lipton, Mark A.; Slipchenko, Lyudmila V.; Shepson, Paul B.

    2016-12-01

    The production of atmospheric organic nitrates (RONO2) has a large impact on air quality and climate due to their contribution to secondary organic aerosol and influence on tropospheric ozone concentrations. Since organic nitrates control the fate of gas phase NOx (NO + NO2), a byproduct of anthropogenic combustion processes, their atmospheric production and reactivity is of great interest. While the atmospheric reactivity of many relevant organic nitrates is still uncertain, one significant reactive pathway, condensed phase hydrolysis, has recently been identified as a potential sink for organic nitrate species. The partitioning of gas phase organic nitrates to aerosol particles and subsequent hydrolysis likely removes the oxidized nitrogen from further atmospheric processing, due to large organic nitrate uptake to aerosols and proposed hydrolysis lifetimes, which may impact long-range transport of NOx, a tropospheric ozone precursor. Despite the atmospheric importance, the hydrolysis rates and reaction mechanisms for atmospherically derived organic nitrates are almost completely unknown, including those derived from α-pinene, a biogenic volatile organic compound (BVOC) that is one of the most significant precursors to biogenic secondary organic aerosol (BSOA). To better understand the chemistry that governs the fate of particle phase organic nitrates, the hydrolysis mechanism and rate constants were elucidated for several organic nitrates, including an α-pinene-derived organic nitrate (APN). A positive trend in hydrolysis rate constants was observed with increasing solution acidity for all organic nitrates studied, with the tertiary APN lifetime ranging from 8.3 min at acidic pH (0.25) to 8.8 h at neutral pH (6.9). Since ambient fine aerosol pH values are observed to be acidic, the reported lifetimes, which are much shorter than that of atmospheric fine aerosol, provide important insight into the fate of particle phase organic nitrates. Along with rate constant

  13. Volatile fatty acids production from sewage organic matter by combined bioflocculation and anaerobic fermentation

    NARCIS (Netherlands)

    Khiewwijit, R.; Keesman, K.J.; Rijnaarts, H.H.M.; Temmink, B.G.

    2014-01-01

    This work aims at exploring the feasibility of a combined process bioflocculation to concentrate sewage organic matter and anaerobic fermentation to produce volatile fatty acids (VFA). Bioflocculation, using a high-loaded aerobic membrane bioreactor (HL-MBR), was operated at an HRT of 1 h and an SRT

  14. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes.

    Science.gov (United States)

    Panda, Sandeep K; Mishra, Swati S; Kayitesi, Eugenie; Ray, Ramesh C

    2016-04-01

    Wastes generated from fruits and vegetables are organic in nature and contribute a major share in soil and water pollution. Also, green house gas emission caused by fruit and vegetable wastes (FVWs) is a matter of serious environmental concern. This review addresses the developments over the last one decade on microbial processing technologies for production of enzymes and organic acids from FVWs. The advances in genetic engineering for improvement of microbial strains in order to enhance the production of the value added bio-products as well as the concept of zero-waste economy have been briefly discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Production and analysis of organic acids in hairy-root cultures of Isatis indigotica Fort. (indigo woad).

    Science.gov (United States)

    Xu, Tiefeng; Zhang, Lei; Sun, Xiaofen; Zhang, Hanming; Tang, Kexuan

    2004-02-01

    Hairy roots were induced from both cotyledon and hypocotyl explants of Isatis indigotica Fort. (indigo woad) through transformation with Agrobaterium rhizogenes strain A4, R1601 and ATCC15834. The results showed that the cotyledons were the preferred explants to hypocotyls and A4 was the most suitable A. rhizogenes strain for the transformation and induction of hairy roots of I. indigotica. High-voltage paper electrophoresis (HVPE) analysis demonstrated the production of mannopine in hairy roots and confirmed the successful transfer of Ri T-DNA (root-inducing transferred DNA) of A. rhizogenes into the I. indigotica genome. Five organic acids, namely CPQ [3-(2-carboxyphenol)-4(3 H )-quinazolinone], syringic acid, salicylic acid, benzoic acid and 2-aminobenzoic acid, which were considered as main antiviral components of I. indigotica, were detected in natural roots, hairy roots and liquid media with high-performance capillary electrophoresis. The results showed CPQ production in hairy roots was significantly higher than that in natural roots. Our results also revealed that all the five organic acids could be excreted from hairy roots into liquid media, and the concentrations of organic acids in the liquid media paralleled those in hairy roots. The hairy roots of I. indigotica grew fast and showed an S-shaped growth curve that reached its apex on the day 24 of culture with a 20-fold increase in fresh weight compared with the starting inoculums. The accumulation of the two organic acids CPQ and syringic acid in liquid media paralleled the growth of hairy roots. MS [Murashige, T. and Skoog, F. (1962) Physiol. Plant. 15, 473-497] medium or half-strength MS medium supplemented with 30 g/l maltose was found to be best for hairy-root culture and accumulation of CPQ.

  16. Pelargonic acid for weed control in organic Vidalia sweet onion production

    Science.gov (United States)

    Cultivation using a tine weeder is a proven means to manage weeds in organic Vidalia® sweet onion production. If the initial cultivation is delayed, emerged weeds are not controlled by the tine weeder. In these cases, herbicides derived from natural products could be used to control the emerged we...

  17. Organic acids production by rhizosphere microorganisms isolated from a Typic Melanudands and its effects on the inorganic phosphates solubilization

    Directory of Open Access Journals (Sweden)

    Eduardo José Serna Posso

    2017-04-01

    Full Text Available It has been established that organic acid secretion by rhizosphere microorganisms is one of the mechanisms to solubilize the phosphorus (P attached to insoluble mineral compounds in soil. This action is an important biotechnological alternative, especially in those soils where high fixation of this nutrient occurs, a very common situation in the tropics. This research evaluated the ability performed by five bacterial and five fungal isolates from Typic Melanudands soil to produce organic acids and generate available phosphorus from insoluble P sources. Given these concerns, the selected microorganisms were replicated for 7 days in liquid medium Pikovskaya (PVK modified sources tricalcium phosphate (P-Ca, aluminum phosphate (P-Al and iron phosphate (P-Fe. The results indicated that phosphorus availability in the media, correlates positively with the organic acids production in each of the sources used (P-Ca (0.63, P-Al (0.67 and P-Fe (0.63. In turn, the chemical processes linked to the phosphates solubilization (e.g., Ca availability affected the development of the microorganisms tested. Both, fungi and bacteria varied in their ability production and type of metabolized organic acids, the most frequent were as follows: citric and gluconic acid.

  18. Impact of organic fertilizer, humic acid and sea weed extract on wheat production in pothowar region of pakistan

    International Nuclear Information System (INIS)

    Muhammad, S.; Anjum, A.S.; Kasana, M.I.

    2013-01-01

    Wheat (Triticum aestivum L) crop production was evaluated under organic conditions during the year 2008-09 and 2009-2010 at National Agricultural Research Center (NARC), Pakistan Agricultural Research council (PARC) Islamabad. The study includes four treatments with four replications. The treatments includes; (1) Organic fertilizer 625 Kg ha/sup -1/, (2) Organic fertilizer 625 and Humic Acid 10 Kg ha/sup -1/ (3) Humic Acid and Sea weed extract 625 ml ha/sup -1/ and (4) Control. Organic amendments were incorporated during land preparation and seaweed extract as foliar spray. The basal dose of organic fertilizer and humic acid (granule) were added at the time of sowing of wheat during 2008-2009 and 2009-2010.Humic acid solution 1% and sea weed extract were applied as foliar spray at 6 inches of wheat crop. The second foliar spray was done at tillering while third and forth sprays at heading and milking stage respectively. The crop conditions, color, shoot length and spike and yield parameters were recorded at different stages of the organic fertilizer application. The soils and crops managed organically are sustainable. Similarly, biological and chemical properties of soil also improved significantly. The compost enriched with different organic waste increased all physico-chemical and biological properties of the soil as well as yield of the crop. The wheat crop morphological and agronomical parameters also increase significantly. Moreover, nutrients supply and other soil properties like pH, CEC, ECe and plant nutrients including microbial community structure influence positively. (author)

  19. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10.

    Science.gov (United States)

    Zhang, Huili; Zhu, Jianzhong; Zhu, Xiangcheng; Cai, Jin; Zhang, Anyi; Hong, Yizhi; Huang, Jin; Huang, Lei; Xu, Zhinan

    2012-07-01

    A new exogenous glutamic acid-independent γ-PGA producing strain was isolated and characterized as Bacillus subtilis C10. The factors influencing the endogenous glutamic acid supply and the biosynthesis of γ-PGA in this strain were investigated. The results indicated that citric acid and oxalic acid showed the significant capability to support the overproduction of γ-PGA. This stimulated increase of γ-PGA biosynthesis by citric acid or oxalic acid was further proved in the 10 L fermentor. To understand the possible mechanism contributing to the improved γ-PGA production, the activities of four key intracellular enzymes were measured, and the possible carbon fluxes were proposed. The result indicated that the enhanced level of pyruvate dehydrogenase (PDH) activity caused by oxalic acid was important for glutamic acid synthesized de novo from glucose. Moreover, isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) were the positive regulators of glutamic acid biosynthesis, while 2-oxoglutarate dehydrogenase complex (ODHC) was the negative one. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels.

    Science.gov (United States)

    Kannengiesser, Jan; Sakaguchi-Söder, Kaori; Mrukwia, Timo; Jager, Johannes; Schebek, Liselotte

    2016-01-01

    This paper provides an overview on investigations for a new technology to generate bio-based fuel additives from bio-waste. The investigations are taking place at the composting plant in Darmstadt-Kranichstein (Germany). The aim is to explore the potential of bio-waste as feedstock in producing different bio-based products (or bio-based fuels). For this investigation, a facultative anaerobic process is to be integrated into the normal aerobic waste treatment process for composting. The bio-waste is to be treated in four steps to produce biofuels. The first step is the facultative anaerobic treatment of the waste in a rotting box namely percolate to generate a fatty-acid rich liquid fraction. The Hydrolysis takes place in the rotting box during the waste treatment. The organic compounds are then dissolved and transferred into the waste liquid phase. Browne et al. (2013) describes the hydrolysis as an enzymatically degradation of high solid substrates to soluble products which are further degraded to volatile fatty acids (VFA). This is confirmed by analytical tests done on the liquid fraction. After the percolation, volatile and medium chain fatty acids are found in the liquid phase. Concentrations of fatty acids between 8.0 and 31.5 were detected depending on the nature of the input material. In the second step, a fermentation process will be initiated to produce additional fatty acids. Existing microorganism mass is activated to degrade the organic components that are still remaining in the percolate. After fermentation the quantity of fatty acids in four investigated reactors increased 3-5 times. While fermentation mainly non-polar fatty acids (pentanoic to octanoic acid) are build. Next to the fermentation process, a chain-elongation step is arranged by adding ethanol to the fatty acid rich percolate. While these investigations a chain-elongation of mainly fatty acids with pair numbers of carbon atoms (acetate, butanoic and hexanoic acid) are demonstrated. After

  1. Improving EGSB reactor performance for simultaneous bioenergy and organic acid production from cheese whey via continuous biological H2 production.

    Science.gov (United States)

    Ramos, Lucas Rodrigues; Silva, Edson Luiz

    2017-07-01

    To evaluate the influence of hydraulic retention time (HRT) and cheese whey (CW) substrate concentration (15 and 25 g lactose l -1 ) on the performance of EGSB reactors (R15 and R25, respectively) for H 2 production. A decrease in the HRT from 8 to 4 h favored the H 2 yield and H 2 production rate (HPR) in R15, with maximum values of 0.86 ± 0.11 mmol H 2 g COD -1 and 0.23 ± 0.024 l H 2 h -1 l -1 , respectively. H 2 production in R25 was also favored at a HRT of 4 h, with maximum yield and HPR values of 0.64 ± 0.023 mmol H 2 g COD -1 and 0.31 ± 0.032 l H 2 h -1 l -1 , respectively. The main metabolites produced were butyric, acetic and lactic acids. The EGSB reactor was evaluated as a viable acidogenic step in the two-stage anaerobic treatment of CW for the increase of COD removal efficiency and biomethane production.

  2. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation.

    Science.gov (United States)

    Wei, Yuquan; Zhao, Yue; Shi, Mingzi; Cao, Zhenyu; Lu, Qian; Yang, Tianxue; Fan, Yuying; Wei, Zimin

    2018-01-01

    Enriched phosphate-solubilizing bacteria (PSB) agent were acquired by domesticated cultivation, and inoculated into kitchen waste composting in different stages. The effect of different treatments on organic acids production, tricalcium phosphate (TCP) solubilization and their relationship with bacterial community were investigated during composting. Our results pointed out that inoculation affected pH, total acidity and the production of oxalic, lactic, citric, succinic, acetic and formic acids. We also found a strong advantage in the solubilization of TCP and phosphorus (P) availability for PSB inoculation especially in the cooling stage. Redundancy analysis and structural equation models demonstrated inoculation by different methods changed the correlation of the bacterial community composition with P fractions as well as organic acids, and strengthened the cooperative function related to P transformation among species during composting. Finally, we proposed a possible mechanism of P solubilization with enriched PSB inoculation, which was induced by bacterial community and organic acids production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Influence of pH on organic acid production by Clostridium sporogenes in test tube and fermentor cultures.

    Science.gov (United States)

    Montville, T J; Parris, N; Conway, L K

    1985-01-01

    The influence of pH on the growth parameters of and the organic acids produced by Clostridium sporogenes 3121 cultured in test tubes and fermentors at 35 degrees C was examined. Specific growth rates in the fermentor maintained at a constant pH ranged from 0.20 h-1 at pH 5.00 to 0.86 h-1 at pH 6.50. Acetic acid was the primary organic acid in supernatants of 24-h cultures; total organic acid levels were 2.0 to 22.0 mumol/ml. Supernatants from pH 5.00 and 5.50 cultures had total organic acid levels less than one-third of those found at pH 6.00 to 7.00. The specific growth rates of the test tube cultures ranged from 0.51 h-1 at pH 5.00 to 0.95 h-1 at pH 6.50. The pH of the medium did not affect the average total organic acid content (51.5 mumol/ml) but did affect the distribution of the organic acids, which included formic, acetic, propionic, butyric, 3-(p-hydroxyphenyl)propionic, and 3-phenylpropionic acids. Butyric acid levels were lower, but formic and propionic acid levels were higher, at pH 5.00 than at other pHs. PMID:4004207

  4. Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation.

    Science.gov (United States)

    De Filippis, Francesca; Troise, Antonio Dario; Vitaglione, Paola; Ercolini, Danilo

    2018-08-01

    Kombucha is a traditional beverage produced by tea fermentation, carried out by a symbiotic consortium of bacteria and yeasts. Acetic Acid Bacteria (AAB) usually dominate the bacterial community of Kombucha, driving the fermentative process. The consumption of this beverage was often associated to beneficial effects for the health, due to its antioxidant and detoxifying properties. We characterized bacterial populations of Kombucha tea fermented at 20 or 30 °C by using culture-dependent and -independent methods and monitored the concentration of gluconic and glucuronic acids, as well as of total polyphenols. We found significant differences in the microbiota at the two temperatures. Moreover, different species of Gluconacetobacter were selected, leading to a differential abundance of gluconic and glucuronic acids. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Potential organic herbicides for squash production: Pelargonic acid herbicides AXXE (registered trademark) and Scythe (registered trademark)

    Science.gov (United States)

    Organic squash (Cucurbita pepo L.) producers need appropriate herbicides that can effectively provide season- long weed control. Research was conducted in southeast Oklahoma (Atoka County, Lane, OK) to determine the impact of potential organic herbicides on weed control efficacy, crop injury, and y...

  6. Bacterial production of short-chain organic acids and trehalose from levulinic acid: a potential cellulose-derived building block as a feedstock for microbial production.

    Science.gov (United States)

    Habe, Hiroshi; Sato, Shun; Morita, Tomotake; Fukuoka, Tokuma; Kirimura, Kohtaro; Kitamoto, Dai

    2015-02-01

    Levulinic acid (LA) is a platform chemical derived from cellulosic biomass, and the expansion of LA utilization as a feedstock is important for production of a wide variety of chemicals. To investigate the potential of LA as a substrate for microbial conversion to chemicals, we isolated and identified LA-utilizing bacteria. Among the six isolated strains, Pseudomonas sp. LA18T and Rhodococcus hoagie LA6W degraded up to 70 g/L LA in a high-cell-density system. The maximal accumulation of acetic acid by strain LA18T and propionic acid by strain LA6W was 13.6 g/L and 9.1 g/L, respectively, after a 4-day incubation. Another isolate, Burkholderia stabilis LA20W, produced trehalose extracellularly in the presence of 40 g/L LA to approximately 2 g/L. These abilities to produce useful compounds supported the potential of microbial LA conversion for future development and cellulosic biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Ursolic acid inhibits superoxide production in activated neutrophils and attenuates trauma-hemorrhage shock-induced organ injury in rats.

    Directory of Open Access Journals (Sweden)

    Tsong-Long Hwang

    Full Text Available Neutrophil activation is associated with the development of organ injury after trauma-hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma-hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma-hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma-hemorrhagic shock-induced organ injury in rats.

  8. Fermentation of calcium-fortified soymilk with Lactobacillus: effects on calcium solubility, isoflavone conversion, and production of organic acids.

    Science.gov (United States)

    Tang, A L; Shah, N P; Wilcox, G; Walker, K Z; Stojanovska, L

    2007-11-01

    The objective of this study was to enhance calcium solubility and bioavailability from calcium-fortified soymilk by fermentation with 7 strains of Lactobacillus, namely, L. acidophilus ATCC 4962, ATCC33200, ATCC 4356, ATCC 4461, L. casei ASCC 290, L. plantarum ASCC 276, and L. fermentum VRI-003. The parameters that were used are viability, pH, calcium solubility, organic acid, and biologically active isoflavone aglycone content. Calcium-fortified soymilk made from soy protein isolate was inoculated with these probiotic strains, incubated for 24 h at 37 degrees C, then stored for 14 d at 4 degrees C. Soluble calcium was measured using atomic absorption spectrophotometry (AA). Organic acids and bioactive isoflavone aglycones, including diadzein, genistein, and glycetein, were measured using HPLC. Viability of the strains in the fermented calcium-fortified soymilk was > 8.5 log(10) CFU/g after 24 h fermentation and this was maintained for 14-d storage at 4 degrees C. After 24 h, there was a significant increase (P casei ASCC 290 demonstrated the highest increase with 89.3% and 87.0% soluble calcium after 24 h, respectively. The increase in calcium solubility observed was related to lowered pH associated with production of lactic and acetic acids. Fermentation significantly increased (P < 0.05) the level of conversion of isoflavones into biologically active aglycones, including diadzein, genistein, and glycetein. Our results show that fermenting calcium-fortified soymilk with the selected probiotics can potentially enhance the calcium bioavailability of calcium-fortified soymilk due to increased calcium solubility and bioactive isoflavone aglycone enrichment.

  9. Organic Acid Salt from Complete Feed Silage Corn Based by Product as an Alternative to Substitute Antibiotic Function as a Growth Promotor for Broiler

    Directory of Open Access Journals (Sweden)

    W Negara

    2009-11-01

    Full Text Available This study was designed to evaluate the efficacy of organic acid salt Zn from complete feed silage based on corn by product as an alternative to subtitute antibiotic function as a growth promotor for broiler. Ninety day old commercial Cobb broiler chickens were randomly distributed into six groups having three replicates of five birds in each group. Negative control (R0 birds were offered standard basal diet and no challenged, positive control (R1 birds were offered standard basal diet and challenged with 107 Salmonella typhimurium. Treatment R2, R3, R4 and R5 were challenged by 107 CFU of Salmonella typhimurium which added in feed with 0.1% flouroquinolone, 0.1%, 0.2%, and 0.3% of organic acid salts. The result showed that dietary of organic acid salts affect consumption, weight gain, and final body weight (P<0.05. Meanwhile, feed conversion (FCR was not affected by antibiotics nor organic acids. Our conclusion, Dietary organic acid salt from complete feed silage corn based by product until dose 0.2% can improve the performance of broiler chickens infected Salmonella typhimurium. (Animal Production 11(3: 170-175 (2009 Key Words: broiler, organic acid, Salmonella typhimurium

  10. Efficient production of fatty acid methyl ester from waste activated bleaching earth using diesel oil as organic solvent.

    Science.gov (United States)

    Kojima, Seiji; Du, Dongning; Sato, Masayasu; Park, Enoch Y

    2004-01-01

    Fatty acid methyl ester (FAME) production from waste activated bleaching earth (ABE) discarded by the crude oil refining industry was investigated using fossil fuel as a solvent in the esterification of triglycerides. Lipase from Candida cylindracea showed the highest stability in diesel oil. Using diesel oil as a solvent, 3 h was sufficient to obtain a yield of approximately 100% of FAME in the presence of 10% lipase from waste ABE. Kerosene was also a good solvent in the esterification of triglycerides embedded in the waste ABE. Fuel analysis showed that the FAME produced using diesel oil as a solvent complied with the Japanese diesel standard and the 10% residual carbon amount was lower than that of FAME produced using other solvents. Use of diesel oil as solvent in the FAME production from the waste ABE simplified the process, because there was no need to separate the organic solvent from the FAME-solvent mixture. These results demonstrate a promising reutilization method for the production of FAME, for use as a biodiesel, from industrial waste resources containing waste vegetable oils.

  11. Energy densification of biomass-derived organic acids

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, M. Clayton; van Walsum, G. Peter; Schwartz, Thomas J.; van Heiningen, Adriaan

    2013-01-29

    A process for upgrading an organic acid includes neutralizing the organic acid to form a salt and thermally decomposing the resulting salt to form an energy densified product. In certain embodiments, the organic acid is levulinic acid. The process may further include upgrading the energy densified product by conversion to alcohol and subsequent dehydration.

  12. Fat and fatty acid composition of cooked meat from UK retail chickens labelled as from organic and non-organic production systems

    OpenAIRE

    Dalziel, C. J.; Kliem, Kirsty E.; Givens, D. Ian

    2015-01-01

    This study compared fat and fatty acids in cooked retail chicken meat from conventional and organic systems. Fat contents were 1.7, 5.2, 7.1 and 12.9 g/100 g cooked weight in skinless breast, breast with skin, skinless leg and leg with skin respectively, with organic meat containing less fat overall (P < 0.01). Meat was rich in cis-monounsaturated fatty acids, although organic meat contained less than did conventional meat (1850 vs. 2538 mg/100 g; P < 0.001). Organic meat was also lower (P < ...

  13. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS: Application to Analysis of Experimentally Derived Hydrothermal Mineral-Catalyzed Organic Products

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.

    2012-01-01

    We report results of experiments to measure the H isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high temperature extraction furnace to make quantitative H isotope measurements. This work compliments our previous work that focused on the extraction and analysis of C isotopes from the same compounds [1]. Together with our carbon isotope analyses our experiments serve as a "proof of concept" for making C and H isotope measurements on more complex mixtures of organic compounds on mineral surfaces in abiotic hydrocarbon formation processes at elevated temperatures and pressures. Our motivation for undertaking this work stems from observations of methane detected within the Martian atmosphere [2-5], coupled with evidence showing extensive water-rock interaction during Mars history [6-8]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization [9,10]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [11-13]. Our H isotope measurements utilize an analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). This technique is designed to carry a split of the pyrolyzed GC-separated product to a Thermo DSQII quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  14. PRODUCT SAFETY AND COLOR CHARACTERISTICS OF GROUND BEEF PROCESSED FROM BEEF TRIMMINGS TREATED WITH PEROXYACETIC ACID ALONE OR FOLLOWED BY NOVEL ORGANIC ACIDS

    Directory of Open Access Journals (Sweden)

    Fred Pohlman

    2014-10-01

    Full Text Available The objective of this study was to evaluate the effectiveness of antimicrobial interventions using peroxyacetic acetic acid (PAA followed by novel organic acids on beef trimmings prior to grinding with conventional spray (CS or electrostatic spray (ES on ground beef microbial populations and color. Beef trimmings (80/20; 25kg were inoculated with E. coli O157:H7, non- O157:H7 shiga toxin producing (STEC E. coli (EC and Salmonella spp. (SA at 105 CFU/g. Inoculated trimmings (1.5 kg /treatment/replicate, 2 replicates were treated with CS application of 0.02% PAA alone or followed by CS or ES application of 3% octanoic acid (PO, 3% pyruvic acid (PP, 3% malic acid (PM, saturated solution of fumaric acid (PF or deionized water (W. Findings from this study suggest that PA as a single or multiple chemical hurdle approach with malic, pyruvic, octanoic and fumaric acid on beef trimmings may be effective in reducing E. coli O157:H7 as well as non-STEC serotypes and Salmonella in ground beef up to day 2 of simulated retail display. Results of this study showed that instrumental color properties of ground beef treated with peroxyacetic acid followed by organic acids had little or no difference (P > 0.05 compared to the untreated un-inoculated control ground beef samples. The results also indicate that ES application of some organic acids may have similar or greater efficiency in controlling ground beef microbial populations compared to the CS application of the same acid providing a more economical and waste manageable decontamination approach.

  15. The effect of SO2 on the production of ethanol, acetaldehyde, organic acids, and flavor volatiles during industrial cider fermentation.

    Science.gov (United States)

    Herrero, Mónica; García, Luis A; Díaz, Mario

    2003-05-21

    SO(2) is widely used in cider fermentation but also in other alcoholic beverages such as wine. Although the authorized limit is 200 ppm total SO(2), the International Organizations recommend its total elimination or at least reduction due to health concerns. Addition of SO(2) to apple juice at levels frequently used in industrial cidermaking (100 mg/L) induced significantly higher acetaldehyde production by yeast than that obtained without SO(2). Although the practical implications of acetaldehyde evolution under cidermaking conditions has been overcome by research and few data are available, this compound reached levels in two 2000 L bioreactors that may have prevented the occurrence of simultaneous alcoholic and malolactic fermentation. It was observed that malolactic fermentation had a positive effect promoting reduction of acetaldehyde levels in cider fermented with juice, SO(2)-treated or not. The addition of SO(2) clearly delayed malolactic fermentation comparing to the control, affecting not the onset of the malolactic fermentation but the rate of malic acid degradation. This compound, however, had a stimulatory effect on alcoholic fermentation.

  16. Fat and fatty acid composition of cooked meat from UK retail chickens labelled as from organic and non-organic production systems.

    Science.gov (United States)

    Dalziel, Courtney J; Kliem, Kirsty E; Givens, D Ian

    2015-07-15

    This study compared fat and fatty acids in cooked retail chicken meat from conventional and organic systems. Fat contents were 1.7, 5.2, 7.1 and 12.9 g/100 g cooked weight in skinless breast, breast with skin, skinless leg and leg with skin respectively, with organic meat containing less fat overall (Porganic meat contained less than did conventional meat (1850 vs. 2538 mg/100 g; POrganic meat was also lower (Pvs. 180 mg/100 g) and, whilst it contained more (Pvs. 13.7 mg/100 g), this was due to the large effect of one supermarket. This system by supermarket interaction suggests that poultry meat labelled as organic is not a guarantee of higher long chain n-3 fatty acids. Overall there were few major differences in fatty acid contents/profiles between organic and conventional meat that were consistent across all supermarkets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effects Of pH, Temperature And Salinity In Growth And Organic Acid Production Of Lactic Acid Bacteria Isolated From Penaeid Shrimp Intestine

    Directory of Open Access Journals (Sweden)

    Subagiyo Subagiyo

    2015-12-01

    Full Text Available Bakteri asam laktat telah lama dikembangkan sebagai probiotik. Penentuan kondisi lingkungan yang optimum untuk pertumbuhan sel serta asam organik memberikan gambaran aktivitas optimum untuk kinerja probiotik baik dalam sistem fisiologi inang maupun dalam sistem bioproses untuk produksi sel dan metabolit. Penelitian ini bertujuan untuk mengetahui pengaruh faktor lingkungan (pH, suhu dan salinitas terhadap pertumbuhan dan produksi total asam organik tiga isolat bakteri asam laktat yang telah diseleksi dari intestinum udang penaeid. Eksperimen menggunakan  medium deMan, Rogosa and Sharpe (MRS cair. Perlakuan pH awal meliputi  nilai pH 4, 5 dan 6. Perlakuan suhu meliputi suhu 25, 30 dan 35OC serta perlakuan salinitas  meliputi salinitas 0,75 %, 1,5 % dan 3 %.  Setiap interval 6 jam dilakukan pengambilan sampel kultur bakteri dan penghitungan pertumbuhan berdasarkan perubahan optical density (pada panjang gelombang 600 nm sedangkan produksi asam laktat dianalisis dengan metode titrimetrik menggunakan NaOH 1 N sebagai larutan titrasinya. Berdasarkan hasil penelitian disimpulkan bahwa suhu, pH awal dan salinitas berpengaruh terhadap pertumbuhan dan produksi asam organik. Nilai kondisi lingkungan terbaik untuk pertumbuhan dapat berbeda dengan nilai terbaik untuk produksi asam organic. Hal ini ditunjukan oleh nilai laju pertumbuhan dan produksi asam laktat tertinggi dari tiga isolat uji terjadi pada suhu, pH awal dan salinitas yang berbeda.  Isolat L12 tumbuh optimum pada suhu 30oC, pH awal 6 dan salinitas 0,75%. Isolat L14 tumbuh optimum pada suhu 30oC, pH awal 6 dan salinitas 1.5%. Isolat L 21 tumbuh optimum pada suhu 30 oC, pH awal 6 dan salinitas 1.5%. Kata kunci: bakteri asam laktat, suhu, pH, salinitas, asamorganik, pertumbuhan, Lactic acid bacteria are widely distributed in intestinal tracts of various animals where they live as normal flora.Strains of lactic acid bacteria are the most common microbes employed as probiotics, The optimum

  18. Microbial Propionic Acid Production

    Directory of Open Access Journals (Sweden)

    R. Axayacatl Gonzalez-Garcia

    2017-05-01

    Full Text Available Propionic acid (propionate is a commercially valuable carboxylic acid produced through microbial fermentation. Propionic acid is mainly used in the food industry but has recently found applications in the cosmetic, plastics and pharmaceutical industries. Propionate can be produced via various metabolic pathways, which can be classified into three major groups: fermentative pathways, biosynthetic pathways, and amino acid catabolic pathways. The current review provides an in-depth description of the major metabolic routes for propionate production from an energy optimization perspective. Biological propionate production is limited by high downstream purification costs which can be addressed if the target yield, productivity and titre can be achieved. Genome shuffling combined with high throughput omics and metabolic engineering is providing new opportunities, and biological propionate production is likely to enter the market in the not so distant future. In order to realise the full potential of metabolic engineering and heterologous expression, however, a greater understanding of metabolic capabilities of the native producers, the fittest producers, is required.

  19. Organic acids in naturally colored surface waters

    Science.gov (United States)

    Lamar, William L.; Goerlitz, D.F.

    1966-01-01

    Most of the organic matter in naturally colored surface waters consists of a mixture of carboxylic acids or salts of these acids. Many of the acids color the water yellow to brown; however, not all of the acids are colored. These acids range from simple to complex, but predominantly they are nonvolatile polymeric carboxylic acids. The organic acids were recovered from the water by two techniques: continuous liquid-liquid extraction with n-butanol and vacuum evaporation at 50?C (centigrade). The isolated acids were studied by techniques of gas, paper, and column chromatography and infrared spectroscopy. About 10 percent of the acids recovered were volatile or could be made volatile for gas chromatographic analysis. Approximately 30 of these carboxylic acids were isolated, and 13 of them were individually identified. The predominant part of the total acids could not be made volatile for gas chromatographic analysis. Infrared examination of many column chromatographic fractions indicated that these nonvolatile substances are primarily polymeric hydroxy carboxylic acids having aromatic and olefinic unsaturation. The evidence suggests that some of these acids result from polymerization in aqueous solution. Elemental analysis of the sodium fusion products disclosed the absence of nitrogen, sulfur, and halogens.

  20. Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass.

    Science.gov (United States)

    Ghimire, Anish; Trably, Eric; Frunzo, Luigi; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni; Cazier, Elisabeth A; Escudié, Renaud

    2018-01-01

    Production of biohydrogen and related metabolic by-products was investigated in Solid State Dark Fermentation (SSDF) of food waste (FW) and wheat straw (WS). The effect of the total solids (TS) content and H 2 partial pressure (pp H2 ), two of the main operating factors of SSDF, were investigated. Batch tests with FW at 10, 15, 20, 25 and 30% TS showed considerable effects of the TS on metabolites distribution. H 2 production was strongly inhibited for TS contents higher than 15% with a concomitant accumulation of lactic acid and a decrease in substrate conversion. Varying the pp H2 had no significant effect on the conversion products and overall degradation of FW and WS, suggesting that pp H2 was not the main limiting factor in SSDF. This study showed that the conversion of complex substrates by SSDF depends on the substrate type and is limited by the TS content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Nanoparticles modified with multiple organic acids

    Science.gov (United States)

    Cook, Ronald Lee (Inventor); Luebben, Silvia DeVito (Inventor); Myers, Andrew William (Inventor); Smith, Bryan Matthew (Inventor); Elliott, Brian John (Inventor); Kreutzer, Cory (Inventor); Wilson, Carolina (Inventor); Meiser, Manfred (Inventor)

    2007-01-01

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  2. Nanoparticles modified with multiple organic acids

    Science.gov (United States)

    Cook, Ronald Lee; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew; Elliott, Brian John; Kreutzer, Cory; Wilson, Carolina; Meiser, Manfred

    2007-07-17

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  3. Production of volatile fatty acid in the rumen and its relationship with their concentration, intake of dry matter and digestible organic matter in buffalo (Bos bubalis) calves

    International Nuclear Information System (INIS)

    Verma, D.N.; Singh, U.B.

    1979-01-01

    The production rates of total volatile fatty acid (TVFA) in the rumen of buffalo (Bos bubalis) calves were estimated using a single injection isotope dilution technique. A series of twelve experiments were done with animals given wheat straw and concentrate mixture. The production rate of TVFA ranged from 19.77 to 24.84 moles/d depending upon the amount of food consumed by the animals. Highly significant correlations were observed between TVFA production and their concentration, dry matter and digestible organic matter intake. (auth.)

  4. Acid digestion of organic materials

    International Nuclear Information System (INIS)

    Capp, P.D.

    1988-01-01

    To overcome the high temperatures involved in straight incineration of organic waste and the difficulty of extracting actinides from the ash various research establishments throughout the world, including Winfrith and Harwell in the UK, have carried out studies on an alternative chemical combustion method known as acid digestion. The basis of the technique is to digest the waste in concentrated sulphuric acid containing a few percent of nitric acid at a temperature of about 250 0 C. Acid digestion residues consist mainly of non-refractory inorganic sulphates and oxides from which any actinide materials can easily be extracted. (author)

  5. Catabolism of biomass-derived sugars in fungi and metabolic engineering as a tool for organic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Koivistoinen, O.

    2013-11-01

    The use of metabolic engineering as a tool for production of biochemicals and biofuels requires profound understanding of cell metabolism. The pathways for the most abundant and most important hexoses have already been studied quite extensively but it is also important to get a more complete picture of sugar catabolism. In this thesis, catabolic pathways of L-rhamnose and D-galactose were studied in fungi. Both of these hexoses are present in plant biomass, such as in hemicellulose and pectin. Galactoglucomannan, a type of hemicellulose that is especially rich in softwood, is an abundant source of D-galactose. As biotechnology is moving from the usage of edible and easily metabolisable carbon sources towards the increased use of lignocellulosic biomass, it is important to understand how the different sugars can be efficiently turned into valuable biobased products. Identification of the first fungal L-rhamnose 1-dehydrogenase gene, which codes for the first enzyme of the fungal catabolic L-rhamnose pathway, showed that the protein belongs to a protein family of short-chain alcohol dehydrogenases. Sugar dehydrogenases oxidising a sugar to a sugar acid are not very common in fungi and thus the identification of the L-rhamnose dehydrogenase gene provides more understanding of oxidative sugar catabolism in eukaryotic microbes. Further studies characterising the L-rhamnose cluster in the yeast Scheffersomyces stipitis including the expression of the L-rhamnonate dehydratase in Saccharomyces cerevisiae finalised the biochemical characterisation of the enzymes acting on the pathway. In addition, more understanding of the regulation and evolution of the pathway was gained. D-Galactose catabolism was studied in the filamentous fungus Aspergillus niger. Two genes coding for the enzymes of the oxido-reductive pathway were identified. Galactitol dehydrogenase is the second enzyme of the pathway converting galactitol to L-xylo-3-hexulose. The galactitol dehydrogenase encoding

  6. Organic reactions for the electrochemical and photochemical production of chemical fuels from CO2--The reduction chemistry of carboxylic acids and derivatives as bent CO2 surrogates.

    Science.gov (United States)

    Luca, Oana R; Fenwick, Aidan Q

    2015-11-01

    The present review covers organic transformations involved in the reduction of CO2 to chemical fuels. In particular, we focus on reactions of CO2 with organic molecules to yield carboxylic acid derivatives as a first step in CO2 reduction reaction sequences. These biomimetic initial steps create opportunities for tandem electrochemical/chemical reductions. We draw parallels between long-standing knowledge of CO2 reactivity from organic chemistry, organocatalysis, surface science and electrocatalysis. We point out some possible non-faradaic chemical reactions that may contribute to product distributions in the production of solar fuels from CO2. These reactions may be accelerated by thermal effects such as resistive heating and illumination. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Gluconic Acid: Properties, Applications and Microbial Production

    Directory of Open Access Journals (Sweden)

    Sumitra Ramachandran

    2006-01-01

    Full Text Available Gluconic acid is a mild organic acid derived from glucose by a simple oxidation reaction. The reaction is facilitated by the enzyme glucose oxidase (fungi and glucose dehydrogenase (bacteria such as Gluconobacter. Microbial production of gluconic acid is the preferred method and it dates back to several decades. The most studied and widely used fermentation process involves the fungus Aspergillus niger. Gluconic acid and its derivatives, the principal being sodium gluconate, have wide applications in food and pharmaceutical industry. This article gives a review of microbial gluconic acid production, its properties and applications.

  8. Controlling Listeria monocytogenes Scott A on Surfaces of Fully Cooked Turkey Deli Product Using Organic Acid-Containing Marinades as Postlethality Dips.

    Science.gov (United States)

    Casco, Gerardo; Johnson, Jennifer L; Taylor, T Matthew; Gaytán, Carlos N; Brashears, Mindy M; Alvarado, Christine Z

    2015-01-01

    This study evaluated the efficacy of organic acids applied singly or in combination as postlethality dips to sliced uncured turkey deli loaves to inhibit the growth of Listeria monocytogenes (Lm) Scott A. Treatments consisted of sodium lactate (SL; 3.6%), potassium lactate (PL; 3.6%), sodium citrate (SC; 0.75%), a combination of SL and sodium diacetate (SDA; 0.25%), and a combination of SL/PL/SDA, alongside appropriate negative and positive controls. Products were inoculated with 10(4)-10(5) CFU/mL streptomycin-resistant (1500 μg/mL) Lm Scott A prior to treatment. Products were then stored at ~4°C and sampled at 0, 7, 14, 21, 28, 42, and 56 d. The SL/SDA combination applied to turkey slices extended the lag phase through 21 days of refrigerated storage. Numbers of Lm Scott A rose by 0.7 log10 CFU/g through the 56 d storage period. The application of the SL/PL/SDA treatment to turkey product surfaces extended the lag phase through 42 d, with pathogen numbers declining after 21 d. Combination organic acid dips prolonged the lag phase for 2 to 6 wk on turkey product surfaces and can be useful as antimicrobial agents for Lm control on postlethality exposed sliced deli products.

  9. Weak organic acid stress in Bacillus subtilis

    NARCIS (Netherlands)

    ter Beek, A.S.

    2009-01-01

    Weak organic acids are commonly used food preservatives that protect food products from bacterial contamination. A variety of spore-forming bacterial species pose a serious problem to the food industry by causing extensive food spoilage or even food poisoning. Understanding the mechanisms of

  10. Acid digestion of organic liquids

    International Nuclear Information System (INIS)

    Partridge, J.A.; Bosuego, G.P.

    1980-10-01

    Laboratory studies on the destruction of liquid organic wastes by acid digestion are discussed. A variety of liquid waste types was tested, including those encountered in the nuclear industry as well as some organic liquids representative of non-nuclear industrial wastes. The liquids tested were vacuum pump oil, tri-n-butyl phosphate (TBP), normal paraffin hydrocarbon solvent (NPH), a mixture of 30 vol% TBP in NPH, carbon tetrachloride (CCl 4 ), trichloroethane, toluene, hexone (methyl isobutyl ketone), a mixture of hexone and NPH, polychlorobiphenyl (PCB), isopropanol, normal-decane, and two waste organic solutions from Hanford radioactive waste tanks. The tests demonstrated that several types of organic liquids can be destroyed by the acid digestion process. 8 figures, 19 tables

  11. Effects of Organic and Inorganic Nitrogen on the Growth and Production of Domoic Acid by Pseudo-nitzschia multiseries and P. australis (Bacillariophyceae) in Culture.

    Science.gov (United States)

    Martin-Jézéquel, Véronique; Calu, Guillaume; Candela, Leo; Amzil, Zouher; Jauffrais, Thierry; Séchet, Véronique; Weigel, Pierre

    2015-11-26

    Over the last century, human activities have altered the global nitrogen cycle, and anthropogenic inputs of both inorganic and organic nitrogen species have increased around the world, causing significant changes to the functioning of aquatic ecosystems. The increasing frequency of Pseudo-nitzschia spp. in estuarine and coastal waters reinforces the need to understand better the environmental control of its growth and domoic acid (DA) production. Here, we document Pseudo-nitzschia spp. growth and toxicity on a large set of inorganic and organic nitrogen (nitrate, ammonium, urea, glutamate, glutamine, arginine and taurine). Our study focused on two species isolated from European coastal waters: P. multiseries CCL70 and P. australis PNC1. The nitrogen sources induced broad differences between the two species with respect to growth rate, biomass and cellular DA, but no specific variation could be attributed to any of the inorganic or organic nitrogen substrates. Enrichment with ammonium resulted in an enhanced growth rate and cell yield, whereas glutamate did not support the growth of P. multiseries. Arginine, glutamine and taurine enabled good growth of P. australis, but without toxin production. The highest DA content was produced when P. multiseries grew with urea and P. australis grew with glutamate. For both species, growth rate was not correlated with DA content but more toxin was produced when the nitrogen source could not sustain a high biomass. A significant negative correlation was found between cell biomass and DA content in P. australis. This study shows that Pseudo-nitzschia can readily utilize organic nitrogen in the form of amino acids, and confirms that both inorganic and organic nitrogen affect growth and DA production. Our results contribute to our understanding of the ecophysiology of Pseudo-nitzschia spp. and may help to predict toxic events in the natural environment.

  12. Microbial production of citric acid

    Directory of Open Access Journals (Sweden)

    Luciana P. S Vandenberghe

    1999-01-01

    Full Text Available Citric acid is the most important organic acid produced in tonnage and is extensively used in food and pharmaceutical industries. It is produced mainly by submerged fermentation using Aspergillus niger or Candida sp. from different sources of carbohydrates, such as molasses and starch based media. However, other fermentation techniques, e.g. solid state fermentation and surface fermentation, and alternative sources of carbon such as agro-industrial residues have been intensively studied showing great perspective to its production. This paper reviews recent developments on citric acid production by presenting a brief summary of the subject, describing micro-organisms, production techniques, and substrates, etc.O ácido cítrico é o ácido mais produzido em termos de tonagem e é extensivamente utilizado pelas indústrias alimentícia e farmacêutica. É produzido principalmente por fermentação submersa utilizando o fungo Aspergillus niger e leveduras do gênero Candida sp. à partir de diferentes fontes de carbono, como a glicose e meios à base de amido. No entanto, outras técnicas de fermentação, e.g. fermentação no estado sólido e em superfície, e fontes alternativas de carbono tem sido intensamente estudadas mostrando grande perspectivas para o processo. O presente trabalho apresenta um resumo dos últimos avanços sobre a produção do ácido cítrico, descrevendo de maneira sucinta os trabalhos mais recentes, descrevendo microrganismos, técnicas de produção e substratos empregados, etc.

  13. Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate.

    Science.gov (United States)

    Jiang, Jianguo; Zhang, Yujing; Li, Kaimin; Wang, Quan; Gong, Changxiu; Li, Menglu

    2013-09-01

    The effects of pH, temperature, and organic loading rate (OLR) on the acidogenesis of food waste have been determined. The present study investigated their effects on soluble chemical oxygen demand (SCOD), volatile fatty acids (VFAs), volatile solids (VS), and ammonia nitrogen (NH4(+)-N). Both the concentration and yield of VFAs were highest at pH 6.0, acetate and butyrate accounted for 77% of total VFAs. VFAs concentration and the VFA/SCOD ratio were highest, and VS levels were lowest, at 45 °C, but the differences compared to the values at 35 °C were slight. The concentrations of VFAs, SCOD, and NH4(+)-N increased as OLR increased, whereas the yield of VFAs decreased from 0.504 at 5 g/Ld to 0.306 at 16 g/Ld. Acetate and butyrate accounted for 60% of total VFAs. The percentage of acetate and valerate increased as OLR increased, whereas a high OLR produced a lower percentage of propionate and butyrate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Preparation of fulvic acid and low-molecular organic acids by oxidation of weathered coal humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shinozuka, T.; Ito, A.; Sasaki, O.; Yazawa, Y.; Yamaguchi, T. [Chiba Institute of Technolgy, Chiba (Japan). Dept. of Industrial Chemistry

    2002-07-01

    Weathered coal contains much humic acid and a little fulvic acid. Therefore, the production of fulvic acid, the most valuable humic substance because of its water-solubility, was examined by ozone and hydrogen peroxide oxidation of humic acid extracted form Xinjiang (China) weathered coal. The resulting products of the oxidation were water soluble fulvic acid and organic acids, mainly formic acid and oxalic acid. The product yield of fulvic acid was 20 (C%) and that of organic acids were 39 (C%) for formic and acid 13 (C%) for oxalic acid. The formed fulvic acid showed a higher content of oxygen and carboxyl groups, than those of the extracted one from the original weathered coal.

  15. Effect of organic acids on shrimp pathogen, Vibrio harveyi.

    Science.gov (United States)

    Mine, Saori; Boopathy, Raj

    2011-07-01

    Shrimp farming accounts for more than 40% of the world shrimp production. Luminous vibriosis is a shrimp disease that causes major economic losses in the shrimp industry as a result of massive shrimp kills due to infection. Some farms in the South Asia use antibiotics to control Vibrio harveyi, a responsible pathogen for luminous vibriosis. However, the antibiotic-resistant strain was found recently in many shrimp farms, which makes it necessary to develop alternative pathogen control methods. Short-chain fatty acids are metabolic products of organisms, and they have been used as food preservatives for a long time. Organic acids are also commonly added in feeds in animal husbandry, but not in aquaculture. In this study, growth inhibitory effects of short-chain fatty acids, namely formic acid, acetic acid, propionic acid, and butyric acid, on V. harveyi were investigated. Among four acids, formic acid showed the strongest inhibitory effect followed by acetic acid, propionic acid, and butyric acid. The minimum inhibitory concentration (MIC) of 0.035% formic acid suppressed growth of V. harveyi. The major inhibitory mechanism seems to be the pH effect of organic acids. The effective concentration 50 (EC50) values at 96 h inoculation for all organic acids were determined to be 0.023, 0.041, 0.03, and 0.066% for formic, acetic, propionic, and butyric acid, respectively. The laboratory study results are encouraging to formulate shrimp feeds with organic acids to control vibrio infection in shrimp aquaculture farms.

  16. Genes involved in lactose catabolism and organic acid production during growth of Lactobacillus delbrueckii UFV H2b20 in skimmed milk.

    Science.gov (United States)

    Do Carmo, A P; De Oliveira, M N V; Da Silva, D F; Castro, S B; Borges, A C; De Carvalho, A F; De Moraes, C A

    2012-03-01

    There are three main reasons for using lactic acid bacteria (LAB) as starter cultures in industrial food fermentation processes: food preservation due to lactic acid production; flavour formation due to a range of organic molecules derived from sugar, lipid and protein catabolism; and probiotic properties attributed to some strains of LAB, mainly of lactobacilli. The aim of this study was to identify some genes involved in lactose metabolism of the probiotic Lactobacillus delbrueckii UFV H2b20, and analyse its organic acid production during growth in skimmed milk. The following genes were identified, encoding the respective enzymes: ldh - lactate dehydrogenase, adhE - Ldb1707 acetaldehyde dehydrogenase, and ccpA-pepR1 - catabolite control protein A. It was observed that L. delbrueckii UFV H2b20 cultivated in different media has the unexpected ability to catabolyse galactose, and to produce high amounts of succinic acid, which was absent in the beginning, raising doubts about the subspecies in question. The phylogenetic analyses showed that this strain can be compared physiologically to L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis, which are able to degrade lactose and can grow in milk. L. delbrueckii UFV H2b20 sequences have grouped with L. delbrueckii subsp. bulgaricus ATCC 11842 and L. delbrueckii subsp. bulgaricus ATCC BAA-365, strengthening the classification of this probiotic strain in the NCFM group proposed by a previous study. Additionally, L. delbrueckii UFV H2b20 presented an evolutionary pattern closer to that of probiotic Lactobacillus acidophilus NCFM, corroborating the suggestion that this strain might be considered as a new and unusual subspecies among L. delbrueckii subspecies, the first one identified as a probiotic. In addition, its unusual ability to metabolise galactose, which was significantly consumed in the fermentation medium, might be exploited to produce low-browning probiotic Mozzarella cheeses, a desirable property

  17. Methylmercury production in soil in the water-level-fluctuating zone of the Three Gorges Reservoir, China: The key role of low-molecular-weight organic acids.

    Science.gov (United States)

    Yin, Deliang; Wang, Yongmin; Jiang, Tao; Qin, Caiqing; Xiang, Yuping; Chen, Qiuyu; Xue, Jinping; Wang, Dingyong

    2018-04-01

    As important parts of dissolved organic matter, low-molecular-weight organic acids (LMWOAs) typically play important roles in desorbing Hg(II) from the soil solid-phase, which may directly or indirectly impact methylmercury (MeHg) production. However, the mechanism of these processes remains unclear. To better understand the effects of LMWOAs on Hg methylation in the soil, a field study was conducted to investigate the distribution of LMWOAs and their relationship with soil MeHg in a seasonally inundated area in the Three Gorges Reservoir (TGR), China. Meanwhile, laboratory simulation experiments were performed to determine the potential mechanism of LMWOAs in Hg methylation. The field investigation detected considerable amounts of LMWOAs in soil, among which tartaric acid and oxalic acid were dominant components. Among which, tartaric acid and oxalic acid were dominant components. Also, a seasonally and spatially heterogeneous distribution of LMWOAs in soil was observed. Notably, a significant positive relationship was found between MeHg concentrations and LMWOA pools in soil (r = 0.969, p < .01), implying that LMWOAs could promote soil MeHg production. The simulation experiments confirmed that the MeHg levels in soil were largely elevated with the addition of LMWOAs, which occurred mainly in oxygen-deficient environment and was mediated by biotic factors. The soluble Hg-LMWOA complexes, which were formed by the enhanced desorption of Hg(II) from solid-phase, were mostly responsible for the elevated MeHg production in soil. Moreover, those LMWOAs with more carboxylic groups were believed to enhance the net production of MeHg. The generated MeHg in sediment could diffuse into the overlying water, which thus poses a potential threat to the aquatic food web. Therefore, the enhanced Hg methylation caused by LMWOAs should be given more attention, especially in a seasonally inundated ecosystem, where the MeHg exposure is usually related to fishery activities

  18. Methods and systems for chemoautotrophic production of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Curt R.; Che, Austin J.; Shetty, Reshma P.; Kelly, Jason R.

    2018-02-27

    The present disclosure identifies pathways, mechanisms, systems and methods to confer chemoautotrophic production of carbon-based products of interest, such as sugars, alcohols, chemicals, amino acids, polymers, fatty acids and their derivatives, hydrocarbons, isoprenoids, and intermediates thereof, in organisms such that these organisms efficiently convert inorganic carbon to organic carbon-based products of interest using inorganic energy, such as formate, and in particular the use of organisms for the commercial production of various carbon-based products of interest.

  19. Fumaric acid production by fermentation

    NARCIS (Netherlands)

    Roa Engel, C.A.; Straathof, A.J.J.; Zijlmans, T.W.; Van Gulik, W.M.; Van der Wielen, L.A.M.

    2008-01-01

    Abstract The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid

  20. [Fatty acids in confectionery products].

    Science.gov (United States)

    Daniewski, M; Mielniczuk, E; Jacórzyński, B; Pawlicka, M; Balas, J; Filipek, A; Górnicka, M

    2000-01-01

    The content of fat and fatty acids in 144 different confectionery products purchased on the market in Warsaw region during 1997-1999 have been investigated. In examined confectionery products considerable variability of both fat and fatty acids content have been found. The content of fat varied from 6.6% (coconut cookies) up to 40% (chocolate wafers). Saturated fatty acids were present in both cis and trans form. Especially trans fatty acids reach (above 50%) were fats extracted from nut wafers, coconuts wafers.

  1. ORGANIC PRODUCTION OF SHEEP MILK

    Directory of Open Access Journals (Sweden)

    Juan Carlos Ángeles Hernández

    2014-04-01

    Full Text Available Organic production systems are based on natural processes, leveraging local resources and decreasing in soil degradation. Effectiveness of milk production of organic systems vs. conventional production systems is a subject open to debate. There are various studies in which there is a positive effect of organic systems in relation to the welfare and animal health, product quality and environmental impact. However, some authors report lower milk yields production and increased susceptibility to environmental conditions compared with those obtained in conventional systems. The lower milk yields in organic systems in Dairy sheep's production, are related to the limited nutritional value, low genetic potential, and the changing environmental conditions. These systems are mainly a production method for a specific market with premium quality products and high standards in their production processes. Thus, a company organic Dairy sheep production should be considered viable when present a positive global sustainability level, that is socially beneficial, economically viable and environmentally responsible.

  2. STUDY OF ORGANIC ACIDS IN ALMOND LEAVES

    Directory of Open Access Journals (Sweden)

    Lenchyk L.V.

    2015-05-01

    Full Text Available Introduction. Almond (Amygdalus communis is a stone fruit, from the Rosaceae family, closest to the peach. It is spread throughout the entire Mediterranean region and afterwards to the Southwestern USA, Northern Africa, Turkey, Iran, Australia and South Africa. It is sensitive to wet conditions, and therefore is not grown in wet climates. Iran is located in the semi-arid region of the world. Because of its special tolerance to water stress, almond is one of the main agricultural products in rainfed condition in Iran. Almond leaves have been investigated for their phenolic content and antioxidant activity. It was found that total antioxidant activity and phenolic compounds exhibited variations according to season, plant organ (leaf and stem and variety. Analysis of previous research on almonds focused on investigating compounds mostly in seeds and phenolic compounds in leaves, but organic acids in leaves have not been studied. Aim of this study was investigation of organic acids in leaves of almond variety which is distributed in Razavi Khorasan province of Iran. Materials and Methods. In August 2012 almond leaves were collected in Iran, dried and grinded. The study of qualitative composition and quantitative determination of carboxylic acids in almond leaves was carried out by gas chromatography with mass spectrometric detection. For determination organic acids content, to 50 mg of dried plant material in 2 ml vial internal standard (50 μg of tridecane in hexane was added and filled up with 1.0 ml of methylating agent (14 % BCl3 in methanol, Supelco 3-3033. The mixture was kept in a sealed vial during 8 hours at 65 °C. At this time fatty oil was fully extracted, and hydrolyzed into its constituent fatty acids and their methylation was done. At the same time free organic and phenolcarbonic acids were methylated too. The reaction mixture was poured from the plant material sediment and was diluted with 1 ml of distilled water. To extract methyl

  3. Herbal additives and organic acids as antibiotic alternatives in ...

    African Journals Online (AJOL)

    Herbal additives and organic acids as antibiotic alternatives in broiler chickens diet for organic production. ... Significant increase in lactic acid bacteria counts in ileum and cecum of broiler chicken was shown by all treatments as compared to the control at day 21. In comparison to the control, all treatments significantly ...

  4. Organic Animal Production and Mycotoxins

    Directory of Open Access Journals (Sweden)

    Nurcan Çetinkaya

    2018-03-01

    Full Text Available Organic animal production; is a form of production without using any chemical inputs from production to consumption. In organic livestock production; organic breeding, feedstuff and animal nutrition conditions are stated in the Regulation on the Principles and Implementation of Organic Agriculture. Organic animal products must be prevented from recontamination. There are three different contamination hazards; biological (mold-toxins and pathogenic micro-organisms, chemical (pesticide residues, and physical (broken metal or glass, etc.. Molding and mycotoxin formation in organic feeds is one of the most important problems since they adversly affect animal health and toxines pass through the products. Since any chemical method cannot be applied to the organic feedstuffs especially in the struggle with mycotoxin in organic animal production, this should be considered in the measures to be taken and in the systems to be applied and the system should be planned to include organic agriculture. Countries that have established HACCP and ISO 22000 food safety management systems are able to avoid the problem of mycotoxin pollution in organic animal foods. The establishment of the feed safety system based on HACCP principles and its application in production have been made compulsory by Feed Hygiene Regulation issued in Turkey since 2011. In this review, the relationship between organic animal production and mycotoxin, and the precautions to be taken are discussed.

  5. Effect of organic loading rate on methane and volatile fatty acids productions from anaerobic treatment of palm oil mill effluent in UASB and UFAF reactors

    Directory of Open Access Journals (Sweden)

    Sumate Chaiprapat

    2007-05-01

    Full Text Available Anaerobic treatment of palm oil mill effluent (POME with the separation of the acidogenic and methanogenic phase was studied in an up-flow anaerobic sludge blanket (UASB reactor and an up-flowanaerobic filter (UFAF reactor. Furthermore, the effect of OLR on methane and volatile fatty acid productions in UASB and UFAF reactors was investigated. In this research, UASB as acidogenic reactor wasused for volatile fatty acid production and UFAF as methanogenic reactor was used for methane production. Therefore, POME without pH adjustment was used as influent for the UASB reactor. Moreover, the syntheticwastewater with pH adjustment to 6.00 was fed into the UFAF reactor. The inoculum source for both reactors was the combination of POME sludge collected from the CSTR of a POME treatment plant and granulesludge collected from the UASB reactor of a frozen sea food industry treatment plant. During experimental operation, the organic loading rate (OLR was gradually increased from 2.50 to 17.5 g COD/l/day in theUASB reactor and 1.10 to 10.0 g COD/l/day in the UFAF reactor. Consequently, hydraulic retention time (HRT ranged from 20.0 to 2.90 days in the UASB reactor and from 13.5 to 1.50 days in the UFAF reactor.The result showed that the COD removal efficiency from both reactors was greater than 60.0%. In addition, the total volatile fatty acids increased with the increasing OLR. The total volatile fatty acids and acetic acidproduction in the UASB reactor reached 5.50 g/l and 4.90 g/l, respectively at OLR of 17.5 g COD/l/day and HRT of 2.90 days before washout was observed. In the UFAF reactor, the methane and biogas productionincreased with increasing OLR until an OLR of 7.50 g COD/l/day. However, the methane and biogas production significantly decreased when OLR increased up to 10.0 g COD/l/day. Therefore, the optimum OLR inthe laboratory-scale UASB and UFAF reactors were concluded to be 15.5 and 7.50 g COD/l/day, respectively.

  6. Natural Product Total Synthesis in the Organic Laboratory: Total Synthesis of Caffeic Acid Phenethyl Ester (CAPE), a Potent 5-Lipoxygenase Inhibitor from Honeybee Hives

    Science.gov (United States)

    Touaibia, Mohamed; Guay, Michel

    2011-01-01

    Natural products play a critical role in modern organic synthesis and learning synthetic techniques is an important component of the organic laboratory experience. In addition to traditional one-step organic synthesis laboratories, a multistep natural product synthesis is an interesting experiment to challenge students. The proposed three-step…

  7. An Organic Puzzle Using Meldrum's Acid

    Science.gov (United States)

    Crouch, R. David; Holden, Michael S.

    2002-04-01

    Meldrum's acid or 2,2-dimethyl-1,3-dioxane-4,6-dione undergoes a Knoevenagel condensation with formaldehyde to form an active Michael acceptor for a second molecule of Meldrum's acid. The structure of the resulting product is determined by correlation of the products of possible reactions of Meldrum's acid and formaldehyde with the NMR spectrum of the product.

  8. Aging impacts of low molecular weight organic acids (LMWOAs) on furfural production residue-derived biochars: Porosity, functional properties, and inorganic minerals.

    Science.gov (United States)

    Liu, Guocheng; Chen, Lei; Jiang, Zhixiang; Zheng, Hao; Dai, Yanhui; Luo, Xianxiang; Wang, Zhenyu

    2017-12-31

    The aging of biochar by low molecular weight organic acids (LMWOAs), which are typical root-derived exudates, is not well understood. Three LMWOAs (ethanoic, malic, and citric acids) were employed to investigate their aging impacts on the biochars from furfural production residues at 300-600°C (BC300-600). The LMWOAs created abundant macropores in BC300, whereas they significantly increased the mesoporosity and surface area of BC600 by 13.5-27.0% and 44.6-61.5%, respectively. After LMWOA aging, the content of C and H of the biochars increased from 51.3-60.2% and 1.87-3.45% to 56.8-69.9% and 2.06-4.45%, respectively, but the O content decreased from 13.8-24.8% to 7.82-19.4% (except BC300). For carbon fraction in the biochars, the LMWOAs barely altered the bulk and surface functional properties during short-term aging. The LMWOAs facilitated the dissolution of minerals (e.g., K 2 Mg(PO 3 ) 4 , AlPO 4 , and Pb 2 P 2 O 7 ) and correspondingly promoted the release of not only plant nutrients (K + , Ca 2+ , Mg 2+ , Fe 3+ , PO 4 3- , and SO 4 2- ) but also toxic metals (Al 3+ and Pb 2+ ). This research provided systematic insights on the responses of biochar properties to LMWOAs and presented direct evidence for acid activation of inorganic minerals in the biochars by LMWOAs, which could enhance the understanding of environmental behaviors of biochars in rhizosphere soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Hydrolytic Amino Acids Employed as a Novel Organic Nitrogen Source for the Preparation of PGPF-Containing Bio-Organic Fertilizer for Plant Growth Promotion and Characterization of Substance Transformation during BOF Production

    Science.gov (United States)

    Feng, Chenglong; Ran, Wei; Yu, Guanghui; Zhang, Yingjun; Shen, Qirong

    2016-01-01

    Opportunity costs seriously limit the large-scale production of bio-organic fertilizers (BOFs) both in China and internationally. This study addresses the utilization of amino acids resulting from the acidic hydrolysis of pig corpses as organic nitrogen sources to increase the density of TrichodermaharzianumT-E5 (a typical plant growth-promoting fungi, PGPF). This results in a novel, economical, highly efficient and environmentally friendly BOF product. Fluorescence excitation-emission matrix (EEM) spectroscopy combined with fluorescence regional integration (FRI) was employed to monitor compost maturity levels, while pot experiments were utilized to test the effects of this novel BOF on plant growth. An optimization experiment, based on response surface methodologies (RSMs), showed that a maximum T-E5 population (3.72 × 108 ITS copies g−1) was obtained from a mixture of 65.17% cattle manure compost (W/W), 19.33% maggot manure (W/W), 15.50% (V/W)hydrolytic amino acid solution and 4.69% (V/W) inoculum at 28.7°C after a 14 day secondary solid fermentation. Spectroscopy analysis revealed that the compost transformation process involved the degradation of protein-like substances and the formation of fulvic-like and humic-like substances. FRI parameters (PI, n, PII, n, PIII, n and PV, n) were used to characterize the degree of compost maturity. The BOF resulted in significantly higher increased chlorophyll content, shoot length, and shoot and root dry weights of three vegetables (cucumber, tomato and pepper) by 9.9%~22.4%, 22.9%~58.5%, 31.0%~84.9%, and 24.2%~34.1%, respectively. In summary, this study presents an operational means of increasing PGPF T-E5 populations in BOF to promote plant growth with a concomitant reduction in production cost. In addition, a BOF compost maturity assessment using fluorescence EEM spectroscopy and FRI ensured its safe field application. PMID:26974549

  10. PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS

    Science.gov (United States)

    Haworth, W.N.; Stacey, M.

    1949-08-30

    A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.

  11. Effect of acidic seed on biogenic secondary organic aerosol growth

    Science.gov (United States)

    Czoschke, Nadine M.; Jang, Myoseon; Kamens, Richard M.

    Secondary organic aerosol (SOA) growth in the presence of acid aerosols was studied in twin 500 l Teflon bags and in a 4 m flow reactor. In Teflon bags, isoprene, acrolein and α-pinene were all made to react individually with ozone and exposed to either acid or non-acid inorganic seed aerosols to determine the effect of acid-catalyzed heterogeneous reactions on SOA growth. α-Pinene and ozone were made to react in a flow reactor to assess the immediate effect of mixing an acid aerosol with SOA at high and low relative humidity levels. In all cases, exposure to acid seed aerosol increased the amount of SOA mass produced. Fourier transform infrared spectra of the SOA in acid systems confirmed the transformation of carbonyl functional groups through acid-catalyzed heterogeneous reactions when SOAs formed in acidic environments or were exposed to acidic aerosols. Organic products initially produced from ozonation in the gas phase partition onto the inorganic seed aerosol and react heterogeneously with an acid catalyst forming low vapor pressure products. These acid-catalyzed heterogeneous reactions are implicated in generating the increased SOA mass observed in acidic aerosol systems as they transform predominantly gas phase compounds of high volatility into low vapor pressure predominantly particle phase products.

  12. Reactive Distillation for Esterification of Bio-based Organic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  13. Effect of Free Nitrous Acid on Nitrous Oxide Production and Denitrifying Phosphorus Removal by Polyphosphorus-Accumulating Organisms in Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Zhijia Miao

    2018-01-01

    Full Text Available The inhibition of free nitrous acid (FNA on denitrifying phosphorus removal has been widely reported for enhanced biological phosphorus removal; however, few studies focus on the nitrous oxide (N2O production involved in this process. In this study, the effects of FNA on N2O production and anoxic phosphorus metabolism were investigated using phosphorus-accumulating organisms (PAOs culture highly enriched (91±4% in Candidatus Accumulibacter phosphatis. Results show that the FNA concentration notably inhibited anoxic phosphorus metabolism and phosphorus uptake. Poly-β-hydroxyalkanoate (PHA degradation was completely inhibited when the FNA concentration was approximately 0.0923 mgHNO2-N/L. Higher initial FNA concentrations (0.00035 to 0.0103 mgHNO2-N/L led to more PHA consumption/TN (0.444 to 0.916 mmol-C/(mmol-N·gVSS. Moreover, it was found that FNA, rather than nitrite and pH, was likely the true inhibitor of N2O production. The highest proportion of N2O to TN was 78.42% at 0.0031 mgHNO2-N/L (equivalent to 42.44 mgNO2-N/L at pH 7.5, due to the simultaneous effects of FNA on the subsequent conversion of NO2 into N2O and then into N2. The traditional nitrite knee point can only indicate the exhaustion of nitrite, instead of the complete removal of TN.

  14. Production of hydroxyl radicals from abiotic oxidation of pyrite by oxygen under circumneutral conditions in the presence of low-molecular-weight organic acids

    Science.gov (United States)

    Zhang, Peng; Yuan, Songhu

    2017-12-01

    Besides acidic environments, pyrite oxidation also occurs in circumneutral environments, such as well-buffered marine and estuarine sediments and salt marshes where low-molecular-weight organic acids (LMWOAs) (e.g., citrate and oxalate) prevail. However, the production of hydroxyl radicals (radOH) from pyrite oxidation by oxygen (O2) in these circumneutral environments is poorly understood. In this study, radOH production was measured during the abiotic oxidation of pyrite by O2 under circumneutral conditions. A pyrite suspension (50 g/L pyrite) that was buffered at pH 6-8 was exposed to air for oxygenation in the dark. Benzoate (20 mM) was added into the suspension to trap radOH. At pH 7, the cumulative radOH reached 7.5 μM within 420 min in the absence of LMWOAs, whereas it increased to 14.8, 12 and 11.2 μM in the presence of 1 mM ethylenediaminotetraacetate, citrate and oxalate, respectively. When the citrate concentration, which serves as a LMWOAs model, was increased from 0.5 to 5 mM, the cumulative radOH increased from 10.3 to 27.3 μM within 420 min at pH 7. With the decrease in pH from 8 to 6, the cumulative radOH increased from 2.1 to 23.3 μM in the absence of LMWOAs, but it increased from 8.8 to 134.9 μM in the presence of 3 mM citrate. The presence of LMWOAs enhanced the radOH production from pyrite oxidation under circumneutral conditions. In the absence of LMOWAs, radOH is produced mostly from the oxidation of adsorbed Fe(II) by O2. In the presence of citrate, radOH production is attributed mainly to the oxidation of Fe(II)-citrate- by O2 and secondarily to the oxidation of H2O on surface-sulfur defects. The acceleration of pyrite oxidation by Fe(III)-citrate increases radOH production. Fe(II)-citrate- is generated mainly from the complexation of adsorbed Fe(II) by citrate and the reduction of Fe(III)-citrate, and the generation is suppressed by the oxidation of adsorbed Fe(II). Fe(III)-citrate is generated predominantly from Fe

  15. Separation and recovery of organic acids from fermented kitchen ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... Figure 1 shows the recovery process of organic acids from fermen- ted kitchen waste. ... freezing process was carried out using a deep freezer at -30°C for overnight. .... few factors which affect the production of lactic acid in the.

  16. Br2 production from the heterogeneous reaction of gas-phase OH with aqueous salt solutions: Impacts of acidity, halide concentration, and organic surfactants.

    Science.gov (United States)

    Frinak, Elizabeth K; Abbatt, Jonathan P D

    2006-09-07

    This study reports the first laboratory measurement of gas-phase Br2 production from the reaction between gas-phase hydroxyl radicals and aqueous salt solutions. Experiments were conducted at 269 K in a rotating wetted-wall flow tube coupled to a chemical-ionization mass spectrometer for analysis of gas-phase components. From both pure NaBr solutions and mixed NaCl/NaBr solutions, the amount of Br2 released was found to increase with increasing acidity, whereas it was found to vary little with increasing concentration of bromide ions in the sample. For mixed NaCl/NaBr solutions, Br2 was formed preferentially over Cl2 unless the Br- levels in the solution were significantly depleted by OH oxidation, at which point Cl2 formation was observed. Presence of a surfactant in solution, sodium dodecyl sulfate, significantly suppressed the formation of Br2; this is the first indication that an organic surfactant can affect the rate of interfacial mass transfer of OH to an aqueous surface. The OH-mediated oxidation of bromide may serve as a source of active bromine in the troposphere and contribute to the subsequent destruction of ozone that proceeds in marine-influenced regions of the troposphere.

  17. On-line coupling of a miniaturized bioreactor with capillary electrophoresis, via a membrane interface, for monitoring the production of organic acids by microorganisms.

    Science.gov (United States)

    Ehala, S; Vassiljeva, I; Kuldvee, R; Vilu, R; Kaljurand, M

    2001-09-01

    Capillary electrophoresis (CE) can be a valuable tool for on-line monitoring of bioprocesses. Production of organic acids by phosphorus-solubilizing bacteria and fermentation of UHT milk were monitored and controlled by use of a membrane-interfaced dialysis device and a home-made microsampler for a capillary electrophoresis unit. Use of this specially designed sampling device enabled rapid consecutive injections without interruption of the high voltage. No additional sample preparation was required. The time resolution of monitoring in this particular work was approximately 2 h, but could be reduced to 2 min. Analytes were detected at low microg mL(-1) levels with a reproducibility of approximately 10%. To demonstrate the potential of CE in processes of biotechnological interest, results from monitoring phosphate solubilization by bacteria were submitted to qualitative and quantitative analysis. Fermentation experiments on UHT milk showed that monitoring of the processes by CE can provide good resolution of complex mixtures, although for more specific, detailed characterization the identification of individual substances is needed.

  18. Production of poly(hydroxybutyrate-hydroxyvalerate) from waste organics by the two-stage process: focus on the intermediate volatile fatty acids.

    Science.gov (United States)

    Shen, Liang; Hu, Hongyou; Ji, Hongfang; Cai, Jiyuan; He, Ning; Li, Qingbiao; Wang, Yuanpeng

    2014-08-01

    The two-stage process, coupling volatile fatty acids (VFAs) fermentation and poly(hydroxybutyrate-hydroxyvalerate) (P(HB/HV)) biosynthesis, was investigated for five waste organic materials. The overall conversion efficiencies were glycerol>starch>molasses>waste sludge>protein, meanwhile the maximum P(HB/HV) (1.674 g/L) was obtained from waste starch. Altering the waste type brought more effects on VFAs composition other than the yield in the first stage, which in turn greatly changed the yield in the second stage. Further study showed that even-number carbon VFAs (or odd-number ones) had a good positive linear relationship with P(HB/HV) content of HB (or HV). Additionally, VFA producing microbiota was analyzed by pyrosequencing methods for five wastes, which indicated that specific species (e.g., Lactobacillus for protein; Ethanoligenens for starch; Ruminococcus and Limnobacter for glycerol) were dominant in the community for VFAs production. Potential competition among acidogenic bacteria specially involved to produce some VFA was proposed as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Biological production of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jianping; Paddock, Troy; Carrieri, Damian; Maness, Pin-Ching; Seibert, Michael

    2016-04-12

    Strains of cyanobacteria that produce high levels of alpha ketoglutarate (AKG) and pyruvate are disclosed herein. Methods of culturing these cyanobacteria to produce AKG or pyruvate and recover AKG or pyruvate from the culture are also described herein. Nucleic acid sequences encoding polypeptides that function as ethylene-forming enzymes and their use in the production of ethylene are further disclosed herein. These nucleic acids may be expressed in hosts such as cyanobacteria, which in turn may be cultured to produce ethylene.

  20. Toward Sustainable Amino Acid Production.

    Science.gov (United States)

    Usuda, Yoshihiro; Hara, Yoshihiko; Kojima, Hiroyuki

    Because the global amino acid production industry has been growing steadily and is expected to grow even more in the future, efficient production by fermentation is of great importance from economic and sustainability viewpoints. Many systems biology technologies, such as genome breeding, omics analysis, metabolic flux analysis, and metabolic simulation, have been employed for the improvement of amino acid-producing strains of bacteria. Synthetic biological approaches have recently been applied to strain development. It is also important to use sustainable carbon sources, such as glycerol or pyrolytic sugars from cellulosic biomass, instead of conventional carbon sources, such as glucose or sucrose, which can be used as food. Furthermore, reduction of sub-raw substrates has been shown to lead to reduction of environmental burdens and cost. Recently, a new fermentation system for glutamate production under acidic pH was developed to decrease the amount of one sub-raw material, ammonium, for maintenance of culture pH. At the same time, the utilization of fermentation coproducts, such as cells, ammonium sulfate, and fermentation broth, is a useful approach to decrease waste. In this chapter, further perspectives for future amino acid fermentation from one-carbon compounds are described.

  1. Determinants of Organic Products Consumption

    Directory of Open Access Journals (Sweden)

    Matheus Wemerson Gomes Pereira

    2015-04-01

    Full Text Available The increased environmental awareness and the growing desire for safer foods to health made the organic products category one of the most growing in the food sector. Thus, this study aimed to identify the most significant socioeconomic variables that influence the frequency of organic products consumption, and for that, it was based on a quantitative-descriptive study with a probability sample of 400 individuals, residing of the urban area of Campo Grande/MS, Brazil, responsible, alone or not, for food purchasing in family. As a tool for data collection, was used a structured questionnaire developed from socioeconomic variables and frequency of consumption of organic products. For the data analysis was performed statistical/econometric tests with the STATA 11.0 statistical software, using Multinomial Logit model (MNL, addition to verification of the explanatory variables effect on the probability of the consumption frequency levels of organic products through the Relative Risk Ratio (RRR, and was analyzed the Marginal Effect (ME exercised by the explanatory variables in each frequency level of organic products consumption. The results showed that the explanatory variables gender, education and economic class were statistically significant in the probability of an individual belong to some of the levels of consumption (rare, occasional and frequent over never having consumed organic products, being higher frequency of consumption when the consumer is female, have higher education or is of higher economic class.

  2. Processing of Unsaturated Organic Acid Aerosols by Ozone

    Science.gov (United States)

    Aloisio, S.; Donaldson, D. J.; Eliason, T. L.; Cziczo, D.; Vaida, V.

    2002-05-01

    We present results of in-situ studies of the oxidative "processing" of organic aerosols composed of unsaturated organic compounds. Aerosol samples of 2-octenoic acid and undecylenic acid were exposed to approx. 10 mbar ozone in a room temperature, atmospheric pressure flow tube reactor. In-situ spectroscopic probing of the reaction mixture, as well as GC-MS analysis of the flow tube effluent, shows evidence of efficient oxidation of double bonds in the organic species, with production of gas-phase and aerosol phase ozonolysis products.

  3. Metabolic evolution of Escherichia coli strains that produce organic acids

    Science.gov (United States)

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  4. 5-Hydroxymethylfurfural (5-HMF Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System

    Directory of Open Access Journals (Sweden)

    Nadine Essayem

    2012-09-01

    Full Text Available 5-Hydroxymethylfurfural (5-HMF is an important bio-sourced intermediate, formed from carbohydrates such as glucose or fructose. The treatment at 150–250 °C of glucose or fructose in pure water and batch conditions, with catalytic amounts of most of the usual acid-basic solid catalysts, gave limited yields in 5-HMF, due mainly to the fast formation of soluble oligomers. Niobic acid, which possesses both Lewis and Brønsted acid sites, gave the highest 5-HMF yield, 28%, when high catalyst/glucose ratio is used. By contrast, we disclose in this work that the reaction of fructose in concentrated aqueous solutions of carboxylic acids, formic, acetic or lactic acids, used as reactive solvent media, leads to the selective dehydration of fructose in 5-HMF with yields up to 64% after 2 hours at 150 °C. This shows the potential of such solvent systems for the clean and easy production of 5-HMF from carbohydrates. The influence of adding solid catalysts to the carboxylic acid media was also reported, starting from glucose.

  5. Hydrolysis-acidogenesis of food waste in solid-liquid-separating continuous stirred tank reactor (SLS-CSTR) for volatile organic acid production.

    Science.gov (United States)

    Karthikeyan, Obulisamy Parthiba; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-01-01

    The use of conventional continuous stirred tank reactor (CSTR) can affect the methane (CH4) recovery in a two-stage anaerobic digestion of food waste (FW) due to carbon short circuiting in the hydrolysis-acidogenesis (Hy-Aci) stage. In this research, we have designed and tested a solid-liquid-separating CSTR (SLS-CSTR) for effective Hy-Aci of FW. The working conditions were pH 6 and 9 (SLS-CSTR-1 and -2, respectively); temperature-37°C; agitation-300rpm; and organic loading rate (OLR)-2gVSL(-1)day(-1). The volatile fatty acids (VFA), enzyme activities and bacterial population (by qPCR) were determined as test parameters. Results showed that the Hy-Aci of FW at pH 9 produced ∼35% excess VFA as compared to that at pH 6, with acetic and butyric acids as major precursors, which correlated with the high enzyme activities and low lactic acid bacteria. The design provided efficient solid-liquid separation there by improved the organic acid yields from FW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Computer Aided Synthesis of Innovative Processes: Renewable Adipic Acid Production

    DEFF Research Database (Denmark)

    Rosengarta, Alessandro; Bertran, Maria-Ona; Manenti, Flavio

    2017-01-01

    A promising biotechnological route for the production of adipic acid from renewables has been evaluated, applying a systematic methodology for process network synthesis and optimization. The method allows organizing in a structured database the available knowledge from different sources (prelimin...

  7. Effect of Lactobacillus sp. isolates supernatant on Escherichia coli O157:H7 enhances the role of organic acids production as a factor for pathogen control

    Directory of Open Access Journals (Sweden)

    Larissa B. Poppi

    2015-04-01

    Full Text Available Many attempts have been made to establish the control of foodborne pathogens through Lactobacillus isolates and their metabolism products with success being obtained in several situations. The aim of this study was to investigate the antagonistic effect of eight Lactobacillus isolates, including L. casei subsp. pseudoplantarum, L. plantarum, L. reuteri and L. delbrueckii subsp. delbrueckii, on the pathogenic Escherichia colistrain O157:H7. The inhibitory effect of pure cultures and two pooled cultures supernatants of Lactobacillus on the growth of pathogenic bacteria was evaluated by the spot agar method and by monitoring turbidity. Antimicrobial activity was confirmed for L. reuteri and L. delbrueckii subsp. delbrueckii and for a pool of lactic acid bacteria. The neutralized supernatant of the pool exerted a higher antimicrobial activity than that of the individual strains. Furthermore, D-lactic acid and acetic acid were produced during growth of the Lactobacillus isolates studied.

  8. Influences of incubation temperature and various saccharides on the production of organic acids and gases by gut microbes of rainbow trout Oncorhynchus mykiss in a micro-scale batch culture.

    Science.gov (United States)

    Kihara, M; Sakata, T

    2001-08-01

    We studied the influence of incubation temperature and additional saccharides on the metabolism of hindgut microbes of the rainbow trout Oncorhynchus mykiss in a 50 microl-scale batch culture system. Intestinal contents of rainbow trout reared at 15 degrees C were incubated with glucose, lactosucrose, sodium alginate or colloidal chitin (each 10 g/l) at 15 degrees C or 25 degrees C for 12 h. Levels of organic acids at 0 h and 12 h of incubation were quantified with HPLC. We also monitored gas release from these cultures during incubation. The main product was iso-butyric acid, except for the cultures with colloidal chitin where no net production of organic acids was observed. We detected higher levels of iso-butyric acid in cultures with lactosucrose than in the other cultures. Net production of this acid was less in cultures with colloidal chitin than in blank cultures. The volume of released gas was larger when incubated at 25 degrees C than at 15 degrees C. Cultures with colloidal chitin released more gas than blank cultures when they were incubated at 15 degrees C. Cultures with sodium alginate released less gas than blank cultures irrespective of incubation temperature. These results indicate that the hindgut microbes of this carnivorous fish mainly produce branched-chain fatty acids, very likely by microbial digestion of nitrogenous materials rather than saccharides. However, additional saccharides affected production of branched-chain fatty acids. The influence of incubation temperature in the present study also suggested that the environmental temperature of host fish should affect microbial digestion in the fish gut.

  9. Acidity controls on dissolved organic carbon mobility in organic soils

    Czech Academy of Sciences Publication Activity Database

    Evans, Ch. D.; Jones, T.; Burden, A.; Ostle, N.; Zielinski, P.; Cooper, M.; Peacock, M.; Clark, J.; Oulehle, Filip; Cooper, D.; Freeman, Ch.

    2012-01-01

    Roč. 18, č. 11 (2012), s. 3317-3331 ISSN 1354-1013 Institutional support: RVO:67179843 Keywords : acidity * dissolved organic carbon * organic soil * peat * podzol * soil carbon * sulphur Subject RIV: EH - Ecology, Behaviour Impact factor: 6.910, year: 2012

  10. Modelling the behaviour of organic degradation products

    International Nuclear Information System (INIS)

    Cross, J.E.; Ewart, F.T.; Greenfield, B.F.

    1989-03-01

    Results are presented from recent studies at Harwell which show that the degradation products which are formed when certain organic waste materials are exposed to the alkaline conditions typical of a cementitious environment, can enhance the solubility of plutonium, even at pH values as high as 12, by significant factors. Characterisation of the degradation products has been undertaken but the solubility enhancement does not appear to be related to the concentration of any of the major organic species that have been identified in the solutions. While it has not been possible to identify by analysis the organic ligand responsible for the increased solubility of plutonium, the behaviour of D-Saccharic acid does approach the behaviour of the degradation products. The PHREEQE code has been used to simulate the solubility of plutonium in the presence of D-Saccharic acid and other model degradation products, in order to explain the solubility enhancement. The extrapolation of the experimental conditions to the repository is the major objective, but in this work the ability of a model to predict the behaviour of plutonium over a range of experimental conditions has been tested. (author)

  11. Use of organic acids in acne and skin discolorations therapy

    Directory of Open Access Journals (Sweden)

    Alicja Kapuścińska

    2015-03-01

    Full Text Available Acne is one of the most frequent skin disorders that occurs in puberty, but often adults also have acne. The most important factors responsible for acne are elevated production of sebum by hyperactive sebaceous glands and blockage of the follicle because of hyperkeratosis [14]. The third etiopathogenic factor of acne is excessive microflora reproduction [8]. The most significant bacterium that is responsible for formation of skin lesions is Propionibacterium acnes, a rod-shaped Gram-positive and aerotolerant anaerobic bacterium. It is estimated that P. acnes is responsible for acne in approximately 80% of people aged 11 to 30 [27,40]. Even healed skin lesions can often cause skin discolorations and scar formation [51]. Exfoliating chemical substances that are commonly used in dermatology and cosmetology are organic acids. Exfoliating treatment using organic acids is called “chemical peeling” and consists of controlled application of those substances on the skin [38]. The depth of exfoliation depends on organic acid concentration, type of substance and contact time with the skin [41]. Using exfoliating agents seems to be helpful in excessive keratinization – one of several factors responsible for acne. Moreover, epidermis exfoliation is a popular method of removing skin discoloration [22]. Considering chemical structure, exfoliating substances that are most often used in cosmetology contain alpha-hydroxyacids (glycolic acid, lactic acid, mandelic acid and citric acid, beta-hydroxyacids (salicylic acid and other organic acids, such as trichloroacetic acid and pyruvic acid [47]. In this article, a literature review of use of organic acids in acne and skin discoloration therapy is presented.

  12. Productivity spillovers of organization capital

    NARCIS (Netherlands)

    Chen, Wen; Inklaar, Robert

    Investments in organization capital increase productivity of not just the investing firm but could also spillover to other firms-similar to investments in research and development. Recent evidence at the industry and economy level suggests such spillovers could be important. In this paper, we fail

  13. ORGANIC ACIDS CONCENTRATION IN WINE STOCKS AFTER Saccharomyces cerevisiae FERMENTATION

    Directory of Open Access Journals (Sweden)

    V. N. Bayraktar

    2013-04-01

    Full Text Available The biochemical constituents in wine stocks that influence the flavor and quality of wine are investigated in the paper. The tested parameters consist of volume fraction of ethanol, residual sugar, phenolic compounds, tartaric, malic, citric, lactic, acetic acids, titratable acidity and volatile acids. The wine stocks that were received from white and red grape varieties Tairov`s selection were tested. There was a correlation between titratable acidity and volatile acids in the wine stocks from white and red grape varieties. High correlation was also found between lactic and acetic acids, between volatile acids, acetic acid and sugar. It was determined that wine stocks with a high concentration of ethanol originated from those yeast strains of Saccharomyces cerevisiae, in a fermented grape must of high speed of enzyme activity. The taste of wine stocks correlated with the ratio of tartaric to malic acid. Analysis showed significant differences between the varieties of white and red wine stocks in concentrations of organic acids, phenolic compounds, residual sugar, and volume fraction of ethanol. Positive correlation was indicated for both studied groups for volatile acids and acetic acid, tartaric, malic, lactic acids and total sugar. Prospective yeast cultures with high productivity of alcohol (ethanol were selected for winemaking biotechnology.

  14. Liquid biofuel production from volatile fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Steinbusch, K.J.J.

    2010-03-19

    The production of renewable fuels and chemicals reduces the dependency on fossil fuels and limits the increase of CO2 concentration in the atmosphere only if a sustainable feedstock and an energy efficient process are used. The thesis assesses the possibility to use municipal and industrial waste as biomass feedstock to have little of no competition with food production, and to save greenhouse gasses emissions. Waste is a complex substrate with a diverse composition and high water content. It can be homogenized without losing its initial energy value by anaerobic conversion to volatile fatty acids (VFA). Using VFA gives the opportunity to process cheap and abundantly present biomass residues to a fuel and chemical instead of sugar containing crops or vegetable oil. This thesis describes the feasibility to convert VFA to compounds with a higher energy content using mixed culture fermentations by eliminating of oxygen and/or increasing the carbon and hydrogen content. At high hydrogen pressure, protons and electrons release via the reduction of organic products such as VFA becomes thermodynamically more attractive. Three VFA reduction reactions were studied: hydrogenation to an alcohol with (1) hydrogen and (2) an electrode as electron donor, and (3) by chain elongation with hydrogen and ethanol. Based on concentration, production rate and efficiency, elongation of acetate with hydrogen and/or ethanol was the best technique to convert VFA into a fuel. In a CSTR (Continuous-flow stirred-tank reactor), 10.5 g L{sup -1} caproic acid and 0.48 g L{sup -1} caprylic acid were produced with ethanol and/or hydrogen at a specific MCFA (medium-chain fatty acids) production activity of 2.9 g caproate and 0.09 g caprylate per gram VSS d{sup -1} (volatile suspended solids). The products were selectively removed by calcium precipitation and solvent extraction with ethyl hexanoate and petroleum ether. Microbial characterization revealed that the microbial populations were stable and

  15. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production: Progress report, February 1, 1987-February 1, 1988

    International Nuclear Information System (INIS)

    Zeikus, J.G.; Shen, Gwo-Jenn.

    1988-01-01

    These studies concern the fundamental biochemical mechanisms that control carbon and electron flow in anaerobic bacteria that conserve energy when coupling hydrogen consumption to the production of acetic, propionic, or butyric acids. Two acidogens, Propionispira arboris and Butyribacterium methylotrophicum were chosen as model systems to understand the function of oxidoreductases and electron carriers in the regulation of hydrogen metabolism and single carbon metabolism. In P. arboris, H 2 consumption was linked to the inhibition of CO 2 production and an increase in the propionate/acetate rate; whereas, H 2 consumption was linked to a stimulation of CO 2 consumption and an increase in the butyrate/acetate ratio in B. methylotrophicum. We report studies on the enzymes involved in the regulation of singe carbon metabolism, the enzyme activities and pathways responsible for conversion of multicarbon components to acetate and propionate or butyrate, and how low pH inhibits H 2 and acetic acid production in Sarcina ventriculi as a consequence of hydrogenase regulation. 9 refs

  16. Succinic acid production from Jerusalem artichoke

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Karakashev, Dimitar Borisov; Angelidaki, Irini

    In this work, A. succinogenes 130Z was used to produce succinic acid from Jerusalem artichoke tuber hydrolysate. Results showed that both fructose and glucose in the tuber hydrolysate were utilized for succinic acid production. The sugar utilization was found to be dependent on process control...... that Jerusalem artichoke tubers could be utilized for production of bio-succinic acid....

  17. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids

    Directory of Open Access Journals (Sweden)

    Hongbin Lin

    2018-05-01

    Full Text Available Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC. Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln, glutamic acid (Glu, aspartic acid (Asp and asparagines (Asn were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  18. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids.

    Science.gov (United States)

    Lin, Hongbin; Yu, Xiaoyu; Fang, Jiaxing; Lu, Yunhao; Liu, Ping; Xing, Yage; Wang, Qin; Che, Zhenming; He, Qiang

    2018-05-29

    Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC). Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln), glutamic acid (Glu), aspartic acid (Asp) and asparagines (Asn) were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  19. Effects of organic acid supplementation on antioxidant capacity and ...

    African Journals Online (AJOL)

    Four commercial organic acids and a reference antibiotic, Neoxyval, were administered to commercial broilers to evaluate the efficacy of these products during pre- and post-challenge with Salmonella enterica subsp. enterica Typhimurium (S. Typhimurium) on selected indicators of their antioxidant status and immune ...

  20. Relationship between plant growth and organic acid exudates from ...

    African Journals Online (AJOL)

    Plant–mycorrhizal interaction is an important association in the ecosystem with significant impacts on the physical, biological and chemical properties of the soil. In the present study, potential relationships that exist between organic acid production by ectomycorrhizal pine seedlings and plant parameters in the absence of ...

  1. Organic acid profile of commercial sour cassava starch

    Directory of Open Access Journals (Sweden)

    DEMIATE I.M.

    1999-01-01

    Full Text Available Organic acids are present in sour cassava starch ("polvilho azedo" and contribute with organoleptic and physical characteristics like aroma, flavor and the exclusive baking property, that differentiate this product from the native cassava starch. Samples of commercial sour cassava starch collected in South and Southeast Brazil were prepared for high performance liquid chromatography (HPLC analysis. The HPLC equipment had a Biorad Aminex HPX-87H column for organic acid analysis and a refractometric detector. Analysis was carried out with 0.005M sulfuric acid as mobile phase, 0.6ml/min flow rate and column temperature of 60° C. The acids quantified were lactic (0.036 to 0.813 g/100g, acetic (0 to 0.068 g/100g, propionic (0 to 0.013 g/100g and butyric (0 to 0.057 g/100g, that are produced during the natural fermentation of cassava starch. Results showed large variation among samples, even within the same region. Some samples exhibited high acid levels, mainly lactic acid, but in these neither propionic nor butyric acids were detected. Absence of butyric acid was not expected because this is an important component of the sour cassava starch aroma, and the lack of this acid may suggest that such samples were produced without the natural fermentation step.

  2. Production of carboxylic acid and salt co-products

    Science.gov (United States)

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  3. Postharvest Practices for Organically Grown Products

    Directory of Open Access Journals (Sweden)

    Ilić Zoran S.

    2018-03-01

    Full Text Available Quality of produce cannot be improved after harvest, only maintained. Postharvest handling depends on the specific conditions of production, season, method of handling, and distance to market. Under organic production, growers harvest and market their produce at or near the peak ripeness more commonly than in many conventional systems. Organic production often includes more specialty varieties whose shelf life and shipping traits are reduced or even inherently poor. Harvesting and handling techniques that minimize injury to the commodity, as well as increased care with field and packinghouse sanitation, (chlorine, ozone, calcium hypochlorite, sodium hypochlorite and chlorine dioxide, acetic acid, peroxyacetic acid, vinegar, ethyl alcohol, hydrogen peroxide, etc. during postharvest processes are vital components of a postharvest management plan for organic products. Sodium carbonate, sodium bicarbonate, and physical treatments such as heat treatments (as hot water treatment or dips, short hot water rinsing and brushing or hot air can significantly lower the disease pressure on the harvested commodities. These sanitation practices are very easy to implement in the organic food production chain. They start in the field and continue during harvesting, sorting, packing, and transportation and continue even in the consumer’s home. All those treatments reduce rot development, provide quarantine security, and preserve fruit quality during cold storage and shelf life. In addition, the use chitosan, propolis, methyl jasmonate, essential oils, carnuba wax, biocontrol agents and modified atmosphere packaging can also reduce decay development during prolonged storage. All these treatments can be applied alone or in combination with each other in order to improve decay control after harvest and provide a healthy and safe product to the consumer. The aim of this chapter is to shed more light on the latest information on permitted treatments for organic

  4. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping; Hatzell, Marta C.; Cusick, Roland D.; Logan, Bruce E.

    2013-01-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions

  5. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids

    Science.gov (United States)

    Liheng Chen; Junyong Zhu; Carlos Baez; Peter Kitin; Thomas Elder

    2016-01-01

    Here we report the production of highly thermal stable and functional cellulose nanocrystals (CNC) and nanofibrils (CNF) by hydrolysis using concentrated organic acids. Due to their low water solubility, these solid organic acids can be easily recovered after hydrolysis reactions through crystallization at a lower or ambient temperature. When dicarboxylic acids were...

  6. The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis

    International Nuclear Information System (INIS)

    Chapman, Pippa J.; Clark, Joanna M.; Reynolds, Brian; Adamson, John K.

    2008-01-01

    Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer. - Seasonal variations in soil solution ANC is controlled by seasonal variations in seasalt deposition and production of dissolved organic acids

  7. Comparing the Effect of Diets Treated with Different Organic Acids ...

    African Journals Online (AJOL)

    An experiment was conducted to compare the growth and economics of adding organic acids to diets of broiler chickens. The organic acids were sorbic benzoic lactic and propionic acids. 150 day old Hubbard chicks were used. There were five treatments. Diet 1 which served as control contained no organic acid. Diets 2, 3 ...

  8. Recovery of Organic and Amino Acids from Sludge and Fish Waste in Sub Critical Water Conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal

    2011-12-01

    Full Text Available The possibility of organic and amino acid production from the treatment of sludge and fish waste using water at sub critical conditions was investigated. The results indicated that at sub-critical conditions, where the ion product of water went through a maximum, the formation of organic acids was favorable. The presence of oxidant favored formation of acetic and formic acid. Other organic acids of significant amount were propionic, succinic and lactic acids. Depending on the type of wastes, formation of other organic acids was also possible. Knowing the organic acids obtained by hydrolysis and oxidation in sub-critical water of various wastes are useful in designing of applicable waste treatment process, complete degradation of organic wastes into volatile carbon and water, and also on the viewpoint of resource recovery. The production of lactic acid was discussed as well. The results indicated that temperature of 573 K, with the absence of oxidant, yield of lactic acid from fish waste was higher than sewage sludge. The maximum yield of total amino acids (137 mg/g-dry fish from waste fish entrails was obtained at subcritical condition (T = 523 K, P = 4 MPa at reaction time of 60 min by using the batch reactor. The amino acids obtained in this study were mainly alanine and glycine. Keywords:  organic acids, amino acids, sub-critical water, hydrothermal, resources recovery

  9. Biochar: a green sorbent to sequester acidic organic contaminants

    Science.gov (United States)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2015-04-01

    Biochar is a carbon rich product of biomass pyrolysis that exhibits a high sorption potential towards a wide variety of inorganic and organic contaminants. Because it is a valuable soil additive and a potential carbon sink that can be produced from renewable resources, biochar has gained growing attention for the development of more sustainable remediation strategies. A lot of research efforts have been dedicated to the sorption of hydrophobic contaminants and metals to biochar. Conversely, the understanding of the sorption of acidic organic contaminants remains limited, and questions remain on the influence of biochar characteristics (e.g. ash content) on the sorption behaviour of acidic organic contaminants. To address this knowledge gap, sorption batch experiments were conducted with a series of structurally similar acidic organic contaminants covering a range of dissociation constant (2,4-D, MCPA, 2,4-DB and triclosan). The sorbents selected for experimentation included a series of 10 biochars covering a range of characteristics, multiwalled carbon nanotubes as model for pure carbonaceous phases, and an activated carbon as benchmark. Overall, sorption coefficient [L/kg] covered six orders of magnitude and generally followed the order 2,4-D pH dependent lipophilicity ratio (i.e. D instead of Kow), ash content and ionic strength are key factors influencing the sorption of acidic organic contaminants to biochars. Overall, the identified factors, as well as the environmental matrix, should be carefully considered when selecting the type of biochar for sequestration purposes.

  10. Simultaneous analysis of small organic acids and humic acids using high performance size exclusion chromatography

    NARCIS (Netherlands)

    Qin, X.P.; Liu, F.; Wang, G.C.; Weng, L.P.

    2012-01-01

    An accurate and fast method for simultaneous determination of small organic acids and much larger humic acids was developed using high performance size exclusion chromatography. Two small organic acids, i.e. salicylic acid and 2,3-dihydroxybenzoic acid, and one purified humic acid material were used

  11. Recovery of fission products from acidic waste solutions thereof

    International Nuclear Information System (INIS)

    Carlin, W.W.; Darlington, W.B.; Dubois, D.W.

    1975-01-01

    Fission products, e.g., palladium, ruthenium and technetium, are removed from aqueous, acidic waste solutions thereof. The acidic waste solution is electrolyzed in an electrolytic cell under controlled cathodic potential conditions and technetium, ruthenium, palladium and rhodium are deposited on the cathode. Metal deposit is removed from the cathode and dissolved in acid. Acid insoluble rhodium metal is recovered, dissolved by alkali metal bisulfate fusion and purified by electrolysis. In one embodiment, the solution formed by acid dissolution of the cathode metal deposit is treated with a strong oxidizing agent and distilled to separate technetium and ruthenium (as a distillate) from palladium. Technetium is separated from ruthenium by organic solvent extraction and then recovered, e.g., as an ammonium salt. Ruthenium is disposed of as waste by-product. Palladium is recovered by electrolysis of an acid solution thereof under controlled cathodic potential conditions. Further embodiments wherein alternate metal recovery sequences are used are described. (U.S.)

  12. Virtual Nitrogen Losses from Organic Food Production

    Science.gov (United States)

    Cattell Noll, L.; Galloway, J. N.; Leach, A. M.; Seufert, V.; Atwell, B.; Shade, J.

    2015-12-01

    Reactive nitrogen (Nr) is necessary for crop and animal production, but when it is lost to the environment, it creates a cascade of detrimental environmental impacts. The nitrogen challenge is to maximize the food production benefits of Nr, while minimizing losses to the environment. The first nitrogen footprint tool was created in 2012 to help consumers learn about the Nr losses to the environment that result from an individual's lifestyle choices. The nitrogen lost during food production was estimated with virtual nitrogen factors (VNFs) that quantify the amount of nitrogen lost to the environment per unit nitrogen consumed. Alternative agricultural systems, such as USDA certified organic farms, utilize practices that diverge from conventional production. In order to evaluate the potential sustainability of these alternative agricultural systems, our team calculated VNFs that reflect organic production. Initial data indicate that VNFs for organic grains and organic starchy roots are comparable to, but slightly higher than conventional (+10% and +20% respectively). In contrast, the VNF for organic vegetables is significantly higher (+90%) and the VNF for organic legumes is significantly lower (-90%). Initial data on organic meat production shows that organic poultry and organic pigmeat are comparable to conventional production (both <5% difference), but that the organic beef VNF is significantly higher (+30%). These data show that in some cases organic and conventional production are comparable in terms of nitrogen efficiency. However, since conventional production relies heavily on the creation of new reactive nitrogen (Haber-Bosch, biological nitrogen fixation) and organic production primarily utilizes already existing reactive nitrogen (manure, crop residue, compost), the data also show that organic production contributes less new reactive nitrogen to the environment than conventional production (approximately 70% less). Therefore, we conclude that on a local

  13. Amino acid nitrosation products as alkylating agents.

    Science.gov (United States)

    García-Santos, M del P; Calle, E; Casado, J

    2001-08-08

    Nitrosation reactions of alpha-, beta-, and gamma-amino acids whose reaction products can act as alkylating agents of DNA were investigated. To approach in vivo conditions for the two-step mechanism (nitrosation and alkylation), nitrosation reactions were carried out in aqueous acid conditions (mimicking the conditions of the stomach lumen) while the alkylating potential of the nitrosation products was investigated at neutral pH, as in the stomach lining cells into which such products can diffuse. These conclusions were drawn: (i) The alkylating species resulting from the nitrosation of amino acids with an -NH(2) group are the corresponding lactones; (ii) the sequence of alkylating power is: alpha-lactones > beta-lactones > gamma-lactones, coming respectively from the nitrosation of alpha-, beta-, and gamma-amino acids; and (iii) the results obtained may be useful in predicting the mutagenic effectiveness of the nitrosation products of amino acids.

  14. Opportunities, perspectives and limits in lactic acid production from waste and industrial by-products

    Directory of Open Access Journals (Sweden)

    Mladenović Dragana D.

    2016-01-01

    Full Text Available In line with the goals of sustainable development and environmental protection today great attention is directed towards new technologies for waste and industrial by-products utilization. Waste products represent potentially good raw material for production other valuable products, such as bioethanol, biogas, biodiesel, organic acids, enzymes, microbial biomass, etc. Since the first industrial production to the present, lactic acid has found wide application in food, cosmetic, pharmaceutical and chemical industries. In recent years, the demand for lactic acid has been increasing considerably owing to its potential use as a monomer for the production of poly-lactic acid (PLA polymers which are biodegradable and biocompatible with wide applications. Waste and industrial by-products such are whey, molasses, stillage, waste starch and lignocellulosic materials are a good source of fermentable sugars and many other substances of great importance for the growth of microorganisms, such as proteins, minerals and vitamins. Utilization of waste products for production of lactic acid could help to reduce the total cost of lactic acid production and except the economic viability of the process offers a solution of their disposal. Fermentation process depends on chemical and physical nature of feedstocks and the lactic acid producer. This review describes the characteristics, abilities and limits of microorganisms involved in lactic acid production, as well as the characteristics and types of waste products for lactic acid production. The fermentation methods that have been recently reported to improve lactic acid production are summarized and compared. In order to improve processes and productivity, fed-batch fermentation, fermentation with immobilized cell systems and mixed cultures and opportunities of open (non-sterilized fermentation have been investigated.

  15. Method for production of dicarbonic acid anhydrides

    International Nuclear Information System (INIS)

    Mistr, A.; Necas, J.; Polak, V.

    1975-01-01

    A method is described of producing dicarboxylic acid anhydrides by the reaction of maleic acid anhydride with olefins. The synthesis is initiated by gamma radiation at a total dose of 10 4 to 10 6 rads in the presence of an organic solvent. The addition reactions of maleic acid anhydride to 1-hexadecene, 1-octene and cyclohexene with yields of 43%, 17% and 11%, respectively, are specified. (L.K.)

  16. Towards Sustainable Production of Formic Acid.

    Science.gov (United States)

    Bulushev, Dmitri A; Ross, Julian R H

    2018-03-09

    Formic acid is a widely used commodity chemical. It can be used as a safe, easily handled, and transported source of hydrogen or carbon monoxide for different reactions, including those producing fuels. The review includes historical aspects of formic acid production. It briefly analyzes production based on traditional sources, such as carbon monoxide, methanol, and methane. However, the main emphasis is on the sustainable production of formic acid from biomass and biomass-derived products through hydrolysis and oxidation processes. New strategies of low-temperature synthesis from biomass may lead to the utilization of formic acid for the production of fuel additives, such as methanol; upgraded bio-oil; γ-valerolactone and its derivatives; and synthesis gas used for the Fischer-Tropsch synthesis of hydrocarbons. Some technological aspects are also considered. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Organic agricultural products in Europe and USA

    Directory of Open Access Journals (Sweden)

    Skrodzka Violetta

    2017-12-01

    Full Text Available In the most developed countries of Western Europe and North America, the share of organic farming in the food market is between 2% and 6%. The share of organic products on the Polish food market is only 0.33% (Dryjańska E. 2017. The aim of this article is to compare organic agricultural products in the US and EU. The scope of the comparison was covered by the legal regulations for organic production in the mentioned regions and the availability of organic products for customers. In order to highlight differences between the organic product and their traditional counterpart, selected meta-analyzes were conducted by authors in the field of medical and natural sciences. The possibilities of buying organic products are described on the basis of personal experiences of the author as a consumer. The offer of organic products was analyzed on the example of one European country (Poland and the example of several states of America (Colorado, Virginia, New York. The rules for producing organic food in the US are more rigorous than in the EU. The offer of organic and conventional food targeted to the American consumer is comparable. Although Polish consumers have a positive perception of organic food, its supply is significantly different from the US market. The main differences are in distribution channels, product range, price and visual design of organic products.

  18. Economics of feeding drinking water containing organic acids to ...

    African Journals Online (AJOL)

    A feeding trial was conducted to determine the economic effect of acidifying drinking water of broiler chickens with organic acids. The organic acids were acetic, butyric, citric and formic acids, each offered at 0.25%. The control did not contain any of the acids. One hundred and fifty (150) day old AborAcre - plus chicks were ...

  19. Production of Genetically Improved Organic Nile Tilapia

    NARCIS (Netherlands)

    Charo, H.; Komen, J.; Bovenhuis, H.; Rezk, M.A.; Ponzoni, R.W.

    2008-01-01

    Demand for organic products for human consumption has been on the increase due to the belief that organic products are safer and healthier to the consumer and the environment. In developing countries, Nile tilapia (Oreochromis niloticus) is usually grown in low-input organically fed ponds with

  20. Selective breeding in organic dairy production

    NARCIS (Netherlands)

    Nauta, W.J.

    2009-01-01

    Organic dairy farming started to take off in the early 1990s, when the European Union laid down organic standards for animal production. Until now, however, only incidental steps have been taken towards organic breeding and organic farmers mainly use breeding stock from conventional breeding

  1. Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans

    Directory of Open Access Journals (Sweden)

    Huang Chao

    2012-01-01

    Full Text Available Abstract Background Microbial lipids have drawn increasing attention in recent years as promising raw materials for biodiesel production, and the use of lignocellulosic hydrolysates as carbon sources seems to be a feasible strategy for cost-effective lipid fermentation with oleaginous microorganisms on a large scale. During the hydrolysis of lignocellulosic materials with dilute acid, however, various kinds of inhibitors, especially large amounts of organic acids, will be produced, which substantially decrease the fermentability of lignocellulosic hydrolysates. To overcome the inhibitory effects of organic acids, it is critical to understand their impact on the growth and lipid accumulation of oleaginous microorganisms. Results In our present work, we investigated for the first time the effect of ten representative organic acids in lignocellulosic hydrolysates on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans cells. In contrast to previous reports, we found that the toxicity of the organic acids to the cells was not directly related to their hydrophobicity. It is worth noting that most organic acids tested were less toxic than aldehydes to the cells, and some could even stimulate the growth and lipid accumulation at a low concentration. Unlike aldehydes, most binary combinations of organic acids exerted no synergistic inhibitory effects on lipid production. The presence of organic acids decelerated the consumption of glucose, whereas it influenced the utilization of xylose in a different and complicated way. In addition, all the organic acids tested, except furoic acid, inhibited the malic activity of T. fermentans. Furthermore, the inhibition of organic acids on cell growth was dependent more on inoculum size, temperature and initial pH than on lipid content. Conclusions This work provides some meaningful information about the effect of organic acid in lignocellulosic hydrolysates on the lipid production of

  2. Recombinant organisms for production of industrial products

    OpenAIRE

    Adrio, Jose-Luis; Demain, Arnold L

    2009-01-01

    A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding...

  3. Organic leek seed production - securing seed quality

    DEFF Research Database (Denmark)

    Deleuran, Lise Christina; Boelt, Birte

    2011-01-01

    To maintain integrity in organic farming, availability of organically produced GM-free seed of varieties adapted to organic production systems is of vital impor-tance. Despite recent achievements, organic seed supply for a number of vegetable species is insufficient. Still, in many countries...... seeds. Tunnel production is a means of securing seed of high genetic purity and quality, and organic leek (Allium porrum L.) seed production was tested in tunnels in Denmark. The present trial focused on steckling size and in all years large stecklings had a positive effect on both seed yield...

  4. Organic Leek Seed Production - Securing Seed Quality

    DEFF Research Database (Denmark)

    Deleuran, L C; Boelt, B

    2011-01-01

    To maintain integrity in organic farming, availability of organically produced GM-free seed of varieties adapted to organic production systems is of vital impor-tance. Despite recent achievements, organic seed supply for a number of vegetable species is insufficient. Still, in many countries...... seeds. Tunnel production is a means of securing seed of high genetic purity and quality, and organic leek (Allium porrum L.) seed production was tested in tunnels in Denmark. The present trial focused on steckling size and in all years large stecklings had a positive effect on both seed yield...

  5. Recombinant organisms for production of industrial products

    Science.gov (United States)

    Adrio, Jose-Luis

    2010-01-01

    A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding techniques and their modifications are contributing greatly to the development of improved industrial processes. In addition, functional genomics, proteomics and metabolomics are being exploited for the discovery of novel valuable small molecules for medicine as well as enzymes for catalysis. The sequencing of industrial microbal genomes is being carried out which bodes well for future process improvement and discovery of new industrial products. PMID:21326937

  6. Recombinant organisms for production of industrial products.

    Science.gov (United States)

    Adrio, Jose-Luis; Demain, Arnold L

    2010-01-01

    A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding techniques and their modifications are contributing greatly to the development of improved industrial processes. In addition, functional genomics, proteomics and metabolomics are being exploited for the discovery of novel valuable small molecules for medicine as well as enzymes for catalysis. The sequencing of industrial microbal genomes is being carried out which bodes well for future process improvement and discovery of new industrial products. © 2010 Landes Bioscience

  7. Organic and free-range egg production

    OpenAIRE

    Hammershøj, M.

    2011-01-01

    This chapter includes information on the development of the free range and the organic egg production and their market shares in different countries. Consumer behaviour is investigated particularly in relation to the price and availability of non-cage eggs. Regulations on the production of free range and organic eggs and their present and future impact are examined. Nutrient supply, animal welfare, productivity, safety and environmental impact of the types of egg production are covered with a...

  8. Biological production of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jianping; Wang, Bo; Paddock, Troy; Carrieri, Damian; Maness, Pin-Ching; Seibert, Michael

    2018-03-13

    Methods of producing ethylene oxide and ethylene glycol are disclosed herein. Ethylene produced by cyanobacteria engineered to express ethylene-forming enzymes may be converted to ethylene oxide by bacteria engineered to express a monooxygenase enzyme. Ethylene oxide may be converted to ethylene glycol by exposure to an acidic solution. The methods may be performed in a bioreactor.

  9. Effects of pH control and concentration on microbial oil production from Chlorella vulgaris cultivated in the effluent of a low-cost organic waste fermentation system producing volatile fatty acids.

    Science.gov (United States)

    Cho, Hyun Uk; Kim, Young Mo; Choi, Yun-Nam; Xu, Xu; Shin, Dong Yun; Park, Jong Moon

    2015-05-01

    The objective of this study was to investigate the feasibility of applying volatile fatty acids (VFAs) produced from low-cost organic waste to the major carbon sources of microalgae cultivation for highly efficient biofuel production. An integrated process that consists of a sewage sludge fermentation system producing VFAs (SSFV) and mixotrophic cultivation of Chlorella vulgaris (C. vulgaris) was operated to produce microbial lipids economically. The effluents from the SSFV diluted to different concentrations at the level of 100%, 50%, and 15% were prepared for the C. vulgaris cultivation and the highest biomass productivity (433±11.9 mg/L/d) was achieved in the 100% culture controlling pH at 7.0. The harvested biomass included lipid contents ranging from 12.87% to 20.01% under the three different effluent concentrations with and without pH control. The composition of fatty acids from C. vulgaris grown on the effluents from the SSFV complied with the requirements of high-quality biodiesel. These results demonstrated that VFAs produced from the SSFV are favorable carbon sources for cultivating C. vulgaris. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Folic Acid Production by Engineered Ashbya gossypii.

    Science.gov (United States)

    Serrano-Amatriain, Cristina; Ledesma-Amaro, Rodrigo; López-Nicolás, Rubén; Ros, Gaspar; Jiménez, Alberto; Revuelta, José Luis

    2016-11-01

    Folic acid (vitamin B 9 ) is the common name of a number of chemically related compounds (folates), which play a central role as cofactors in one-carbon transfer reactions. Folates are involved in the biosynthesis and metabolism of nucleotides and amino acids, as well as supplying methyl groups to a broad range of substrates, such as hormones, DNA, proteins, and lipids, as part of the methyl cycle. Humans and animals cannot synthesize folic acid and, therefore, need them in the diet. Folic acid deficiency is an important and underestimated problem of micronutrient malnutrition affecting billions of people worldwide. Therefore, the addition of folic acid as food additive has become mandatory in many countries thus contributing to a growing demand of the vitamin. At present, folic acid is exclusively produced by chemical synthesis despite its associated environmental burdens. In this work, we have metabolically engineered the industrial fungus Ashbya gossypii in order to explore its potential as a natural producer of folic acid. Overexpression of FOL genes greatly enhanced the synthesis of folates and identified GTP cyclohydrolase I as the limiting step. Metabolic flux redirection from competing pathways also stimulated folic acid production. Finally, combinatorial engineering synergistically increased the production of different bioactive forms of the folic vitamin. Overall, strains were constructed which produce 146-fold (6595µg/L) more vitamin than the wild-type and by far represents the highest yield reported. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Production and organization of neocortical interneurons

    Directory of Open Access Journals (Sweden)

    Khadeejah T Sultan

    2013-11-01

    Full Text Available Inhibitory GABA (γ-aminobutyric acid-ergic interneurons are a vital component of the neocortex responsible for shaping its output through a variety of inhibitions. Consisting of many flavors, interneuron subtypes are predominantly defined by their morphological, physiological, and neurochemical properties that help to determine their functional role within the neocortex. During development, these cells are born in the subpallium where they then tangentially migrate over long distances before being radially positioned to their final location in the cortical laminae. As development progresses into adolescence, these cells mature and form chemical and electrical connections with both glutamatergic excitatory neurons and other interneurons ultimately establishing the cortical network. The production, migration, and organization of these cells are determined by vast array of extrinsic and intrinsic factors that work in concert in order to assemble a proper functioning cortical inhibitory network. Failure of these cells to undergo these processes results in abnormal positioning and cortical function. In humans, this can bring about several neurological disorders including schizophrenia, epilepsy and autism spectrum disorders. In this article, we will review previous literature that has revealed the framework for interneuron neurogenesis and migratory behavior as well as discuss recent findings that aim to elucidate the spatial and functional organization of interneurons within the neocortex.

  12. Separation and recovery of organic acids from fermented kitchen ...

    African Journals Online (AJOL)

    Organic acids produced from anaerobic digestion of kitchen waste were recovered using a new integrated method which consisted of freezing and thawing, centrifugation, filtration and evaporation. The main organic acid produced was lactic acid (98%). After the freezing and thawing process, 73% of the total suspended ...

  13. Physico-Chemical Properties of Kaolin-Organic Acid

    Directory of Open Access Journals (Sweden)

    Yeo S.W.

    2017-01-01

    Full Text Available Soil with more than 20% of organic content is classified as organic soil in Malaysia. Contents of organic soil consist of different types of organic and inorganic matter. Each type of organic matter has its own characteristic and its effect on the properties of the soil is different. Hence, a good understanding on the effect of specific organic and inorganic matter on the physico-chemical characteristic of organic soils can serve as a guide for predicting the properties of organic soils. The main objective is to unveil the effect of organic acid on the physico-chemical properties of soil. Artificial organic soil (kaolin mixed with organic acid was utilized in order to minimize the geochemical variability of studied soil. The organic acid which consists of humic acid and fulvic acid was extracted from highly humificated plant–based compost. The effect of organic acid on the physico-chemical properties of soil was determined by varying the concentration of organic acid. The specific gravity, Atterberg limits, pH, bulk chemical composition and the functional group of kaolin-organic acid were determined. It was found that the plasticity index, specific gravity and pH value were decreased with lowered concentration of organic acid. However, the liquid limits and plastic limits were found to be increased with the concentration decrement of organic acid. The analysis of XRF on the bulk chemical composition and analysis of FTIR spectra on the functional group of artificial organic soils with different concentration have confirmed little geochemical variability between samples.

  14. Organic production in a dynamic CGE model

    DEFF Research Database (Denmark)

    Jacobsen, Lars Bo

    2004-01-01

    for conventional production into land for organic production, a period of two years must pass before the land being transformed can be used for organic production. During that time, the land is counted as land of the organic industry, but it can only produce the conventional product. To handle this rule, we make......Concerns about the impact of modern agriculture on the environment have in recent years led to an interest in supporting the development of organic farming. In addition to environmental benefits, the aim is to encourage the provision of other “multifunctional” properties of organic farming...... such as rural amenities and rural development that are spillover benefit additional to the supply of food. In this paper we further develop an existing dynamic general equilibrium model of the Danish economy to specifically incorporate organic farming. In the model and input-output data each primary...

  15. Microbial Production of Malic Acid from Biofuel-Related Coproducts and Biomass

    Directory of Open Access Journals (Sweden)

    Thomas P. West

    2017-04-01

    Full Text Available The dicarboxylic acid malic acid synthesized as part of the tricarboxylic acid cycle can be produced in excess by certain microorganisms. Although malic acid is produced industrially to a lesser extent than citric acid, malic acid has industrial applications in foods and pharmaceuticals as an acidulant among other uses. Only recently has the production of this organic acid from coproducts of industrial bioprocessing been investigated. It has been shown that malic acid can be synthesized by microbes from coproducts generated during biofuel production. More specifically, malic acid has been shown to be synthesized by species of the fungus Aspergillus on thin stillage, a coproduct from corn-based ethanol production, and on crude glycerol, a coproduct from biodiesel production. In addition, the fungus Ustilago trichophora has also been shown to produce malic acid from crude glycerol. With respect to bacteria, a strain of the thermophilic actinobacterium Thermobifida fusca has been shown to produce malic acid from cellulose and treated lignocellulosic biomass. An alternate method of producing malic acid is to use agricultural biomass converted to syngas or biooil as a substrate for fungal bioconversion. Production of poly(β-l-malic acid by strains of Aureobasidium pullulans from agricultural biomass has been reported where the polymalic acid is subsequently hydrolyzed to malic acid. This review examines applications of malic acid, metabolic pathways that synthesize malic acid and microbial malic acid production from biofuel-related coproducts, lignocellulosic biomass and poly(β-l-malic acid.

  16. Organic carbon and humic acids in sediments of the Arabian Sea and factors governing their distribution

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    acids are enriched on the slope compared to the inner and outer shelf. While upwelling, primary productivity and redox conditions at the bottom are known to influence organic matter accumulation in sediments, bacterial population and sediment texture...

  17. Amino acid production exceeds plant nitrogen demand in Siberian tundra

    Science.gov (United States)

    Wild, Birgit; Eloy Alves, Ricardo J.; Bárta, Jiři; Čapek, Petr; Gentsch, Norman; Guggenberger, Georg; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Prommer, Judith; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Richter, Andreas

    2018-03-01

    Arctic plant productivity is often limited by low soil N availability. This has been attributed to slow breakdown of N-containing polymers in litter and soil organic matter (SOM) into smaller, available units, and to shallow plant rooting constrained by permafrost and high soil moisture. Using 15N pool dilution assays, we here quantified gross amino acid and ammonium production rates in 97 active layer samples from four sites across the Siberian Arctic. We found that amino acid production in organic layers alone exceeded literature-based estimates of maximum plant N uptake 17-fold and therefore reject the hypothesis that arctic plant N limitation results from slow SOM breakdown. High microbial N use efficiency in organic layers rather suggests strong competition of microorganisms and plants in the dominant rooting zone. Deeper horizons showed lower amino acid production rates per volume, but also lower microbial N use efficiency. Permafrost thaw together with soil drainage might facilitate deeper plant rooting and uptake of previously inaccessible subsoil N, and thereby promote plant productivity in arctic ecosystems. We conclude that changes in microbial decomposer activity, microbial N utilization and plant root density with soil depth interactively control N availability for plants in the Arctic.

  18. Quality in the organizations (enterprises and institutions of production and of services). Validation of the determination by atomic absorption of sodium and potassium in acid rain

    International Nuclear Information System (INIS)

    Arreola T, D.L.

    2005-01-01

    The present work is focused to the environmental area and in specific to the validation of an analytical method by means of one of the techniques more used for the determination of metals, the atomic absorption spectrophotometry. Applied to the study of the acid rain and its diverse forms in the nature. As well as their consequences and the role that the man carries out in the contribution toward this phenomenon. To approach the following text it will be mention shortly how is distributed, beginning with the introduction that is about the importance of the role of the acid rain, its effects and repercussions in the environment. In the first chapter the points that we should be evaluated to carry out a validation are analyzed. Being the main ones, the precision, accuracy, lineal interval, among others. Continuing in the second chapter with the foundation study, equipment and interferences of the atomic absorption spectrophotometry technique. The last chapter contains the experimental part, continuing for each evaluated point, from the experimental development, results and its analysis. (Author)

  19. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables.

    Science.gov (United States)

    Tan, Zaigao; Yoon, Jong Moon; Nielsen, David R; Shanks, Jacqueline V; Jarboe, Laura R

    2016-05-01

    Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Previous engineering efforts in Escherichia coli to increase membrane integrity, with the goal of increasing fatty acid tolerance and production, have had mixed results. Herein, a novel approach was used to reconstruct the E. coli membrane by enabling production of a novel membrane component. Specifically, trans unsaturated fatty acids (TUFA) were produced and incorporated into the membrane of E. coli MG1655 by expression of cis-trans isomerase (Cti) from Pseudomonas aeruginosa. While the engineered strain was found to have no increase in membrane integrity, a significant decrease in membrane fluidity was observed, meaning that membrane polarization and rigidity were increased by TUFA incorporation. As a result, tolerance to exogenously added octanoic acid and production of octanoic acid were both increased relative to the wild-type strain. This membrane engineering strategy to improve octanoic acid tolerance was found to require fine-tuning of TUFA abundance. Besides improving tolerance and production of carboxylic acids, TUFA production also enabled increased tolerance in E. coli to other bio-products, e.g. alcohols, organic acids, aromatic compounds, a variety of adverse industrial conditions, e.g. low pH, high temperature, and also elevated styrene production, another versatile bio-chemical product. TUFA permitted enhanced growth due to alleviation of bio-product toxicity, demonstrating the general effectiveness of this membrane engineering strategy towards improving strain robustness. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Progress on Zeolite-membrane-aided Organic Acid Esterification

    Science.gov (United States)

    Makertiharta, I. G. B. N.; Dharmawijaya, P. T.

    2017-07-01

    Esterification is a common route to produce carboxylic acid esters as important intermediates in chemical and pharmaceutical industries. However, the reaction is equilibrium limited and needs to be driven forward by selective removal one of the products. There have been some efforts to selectively remove water from reaction mixture via several separation processes (such as pervaporation and reactive distillation). Integrated pervaporation and esterification has gained increasing attention towards. Inorganic zeolite is the most popular material for pervaporation due to its high chemical resistant and separation performance towards water. Zeolite also has proven to be an effective material in removing water from organic compound. Zeolite can act not only as selective layer but also simultaneously act as a catalyst on promoting the reaction. Hence, there are many configurations in integrating zeolite membrane for esterification reaction. As a selective layer to remove water from reaction mixture, high Si/Al zeolite is preferred to enhance its hydrophilicity. However, low Si/Al zeolite is unstable in acid condition due to dealumination thus eliminate its advantages. As a catalyst, acid zeolites (e.g. H-ZSM-5) provide protons for autoprotolysis of the carboxylic acid similar to other catalyst for esterification (e.g. inorganic acid, and ion exchange resins). There are many studies related to zeolite membrane aided esterification. This paper will give brief information related to zeolite membrane role in esterification and also research trend towards it.

  1. Formic and Acetic Acid Observations over Colorado by Chemical Ionization Mass Spectrometry and Organic Acids' Role in Air Quality

    Science.gov (United States)

    Treadaway, V.; O'Sullivan, D. W.; Heikes, B.; Silwal, I.; McNeill, A.

    2015-12-01

    Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic sources and a role in the atmospheric processing of carbon. These organic acids also have an increasing importance in setting the acidity of rain and snow as precipitation nitrate and sulfate concentrations have decreased. Primary emissions for both organic acids include biomass burning, agriculture, and motor vehicle emissions. Secondary production is also a substantial source for both acids especially from biogenic precursors, secondary organic aerosols (SOAs), and photochemical production from volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). Chemical transport models underestimate organic acid concentrations and recent research has sought to develop additional production mechanisms. Here we report HFo and HAc measurements during two campaigns over Colorado using the peroxide chemical ionization mass spectrometer (PCIMS). Iodide clusters of both HFo and HAc were recorded at mass-to-charge ratios of 173 and 187, respectively. The PCIMS was flown aboard the NCAR Gulfstream-V platform during the Deep Convective Clouds and Chemistry Experiment (DC3) and aboard the NCAR C-130 during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The DC3 observations were made in May and June 2012 extending from the surface to 13 km over the central and eastern United States. FRAPPE observations were made in July and August 2014 from the surface to 7 km over Colorado. DC3 measurements reported here are focused over the Colorado Front Range and complement the FRAPPE observations. DC3 HFo altitude profiles are characterized by a decrease up to 6 km followed by an increase either back to boundary layer mixing ratio values or higher (a "C" shape). Organic acid measurements from both campaigns are interpreted with an emphasis on emission sources (both natural and anthropogenic) over Colorado and in situ photochemical production especially ozone precursors.

  2. Research in Organic Animals and Livestock Production

    DEFF Research Database (Denmark)

    Vaarst, Mette

    2009-01-01

    developed in Western Europe and USA, where they are primarily niche products for consumers who give priority to environmental and animal welfare concerns. In these countries organic livestock production offers the option of establishing a niche product that can be sold at a higher price, e.g. as for milk...

  3. Biotechnological applications for rosmarinic acid production in plant ...

    African Journals Online (AJOL)

    Biotechnological applications for rosmarinic acid production in plant. ... rosmarinic acid in medicinal plants, herbs and spices has beneficial and health promoting ... of rosmarinic acid starts with the amino acids phenylalanine and tyrosine.

  4. Anaerobic organic acid metabolism of Candida zemplinina in comparison with Saccharomyces wine yeasts.

    Science.gov (United States)

    Magyar, Ildikó; Nyitrai-Sárdy, Diána; Leskó, Annamária; Pomázi, Andrea; Kállay, Miklós

    2014-05-16

    Organic acid production under oxygen-limited conditions has been thoroughly studied in the Saccharomyces species, but practically never investigated in Candida zemplinina, which seems to be an acidogenic species under oxidative laboratory conditions. In this study, several strains of C. zemplinina were tested for organic acid metabolism, in comparison with Saccharomyces cerevisiae, Saccharomyces uvarum and Candida stellata, under fermentative conditions. Only C. stellata produced significantly higher acidity in simple minimal media (SM) with low sugar content and two different nitrogen sources (ammonia or glutamic acid) at low level. However, the acid profile differed largely between the Saccharomyces and Candida species and showed inverse types of N-dependence in some cases. Succinic acid production was strongly enhanced on glutamic acid in Saccharomyces species, but not in Candida species. 2-oxoglutarate production was strongly supported on ammonium nitrogen in Candida species, but remained low in Saccharomyces. Candida species, C. stellata in particular, produced more pyruvic acid regardless of N-sources. From the results, we concluded that the anaerobic organic acid metabolisms of C. zemplinina and C. stellata are different from each other and also from that of the Saccharomyces species. In the formation of succinic acid, the oxidative pathway from glutamic acid seems to play little or no role in C. zemplinina. The reductive branch of the TCA cycle, however, produces acidic intermediates (malic, fumaric, and succinic acid) in a level comparable with the production of the Saccharomyces species. An unidentified organic acid, which was produced on glutamic acid only by the Candida species, needs further investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Optimal sulphuric acid production using Acidithiobacillus caldus ...

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... oxygen uptake rate of 1.35 g/L.day (OUR), 52% sulphur conversion at a rate of 0.83 ... achieving a sulphuric acid production rate of 2.76 g/L.day (dP/dt), while the ...

  6. Triacetic acid lactone production from Saccharomyces cerevisiae

    Science.gov (United States)

    Triacetic acid lactone (TAL) is a potential platform chemical produced from acetyl-CoA and malonyl-CoA by the Gerbera hybrida 2-pyrone synthase (2PS) gene. Studies are ongoing to optimize production, purification, and chemical modification of TAL, which can be used to create the commercial chemicals...

  7. Product Category Layout and Organization: Retail Placement of Food Products

    NARCIS (Netherlands)

    Herpen, van E.

    2016-01-01

    This article discusses the placement of food products in retail stores, in particular how the placement of food products can influence how consumers perceive the store in general and these products in particular. It reviews the overall layout of the store, assortment organization, and shelf

  8. Uranium leaching using mixed organic acids produced by Aspergillus niger

    International Nuclear Information System (INIS)

    Yong-dong Wang; Guang-yue Li; De-xin Ding; Zhi-xiang Zhou; Qin-wen Deng; Nan Hu; Yan Tan

    2013-01-01

    Both of culture temperature and pH value had impacts on the degree of uranium extraction through changing types and concentrations of mixed organic acids produced by Aspergillus niger, and significant interactions existed between them though pH value played a leading role. And with the change of pH value of mixed organic acids, the types and contents of mixed organic acids changed and impacted on the degree of uranium extraction, especially oxalic acid, citric acid and malic acid. The mean degree of uranium extraction rose to peak when the culture temperature was 25 deg C (76.14 %) and pH value of mixed organic acids was 2.3 (82.40 %) respectively. And the highest one was 83.09 %. The optimal culture temperature (25 deg C) of A. niger for uranium leaching was different from the most appropriate growing temperature (37 deg C). (author)

  9. Study of organic waste for production of hydrogen in reactor

    International Nuclear Information System (INIS)

    Guzmán Chinea, Jesús Manuel; Guzmán Marrero, Elizabeth; Pérez Ponce, Alejandro

    2015-01-01

    Biological processes have long been used for the treatment of organic waste makes, especially our study is based on the anaerobic process in reactors, using residual organic industry. Without excluding other non-industrial we have studied. Fundamental objectives treating organic waste is to reduce the pollutant load to the environment, another aim is to recover the waste recovering the energy contained in it. In this context, the biological hydrogen production from organic waste is an interesting alternative because it has low operating costs and raw material is being used as a residue in any way should be treated before final disposal. Hydrogen can be produced sustainable by anaerobic bacteria that grow in the dark with rich carbohydrate substrates giving as final products H 2 , CO 2 and volatile fatty acids. The whey byproduct from cheese production, has great potential to be used for the generation of hydrogen as it has a high carbohydrate content and a high organic load. The main advantages of using anaerobic processes in biological treatment of organic waste, are the low operating costs, low power consumption, the ability to degrade high organic loads, resistance biomass to stay long in the absence of substrate, without lose their metabolic activity, and low nutritional requirements and increase the performance of 0.9 mol H2 / mol lactose. (full text)Biological processes have long been used for the treatment of organic waste makes, especially our study is based on the anaerobic process in reactors, using residual organic industry. Without excluding other non-industrial we have studied. Fundamental objectives treating organic waste is to reduce the pollutant load to the environment, another aim is to recover the waste recovering the energy contained in it. In this context, the biological hydrogen production from organic waste is an interesting alternative because it has low operating costs and raw material is being used as a residue in any way should be treated

  10. Complex Formation of Selected Radionuclides with Ligands Commonly Found in Ground Water: Low Molecular Organic Acids

    DEFF Research Database (Denmark)

    Jensen, Bror Skytte; Jensen, H.

    1985-01-01

    A general approach to the analysis of potentiometric data on complex formation between cations and polybasic amphoteric acids is described. The method is used for the characterisation of complex formation between Cs+, Sr2+, Co2+, La 3+, and Eu3+ with a α-hydroxy acids, tartaric acid and citric ac......, and with the α-amino acids, aspartic acid and L-cysteine. The cations have been chosen as typical components of reactor waste, and the acids because they are often found as products of microbial activity in pits or wherever organic material decays...

  11. GOAT MILK PRODUCTION UNDER ORGANIC FARMING STANDARS

    Directory of Open Access Journals (Sweden)

    Gerold Hartmut Rahmann

    2009-02-01

    Full Text Available Organic farming has emerged from its niche. This holds true for organic goat milk, yoghurt and cheese as well. Particularly in the EU many dairy goat farms have converted or want to convert towards organic farming to profit from the positive image and the good prices for milk (+100% in Western Europe and Alpine regions. High performance dairy goats demand excellent feedstuffs, a sound environment and top management. It was not clear how organic farming can fulfil these demands. The restrictive factors influencing the productivity of the animals in organic farming are as follows: limited concentrate feeding (

  12. Meat quality and health implications of organic and conventional beef production.

    Science.gov (United States)

    Kamihiro, S; Stergiadis, S; Leifert, C; Eyre, M D; Butler, G

    2015-02-01

    Recommendation to reduce fat consumption from ruminant meat does not consider the contribution of nutritionally beneficial fatty acids in lean beef. Here we report effects of production system (organic vs conventional) and finishing season on meat and fat quality of sirloin steaks from retail outlets and simulated fatty acid intakes by consumers. There was little difference in meat quality (pH, shear force and colour), but the fat profiles varied considerably between production systems and season. Meat fat from organic and summer finished cattle contained higher concentrations of conjugated linoleic acid, its precursor vaccenic acid and individual omega-3 fatty acids and had a lower ratio of omega-6 to omega-3 fatty acids compared with non-organic and winter finished cattle respectively. The fat profile from summer finished organic beef aligns better to recommended dietary guideline including those for long chain omega-3 fatty acids compared with that from winter finished, non-organic steak.

  13. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 10. Learning Organic Chemistry Through Natural Products Architectural Designs in Molecular Constructions. N R Krishnaswamy. Series Article Volume 1 Issue 10 October 1996 pp 37-43 ...

  14. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Learning Organic Chemistry Through Natural Products Determination of Absolute Stereochemistry. N R Krishnaswamy. Series Article Volume 1 Issue 2 February 1996 pp 40-46 ...

  15. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 7. Learning Organic Chemistry Through Natural engine Products - Structure and Biological Functions. N R Krishnaswamy. Series Article Volume 1 Issue 7 July 1996 pp 23-30 ...

  16. Biogas and Bioethanol Production in Organic Farming

    DEFF Research Database (Denmark)

    Oleskowicz-Popiel, Piotr

    The thesis consists of two parts. First one is an introduction providing background information on organic farming, ethanol and anaerobic digestion processes, and concept of on‐farm bioenergy production. Second part consists of 8 papers....

  17. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Learning Organic Chemistry Through Natural Products - Architectural Designs in Molecular Constructions. N R Krishnaswamy. Volume 16 Issue 12 December 2011 pp 1287-1293 ...

  18. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Higher Learning. ... The Series on "learning Organic Chemistry Through Natural Products". Nature is a remarkable ... skeletal structure to the interior electronic configu- ration ... Among the advantages of this approach are the fact that unlike the.

  19. Ruminal Methane Production on Simple Phenolic Acids Addition in in Vitro Gas Production Method

    Directory of Open Access Journals (Sweden)

    A. Jayanegara

    2009-04-01

    Full Text Available Methane production from ruminants contributes to total global methane production, which is an important contributor to global warming. In this experiment, six sources of simple phenolic acids (benzoic, cinnamic, phenylacetic, caffeic, p-coumaric and ferulic acids at two different levels (2 and 5 mM added to hay diet were evaluated for their potential to reduce enteric methane production using in vitro Hohenheim gas production method. The measured variables were gas production, methane, organic matter digestibility (OMD, and short chain fatty acids (SCFA. The results showed that addition of cinnamic, caffeic, p-coumaric and ferulic acids at 5 mM significantly (P p-coumaric > ferulic > cinnamic. The addition of simple phenols did not significantly decrease OMD. Addition of simple phenols tends to decrease total SCFA production. It was concluded that methane decrease by addition of phenolic acids was relatively small, and the effect of phenolic acids on methane decrease depended on the source and concentration applied.

  20. TECHNOLOGICAL LEVEL OF PRODUCTION OF RUSSIAN ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    Galina S. Sagieva

    2015-01-01

    Full Text Available The article presents an analysis of the technological level of production of Russian organizations. Areas of study cover the characteristics of the use of technology in manufacturing (the extent of use and level of technology, the problems solved by using specific types of technologies and the use in the production process of intellectual property; factors driving growth of technological level of the surveyed medium and large organizations and provides them with a competitive advantage

  1. Glutamic acid production from wheat by-products using enzymatic and acid hydrolysis

    NARCIS (Netherlands)

    Sari, Y.W.; Alting, A.C.; Floris, R.; Sanders, J.P.M.; Bruins, M.E.

    2014-01-01

    Glutamic acid (Glu) has potential as feedstock for bulk chemicals production. It has also been listed as one of the top twelve chemicals derived from biomass. Large amounts of cheaper Glu can be made available by enabling its production from biomass by-products, such as wheat dried distillers grains

  2. STOVE: Seed treatments for organic vegetable production

    NARCIS (Netherlands)

    Schmitt, A.; Jahn, M.; Kromphardt, C.; Krauthausen, H.J.; Roberts, S.J.; Wright, S.A.I.; Amein, T.; Forsberg, G.; Tinivella, F.; Gullino, M.L.; Wikström, M.; Wolf, van der J.M.; Groot, S.P.C.; Werner, S.; Koch, E.

    2008-01-01

    The aim of the EU-financed research project „STOVE“ (Seed Treatments for Organic Vegetable Production) is to evaluate different methods potentially suited for seed treatment of vegetables in organic farming regarding their efficacy, to optimise these methods, and where feasible to combine them with

  3. Marketing of organic products in southern Poland

    OpenAIRE

    Kuboń Maciej; Olech Elżbieta

    2018-01-01

    The article presents an outline of the issue concerning formulation of a marketing strategy and the possibility of using the knowledge on consumers' preferences for organic development of farms and their products on the example of southern Poland. The paper analyses the distribution process of organic food in the aspect of developing innovative marketing strategies. The studies were performed in 50 organic farms and on the example of 100 respondents from the region of southern Poland. In the ...

  4. Diversity of lactic acid bacteria on organic flours and application of isolates in sourdough fermentation

    OpenAIRE

    Stanzer, Damir; Ivanuša, Ines; Kazazić, Snježana; Hanousek Čiča, Karla; Mrvčić, Jasna

    2017-01-01

    Organic farming preserves biodiversity and organic products can be the source of many microbial species. The species diversity in organically grown wheat, spelt and rye was investigated in order to find strains suitable for sourdough fermentation. Colonies representing various morphological appearances were isolated and catalase-negative colonies were identified by mass spectrometer Microflex LT ™ MALDI-TOF. The fermentation products (lactic, acetic, formic and phenyllactic acid) were determi...

  5. Dietary preferences of weaned piglets offered diets containing organic acids

    Directory of Open Access Journals (Sweden)

    K. PARTANEN

    2008-12-01

    Full Text Available A preference test and a performance trial were carried out to examine weaned piglets’ feed intake response to diets containing either lactic acid,formic acid,calcium formate,or sodium benzoate (8 g kg-1 feed.In Experiment 1, throughout a 21-d post-weaning period,30 entire litters (306 piglets weaned at the age of 30 d were allowed to choose between two organic-acid-supplemented diets. All of the four different organic-acid-supplemented diets were tested in pairs against each other,and the six possible combinations were lactic acid +formic acid,lactic acid +calcium formate,lactic acid + sodium benzoate,formic acid +calcium formate,formic acid +sodium benzoate,and calcium for-mate +sodium benzoate.Piglets preferred diets supplemented with sodium benzoate to ones supplemented with formic acid or calcium formate.The acceptability of diets supplemented with lactic acid,formic acid,or calcium formate was similar.In Experiment 2,until the age of 58 d,60 piglets from 10 litters weaned at the age of 28 or 38 d were fed non-acidified diets or ones supplemented with lactic acid,formic acid,calcium formate,or sodium benzoate.Feed consumption did not differ between piglets fed non-acidified and those fed organic-acid-supplemented diets. Growth performance was reduced by dietary calcium formate supplementation, while the performance of piglets fed other organic-acid-supplemented diets did not differ significantly from those fed the non-acidified control diet.The frequency of post-weaning diarrhoea was highest in piglets fed diets supplemented with calcium formate and lowest in piglets fed diets supplemented with formic acid.;

  6. Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Ullah, A.; Orij, R.; Brul, S.; Smits, G.J.

    2012-01-01

    Weak organic acids are naturally occurring compounds that are commercially used as preservatives in the food and beverage industries. They extend the shelf life of food products by inhibiting microbial growth. There are a number of theories that explain the antifungal properties of these weak acids,

  7. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    SERIES I ARTICLE. Learning Organic Chemistry. Through Natural Products. 2. Determination of Absolute Stereochemistry. N R Krishnaswamy was initiated into the world of natural products by T R. Seshadri at University of. Delhi and has carried on the glorious traditions of his mentor. He has taught at Bangalore University,.

  8. Prospecting Organic production of spices in Rajasthan

    OpenAIRE

    Sharma, Arun K.

    2015-01-01

    Low rainfall and low atmospheric humidity favours spices production in Rajasthan, the largest state of India.Details on possibilities of organic production of spices in Rajasthan are described in the paper considering the future challenges of soil, climate,social and market environment.

  9. Fumaric Acid Production: A Biorefinery Perspective

    Directory of Open Access Journals (Sweden)

    Victor Martin-Dominguez

    2018-05-01

    Full Text Available The increasing scarcity of fossil raw materials, together with the need to develop new processes and technology based on renewable sources, and the need to dispose of an increasing amount of biomass-derived waste, have boosted the concept of biorefineries. Both 1G and 2G biorefineries are focused on the obtention of biofuels, chemicals, materials, food and feed from biomass, a renewable resource. Fumaric acid, and most compounds involved in the Kreb cycle, are considered key platform chemicals, not only for being acidulants and additives in the food industry, but also for their prospective use as monomers. This review is focused on the biotechnological processes based on fungi, mainly of the Rhizopus genus, whose main product is fumaric acid, on the process conditions, the bioreactors and modes of operation and on the purification of the acid once it is produced.

  10. Modeling the influence of organic acids on soil weathering

    Science.gov (United States)

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  11. Marketing research of organic agricultural products' customers

    Directory of Open Access Journals (Sweden)

    Salai Suzana

    2002-01-01

    Full Text Available The aim of customers' marketing research is to acquire information about the way domestic customers behave towards organic agricultural products. This research focuses the overview of conditions and factors influencing customer behavior in nutrition processes in the EM and in Yugoslavia. The acquired information about changes and directions directly affect the possibilities of getting involved into supply processes as well as the 'transmission' of some directions in customer behavior. Anticipations based, on marketing research deal with changes on customers' level, in consumption, products and other competitors. The results of a part of problems concerning customer behavior in nutrition processes follow below, with an emphasis on organic agricultural products.

  12. Organic acid formation in steam–water cycles: Influence of temperature, retention time, heating rate and O2

    International Nuclear Information System (INIS)

    Moed, D.H.; Verliefde, A.R.D.; Heijman, S.G.J.; Rietveld, L.C.

    2014-01-01

    Organic carbon breaks down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam–water cycle components. Prediction of the identity and quantity of these anions, based on feedwater organic carbon concentrations, has not been attempted, making it hard to establish a well-founded organic carbon guideline. By using a batch-reactor and flow reactor, the influence of temperature (276–352 °C), retention time (1–25 min), concentration (150–2400 ppb) and an oxygen scavenger (carbohydrazide) on organic acid anion formation from organic carbon was investigated. By comparing this to data gathered at a case-study site, the validity of setups was tested as well. The flow reactor provided results more representative for steam–water cycles than the batch reactor. It was found that lower heating rates give more organic acid anions as degradation products of organic carbon, both in quantity and species variety. The thermal stability of the organic acid anions is key. As boiler temperature increases, acetate becomes the dominant degradation product, due to its thermal stability. Shorter retention times lead to more variety and quantity of organic acid anions, due to a lack of time for the thermally less stable ones to degrade. Reducing conditions (or the absence of oxygen) increase the thermal stability of organic acid anions. As the feedwater organic carbon concentration decreases, there are relatively more organic acid anions formed. - Highlights: •Formation of organic acids from hydrothermolysis of organic carbon has been investigated. •The lower the temperature, the higher the variety of organic acid anions. •At the higher tested temperatures (331–352 °C) acetate is the dominant degradation product. •At longer retention times acetate is the dominant degradation product. •There is no linear relation between the organic carbon concentration and formed organic acids

  13. Effect of fermentation period on the organic acid and amino acid contents of Ogiri from castor oil bean seeds

    Directory of Open Access Journals (Sweden)

    Ojinnaka, M-T. C.

    2013-01-01

    Full Text Available Aims: To monitor the changes in the concentration of organic acid and amino acid contents during the fermentation of castor oil bean seed into ogiri.Methodology and results: In this study, ogiri, a Nigerian fermented food condiment was prepared from castor oil bean using Bacillus subtilis as a monoculture starter for the production of three different fermented castor oil bean condiment samples: B1 (0% NaCl/lime, B2 (2% NaCl, B3 (3% lime. Variations in the composition of the castor oil bean with fermentation over 96 h periods were evaluated for organic acid and amino acid contents using High Performance Liquid Chromatography. Organic acids were detected in the fermented castor oil bean samples as fermentation period increased to 96 h. Organic acids identified were oxalic, citric, tartaric, malic, succinic, lactic, formic, acetic, propionic and butyric acids. The lactic acid contents in sample B1 (0% NaCl/lime decreased initially and then increased as the fermentation period progressed. The value at 96 h fermentation was 1.336 µg/mL as against 0.775 µg/mL at 0 h fermentation. Sample B3 (3% lime had lactic acid content that increased as fermentation period increased with lactic acid content of 1.298 µg/mL at 96 h fermentation. The acetic acid content of sample B1 increased as fermentation progressed and at 96 h fermentation, its value was 1.204 µg/mL while those of B2 and B3 were 0.677 µg/mL and 1.401 µg/mL respectively. The three fermented castor oil bean samples also contained sufficient amount of amino acids. Sample B1 had the highest values in isoleucine glycine and histidine with values 1.382 µg/mL, 0.814 µg/mL and 1.022 µg/mL respectively while sample B2 had the highest value in leucine content with 0.915 µg/mL at 96 h fermentation, closely followed by sample B3 and B1 with 0.798 µg/mL and 0.205 µg/mL respectively. The results of amino acid analysis indicated a high concentration of all amino acids at 96 h of fermentation

  14. Organic acid production by Aspergillus niger

    DEFF Research Database (Denmark)

    Jongh, Wian de

    2006-01-01

    . Specielt Aspergillus niger er interessant i forbindelse med produktion af organiske syrer, idet denne organisme tolerer lavt pH, kan give høje produktudbytter, og kan give høje produktiviteter som allerede illustreret i anvendelsen af denne organisme i produktionen af citronsyre. Disse faktorer gør A....... niger til en ideel kandidat for metabolic engineering, men anvendelsen af metabolic engineering til at udvikle en A. niger cellefabrik der producerer forskellige organiske syrer har været begrænset af vores kendskab til metabolismen og dens regulering i denne organisme. Formålet med dette Ph.D. stadium...... intracellulære metabolitter samt kontinuert fermentering af A. niger. Ved anvendelse af metabolic engieering lykkedes det at udvikle nogle stammer af A. niger der havde forbedret produktion af citrat. Mekanismerne bag de forbedrede produktiviteter blev undersøgt og resultaterne heraf er diskuteret i afhandlingen...

  15. Effect of organic acids on biofilm formation and quorum signaling of pathogens from fresh fruits and vegetables.

    Science.gov (United States)

    Amrutha, Balagopal; Sundar, Kothandapani; Shetty, Prathapkumar Halady

    2017-10-01

    Organic acids are known to be used as food preservatives due to their antimicrobial potential. This study evaluated the ability of three organic acids, namely, acetic acid, citric acid and lactic acid to manage E. coli and Salmonella sp. from fresh fruits and vegetables. Effect of these organic acids on biofilm forming ability and anti-quorum potential was also investigated. The effect of organic acids on inactivation of E. coli and Salmonella sp. on the surface of a selected vegetable (cucumber) was determined. The minimum inhibitory concentration of the organic acids were found to be 1.5, 2 and 0.2% in E. coli while it was observed to be 1, 1.5 and 1% in Salmonella sp. for acetic, citric and lactic acids respectively. Maximum inhibition of biofilm formation was recorded at 39.13% with lactic acid in E. coli and a minimum of 22.53% with citric acid in Salmonella sp. EPS production was affected in E. coli with lactic acid showing reduction by 13.42% while citric acid and acetic acid exhibited only 6.25% and 10.89% respectively. Swimming and swarming patterns in E. coli was notably affected by both acetic and lactic acids. Lactic and acetic acids showed higher anti-quorum sensing (QS) potential when compared to citric acid. 2% lactic acid showed a maximum inhibition of violacein production by 37.7%. Organic acids can therefore be used as potential quorum quenching agents in food industry. 2% lactic acid treatment on cucumber demonstrated that it was effective in inactivating E. coli and Salmonella sp. There was 1 log reduction in microbial count over a period of 6 days after the lactic acid treatment. Thus, organic acids can act as effective potential sanitizers in reducing the microbial load associated with fresh fruits and vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Yeast Acid Phosphatases and Phytases: Production, Characterization and Commercial Prospects

    Science.gov (United States)

    Kaur, Parvinder; Satyanarayana, T.

    The element phosphorus is critical to all life forms as it forms the basic component of nucleic acids and ATP and has a number of indispensable biochemical roles. Unlike C or N, the biogeochemical cycling of phosphorus is very slow, and thus making it the growth-limiting element in most soils and aquatic systems. Phosphohydrolases (e.g. acid phosphatases and phytases) are enzymes that break the C-O-P ester bonds and provide available inorganic phosphorus from various inassimilable organic forms of phosphorus like phytates. These enzymes are of significant value in effectively combating phosphorus pollution. Although phytases and acid phosphatases are produced by various plants, animals and micro organisms, microbial sources are more promising for the production on a commercial scale. Yeasts being the simplest eukaryotes are ideal candidates for phytase and phos-phatase research due to their mostly non-pathogenic and GRAS status. They have not, however, been utilized to their full potential. This chapter focuses attention on the present state of knowledge on the production, characterization and potential commercial prospects of yeast phytases and acid phosphatases.

  17. Design of homo-organic acid producing strains using multi-objective optimization

    DEFF Research Database (Denmark)

    Kim, Tae Yong; Park, Jong Myoung; Kim, Hyun Uk

    2015-01-01

    Production of homo-organic acids without byproducts is an important challenge in bioprocess engineering to minimize operation cost for separation processes. In this study, we used multi-objective optimization to design Escherichia coli strains with the goals of maximally producing target organic ...

  18. Organic vs. Non-Organic Food Products: Credence and Price Competition

    OpenAIRE

    Yi Wang; Zhanguo Zhu; Feng Chu

    2017-01-01

    We analyze the organic and non-organic production choices of two firms by considering customers’ trust in organic food products. In the context of customers’ possible willingness to pay a premium price and their mistrust in organic food products, two firms first make choices on offering organic and non-organic food products. If offering organic products, a firm can further invest in the credence system to increase customers’ trust in their organic products. At the final stage, two firms deter...

  19. Effects of culture conditions on acetic acid production by bacteria ...

    African Journals Online (AJOL)

    SARAH

    2015-11-30

    Nov 30, 2015 ... acid under certain culture conditions similar to cocoa fermentation stress. However ... Keywords: Acetic acid bacteria, acetic acid production, Cocoa fermentation, culture conditions ..... American Society Microbiology Press, pp.

  20. Marketing of organic products in southern Poland

    Directory of Open Access Journals (Sweden)

    Kuboń Maciej

    2018-01-01

    Full Text Available The article presents an outline of the issue concerning formulation of a marketing strategy and the possibility of using the knowledge on consumers' preferences for organic development of farms and their products on the example of southern Poland. The paper analyses the distribution process of organic food in the aspect of developing innovative marketing strategies. The studies were performed in 50 organic farms and on the example of 100 respondents from the region of southern Poland. In the opinion of the surveyed representatives of the organic food producers, a competitive advantage of their offer depends the most on the health values, brand, reputation, and taste. Moreover, information on products and the form and place of their sale are significant. The analysis shows that the knowledge is the most eagerly obtained from the Internet. Thus, producers should publish their profiles and pages on social media and business portals.

  1. Biogas and bioethanol production in organic farming

    Energy Technology Data Exchange (ETDEWEB)

    Oleskowicz-Popiel, P

    2010-08-15

    The consumer demand for environmentally friendly, chemical free and healthy products, as well as concern regarding industrial agriculture's effect on the environment has led to a significant growth of organic farming. On the other hand, organic farmers are becoming interested in direct on-farm energy production which would lead them to independency from fossil fuels and decrease the greenhouse gas emissions from the farm. In the presented work, the idea of biogas and bioenergy production at the organic farm is investigated. This thesis is devoted to evaluate such a possibility, starting from the characterization of raw materials, through optimizing new processes and solutions and finally evaluating the whole on-farm biorefinery concept with the help of a simulation software. (LN)

  2. Biogas and bioethanol production in organic farming

    Energy Technology Data Exchange (ETDEWEB)

    Oleskowicz-Popiel, P.

    2010-08-15

    The consumer demand for environmentally friendly, chemical free and healthy products, as well as concern regarding industrial agriculture's effect on the environment has led to a significant growth of organic farming. On the other hand, organic farmers are becoming interested in direct on-farm energy production which would lead them to independency from fossil fuels and decrease the greenhouse gas emissions from the farm. In the presented work, the idea of biogas and bioenergy production at the organic farm is investigated. This thesis is devoted to evaluate such a possibility, starting from the characterization of raw materials, through optimizing new processes and solutions and finally evaluating the whole on-farm biorefinery concept with the help of a simulation software. (LN)

  3. Glucose-stimulated acrolein production from unsaturated fatty acids.

    Science.gov (United States)

    Medina-Navarro, R; Duran-Reyes, G; Diaz-Flores, M; Hicks, J J; Kumate, J

    2004-02-01

    Glucose auto-oxidation may be a significant source of reactive oxygen species (ROS), and also be important in the lipid peroxidation process, accompanied by the release of toxic reactive products. We wanted to demonstrate that acrolein can be formed directly and actively from free fatty acids in a hyperglycemic environment. A suspension of linoleic and arachidonic acids (2.5 mM) was exposed to different glucose concentrations (5, 10 and 15 mmol/L) in vitro. The samples were extracted with organic solvents, partitioned, followed at 255-267 nm, and analysed using capillary electrophoresis and mass spectroscopy. The total release of aldehydes significantly (P products, acrolein (5% of total) and its condensing product, 4-hydroxy-hexenal, were identified. From the results presented here, it was possible to demonstrate the production of acrolein, probably as a fatty acid product, due to free radicals generated from the glucose auto-oxidation process. The results led us to propose that acrolein, which is one of the most toxic aldehydes, is produced during hyperglycemic states, and may lead to tissue injury, as one of the initial problems to be linked to high levels of glucose in vivo.

  4. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping

    2013-06-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions representative of seawater and river water). A bipolar membrane (BPM) was placed next to the anode to prevent Cl- contamination and acidification of the anolyte, and to produce protons for HCl recovery. A 5-cell paired reverse-electrodialysis (RED) stack provided the electrical energy required to overcome the BPM over-potential (0.3-0.6 V), making the overall process spontaneous. The MRCC reactor produced electricity (908 mW/m2) as well as concentrated acidic and alkaline solutions, and therefore did not require an external power supply. After a fed-batch cycle, the pHs of the chemical product solutions were 1.65 ± 0.04 and 11.98 ± 0.10, due to the production of 1.35 ± 0.13 mmol of acid, and 0.59 ± 0.14 mmol of alkali. The acid- and alkali-production efficiencies based on generated current were 58 ± 3% and 25 ± 3%. These results demonstrated proof-of-concept acid and alkali production using only renewable energy sources. © 2013 Elsevier B.V.

  5. SUSTAINABLE PRODUCTION PACKAGES FOR ORGANIC TURMERIC

    OpenAIRE

    Somasundaram, Eagan; Shanthi, G.

    2014-01-01

    Turmeric (Curcuma longa L.), a perennial rhizomatous herb has been regarded as an important spice in Asian cuisine. India is called as the “Spice bowl of the world” as it produces variety of spices with quality. Though India leads in production of turmeric, but average productivity is very low due to imbalanced and suboptimal dose of chemical fertilizers, organic manure, bio – fertilizers and micronutrients (Kandiannan and Chandragiri, 2008). Since, turmeric is a nutrient responsive crop and ...

  6. Features of obtaining malt with use of aqueous solutions of organic acids

    Directory of Open Access Journals (Sweden)

    O. Pivovarov

    2017-12-01

    Full Text Available Recently, the traditional formulations of essential food products are actively including malt – a valuable dietary product rich in extractives and hydrolytic enzymes, obtained by germination in artificially created conditions. Containing a full set of essential amino acids and a high saccharifying ability of malt, obtained from grain cereals, determines its wide use in the production of beer, alcohol, mono- and poly-malt extracts, bakery products, special types of flour, food additives, cereals, non-alcoholic beverages, lactic acid products and, in particular, in the production of natural coffee substitutes. However, the classical germination technology, which includes 2-3 days of soaking and 5-8 days of germination due to the considerable duration and laboriousness of the process, does not meet the requirements of modern technology and the constantly growing rates of industrial production, so this problem requires finding new and improving existing scientific and technical solutions. The features of malt production using organic acids of different concentrations are presented. The malt production technology has been analyzed and investigated. It includes washing, disinfection, air and water soaking of grains, germination and drying. The feature of the technology under investigation is using of aqueous solutions of butadiene, 3-pyridinecarboxylic acid and pteroylglutamic acid. The results of the inquiry of the effect of these organic acids on energy and the ability of germination of the grain are presented. The optimal values of concentrations of active substances in solutions are revealed. The influence of organic acids on the absorption of grain moisture has been investigated. It has been established that in comparison with the classical technology, the use of these acids as a growth stimulator can reduce the overall length of the reproduction process of the material from 1.5 to 2 times and increase the yield of flour grains in the batch of

  7. Production of bioethanol from organic whey using Kluyveromyces marxianus

    DEFF Research Database (Denmark)

    Christensen, A.D.; Kádár, Zsófia; Oleskowicz-Popiel, Piotr

    2011-01-01

    Ethanol production by K. marxianus in whey from organic cheese production was examined in batch and continuous mode. The results showed that no pasteurization or freezing of the whey was necessary and that K. marxianus was able to compete with the lactic acid bacteria added during cheese production...... ethanol yield (~0.50 g ethanol/g lactose) at both 30°C and 40°C using low pH (4.5) or no pH control. Continuous fermentation of nonsterilized whey was performed using Ca-alginate-immobilized K. marxianus. High ethanol productivity (2.5-4.5 g/l/h) was achieved at dilution rate of 0.2/h......, and it was concluded that K. marxianus is very suitable for industrial ethanol production from whey. © 2010 Society for Industrial Microbiology....

  8. Improvement of organic meat products nutrition

    OpenAIRE

    Žilytė, Eglė

    2016-01-01

    The aim of the research: to improve the food value indicators of cold-smoked organic meat and implement the quality requirements, which are raised for a national meat products of the company X. To answer the purpose it has been created a new recipe for cold-smoked sausage and cold-smoked minced sausage by using the produced meat in the farm X. It has been evaluated the compliance of the national products quality with the index of food value of improved cold-smoked meat products. It has bee...

  9. Learning Organic Chemistry Through Natural Products -12 ...

    Indian Academy of Sciences (India)

    Higher Learning. Generations of students would vouch for the fact that he has the uncanny ability to present the chemistry of natural products logically and with feeling. The most interesting chemical aspect of a molecule is its. reactivHy pattern. NR Krishnaswamy. In this part of the series, dynamic organic chemistry and.

  10. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Learning Organic Chemistry Through Natural Products From Molecular and Electronic Structures to Reactivity. N R Krishnaswamy. Series Article Volume 1 Issue 5 May 1996 pp 12-18 ...

  11. Health and Welfare in Organic Poultry Production

    Directory of Open Access Journals (Sweden)

    Berg C

    2002-03-01

    Full Text Available This review paper deals with the major health and welfare aspects of organic poultry production. The differences between organic and conventional egg and poultry meat production are discussed, with the main emphasis on housing and management requirements, feed composition and the use of veterinary prophylactic and therapeutic drugs. The effects of the legislation and statutes for organic farming on the health and welfare of the birds are also discussed, especially in relation to the biosecurity problems associated with free-range systems, the occurrence of behavioural disturbances in loose housed flocks and the use of veterinary drugs and vaccinations in general. The results from a questionnaire sent out to all Swedish organic egg producers, where questions about the farmer's perception of the birds' health status were included, are presented at the end of the paper. It is concluded that most of the health and welfare problems seen in conventional poultry systems for loose housed or free ranging birds can also been found on organic poultry farms. It is also concluded that there is a need for information about biosecurity, disease detection and disease prevention on organic poultry farms.

  12. By-products from the biodiesel chain as a substrate to citric acid production by solid-state fermentation.

    Science.gov (United States)

    Schneider, Manuella; Zimmer, Gabriela F; Cremonese, Ezequiel B; de C de S Schneider, Rosana; Corbellini, Valeriano A

    2014-07-01

    In this study, we propose the use of tung cake for the production of organic acids, with an emphasis on citric acid by solid-state fermentation. We evaluated the conditions of production and the by-products from the biodiesel chain as raw materials involved in this bioprocess. First, we standardized the conditions of solid-state fermentation in tung cake with and without residual fat and with different concentrations of glycerine using the fungus Aspergillus niger The solid-state fermentation process was monitored for 7 days considering the biomass growth and pH level. Citric acid production was determined by high-performance liquid chromatography. Fungal development was better in the crude tung cake, consisting of 20% glycerine. The highest citric acid yield was 350 g kg(-1) of biomass. Therefore, the solid-state fermentation of the tung cake with glycerine led to citric acid production using the Aspergillus niger fungus. © The Author(s) 2014.

  13. Acoustic properties of organic acid mixtures in water

    Science.gov (United States)

    Macavei, I.; Petrisor, V.; Auslaender, D.

    1974-01-01

    The variation of the rate of propagation of ultrasounds in organic acid mixtures in water points to structural changes caused by interactions that take place under conditions of thermal agitation, at different acid concentrations. At the same time, a difference is found in the changes in velocity as a function of the length of the carbon chain of the acids in the mixture as a result of their effect on the groups of water molecules associated by hydrogen bonds.

  14. Association mapping of main tomato fruit sugars and organic acids

    Directory of Open Access Journals (Sweden)

    Jiantao Zhao

    2016-08-01

    Full Text Available Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of S. lycopersicum (123 accessions and S. lycopersicum var cerasiforme (51 accessions to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS over two years using the mixed linear model (MLM. We detected a total of 58 significantly associated loci (P<0.001 for the 17 sugars and organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding.

  15. Natural products as potential anticonvulsants: caffeoylquinic acids.

    Science.gov (United States)

    Kim, Hyo Geun; Oh, Myung Sook

    2012-03-01

    Current anticonvulsant therapies are generally directed at symptomatic treatment by suppressing excitability within the brain. Consequently, they have adverse effects such as cognitive impairment, dependence, and abuse. The need for more effective and less toxic anticonvulsants has generated renewed interest in natural products for the treatment of convulsions. Caffeoylquinic acids (CQs) are naturally occurring phenolic acids that are distributed widely in plants. There has been increasing interest in the biological activities of CQs in diseases of the central nervous system. In this issue, Nugroho et al. give evidence for the anticonvulsive effect of a CQ-rich extract from Aster glehni Franchet et Sckmidt. They optimized the extract solvent conditions, resulting in high levels of CQs and peroxynitrite-scavenging activity. Then, they investigated the sedative and anticonvulsive effects in pentobarbital- and pentylenetetrazole-induced models in mice. The CQ-rich extract significantly inhibited tonic convulsions as assessed by onset time, tonic extent, and mortality. They suggested that the CQ-rich extract from A. glehni has potential for treating convulsions. This report provides preclinical data which may be used for the development of anticonvulsants from natural products.

  16. ORGANIC PRODUCTS, CONSUMER BEHAVIOR ON MARKET AND EUROPEAN ORGANIC PRODUCT MARKET SITUATION

    Directory of Open Access Journals (Sweden)

    Marcela Chreneková

    2011-07-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 The market of organic products around the world increased its volume in Central and Eastern Europe with organic food market has a number of shared features, which include the relatively low demand for organic food, low share of regular customers, the problems of producers marketing, the lack of enterprises which process organic products. Consumer behavior purchasing organic foods is influenced by several factors, among which is dominated consumer personality, income, finances and lifestyle, as well as psychological factors such as perception, motivation, learning, cognition and attitudes. Cultural and social factors in consumer behavior exhibit a lesser degree. Organic fruit and organic vegetables quality is generally higher for content of biologically active substances such as vitamins, polyphenols and flavonoids. The content of pesticide residues in organic food is significantly lower than conventional production. Regular monitoring of chemical and microbiological safety of organic products already in the primary production occurring in the raw state and after working in various sectors of food, an intensification of awareness raising and targeted increased support for organic agriculture. Multifunctional sector and increased support for family farms oriented for sectors with higher added value than the home sale, production processing on the farm and so on. By support of the sale of high quality domestic production by the state will be possible to persuade more people to personal health status and greater consumption of organic food  affects the health and prevent the occurrence of various diseases.doi:10.5219/96  

  17. Tunnel production enhances quality in organic carrot seed production

    DEFF Research Database (Denmark)

    Deleuran, L C; Boelt, B

    2009-01-01

    production of open-pollinated carrot varieties increased the yield and germination percentages when compared with normal field conditions. Yield was in the range of 100-250 g and 2-17 g seeds m-2 respectively, and germination percentage was 84-95 and 43-55, respectively. However, hybrid carrot seed...... production showed lower yields than did their open-pollinated counterparts. Yields ranging from 60-123 g seeds m-2 can be obtained, but the production needs to be carefully planned and monitored. Different growing systems in tunnels have been studied in both open-pollinated and hybrid carrot (Daucus carota L......In Denmark, organic vegetable seed production is possible for some of the late-maturing species when the maturing is performed in lightweight tunnels which are also relevant for the isolation of small-scale production. The tunnel system offers several advantages, e.g., it is possible to control...

  18. Volatile fatty acids production in ruminants and the role of ...

    African Journals Online (AJOL)

    Yomi

    organic volatile fatty acids (VFAs) and microbial protein then become available to the host. .... BE, Drewes LR (2003). Molecular features, regulation and ... Dynamics of ruminal volatile fatty acids in black and white bulls before and after feeding ...

  19. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    Science.gov (United States)

    Ohlrogge, John B.; Cahoon, Edgar B.; Shanklin, John; Somerville, Christopher R.

    1995-01-01

    The present invention relates to a process for producing lipids containing the fatty acid petroselinic acid in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a .omega.12 desaturase from another species which does normally accumulate petroselinic acid.

  20. Capillary electrophoresis method for the analysis of organic acids and amino acids in the presence of strongly alternating concentrations of aqueous lactic acid.

    Science.gov (United States)

    Laube, Hendrik; Boden, Jana; Schneider, Roland

    2017-07-01

    During the production of bio-based bulk chemicals, such as lactic acid (LA), organic impurities have to be removed to produce a ready-to-market product. A capillary electrophoresis method for the simultaneous detection of LA and organic impurities in less than 10 min was developed. LA and organic impurities were detected using a direct UV detection method with micellar background electrolyte, which consisted of borate and sodium dodecyl sulfate. We investigated the effects of electrolyte composition and temperature on the speed, sensitivity, and robustness of the separation. A few validation parameters, such as linearity, limit of detection, and internal and external standards, were evaluated under optimized conditions. The method was applied for the detection of LA and organic impurities, including tyrosine, phenylalanine, and pyroglutamic acid, in samples from a continuous LA fermentation process from post-extraction tapioca starch and yeast extract.

  1. On the solubility of nicotinic acid and isonicotinic acid in water and organic solvents

    International Nuclear Information System (INIS)

    Abraham, Michael H.; Acree, William E.

    2013-01-01

    Highlights: ► Solubilities of nicotinic acid and isonicotinic acids in organicsolvents have been determined. ► Solubilities are used to calculate Abraham descriptors for the two acids. ► These descriptors then yield water-solvent and gas-solvent partitions into numerous solvents. ► The solubility of the neutral acids in water is obtained. ► The method is straightforward and can be applied to any set of compound solubilities. -- Abstract: We have determined the solubility of nicotinic acid in four solvents and the solubility of isonicotinic acid in another four solvents. These results, together with literature data on the solubility of nicotinic acid in five other organic solvents and isonicotinic acid in four other organic solvents, have been analyzed through two linear Gibbs energy relationships in order to extract compound properties, or descriptors, that encode various solute–solvent interactions. The descriptors for nicotinic acid and isonicotinic acid can then be used in known equations for partition of solutes between water and organic solvents to predict partition coefficients and then further solubility in a host of organic solvents, as well as to predict a number of other physicochemical properties

  2. Vinegar production from post-distillation slurry deriving from rice shochu production with the addition of caproic acid-producing bacteria consortium and lactic acid bacterium.

    Science.gov (United States)

    Yuan, Hua-Wei; Tan, Li; Chen, Hao; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji

    2017-12-01

    To establish a zero emission process, the post-distillation slurry of a new type of rice shochu (NTRS) was used for the production of health promoting vinegar. Since the NTRS post-distillation slurry contained caproic acid and lactic acid, the effect of these two organic acids on acetic acid fermentation was first evaluated. Based on these results, Acetobacter aceti CICC 21684 was selected as a suitable strain for subsequent production of vinegar. At the laboratory scale, acetic acid fermentation of the NTRS post-distillation slurry in batch mode resulted in an acetic acid concentration of 41.9 g/L, with an initial ethanol concentration of 40 g/L, and the acetic acid concentration was improved to 44.5 g/L in fed-batch mode. Compared to the NTRS post-distillation slurry, the vinegar product had higher concentrations of free amino acids and inhibition of angiotensin I converting enzyme activity. By controlling the volumetric oxygen transfer coefficient to be similar to that of the laboratory scale production, 45 g/L of acetic acid was obtained at the pilot scale, using a 75-L fermentor with a working volume of 40 L, indicating that vinegar production can be successfully scaled up. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Alleviating soil acidity through plant organic compounds

    Directory of Open Access Journals (Sweden)

    Anderson R. Meda

    2001-06-01

    Full Text Available A laboratory experiment was conducted to evaluate the effects of water soluble plant extracts on soil acidity. The plant materials were: black oat, oil seed radish, white and blue lupin, gray and dwarf mucuna, Crotalaria spectabilis and C. breviflora, millet, pigeon pea, star grass, mato grosso grass, coffee leaves, sugar cane leaves, rice straw, and wheat straw. Plant extracts were added on soil surface in a PVC soil column at a rate of 1.0 ml min-1. Both soil and drainage water were analyzed for pH, Ca, Al, and K. Plant extracts applied on the soil surface increased soil pH, exchangeable Ca ex and Kex and decreased Al ex. Oil seed radish, black oat, and blue lupin were the best and millet the worst materials to alleviate soil acidity. Oil seed radish markedly increased Al in the drainage water. Chemical changes were associated with the concentrations of basic cations in the plant extract: the higher the concentration the greater the effects in alleviating soil acidity.Foram conduzidos experimentos de laboratórios para avaliar os efeitos de extratos de plantas solúveis em água na acidez do solo. Os materiais de plantas foram: aveia preta, nabo, tremoço branco e azul, mucuna cinza e anã, Crotalaria spectabilis e C. breviflora, milheto, guandu, grama estrela, grama mato grosso, folhas de café, folhas de cana-de-açúcar, palhada de arroz e palhada de trigo. Foi utilizado o seguinte procedimento para o extrato da planta solúvel em água: pesar 3g de material de planta, adicionar 150 ml de água, agitar por 8h e filtrar. Os extratos de plantas foram adicionados na superfície do solo em uma coluna de PVC (1 ml min-1. Após, adicionou-se água deionizada em quantidade equivalente a três volumes de poros. Os extratos de plantas aumentaram o pH, Ca e K trocável e diminuíram Al. Nabo, aveia preta e tremoço azul foram os melhores e milheto o pior material para amenizar a acidez do solo. Nabo aumentou Al na água de drenagem. As altera

  4. One-pot synthesis of amino acid precursors with insoluble organic matter in planetesimals with aqueous activity

    Science.gov (United States)

    Kebukawa, Yoko; Chan, Queenie H. S.; Tachibana, Shogo; Kobayashi, Kensei; Zolensky, Michael E.

    2017-01-01

    The exogenous delivery of organic molecules could have played an important role in the emergence of life on the early Earth. Carbonaceous chondrites are known to contain indigenous amino acids as well as various organic compounds and complex macromolecular materials, such as the so-called insoluble organic matter (IOM), but the origins of the organic matter are still subject to debate. We report that the water-soluble amino acid precursors are synthesized from formaldehyde, glycolaldehyde, and ammonia with the presence of liquid water, simultaneously with macromolecular organic solids similar to the chondritic IOM. Amino acid products from hydrothermal experiments after acid hydrolysis include α-, β-, and γ-amino acids up to five carbons, for which relative abundances are similar to those extracted from carbonaceous chondrites. One-pot aqueous processing from simple ubiquitous molecules can thus produce a wide variety of meteoritic organic matter from amino acid precursors to macromolecular IOM in chondrite parent bodies. PMID:28345041

  5. Microbial production of poly-γ-glutamic acid.

    Science.gov (United States)

    Sirisansaneeyakul, Sarote; Cao, Mingfeng; Kongklom, Nuttawut; Chuensangjun, Chaniga; Shi, Zhongping; Chisti, Yusuf

    2017-09-05

    Poly-γ-glutamic acid (γ-PGA) is a natural, biodegradable and water-soluble biopolymer of glutamic acid. This review is focused on nonrecombinant microbial production of γ-PGA via fermentation processes. In view of its commercial importance, the emphasis is on L-glutamic acid independent producers (i.e. microorganisms that do not require feeding with the relatively expensive amino acid L-glutamic acid to produce γ-PGA), but glutamic acid dependent production is discussed for comparison. Strategies for improving production, reducing costs and using renewable feedstocks are discussed.

  6. Organic Substances from Unconventional Oil and Gas Production in Shale

    Science.gov (United States)

    Orem, W. H.; Varonka, M.; Crosby, L.; Schell, T.; Bates, A.; Engle, M.

    2014-12-01

    Unconventional oil and gas (UOG) production has emerged as an important element in the US and world energy mix. Technological innovations in the oil and gas industry, especially horizontal drilling and hydraulic fracturing, allow for the enhanced release of oil and natural gas from shale compared to conventional oil and gas production. This has made commercial exploitation possible on a large scale. Although UOG is enormously successful, there is surprisingly little known about the effects of this technology on the targeted shale formation and on environmental impacts of oil and gas production at the surface. We examined water samples from both conventional and UOG shale wells to determine the composition, source and fate of organic substances present. Extraction of hydrocarbon from shale plays involves the creation and expansion of fractures through the hydraulic fracturing process. This process involves the injection of large volumes of a water-sand mix treated with organic and inorganic chemicals to assist the process and prop open the fractures created. Formation water from a well in the New Albany Shale that was not hydraulically fractured (no injected chemicals) had total organic carbon (TOC) levels that averaged 8 mg/L, and organic substances that included: long-chain fatty acids, alkanes, polycyclic aromatic hydrocarbons, heterocyclic compounds, alkyl benzenes, and alkyl phenols. In contrast, water from UOG production in the Marcellus Shale had TOC levels as high as 5,500 mg/L, and contained a range of organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at thousands of μg/L for individual compounds. These chemicals and TOC decreased rapidly over the first 20 days of water recovery as injected fluids were recovered, but residual organic compounds (some naturally-occurring) remained up to 250 days after the start of water recovery (TOC 10-30 mg/L). Results show how hydraulic fracturing changes the organic

  7. Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products.

    Science.gov (United States)

    Riedel, Sebastian L; Lu, Jingnan; Stahl, Ulf; Brigham, Christopher J

    2014-02-01

    Lipid and fatty acid metabolism has been well studied in model microbial organisms like Escherichia coli and Bacillus subtilis. The major precursor of fatty acid biosynthesis is also the major product of fatty acid degradation (β-oxidation), acetyl-CoA, which is a key metabolite for all organisms. Controlling carbon flux to fatty acid biosynthesis and from β-oxidation allows for the biosynthesis of natural products of biotechnological importance. Ralstonia eutropha can utilize acetyl-CoA from fatty acid metabolism to produce intracellular polyhydroxyalkanoate (PHA). R. eutropha can also be engineered to utilize fatty acid metabolism intermediates to produce different PHA precursors. Metabolism of lipids and fatty acids can be rerouted to convert carbon into other value-added compounds like biofuels. This review discusses the lipid and fatty acid metabolic pathways in R. eutropha and how they can be used to construct reagents for the biosynthesis of products of industrial importance. Specifically, how the use of lipids or fatty acids as the sole carbon source in R. eutropha cultures adds value to these biotechnological products will be discussed here.

  8. Corrosion of alloy C-22 in organic acid solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Rodriguez, Martin A.; Giordano, Celia M.

    2007-01-01

    Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90 C degrees. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric acids. Results show that the corrosion rate of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and Picric acids showed a slightly higher corrosion rate, and Acetic acid maintained the corrosion rate of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions. Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids. (author) [es

  9. Microbial granulation for lactic acid production

    DEFF Research Database (Denmark)

    Kim, Dong-Hoon; Lee, Mo-Kwon; Hwang, Yuhoon

    2016-01-01

    This work investigated the formation of microbial granules to boost the productivity of lactic acid (LA). The flocculated form of LA-producing microbial consortium, dominated by Lactobacillus sp. (91.5% of total sequence), was initially obtained in a continuous stirred-tank reactor (CSTR), which...... increased, reaching 67 g L-fermenter−1h−1 at HRT 0.17 h. The size of LA-producing granules and hydrophobicity gradually increased with decrease in HRT, reaching 6.0 mm and 60%, respectively. These biogranules were also found to have high settling velocities and low porosities, ranging 2.69-4.73 cm s−1 and 0...

  10. Optimization of Citric Acid Production through Manipulation of ...

    African Journals Online (AJOL)

    An Aspergillus niger isolate was screened for citric acid production from glucose and the cultural conditions were manipulated for optimum citric acid production. Optimization studies improved citric acid yield by 13.34% from 12.81 g/l obtained during the screening test to 14.52 g/l obtained at the end of the optimization ...

  11. OPTIMIZATION OF VEGETABLE WASTES FOR LACTIC ACID PRODUCTION: A LABORATORY SCALE APPROACH

    Directory of Open Access Journals (Sweden)

    Sailaja Daharbha

    2015-04-01

    Full Text Available Vegetables wastes are organic materials which are not utilized as vegetables and are discarded at all stages of production, processing and marketing. These wastes form a major part of municipal solid wastes and are cause of foul smell and growth of microorganisms due to their high organic contents. The vegetable wastes can be utilized in many different ways to produces different products. We have shown that they can be utilized for production of lactic acid using anaerobic digestion. The 2nd day was the optimum day for recovery of lactic acid while 1:1 ratio of slurry and water was found to the best ratio for production of lactic acid from vegetable wastes. Effect of salts on lactic acid was also studied and it was found that the production decreased in all the concentrations of salts.

  12. Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol

    NARCIS (Netherlands)

    Grootscholten, T.I.M.; Strik, D.P.B.T.B.; Steinbusch, K.J.J.; Buisman, C.J.N.; Hamelers, B.

    2014-01-01

    Chain elongation is an anaerobic fermentation that produces medium chain fatty acids (MCFAs) from volatile fatty acids and ethanol. These MCFAs can be used as biochemical building blocks for fuel production and other chemical processes. Producing MCFAs from the organic fraction of municipal solid

  13. Potential of Different Coleus blumei Tissues for Rosmarinic Acid Production

    Directory of Open Access Journals (Sweden)

    Rosemary Vuković

    2015-01-01

    Full Text Available Rosmarinic acid is one of the main active components of Coleus blumei and is known to have numerous health benefi ts. The pharmacological significance of rosmarinic acid and its production through in vitro culture has been the subject of numerous studies. Here, the ability of different tissues to accumulate rosmarinic acid and sustainability in production over long cultivation have been tested. Calli, tumours, normal roots and hairy roots were established routinely by application of plant growth regulators or by transformation with agrobacteria. The differences among the established tumour lines were highly heterogeneous. Hairy root lines showed the highest mean growth rate and consistency in rosmarinic acid production. Although some tumour lines produced more rosmarinic acid than the hairy root lines, over a long cultivation period their productivity was unstable and decreased. Further, the effects of plant growth regulators on growth and rosmarinic acid accumulation were tested. 2,4-Dichlorophenoxyacetic acid significantly reduced tumour growth and rosmarinic acid production. 1-Naphthaleneacetic acid strongly stimulated hairy root growth whilst abscisic acid strongly enhanced rosmarinic acid production. Hairy roots cultured in an airlift bioreactor exhibited the highest potential for mass production of rosmarinic acid.

  14. Counter current extraction of phosphoric acid: Food grade acid production

    International Nuclear Information System (INIS)

    Shlewit, H.; AlIbrahim, M.

    2009-01-01

    Extraction, scrubbing and stripping of phosphoric acid from the Syrian wet-phosphoric acid was carried out using Micro-pilot plant of mixer settler type of 8 l/h capacity. Tributyl phosphate (TBP)/di-isopropyl ether (DIPE) in kerosene was used as extractant. Extraction and stripping equilibrium curves were evaluated. The number of extraction and stripping stages to achieve the convenient and feasible yield was determined. Detailed flow sheet was suggested for the proposed continuous process. Data obtained include useful information for the design of phosphoric acid extraction plant. The produced phosphoric acid was characterized using different analytical techniques. (author)

  15. Studies on the Bio production of Gibberellic Acid from Fungi

    International Nuclear Information System (INIS)

    Sleem, D.A.E.

    2013-01-01

    Gibberellic acid is a natural plant growth hormone which is gaining much more attention all over the world due to its effective use in agriculture and brewing industry. At present gibberellic acid is produced throughout the world by fermentation technique using the fungus Gibberella fujikuroi (recently named Fusarium moniliforme). The aim of the current study is the isolation of local F. moniliforme isolate have the ability to produce gibberellic acid on specific production media. The submerged fermentation technique for the production of gibberellic acid is influenced to a great extent by a variety of physical factors (incubation time, temperature, ph, agitation speed) also, gibberellic acid production by F. moniliforme depends upon the nature and concentrations of carbon and nitrogen sources. The optimization of these factors is prerequisite for the development of commercial process. The addition of some elements in a significant quantities to the production media stimulate gibberellic acid production. The use of seed culture inocula (24 h) age at rate of (2% v/v) also enhance the production. Working volume 50 ml in 250 ml Erlenmeyer flask was found to be the best volume for the production. Low doses of gamma radiation (0.5 kGy) stimulate gibberellic acid production and microbial growth by the local F. moniliforme isolate. Immobilized cell fermentation technique had also been developed as an alternative to obtain higher yield of gibberellic acid. Milk permeate (cheap dairy by- product) was found suitable to used as main production medium for gibberellic acid production by the fungus under investigation. The influence of gibberellic acid on enhancement growth of Aspergillus niger and chitosan production was also studied, the addition of 2 mg/l of gibberellic acid to chitosan production medium stimulate its production in comparison with media without gibberellic acid

  16. Sugars, organic acids, minerals and lipids in jabuticaba

    Directory of Open Access Journals (Sweden)

    Annete de Jesus Boari Lima

    2011-06-01

    Full Text Available The aim of this work was to determine the sugar, organic acid and mineral compositions of the whole fruit and fractions (skin, pulp and seed of the Paulista (Plinia cauliflora and Sabará (Plinia jaboticaba jabuticaba tree genotypes, as well as the oil compositions of their skin and seeds. High levels of sugar, especially fructose, followed by glucose and sucrose, were encountered in the fruit. In the Paulista genotype, higher levels of total and reducing sugars were found in the pulp and skin, which was not observed when comparing the whole fruit of both genotypes. Five organic acids were found in the whole fruit and in the fractions of the two jabuticaba genotypes in quantitative order: citric acid > succinic acid > malic acid > oxalic acid > acetic acid. Potassium was the most abundant mineral found. This fruit was also shown to be rich in magnesium, phosphorus, calcium and copper. The seed oil had nearly the same constitution as the oil extracted from the skin in both genotypes and the major compounds were an unidentified phytosterol, palmitic, linoleic and oleic acids, and squalene.

  17. Novel Method of Lactic Acid Production by Electrodialysis Fermentation

    OpenAIRE

    Hongo, Motoyoshi; Nomura, Yoshiyuki; Iwahara, Masayoshi

    1986-01-01

    In lactic acid fermentation by Lactobacillus delbrueckii, the produced lactic acid affected the lactic acid productivity. Therefore, for the purpose of alleviating this inhibitory effect, an electrodialysis fermentation method which can continuously remove produced lactic acid from the fermentation broth was applied to this fermentation process. As a result, the continuation of fermentation activity was obtained, and the productivity was three times higher than in non-pH-controlled fermentati...

  18. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle.

    Science.gov (United States)

    Zahn, Daniel; Frömel, Tobias; Knepper, Thomas P

    2016-09-15

    Mobile and persistent organic micropollutants may impact raw and drinking waters and are thus of concern for human health. To identify such possible substances of concern nineteen water samples from five European countries (France, Switzerland, The Netherlands, Spain and Germany) and different compartments of the water cycle (urban effluent, surface water, ground water and drinking water) were enriched with mixed-mode solid phase extraction. Hydrophilic interaction liquid chromatography - high resolution mass spectrometry non-target screening of these samples led to the detection and structural elucidation of seven novel organic micropollutants. One structure could already be confirmed by a reference standard (trifluoromethanesulfonic acid) and six were tentatively identified based on experimental evidence (chloromethanesulfonic acid, dichloromethanesulfonic acid, trichloromethanesulfonic acid, bromomethanesulfonic acid, dibromomethanesulfonic acid and bromochloromethanesulfonic acid). Approximated concentrations for these substances show that trifluoromethanesulfonic acid, a chemical registered under the European Union regulation REACH with a production volume of more than 100 t/a, is able to spread along the water cycle and may be present in concentrations up to the μg/L range. Chlorinated and brominated methanesulfonic acids were predominantly detected together which indicates a common source and first experimental evidence points towards water disinfection as a potential origin. Halogenated methanesulfonic acids were detected in drinking waters and thus may be new substances of concern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Biopropionic acid production via molybdenumcatalyzed deoxygenation of lactic acid

    NARCIS (Netherlands)

    Korstanje, T.J.; Kleijn, H.; Jastrzebski, J.T.B.H.; Klein Gebbink, R.J.M.

    2013-01-01

    As the search for non-fossil based building blocks for the chemical industry increases, new methods for the deoxygenation of biomass-derived substrates are required. Here we present the deoxygenation of lactic acid to propionic acid, using a catalyst based on the non-noble and abundant metal

  20. Spontaneous arylation of activated carbon from aminobenzene organic acids as source of diazonium ions in mild conditions

    International Nuclear Information System (INIS)

    Lebègue, Estelle; Brousse, Thierry; Gaubicher, Joël; Cougnon, Charles

    2013-01-01

    Activated carbon products modified with benzoic, benzenesulfonic and benzylphosphonic acid groups were prepared by spontaneous reduction of aryldiazonium ions in situ generated in water from the corresponding aminobenzene organic acids without addition of an external acid. Electrochemistry and NMR studies show that the advancement of the diazotization reaction depends both on the acidity and the electronic effect of the organic acid substituent, giving a mixture of diazonium, amine and triazene functionalities. Carbon products prepared by reaction of activated carbon Norit with 4-aminobenzenecarboxylic acid, 4-aminobenzenesulfonic acid and (4-aminobenzyl)phosphonic acid were analyzed by chemical elemental analysis and X-ray photoelectron spectroscopy experiments. Results show that this strategy is well suited for the chemical functionalization, giving a maximized grafting yield due to a chemical cooperation of amine and diazonium functionalities

  1. Chloroacetic acids - Degradation intermediates of organic matter in forest soil

    Czech Academy of Sciences Publication Activity Database

    Matucha, Miroslav; Gryndler, Milan; Schröder, P.; Forczek, Sándor; Uhlířová, H.; Fuksová, Květoslava; Rohlenová, Jana

    2007-01-01

    Roč. 39, č. 1 (2007), s. 382-385 ISSN 0038-0717 R&D Projects: GA ČR GA522/02/0874; GA ČR GA526/05/0636 Institutional research plan: CEZ:AV0Z50380511 Keywords : trichloroacetic acid * dichloroacetic acid * chlorination * soil organic matter Subject RIV: EF - Botanics Impact factor: 2.580, year: 2007

  2. Effect of Pyruvate Decarboxylase Knockout on Product Distribution Using Pichia pastoris (Komagataella phaffii) Engineered for Lactic Acid Production.

    Science.gov (United States)

    Melo, Nadiele T M; Mulder, Kelly C L; Nicola, André Moraes; Carvalho, Lucas S; Menino, Gisele S; Mulinari, Eduardo; Parachin, Nádia S

    2018-02-16

    Lactic acid is the monomer unit of the bioplastic poly-lactic acid (PLA). One candidate organism for lactic acid production is Pichia pastoris , a yeast widely used for heterologous protein production. Nevertheless, this yeast has a poor fermentative capability that can be modulated by controlling oxygen levels. In a previous study, lactate dehydrogenase (LDH) activity was introduced into P. pastoris, enabling this yeast to produce lactic acid. The present study aimed to increase the flow of pyruvate towards the production of lactic acid in P. pastoris . To this end, a strain designated GLp was constructed by inserting the bovine lactic acid dehydrogenase gene (LDHb) concomitantly with the interruption of the gene encoding pyruvate decarboxylase (PDC). Aerobic fermentation, followed by micro-aerophilic culture two-phase fermentations, showed that the GLp strain achieved a lactic acid yield of 0.65 g/g. The distribution of fermentation products demonstrated that the acetate titer was reduced by 20% in the GLp strain with a concomitant increase in arabitol production: arabitol increased from 0.025 g/g to 0.174 g/g when compared to the GS115 strain. Taken together, the results show a significant potential for P. pastoris in producing lactic acid. Moreover, for the first time, physiological data regarding co-product formation have indicated the redox balance limitations of this yeast.

  3. Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    Directory of Open Access Journals (Sweden)

    E. M. Knipping

    2011-02-01

    Full Text Available The secondary organic aerosol (SOA yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS. A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS.

  4. Screening of Gibberellic Acid Production by Pseudomonas SPP

    International Nuclear Information System (INIS)

    Khine Zar Wynn Myint; Khin Mya Lwin; Myo Myint

    2010-12-01

    The microbial gibberellic acid (GA3) production of Pseudomonas spp., was studied and qualitatively indentified by UV spectrophotometer. 20 strains of Pseudomonas spp., were isolated and screened the gibberellic acid productivily in King's B medium. Among them, only four strains can produce microbial gibberellic acid. The Rf values and colour appearance under UV were the same as authentic gibberellic acid. Moreover, the gibberellic acid producer strains were identified as Pseudomonas spp., by cultural, biochemical and drug sensitivity pattern.

  5. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    Energy Technology Data Exchange (ETDEWEB)

    White, T. L. [Savannah River Site (SRS), Aiken, SC (United States); Wiedenman, B. J. [Savannah River Site (SRS), Aiken, SC (United States); Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Crump, S. L. [Savannah River Site (SRS), Aiken, SC (United States); Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States); Papathanassiu, A. E. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Kot, W. K. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Pegg, I. L. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States)

    2013-10-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  6. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    International Nuclear Information System (INIS)

    White, T. L.; Wiedenman, B. J.; Lambert, D. P.; Crump, S. L.; Fondeur, F. F.; Papathanassiu, A. E.; Kot, W. K.; Pegg, I. L.

    2013-01-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  7. Influence of aluminum on growth, mineral nutrition and organic acid exudation of rambutan (Nephelium lappaceum)

    Science.gov (United States)

    A randomized complete block design experiment with six aluminum (Al) concentrations was carried out to evaluate the effect of aluminum on nutrient content, plant growth, dry matter production and Al-induced organic acid exudation in rambutan (Nephelium lappaceum). One rambutan cultivar was grown in...

  8. Secondary organic aerosol production from modern diesel engine emissions

    Directory of Open Access Journals (Sweden)

    S. Samy

    2010-01-01

    Full Text Available Secondary organic aerosol (SOA production was observed at significant levels in a series of modern diesel exhaust (DE aging experiments conducted at the European Outdoor Photoreactor/Simulation Chamber (EUPHORE. The greatest production occurred in DE with toluene addition experiments (>40%, followed by DE with HCHO (for OH radical generation experiments. A small amount of SOA (3% was observed for DE in dark with N2O5 (for NO3 radical production experiments. The analysis for a limited number (54 of polar organic compounds (POC was conducted to assess the composition of modern DE and the formation of photochemical transformation products. Distinct POC formation in light versus dark experiments suggests the role of OH initiated reactions in these chamber atmospheres. A trend of increasing concentrations of dicarboxylic acids in light versus dark experiments was observed when evaluated on a compound group basis. The four toluene addition experiments in this study were performed at different [tol]o/[NOx]o ratios and displayed an average SOA %yield (in relation to toluene of 5.3±1.6%, which is compared to past chamber studies that evaluated the impact of [tol]o/[NOx]o on SOA production in more simplified mixtures.

  9. ORGANIC GRAIN PRODUCTION MARKET OF UKRAINE: PROSPECTS AND TRENDS

    Directory of Open Access Journals (Sweden)

    Viktoriia Bondar

    2016-11-01

    Full Text Available The purpose of the paper is to determine the prospects of the market of organic products in Ukraine. The article studies the market for organic produce dynamic area of organic farmland, number of organic farms in volume production of organic products. Identified key factors influencing the market for organic products Ukraine, outlined areas of the market based on its current state. Grain industry serves as a source of sustainable development of agriculture, determines the socio-economic condition of society and is the basis of agricultural exports. Therefore, the development of the organic market of grain and its products are of particular importance and led to the goal and objectives of bottom investigation. Methodology. The theoretical and methodological basis of the study are works of economists on the development of ecology management, general scientific methods and approaches in the field of business management: historical, dialectical, abstract logical methods of system-structural analysis and synthesis of scientific research and provision of economic theory, management. Results. Proved that Ukraine has considerable potential as a producer of agricultural products, including organic farming, export, consumption in the domestic market. To determine the market trends of organic products studied the dynamics of agricultural surfaces of Ukraine, reserved for growing organic products. To further study the characteristics and trends of the market for organic products in Ukraine, examined the dynamics of the number of organic farms. For determining the main trends and the prospects of the organic products market, and in addition for researching proposals, examined demand for market research of market demand for organic products in terms of production of organic products in Ukraine. Practical implications. The main problem of Ukraine of organic production is exported domestic products as organic production of agricultural products. Analysis of key

  10. Bacteriocins from lactic acid bacteria: production, purification, and food applications.

    Science.gov (United States)

    De Vuyst, Luc; Leroy, Frédéric

    2007-01-01

    In fermented foods, lactic acid bacteria (LAB) display numerous antimicrobial activities. This is mainly due to the production of organic acids, but also of other compounds, such as bacteriocins and antifungal peptides. Several bacteriocins with industrial potential have been purified and characterized. The kinetics of bacteriocin production by LAB in relation to process factors have been studied in detail through mathematical modeling and positive predictive microbiology. Application of bacteriocin-producing starter cultures in sourdough (to increase competitiveness), in fermented sausage (anti-listerial effect), and in cheese (anti-listerial and anti-clostridial effects), have been studied during in vitro laboratory fermentations as well as on pilot-scale level. The highly promising results of these studies underline the important role that functional, bacteriocinogenic LAB strains may play in the food industry as starter cultures, co-cultures, or bioprotective cultures, to improve food quality and safety. In addition, antimicrobial production by probiotic LAB might play a role during in vivo interactions occurring in the human gastrointestinal tract, hence contributing to gut health.

  11. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    Science.gov (United States)

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  12. Biotechnological Production of Lactic Acid and Its Recent Applications

    Directory of Open Access Journals (Sweden)

    Young-Jung Wee

    2006-01-01

    Full Text Available Lactic acid is widely used in the food, cosmetic, pharmaceutical, and chemical industries and has received increased attention for use as a monomer for the production of biodegradable poly(lactic acid. It can be produced by either biotechnological fermentation or chemical synthesis, but the former route has received considerable interest recently, due to environmental concerns and the limited nature of petrochemical feedstocks. There have been various attempts to produce lactic acid efficiently from inexpensive raw materials. We present a review of lactic acid-producing microorganisms, raw materials for lactic acid production, fermentation approaches for lactic acid production, and various applications of lactic acid, with a particular focus on recent investigations. In addition, the future potentials and economic impacts of lactic acid are discussed.

  13. Production of caffeoylmalic acid from glucose in engineered Escherichia coli.

    Science.gov (United States)

    Li, Tianzhen; Zhou, Wei; Bi, Huiping; Zhuang, Yibin; Zhang, Tongcun; Liu, Tao

    2018-07-01

    To achieve biosynthesis of caffeoylmalic acid from glucose in engineered Escherichia coli. We constructed the biosynthetic pathway of caffeoylmalic acid in E. coli by co-expression of heterologous genes RgTAL, HpaBC, At4CL2 and HCT2. To enhance the production of caffeoylmalic acid, we optimized the tyrosine metabolic pathway of E. coli to increase the supply of the substrate caffeic acid. Consequently, an E. coli-E. coli co-culture system was used for the efficient production of caffeoylmalic acid. The final titer of caffeoylmalic acid reached 570.1 mg/L. Microbial production of caffeoylmalic acid using glucose has application potential. In addition, microbial co-culture is an efficient tool for producing caffeic acid esters.

  14. Microbial granulation for lactic acid production.

    Science.gov (United States)

    Kim, Dong-Hoon; Lee, Mo-Kwon; Hwang, Yuhoon; Im, Wan-Taek; Yun, Yeo-Myeong; Park, Chul; Kim, Mi-Sun

    2016-01-01

    This work investigated the formation of microbial granules to boost the productivity of lactic acid (LA). The flocculated form of LA-producing microbial consortium, dominated by Lactobacillus sp. (91.5% of total sequence), was initially obtained in a continuous stirred-tank reactor (CSTR), which was fed with 2% glucose and operated at a hydraulic retention time (HRT) of 12 h and pH 5.0 ± 0.1 under a thermophilic condition (50°C). The mixed liquor in the CSTR was then transferred to an up-flow anaerobic sludge blanket reactor (UASB). The fermentation performance and granulation process were monitored with a gradual decrease of HRT from 8.0 to 0.17 h, corresponding to an increase in the substrate loading from 60 to 2,880 g glucose L(-1) d(-1) . As the operation continued, the accumulation of biomass in the UASB was clearly observed, which changed from flocculent to granular form with decrease in HRT. Up to the HRT decrease to 0.5 h, the LA concentration was maintained at 19-20 g L(-1) with over 90% of substrate removal efficiency. However, further decrease of HRT resulted in a decrease of LA concentration with increase in residual glucose. Nevertheless, the volumetric LA productivity continuously increased, reaching 67 g L-fermenter (-1) h(-1) at HRT 0.17 h. The size of LA-producing granules and hydrophobicity gradually increased with decrease in HRT, reaching 6.0 mm and 60%, respectively. These biogranules were also found to have high settling velocities and low porosities, ranging 2.69-4.73 cm s(-1) and 0.39-0.92, respectively. © 2015 Wiley Periodicals, Inc.

  15. Chicoric acid: chemistry, distribution, and production

    Science.gov (United States)

    Lee, Jungmin; Scagel, Carolyn

    2013-12-01

    Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed.

  16. Chicoric acid: chemistry, distribution, and production

    Directory of Open Access Journals (Sweden)

    Jungmin eLee

    2013-12-01

    Full Text Available Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed.

  17. [CONTENT OF TRANS FATTY ACIDS IN FOOD PRODUCTS IN SPAIN].

    Science.gov (United States)

    Robledo de Dios, Teresa; Dal Re Saavedra, M Ángeles; Villar Villalba, Carmen; Pérez-Farinós, Napoleón

    2015-09-01

    trans fatty acids are associated to several health disorders, as ischemic heart disease or diabetes mellitus. to assess the content of trans fatty acids in products in Spain, and the percentage of trans fatty acids respecting total fatty acids. 443 food products were acquired in Spain, and they were classified into groups. The content in fatty acids was analyzed using gas chromatography. Estimates of central tendency and variability of the content of trans fatty acids in each food group were computed (in g of trans fatty acids/100 g of product). The percentage of trans fatty acids respecting total fatty acids was calculated in each group. 443 products were grouped into 42 groups. Median of trans fatty acids was less than 0.55 g / 100 g of product in all groups except one. 83 % of groups had less than 2 % of trans fatty acids, and 71 % of groups had less than 1 %. the content of trans fatty acids in Spain is low, and it currently doesn't play a public health problem. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  18. EFFECT OF THE USE OF MOS AND ORGANIC ACIDS IN PERFORMANCE PIGLETS

    Directory of Open Access Journals (Sweden)

    L. Vargas

    2017-02-01

    Full Text Available The production chain of swine has been developed to meet the consumer market , seeking a more lean meat and produced cleanly. Faced with this demand , key areas of swine as genetics, nutrition , health , ambience , animal welfare, management of costs and environmental management are increasingly studied and debated to the organs concerned . Have advances in the field of nutrition has also contributed to a cleaner animal production through the use of enhancers efficiency as prebiotics and organic acids in the diets of pigs as potential substitutes for conventional growth promoters . The mannan oligosaccharides ( MOS along with organic acids , are able to maintain the integrity of the digestive tract , by benefiting the multiplication of beneficial bacteria and also in the specific case of MOS , act as adsorbents of pathogenic bacteria , preventing their adhesion in the intestinal epithelium and causing their elimination . Since these effects improve the absorption of nutrients with gains in production rates . Given the above , the objective of this study is to evaluate the effects of MOS and organic acid in the performance parameters of piglets during 15-30 Kg The experiment will be conducted in the UEP on Swine Campuses Two Neighbors - UTFPR . Crusaders 18 pigs with an initial average weight of 15kg with 50 days of age , distributed in a completely randomized design with two treatments will be used : T1 - basal ration T2 - ration + 0.2% MOS + organic acid , with 3 replications and 3 animals per experimental unit . The parameters evaluated were weight gain , feed intake , feed conversion , stool consistency and feed cost per kg of produced pig . There was no difference ( P > 0.05 on growth performance and fecal consistency between treatments . However , the cost per kg pig was highest in treatment 2 (with additives compared to Treatment 1 (control. In the conditions of the present study was conducted , it can be concluded that the use of MOS and

  19. Organic vs. Non-Organic Food Products: Credence and Price Competition

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-04-01

    Full Text Available We analyze the organic and non-organic production choices of two firms by considering customers’ trust in organic food products. In the context of customers’ possible willingness to pay a premium price and their mistrust in organic food products, two firms first make choices on offering organic and non-organic food products. If offering organic products, a firm can further invest in the credence system to increase customers’ trust in their organic products. At the final stage, two firms determine prices. We provide serval insights. First, we characterize the market conditions in which only one firm, both firms or neither firm will choose to offer organic food products. We find that the higher the production costs or credence investment costs for organic food products are, the more likely firms are to choose to produce non-organic food products. Second, if it is expensive enough to invest in organic credence, offering organic food products may still be uncompetitive, even if organic production cost appears to have no disadvantage compared to non-organic food products. Third, we highlight how the prices of organic food products in equilibrium are affected by market parameters. We show that when only one firm offers organic food products, this firm tends to offer a relatively low price if organic credence investment is expensive. Fourth, we highlight how one firm’s credence investment decision in equilibrium can be affected by the product type choice of the other firm. We find that the investment in organic credence is lower when both firms offer organic food products compared with the case when only one firm offers organic food products.

  20. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    CERN Document Server

    Schobesberger, Siegfried; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molec...

  1. Effect of inorganic salts on the volatility of organic acids.

    Science.gov (United States)

    Häkkinen, Silja A K; McNeill, V Faye; Riipinen, Ilona

    2014-12-02

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance.

  2. Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei

    DEFF Research Database (Denmark)

    Yang, Lei; Lübeck, Mette; Ahring, Birgitte K.

    2015-01-01

    production medium as well as the complete medium, but the measured enzyme activities were different depending on the media. Furthermore, a soluble NADH-dependent fumarate reductase gene (frd) from Trypanosoma brucei was inserted and expressed in A. saccharolyticus. The expression of the frd gene led......Aspergillus saccharolyticus exhibits great potential as a cell factory for industrial production of dicarboxylic acids. In the analysis of the organic acid profile, A. saccharolyticus was cultivated in an acid production medium using two different pH conditions. The specific activities...... of the enzymes, pyruvate carboxylase (PYC), malate dehydrogenase (MDH), and fumarase (FUM), involved in the reductive tricarboxylic acid (rTCA) branch, were examined and compared in cells harvested from the acid production medium and a complete medium. The results showed that ambient pH had a significant impact...

  3. Molecular physiology of weak organic acid stress in Bacillus subtilis

    NARCIS (Netherlands)

    van Beilen, J.W.A.

    2013-01-01

    The mechanism by which weak organic acid (WOA) preservatives inhibit growth of microorganisms may differ between different WOAs and these differences are not well understood. The aim of this thesis has been to obtain a better understanding of the mode of action of these preservatives by which they

  4. Effects of organic acid and probiotic on performance and gut ...

    African Journals Online (AJOL)

    user

    2015-12-02

    Dec 2, 2015 ... The effects of organic acid, probiotic and a combination of the two on performance and gut .... −3 dilution level. One mL of the dilution was pipetted and inoculated on .... animal by stimulating synthesis of vitamins of the B-group, improving .... Cowan and Steel's Manual for Identification of Medical Bacteria.

  5. Improvement of acid protease production by a mixed culture of ...

    African Journals Online (AJOL)

    The synthesis of acid protease by Aspergillus oryzae AS3042 was enhanced significantly with the mixed culture of Aspergillus niger SL-09 using solid-state fermentation technique. The influence of carbon sources, nitrogen sources and the addition of phytic acid on acid protease production were investigated. The enzyme ...

  6. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    Science.gov (United States)

    Scott, Durelle T.; Runkel, Robert L.; McKnight, Diane M.; Voelker, Bettina M.; Kimball, Briant A.; Carraway, Elizabeth R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  7. Acetic acid production from marine algae. Progress report No. 3, January 1, 1978--March 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J.E.; Wise, D.L.

    1978-06-01

    The program for acetic acid production from marine algae has made significant progress in the current quarter. Some of the significant developments during this period are: (1) conversion of the available reducing equivalents in Chondrus crispus to organic acids has been carried to better than 80% completion; (2) thermophilic fermentations produce higher ratios of acetic acid to total acid than is the case for mesophilic fermentations (80% vs. 50%); (3) a membrane extraction process for removing organic acid products has been developed which has potential for commercial use; (4) a large scale fermentation was shown to convert over 50% of the available carbon in five days; (5) a reducing equivalents balance on the large scale fermentation was closed to with 96% of theoretical.

  8. Environmental impact assessment of conventional and organic milk production

    NARCIS (Netherlands)

    Boer, de I.J.M.

    2003-01-01

    Organic agriculture addresses the public demand to diminish environmental pollution of agricultural production. Until now, however, only few studies tried to determine the integrated environmental impact of conventional versus organic production using life cycle assessment (LCA). The aim of this

  9. Sugars and organic acids in plum fruit affected by Plum pox virus.

    Science.gov (United States)

    Usenik, Valentina; Marn, Mojca Virscek

    2017-05-01

    Plum pox virus (PPV) causes severe economic losses in stone fruit production, but little is known about its effect on plum fruit composition. In this study, the influence of PPV on sugars and organic acids was evaluated in a susceptible plum (Prunus domestica L.) cultivar. PPV infection significantly affected the content and composition of sugars and organic acids. The composition of necrotic tissue was modified the most. A short-time infected tree yielded fruit with similar sugar composition to fruit from a healthy tree, but the decline of organic acids was faster. Prematurely ripened symptomatic fruit had reduced fruit weight and low sugar content. Infected trees of the studied cultivar produce fruit of inferior quality. Fruits are not suitable for processing, especially when most of them exhibit visual symptoms of PPV infection. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. N2O production pathways in the subtropical acid forest soils in China

    International Nuclear Information System (INIS)

    Zhang Jinbo; Cai Zucong; Zhu Tongbin

    2011-01-01

    To date, N 2 O production pathways are poorly understood in the humid subtropical and tropical forest soils. A 15 N-tracing experiment was carried out under controlled laboratory conditions to investigate the processes responsible for N 2 O production in four subtropical acid forest soils (pH 2 O emission in the subtropical acid forest soils, being responsible for 56.1%, 53.5%, 54.4%, and 55.2% of N 2 O production, in the GC, GS, GB, and TC soils, respectively, under aerobic conditions (40%-52%WFPS). The heterotrophic nitrification (recalcitrant organic N oxidation) accounted for 27.3%-41.8% of N 2 O production, while the contribution of autotrophic nitrification was little in the studied subtropical acid forest soils. The ratios of N 2 O-N emission from total nitrification (heterotrophic+autotrophic nitrification) were higher than those in most previous references. The soil with the lowest pH and highest organic-C content (GB) had the highest ratio (1.63%), suggesting that soil pH-organic matter interactions may exist and affect N 2 O product ratios from nitrification. The ratio of N 2 O-N emission from heterotrophic nitrification varied from 0.02% to 25.4% due to soil pH and organic matter. Results are valuable in the accurate modeling of N2O production in the subtropical acid forest soils and global budget. - Highlights: → We studied N 2 O production pathways in subtropical acid forest soil under aerobic conditions. → Denitrification was the main source of N 2 O production in subtropical acid forest soils. → Heterotrophic nitrification accounted for 27.3%-41.8% of N 2 O production. → While, contribution of autotrophic nitrification to N 2 O production was little. → Ratios of N 2 O-N emission from nitrification were higher than those in most previous references.

  11. Lactic acid Production with in situ Extraction in Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Hamidreza Ghafouri Taleghani

    2017-01-01

    Full Text Available Background and Objective: Lactic acid is widely used in the food, chemical and pharmaceutical industries. The major problems associated with lactic acid production are substrate and end-product inhibition, and by-product formation. Membrane technologyrepresents one of the most effective processes for lactic acid production. The aim of this work is to increase cell density and lactic acid productivity due to reduced inhibition effect of substrate and product in membrane bioreactor.Material and Methods: In this work, lactic acid was produced from lactose in membrane bioreactor. A laboratory scale membrane bioreactor was designed and fabricated. Five types of commercial membranes were tested at the same operating conditions (transmembrane pressure: 500 KPa and temperature: 25°C. The effects of initial lactose concentration and dilution rate on biomass growth, lactic acid production and substrate utilization were evaluated.Results and Conclusion: The high lactose retention of 79% v v-1 and low lactic acid retention of 22% v v-1 were obtained with NF1 membrane; therefore, this membrane was selected for membrane bioreactor. The maximal productivity of 17.1 g l-1 h-1 was obtainedwith the lactic acid concentration of 71.5 g l-1 at the dilution rate of 0.24 h−1. The maximum concentration of lactic acid was obtained at the dilution rate of 0.04 h−1. The inhibiting effect of lactic acid was not observed at high initial lactose concentration. The critical lactose concentration at which the cell growth severely hampered was 150 g l-1. This study proved that membrane bioreactor had great advantages such as elimination of substrate and product inhibition, high concentration of process substrate, high cell density,and high lactic acid productivity.Conflict of interest: There is no conflict of interest.

  12. Fructose decomposition kinetics in organic acids-enriched high temperature liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinghua; Lu, Xiuyang; Yuan, Lei; Liu, Xin [Department of Chemical and Biochemical Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, Zhejiang (China)

    2009-09-15

    Biomass continues to be an important candidate as a renewable resource for energy, chemicals, and feedstock. Decomposition of biomass in high temperature liquid water is a promising technique for producing industrially important chemicals such as 5-hydroxymethylfurfural (5-HMF), furfural, levulinic acid with high efficiency. Hexose, which is the hydrolysis product of cellulose, will be one of the most important starting chemicals in the coming society that is highly dependent on biomass. Taking fructose as a model compound, its decomposition kinetics in organic acids-enriched high temperature liquid water was studied in the temperature range from 180 C to 220 C under the pressure of 10 MPa to further improve reaction rate and selectivity of the decomposition reactions. The results showed that the reaction rate is greatly enhanced with the addition of organic acids, especially formic acid. The effects of temperature, residence time, organic acids and their concentrations on the conversion of fructose and yield of 5-HMF were investigated. The evaluated apparent activation energies of fructose decomposition are 126.8 {+-} 3.3 kJ mol{sup -1} without any catalyst, 112.0 {+-} 13.7 kJ mol{sup -1} catalyzed with formic acid, and 125.6 {+-} 3.8 kJ mol{sup -1} catalyzed with acetic acid, respectively, which shows no significant difference. (author)

  13. ruminants by amino acid analysis of the products of

    African Journals Online (AJOL)

    reveals that in all cases histidine is the limiting amino acid for milk production. Comparison of the milk production potential predicted from the duodenal amino acid supply with that predicted from ... also recognized, in ruminants, as'a critical point in the chain .... be used to model the in vivo situation and measurement of.

  14. Optimising the Effect of Stimulants on Citric Acid Production from ...

    African Journals Online (AJOL)

    Additives such as low molecular weight alcohols, trace metals, phytate, lipids etc have been reported to stimulate citric acid production. Hence the objective of this study was to investigate the effect of stimulating the metabolic activity of Aspergillus niger for the purpose of improved citric acid production from cocoyam starch.

  15. Production of Citric Acid from Solid State Fermentation of Sugarcane ...

    African Journals Online (AJOL)

    Aspergillus niger is the leading microorganism of choice for citric acid production. Sugarcane waste was used as substrate under solid state fermentation to comparatively evaluate the citric acid production capacity of Aspergillus niger isolates and the indigenous microflora in the sugarcane waste. Known optimal cultural ...

  16. Biotechnological advances and perspectives of gamma-aminobutyric acid production.

    Science.gov (United States)

    Xu, Ning; Wei, Liang; Liu, Jun

    2017-03-01

    Gamma-aminobutyric acid (GABA) is a four-carbon non-protein amino acid that is widely distributed among various organisms. Since GABA has several well-known physiological functions, such as mediating neurotransmission and hypotensive activity, as well as having tranquilizer effects, it is commonly used as a bioactive compound in the food, pharmaceutical and feed industries. The major pathway of GABA biosynthesis is the irreversible decarboxylation of L-glutamate catalyzed by glutamate decarboxylase (GAD), which develops a safe, sustainable and environmentally friendly alternative in comparison with traditional chemical synthesis methods. To date, several microorganisms have been successfully engineered for high-level GABA biosynthesis by overexpressing exogenous GADs. However, the activity of almost all reported microbial GADs sharply decreases at physiological near-neutral pH, which in turn provokes negative effects on the application of these GADs in the recombinant strains for GABA production. Therefore, ongoing efforts in the molecular evolution of GADs, in combination with high-throughput screening and metabolic engineering of particular producer strains, offer fascinating new prospects for effective, environmentally friendly and economically viable GABA biosynthesis. In this review, we briefly introduce the applications in which GABA is used, and summarize the most important methods associated with GABA production. The major achievements and present challenges in the biotechnological synthesis of GABA, focusing on screening and enzyme engineering of GADs, as well as metabolic engineering strategy for one-step GABA biosynthesis, will be extensively discussed.

  17. Role of Organic Acids in Bioformation of Kaolinite: Results of Laboratory Experiments

    Science.gov (United States)

    Bontognali, T. R. R.; Vasconcelos, C.; McKenzie, J. A.

    2012-04-01

    intermediate product of the tricarboxylic acid cycle. Our results demonstrate, for the first time, that the formation of a specific clay mineral (proto-kaolinite) occurs in the presence of a specific organic compound (succinic acid). This implies that microbial species capable of excreting succinate among their EPS may promote authigenic kaolinite formation at low temperature and neutral pH. This biological degradation process might play a crucial role for the formation of authigenic kaolinite, which is a widespread clay mineral in sedimentary environments. Fiore, S., Dumontet, S., Huertas, F.J., and Pasquale, V., 2011. Bacteria-induced crystallization of kaolinite. Applied Clay Science, 53:566-571. Linares, J., and Huertas, F., 1971. Kaolinite: Synthesis at room temperature. Science 171: 896-897.

  18. THE PRICE ON THE ORGANIC PRODUCT MARKET

    Directory of Open Access Journals (Sweden)

    ATĂNĂSOAIE GEORGE SEBASTIAN

    2013-08-01

    Full Text Available The main objective of this paper is to present prices on PAE market (PAE- organic foods market. Prices areanalyzed in terms of importance and the main factors that contribute to their establishment (quality of products,distribution channels, certification and eco-labeling system, customer segments and market development stage.The paper shows that are used three strategic options of prices: prices with high rigidity located in a low or highlevel and fluctuating prices, characterized by variations on short periods of time. Price is a very importantbarrier to market development but this importance can be mitigated through appropriate communicationpolicies with the market, which are essential especially for markets in early stages of development

  19. Adsorption of Organic Compounds to Building Products

    DEFF Research Database (Denmark)

    Kjær, Ulla Dorte

    The presence of VOCs (Volatile Organic Compounds) in the indoor air may be a contributory cause of complaints about irritation of mucous membranes in eyes, nose and throat, difficulty in breathing, frequent airway inflammation, skin irritation, fatigue, concentration difficulty, dizziness and hea...... (6 pages). Detailed summary in English (15 pages). Background (23 pages). Objective and hypotheses (2 pages). Methods and materials (20 pages). Results (26 pages). Discussion (12 pages). Conclusion (3 pages). References (14 pages). Appendices (95 pages)....... on sorption equilibrium and kinetics of temperature, relative humidity, VOC concentrations and air velocity past the surface of the building product. Four common building materials were carefully selected for the sorption/desorption experiments: Painted gypsum board, lacquered beechwood parquet, PVC flooring...

  20. [Hydrocyanic acid content in cerals and cereal products].

    Science.gov (United States)

    Lehmann, G; Zinsmeister, H D; Erb, N; Neunhoeffer, O

    1979-03-01

    In the above paper for the first time a systematic study of the amount of hydrocyanic acid in grains and cereal products is reported. Among 24 analysed wheat, rye, maize and oats types, the presence of hydrocyanic acid could be identified in 19 cases in their Karyopses. Similar is the result with 28 among 31 analysed cereal products. The content of hydrocyanic acid lies between 0.1 and 45 microgram/100 gr dried mass.

  1. Organic products from Ca14Co3 autoradiolysis: effects of thermal annealing

    International Nuclear Information System (INIS)

    Albarran S, M.G.; Collins, K.E.; Collins, C.H.

    1986-01-01

    Autoradiolysis of Ca 14 Co 3 produces several different low molecular mass organic compounds which can be conveniently observed after ion exclusion-partition chromatographic separation of the dissolved sample, provided that the solid was prepared with high specific activity carbon-14 and has been stored for a sufficiently long period. Subsequent thermal annealing changes the distribution of these observed compounds, demonstrating that chemical reactions of the precursor species take place in the solid Ca 14 Co 3 matrix. Specifically, the following products were observed after an autoradiolytic dose of 5 MGy: methanol, formaldehyde, formic acid, oxalic acid, glyoxylic acid, glycolic acid and acetic acid, with-G-values ranging from 5x10 -6 to 2x10 -3 . Isochronal annealing to 500 0 C markedly changes the yields of carbon-14 labelled formic and acetic acids but has lesser effects on the other acidic products. This indicates that several different precursor species are present in the autoradiolyzed solid. (Author) [pt

  2. Assessing impacts of organic production on pork and beef quality

    OpenAIRE

    Sundrum, Albert

    2010-01-01

    Organic livestock farming is based on a low input production method, aiming to provide products of a high product and process quality rather than maximizing production. The production of a high meat quality corresponds to the expectations of consumers who are both seeking a premium product and who are willing to pay premium prices. This review focuses on the question of whether organic pork and beef production currently meet consumer demands, and it elaborates the potentials and limitations f...

  3. Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production

    International Nuclear Information System (INIS)

    Wang, Shurong; Guo, Zuogang; Cai, Qinjie; Guo, Long

    2012-01-01

    Bio-oil must be upgraded to be suitable for use as a high-grade transport fuel. Crude bio-oil has a high content of carboxylic acids which can cause corrosion, and the high oxygen content of these acids also reduces the oil’s heating value. In this paper, acetic acid and propanoic acid were chosen as the model carboxylic acids in bio-oil. Their behavior in the production of liquid hydrocarbons during a catalytic conversion process was investigated in a micro-fixed bed reactor. The liquid organic phase from this catalytic conversion process mainly consisted of liquid hydrocarbons and phenol derivatives. Under the condition of low Liquid Hourly Space Velocity (LHSV), the liquid organic phase from acetic acid cracking had a selectivity of 22% for liquid hydrocarbons and a selectivity of 65% for phenol derivatives. The composition of the organic products changed considerably with the LHSV increasing to 3 h −1 . The selectivity for liquid hydrocarbons increased up to 52% while that for phenol derivatives decreased to 32%. Propanoic acid performed much better in producing liquid hydrocarbons than acetic acid. Its selectivity for liquid hydrocarbons was as high as 80% at LHSV = 3 h −1 . A mechanism for this catalytic conversion process was proposed according to the analysis of the components in the liquid organic phases. The pathways of the main compounds formation in the liquid organic phases were proposed, and the reason why liquid hydrocarbons were more effectively produced when using propanoic acid rather than acetic acid was also successfully explained. In addition, BET and SEM characterization were used to analyze the catalyst coke deposition. -- Graphical abstract: Display Omitted Highlights: ► High content of carboxylic acids in bio-oil causes its corrosiveness. ► Acetic acid and propanoic acid are two dominant acids in bio-oil. ► Liquid hydrocarbons were produced by cracking of these two dominant acids. ► A mechanism model was proposed to explain

  4. Thermally induced processes in mixtures of aluminum with organic acids after plastic deformations under high pressure

    Science.gov (United States)

    Zhorin, V. A.; Kiselev, M. R.; Roldugin, V. I.

    2017-11-01

    DSC is used to measure the thermal effects of processes in mixtures of solid organic dibasic acids with powdered aluminum, subjected to plastic deformation under pressures in the range of 0.5-4.0 GPa using an anvil-type high-pressure setup. Analysis of thermograms obtained for the samples after plastic deformation suggests a correlation between the exothermal peaks observed around the temperatures of degradation of the acids and the thermally induced chemical reactions between products of acid degradation and freshly formed surfaces of aluminum particles. The release of heat in the mixtures begins at 30-40°C. The thermal effects in the mixtures of different acids change according to the order of acid reactivity in solutions. The extreme baric dependences of enthalpies of thermal effects are associated with the rearrangement of the electron subsystem of aluminum upon plastic deformation at high pressures.

  5. Significant thermal energy reduction in lactic acid production process

    International Nuclear Information System (INIS)

    Mujtaba, Iqbal M.; Edreder, Elmahboub A.; Emtir, Mansour

    2012-01-01

    Lactic acid is widely used as a raw material for the production of biodegradable polymers and in food, chemical and pharmaceutical industries. The global market for lactic acid is expected to reach 259 thousand metric tons by the year 2012. For batch production of lactic acid, the traditional process includes the following steps: (i) esterification of impure lactic acid with methanol in a batch reactor to obtain methyl lactate (ester), (ii) separation of the ester in a batch distillation, (iii) hydrolysis of the ester with water in a batch reactor to produce lactic acid and (iv) separation of lactic acid (in high purity) in a batch distillation. Batch reactive distillation combines the benefit of both batch reactor and batch distillation and enhances conversion and productivity (Taylor and Krishna, 2000 ; Mujtaba and Macchietto, 1997 ). Therefore, the first and the last two steps of the lactic acid production process can be combined together in batch reactive distillation () processes. However, distillation (batch or continuous) is an energy intensive process and consumes large amount of thermal energy (via steam). This paper highlights how significant (over 50%) reduction in thermal energy consumption can be achieved for lactic acid production process by carefully controlling the reflux ratio but without compromising the product specification. In this paper, only the simultaneous hydrolysis of methyl lactate ester and the separation of lactic acid using batch reactive distillation is considered.

  6. Organic acid derivatization techniques applied to petroleum hydrocarbon transformations in subsurface environments

    International Nuclear Information System (INIS)

    Barcelona, M.J.; Lu, J.; Tomczak, D.M.

    1995-01-01

    Evidence for the natural microbial remediation of subsurface fuel contamination situations should include identification and analysis of transformation or degradation products. In this way, a mass balance between fuel constituents and end products may be approached to monitor cleanup progress. Application of advanced organic acid metabolite derivatization techniques to several know sites of organic compounds and fuel mixture contamination provide valuable information on the pathways and progress of microbial transformation. Good correlation between observed metabolites and transformation pathways of aromatic fuel constituents were observed at the sites

  7. Usefulness of organic acid produced by Exiguobacterium sp. 12/1 on neutralization of alkaline wastewater.

    Science.gov (United States)

    Kulshreshtha, Niha Mohan; Kumar, Anil; Bisht, Gopal; Pasha, Santosh; Kumar, Rita

    2012-01-01

    The aim of this study was to investigate the role of organic acids produced by Exiguobacterium sp. strain 12/1 (DSM 21148) in neutralization of alkaline wastewater emanated from beverage industry. This bacterium is known to be able to grow in medium of pH as high as pH 12.0 and to neutralize alkaline industrial wastewater from pH 12.0 to pH 7.5. The initial investigation on the type of functional groups present in medium, carried out using FT-IR spectroscopy, revealed the presence of peaks corresponding to carbonyl group and hydroxyl group, suggesting the release of carboxylic acid or related metabolic product(s). The identification of specific carboxylic group, carried out using RP-HPLC, revealed the presence of a single peak in the culture supernatant with retention time most similar to formic acid. The concentration of acid produced on different carbon sources was studied as a function of time. Although acid was present in same final concentration, the rate of acid production was highest in case of medium supplemented with sucrose followed by fructose and glucose. The knowledge of metabolic products of the bacterium can be considered as a first step towards realization of its potential for large-scale bioremediation of alkaline wastewater from beverage industry.

  8. Usefulness of Organic Acid Produced by Exiguobacterium sp. 12/1 on Neutralization of Alkaline Wastewater

    Directory of Open Access Journals (Sweden)

    Niha Mohan Kulshreshtha

    2012-01-01

    Full Text Available The aim of this study was to investigate the role of organic acids produced by Exiguobacterium sp. strain 12/1 (DSM 21148 in neutralization of alkaline wastewater emanated from beverage industry. This bacterium is known to be able to grow in medium of pH as high as pH 12.0 and to neutralize alkaline industrial wastewater from pH 12.0 to pH 7.5. The initial investigation on the type of functional groups present in medium, carried out using FT-IR spectroscopy, revealed the presence of peaks corresponding to carbonyl group and hydroxyl group, suggesting the release of carboxylic acid or related metabolic product(s. The identification of specific carboxylic group, carried out using RP-HPLC, revealed the presence of a single peak in the culture supernatant with retention time most similar to formic acid. The concentration of acid produced on different carbon sources was studied as a function of time. Although acid was present in same final concentration, the rate of acid production was highest in case of medium supplemented with sucrose followed by fructose and glucose. The knowledge of metabolic products of the bacterium can be considered as a first step towards realization of its potential for large-scale bioremediation of alkaline wastewater from beverage industry.

  9. Acetic acid production from marine algae. Progress report No. 2, September 30 to December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J E; Wise, D L

    1978-03-10

    Preliminary results on the production of acetic acid from marine algae by anaerobic fermentation indicates that the rate is quite fast. First order rate constants of 0.77 day/sup -1/ have been observed. This rate constant gives a half-life of less than one day. In other words, with a properly designed product removal system a five day retention time would yield 98% of theoretical conversion. Determination of the theoretical conversion of marine algae to acetic acid is the subject of much experimentation. The production of one acetic acid molecule (or equivalent in higher organic acids) for each three carbon atoms in the substrate has been achieved; but it is possible that with a mixed culture more than one acetic acid molecule may be produced for each three carbons in the substrate.

  10. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Teixeira, Paulo Goncalves; Ferreira, Raphael; Zhou, Yongjin J.

    2017-01-01

    Background: In vivo production of fatty acid-derived chemicals in Saccharomyces cerevisiae requires strategies to increase the intracellular supply of either acyl-CoA or free fatty acids (FFAs), since their cytosolic concentrations are quite low in a natural state for this organism. Deletion...... of the fatty acyl-CoA synthetase genes FAA1 and FAA4 is an effective and straightforward way to disable re-activation of fatty acids and drastically increase FFA levels. However, this strategy causes FFA over-accumulation and consequential release to the extracellular medium, which results in a significant...... faa4 Delta strain constitutively expressing a carboxylic acid reductase from Mycobacterium marinum (MmCAR) and an endogenous alcohol dehydrogenase (Adh5) for in vivo production of fatty alcohols from FFAs. We observed production of fatty acids and fatty alcohols with different rates leading to high...

  11. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  12. Influence of organic diet on the amount of conjugated linoleic acids in breast milk of lactating women in the Netherlands

    NARCIS (Netherlands)

    Rist, L.; Mueller, A.; Barthel, C.; Snijders, B.; Jansen, M.; Simões-Wüst, A.P.; Huber, M.; Kummeling, I.; Mandach, U. von; Steinhart, H.; Thijs, C.

    2007-01-01

    The aim of the present study was to find out whether the incorporation of organic dairy and meat products in the maternal diet affects the contents of the conjugated linoleic acid isomers (CLA) and trans-vaccenic acid (TVA) in human breast milk. To this purpose, milk samples from 312 breastfeeding

  13. Production of highly unsaturated fatty acids using agro-processing by-products

    CSIR Research Space (South Africa)

    Jacobs, A

    2008-11-01

    Full Text Available The South African agro-processing industry generates millions of tons of cereal derived by-products annually. The by-products from biofuel production are expected to increase these volumes dramatically. Highly unsaturated fatty acids (HUFA...

  14. Production of extracellular fatty acid using engineered Escherichia coli

    Directory of Open Access Journals (Sweden)

    Liu Hui

    2012-04-01

    Full Text Available Abstract Background As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. Results In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing ‘TesA and the deletion of fadL in E. coli BL21 (DE3 improved extracellular fatty acid production, while deletion of fadD didn’t strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-‘tesA-ΔfadL produced 4.8 g L−1 extracellular fatty acid, with the specific productivity of 0.02 g h−1 g−1dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-‘tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired

  15. Acid-base properties of Baltic Sea dissolved organic matter

    Science.gov (United States)

    Hammer, Karoline; Schneider, Bernd; Kuliński, Karol; Schulz-Bull, Detlef E.

    2017-09-01

    Calculations related to the marine CO2 system that are based on alkalinity data may be strongly biased if the contributions of organic compounds are ignored. In coastal seas, concentrations of dissolved organic matter (DOM) are frequently high and alkalinity from inorganic compounds is low. In this study, based on measurements of total alkalinity, total CO2, and pH, we determined the organic alkalinity, Aorg, in water from the central Baltic Sea. The maximum Aorg measured in the surface mixed layer during the spring bloom was > 50 μmol/kg-SW but the Aorg decreased with depth and approached zero below the permanent halocline. This behavior could be attributed to the decreased pH of deeper water layers. The data were used to calculate the bulk dissociation constant, KDOM, for marine DOM and the fraction f of dissolved organic carbon (DOC) that acts as a carrier for acid-base functional groups. The p KDOM (7.27) agreed well with the value (7.34) previously estimated in a preliminary study of organic alkalinity in the Baltic Sea. The fraction of carbon atoms carrying acid-base groups was 17% and was somewhat higher than previously reported (12%). Spike experiments performed using artificial seawater and three different humic/fulvic substances tested whether the acid-base properties of these substances explain the results of our field study. Specifically, Aorg was determined at different concentrations (DOC) of the added humic/fulvic substances. The relationship between Aorg and the DOC concentrations indicated that humic/fulvic substances are more acidic (p KDOM < 6.5) than the bulk DOC natural occurring in the Baltic Sea.

  16. Production of Medium Chain Fatty Acids by Yarrowia lipolytica: Combining Molecular Design and TALEN to Engineer the Fatty Acid Synthase.

    Science.gov (United States)

    Rigouin, Coraline; Gueroult, Marc; Croux, Christian; Dubois, Gwendoline; Borsenberger, Vinciane; Barbe, Sophie; Marty, Alain; Daboussi, Fayza; André, Isabelle; Bordes, Florence

    2017-10-20

    Yarrowia lipolytica is a promising organism for the production of lipids of biotechnological interest and particularly for biofuel. In this study, we engineered the key enzyme involved in lipid biosynthesis, the giant multifunctional fatty acid synthase (FAS), to shorten chain length of the synthesized fatty acids. Taking as starting point that the ketoacyl synthase (KS) domain of Yarrowia lipolytica FAS is directly involved in chain length specificity, we used molecular modeling to investigate molecular recognition of palmitic acid (C16 fatty acid) by the KS. This enabled to point out the key role of an isoleucine residue, I1220, from the fatty acid binding site, which could be targeted by mutagenesis. To address this challenge, TALEN (transcription activator-like effector nucleases)-based genome editing technology was applied for the first time to Yarrowia lipolytica and proved to be very efficient for inducing targeted genome modifications. Among the generated FAS mutants, those having a bulky aromatic amino acid residue in place of the native isoleucine at position 1220 led to a significant increase of myristic acid (C14) production compared to parental wild-type KS. Particularly, the best performing mutant, I1220W, accumulates C14 at a level of 11.6% total fatty acids. Overall, this work illustrates how a combination of molecular modeling and genome-editing technology can offer novel opportunities to rationally engineer complex systems for synthetic biology.

  17. Uptake of Alkylamines on Dicarboxylic Acids Relevant to Secondary Organic Aerosol Formation

    Science.gov (United States)

    Marrero-Ortiz, W.; Secrest, J.; Zhang, R.

    2017-12-01

    Aerosols play a critical role in climate directly by scattering and absorbing solar radiation, and indirectly by functioning as cloud condensation nuclei (CCN); both represent the largest uncertainties in climate predictions. New particle formation contributes significantly to CCN production; however, the mechanisms related to particle nucleation and growth processes are not well understood. Organic acids are atmospherically abundant, and their neutralization by low molecular weight amines may result in the formation of stable low volatility aminium salt products contributing to the growth of secondary organic aerosols and even the alteration of the aerosol properties. The acid-base neutralization of particle phase succinic acid and tartaric acid by low molecular weight aliphatic amines, i.e. methylamine, dimethylamine, and trimethylamine, has been investigated by employing a low-pressure fast flow reactor at 298K with an ion drift - chemical ionization mass spectrometer (ID-CIMS). The heterogeneous uptake is time dependent and influenced by organic acids functionality, alkylamines basicity, and steric effect. The implications of our results to atmospheric nanoparticle growth will be discussed.

  18. The Acid-Base Balance Between Organic Acids and Circumneutral Ground Waters in Large Peatlands

    Science.gov (United States)

    Siegel, D. I.; Glaser, P. H.; So, J.

    2006-05-01

    Organic acids supply most of the acidity in the surface waters of bogs in peatlands. Yet, the fundamental geochemical properties of peatland organic acids are still poorly known. To assess the geochemical properties of typical organic acid assemblages in peatlands, we used a triprotic analog model for peat pore waters and surface waters in the Glacial Lake Agassiz Peatlands, optimizing on charge balance and calibrated to estimates of mole site density in DOC and triprotic acid dissociation constants. Before the calibration process, all bog waters and 76% of fen waters had more than +20% charge imbalance. After calibration, most electrochemically balanced within 20%. In the best calibration, the mole site denisty of bog DOC was estimated as ~0.05 mmol/mmol C., approximately 6 times smaller than that for fen DOC or the DOC in the fen deeper fen peats that underlie bogs. The three modeled de-protonation constants were; pKa1 = ~3.0, pKa2 = ~4.5 and pKa3 = ~7.0 for the bog DOC, and; pKa1 = ~5.2, pKa2 =~ 6.5 and pKa3 = ~7.0 for the fen DOC. Bog DOC, behaves as a strong acid despite its small mole site density. The DOC in bog runoff can therefore theoretically acidify the surface waters in adjacent fens wherever these waters do not receive sufficient buffering alkalinity from active groundwater seepage.

  19. Metabolic Engineering of Saccharomyces cerevisiae Microbial Cell Factories for Succinic Acid Production

    DEFF Research Database (Denmark)

    Otero, José Manuel; Nielsen, Jens; Olsson, Lisbeth

    2007-01-01

    anhydride. There are several biomass platforms, all prokaryotic, for succinic acid production; however, overproduction of succinic acid in S. cerevisiae offers distinct process advantages. For example, S. cerevisiae has been awarded GRAS status for use in human consumables, grows well at low p......H significantly minimizing purification and acidification costs associated with organic acid production, and can utilize diverse carbon substrates in chemically defined medium. S. cerevisiae offers the unique advantage of being the most well characterized eukaryotic expression system. Here we describe the use...

  20. Determination of Some Physicochemical Properties, Fatty Acid Composition and Antioxidant Capacity, of Organic and Conventional Milk in Turkey Produced

    Directory of Open Access Journals (Sweden)

    Bayram Ürkek

    2018-04-01

    Full Text Available In this study, determination of effect of production systems (conventional and organic and time of milk collection on some physicochemical properties, fatty acids and antioxidant capacity of conventional and organic raw milk in produced Turkey were aimed. In this research, the milk samples was collected from nine conventional farms and nine organic farms at bimonthly years for one year. Fatty acid composition, antioxidant capacity, total phenolic matter, dry matter, fat, protein, ash, titratable acidity (lactic acid % and pH values of organic and conventional milk were investigated. According to results of this research, the mean values of conventional and organic milk samples respectively for dry matter, fat, protein, ash, specific gravity, acidity and pH was determined as 12.06-11.97%, 3.67-3.50%, 3.33-3.34%, 0.67-0.66%, 1.0381-1.0381 g mL-1, 0.18-0.16% and 6.67-6.73, respectively. Conjugated linoliec acid proportions changed between 1.39% and 2.87% in organic milk, between 1.67% and 2.96% in conventional milk. Consequently, the farm production type did not have effects on the milk compassion (dry matter, fat, protein and ash, fatty acid composition, EC50 and total phenolic compounds. On the other hand, the significant variations in the fat, protein, fatty acid proportions, EC50, inhibition and total phenolic compound values were determined as regarding time of milk collection.

  1. Influence of nitrogen sources on amino acid production by aspergillus niger

    International Nuclear Information System (INIS)

    Almani, F.; Dahot, M.U.

    2007-01-01

    The effect of different organic and inorganic nitrogen sources in 0.1% and 0.2% concentration on the production of amino acid was studied using a wild strain of Aspergillus niger. The rate of amino acid biosynthesis was found to be higher when 0.2% corn steep liquor was incorporated in the mineral medium. It was concluded from the study that the amino acid synthesis by wild strain depends not only on the nature and type of nitrogen sources used but the concentration of nitrogen source also play an important in the accumulation of free amino acids in the medium. (author)

  2. Lactic acid production from xylose by Geobacillus stearothermophilus strain 15

    Science.gov (United States)

    Kunasundari, B.; Naresh, S.; Chu, J. E.

    2017-09-01

    Lactic acid is an important compound with a wide range of industrial applications. The present study tested the efficiency of xylose, as a sole carbon source to be converted to lactic acid by Geobacillus stearothermophilus strain 15. To the best of our knowledge, limited information is available on the directed fermentation of xylose to lactic acid by this bacterium. The effects of different parameters such as temperature, pH, incubation time, agitation speed, concentrations of nitrogen and carbon sources on the lactic acid production were investigated statistically. It was found that the bacterium exhibited poor assimilation of xylose to lactic acid. Temperature, agitation rate and incubation time were determined to improve the lactic acid production slightly. The highest lactic acid yield obtained was 8.9% at 45°C, 300 RPM, 96 h, pH of 6.0 with carbon and nitrogen source concentrations were fixed at 5% w/v.

  3. Separation of caesium-137 from fission products using phosphotungstic acid

    International Nuclear Information System (INIS)

    Murthy, T.S.; Balasubramaniam, K.R.; Ananthakrishnan, M.; Varma, R.N.

    1977-01-01

    Separation of caesium 137 from fission products using phosphotungstic acid is reported. Phosphotungstate caesium is precipitated as caesium from fission product waste solution in acid medium and subsequently purified. Separation of phosphate and tungstate ions has been done using a typical hydrous oxide like alumina. The exchange capacity of alumina for phosphate and tungstate ions, and the purity of the product are determined. Results are discussed. Based on the findings a procedure is recommended for caesium 137 separation. (A.K.)

  4. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis.

    Directory of Open Access Journals (Sweden)

    Cassiano Felippe Gonçalves-de-Albuquerque

    Full Text Available Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA, a monounsaturated fatty acid (MUFA. We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP. OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A mRNA levels were increased, while uncoupling protein 2 (UCP2 liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA.

  5. Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production.

    Science.gov (United States)

    Kwak, M Y; Rhee, J S

    1992-04-15

    Aspergillus oryzae in situ grown from spores entrapped in calcium alginate gel beads was used for the production of kojic acid. The immobilized cells in flask cultures produced kojic acid in a linear proportion while maintaining the stable metabolic activity for a prolonged production period. Kojic acid was accumulated up to a high concentration of 83 g/L, at which the kojic acid began to crystallize, and, thus, the culture had to be replaced with fresh media for the next batch culture. The overall productivities of two consecutive cultivations were higher than that of free mycelial fermentation. However, the production rate of kojic acid by the immobilized cells was suddenly decreased with the appearance of central cavernae inside the immobilized gel beads after 12 days of the third batch cultivation.

  6. Formation of organic acids from trace carbon in acidic oxidizing media

    International Nuclear Information System (INIS)

    Terrassier, C.

    2003-01-01

    Carbon 14 does not fully desorb as CO 2 during the hot concentrated nitric acid dissolution step of spent nuclear fuel reprocessing: a fraction is entrained in solution into the subsequent process steps as organic species. The work described in this dissertation was undertaken to identify the compounds arising from the dissolution in 3 N nitric acid of uranium carbides (selected as models of the chemical form of carbon 14 in spent fuel) and to understand their formation and dissolution mechanism. The compounds were present at traces in solution, and liquid-solid extraction on a specific stationary phase (porous graphite carbon) was selected to concentrate the monoaromatic poly-carboxylic acids including mellitic acid, which is mentioned in the literature but has not been formally identified. The retention of these species and of oxalic acid - also cited in the literature - was studied on this stationary phase as a function of the mobile phase pH, revealing an ion exchange retention mechanism similar to the one observed for benzyltrimethylammonium polystyrene resins. The desorption step was then optimized by varying the eluent pH and ionic strength. Mass spectrometry analysis of the extracts identified acetic acid, confirmed the presence of mellitic acid, and revealed compounds of high molecular weight (about 200 g/mol); the presence of oxalic acid was confirmed by combining gas chromatography and mass spectrometry. Investigating the dissolution of uranium and zirconium carbides in nitric acid provided considerable data on the reaction and suggested a reaction mechanism. The reaction is self-catalyzing via nitrous acid, and the reaction rate de pends on the acidity and nitrate ion concentration in solution. Two uranium carbide dissolution mechanisms are proposed: one involves uranium at oxidation state +IV in solution, coloring the dissolution solution dark green, and the other assumes that uranium monocarbide is converted to uranium oxide. The carboxylic acid

  7. Quantification of organic acids in beer by nuclear magnetic resonance (NMR)-based methods

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, J.E.A. [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Erny, G.L. [CESAM - Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Barros, A.S. [QOPNAA-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Esteves, V.I. [CESAM - Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Brandao, T.; Ferreira, A.A. [UNICER, Bebidas de Portugal, Leca do Balio, 4466-955 S. Mamede de Infesta (Portugal); Cabrita, E. [Department of Chemistry, New University of Lisbon, 2825-114 Caparica (Portugal); Gil, A.M., E-mail: agil@ua.pt [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal)

    2010-08-03

    The organic acids present in beer provide important information on the product's quality and history, determining organoleptic properties and being useful indicators of fermentation performance. NMR spectroscopy may be used for rapid quantification of organic acids in beer and different NMR-based methodologies are hereby compared for the six main acids found in beer (acetic, citric, lactic, malic, pyruvic and succinic). The use of partial least squares (PLS) regression enables faster quantification, compared to traditional integration methods, and the performance of PLS models built using different reference methods (capillary electrophoresis (CE), both with direct and indirect UV detection, and enzymatic essays) was investigated. The best multivariate models were obtained using CE/indirect detection and enzymatic essays as reference and their response was compared with NMR integration, either using an internal reference or an electrical reference signal (Electronic REference To access In vivo Concentrations, ERETIC). NMR integration results generally agree with those obtained by PLS, with some overestimation for malic and pyruvic acids, probably due to peak overlap and subsequent integral errors, and an apparent relative underestimation for citric acid. Overall, these results make the PLS-NMR method an interesting choice for organic acid quantification in beer.

  8. Quantification of organic acids in beer by nuclear magnetic resonance (NMR)-based methods

    International Nuclear Information System (INIS)

    Rodrigues, J.E.A.; Erny, G.L.; Barros, A.S.; Esteves, V.I.; Brandao, T.; Ferreira, A.A.; Cabrita, E.; Gil, A.M.

    2010-01-01

    The organic acids present in beer provide important information on the product's quality and history, determining organoleptic properties and being useful indicators of fermentation performance. NMR spectroscopy may be used for rapid quantification of organic acids in beer and different NMR-based methodologies are hereby compared for the six main acids found in beer (acetic, citric, lactic, malic, pyruvic and succinic). The use of partial least squares (PLS) regression enables faster quantification, compared to traditional integration methods, and the performance of PLS models built using different reference methods (capillary electrophoresis (CE), both with direct and indirect UV detection, and enzymatic essays) was investigated. The best multivariate models were obtained using CE/indirect detection and enzymatic essays as reference and their response was compared with NMR integration, either using an internal reference or an electrical reference signal (Electronic REference To access In vivo Concentrations, ERETIC). NMR integration results generally agree with those obtained by PLS, with some overestimation for malic and pyruvic acids, probably due to peak overlap and subsequent integral errors, and an apparent relative underestimation for citric acid. Overall, these results make the PLS-NMR method an interesting choice for organic acid quantification in beer.

  9. Upgrading of citric acid production from cheap carbohydrate sources as affected by aspergillus

    International Nuclear Information System (INIS)

    Elbatal, A.I.; Khalaf, S.A.; Khalil, A.H.

    1995-01-01

    Five strains of aspergillus niger (EMCC 102, EMCC 104, EMCC 111, EMCC 132 and EMCC 147) were for citric acid production at different incubation period using different cheap carbohydrate substrates, such as beet, cane and citrus molasses and milk whey. A. niger EMCC 111 was found to be the most potent strain for citric acid production from beet molasses after 11 days of incubation at 30 degree. The studies concerning molasses concentration and nitrogen sources (inorganic and organic sources with different concentration, revealed that 30 g% beet molasses and ammonium sulfate with 0.05 g% as N 2 content, gave the highest production of citric acid. Gamma irradiated inocula of A. niger EMCC 111 at doses (0.05-0.8 KGy), showed that the dose 0.4 KGy was the optimum for maximum citric acid production. 8 tabs

  10. Inhibitory Effects of Caffeic Acid, a Coffee-Related Organic Acid, on the Propagation of Hepatitis C Virus.

    Science.gov (United States)

    Tanida, Isei; Shirasago, Yoshitaka; Suzuki, Ryosuke; Abe, Ryo; Wakita, Takaji; Hanada, Kentaro; Fukasawa, Masayoshi

    2015-01-01

    Multipurpose cohort studies have demonstrated that coffee consumption reduces the risk of hepatocellular carcinoma (HCC). Given that one of the main causes of HCC is hepatitis C virus (HCV) infection, we examined the effect of caffeic acid, a major organic acid derived from coffee, on the propagation of HCV using an in vitro naïve HCV particle-infection and production system within human hepatoma-derived Huh-7.5.1-8 cells. When cells were treated with 1% coffee extract or 0.1% caffeic acid for 1-h post HCV infection, the amount of HCV particles released into the medium at 3 and 4 days post-infection considerably decreased. In addition, HCV-infected cells cultured with 0.001% caffeic acid for 4 days, also released less HCV particles into the medium. Caffeic acid treatment inhibited the initial stage of HCV infection (i.e., between virion entry and the translation of the RNA genome) in both HCV genotypes 1b and 2a. These results suggest that the treatment of cells with caffeic acid may inhibit HCV propagation.

  11. Optimization of lactic acid production with immobilized Rhizopus ...

    African Journals Online (AJOL)

    sule

    2012-04-26

    Apr 26, 2012 ... Lactic acid is the most widely utilized organic acid in the food, pharmaceutical, cosmetics and chemical industries. One of its most promising applications is for used biodegradable and ... polymer supports, by embedding with natural polymers like alginate gels and synthetic polymers (Tamada et al.,. 1992).

  12. Malic acid production from thin stillage by Aspergillus species.

    Science.gov (United States)

    West, Thomas P

    2011-12-01

    The ability of Aspergillus strains to utilize thin stillage to produce malic acid was compared. The highest malic acid was produced by Aspergillus niger ATCC 9142 at 17 g l(-1). Biomass production from thin stillage was similar with all strains but ATCC 10577 was the highest at 19 g l(-1). The highest malic acid yield (0.8 g g(-1)) was with A. niger ATCC 9142 and ATCC 10577 on the stillage. Thus, thin stillage has the potential to act as a substrate for the commercial production of food-grade malic acid by the A. niger strains. © Springer Science+Business Media B.V. 2011

  13. Reactivity of tributyl phosphate degradation products with nitric acid: Relevance to the Tomsk-7 accident

    International Nuclear Information System (INIS)

    Barney, G.S.; Cooper, T.D.

    1995-01-01

    The reaction of a degraded tributyl phosphate (TBP) solvent with nitric acid is thought to have caused the chemical explosion at the Tomsk-7 reprocessing plant at Tomsk, Russia in 1993. The estimated temperature of the organic layer was not high eneough to cause significant reaction of nitric acid with TBP or hydrocarbon diluent compounds. A more reactive organic compound was likely present in the organic layer that reacted with sufficient heat generation to raise the temperature to the point where an autocatalytic oxidation of the organic solvent was initiated. Two of the most likely reactive compounds that are present in degraded TBP solvents are n-butanol and n-butyl nitrate. The reactions of these compounds with nitric acid are the subject of this study. The objective of laboratory-scale tests was to identify chemical reactions that occur when n-butanol and n-butyl nitrate contact heated nitric acid solutions. Reaction products were identified and quantitified, the temperatures at which these reactions occur and heats of reaction were measured, and reaction variables (temperature, nitric acid concentration, organic concentration, and reaction time) were evaluated. Data showed that n-butyl nitrate is less reactive than n-butanol. An essentially complete oxidation reaction of n-butanol at 110-120 C produced four major reaction products. Mass spectrometry identified the major inorganic oxidation products for both n-butanol and n-butyl nitrate as nitric oxide and carbon dioxide. Calculated heats of reaction for n-butanol and n-butyl nitrate to form propionic acid, a major reaction product, are -1860 cal/g n-butanol and -953 cal/g n-butyl nitrate. These heats of reaction are significant and could have raised the temperature of the organic layer in the Tomsk-7 tank to the point where autocatalytic oxidation of other organic compounds present resulted in an explosion

  14. Detoxification of Sap from Felled Oil Palm Trunks for the Efficient Production of Lactic Acid.

    Science.gov (United States)

    Kunasundari, Balakrishnan; Arai, Takamitsu; Sudesh, Kumar; Hashim, Rokiah; Sulaiman, Othman; Stalin, Natra Joseph; Kosugi, Akihiko

    2017-09-01

    The availability of fermentable sugars in high concentrations in the sap of felled oil palm trunks and the thermophilic nature of the recently isolated Bacillus coagulans strain 191 were exploited for lactic acid production under non-sterile conditions. Screening indicated that strain 191 was active toward most sugars including sucrose, which is a major component of sap. Strain 191 catalyzed a moderate conversion of sap sugars to lactic acid (53%) with a productivity of 1.56 g/L/h. Pretreatment of oil palm sap (OPS) using alkaline precipitation improved the sugar fermentability, providing a lactic acid yield of 92% and productivity of 2.64 g/L/h. To better characterize potential inhibitors in the sap, phenolic, organic, and mineral compounds were analyzed using non-treated sap and saps treated with activated charcoal and alkaline precipitation. Phthalic acid, 3,4-dimethoxybenzoic acid, aconitic acid, syringic acid, and ferulic acid were reduced in the sap after treatment. High concentrations of Mg, P, K, and Ca were also precipitated by the alkaline treatment. These results suggest that elimination of excess phenolic and mineral compounds in OPS can improve the fermentation yield. OPS, a non-food resource that is readily available in bulk quantities from plantation sites, is a promising source for lactic acid production.

  15. Influence of commercial (Fluka) naphthenic acids on acid volatile sulfide (AVS) production and divalent metal precipitation.

    Science.gov (United States)

    McQueen, Andrew D; Kinley, Ciera M; Rodgers, John H; Friesen, Vanessa; Bergsveinson, Jordyn; Haakensen, Monique C

    2016-12-01

    Energy-derived waters containing naphthenic acids (NAs) are complex mixtures often comprising a suite of potentially problematic constituents (e.g. organics, metals, and metalloids) that need treatment prior to beneficial use, including release to receiving aquatic systems. It has previously been suggested that NAs can have biostatic or biocidal properties that could inhibit microbially driven processes (e.g. dissimilatory sulfate reduction) used to transfer or transform metals in passive treatment systems (i.e. constructed wetlands). The overall objective of this study was to measure the effects of a commercially available (Fluka) NA on sulfate-reducing bacteria (SRB), production of sulfides (as acid-volatile sulfides [AVS]), and precipitation of divalent metals (i.e. Cu, Ni, Zn). These endpoints were assessed following 21-d aqueous exposures of NAs using bench-scale reactors. After 21-days, AVS molar concentrations were not statistically different (pAVS production was sufficient in all NA treatments to achieve ∑SEM:AVS AVS) could be used to treat metals occurring in NAs affected waters. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Production of (R)-3-hydroxybutyric acid by Arxula adeninivorans.

    Science.gov (United States)

    Biernacki, Mateusz; Riechen, Jan; Hähnel, Urs; Roick, Thomas; Baronian, Kim; Bode, Rüdiger; Kunze, Gotthard

    2017-12-01

    (R)-3-hydroxybutyric acid can be used in industrial and health applications. The synthesis pathway comprises two enzymes, β-ketothiolase and acetoacetyl-CoA reductase which convert cytoplasmic acetyl-CoA to (R)-3-hydroxybutyric acid [(R)-3-HB] which is released into the culture medium. In the present study we used the non-conventional yeast, Arxula adeninivorans, for the synthesis enantiopure (R)-3-HB. To establish optimal production, we investigated three different endogenous yeast thiolases (Akat1p, Akat2p, Akat4p) and three bacterial thiolases (atoBp, thlp, phaAp) in combination with an enantiospecific reductase (phaBp) from Cupriavidus necator H16 and endogenous yeast reductases (Atpk2p, Afox2p). We found that Arxula is able to release (R)-3-HB used an existing secretion system negating the need to engineer membrane transport. Overexpression of thl and phaB genes in organisms cultured in a shaking flask resulted in 4.84 g L -1 (R)-3-HB, at a rate of 0.023 g L -1  h -1 over 214 h. Fed-batch culturing with glucose as a carbon source did not improve the yield, but a similar level was reached with a shorter incubation period [3.78 g L -1 of (R)-3-HB at 89 h] and the rate of production was doubled to 0.043 g L -1  h -1 which is higher than any levels in yeast reported to date. The secreted (R)-3-HB was 99.9% pure. This is the first evidence of enantiopure (R)-3-HB synthesis using yeast as a production host and glucose as a carbon source.

  17. Nitric-phosphoric acid oxidation of organic waste materials

    International Nuclear Information System (INIS)

    Pierce, R.A.; Smith, J.R.

    1995-01-01

    A wet chemical oxidation technology has been developed to address issues facing defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate a heterogenous mixture of radioactive-contaminated solid waste, the technology can also remediate other hazardous waste forms. The process, unique to Savannah River, offers a valuable alternative to incineration and other high-temperature or high-pressure oxidation processes. The process uses nitric acid in phosphoric acid; phosphoric acid allows nitric acid to be retained in solution well above its normal boiling point. The reaction converts organics to carbon dioxide and water, and generates NO x vapors which can be recycled using air and water. Oxidation is complete in one to three hours. In previous studies, many organic compounds were completely oxidized, within experimental error, at atmospheric pressure below 180 degrees C; more stable compounds were decomposed at 200 degrees C and 170 kPa. Recent studies have evaluated processing parameters and potential throughputs for three primary compounds: EDTA, polyethylene, and cellulose. The study of polyvinylchloride oxidation is incomplete at this time

  18. Amino acids production focusing on fermentation technologies – A review

    DEFF Research Database (Denmark)

    D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini

    2018-01-01

    Amino acids are attractive and promising biochemicals with market capacity requirements constantly increasing. Their applicability ranges from animal feed additives, flavour enhancers and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. This review gives...... an overview of the processes applied for amino acids production and points out the main advantages and disadvantages of each. Due to the advances made in the genetic engineering techniques, the biotechnological processes, and in particular the fermentation with the aid of strains such as Corynebacterium...... glutamicum or Escherichia coli, play a significant role in the industrial production of amino acids. Despite the numerous advantages of the fermentative amino acids production, the process still needs significant improvements leading to increased productivity and reduction of the production costs. Although...

  19. Control of Listeria monocytogenes in turkey deli loaves using organic acids as formulation ingredients.

    Science.gov (United States)

    Lloyd, T; Alvarado, C Z; Brashears, M M; Thompson, L D; McKee, S R; Berrang, M

    2009-10-01

    The growth of Listeria monocytogenes in further-processed meat products has become a major concern and an important food safety issue. The meat and poultry industries have incorporated interventions such as organic acids in marinades to inhibit the growth of L. monocytogenes. In this study, organic acids were utilized in the raw product and as a postcook dip to determine their inhibitory effect on the growth of L. monocytogenes in turkey deli loaves. The turkey deli loaves were processed, cooked, cooled, inoculated with streptomycin-resistant L. monocytogenes, and then dipped. Treatments were potassium lactate (PL) in the raw product with sodium lactate (SL), sodium diacetate (SD) dip, PL with SL/PL/SD dip, SL with SL/SD dip, and SL with SL/PL/SD dip. There was also a positive (inoculated) and negative (noninoculated) control, which was dipped in distilled water. Days 0, 7, 14, 21, 28, 42, and 56 were sampled for L. monocytogenes. There were no differences (P>0.05) among the organic acid treatments in the turkey deli loaves at any time points; therefore, all of the treatments increased the lag phase of L. monocytogenes, extending the shelf-life of the product. However, there was a difference between the treatments and the positive control at d 7, 14, 21, 28, 42, and 56. The growth of L. monocytogenes increased immediately in the positive control, whereas the negative control appeared to have no growth. These organic acids can provide meat processors with a useful method for extending the lag phase of L. monocytogenes in ready-to-eat meat and poultry products.

  20. Glutamic acid and folic acid production in aerobic and anaerobic probiotics

    Directory of Open Access Journals (Sweden)

    Zohre Taghi Abadi

    2018-03-01

    Full Text Available Introduction:From an industrial application or commercial point of view, glutamic acid is one of the most important amino acids and its microbial production has been reported from some bacteria. Regarding the role of probiotics to modulate human health and the ever-increasing demand of prebiotics in the food industry, in the current study, production of glutamic acid and folic acid from three probiotic bacteria (Bifidobacterium, Bifidobacterium bifidum, Sporolactobacillus was evaluated for the first time. Materials and methods: MRS broth and exclusive media was used for probiotic culture. The glutamic acid was identified using thin-layer chromatography and folic acid production was measured by folate kit. Each bacterium in terms of quality and quantity were measured by high pressure liquid chromatography. Results: Production of glutamic acid confirmed is based on the thin layer chromatography analysis and high pressure liquid chromatography results. In addition, it was observed that all three probiotics produce folic acid. The prevalence of folate in Bifidobacterium was measured as 315 mg/ml that was more than two other bacteria. Discussion and conclusion: To the best of our knowledge, this is the first report of microbial production of glutamic acid and folate from the probiotic bacteria. These beneficial bacteria can be used as a good source for mass production of these valuable compounds.

  1. Production and Recovery of Pyruvic Acid: Recent Advances

    Science.gov (United States)

    Pal, Dharm; Keshav, Amit; Mazumdar, Bidyut; Kumar, Awanish; Uslu, Hasan

    2017-12-01

    Pyruvic acid is an important keto-carboxylic acid and can be manufactured by both chemical synthesis and biotechnological routes. In the present paper an overview of recent developments and challenges in various existing technique for the production and recovery of pyruvic acid from fermentation broth or from waste streams has been presented. The main obstacle in biotechnological production of pyruvic acid is development of suitable microorganism which can provide high yield and selectivity. On the other hand, technical limitation in recovery of pyruvic acid from fermentation broth is that, it could not be separated as other carboxylic acid in the form of salts by addition of alkali. Besides, pyruvic acid cannot be crystallized. Commercial separation by distillation is very expensive because pyruvic acid decomposes at higher temperature. It is also chemically reactive due to its peculiar molecular structure and has tendency to polymerize. Thus, at high concentration the various type of reaction leads to lower yield of the product, and hence, conventional methods are not favorable. Alternate separation technologies viable to both synthetic and biological routes are the current research areas. Latest techniques such as reactive extraction is new to the field of recovery of pyruvic acid. Recent development and future prospects in downstream processing of biochemically produced pyruvic acids has been discussed in this review article.

  2. Phosphor investigation in the production of Syrian phosphoric acid using Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Al-Hassanieh, O.; Al-Hameish, M.

    2009-06-01

    Nuclear magnetic resonance spectroscopy (NMR) was applied in this work to the industrial process of extraction of uranium from phosphoric acid and to the process of the purification of the phosphoric acid for food proposes. The structural changes of used extraction materials and the organic content of the final product was studied. 13 C , 1 H and 32 P-spectra of all material during the process were recorded. The spectra of the three used extraction materials Bis(2-ethylhexyl Phosphoric Acid)) DEHPA, TriOctyl Phosphine Oxide (TOPO) (C 8 H 1 7) 3 P=O and TriButyl Phosphate (TBP) (C 4 H 9 O) 3 P=O show a partial degradation during the process. The final product ( Phosphoric acid for Food proposes) doesn't contain any organic solvents or extraction material. (author)

  3. Capillary Electrophoresis Analysis of Organic Amines and Amino Acids in Saline and Acidic Samples Using the Mars Organic Analyzer

    Science.gov (United States)

    Stockton, Amanda M.; Chiesl, Thomas N.; Lowenstein, Tim K.; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A.

    2009-11-01

    The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pKa values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.

  4. Differences in sheep and goats milk fatty acid profile between conventional and organic farming systems.

    Science.gov (United States)

    Tsiplakou, Eleni; Kotrotsios, Vaios; Hadjigeorgiou, Ioannis; Zervas, George

    2010-08-01

    The objective of this study was to investigate whether there is a difference in chemical composition and particularly in fatty acid (FA) profile, with emphasis on cis-9, trans-11 CLA, of milk obtained from conventional and organic dairy sheep and goats farms under the farming conditions practiced in Greece. Four dairy sheep and four dairy goat farms, representing common conventional production systems and another four dairy sheep and four dairy goat farms, organically certified, representing organic production and feeding systems were selected from all over Greece. One hundred and sixty two individual milk samples were collected from those farms in January-February 2009, about three months after parturition. The milk samples were analyzed for their main chemical constituents and their FA profile. The results showed that the production system affected milk chemical composition: in particular fat content was lower in the organic sheep and goats milk compared with the corresponding conventional. Milk from organic sheep had higher content in MUFA, PUFA, alpha-LNA, cis-9, trans-11 CLA, and omega-3 FA, whereas in milk from organic goats alpha-LNA and omega-3 FA content was higher than that in conventional one. These differences are, mainly, attributed to different feeding practices used by the two production systems. The results of this study show that the organic milk produced under the farming conditions practiced in Greece has higher nutritional value, due to its FA profile, compared with the respective conventional milk.

  5. Profiling of the Contents of Amino Acids, Water-Soluble Vitamins, Minerals, Sugars and Organic Acids in Turkish Hazelnut Varieties

    Directory of Open Access Journals (Sweden)

    Taş Neslihan Göncüoğlu

    2018-09-01

    Full Text Available Proximate composition, profiles of amino acids, sugars, organic acids, vitamins and minerals of fourteen Turkish hazelnut varieties harvested in 2013 and 2014 were investigated. Glutamic acid, arginine and aspartic acid were the most predominant amino acids, representing of about 50% of hazelnut protein. Individual amino acid profiles showed significant differences depending upon the harvest year (p<0.05. Concentration of sucrose was the highest followed by fructose, glucose, stachyose, raffinose and myo-inositol, respectively. Phytic acid was predominant organic acid in all varieties, followed by malic acid. Independent of the variety, hazelnuts were rich in pantothenic acid, nicotinic acid, pyridoxal, biotin, thiamine, nicotinamide. Pantothenic and nicotinic acid were significantly higher in most of the varieties in harvest year 2014. Potassium was the most predominant mineral, followed by magnesium, calcium, sodium, manganese, zinc, iron and copper, respectively.

  6. Fungal Biotransormation Products of Dehydroabietic Acid

    NARCIS (Netherlands)

    Beek, van T.A.; Claassen, F.W.; Dorado, J.; Godejohann, M.; Sierra-Alvarez, R.; Wijnberg, J.B.P.A.

    2007-01-01

    Dehydroabietic acid (DHA) (1) is one of the main compounds in Scots pine wood responsible for aquatic and microbial toxicity. The degradation of 1 by Trametes versicolor and Phlebiopsis gigantea in liquid stationary cultures was followed by HPLC-DAD-ELSD. Both fungi rapidly degraded DHA relative to

  7. Emulsion Liquid Membrane Technology in Organic Acid Purification

    International Nuclear Information System (INIS)

    Norela Jusoh; Norasikin Othman; Nur Alina Nasruddin

    2016-01-01

    Emulsion Liquid Membrane (ELM) process have shown a great potential in wide application of industrial separations such as in removal of many chemicals, organic compounds, metal ions, pollutants and biomolecules. This system promote many advantages including simple operation, high selectivity, low energy requirement, and single stage extraction and stripping process. One potential application of ELM is in the purification of succinic acid from fermentation broth. This study outline steps for developing emulsion liquid membrane process in purification of succinic acid. The steps include liquid membrane formulation, ELM stability and ELM extraction of succinic acid. Several carrier, diluent and stripping agent was screened to find appropriate membrane formulation. After that, ELM stability was investigated to enhance the recovery of succinic acid. Finally, the performance of ELM was evaluated in the extraction process. Results show that formulated liquid membrane using Amberlite LA2 as carrier, palm oil as diluent and sodium carbonate, Na_2CO_3 as stripping agent provide good performance in purification. On the other hand, the prepared emulsion was observed to be stable up to 1 hour and sufficient for extraction process. In conclusion, ELM has high potential to purify succinic acid from fermentation broth. (author)

  8. The Role of Organic Acids on the Release of Phosphorus and Zinc in a Calcareous Soil

    Directory of Open Access Journals (Sweden)

    Sareh Nezami

    2017-02-01

    Full Text Available Introduction: Phosphorus (P and zinc (Zn fixation by soil minerals and their precipitation is one of the major constraints for crop production in calcareous soils. Recent Studies show that root exudates are effective for the extraction of the large amounts of nutrients in calcareous soils. A part of the root exudations are Low Molecular Weight Organic Acids (LMWOAs. LMWOAs are involved in the nutrients availability and uptake by plants, nutrients detoxification, minerals weathering and microbial proliferation in the soil. At nutrients deficiency conditions citric and oxalic acids are released by plants root in large quantities and increase nutrient solubility like P, Zn, Fe, Mn and Cu in the rhizosphere. These components are the large portion of the carbon source in the soil after exudations are mineralized by microorganisms, quickly. In addition, soil surface sorption can affect their half-life and other behaviors in the soil. In order to study the effect of oxalic and citric organic acids on the extraction of phosphorus and zinc from a calcareous soil, an experiment was conducted. Materials and Methods: Studied soil was calcareous and had P and Zn deficiency. Soil sample was collected from A horizon (0-30 cm of Damavand region. 3 g of dried soil sample was extracted with 30 ml of oxalic and citric acids extraction solutions at different concentrations (0.1, 1 and 10 mM and different time periods (10, 60, 180 and 360 minutes on an orbital shaker at 200 rev min-1.The soil extracts then centrifuged for 10 minutes (16000g. After filtering, the pH of the extractions was recorded and then phosphorus, calcium and zinc amounts were determined. Soil extraction with distilled water was used as control. Each treatment was performed in 3 replications. Statistical analysis was performed with ANOVA test followed by the Bonferroni method significant level adjustments due to multiple comparisons. Results and Discussion: The results of variance analysis showed

  9. Organic Dairy Production Systems in Pennsylvania: A Case Study Evaluation

    NARCIS (Netherlands)

    Rotz, C.A.; Kamphuis, G.H.; Karsten, H.D.; Weaver, R.D.

    2007-01-01

    The current market demand and price for organic milk is encouraging dairy producers, particularly those on smaller farms, to consider organic production as a means for improving the economic viability of their operations. Organic production systems vary widely in scale, in practices, and across

  10. Batch fermentative production of lactic acid from green- sugarcane juices

    Directory of Open Access Journals (Sweden)

    Liliana Serna Cock

    2004-07-01

    Full Text Available Juice from the CC85-92 variety of green (unburned sugar cane was tested as a suitable substrate in lactic-acid production. Fermentations were carried out with a homo-fermentative strain isolated from crops of the same variety of cane. Both the centrifugation pre-treatment and concentrated-nitrogen effects on substrate conversion, lactic-acid concentration and yield were evaluated. After a fermentation time of 48 h at 32° C with 5% of yeast extract as nitrogen source, 40,78 g/L of lactic-acid concentration, 0.58 g/g of product yield and 33% of substrate conversion were obtained. Centrifugation did not affect lactic acid production. Key words: Lactic acid, green sugar cane, Lactococcus lactis subs. lactis.

  11. A new approach to microbial production of gallic acid.

    Science.gov (United States)

    Bajpai, Bhakti; Patil, Shridhar

    2008-10-01

    In a new approach to microbial gallic acid production by Aspergillus fischeri MTCC 150, 40gL(-1) of tannic acid was added in two installments during the bioconversion phase of the process (25gL(-1) and 15gL(-1) at 32 and 44h respectively). The optimum parameters for the bioconversion phase were found to be temperature: 35°C, pH: slightly acidic (3.3-3.5), aeration: nil and agitation: 250 rpm. A maximum of 71.4% conversion was obtained after 71h fermentation with 83.3% product recovery. The yield was 7.35 g of gallic acid per g of biomass accumulated and the fermenter productivity was 0.56 g of gallic acid produced per liter of medium per hour.

  12. L-lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae.

    Science.gov (United States)

    Liaud, Nadège; Rosso, Marie-Noëlle; Fabre, Nicolas; Crapart, Sylvaine; Herpoël-Gimbert, Isabelle; Sigoillot, Jean-Claude; Raouche, Sana; Levasseur, Anthony

    2015-05-03

    Lactic acid is the building block of poly-lactic acid (PLA), a biopolymer that could be set to replace petroleum-based plastics. To make lactic acid production cost-effective, the production process should be carried out at low pH, in low-nutrient media, and with a low-cost carbon source. Yeasts have been engineered to produce high levels of lactic acid at low pH from glucose but not from carbohydrate polymers (e.g. cellulose, hemicellulose, starch). Aspergilli are versatile microbial cell factories able to naturally produce large amounts of organic acids at low pH and to metabolize cheap abundant carbon sources such as plant biomass. However, they have never been used for lactic acid production. To investigate the feasibility of lactic acid production with Aspergillus, the NAD-dependent lactate dehydrogenase (LDH) responsible for lactic acid production by Rhizopus oryzae was produced in Aspergillus brasiliensis BRFM103. Among transformants, the best lactic acid producer, A. brasiliensis BRFM1877, integrated 6 ldhA gene copies, and intracellular LDH activity was 9.2 × 10(-2) U/mg. At a final pH of 1.6, lactic acid titer reached 13.1 g/L (conversion yield: 26%, w/w) at 138 h in glucose-ammonium medium. This extreme pH drop was subsequently prevented by switching nitrogen source from ammonium sulfate to Na-nitrate, leading to a final pH of 3 and a lactic acid titer of 17.7 g/L (conversion yield: 47%, w/w) at 90 h of culture. Final titer was further improved to 32.2 g/L of lactic acid (conversion yield: 44%, w/w) by adding 20 g/L glucose to the culture medium at 96 h. This strain was ultimately able to produce lactic acid from xylose, arabinose, starch and xylan. We obtained the first Aspergillus strains able to produce large amounts of lactic acid by inserting recombinant ldhA genes from R. oryzae into a wild-type A. brasiliensis strain. pH regulation failed to significantly increase lactic acid production, but switching nitrogen source and changing culture feed

  13. Acetic acid production from marine algae. Progress report No. 2, September 30--December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Preliminary results on the production of acetic acid from marine algae by anaerobic fermentation indicate that the rate is quite fast. First order rate constants of 0.77 day/sup -1/ were observed. This rate constant gives a half-life of less than one day. In other words, with a properly designed product removal system a five day retention time would yield 98% of theoretical conversion. Determination of the theoretical conversion of marine algae to acetic acid is the subject of much experimentation. The production of one acetic acid molecule (or equivalent in higher organic acids) for each three carbon atoms in the substrate has been achieved; but it is possible that with a mixed culture more than one acetic acid molecule may be produced for each three carbons in the substrate. Work is continuing to improve the yield of acetic acid from marine algae. Marine algae have been found to be rather low in carbon, but the carbon appears to be readily available for fermentation. It, therefore, lends itself to the production of higher value chemicals in relatively expensive equipment, where the rapid conversion rate is particularly cost effective. Fixed packed bed fermenters appear to be desirable for the production of liquid products which are inhibitory to the fermentation from coarse substrates. The inhibitory products may be removed from the fermentation by extraction during recirculation. This technique lends itself to either conventional processing or low capital processing of substrates which require long retention times.

  14. Amino acids production focusing on fermentation technologies - A review.

    Science.gov (United States)

    D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini

    Amino acids are attractive and promising biochemicals with market capacity requirements constantly increasing. Their applicability ranges from animal feed additives, flavour enhancers and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. This review gives an overview of the processes applied for amino acids production and points out the main advantages and disadvantages of each. Due to the advances made in the genetic engineering techniques, the biotechnological processes, and in particular the fermentation with the aid of strains such as Corynebacterium glutamicum or Escherichia coli, play a significant role in the industrial production of amino acids. Despite the numerous advantages of the fermentative amino acids production, the process still needs significant improvements leading to increased productivity and reduction of the production costs. Although the production processes of amino acids have been extensively investigated in previous studies, a comprehensive overview of the developments in bioprocess technology has not been reported yet. This review states the importance of the fermentation process for industrial amino acids production, underlining the strengths and the weaknesses of the process. Moreover, the potential of innovative approaches utilizing macro and microalgae or bacteria are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Phthalic acid esters found in municipal organic waste

    DEFF Research Database (Denmark)

    Hartmann, Hinrich; Ahring, Birgitte Kiær

    2003-01-01

    Contamination of the organic fraction of municipal solid waste (OFMSW) with xenobiotic compounds and their fate during anaerobic digestion was investigated. The phthalic acid ester di-(2- ethylhexyl)phthalate (DEHP) was identified as the main contaminant in OFMSW in concentrations more than half.......41-0.79 d(-1), which is much higher than in previous investigations. It can be concluded that the higher removal rates are due to the higher temperature and higher initial concentrations per kg dry matter. These results suggest that the limiting factor for DEHP degradation is the bioavailability, which...... is enhanced at higher temperature and higher degradation of solid organic matter, to which the highly hydrophobic DEHP is adsorbed. The investigated reactor configuration with a thermophilic and a hyper-thermophilic treatment is, therefore, a good option for CD combining high rate degradation of organic...

  16. Genetics of Poultry Meat Production in Organic Systems

    DEFF Research Database (Denmark)

    Sørensen, Poul

    2012-01-01

    Organic Meat Production and Processing describes the challenges of production, processing and food safety of organic meat. The editors and international collection of authors explore the trends in organic meats and how the meat industry is impacted. Commencing with chapters on the economics, market....... The book concludes by describing pre-harvest control measures for assuring the safety of organic meats. Organic Meat Production and Processing serves as a unique resource for fully understanding the current and potential issues associated with organic meats...... and regulatory aspects of organic meats, coverage then extends to management issues for organically raised and processed meat animals. Processing, sensory and human health aspects are covered in detail, as are the incidences of foodborne pathogens in organic beef, swine, poultry and other organic meat species...

  17. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels

    Science.gov (United States)

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  18. Quantitative concept tests of organic premium meat products

    OpenAIRE

    Chrysochou , Polymeros; Krystallis Krontalis, Athanasios

    2015-01-01

    This report is part of WP6 of the SUMMER project. The aim is to investigate how consumers perceive organic premium products and if they are willing to pay a price premium for these products. We conducted an experiment with 426 Danish consumers, in which we manipulate production method (organic vs. conventional), premium production (premium vs. non-premium) and extrinsic quality (high vs. low) across three meat products (pork, beef and chicken). Our findings show that consumers perceive organi...

  19. Continuous Cultivation of Photosynthetic Bacteria for Fatty Acids Production

    DEFF Research Database (Denmark)

    Kim, Dong-Hoon; Lee, Ji-Hye; Hwang, Yuhoon

    2013-01-01

    In the present work, we introduced a novel approach for microbial fatty acids (FA) production. Photosynthetic bacteria, Rhodobacter sphaeroides KD131, were cultivated in a continuous-flow, stirred-tank reactor (CFSTR) at various substrate (lactate) concentrations.At hydraulic retention time (HRT)....... sphaeroides was around 35% of dry cell weight, mainly composed of vaccenic acid (C18:1, omega-7)....

  20. Production of hydrophobic amino acids from biobased resources

    NARCIS (Netherlands)

    Widyarani, W.; Sari, Yessie W.; Ratnaningsih, Enny; Sanders, Johan P.M.; Bruins, Marieke E.

    2016-01-01

    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent

  1. Docosahexaenoic acid production by the marine algae Crypthecodinium cohnii

    NARCIS (Netherlands)

    De Swaaf, M.E.

    2003-01-01

    This thesis focuses on the production of docosahexaenoic acid (DHA; 22:6), an w-3 polyunsaturated fatty acid with applications in foods and pharmaceuticals, by Crypthecodinium cohnii. This chloroplastless heterotrophic marine microalga has been studied since the end of the nineteenth century and has

  2. Fermentatative production of itaconic acid by Aspergillus terreus ...

    African Journals Online (AJOL)

    Fermentation process for the production of itaconic acid was carried out using jatropha seed cake. Itaconic acid is commercially produced by the cultivation of Aspergillus terreus with molasses. Jatropha seed cake is one of the best carbon sources among various carbohydrates, because it is pure, inexpensive and available ...

  3. Effect of exogenously added rhamnolipids on citric acid production ...

    African Journals Online (AJOL)

    Effect of exogenously added rhamnolipids on citric acid production yield. Wojciech Białas, Roman Marecik, Alicja Szulc, Łukasz Ławniczak, Łukasz Chrzanowski, Filip Ciesielczyk, Teofil Jesionowski, Andreas Aurich ...

  4. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage.

    Science.gov (United States)

    Bai, Cheng; Reilly, Charles C; Wood, Bruce W

    2006-02-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan.

  5. Betaine and beet molasses enhance L-lactic acid production by Bacillus coagulans.

    Directory of Open Access Journals (Sweden)

    Ke Xu

    Full Text Available Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses.

  6. Betaine and beet molasses enhance L-lactic acid production by Bacillus coagulans.

    Science.gov (United States)

    Xu, Ke; Xu, Ping

    2014-01-01

    Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses.

  7. Radiolytic products of irradiated authentic fatty acids and triacylglycerides

    International Nuclear Information System (INIS)

    Kim, K.-S.; Lee, Jeong-Min; Seo, Hye-Young; Kim, Jun-Hyoung; Song, Hyun-Pa; Byun, Myung-Woo; Kwon, Joong-Ho

    2004-01-01

    Radiolytic products of authentic fatty acids (palmitic, stearic, oleic, linoleic and linolenic acids) and triacylglycerides (tripalmitin, tristearin, triolein, trilinolein and trilinolenin) were determined. Concentrations of hydrocarbons from the saturated fatty acids were higher than the unsaturated fatty acids. Authentic fatty acids were mainly decomposed in the α-carbon position and C n-1 hydrocarbons occurred in higher than C n-2 hydrocarbons. Concentrations of 2-alkylcyclobutanones from the saturated fatty acids were lower than the unsaturated fatty acids. Concentrations of hydrocarbons from tripalmitin and tristearin were not a significant change compared with triolein, trilinolein and trilinolenin. For all triacylglycerides except triolein, C n-1 hydrocarbons were higher than C n-2 hydrocarbons. Radioproduction rates of 2-alkylcyclobutanones from tripalmitin and tristearin were higher than triolein, trilinolein and trilinolenin

  8. The effect of gibberellic acid on some photosynthetic products in the leaves of grapes

    International Nuclear Information System (INIS)

    Kismali, I.; Kilinc, R.

    1976-01-01

    In the research work set up to examine the effect of giberellic acid on the some photosynthetic products formed in the leaves of cabernet souvignon grapes. A series of tests were performed by applying 0, 25, 50 ppm of giberellic acid to the leaves. The fractions of sugar, soluble amino acid and organic acid all labelled by C 14 O 2 , are determined by radioactivite counts and using the results obtained. The total amounts were calculated. The fresh weight of leaves subject to GA application increases considerably, on the other hand no significant effect of giberellic acid on the dry weight was detected. Increasing the amount of giberellic acid from 25 ppm to 50 ppm does not cause any change neither on fresh weight nor on dry weight of leaves. It is noted that the application of giberellic acid not change the amount of sugar present in the leaves, however, the amount of soluble amino acid decreases while the amount of organic acid increases. Still increasing the amount of giberellic acid has no effect on the amount of these fractions

  9. Wet oxidation of glycerol into fine organic acids: catalyst selection and kinetic evaluation

    Directory of Open Access Journals (Sweden)

    J. E. N. Brainer

    2014-12-01

    Full Text Available The liquid phase oxidation of glycerol was performed producing fine organic acids. Catalysts based on Pt, Pd and Bi supported on activated carbon were employed to perform the conversion of glycerol into organic acids at 313 K, 323 K and 333 K, under atmospheric pressure (1.0 bar, in a mechanically agitated slurry reactor (MASR. The experimental results indicated glycerol conversions of 98% with production of glyceric, tartronic and glycolic acids, and dihydroxyacetone. A yield of glyceric acid of 69.8%, and a selectivity of this compound of 70.6% were reached after 4 h of operation. Surface mechanisms were proposed and rate equations were formulated to represent the kinetic behavior of the process. Selective formation of glyceric acid was observed, and the kinetic parameter values indicated the lowest activation energy (38.5 kJ/mol for its production reaction step, and the highest value of the adsorption equilibrium constant of the reactant glycerol (10-4 dm³/mol.

  10. Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae.

    Science.gov (United States)

    Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Li, Yuhao; Hu, Jiajun; Tsang, Yiu Fai; Zhang, Hongsheng; Gao, Min-Tian

    2018-01-31

    Rice straw can be used as carbon sources for lactic acid fermentation. However, only a small amount of lactic acid is produced even though Rhizopus oryzae can consume glucose in rice straw-derived hydrolysates. This study correlated the inhibitory effect of rice straw with rice straw-derived dissolved organic matter (DOM). Lactic acid fermentations with and without DOM were conducted to investigate the effect of DOM on lactic acid fermentation by R. oryzae. Fermentation using control medium with DOM showed a similar trend to fermentation with rice straw-derived hydrolysates, showing that DOM contained the major inhibitor of rice straw. DOM assay indicated that it mainly consisted of polyphenols and polysaccharides. The addition of polyphenols and polysaccharides derived from rice straw confirmed that lactic acid fermentation was promoted by polysaccharides and significantly inhibited by polyphenols. The removal of polyphenols also improved lactic acid production. However, the loss of polysaccharides during the removal of polyphenols resulted in low glucose consumption. This study is the first to investigate the effects of rice straw-derived DOM on lactic acid fermentation by R. oryzae. The results may provide a theoretical basis for identifying inhibitors and promoters associated with lactic acid fermentation and for establishing suitable pretreatment methods. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Metaproteomics and ultrastructure characterization of Komagataeibacter spp. involved in high-acid spirit vinegar production.

    Science.gov (United States)

    Andrés-Barrao, Cristina; Saad, Maged M; Cabello Ferrete, Elena; Bravo, Daniel; Chappuis, Marie-Luise; Ortega Pérez, Ruben; Junier, Pilar; Perret, Xavier; Barja, François

    2016-05-01

    Acetic acid bacteria (AAB) are widespread microorganisms in nature, extensively used in food industry to transform alcohols and sugar alcohols into their corresponding organic acids. Specialized strains are used in the production of vinegar through the oxidative transformation of ethanol into acetic acid. The main AAB involved in the production of high-acid vinegars using the submerged fermentation method belong to the genus Komagataeibacter, characterized by their higher ADH stability and activity, and higher acetic acid resistance (15-20%), compared to other AAB. In this work, the bacteria involved in the production of high-acid spirit vinegar through a spontaneous acetic acid fermentation process was studied. The analysis using a culture-independent approach revealed a homogeneous bacterial population involved in the process, identified as Komagataeibacter spp. Differentially expressed proteins during acetic acid fermentation were investigated by using 2D-DIGE and mass spectrometry. Most of these proteins were functionally related to stress response, the TCA cycle and different metabolic processes. In addition, scanning and transmission electron microscopy and specific staining of polysaccharide SDS-PAGE gels confirmed that Komagataeibacter spp. lacked the characteristic polysaccharide layer surrounding the outer membrane that has been previously reported to have an important role in acetic acid resistance in the genus Acetobacter. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Availability of lignocellulosic feedstocks for lactic acid production - Feedstock availability, lactic acid production potential and selection criteria

    NARCIS (Netherlands)

    Bakker, R.R.C.

    2013-01-01

    The overall objective of this study is to assess the worldwide availability and suitability of agricultural residues for lactic acid production, based on fermentation of carbohydrates. The study focuses on lignocellulosic biomass that is produced as a by-product of agricultural production. The

  13. Succinic acid production by escherichia coli under anaerobic fermentation

    International Nuclear Information System (INIS)

    El Shafey, H.M.; Meleigy, S.A.

    2009-01-01

    The effect of alteration of growth conditions, addition of different sodium salts, and irradiation by gamma rays on succinic acid production by E. coli was studied. Twenty one isolates were obtained from buffalo's rumen, and anaerobic screening of the isolated bacterial strains showed the abilities of seventeen strains to produce succinic acid. The two bacterial strains having highest succinic acid production were identified as escherichia coli SP9 and SP16, and were selected for further studies. Results showed that growth conditions yielded highest succinic acid production for the two isolates were: 72 hours incubation, 37 degree c incubation temperature, initial ph of the fermentation medium 6.0,and 3% (v/v)inoculum size. Addition of 5 mm of nine different sodium salts to the fermentation medium showed stimulating effect on succinic acid production of the nine tried sodium salts, sodium carbonate was found to have the highest enhancing effect, especially if used at 15 mm concentration. Gamma irradiation doses tried were in the range of (0.25-1.50 kGy). An enhancing effect on succinic acid production was shown in the range of 0.25-0.75 kGy with a maximal production at 0.75 kGy (giving 8.36% increase) for e.coli SP9, and in the range of 0.25-1.00 kGy with a maximal production at 1.0 kGy (7.60% increase) for e.coli SP16. higher gamma doses led to a decrease in the enhancing effect. An overall increase in the succinic acid yield of 79.45% and 94.26% for e. coli SP9 and SP16, respectively, was achieved in implicating all optimized factors for succinic acid production in one time

  14. Verification of Organic Feed Identity by Fatty Acid Fingerprinting

    NARCIS (Netherlands)

    Tres, A.; Ruth, van S.M.

    2011-01-01

    The origin and authenticity of feed for laying hens is an important and fraud-susceptible aspect in the production of organic eggs. Chemical fingerprinting in combination with chemometric methods is increasingly used in conjunction with administrative controls to verify and safeguard the

  15. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    Science.gov (United States)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  16. A study on the effect of parameters on lactic acid production from whey

    Directory of Open Access Journals (Sweden)

    Taleghani Hamidreza Ghafouri

    2016-03-01

    Full Text Available In batch fermentation of whey, selection of suitable species at desired conditions such as substrate, product concentrations, temperature and inoculum size were investigated. Four Lactobacillus species and one Lactococcus species were screened for lactic acid production. Among them L. bulgaricus ATCC 11842 were selected for further studies. The optimal growth of the selected organism for variable size of inocula was examined. The results indicated that inoculum size had insignificant effect on the cell and lactic acid concentration. The effect of temperature was also studied at 32, 37, 42 and 47°C. Results showed that the concentration of cell dry weight increased with increment of temperature from 32 to 42°C. The maximum cell and lactic acid concentration was obtained at 42°C. The effect of initial substrate concentration on lactic acid production was also examined. The optimum initial lactose concentration was found to be 90 g/l.

  17. Nitric-phosphoric acid oxidation of solid and liquid organic materials

    International Nuclear Information System (INIS)

    Pierce, R.A.; Smith, J.R.; Poprik, D.C.

    1995-01-01

    Nitric-phosphoric acid oxidation has been developed specifically to address issues that face the Savannah River Site, other defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate SRS solid, Pu-contaminated job-control waste, the technology has also exhibited potential for remediating hazardous and mixed-hazardous waste forms. The process is unique to Savannah River and offers a valuable alternative to other oxidation processes that require extreme temperatures and/or elevated pressures. To address the broad categories of waste, many different organic compounds which represent a cross-section of the waste that must be treated have been successfully oxidized. Materials that have been quantitatively oxidized at atmospheric pressure below 180 degrees C include neoprene, cellulose, EDTA, tributylphosphate, and nitromethane. More stable compounds such as benzoic acid, polyethylene, oils, and resins have been completely decomposed below 200 degrees C and 10 psig. The process uses dilute nitric acid in a concentrated phosphoric acid media as the main oxidant for the organic compounds. Phosphoric acid allow nitric acid to be retained in solution well above its normal boiling point. The reaction forms NOx vapors which can be reoxidized and recycled using air and water. The addition of 0.001M Pd(II) reduces CO generation to near 1% of the released carbon gases. The advantages of this process are that it is straightforward, uses relatively inexpensive reagents, operates at relatively low temperature and pressure, and produces final solutions which are compatible with stainless steel equipment. For organic wastes, all carbon, hydrogen, and nitrogen are converted to gaseous products. If interfaced with an acid recovery system which converts NOx back to nitric acid, the net oxidizer would be oxygen from air

  18. Organic livestock production in Uganda: potentials, challenges and prospects.

    Science.gov (United States)

    Nalubwama, Sylvia Muwanga; Mugisha, Anthony; Vaarst, Mette

    2011-04-01

    Development in organic farming has been stimulated by farmers and consumers becoming interested in healthy food products and sustainable environment. Organic agriculture is a holistic production management system which is based on the principles of health, ecology, care, and fairness. Organic development in Uganda has focused more on the crop sector than livestock sector and has primarily involved the private sector, like organic products export companies and non-governmental organizations. Agriculture in Uganda and many African countries is predominantly traditional, less mechanized, and is usually associated with minimum use of chemical fertilizers, pesticides, and drugs. This low external input agriculture also referred to as "organic by default" can create basis for organic farming where agroecological methods are introduced and present an alternative in terms of intensification to the current low-input/low-output systems. Traditional farming should not be confused with organic farming because in some cases, the existing traditional practices have consequences like overstocking and less attention to soil improvement as well as to animal health and welfare, which is contrary to organic principles of ecology, fairness, health, and care. Challenges of implementing sustainable organic practices in the Ugandan livestock sector threaten its future development, such as vectors and vector-borne diseases, organic feed insufficiency, limited education, research, and support to organic livestock production. The prospects of organic livestock development in Uganda can be enhanced with more scientific research in organic livestock production under local conditions and strengthening institutional support.

  19. SPECIFIC FEATURES OF DEVELOPMENT OF ORGANIC PRODUCTS MARKET IN UKRAINE

    Directory of Open Access Journals (Sweden)

    T. Kharchenko

    2013-08-01

    Full Text Available The article is dedicated to the development of new and improvement of existing theoretical and methodological basis of forming and developing the market of organic products, its correspondence to the present-day situation, determination of problems and ways of their solving, introduction in practical activity of Ukrainian enterprises. The main objective of the article is to determine the specific features of forming and developing organic products market in Ukraine, and the perspective directions of its development based on analysis and practice of functioning of such markets in the world. The environmentally sound products market in the world is being analyzed, some information on the countries with the most commodity turnover of organic products, structure of international market of organic products, volumes of sales of organic products in the European countries is provided. As a result of studying the modern trends of economic development the authors reach a conclusion on problems of standard introduction, investigate the European norms and requirements for organic products. The conducted research allows distinguishing the basic features of Ukrainian market of organic products: it quickly grows, which makes it especially appealing for the participants of market relations, however entry into this market requires considerable capital investments and is characterized by high risk; criteria for qualifying products as environmentally sound products are unstructured and unclear. The potential for growth of organic products market in Ukraine is examined.

  20. Conversion to organic wine production: exploring the economic performance impacts

    OpenAIRE

    Nisén, Pia

    2014-01-01

    This study focuses on understanding the relationship between organic wine production and economic performance. The aim of this study is to clarify, what are the economic impacts that result from the conversion of wine production from conventional to organic. This is an interesting topic to be explored in more detail because despite the increasing demand of organic wine and share of vineyard area used for organic winemaking, the economic consequences of the conversion are still somewhat unclea...

  1. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market

    Directory of Open Access Journals (Sweden)

    Ivan Baumann

    2016-01-01

    Full Text Available Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed.

  2. Simultaneous analysis of amino acid and organic acid by NMR spectrometry, 2

    International Nuclear Information System (INIS)

    Koda, Naoya; Yamaguchi, Shuichi; Mori, Takeshi.

    1987-01-01

    Analysis of urine from patients with inborn error of metabolism were studied by 1 H-nuclear magnetic resonance (NMR) spectrometry. Diseases studied were as follows; phenylketonuria, biotin responsive multiple carboxylase deficiency, non-ketotic hyperglycinemia, 3-ketothiolase deficiency, alkaptonuria, methylmalonic acidemia, isovaleric acidemia, glutaric aciduria, argininosuccinic aciduria and hyperornithinemia. In each disease, specific metabolites in urine were recognized by NMR spectrometry. This method is accomplished within 10 minutes with non-treated small volume of urine and will be successfully available for the screening and/or diagnosis of inherited metabolic diseases of amino acid and organic acid. (author)

  3. Production of extracellular nucleic acids by genetically altered bacteria in aquatic-environment microcosms

    International Nuclear Information System (INIS)

    Paul, J.H.; David, A.W.

    1989-01-01

    The factors which affect the production of extracellular DNA by genetically altered strains of Escherichia coli, Pseudomonas aeruginosa, Pseudomonas cepacia, and Bradyrhizobium japonicum in aquatic environments were investigated. Cellular nucleic acids were labeled in vivo by incubation with [ 3 H]thymidine or [ 3 H]adenine, and production of extracellular DNA in marine waters, artificial seawater, or minimal salts media was determined by detecting radiolabeled macromolecules in incubation filtrates. The presence or absence of the ambient microbial community had little effect on the production of extracellular DNA. Three of four organisms produced the greatest amounts of extracellular nucleic acids when incubated in low-salinity media (2% artificial seawater) rather than high-salinity media (10 to 50% artificial seawater). The greatest production of extracellular nucleic acids by P. cepacia occurred at pH 7 and 37 degree C, suggesting that extracellular-DNA production may be a normal physiologic function of the cell. Incubation of labeled P. cepacia cells in water from Bimini Harbor, Bahamas, resulted in labeling of macromolecules of the ambient microbial population. Collectively these results indicate that (i) extracellular-DNA production by genetically altered bacteria released into aquatic environments is more strongly influenced by physicochemical factors than biotic factors, (ii) extracellular-DNA production rates are usually greater for organisms released in freshwater than marine environments, and (iii) ambient microbial populations can readily utilize materials released by these organisms

  4. Organic Acids as Hetrotrophic Energy Sources in Hydrothermal Systems

    Science.gov (United States)

    Windman, T. O.; Zolotova, N.; Shock, E.

    2004-12-01

    Many thermophilic microbes are heterotrophs, but little is known about the organic compounds present in hydrothermal ecosystems. More is known about what these organisms will metabolize in lab experiments than what they do metabolize in nature. In an effort to bridge this gap, we have begun to incorporate organic analyses into ongoing research on Yellowstone hydrothermal ecosystems. After filtering at least a liter of hot spring water to minimize contamination, samples were collected into sixty-milliliter serum vials containing ultra-pure phosphoric acid, sodium hydroxide, or benzalkonium chloride. Approximately 80 sites were sampled spanning temperatures from 60 to 90°C and pH values from 2 to 9. Analytical data for organic acid anions (including formate, acetate, lactate, and succinate) were obtained by ion chromatography. Preliminary results indicate that concentrations of organic acids anions range from 5 to 300 ppb. These results can be used with other field and lab data (sulfate, sulfide, nitrate, ammonia, bicarbonate, pH, hydrogen) in thermodynamic calculations to evaluate the amounts of energy available in heterotrophic reactions. Preliminary results of such calculations show that sulfate reduction to sulfide coupled to succinate oxidation to bicarbonate yields about 6 kcal per mole of electrons transferred. When formate oxidation to bicarbonate or hydrogen oxidation to water is coupled to sulfate reduction there is less energy available by approximately a factor of two. A comparison with nitrate reduction to ammonia involving succinate and/or formate oxidation reveals several similarities. Using formate to reduce nitrate can yield about as much energy as nitrate reduction with hydrogen (typically 12 to 14 kcal per mole of electrons transferred), but using succinate can yield more than twice as much energy. In fact, reduction of nitrate with succinate can provide more energy than any of the inorganic nitrate reduction reactions involving sulfur, iron

  5. Metabolic inhibitors as stimulating factors for citric acid production

    International Nuclear Information System (INIS)

    Adham, N.Z.; Ahmed, E.M.; Refai, H.A.E.

    2008-01-01

    The effect of some metabolic inhibitors on citric acid (CA) production by Aspergillus niger in cane molasses medium was investigated. Addition of 0.01-0.1 mM iodoacetic acid and sodium arsenate, 0.05-1.0 mM sodium malonate, 0.01 mM sodium azide, 0.01-0.05 mM sodium fluoride, 0.1-1.0 mM EDTA stimulated CA production (5-49%). Higher concentrations (10 mM) of iodoacetic acid, sodium malonate and 0.5 mM sodium azide caused a complete inhibition of fungal growth, Iodoacetic acid, sodium arsenate and sodium fluoride (0.2 mM) caused a remarkable inhibition of CA production. The implications of those preliminary functions was discussed. (author)

  6. Ascorbic acid reduces noise-induced nitric oxide production in the guinea pig ear.

    Science.gov (United States)

    Heinrich, Ulf-Rüdiger; Fischer, Ilka; Brieger, Jürgen; Rümelin, Andreas; Schmidtmann, Irene; Li, Huige; Mann, Wolf J; Helling, Kai

    2008-05-01

    Noise-induced hearing loss can be caused, among other causes, by increased nitric oxide (NO) production in the inner ear leading to nitroactive stress and cell destruction. Some studies in the literature suggest that the degree of hearing loss (HL) could be reduced in an animal model through ascorbic acid supplementation. To identify the effect of ascorbic acid on tissue-dependent NO content in the inner ear of the guinea pig, we determined the local NO production in the organ of Corti and the lateral wall separately 6 hours after noise exposure. Prospective animal study in guinea pigs. Over a period of 7 days, male guinea pigs were supplied with minimum (25 mg/kg body weight/day) and maximum (525 mg/kg body weight/day) ascorbic acid doses, and afterwards exposed to noise (90 dB sound pressure level for 1 hour). The acoustic-evoked potentials were recorded before and after noise exposure. The organ of Corti and the lateral wall were incubated differently for 6 hours in culture medium, and the degree of NO production was determined by chemiluminescence. Ascorbic acid treatment reduced the hearing threshold shift after noise exposure depending on concentration. When the maximum ascorbic acid dose was substituted, NO production was significantly reduced in the lateral wall after noise exposure and slightly reduced in the organ of Corti. Oral supplementation of the natural radical scavenger ascorbic acid reduces the NO-production rate in the inner ear in noisy conditions. This finding supports the concept of inner ear protection by ascorbic acid supplementation.

  7. Liquid biofuel production from volatile fatty acids

    NARCIS (Netherlands)

    Steinbusch, K.J.J.

    2010-01-01

    The production of renewable fuels and chemicals reduces the dependency on fossil fuels and limits the increase of CO2 concentration in the atmosphere only if a sustainable feedstock and an energy efficient process are used. The thesis assesses the possibility to use municipal and industrial waste as

  8. Diffusion cell investigations into the acidic degradation of organic coatings

    DEFF Research Database (Denmark)

    Møller, Victor Buhl; Wang, Ting; Dam-Johansen, Kim

    2018-01-01

    Protective organic coatings work by preventing contact between an aggressive environment and a vulnerable substrate. However, the long required lifetime of a barrier coating provides a challenge when attempting to evaluate coating performance. Diffusion cells can be used as a tool to estimate...... coating barrier properties and lifetime. In this work, a diffusion cell array was designed, constructed, and compared to previous designs, with simplicity being the most important design parameter. Sulfuric acid diffusion through five different coatings was monitored using a battery of cells...

  9. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Tsai, Lin; Stadtman, Earl

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(lll)/O-2] depends on the degree of unsaturation of the fatty acid. The fatty acid......-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate fatty acids were oxidized in the presence...... in the formation of protein carbonyls, These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (alpha,beta-unsaturated aldehydes) with lysine residues...

  10. Efficiency of organic acid preparations for the elimination of naturally occurring Salmonella in feed material.

    Science.gov (United States)

    Axmann, Sonja; Kolar, Veronika; Adler, Andreas; Strnad, Irmengard

    2017-11-01

    Salmonella can enter animal stocks via feedstuffs, thus posing not only an infection risk for animals, but also threatening to contaminate food of animal origin and finally humans. Salmonella contamination in feedstuffs is still a recurring and serious issue in animal production (especially for the poultry sector), and is regularly detected upon self-monitoring by feed companies (self-checks) and official inspections authorities. Operators within the feed chain in certain cases need to use hygienic condition enhancers, such as organic acids, to improve the quality of feed for animal nutrition, providing additional guarantees for the protection of animal and public health. The present study investigated the efficiencies of five organic acid preparations. The acid products were added to three different feed materials contaminated with Salmonella (contamination occurred by recontamination in the course of the production process) at seven different inclusion rates (1-7%) and analysed after 1, 2, and 7 days' exposure time using culture method (tenfold analysis). A reliable standard was established for defining a successful decontamination under the prevailing test conditions: 10 Salmonella-negative results out of 10 tested samples (0/10: i.e. 0 positive samples and 10 negative samples). The results demonstrated that the tested preparations showed significant differences with regard to the reduction in Salmonella contamination. At an inclusion rate of 7% of the feed materials, two out of five acid preparations showed an insufficient, very small, decontamination effect, whereas two others had a relatively large partial effect. Reliable decontamination was demonstrated only for one acid preparation, however, subject to the use of the highest acid concentration.

  11. Comparison of Cultivable Acetic Acid Bacterial Microbiota in Organic and Conventional Apple Cider Vinegar

    Directory of Open Access Journals (Sweden)

    Aleksandra Štornik

    2016-01-01

    Full Text Available Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable acetic acid bacterial microbiota in the production of organic and conventional apple cider vinegars from a smoothly running oxidation cycle of a submerged industrial process. In this way we isolated and characterized 96 bacteria from organic and 72 bacteria from conventional apple cider vinegar. Using the restriction analysis of the PCR-amplifi ed 16S-23S rRNA gene ITS regions, we identified four different HaeIII and five different HpaII restriction profiles for bacterial isolates from organic apple cider vinegar. Each type of restriction profile was further analyzed by sequence analysis of the 16S-23S rRNA gene ITS regions, resulting in identification of the following species: Acetobacter pasteurianus (71.90 %, Acetobacter ghanensis (12.50 %, Komagataeibacter oboediens (9.35 % and Komagataeibacter saccharivorans (6.25 %. Using the same analytical approach in conventional apple cider vinegar, we identified only two different HaeIII and two different HpaII restriction profiles of the 16S‒23S rRNA gene ITS regions, which belong to the species Acetobacter pasteurianus (66.70 % and Komagataeibacter oboediens (33.30 %. Yeasts that are able to resist 30 g/L of acetic acid were isolated from the acetic acid production phase and further identified by sequence analysis of the ITS1-5.8S rDNA‒ITS2 region as Candida ethanolica, Pichia membranifaciens and Saccharomycodes ludwigii. This study has shown for the first time that the bacterial microbiota for the

  12. Comparison of Cultivable Acetic Acid Bacterial Microbiota in Organic and Conventional Apple Cider Vinegar.

    Science.gov (United States)

    Štornik, Aleksandra; Skok, Barbara; Trček, Janja

    2016-03-01

    Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable acetic acid bacterial microbiota in the production of organic and conventional apple cider vinegars from a smoothly running oxidation cycle of a submerged industrial process. In this way we isolated and characterized 96 bacteria from organic and 72 bacteria from conventional apple cider vinegar. Using the restriction analysis of the PCR-amplified 16S-23S rRNA gene ITS regions, we identified four different Hae III and five different Hpa II restriction profiles for bacterial isolates from organic apple cider vinegar. Each type of restriction profile was further analyzed by sequence analysis of the 16S-23S rRNA gene ITS regions, resulting in identification of the following species: Acetobacter pasteurianus (71.90%), Acetobacter ghanensis (12.50%), Komagataeibacter oboediens (9.35%) and Komagataeibacter saccharivorans (6.25%). Using the same analytical approach in conventional apple cider vinegar, we identified only two different Hae III and two different Hpa II restriction profiles of the 16S‒23S rRNA gene ITS regions, which belong to the species Acetobacter pasteurianus (66.70%) and Komagataeibacter oboediens (33.30%). Yeasts that are able to resist 30 g/L of acetic acid were isolated from the acetic acid production phase and further identified by sequence analysis of the ITS1-5.8S rDNA‒ITS2 region as Candida ethanolica , Pichia membranifaciens and Saccharomycodes ludwigii . This study has shown for the first time that the bacterial microbiota for the industrial production of

  13. Effect of organic fertilizers on maize production in Eastern Georgia

    Science.gov (United States)

    Jolokhava, Tamar; Kenchiashvili, Naira; Tarkhnishvili, Maia; Ghambashidze, Giorgi

    2016-04-01

    Maize remains to be the most important cereal crop in Georgia. Total area of arable land under cereal crops production equals to 184 thousands hectares (FAO statistical yearbook, 2014), from which maize takes the biggest share. Leading position of maize among other cereal crops is caused by its dual purpose as food and feed product. In Spite of a relatively high production of maize to other cereals there is still a high demand on it, especially as feed for animal husbandry. The same tendency is seen in organic production, where producers of livestock and poultry products require organically grown maize, the average yield of which is much less than those produced conventionally. Therefore, it is important to increase productivity of maize in organic farms. Current study aimed to improve maize yield using locally produced organic fertilizers and to compare them to the effect of mineral fertilizers. The study was carried out in Eastern Georgia under dry subtropical climate conditions on local hybrid of maize. This is the first attempt to use hybrid maize (developed with organic plant breeding method) in organic field trials in Georgia. The results shown, that grain yield from two different types of organic fertilizers reached 70% of the yields achieved with industrial mineral fertilizers. As on farm level differences between organic and conventional maize production are much severe, the results from the field trials seems to be promising for future improvement of organic cereal crop production.

  14. Enhancement of clavulanic acid production by Streptomyces sp MU ...

    African Journals Online (AJOL)

    Purpose: To enhance clavulanic acid production using UV-mutagenesis on Streptomyces sp. NRC77. Methods: UV-mutagenesis was used to study the effect of Streptomyces sp. NRC77 on CA production. Phenotypic and genotypic identification methods of the promising mutant strain were characterized. Optimization of the ...

  15. Reactions of clofibric acid with oxidative and reductive radicals—Products, mechanisms, efficiency and toxic effects

    International Nuclear Information System (INIS)

    Csay, Tamás; Rácz, Gergely; Salik, Ádám; Takács, Erzsébet; Wojnárovits, László

    2014-01-01

    The degradation of clofibric acid induced by hydroxyl radical, hydrated electron and O 2 −∙ /HO 2 ∙ reactive species was studied in aqueous solutions. Clofibric acid was decomposed more effectively by hydroxyl radical than by hydrated electron or O 2 −∙ /HO 2 ∙ . Various hydroxylated, dechlorinated and fragmentation products have been identified and quantified. A new LC–MS method was developed based on 18 O isotope labeling to follow the formation of hydroxylated derivatives of clofibric acid. Possible degradation pathways have been proposed. The overall degradation was monitored by determination of sum parameters like COD, TOC and AOX. It was found that the organic chlorine degrades very effectively prior to complete mineralization. After the treatment no toxic effect was found according to Vibrio fischeri tests. However, at early stages some of the reaction products were more harmful than clofibric acid. - Highlights: • Clofibric acid is effectively degraded by OH radical. • Main primary and secondary products are hydroxylated and dihydroxylated phenyl type derivatives of clofibric acid. • In air saturated aqueous solutions O 2 plays an important role in decomposition of the aromatic structure. • A new LC–MS method with 18 O-labeling was developed. • Early stage reaction products are more toxic to bacteria Vibrio fischeri than clofibric acid

  16. Animal health in organic livestock production systems: a review

    NARCIS (Netherlands)

    Kijlstra, A.; Eijck, I.A.J.M.

    2006-01-01

    Organic livestock production is a means of food production with a large number of rules directed towards a high status of animal welfare, care for the environment, restricted use of medical drugs and the production of a healthy product without residues (pesticides or medical drugs). The intentions

  17. Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain.

    Science.gov (United States)

    Huang, Xuenian; Lu, Xuefeng; Li, Yueming; Li, Xia; Li, Jian-Jun

    2014-08-11

    Itaconic acid, which has been declared to be one of the most promising and flexible building blocks, is currently used as monomer or co-monomer in the polymer industry, and produced commercially by Aspergillus terreus. However, the production level of itaconic acid hasn't been improved in the past 40 years, and mutagenesis is still the main strategy to improve itaconate productivity. The genetic engineering approach hasn't been applied in industrial A. terreus strains to increase itaconic acid production. In this study, the genes closely related to itaconic acid production, including cadA, mfsA, mttA, ATEG_09969, gpdA, ATEG_01954, acoA, mt-pfkA and citA, were identified and overexpressed in an industrial A. terreus strain respectively. Overexpression of the genes cadA (cis-aconitate decarboxylase) and mfsA (Major Facilitator Superfamily Transporter) enhanced the itaconate production level by 9.4% and 5.1% in shake flasks respectively. Overexpression of other genes showed varied effects on itaconate production. The titers of other organic acids were affected by the introduced genes to different extent. Itaconic acid production could be improved through genetic engineering of the industrially used A. terreus strain. We have identified some important genes such as cadA and mfsA, whose overexpression led to the increased itaconate productivity, and successfully developed a strategy to establish a highly efficient microbial cell factory for itaconate protuction. Our results will provide a guide for further enhancement of the itaconic acid production level through genetic engineering in future.

  18. New ways of organizing product introductions.

    Science.gov (United States)

    Berglund, Martina; Harlin, Ulrika; Gustavsson, Maria; Säfsten, Kristina

    2012-01-01

    The aim of this paper is to describe and reflect on an interactive research approach used to address the challenges on how to improve product introductions, the part of the product realization process associated with the transfer of a product from product development to serial production. In the interactive research approach, research results as well as improvement of practice are given equal importance. The collaboration between researchers and practitioners therefore addresses both the focus and the process of the change. The approach includes four main iterative steps: 1) mapping/diagnosis, 2) feedback of results, 3) participation in development activities, and 4) follow-up/evaluation. The paper reports findings from interactive research in one company within office product industry and one company group, consisting of three company units within the engine industry. Preliminary findings indicate that the participating companies afterwards work in a more structured way with product introductions and that the employees have gained deeper knowledge about product introductions as well as experienced the advantages of working across functional boundaries. Furthermore, the interactive research approach is suitable to run projects from an ergonomics perspective as it focuses on developing both practice and theory, it is human-centered, and it emphasizes broad participation from practitioners.

  19. Dry-extrusion of Asian Carp to supplement natural methionine for organic poultry production

    Science.gov (United States)

    Methionine, a sulfur containing amino acid, is essential for healthy poultry production. Synthetic methionine is commonly used as a supplement in conventional poultry. However, for organic poultry in the United States, a natural, cost effective source of methionine that can replace synthetic methion...

  20. Organic acids in cloud water and rainwater at a mountain site in acid rain areas of South China.

    Science.gov (United States)

    Sun, Xiao; Wang, Yan; Li, Haiyan; Yang, Xueqiao; Sun, Lei; Wang, Xinfeng; Wang, Tao; Wang, Wenxing

    2016-05-01

    To investigate the chemical characteristics of organic acids and to identify their source, cloud water and rainwater samples were collected at Mount Lu, a mountain site located in the acid rain-affected area of south China, from August to September of 2011 and March to May of 2012. The volume-weighted mean (VWM) concentration of organic acids in cloud water was 38.42 μeq/L, ranging from 7.45 to 111.46 μeq/L, contributing to 2.50 % of acidity. In rainwater samples, organic acid concentrations varied from 12.39 to 68.97 μeq/L (VWM of 33.39 μeq/L). Organic acids contributed significant acidity to rainwater, with a value of 17.66 %. Formic acid, acetic acid, and oxalic acid were the most common organic acids in both cloud water and rainwater. Organic acids had an obviously higher concentration in summer than in spring in cloud water, whereas there was much less discrimination in rainwater between the two seasons. The contribution of organic acids to acidity was lower during summer than during spring in both cloud water (2.20 % in summer vs 2.83 % in spring) and rainwater (12.24 % in summer vs 19.89 % in spring). The formic-to-acetic acid ratio (F/A) showed that organic acids were dominated by primary emissions in 71.31 % of the cloud water samples and whole rainwater samples. Positive matrix factorization (PMF) analysis determined four factors as the sources of organic acids in cloud water, including biogenic emissions (61.8 %), anthropogenic emissions (15.28 %), marine emissions (15.07 %) and soil emissions (7.85 %). The findings from this study imply an indispensable role of organic acids in wet deposition, but organic acids may have a limited capacity to increase ecological risks in local environments.

  1. Metabolically engineered cells for the production of polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to the construction and engineering of cells, more particularly microorganisms for producing PUFAs with four or more double bonds from non-fatty acid substrates through heterologous expression of an oxygen requiring pathway. The invention especially involves...... improvement of the PUFA content in the host organism through fermentation optimization, e.g. decreasing the temperature and/or designing an optimal medium, or through improving the flux towards fatty acids by metabolic engineering, e.g. through over-expression of fatty acid synthases, over-expression of other...

  2. Cirrus cloud mimic surfaces in the laboratory: organic acids, bases and NOx heterogeneous reactions

    Science.gov (United States)

    Sodeau, J.; Oriordan, B.

    2003-04-01

    CIRRUS CLOUD MIMIC SURFACES IN THE LABORATORY:ORGANIC ACIDS, BASES AND NOX HETEROGENEOUS REACTIONS. B. ORiordan, J. Sodeau Department of Chemistry and Environment Research Institute, University College Cork, Ireland j.sodeau@ucc.ie /Fax: +353-21-4902680 There are a variety of biogenic and anthropogenic sources for the simple carboxylic acids to be found in the troposphere giving rise to levels as high as 45 ppb in certain urban areas. In this regard it is of note that ants of genus Formica produce some 10Tg of formic acid each year; some ten times that produced by industry. The expected sinks are those generally associated with tropospheric chemistry: the major routes studied, to date, being wet and dry deposition. No studies have been carried out hitherto on the role of water-ice surfaces in the atmospheric chemistry of carboxylic acids and the purpose of this paper is to indicate their potential function in the heterogeneous release of atmospheric species such as HONO. The deposition of formic acid on a water-ice surface was studied using FT-RAIR spectroscopy over a range of temperatures between 100 and 165K. In all cases ionization to the formate (and oxonium) ions was observed. The results were confirmed by TPD (Temperature Programmed Desorption) measurements, which indicated that two distinct surface species adsorb to the ice. Potential reactions between the formic acid/formate ion surface and nitrogen dioxide were subsequently investigated by FT-RAIRS. Co-deposition experiments showed that N2O3 and the NO+ ion (associated with water) were formed as products. A mechanism is proposed to explain these results, which involves direct reaction between the organic acid and nitrogen dioxide. Similar experiments involving acetic acid also indicate ionization on a water-ice surface. The results are put into the context of atmospheric chemistry potentially occuring on cirrus cloud surfaces.

  3. Uric acid disrupts hypochlorous acid production and the bactericidal activity of HL-60 cells.

    Science.gov (United States)

    Carvalho, Larissa A C; Lopes, João P P B; Kaihami, Gilberto H; Silva, Railmara P; Bruni-Cardoso, Alexandre; Baldini, Regina L; Meotti, Flavia C

    2018-06-01

    Uric acid is the end product of purine metabolism in humans and is an alternative physiological substrate for myeloperoxidase. Oxidation of uric acid by this enzyme generates uric acid free radical and urate hydroperoxide, a strong oxidant and potentially bactericide agent. In this study, we investigated whether the oxidation of uric acid and production of urate hydroperoxide would affect the killing activity of HL-60 cells differentiated into neutrophil-like cells (dHL-60) against a highly virulent strain (PA14) of the opportunistic pathogen Pseudomonas aeruginosa. While bacterial cell counts decrease due to dHL-60 killing, incubation with uric acid inhibits this activity, also decreasing the release of the inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF- α). In a myeloperoxidase/Cl - /H 2 O 2 cell-free system, uric acid inhibited the production of HOCl and bacterial killing. Fluorescence microscopy showed that uric acid also decreased the levels of HOCl produced by dHL-60 cells, while significantly increased superoxide production. Uric acid did not alter the overall oxidative status of dHL-60 cells as measured by the ratio of reduced (GSH) and oxidized (GSSG) glutathione. Our data show that uric acid impairs the killing activity of dHL-60 cells likely by competing with chloride by myeloperoxidase catalysis, decreasing HOCl production. Despite diminishing HOCl, uric acid probably stimulates the formation of other oxidants, maintaining the overall oxidative status of the cells. Altogether, our results demonstrated that HOCl is, indeed, the main relevant oxidant against bacteria and deviation of myeloperoxidase activity to produce other oxidants hampers dHL-60 killing activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Metal mobilization from metallurgical wastes by soil organic acids.

    Science.gov (United States)

    Potysz, Anna; Grybos, Malgorzata; Kierczak, Jakub; Guibaud, Gilles; Fondaneche, Patrice; Lens, Piet N L; van Hullebusch, Eric D

    2017-07-01

    Three types of Cu-slags differing in chemical and mineralogical composition (historical, shaft furnace, and granulated slags) and a matte from a lead recovery process were studied with respect to their susceptibility to release Cu, Zn and Pb upon exposure to organic acids commonly encountered in soil environments. Leaching experiments (24-960 h) were conducted with: i) humic acid (20 mg/L) at pH t 0  = 4.4, ii) fulvic acid (20 mg/L) at pH t 0  = 4.4, iii) an artificial root exudates (ARE) (17.4 g/L) solution at pH t 0  = 4.4, iv) ARE solution at pH t 0  = 2.9 and v) ultrapure water (pH t 0  = 5.6). The results demonstrated that the ARE contribute the most to the mobilization of metals from all the wastes analyzed, regardless of the initial pH of the solution. For example, up to 14%, 30%, 24% and 5% of Cu is released within 960 h from historical, shaft furnace, granulated slags and lead matte, respectively, when exposed to the artificial root exudates solution (pH 2.9). Humic and fulvic acids were found to have a higher impact on granulated and shaft furnace slags as compared to the ultrapure water control and increased the release of metals by a factor up to 37.5 (Pb) and 20.5 (Cu) for granulated and shaft furnace slags, respectively. Humic and fulvic acids amplified the mobilization of metals by a maximal factor of 13.6 (Pb) and 12.1 (Pb) for historical slag and lead matte, respectively. The studied organic compounds contributed to different release rates of metallic contaminants from individual metallurgical wastes under the conditions tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. STUDY REGARDING CONSUMPTION OF ORGANIC PRODUCTS IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Toma Adrian DINU

    2014-06-01

    Full Text Available The recent statistical data and market studies have shown that the organic products market is on a continuouslyupward trend in Europe and globally. For Romania, organic agriculture represents a market niche that is stillinsufficiently exploited, with a definite and real development potential of the agricultural sector. The role of theconsumer is decisive for the evolution trends and future prospects of any market. A questionnaire based quantitativeresearch was done to find out the Romanian consumers’ behaviour related to organic products, which allowed theestablishment of the weight of organic products consumers within the population interviewed, the extent to whichthe characteristics of organic products, brands and categories known and consumed are acknowledged. The studyalso pursued the evaluation of motivational factors which determine the purchase, market appraisal between thealleged favourable attitude towards organic products and product consumption, the evaluation of the way in whichthe Romanian organic products’ quality is perceived in relation with their price.The study shows an increase in consumer interest for “healthy” products, so that the change according to theirbehaviour shall generate an increase in the organic products market in Romania.

  6. Farmers' Perception towards Organic-based Vegetable Produc-tion ...

    African Journals Online (AJOL)

    It is well established that organic farming is a production system that sustain the health of the soils, ecosystems and people. This study assessed the small-scale farmers' perception towards organic based vegetable production in Ilaro agricultural zone of Ogun state, Nigeria. A multi-stage sampling procedure was used in the ...

  7. Production of dissolved organic carbon in aquatic sediment suspensions

    NARCIS (Netherlands)

    Koelmans, A.A.; Prevo, L.

    2003-01-01

    In many water quality models production of dissolved organic carbon (DOC) is modelled as mineralisation from particulate organic matter (POM). In this paper it is argued that the DOC production from dessicated sediments by water turbulence may be of similar importance
    In many water quality

  8. Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger.

    Science.gov (United States)

    Hossain, Abeer H; Li, An; Brickwedde, Anja; Wilms, Lars; Caspers, Martien; Overkamp, Karin; Punt, Peter J

    2016-07-28

    The industrially relevant filamentous fungus Aspergillus niger is widely used in industry for its secretion capabilities of enzymes and organic acids. Biotechnologically produced organic acids promise to be an attractive alternative for the chemical industry to replace petrochemicals. Itaconic acid (IA) has been identified as one of the top twelve building block chemicals which have high potential to be produced by biotechnological means. The IA biosynthesis cluster (cadA, mttA and mfsA) has been elucidated in its natural producer Aspergillus terreus and transferred to A. niger to enable IA production. Here we report the rewiring of a secondary metabolite pathway towards further improved IA production through the overexpression of a putative cytosolic citrate synthase citB in a A. niger strain carrying the IA biosynthesis cluster. We have previously shown that expression of cadA from A. terreus results in itaconic acid production in A. niger AB1.13, albeit at low levels. This low-level production is boosted fivefold by the overexpression of mttA and mfsA in itaconic acid producing AB1.13 CAD background strains. Controlled batch cultivations with AB1.13 CAD + MFS + MTT strains showed increased production of itaconic acid compared with AB1.13 CAD strain. Moreover, preliminary RNA-Seq analysis of an itaconic acid producing AB1.13 CAD strain has led to the identification of the putative cytosolic citrate synthase citB which was induced in an IA producing strain. We have overexpressed citB in a AB1.13 CAD + MFS + MTT strain and by doing so hypothesize to have targeted itaconic acid production to the cytosolic compartment. By overexpressing citB in AB1.13 CAD + MFS + MTT strains in controlled batch cultivations we have achieved highly increased titers of up to 26.2 g/L IA with a productivity of 0.35 g/L/h while no CA was produced. Expression of the IA biosynthesis cluster in Aspergillus niger AB1.13 strain enables IA production. Moreover, in the AB1.13 CAD

  9. Citric acid production from whey by fermentation using Aspergillus spp.

    Directory of Open Access Journals (Sweden)

    Óscar Julián Sánchez Toro

    2004-01-01

    Full Text Available Whey has become the main dairy-industry waste product, despite continuous efforts aimed at finding a way to use it. The aim of this research was to investigate citric acid production by submerged fermentation using Aspergillus genus fungi, using whey as substrate to take economical advantage of it and to reduce the environmental impact caused by discharging this by-product into nearby streams. The following three strains were used: A. carbonarius NRRL 368, A. carbonarius NRRL 67 and A. niger NRRL 3. The best adaptation medium for inoculum propagation was selected. Proposed experimental design for evaluating citric acid biosynthesis from whey modified through different treatments showed that the two A. carbonarius strains did not present significant differences in acid production whereas A. niger NRRL 3 reached higher concentration when evaporated, deproteinised and p-galactosidase lactose-hydrolysed whey was used. However, A. carbonarius gave higher average citric acid titres than those found for A. niger. This suggests the need for carrying out further research on it as a potential producing strain. Cell growth, substrate consumption and acid production kinetics in a 3-L stirred-tank bioreactor with aeration were developed in the case of A. niger; kinetics were simulated through non-structured mathematical models. Key words: Aspergilluscarbonarius, Aspergillus niger, bioreactor, simulation, p-galactosidase.

  10. Reactions of clofibric acid with oxidative and reductive radicals-Products, mechanisms, efficiency and toxic effects

    Science.gov (United States)

    Csay, Tamás; Rácz, Gergely; Salik, Ádám; Takács, Erzsébet; Wojnárovits, László

    2014-09-01

    The degradation of clofibric acid induced by hydroxyl radical, hydrated electron and O2-•/HO2• reactive species was studied in aqueous solutions. Clofibric acid was decomposed more effectively by hydroxyl radical than by hydrated electron or O2-•/HO2•. Various hydroxylated, dechlorinated and fragmentation products have been identified and quantified. A new LC-MS method was developed based on 18O isotope labeling to follow the formation of hydroxylated derivatives of clofibric acid. Possible degradation pathways have been proposed. The overall degradation was monitored by determination of sum parameters like COD, TOC and AOX. It was found that the organic chlorine degrades very effectively prior to complete mineralization. After the treatment no toxic effect was found according to Vibrio fischeri tests. However, at early stages some of the reaction products were more harmful than clofibric acid.

  11. Niche farm fresh products: organic and biodynamic

    DEFF Research Database (Denmark)

    Jensen, Annette Nygaard; Baggesen, Dorte Lau

    2013-01-01

    There has been a general increase in demand for ‘organic’ or ‘biodynamic’ produce. As mineral nitrogen fertilizers are prohibited in organic farming, livestock manure often becomes the central fertilizer. Livestock manure is a known potential source of human pathogens, so it can be speculated...... that the observed increase in vegetable-associated foodborne outbreaks of pathogens is linked to its use. Legislation and guidelines vary regarding minimization of contamination risk in relation to use of livestock manure. An assessment of the effect of differences in management between organic and conventional...

  12. Agroindustrial Byproducts For The Production Of Hyaluronic Acid By Streptococcus Zooepidemicus ATCC 39920

    Directory of Open Access Journals (Sweden)

    Nicole Caldas Pan

    2015-04-01

    Full Text Available Abstract Agroindustrial derivatives are alternative nutritional sources employed in bioprocesses that reduce costs and corroborate with social sustainability. In this study alternative carbon sugarcane juice sugarcane molasses and soy molasses and nitrogen sources corn steep liquor soy protein and whey protein were evaluated for hyaluronic acid production by Streptococcus zooepidemicus ATCC 39920. The medium containing sugarcane molasses archived high yield of hyaluronic acid 0.066 g.g-1 when compared to the medium composed of glucose or sucrose. The replacement of yeast extract by soy protein was also effective for the production of the polymer resulting in 0.219 g.L-1. In general the organic acids production was also evaluated and the results showed that the main metabolic products were lactate. In contrast the acetate synthesis was detected only in the medium containing yeast extract. This study showed that sugarcane molasses is a promising carbon source for the hyaluronic acid production. This is the first study in which a culture media containing sugarcane molasses a cheap substrate extensively produced in Brazil has been successfully used for the microbial hyaluronic acid production.

  13. Organic livestock production in Uganda: potentials, challenges and prospects

    DEFF Research Database (Denmark)

    Nalubwama, Sylvia Muwanga; Mugisha, Anthony; Vaarst, Mette

    2011-01-01

    Development in organic farming has been stimulated by farmers and consumers becoming interested in healthy food products and sustainable environment. Organic agriculture is a holistic production management system which is based on the principles of health, ecology, care, and fairness. Organic...... development in Uganda has focused more on the crop sector than livestock sector and has primarily involved the private sector, like organic products export companies and non-governmental organizations. Agriculture in Uganda and many African countries is predominantly traditional, less mechanized......, and is usually associated with minimum use of chemical fertilizers, pesticides, and drugs. This low external input agriculture also referred to as “organic by default” can create basis for organic farming where agroecological methods are introduced and present an alternative in terms of intensification...

  14. Enhanced vanillin production from ferulic acid using adsorbent resin.

    Science.gov (United States)

    Hua, Dongliang; Ma, Cuiqing; Song, Lifu; Lin, Shan; Zhang, Zhaobin; Deng, Zixin; Xu, Ping

    2007-03-01

    High vanillin productivity was achieved in the batch biotransformation of ferulic acid by Streptomyces sp. strain V-1. Due to the toxicity of vanillin and the product inhibition, fed-batch biotransformation with high concentration of ferulic acid was unsuccessful. To solve this problem and improve the vanillin yield, a biotransformation strategy using adsorbent resin was investigated. Several macroporous adsorbent resins were chosen to adsorb vanillin in situ during the bioconversion. Resin DM11 was found to be the best, which adsorbed the most vanillin and the least ferulic acid. When 8% resin DM11 (wet w/v) was added to the biotransformation system, 45 g l(-1) ferulic acid could be added continually and 19.2 g l(-1) vanillin was obtained within 55 h, which was the highest vanillin yield by bioconversion until now. This yield was remarkable for exceeding the crystallization concentration of vanillin and therefore had far-reaching consequence in its downstream processing.

  15. Mechanocatalytic Production of Lactic Acid from Glucose by Ball Milling

    Directory of Open Access Journals (Sweden)

    Luyang Li

    2017-06-01

    Full Text Available A solvent-free process was developed for the direct production of lactic acid from glucose in a mechanocatalytic process in the presence of Ba(OH2, and a moderate lactic acid yield of 35.6% was obtained. Glucose conversion and lactic acid formation were favorable at higher catalyst/glucose mass ratios. However, at relatively lower catalyst/glucose mass ratios, they were greatly inhibited, and the promotion of fructose formation was observed. The mechanocatalytic process was applicable for various carbohydrates such as C5 sugars, C6 sugars, and disaccharides with 20–36% lactic acid yields achieved. This work provides a new pathway for the production of value-added chemicals from biomass resources.

  16. Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.

    Science.gov (United States)

    Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene

    2015-05-15

    Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Pan-Arctic Distribution of Bioavailable Dissolved Organic Matter and Linkages With Productivity in Ocean Margins

    Science.gov (United States)

    Shen, Yuan; Benner, Ronald; Kaiser, Karl; Fichot, Cédric G.; Whitledge, Terry E.

    2018-02-01

    Rapid environmental changes in the Arctic Ocean affect plankton productivity and the bioavailability of dissolved organic matter (DOM) that supports microbial food webs. We report concentrations of dissolved organic carbon (DOC) and yields of amino acids (indicators of labile DOM) in surface waters across major Arctic margins. Concentrations of DOC and bioavailability of DOM showed large pan-Arctic variability that corresponded to varying hydrological conditions and ecosystem productivity, respectively. Widespread hot spots of labile DOM were observed over productive inflow shelves (Chukchi and Barents Seas), in contrast to oligotrophic interior margins (Kara, Laptev, East Siberian, and Beaufort Seas). Amino acid yields in outflow gateways (Canadian Archipelago and Baffin Bay) indicated the prevalence of semilabile DOM in sea ice covered regions and sporadic production of labile DOM in ice-free waters. Comparing these observations with surface circulation patterns indicated varying shelf subsidies of bioavailable DOM to Arctic deep basins.

  18. The role of organic acids exuded from roots in phosphorus nutrition and aluminium tolerance in acidic soils

    Energy Technology Data Exchange (ETDEWEB)

    Hocking, P J; Randall, P J; Delhaize, E [CSIRO Plant Industry, Canberra (Australia); Keerthisinghe, G [International Atomic Energy Agency, Vienna (Austria)

    2000-06-01

    Soil acidity is a major problem of large areas of arable land on a global scale. Many acid soils are low in plant-available phosphorus (P) or are highly P-fixing, resulting in poor plant growth. In addition, aluminium (Al) is soluble in acid soils in the toxic Al{sup 3+} form, which also reduces plant growth. There is considerable evidence that both P deficiency and exposure to Al{sup 3+} stimulate the efflux of organic acids from roots of a range of species. Organic acids such as citrate, malate and oxalate are able to desorb or solubilise fixed soil P, making it available for plant uptake. Organic acids also chelate Al{sup 3+} to render it non-toxic, and are, therefore, involved in Al tolerance mechanisms. In this review, we discuss the literature on the role of organic acids exuded from roots in improving plant P uptake and Al-tolerance in acid soils. Research is now attempting to understand how P deficiency or exposure to Al{sup 3+} activates or induces organic acid efflux at the molecular level, with the aim of improving P acquisition and Al tolerance by conventional plant breeding and by genetic engineering. At the agronomic level, it is desirable that existing crop and pasture plants with enhanced soil-P uptake and tolerance to Al due to organic acid exudation are integrated into farming systems. (author)

  19. The role of organic acids exuded from roots in phosphorus nutrition and aluminium tolerance in acidic soils

    International Nuclear Information System (INIS)

    Hocking, P.J.; Randall, P.J.; Delhaize, E.; Keerthisinghe, G.

    2000-01-01

    Soil acidity is a major problem of large areas of arable land on a global scale. Many acid soils are low in plant-available phosphorus (P) or are highly P-fixing, resulting in poor plant growth. In addition, aluminium (Al) is soluble in acid soils in the toxic Al 3+ form, which also reduces plant growth. There is considerable evidence that both P deficiency and exposure to Al 3+ stimulate the efflux of organic acids from roots of a range of species. Organic acids such as citrate, malate and oxalate are able to desorb or solubilise fixed soil P, making it available for plant uptake. Organic acids also chelate Al 3+ to render it non-toxic, and are, therefore, involved in Al tolerance mechanisms. In this review, we discuss the literature on the role of organic acids exuded from roots in improving plant P uptake and Al-tolerance in acid soils. Research is now attempting to understand how P deficiency or exposure to Al 3+ activates or induces organic acid efflux at the molecular level, with the aim of improving P acquisition and Al tolerance by conventional plant breeding and by genetic engineering. At the agronomic level, it is desirable that existing crop and pasture plants with enhanced soil-P uptake and tolerance to Al due to organic acid exudation are integrated into farming systems. (author)

  20. Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9.

    Science.gov (United States)

    Walton, Sara L; Bischoff, Kenneth M; van Heiningen, Adriaan R P; van Walsum, G Peter

    2010-08-01

    Bacillus coagulans MXL-9 was found capable of growing on pre-pulping hemicellulose extracts, utilizing all of the principle monosugars found in woody biomass. This organism is a moderate thermophile isolated from compost for its pentose-utilizing capabilities. It was found to have high tolerance for inhibitors such as acetic acid and sodium, which are present in pre-pulping hemicellulose extracts. Fermentation of 20 g/l xylose in the presence of 30 g/l acetic acid required a longer lag phase but overall lactic acid yield was not diminished. Similarly, fermentation of xylose in the presence of 20 g/l sodium increased the lag time but did not affect overall product yield, though 30 g/l sodium proved completely inhibitory. Fermentation of hot water-extracted Siberian larch containing 45 g/l total monosaccharides, mainly galactose and arabinose, produced 33 g/l lactic acid in 60 h and completely consumed all sugars. Small amounts of co-products were formed, including acetic acid, formic acid, and ethanol. Hemicellulose extract formed during autohydrolysis of mixed hardwoods contained mainly xylose and was converted into lactic acid with a 94% yield. Green liquor-extracted hardwood hemicellulose containing 10 g/l acetic acid and 6 g/l sodium was also completely converted into lactic acid at a 72% yield. The Bacillus coagulans MXL-9 strain was found to be well suited to production of lactic acid from lignocellulosic biomass due to its compatibility with conditions favorable to industrial enzymes and its ability to withstand inhibitors while rapidly consuming all pentose and hexose sugars of interest at high product yields.

  1. Materials and methods for efficient lactic acid production

    Science.gov (United States)

    Zhou, Shengde; Ingram, Lonnie O& #x27; Neal; Shanmugam, Keelnatham T; Yomano, Lorraine; Grabar, Tammy B; Moore, Jonathan C

    2013-04-23

    The present invention provides derivatives of Escherichia coli constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  2. Effect of inhibitors on acid production by baker's yeast.

    Science.gov (United States)

    Sigler, K; Knotková, A; Kotyk, A

    1978-01-01

    Glucose-induced acid extrusion, respiration and anaerobic fermentation in baker's yeast was studied with the aid of sixteen inhibitors. Uranyl(2+) nitrate affected the acid extrusion more anaerobically than aerobically; the complexing of Mg2+ and Ca2+ by EDTA at the membrane had no effect. Inhibitors of glycolysis (iodoacetamide, N-ethylmaleimide, fluoride) suppressed acid production markedly, and so did the phosphorylation-blocking arsenate. Fluoroacetate, inhibiting the citric-acid cycle, had no effect. Inhibition by uncouplers depended on their pKa values: 2,4,6-trinitrophenol (pKa 0.4) less than 2,4-dinitrophenol (4.1) less than azide (4.7) less than 3-chlorophenylhydrazonomalononitrile (6.0). Inhibition by trinitrophenol was only slightly increased by its acetylation. Cyanide and nonpermeant oligomycin showed practically no effect; inhibition by dicyclohexylcarbodiimide was delayed but potent. The concentration profiles of inhibition of acid production differed from those of respiration and fermentation. Thus, though the acid production is a metabolically dependent process, it does not reflect the intensity of metabolism, except partly in the first half of glycolysis.

  3. Production of amino acids - Genetic and metabolic engineering approaches.

    Science.gov (United States)

    Lee, Jin-Ho; Wendisch, Volker F

    2017-12-01

    The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    Energy Technology Data Exchange (ETDEWEB)

    Donal F. Day

    2009-03-31

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of

  5. Catalytic amino acid production from biomass-derived intermediates

    KAUST Repository

    Deng, Weiping

    2018-04-30

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.

  6. Fumaric acid production by Rhizopus oryzae and its facilitated ...

    African Journals Online (AJOL)

    Anupreet

    2014-03-05

    Mar 5, 2014 ... membrane' setup for a 'fumaric acid' source, with toluene as organic membrane and sodium hydroxide as strip phase. The liquid ... polymer films can be extended to include liquids. They are defined as Liquid .... Membrane solutions were prepared by dissolution of trioctylamine. (TOA) (Fluka A.G. ...

  7. Roles of Organic Acid Anion Secretion in Aluminium Tolerance of Higher Plants

    Science.gov (United States)

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium(Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H+-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed. PMID:23509687

  8. Flash pyrolysis of adsorbed aromatic organic acids on carbonate minerals: Assessing the impact of mineralogy for the identification of organic compounds in extraterrestrial bodies

    Science.gov (United States)

    Zafar, R.

    2017-12-01

    The relationship between minerals and organics is an essential factor in comprehending the origin of life on extraterrestrial bodies. So far organic molecules have been detected on meteorites, comets, interstellar medium and interplanetary dust particles. While on Mars, organic molecules may also be present as indicated by the Sample Analysis at Mars (SAM) instrument suite on the Curiosity Rover in Martian sediments. Minerals including hydrated phyllosilicate, carbonate, and sulfate minerals have been confirmed in carbonaceous chondrites. The presence of phyllosilicate minerals on Mars has been indicated by in situ elemental analysis by the Viking Landers, remote sensing infrared observations and the presence of smectites in meteorites. Likewise, the presence of carbonate minerals on the surface of Mars has been indicated by both Phoenix Lander and Spirit Rover. Considering the fact that both mineral and organic matter are present on the surface of extraterrestrial bodies including Mars, a comprehensive work is required to understand the interaction of minerals with specific organic compounds. The adsorption of the organic molecule at water/mineral surface is a key process of concentrating organic molecules on the surface of minerals. Carboxylic acids are abundantly observed in extraterrestrial material such as meteorites and interstellar space. It is highly suspected that carboxylic acids are also present on Mars due to the average organic carbon infall rate of 108 kg/yr. Further aromatic organic acids have also been observed in carbonaceous chondrite meteorites. This work presents the adsorption of an aromatic carboxylic acid at the water/calcite interface and characterization of the products formed after adsorption via on-line pyrolysis. Adsorption and online pyrolysis results are used to gain insight into adsorbed aromatic organic acid-calcite interaction. Adsorption and online pyrolysis results are related to the interpretation of organic compounds identified

  9. Organic production in the hills and uplands (OF0319)

    OpenAIRE

    Keatinge, R

    2005-01-01

    It is Government policy to provide a framework in which organic farming can develop, promoting more sustainable and environmentally sound systems of livestock production. Scientific information is required on the development, performance and limitations of organic systems, to facilitate informed decision-making and to aid policy formulation. Using the established organic unit at Redesdale, the overall objective of this project was to evaluate and demonstrate the long-term potential of organic...

  10. Methods of Analysis by the U.S. Geological Survey Organic Geochemistry Research Group-Determination of Dissolved Isoxaflutole and Its Sequential Degradation Products, Diketonitrile and Benzoic Acid, in Water Using Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry

    Science.gov (United States)

    Meyer, Michael T.; Lee, Edward A.; Scribner, Elisabeth A.

    2007-01-01

    An analytical method for the determination of isoxaflutole and its sequential degradation products, diketonitrile and a benzoic acid analogue, in filtered water with varying matrices was developed by the U.S. Geological Survey Organic Geochemistry Research Group in Lawrence, Kansas. Four different water-sample matrices fortified at 0.02 and 0.10 ug/L (micrograms per liter) are extracted by vacuum manifold solid-phase extraction and analyzed by liquid chromatography/tandem mass spectrometry using electrospray ionization in negative-ion mode with multiple-reaction monitoring (MRM). Analytical conditions for mass spectrometry detection are optimized, and quantitation is carried out using the following MRM molecular-hydrogen (precursor) ion and product (p) ion transition pairs: 357.9 (precursor), 78.9 (p), and 277.6 (p) for isoxaflutole and diketonitrile, and 267.0 (precursor), 159.0 (p), and 223.1 (p) for benzoic acid. 2,4-dichlorophenoxyacetic acid-d3 is used as the internal standard, and alachlor ethanesulfonic acid-d5 is used as the surrogate standard. Compound detection limits and reporting levels are calculated using U.S. Environmental Protection Agency procedures. The mean solid-phase extraction recovery values ranged from 104 to 108 percent with relative standard deviation percentages ranging from 4.0 to 10.6 percent. The combined mean percentage concentration normalized to the theoretical spiked concentration of four water matrices analyzed eight times at 0.02 and 0.10 ug/L (seven times for the reagent-water matrix at 0.02 ug/L) ranged from approximately 75 to 101 percent with relative standard deviation percentages ranging from approximately 3 to 26 percent for isoxaflutole, diketonitrile, and benzoic acid. The method detection limit (MDL) for isoxaflutole and diketonitrile is 0.003 ug/L and 0.004 ug/L for benzoic acid. Method reporting levels (MRLs) are 0.011, 0.010, and 0.012 ug/L for isoxaflutole, diketonitrile, and benzoic acid, respectively. On the basis

  11. An overview of biotechnological production of propionic acid: From upstream to downstream processes

    Directory of Open Access Journals (Sweden)

    Negin Ahmadi

    2017-07-01

    Full Text Available The increasing demand for propionic acid (PA production and its wide applications in several industries, especially the food industry (as a preservative and satiety inducer, have led to studies on the low-cost biosynthesis of this acid. This paper gives an overview of the biotechnological aspects of PA production and introduces Propionibacterium as the most popular organism for PA production. Moreover, all process variables influencing the production yield, different simple and complex carbon sources, the metabolic pathway of production, engineered mutants with increased productivity, and modified tolerance against high concentrations of acid have been described. Furthermore, possible methods of extraction and analysis of this organic acid, several applied bioreactors, and different culture systems and substrates are introduced. It can be concluded that maximum biomass and PA production may be achieved using metabolically engineered microorganisms and analyzing the most significant factors influencing yield. To date, the maximum reported yield for PA production is 0.973 g·g-1, obtained from Propionibacterium acidipropionici in a three-electrode amperometric culture system in medium containing 0.4 mM cobalt sepulchrate. In addition, the best promising substrate for PA bioproduction may be achieved using glycerol as a carbon source in an extractive continuous fermentation. Simultaneous production of PA and vitamin B12 is suggested, and finally, the limitations of and strategies for competitive microbial production with respect to chemical process from an economical point of view are proposed and presented. Finally, some future trends for bioproduction of PA are suggested.

  12. Fermentative production of butyric acid from wheat straw: Economic evaluation

    DEFF Research Database (Denmark)

    Baroi, G. N.; Gavala, Hariklia N.; Westermann, P.

    2017-01-01

    2014) at 3.50 and 3.95 $ per kg product (for S1 and S2 respectively) and a plant capacity of 10,000 tonnes indicated an internal rate of return of 14.92% and 12.42% and payback time of 4.28 and 4.70 years for S1 and S2 respectively. Sensitivity analysis showed that under the assumptions of the present......The economic feasibility of biochemical conversion of wheat straw to butyric acid was studied in this work. Basic process steps included physicochemical pretreatment, enzymatic hydrolysis and saccharification, fermentation with in-situ acids separation by electrodialysis and product purification...

  13. Capillary gas chromatographic analysis of mycolic acid cleavage products, cellular fatty acids, and alcohols of Mycobacterium xenopi.

    OpenAIRE

    Luquin, M; Lopez, F; Ausina, V

    1989-01-01

    The fatty acids, alcohols, and mycolic acids of 26 strains of Mycobacterium xenopi were studied by capillary gas chromatography and thin-layer chromatography. All strains contained alpha-, keto-, and omega-carboxymycolates. The primary mycolic acid cleavage product was hexacosanoic acid. The fatty acid patterns and, especially, the presence of 2-docosanol are characteristic markers of M. xenopi.

  14. Organic Bread Wheat Production and Market in Europe

    DEFF Research Database (Denmark)

    David, C.; Abecassis, J.; Carcea, M.

    2012-01-01

    yield under organic production. The choice of cultivar, green manure, fertilization and intercropping legumes – grain or forage – are efficient ways to obtain high grain quality and quantity. The economic viability of wheat production in Europe is also affected by subsidies from European Union agri......This chapter is a first attempt to analyse bottlenecks and challenges of European organic bread wheat sector involving technical, political and market issues. From 2000, the organic grain market has largely increased in Western Europe. To balance higher consumer demand there is a need to increase...... organic production by a new transition and technical improvement. Bread wheat is grown in a variety of crop rotations and farming systems where four basic organic crop production systems have been defined. Weeds and nitrogen deficiency are considered to be the most serious threat inducing lowest grain...

  15. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    One possible process responsible for methane generation on Mars is abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions. Measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane by tracing the geochemical pathway during formation. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible hydrogen isotope measurements. Reported here are results of experiments to characterize the hydrogen isotope composition of low molecular weight organic acids and alcohols. The presence of these organic compounds has been suggested by others as intermeadiary products made during mineral surface catalyzed reactions. This work compliments our previous study characterizing the carbon isotope composition of similar low molecular weight intermediary organic compounds (Socki, et al, American Geophysical Union Fall meeting, Abstr. #V51B-2189, Dec., 2010). Our hydrogen isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). Our technique is unique in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II? quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  16. Comparing the profitability of organic and conventional broiler production

    Directory of Open Access Journals (Sweden)

    F Cobanoglu

    2014-03-01

    Full Text Available Recently, organic broiler chicken production has received more attention worldwide. This study has carried out an economic analysis to compare the profitability of organic versus conventional growing systems per unit of broiler meat production. To achieve this goal, 400 slow-growing broiler chickens (Hubbard Red-JA were reared in an organic production system, and the same number of fast-growing birds (Ross-308 in a conventional system. The profitability was deduced with an economic analysis that compared total costs and net income. Results showed that organic broiler meat can cost from 70% to 86% more with respect to variable and fixed costs when compared with conventional production. The main reasons for the higher cost of organic broiler meat were feed, labor, certification, and outdoor area maintenance. The proportion of fixed costs in total costs was 1.54% in the conventional system and 7.48% in the organic system. The net income per kg of chicken meat in the organic system was € 0.75, which is 180% higher than chicken meat grown in a conventional system (€ 0.27; however, the price of organic broiler meat sold in the present study was twice as high as that obtained for conventional broilers. In conclusion, organic broiler meat production was more profitable than conventional rearing.

  17. Comparing the profitability of organic and conventional broiler production

    Directory of Open Access Journals (Sweden)

    F Cobanoglu

    2014-12-01

    Full Text Available Organic broiler chicken production has recently received more attention worldwide. This study carried out an economic analysis to compare the profitability of organic versus conventional growing systems per unit of broiler meat production. In this study, 400 slow-growing broilers (Hubbard Red-JA were reared in an organic production system and the same number of fast-growing broilers (Ross-308 were reared in a conventional system. Profitability was deduced from an economic analysis that compared total costs and net income. Results showed that organic broiler meat can cost from 70% to 86% more with respect to variable and fixed costs when compared with conventional production. The main reasons for the higher cost of organic broiler meat were feed, labor, certification, and outdoor area maintenance. The proportion of fixed costs in total costs was 1.54% in the conventional system and 7.48% in the organic system. The net income per kg of chicken meat in the organic system was €0.75, which is 180% higher compared with the conventional system (€0.27; however, organic broiler meat was sold at a twice as high price than the conventional one. In conclusion, organic broiler meat production was more economical than conventional rearing.

  18. 2012: no trans fatty acids in Spanish bakery products.

    Science.gov (United States)

    Ansorena, Diana; Echarte, Andrea; Ollé, Rebeca; Astiasarán, Iciar

    2013-05-01

    Trans fatty acids (TFA) are strongly correlated with an increased risk of cardiovascular and other chronic diseases. Current dietary recommendations exclude bakery products from frequent consumption basically due to their traditionally high content of TFA. The aim of this work was to analyse the lipid profile of different bakery products currently commercialised in Spain and with a conventionally high fat and TFA content. Premium and store brands for each product were included in the study. No significant amounts of TFA were found in any of the analysed products, regardless the brand. TFA content ranged between 0.17 g and 0.22 g/100 g product (mean=0.19 g/100 g product). Expressed on percentage of fatty acids, the maximum value was 0.87 g/100 g fatty acids and the mean value was 0.68%. These data are significantly lower than those observed in previously published papers for these types of products, and highlighted the importance of updating food composition databases in order to accurately estimate the real and current intake of TFA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The social organization of agricultural biogas production and use

    International Nuclear Information System (INIS)

    Bluemling, Bettina; Mol, Arthur P.J.; Tu, Qin

    2013-01-01

    While for wind, solar energy or hydropower, energy supply happens directly from the source to the wind wheels, hydropower turbines or solar panels, in the case of biogas, energy production cannot directly take from the energy source, organic matter, but depends on the institutional structures and farmers′ practices involved for making energy available. With the production of bioenergy in rural areas, practices within agriculture are transformed, requiring new ways of organizing production processes. Research has left the question largely unanswered of how agricultural biogas production and use are – and can best be – organized within rural society. Which kinds of social organization exist, how are these embedded in existing agricultural institutions and practices, and how do these systems function? Under which conditions may the different kinds of social organization of biogas production and use work sustainably? This introduction article to the Special Issue “The social organization of agricultural biogas production and use” presents a framework for analysing the different kinds of social organization of biogas production and use presented hereafter. Analysis parameters are the supply network, distribution network, distribution of benefits, social boundaries of the system (accessibility) and scale. Using these parameters, the Special Issue articles are outlined. - Highlights: • Through agricultural institutions and farmers′ practices, biogas is made available. • Scale, supply and delivery network distinguish biogas infrastructural systems. • Access and benefit distribution are key for a biogas system′s sustainability

  20. PRODUCTION AND MARKETABILITY OF CONVENTIONAL, SUSTAINABLE AND ORGANIC PRODUCED TOMATOES

    Directory of Open Access Journals (Sweden)

    Dean BAN

    2007-07-01

    Full Text Available Conventional agricultural production is denoted by high levels of chemisation, strait specialised production, high yields and low costs per production unit, however this production causes risky interventions, which could affect negatively on environment and human health Research results indicate possibilities for growing vegetables in alternative systems, less risky for environment with satisfying economic success. The aim of this research was to determine economic success of organic, sustainable and conventional production of tomato in the Mediterranean area of Republic Croatia. Bianual research was conducted during 2002/2003. During vegetation we examined parameters of growth, marketable yields and costs for materials, work and machinery which are used in economic analysis. Economical analysis of tomatoes production indicate worst results in organic production system. Loses in tomatoes organic production were consequences of two main factors: lower marketed yield and equal product price for all three production types. Lower yields in organic production were expected, therefore bad financial results were caused by mainly low market prices, which do not validate quality and food safety. Therefore financial success is preconditioned by higher market validation, which can be obtained through market analysis and product development. Consumer awareness about organic agriculture is still very weak and this point requires further attention. The link between organic agriculture and the environment/nature protection is missing too. The purchase of organic food is influenced by the level of information and knowledge of consumers with reference to these products. Doubts about the truthfulness and significance of some data were raised by main places where organic food is purchased, since an excessive greatest limitations are high prices and a low level of information to consumers. Current standard of life of most Croatian consumers does not permit them to

  1. Sensitive determination of nucleic acids using organic nanoparticle fluorescence probes

    Science.gov (United States)

    Zhou, Yunyou; Bian, Guirong; Wang, Leyu; Dong, Ling; Wang, Lun; Kan, Jian

    2005-06-01

    This paper describes the preparation of organic nanoparticles by reprecipitation method under sonication and vigorous stirring. Transmission electron microscopy (TEM) was used to characterize the size and size distribution of the luminescent nanoparticles. Their average diameter was about 25 nm with a size variation of ±18%. The fluorescence decay lifetime of the nanoparticles also was determined on a self-equipped fluorospectrometer with laser light source. The lifetime (˜0.09 μs) of nanoparticles is about three times long as that of the monomer. The nanoparticles were in abundant of hydrophilic groups, which increased their miscibility in aqueous solution. These organic nanoparticles have high photochemical stability, excellent resistance to chemical degradation and photodegradation, and a good fluorescence quantum yield (25%). The fluorescence can be efficiently quenched by nucleic acids. Based on the fluorescence quenching of nanoparticles, a fluorescence quenching method was developed for determination of microamounts of nucleic acids by using the nanoparticles as a new fluorescent probe. Under optimal conditions, maximum fluorescence quenching is produced, with maximum excitation and emission wavelengths of 345 and 402 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range 0.4-19.0 μg ml -1 for calf thymus DNA (ct-DNA) and 0.3-19.0 μg ml -1 for fish sperm DNA (fs-DNA). The corresponding detection limits are 0.25 μg ml -1 for ct-DNA and 0.17 μg ml -1 for fs-DNA. The relative standard deviation of six replicate measurements is 1.3-2.1%. The method is simple, rapid and sensitive with wide linear range. The recovery and relative standard deviation are very satisfactory.

  2. Mannan-oligosaccharide and organic acids for weaned piglets

    Directory of Open Access Journals (Sweden)

    Marcia de Souza Vieira

    2017-08-01

    Full Text Available This study aimed to evaluate the effect of acetic, propionic, and formic (50% organic acids and mannan-oligosaccharide (50% on growth performance, digestibility, and faecal score in challenged weaned piglets. Twenty male piglets (5.57 ± 0.32 kg of BW; 21-24 days of age were housed individually in metabolic cages for 28 days in an acclimatised room. The treatments were composed of the inclusion (0.1%; n = 10 or not (n = 10 of additive in the diet. The experimental design was completely randomised with two treatments, 10 replicates, and one piglet per replicate. The nutritional matrix was supplemented with 10% of barley and 35.9 to 34.0% of soybean meal in the pre-starter diet (3-14 days post-weaning and the starter diet (15-28 days post-weaning, respectively, to cause an intestinal challenge. Diets did not include any antimicrobial or growth promoters. Weekly, the animal and the leftover diet were weighed to evaluate growth performance. Digestibility was evaluated through total faeces and urine collection. Piglets fed diets with additive had 8.7% greater weight gain (P < 0.05 compared to those piglets in the control treatment in the starter phase. For other growth performance responses there was no treatment effect. Similarly, the inclusion of additive in the piglet diets did not affect the faecal score or the energy and nutrient digestibility. In the starter phase and throughout the experimental period, piglets fed diets with additive had 18.37% and 15.07% greater nitrogen (N intake and 19.53% and 16.05% greater N retention, respectively, compared to piglets in the control treatment (P < 0.05. In conclusion, the addition of additive composed by organic acids and mannan-oligosaccharide does not improve energy and nutrient digestibility but increases the N retention and weight gain in weaned piglets in the starting phase.

  3. Effects of organic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.

    2010-01-01

    mu m of the contaminated surface was required to reach corrosion rates less than 1 mm/year in salt spray condition. Among the three organic acids examined, acetic acid is the best choice. Oxalic acid can be an alternative while citric acid is not suitable for cleaning AZ31 sheet, because......Organic acids were used to clean AZ31 magnesium alloy sheet and the effect of the cleaning processes on the surface condition and corrosion performance of the alloy was investigated. Organic acid cleanings reduced the surface impurities and enhanced the corrosion resistance. Removal of at least 4...

  4. Guaiacol production from ferulic acid, vanillin and vanillic acid by Alicyclobacillus acidoterrestris.

    Science.gov (United States)

    Witthuhn, R Corli; van der Merwe, Enette; Venter, Pierre; Cameron, Michelle

    2012-06-15

    Alicyclobacilli are thermophilic, acidophilic bacteria (TAB) that spoil fruit juice products by producing guaiacol. It is currently believed that guaiacol is formed by Alicyclobacillus in fruit juices as a product of ferulic acid metabolism. The aim of this study was to identify the precursors that can be metabolised by Alicyclobacillus acidoterrestris to produce guaiacol and to evaluate the pathway of guaiacol production. A. acidoterrestris FB2 was incubated at 45°C for 7days in Bacillus acidoterrestris (BAT) broth supplemented with ferulic acid, vanillin or vanillic acid, respectively. The samples were analysed every day to determine the cell concentration, the supplement concentration using high performance liquid chromatography with UV-diode array detection (HPLC-DAD) and the guaiacol concentration, using both the peroxidase enzyme colourimetric assay (PECA) and HPLC-DAD. The cell concentration of A. acidoterrestris FB2 during the 7days in all samples were above the critical cell concentration of 10(5)cfu/mL reportedly required for guaiacol production. The guaiacol produced by A. acidoterrestris FB2 increased with an increase in vanillin or vanillic acid concentration and a metabolic pathway of A. acidoterrestris FB2 directly from vanillin to guaiacol was established. The high concentration of vanillic acid (1000mg/L) resulted in an initial inhibitory effect on the cells, but the cell concentration increased after day 2. Guaiacol production did not occur in the absence of either a precursor or A. acidoterrestris FB2 and guaiacol was not produced by A. acidoterrestris FB2 in the samples supplemented with ferulic acid. The presence of Alicyclobacillus spp. that has the ability to produce guaiacol, as well as the substrates vanillin or vanillic acid is prerequisite for production of guaiacol. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Consumers’ grouping of organic and conventional food products

    DEFF Research Database (Denmark)

    Denver, Sigrid; Christensen, Tove

    2014-01-01

    or not they were organic. These consumers were found to have significantly higher levels of confidence in the benefits of organic produce, to state significantly higher levels of organic consumption and higher willingness to pay for organoleptic attributes of fresh milk, than consumers who placed fruits in one......A detailed account of the way consumers choose to group different varieties of organic and conventional food produce might have practical implications in terms of improved space management in supermarkets and better targeted promotions of organic products. The results presented here were obtained...... in a case study using a web-based questionnaire and 849 Danish consumers. The consumers were asked to group the contents of a virtual basket of organic and non-organic fruits and vegetables into two smaller baskets. A significant share of the consumers grouped the food products according to whether...

  6. Milk phospholipids: Organic milk and milk rich in conjugated linoleic acid compared with conventional milk.

    Science.gov (United States)

    Ferreiro, T; Gayoso, L; Rodríguez-Otero, J L

    2015-01-01

    The objective of this study was to compare the phospholipid content of conventional milk with that of organic milk and milk rich in conjugated linoleic acid (CLA). The membrane enclosing the fat globules of milk is composed, in part, of phospholipids, which have properties of interest for the development of so-called functional foods and technologically novel ingredients. They include phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylserine (PS), and the sphingophospholipid sphingomyelin (SM). Milk from organically managed cows contains higher levels of vitamins, antioxidants, and unsaturated fatty acids than conventionally produced milk, but we know of no study with analogous comparisons of major phospholipid contents. In addition, the use of polyunsaturated-lipid-rich feed supplement (extruded linseed) has been reported to increase the phospholipid content of milk. Because supplementation with linseed and increased unsaturated fatty acid content are the main dietary modifications used for production of CLA-rich milk, we investigated whether these modifications would lead to this milk having higher phospholipid content. We used HPLC with evaporative light scattering detection to determine PE, PI, PC, PS, and SM contents in 16 samples of organic milk and 8 samples of CLA-rich milk, in each case together with matching reference samples of conventionally produced milk taken on the same days and in the same geographical areas as the organic and CLA-rich samples. Compared with conventional milk and milk fat, organic milk and milk fat had significantly higher levels of all the phospholipids studied. This is attributable to the differences between the 2 systems of milk production, among which the most influential are probably differences in diet and physical exercise. The CLA-rich milk fat had significantly higher levels of PI, PS, and PC than conventional milk fat, which is also attributed to dietary differences: rations for

  7. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD.

    Science.gov (United States)

    Jiao, Na; Baker, Susan S; Chapa-Rodriguez, Adrian; Liu, Wensheng; Nugent, Colleen A; Tsompana, Maria; Mastrandrea, Lucy; Buck, Michael J; Baker, Robert D; Genco, Robert J; Zhu, Ruixin; Zhu, Lixin

    2017-08-03

    Bile acids are regulators of lipid and glucose metabolism, and modulate inflammation in the liver and other tissues. Primary bile acids such as cholic acid and chenodeoxycholic acid (CDCA) are produced in the liver, and converted into secondary bile acids such as deoxycholic acid (DCA) and lithocholic acid by gut microbiota. Here we investigated the possible roles of bile acids in non-alcoholic fatty liver disease (NAFLD) pathogenesis and the impact of the gut microbiome on bile acid signalling in NAFLD. Serum bile acid levels and fibroblast growth factor 19 (FGF19), liver gene expression profiles and gut microbiome compositions were determined in patients with NAFLD, high-fat diet-fed rats and their controls. Serum concentrations of primary and secondary bile acids were increased in patients with NAFLD. In per cent, the farnesoid X receptor (FXR) antagonistic DCA was increased, while the agonistic CDCA was decreased in NAFLD. Increased mRNA expression for cytochrome P450 7A1, Na + -taurocholate cotransporting polypeptide and paraoxonase 1, no change in mRNA expression for small heterodimer partner and bile salt export pump, and reduced serum FGF19 were evidence of impaired FXR and fibroblast growth factor receptor 4 (FGFR4)-mediated signalling in NAFLD. Taurine and glycine metabolising bacteria were increased in the gut of patients with NAFLD, reflecting increased secondary bile acid production. Similar changes in liver gene expression and the gut microbiome were observed in high-fat diet-fed rats. The serum bile acid profile, the hepatic gene expression pattern and the gut microbiome composition consistently support an elevated bile acid production in NAFLD. The increased proportion of FXR antagonistic bile acid explains, at least in part, the suppression of hepatic FXR-mediated and FGFR4-mediated signalling. Our study suggests that future NAFLD intervention may target the components of FXR signalling, including the bile acid converting gut microbiome. © Article

  8. Potential Use of Gelidium amansii Acid Hydrolysate for Lactic Acid Production by Lactobacillus rhamnosus

    Directory of Open Access Journals (Sweden)

    Sung-Soo Jang

    2013-01-01

    Full Text Available Galactose and glucose are the main monosaccharides produced from the saccharification of Gelidium amansii. They were hydrolysed with 3 % (by volume H2SO4 at 140 °C for 5 min and obtained at concentrations of 19.60 and 10.21 g/L, respectively. G. amansii hydrolysate (5 %, by mass per volume was used as a substrate for L(+-lactic acid production by Lactobacillus rhamnosus. The maximum lactic acid yield (YP/S was 42.03 % with optical purity of 84.54 %. Lactic acid produced from G. amansii hydrolysate can be applicable, among others, for the production of lactic acid esters, like ethyl or methyl lactate, and disinfectant in seaweed cultivation.

  9. Organic flash cycles for efficient power production

    Science.gov (United States)

    Ho, Tony; Mao, Samuel S.; Greif, Ralph

    2016-03-15

    This disclosure provides systems, methods, and apparatus related to an Organic Flash Cycle (OFC). In one aspect, a modified OFC system includes a pump, a heat exchanger, a flash evaporator, a high pressure turbine, a throttling valve, a mixer, a low pressure turbine, and a condenser. The heat exchanger is coupled to an outlet of the pump. The flash evaporator is coupled to an outlet of the heat exchanger. The high pressure turbine is coupled to a vapor outlet of the flash evaporator. The throttling valve is coupled to a liquid outlet of the flash evaporator. The mixer is coupled to an outlet of the throttling valve and to an outlet of the high pressure turbine. The low pressure turbine is coupled to an outlet of the mixer. The condenser is coupled to an outlet of the low pressure turbine and to an inlet of the pump.

  10. Vinegar Production from Jabuticaba (Myrciaria jaboticaba) Fruit Using Immobilized Acetic Acid Bacteria.

    Science.gov (United States)

    Dias, Disney Ribeiro; Silva, Monique Suela; Cristina de Souza, Angélica; Magalhăes-Guedes, Karina Teixeira; Ribeiro, Fernanda Severo de Rezende; Schwan, Rosane Freitas

    2016-09-01

    Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba ( Myrciaria jaboticaba ) vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol) and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5% by volume) after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4% and productivity was 0.29 g/(L·h). The vinegar had particularly high concentrations of citric (6.67 g/L), malic (7.02 g/L) and succinic (5.60 g/L) acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters) were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans . To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar.

  11. Vinegar Production from Jabuticaba (Myrciaria jaboticaba Fruit Using Immobilized Acetic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Monique Suela Silva

    2016-01-01

    Full Text Available Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba (Myrciaria jaboticaba vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5 % by volume after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4 % and productivity was 0.29 g/(L·h. The vinegar had particularly high concentrations of citric (6.67 g/L, malic (7.02 g/L and succinic (5.60 g/L acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans. To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar.

  12. The Study of Effect Factors on Organic Products Productivity on Farmer Income in Golestan Province

    Directory of Open Access Journals (Sweden)

    shahram nessabian

    2015-01-01

    Full Text Available In order to study the efficiency resulting from optimization of energy consumptionin organic farming, the amount of consumption and production inputs and their costs, obtained profit, cultivated area and … was estimated in conjuction with the three crop of wheat, canola and tomato in Iran over a five year period 2006-2011. Using the objective function and constraints, the DEA method was used to analyze the data. All the processes of models estimation was performed using DEAP software. To calculate the energy amount in external inputs consumption in conventional and organic farming were used coefficients to convert the amount of energy input consumption, too. Finally, the energy consumptions were compared in the two cultures. According to these results, the use of organic fertilizers and biological inputs (in consequence of more energy consumption in organic specific inputs leads to lower productivity growth in organic products. These results were significant in the 5 and 1 percent levels, respectively. Due to the type of used inputs in the inorganic products, in fuel inputs, nitrogen fertilizer, phosphate fertilizer, insecticide and fungicide, inorganic products had more consumption and hence the amount of energy inputs for organic products was higher. In the case of biofertilizer and biocontrol were also used in organic production, input energy in this part was more than input energy of inorganic products. Organic farms with lower energy consumption of imports and inputs, led to production of more energy in output. Thus the efficiency besides saving of energy consumption occurred in organic products.

  13. Fatty acid methyl esters production: chemical process variables

    Directory of Open Access Journals (Sweden)

    Paulo César Narváez Rincón

    2004-05-01

    Full Text Available The advantages of fatty acid methyl esters as basic oleochemicals over fatty acids, the seventies world energy crisis and the use of those oleochemicals as fuels, have increased research interest on fats and oils trans-esterification. In this document, a review about basic aspects, uses, process variables and problems associated to the production process of fatty acid methyl esters is presented. A global view of recent researches, most of them focused in finding a new catalyst with same activity as the alcohol-soluble hydroxides (NaOH, KOH, and suitable to be used in transforming fats and oils with high levels of free fatty acids and water avoiding separation problems and reducing process costs, is also discussed.

  14. Role of the plasma membrane H+-ATPase in the regulation of organic acid exudation under aluminum toxicity and phosphorus deficiency

    Science.gov (United States)

    Yu, Wenqian; Kan, Qi; Zhang, Jiarong; Zeng, Bingjie; Chen, Qi

    2016-01-01

    Aluminum (Al) toxicity and phosphorus (P) deficiency are 2 major limiting factors for plant growth and crop production in acidic soils. Organic acids exuded from roots have been generally regarded as a major resistance mechanism to Al toxicity and P deficiency. The exudation of organic acids is mediated by membrane-localized OA transporters, such as ALMT (Al-activated malate transporter) and MATE (multidrug and toxic compound extrusion). Beside on up-regulation expression of organic acids transporter gene, transcriptional, translational and post-translational regulation of the plasma membrane H+-ATPase are also involved in organic acid release process under Al toxicity and P deficiency. This mini-review summarizes the current knowledge about this field of study on the role of the plasma membrane H+-ATPase in organic acid exudation under Al toxicity and P deficiency conditions. PMID:26713714

  15. Role of the plasma membrane H(+)-ATPase in the regulation of organic acid exudation under aluminum toxicity and phosphorus deficiency.

    Science.gov (United States)

    Yu, Wenqian; Kan, Qi; Zhang, Jiarong; Zeng, Bingjie; Chen, Qi

    2016-01-01

    Aluminum (Al) toxicity and phosphorus (P) deficiency are 2 major limiting factors for plant growth and crop production in acidic soils. Organic acids exuded from roots have been generally regarded as a major resistance mechanism to Al toxicity and P deficiency. The exudation of organic acids is mediated by membrane-localized OA transporters, such as ALMT (Al-activated malate transporter) and MATE (multidrug and toxic compound extrusion). Beside on up-regulation expression of organic acids transporter gene, transcriptional, translational and post-translational regulation of the plasma membrane H(+)-ATPase are also involved in organic acid release process under Al toxicity and P deficiency. This mini-review summarizes the current knowledge about this field of study on the role of the plasma membrane H(+)-ATPase in organic acid exudation under Al toxicity and P deficiency conditions.

  16. Sustainability of organic food production: challenges and innovations.

    Science.gov (United States)

    Niggli, Urs

    2015-02-01

    The greatest challenge for agriculture is to reduce the trade-offs between productivity and long-term sustainability. Therefore, it is interesting to analyse organic agriculture which is a given set of farm practices that emphasise ecological sustainability. Organic agriculture can be characterised as being less driven by off-farm inputs and being better embedded in ecosystem functions. The literature on public goods and non-commodity outputs of organic farms is overwhelming. Most publications address the positive effects of organic farming on soil fertility, biodiversity maintenance and protection of the natural resources of soil, water and air. As a consequence of focusing on public goods, organic agriculture is less productive. Meta-analyses show that organic agriculture yields range between 0·75 and 0·8 of conventional agriculture. Best practice examples from disadvantaged sites and climate conditions show equal or, in the case of subsistence farming in Sub-Saharan Africa, higher productivity of organic agriculture. Hence, organic agriculture is likely to be a good model for productive and sustainable food production. Underfunding in R&D addressing specific bottlenecks of organic agriculture are the main cause for both crop and livestock yield gaps. Therefore, the potential for improving the performance of organic agriculture through agricultural research is huge. Although organic farming is a niche in most countries, it is at the verge of becoming mainstream in leading European countries. Consumer demand has grown over the past two decades and does not seem to be a limiting factor for the future development of organic agriculture.

  17. Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead.

    Science.gov (United States)

    Niu, Zhixin; Li, Xiaodong; Sun, Lina; Sun, Tieheng

    2013-01-01

    Sunflower (Helianthus annuus L.) has been considered as a good candidate for bioaccumulation of heavy metals. In the present study, sunflower was used to enrich the cadmium and lead in sand culture during 90 days. Biomass, Cd and Pb uptake, three organic acids and pH in cultures were investigated. Results showed that the existence of Cd and Pb showed different interactions on the organic acids exudation. In single Cd treatments, malic and acetic acids in Cd10 showed an incremental tendency with time. In the mixed treatments of Cd and Pb, malic acids increased when 10 and 40 mg x L(-1) Cd were added into Pb50, but acetic acids in Pb50 were inhibited by Cd addition. The Cd10 supplied in Pb10 stimulated the secretion of malic and succinic acids. Moreover, the Cd or Pb uptake in sunflower showed various correlations with pH and some organic acids, which might be due to the fact that the Cd and Pb interfere with the organic acids secretion in rhizosphere of sunflower, and the changes of organic acids altered the form and bioavailability of Cd and Pb in cultures conversely.

  18. Production of gaba (γ - aminobutyric acid by microorganisms: a review

    Directory of Open Access Journals (Sweden)

    Radhika Dhakal

    2012-12-01

    Full Text Available GABA (γ-aminobutyric acid is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB, which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  19. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.

    Science.gov (United States)

    Dhakal, Radhika; Bajpai, Vivek K; Baek, Kwang-Hyun

    2012-10-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  20. Iodophilic polysaccharide synthesis, acid production and growth in oral streptococci

    NARCIS (Netherlands)

    Houte, J. van; Winkler, K.C.; Jansen, H.M.

    The relation between iodophilic polysaccharide formation, acid production and growth in α-haemolytic streptococci, isolated from human dental plaque, was studied. In experiments with resting cell suspensions, or with cells growing at a low rate, all strains synthesizing iodophilic polysaccharide

  1. Acid production by oral strains of Candida albicans and Lactobacilli

    NARCIS (Netherlands)

    Klinke, T.; Kneist, S.; de Soet, J.J.; Kuhlisch, E.; Mauersberger, S.; Forster, A.; Klimm, W.

    2009-01-01

    Both Candida albicans and lactobacilli are common colonizers of carious lesions in children and adolescents. The purpose of this study is to compare the velocity of acid production between C. albicans and several Lactobacillus species at different pH levels and concentrations of glucose. Washed,

  2. Effects of commercial enrichment products on fatty acid components ...

    African Journals Online (AJOL)

    This study was undertaken to test the effects of enrichment products. Red pepper paste (ZA), AlgaMac 3050 (ZB) and Spresso (ZC) on fatty acid compositions in rotifers (Brachionus plicatilis) which were intensively cultured on a mixture of ω3 algae and ω3 yeast. Enriched rotifers were seen to have higher level of ...

  3. Integrated production of lactic acid and biomass on distillery stillage.

    Science.gov (United States)

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Vukašinović-Sekulić, Maja S; Nikolić, Svetlana B; Pejin, Jelena D

    2013-09-01

    The possibilities of parallel lactic acid and biomass production in batch and fed-batch fermentation on distillery stillage from bioethanol production were studied. The highest lactic acid yield and productivity of 92.3 % and 1.49 g L(-1) h(-1) were achieved in batch fermentation with initial sugar concentration of 55 g L(-1). A significant improvement of the process was achieved in fed-batch fermentation where the concentration of lactic acid was increased to 47.6 % and volumetric productivity for 21 % over the batch process. A high number of Lactobacillus rhamnosus ATCC 7469 viable cells of 10(9) CFU ml(-1) was attained at the end of fed-batch fermentation. The survival of 92.9 % of L. rhamnosus cells after 3 h of incubation at pH 2.5 validated that the fermentation media remained after lactic acid removal could be used as a biomass-enriched animal feed thus making an additional value to the process.

  4. Promotion of ganoderic acid production in Ganoderma sinense by ...

    African Journals Online (AJOL)

    To screen stimulators from Chinese medicinal insects for mycelial growth and ganoderic acid (GA) production by Ganoderma sinense, the fungus was inoculated into the media with and without supplementation of a medicinal insect extract. The results show that all the water and ether extracts from the medicinal insects had ...

  5. Conjugated Linoleic Acid Production by Bifidobacteria: Screening, Kinetic, and Composition

    Directory of Open Access Journals (Sweden)

    Stefano Raimondi

    2016-01-01

    Full Text Available Conjugated linoleic acids (CLA are positional and geometric isomers of linoleic acid involved in a number of health aspects. In humans, CLA production is performed by gut microbiota, including some species of potential probiotic bifidobacteria. 128 strains of 31 Bifidobacterium species were screened with a spectrophotometric assay to identify novel CLA producers. Most species were nonproducers, while producers belonged to B. breve and B. pseudocatenulatum. GC-MS revealed that CLA producer strains yielded 9cis,11trans-CLA and 9trans,11trans-CLA, without any production of other isomers. Hydroxylated forms of LA were absent in producer strains, suggesting that the myosin-cross-reactive antigen (MCRA protein that exerts hydratase activity is not involved in LA isomerization. Moreover, both CLA producer and nonproducer species bear a MCRA homologue. The strain B. breve WC 0421 was the best CLA producer, converting LA into 68.8% 9cis,11trans-CLA and 25.1% 9trans,11trans-CLA. Production occurred mostly during the lag and the exponential phase. For the first time, production and incorporation of CLA in biomass were assessed. B. breve WC 0421 stored CLA in the form of free fatty acids, without changing the composition of the esterified fatty acids, which mainly occurred in the plasmatic membrane.

  6. Statistical optimization of lactic acid production by Lactococcus lactis ...

    African Journals Online (AJOL)

    The individual and interactive effects of a total inoculums size (% v/v), fermentation temperature and skim milk dry matter added (% w/v) on the lactic acid production by Lactococcus lactis LCL strain were studied by quadratic response surface methodology. The central composite design (CCD) was employed to determine ...

  7. Volatile fatty acids production in ruminants and the role of ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... Essential to these roles is their rapid transport across the plasma membrane, which is catalyzed ... The aim of this review is to critically discuss short-chain fatty acids production and the functional ... Two major functions of monocarboxylate transporter proteins, namely the facilitation of the ...

  8. Citric acid production from whey with sugars and additives by ...

    African Journals Online (AJOL)

    Citric acid (CA) production by Aspergillus niger ATCC9642 from whey with different concentrations of sucrose, glucose, fructose, galactose riboflavin, tricalcium phosphate and methanol in surface culture process was studied. It was found that whey with 15% (w/v) sucrose with or without 1% methanol was the most ...

  9. Efficient production of free fatty acids from soybean meal carbohydrates.

    Science.gov (United States)

    Wang, Dan; Thakker, Chandresh; Liu, Ping; Bennett, George N; San, Ka-Yiu

    2015-11-01

    Conversion of biomass feedstock to chemicals and fuels has attracted increasing attention recently. Soybean meal, containing significant quantities of carbohydrates, is an inexpensive renewable feedstock. Glucose, galactose, and fructose can be obtained by enzymatic hydrolysis of soluble carbohydrates of soybean meal. Free fatty acids (FFAs) are valuable molecules that can be used as precursors for the production of fuels and other value-added chemicals. In this study, free fatty acids were produced by mutant Escherichia coli strains with plasmid pXZ18Z (carrying acyl-ACP thioesterase (TE) and (3R)-hydroxyacyl-ACP dehydratase) using individual sugars, sugar mixtures, and enzymatic hydrolyzed soybean meal extract. For individual sugar fermentations, strain ML211 (MG1655 fadD(-) fabR(-) )/pXZ18Z showed the best performance, which produced 4.22, 3.79, 3.49 g/L free fatty acids on glucose, fructose, and galactose, respectively. While the strain ML211/pXZ18Z performed the best with individual sugars, however, for sugar mixture fermentation, the triple mutant strain XZK211 (MG1655 fadD(-) fabR(-) ptsG(-) )/pXZ18Z with an additional deletion of ptsG encoding the glucose-specific transporter, functioned the best due to relieved catabolite repression. This strain produced approximately 3.18 g/L of fatty acids with a yield of 0.22 g fatty acids/g total sugar. Maximum free fatty acids production of 2.78 g/L with a high yield of 0.21 g/g was achieved using soybean meal extract hydrolysate. The results suggested that soybean meal carbohydrates after enzymatic treatment could serve as an inexpensive feedstock for the efficient production of free fatty acids. © 2015 Wiley Periodicals, Inc.

  10. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    Science.gov (United States)

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.

  11. Detoxification of acidic biorefinery waste liquor for production of high value amino acid.

    Science.gov (United States)

    Christopher, Meera; Anusree, Murali; Mathew, Anil K; Nampoothiri, K Madhavan; Sukumaran, Rajeev Kumar; Pandey, Ashok

    2016-08-01

    The current study evaluates the detoxification of acid pretreatment liquor (APL) using adsorbent (ADS 400 & ADS 800) or ion-exchange (A-27MP & A-72MP) resins and its potential for amino acid production. The APL is generated as a by-product from the pretreatment of lignocellulosic biomass and is rich monomeric sugars as well as sugar degradation products (fermentation inhibitors) such as furfural and hydroxymethyl furfural (HMF). Of the four resins compared, ADS 800 removed approximately 85% and 60% of furfural and HMF, respectively. ADS 800 could be reused for up to six cycles after regeneration without losing its adsorption properties. The study was further extended by assessing the fermentability of detoxified APL for l-lysine production using wild and mutant strains of Corynebacterium glutamicum. The detoxified APL was superior to APL for l-lysine production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Mutant E. coli strain with increased succinic acid production

    Science.gov (United States)

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2001-09-25

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  13. Mutant E. coli strain with increased succinic acid production

    Science.gov (United States)

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1998-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  14. improving citric acid production from some carbohydrates by-products using irradiated aspergillus niger

    International Nuclear Information System (INIS)

    Farag, S.S.

    2011-01-01

    Twenty strains of A. niger were isolated from different sources, screened for their capacity to produce citric acid. All the isolated strains were able to produce citric acid in different quantities at different time intervals i.e. 4, 8 and 12 days on indicator medium. The best incubation period for production for all isolates was 12 days. The most potent strains for production were A 1 , A 4 and A 5 , while A 8 , A 1 6, A 18 and A 19 recorded weak production on that medium. Citric acid productivity were obtained by all strains when using different concentrations of four carbohydrate by-products (maize straw, potato peel wastes, sugar beet pulp and molasses) when each used alone without any additions after 12 days incubation and the production enhanced when the fermentation medium amended with the same concentrations of the mentioned substrates. Type and concentration of carbohydrate by-product affect the production of citric acid by A. niger strains under the study. Increasing substrate concentration led to increase in production, the best concentration for production was 25% for all carbohydrate by-products. As recorded with indicator medium, A 1 , A 4 and A 5 are also the most potent strains for production when growing on the four carbohydrate by-products supplemented to the basal medium, while A 8 , A 6 , A 18 and A 19 recorded the weak production with the carbohydrate by-products used.production of the parental isolates A 1 , A 4 and A 5 on indicator medium were: 0.96, 0.95 and 0.99 (mg/ml) respectively after 12 days incubation, while maximum production by the obtaining resulting isolates (Treated by UV irradiation) were: 1.78, 1.70 and 1.73 (mg/ml) from A 4 T 2 (5 min.), A 4 T 1 (10 min.) and A 1 T 1 (5 min.), respectively.

  15. Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments

    NARCIS (Netherlands)

    Dauwe, B.; Middelburg, J.J.

    1998-01-01

    Sediment cores from six stations in the eastern North Sea were analyzed for protein amino acids, the nonprotein amino acids beta-alanine and gamma-aminobutyric acid and the hexosamines galactosamine and glucosamine, and bulk parameters (organic carbon, nitrogen, total hydrolyzable amino acids and

  16. Determination of organic acids evolution during apple cider fermentation using an improved HPLC analysis method

    NARCIS (Netherlands)

    Zhang, H.; Zhou, F.; Ji, B.; Nout, M.J.R.; Fang, Q.; Zhang, Z.

    2008-01-01

    An efficient method for analyzing ten organic acids in food, namely citric, pyruvic, malic, lactic, succinic, formic, acetic, adipic, propionic and butyric acids, using HPLC was developed. Boric acid was added into the mobile phase to separate lactic and succinic acids, and a post-column buffer

  17. Effect of Humic Acid and Organic Manure Tea on Plant Physiology and Fruit Characteristics of Pepino

    Directory of Open Access Journals (Sweden)

    Jamal Javanmardi

    2017-02-01

    Full Text Available Introduction Pepino (SolanummuricatumAit., a Solanaceous vegetable fruit has been recently introduced to Iran markets. Organic farming is currently the fastest growing agricultural sector worldwide. Although several investigations are available on chemical fertilization of pepino, the knowledge of organic fertilization ismostly lacking. Therefore, at the beginning of introducing pepino plant to Iranian farmers it worth to evaluate the impact of organic fertilization on the productivity, profitability, acceptability and sustainability of farming systemsto this plant. High chemical fertilization of pepinoincreases the vegetative growth over the generative and fruit production. The aim of this investigation was to introduce the possibility of organic production of pepino. Materials and Methods.A two-year experiment was carried out to assess the possibility of organic production of pepino using organic fertilizers. Humistar® organic fertilizer (containing 8.6% humic acid at 50 L/ha and sheep or cow manure teas at 1:10 and 1:5 ratios were used for production of pepino cv. Kanseola to evaluate their effects on the physiology of reproductive stage and some fruit quality characteristics. The experiments were arranged as factorial in a randomized complete block design comprised of 3 replications, each of which 10 plants. Mother plants were obtained from Mashhad Ferdowsi University and incubated in a greenhouse (mean temperature of 25 °C and 60-70% relative humidity for 1 month to proliferate. Cuttings with 2-3 leaves at the top, 3-5 healthy buds and 20 cm length were rooted for 14 days in a rooting media, ( 1:1:2 of field soil, composted leaf and perlite, respectively. Plants were transplanted into the field in 100 × 75 cm spacing after the danger of frost was over. Treatments consisted of two levels of 1:5 and 1:10 (w:w cow or sheep manure teas in combination with two levels of Humistar® organic fertilizer as 0 and 50L/ha levels. Control plants

  18. Leaching of organic acids from macromolecular organic matter by non-supercritical CO2

    Science.gov (United States)

    Sauer, P.; Glombitza, C.; Kallmeyer, J.

    2012-04-01

    The storage of CO2 in underground reservoirs is discussed controversly in the scientific literature. The worldwide search for suitable storage formations also considers coal-bearing strata. CO2 is already injected into seams for enhanced recovery of coal bed methane. However, the effects of increased CO2 concentration, especially on organic matter rich formations, are rarely investigated. The injected CO2 will dissolve in the pore water, causing a decrease in pH and resulting in acidic formation waters. Huge amounts of low molecular weight organic acids (LMWOAs) are chemically bound to the macromolecular matrix of sedimentary organic matter and may be liberated by hydrolysis, which is enhanced by the acidic porewater. Recent investigations outlined the importance of LMWOAs as a feedstock for microbial life in the subsurface [1]. Therefore, injection of CO2 into coal formations may result in enhanced nutrient supply for subsurface microbes. To investigate the effect of high concentrations of dissolved CO2 on the release of LMWOAs from coal we developed an inexpensive high-pressure high temperature system that allows manipulating the partial pressure of dissolved gases at pressures and temperatures up to 60 MPa and 120° C, respectively. In a reservoir vessel, gases are added to saturate the extraction medium to the desired level. Inside the extraction vessel hangs a flexible and inert PVDF sleeve (polyvinylidene fluoride, almost impermeable for gases), holding the sample and separating it from the pressure fluid. The flexibility of the sleeve allows for subsampling without loss of pressure. Coal samples from the DEBITS-1 well, Waikato Basin, NZ (R0 = 0.29, TOC = 30%). were extracted at 90° C and 5 MPa, either with pure or CO2-saturated water. Subsamples were taken at different time points during the extraction. The extracted LMWOAs such as formate, acetate and oxalate were analysed by ion chromatography. Yields of LMWOAs were higher with pure water than with CO2

  19. Fatty acid composition of muscle and adipose tissues of organic and conventional Blanca Andaluza suckling kids

    Directory of Open Access Journals (Sweden)

    F. De la Vega

    2013-01-01

    Full Text Available Interest in the preservation of autochthonous breeds such as the Blanca Andaluza goat (meat breed, raised under grazing-based management, has recently increased among Spanish farmers. A study of the possibilities of transformation to organic production needs to analyze the quality of their products. The aim of this study was to evaluate the fatty acid (FA composition of muscle and adipose tissues of Blanca Andaluza goat kids under organic and conventional grazing–based management system. Twenty-four twin kids (12 males, 12 females were selected from each system. The FA profile was determined in the longissimus thoracis muscle, kidney and pelvic fat. The percentages of C17:0, C17:1, C20:1, C20:4 n-6, C22:2 and several n-3 FAs were higher in organic meat; C12:0, C18:1 trans-11, CLA and C20:5 n-3 were lower in organic meat. The fat depots from the conventional kids showed lower percentages of C12:0, C14:0, C15:0, C17:0, C17:1, C18:3 n-3 and atherogenicity index, and higher percentage of C18:0. In the pelvic fat, the conventional kids displayed lower percentages of C16:0, C18:2 n-6 cis, PUFA, n-3 and n-6 FAs, and greater percentages of C18:1 n-9 cis and MUFA. The conventional kids displayed a major n6:n3 ratio in the kidney fat. No gender differences were observed. Significant differences were found only in some FA percentages of muscle and adipose tissues of suckling kids raised in organic and conventional livestock production systems, and due to this reason conventional grazing–based management farms could easily be transformed into organic production.

  20. The Organic Products in the Green Marketing Laboratory

    Directory of Open Access Journals (Sweden)

    Victor Danciu

    2008-01-01

    Full Text Available A healthy way of life requires green products which protect the environment and the quality of life. Organic products have relevant green characteristics and particular benefits for the consumers, the producers and the environment. The benefits support the rapidly growing world market of organic food in both developed and developing countries. Green issues and products have a growing importance in Romania. Even if the Romanians have not become fans of the green products yet, a growing number of consumers prefer organic food. More important, Romanian organic food has success on the export markets. Supporting and promoting organic products on both domestic and international markets requires significant efforts, including those in the green marketing area. The requirements of the green marketing imply new thinking and acting towards new responsibilities and solutions. The task of the marketing is to bring on the market the green problems under the form of new products, the change of the existing products through ecological improvement and abandoning the ecologically obsolete products.

  1. Labeling of Pesticide Products under the National Organic Program

    Science.gov (United States)

    This notice describes how registrants can obtain EPA approval of label language indicating that all ingredients in a pesticide product and all uses of that pesticide meet the criteria defined in the USDA National Organic Program Rule.

  2. Toxic organic compounds from energy production

    Energy Technology Data Exchange (ETDEWEB)

    Hites, R.A.

    1991-09-20

    The US Department of Energy's Office of Health and Environmental Research (OHER) has supported work in our laboratory since 1977. The general theme of this program has been the identification of potentially toxic organic compounds associated with various combustion effluents, following the fates of these compounds in the environment, and improving the analytical methodology for making these measurements. The projects currently investigation include: an improved sampler for semi-volatile compounds in the atmosphere; the wet and dry deposition of dioxins and furans from the atmosphere; the photodegradation and mobile sources of dioxins and furans; and the bioaccumulation of PAH by tree bark. These projects are all responsive to OHER's interest in the pathways and mechanisms by which energy-related agents move through and are modified by the atmosphere''. The projects on gas chromatographic and liquid chromatographic tandem mass spectrometry are both responsive to OHER's interest in new and more sensitive technologies for chemical measurements''. 35 refs., 9 figs.

  3. Physico-chemical parameter for production of lactic acid or ethanol of (corynebacterium glutamicum) bacteria

    International Nuclear Information System (INIS)

    Castellanos, Angelica; Garcia, Lina Marcela; Astudillo, Myriam; Lopez Galan, Jorge Enrique; Florez Pardo, Luz Marina.

    2011-01-01

    The interest to obtain products for the bio-fuel industry from renewable resources has directed research to find resistant and costs-effective biotechnological systems. Corynebacterium glutamicum, is a microorganism used to produce amino acids, that grows in wide variety of substrates and its resistance during fermentation to pH, temperature, osmotic pressure variations and alcohol aggregate, renders this organism a suitable candidate to improve by genetic modifications lactic acid and ethanol synthesis. However, some aspects of its physiology remain unknown, such us increase lactic acid and ethanol production from C5 and C6 sugars. For this reason, the main aim in our work was to identify the most important variables with impact on culture and the best culture conditions to produce lactic acid or ethanol in batch culture. To achieve this objective, eight variables were tested in culture using a statistical model. The best culture conditions were obtained and tested in a bacth bioreactor system. Temperature, biotin and glucose concentration were the variables with most impact (p - 1 , 16 g/l of lactic acid was obtained after 15 h of culture with an efficiency of 32%. High glucose consumption was observed during bacterial growth, which leads to low concentration of substrate for the production process; this suggests a culture feeding at the end of exponential growth phase, which can increase the production yield.

  4. ORGANIZATION OF INFORMATION INTERACTION OF AIRPORT PRODUCTION PROCESSES

    Directory of Open Access Journals (Sweden)

    Yakov Mikhajlovich Dalinger

    2017-01-01

    Full Text Available The organization of service production attributed to airports activity is analyzed. The importance and the actuality of information interaction problem solution between productive processes as a problem of organization of modern produc- tion are shown.Possibilities and features of information interaction system construction in form of multi-level hierarchical struc- ture have been shown. The airport is considered as an enterprise aimed at service production where it is necessary to analyze much in- formation in a limited time-frame. The production schedule often changes under the influence of many factors. This leads to the increase of the role of computerization and informatization of production processes what predetermines automation of production, creation of information environment and organization of information interaction needed for realization of production processes. The integrated organization form is proposed because it is oriented to the integration of different processes into a universal production system and it allows to conduct the coordination of local goals of particular processes in the context of the global purpose aimed at the improvement of the effectiveness of the airport activity. The main conditions needed for organization of information interaction between production processes and techno- logical operations are considered, and the list of the following problems is determined. The attention is paid to the necessity of compatibility of structure and organization of interaction system in the conditions of the airline and the necessity of be- ing its reflection in the information space of the airline. The usefulness of the intergrated organization form of information interaction based on information exchange between processes and service customers according to the network structure is explained. Multi-level character of this structure confirms its advantage over other items, however it also has a series of features presented

  5. Amino acid "little Big Bang": Representing amino acid substitution matrices as dot products of Euclidian vectors

    Directory of Open Access Journals (Sweden)

    Zimmermann Karel

    2010-01-01

    Full Text Available Abstract Background Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. Results We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. Conclusions This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  6. Amino acid "little Big Bang": representing amino acid substitution matrices as dot products of Euclidian vectors.

    Science.gov (United States)

    Zimmermann, Karel; Gibrat, Jean-François

    2010-01-04

    Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  7. Microbial production of hyaluronic acid: current state, challenges, and perspectives

    Directory of Open Access Journals (Sweden)

    Liu Long

    2011-11-01

    Full Text Available Abstract Hyaluronic acid (HA is a natural and linear polymer composed of repeating disaccharide units of β-1, 3-N-acetyl glucosamine and β-1, 4-glucuronic acid with a molecular weight up to 6 million Daltons. With excellent viscoelasticity, high moisture retention capacity, and high biocompatibility, HA finds a wide-range of applications in medicine, cosmetics, and nutraceuticals. Traditionally HA was extracted from rooster combs, and now it is mainly produced via streptococcal fermentation. Recently the production of HA via recombinant systems has received increasing interest due to the avoidance of potential toxins. This work summarizes the research history and current commercial market of HA, and then deeply analyzes the current state of microbial production of HA by Streptococcus zooepidemicus and recombinant systems, and finally discusses the challenges facing microbial HA production and proposes several research outlines to meet the challenges.

  8. Mangrove litter production and organic carbon pools in the ...

    African Journals Online (AJOL)

    Mngazana Estuary is an important source of mangrove litter and POC for the adjacent marine environment, possibly sustaining nearshore food webs. Keywords: Dissolved organic carbon, harvesting, litter production, mangroves, particulate organic carbon, Rhizophora mucronata, South Africa African Journal of Aquatic ...

  9. Effect of Organic Fertilizers on Zooplankton Production | Orji ...

    African Journals Online (AJOL)

    Effect of Organic Fertilizers on Zooplankton Production. ... Journal of Agriculture and Food Sciences ... The aquaria were thoroughly washed, filled with 20litres of bore-hole water, fertilized with the respective organic manures after 4 days fermentation and inoculated with zooplankton samples collected from an earthen fish ...

  10. Sensible use of primary energy in organic greenhouse production

    NARCIS (Netherlands)

    Stanghellini, C.; Baptista, F.; Eriksson, Evert; Gilli, Celine; Giuffrida, F.; Kempkes, F.L.K.; Munoz, P.; Stepowska, Agnieszka; Montero, J.I.

    2016-01-01

    Review of the major sources for energy consumption in organic greenhouse horticulture and analyse of the options available to reduce energy consumption or, at least, increase the energy use efficiency of organic production in greenhouses. At the moment, the best way to match demand and availability

  11. Different implications for enterprises of an organic production

    OpenAIRE

    Fajardo Puentes, Barbara Dominicq

    2015-01-01

    This paper reviews the concept of “organic”, its meaning and emphasizes a comparison with conventional goods. It develops the background of organic goods in the past 20 years, quotations different definitions of organic and developing a main definition. Also it states certain criteriab and variables in order to develop a deeper business analysis. And it has the objective to define the advantages, disadvantages, key points and strategies for companies that want to venture an organic production...

  12. Oxidative metabolism of 5-o-caffeoylquinic acid (chlorogenic acid), a bioactive natural product, by metalloporphyrin and rat liver mitochondria.

    Science.gov (United States)

    dos Santos, Michel D; Martins, Patrícia R; dos Santos, Pierre A; Bortocan, Renato; Iamamoto, Y; Lopes, Norberto P

    2005-09-01

    Synthetic metalloporphyrins, in the presence of monooxygen donors, are known to mimic the various reactions of cytochrome P450 enzymes systems in the oxidation and oxygenation of various drugs and biologically active compounds. This paper reports an HPLC-MS-MS investigation of chlorogenic acid (CGA) oxidation by iodosylbenzene using iron(III) tetraphenylporphyrin chloride as catalyst. The oxidation products have been detected by sequential MS analyses. In addition, CGA was submitted to an in vitro metabolism assay employing isolated rat liver mitochondria. The single oxidized product obtained from mitochondrial metabolism corresponds to the major product formed by the metalloporphyrin-catalyzed reaction. These results indicate that biomimetic oxidation reactions, in addition to in vitro metabolism assays employing isolated organs/organelles, could replace some in vivo metabolism studies, thus minimizing the problems related to the use of a large number of living animals in experimental research.

  13. Fatty acid profile, color and lipid oxidation of organic fermented sausage during chilling storage as influenced by acid whey and probiotic strains addition

    Directory of Open Access Journals (Sweden)

    Karolina Maria Wójciak

    2015-02-01

    Full Text Available Organic fermented sausages typically spoil during long-term storage due to oxidative rancidity. The application of natural antioxidants to meat stuffing is a major practice intended to inhibit the oxidation process and color changes. This study aimed to assess the effect of two unusual starter cultures: three probiotic strains (Lactobacillus casei LOCK 0900, Lactobacillus casei LOCK 0908 and Lactobacillus paracasei LOCK 0919 and lactic acid bacteria from acid whey on model fermented sausage type products focusing on oxidative stability by measuring instrumental color (L*, a*, b* values, conjugated dienes (CD, TBARS immediately after 21 days of ripening (0 and after 90 and 180 days of refrigerated storage (4 ºC. Determination of fatty acid composition, in meat product was performed after ripening and after 180 days of storage. At the end of the storage period, the salted sausages were characterized by the same content of polyunsaturated fatty acids (PUFA compared to cured samples. The addition of acid whey and a mixture of probiotic strains to nitrite-free sausage formulation was barely able to protect lipids against oxidation in comparison to nitrite during vacuum storage. Surprisingly, the use of acid whey has an influence on the desired red-pinkish color of organic fermented sausage after ripening and after 180 days of storage period.

  14. Yarrowia lipolytica: a model yeast for citric acid production.

    Science.gov (United States)

    Cavallo, Ema; Charreau, Hernán; Cerrutti, Patricia; Foresti, María Laura

    2017-12-01

    Every year more than 2 million tons of citric acid (CA) are produced around the world for industrial uses. Although initially extracted from citrus, the low profitability of the process and the increasing demand soon stimulated the search for more efficient methods to produce CA. Currently, most world CA demand (99%) is satisfied by fermentations with microorganisms, especially filamentous fungi and yeasts. CA production with yeasts has certain advantages over molds (e.g. higher productivity and easier cultivation), which in the last two decades have triggered a clear increase in publications and patents devoted to the use of yeasts in this field. Yarrowia lipolytica has become a model yeast that proved to be successful in different production systems. Considering the current interest evidenced in the literature, the most significant information on CA production using Y. lipolytica is summarized. The relevance on CA yields of key factors such as strains, media formulation, environmental conditions and production regimes is thoroughly discussed, with particular focus on increasing CA productivity. Besides, the possibility of tuning the mentioned variables to reduce concomitant isocitric acid production-the biggest disadvantage of using yeasts-is analyzed. Available methods for CA purification/quantification are also discussed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Strain-related acid production by oral streptococci

    DEFF Research Database (Denmark)

    de Soet, JJ; Nyvad, Bente; Kilian, Mogens

    2000-01-01

    Acid production, in particular at low pH, is thought to be an important ecological determinant in dental caries. The aim of the present study was to determine the acid producing capability at different pH levels of 47 streptococcal strains, representing 9 species, isolated from human dental plaque....... The bacteria were grown until mid log-phase under anaerobic conditions and acid production was measured in a pH-stat system at pH 7.0, 6.0, 5.5 and 5.0. At all pH values, the mean velocity of acid production (V(ap)) by Streptococcus mutans and S. sobrinus was significantly higher (p... that of the other oral streptococci, including S. mitis, S. oralis, S. gordonii, S. sanguis, S. intermedius, S. anginosus, S. constellatus, and S. vestibularis. However, the V(ap) of some strains of S. mitis biovar 1 and S. oralis, particularly at pH values of 7.0 and 6.0, exceeded that of some strains of S. mutans...

  16. Natural Radiation in byproducts of the production of phosphoric acid

    International Nuclear Information System (INIS)

    Silveira, Marcilei A. Guazzelli da; Cardoso, L.L.; Medina, N.H.

    2014-01-01

    Natural radiation is the largest source of radiation exposure to which man is subject. It is formed basically by cosmic radiation and the radionuclides present in the Earth crust, as 40 K and the elements of the decay series of 232 Th and 238 U. Phosphate ores, which constitutes the raw material for the production of phosphoric acid, have a high rate of natural radiation from the decay series of 232 Th and 238 U. Phosphogypsum, which is naturally radioactivity, is a by-product of the production of phosphoric acid by the wet method. For each ton of phosphoric acid it is produced about 4.5 tons of phosphogypsum. This work presents the analysis of samples collected in all stages of the manufacturing process of phosphoric acid, which generates the phosphogypsum. Gamma-ray spectrometry was used to measure the concentration of the elements of the decay series of 232 Th and 238 U. All analyzed samples showed a high concentration of radionuclides, promoting the need for further steps in the process in order to reduce the presence of such radionuclides in the phosphogypsum. The results indicate the radionuclide 238 U has higher contribution in some samples of the intermediate stages of the process. All samples exceeded the international average range of human exposure to terrestrial gamma radiation, which is 0.3 to 1.0 mSv/year. (author)

  17. Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system

    International Nuclear Information System (INIS)

    Yun, Hyejeong; Lim, Sangyong; Jo, Cheorun; Chung, Jinwoo; Kim, Soohyun; Kwon, Joong-Ho; Kim, Dongho

    2008-01-01

    The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent

  18. PCI-GC-MS-MS approach for identification of non-amino organic acid and amino acid profiles.

    Science.gov (United States)

    Luan, Hemi; Yang, Lin; Ji, Fenfen; Cai, Zongwei

    2017-03-15

    Alkyl chloroformate have been wildly used for the fast derivatization of metabolites with amino and/or carboxyl groups, coupling of powerful separation and detection systems, such as GC-MS, which allows the comprehensive analysis of non-amino organic acids and amino acids. The reagents involving n-alkyl chloroformate and n-alcohol are generally employed for providing symmetric labeling terminal alkyl chain with the same length. Here, we developed an asymmetric labeling strategy and positive chemical ionization gas chromatography-tandem mass spectrometry (PCI-GC-MS-MS) approach for determination of non-amino organic acids and amino acids, as well as the short chain fatty acids. Carboxylic and amino groups could be selectively labelled by propyl and ethyl groups, respectively. The specific neutral loss of C 3 H 8 O (60Da), C 3 H 5 O 2 (74Da) and C 4 H 8 O 2 (88Da) were useful in the selective identification for qualitative analysis of organic acids and amino acid derivatives. PCI-GC-MS-MS using multiple reaction monitoring (MRM) was applied for semi-quantification of typical non-amino organic acids and amino acids. This method exhibited a wide range of linear range, good regression coefficient (R 2 ) and repeatability. The relative standard deviation (RSD) of targeted metabolites showed excellent intra- and inter-day precision (chloroformate derivatization. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Sub products form a depuratives process of acid mine water with organic residues used as carbon source. part I; Subproductos en la depuracion de aguas acidas de mineria y empleo de residuos organicos como fuente carbonada, Parte I

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Rodriguez, A. M.; Duran-Barrantes, M. M.; Martel-Villagran, F. J.

    2002-07-01

    Subproducts from the biological depurative process of acid mine water, such as H{sub 2}S in the biogas and HCO{sub 3} in the effluents are applied for the selective precipitation of metallic sulphides of Pb, Zn, Cu, Al an Mn, as a function of pH. To obtain the maximum H{sub 2}S concentration is principal,so several studies have been made to found the best working conditions between microorganisms and the carbon source choice. In this work,the results of the digestion process with an inoculum from the anaerobic digestion of swine manure and cheese whey as carbon source are showed. The optimal conditions obtained are: for a SO{sub 4}''=COD of 1:1,5 in HRT of 12 days, 65% of sulphate reduction, 30% of H2S in biogas. In the precipitation of metals, a reduction of 98,3% of Fe, 96,1% Cu, 79% Zn and 99% Al are obtained. AYESA (Aguas y Estructuras, S. A.) is developing the technical attendance. This study is being demonstrated under the Acid Water Treatment Program, conducted by the Consejeria del Medio Ambiente (Junta de Andalucia). (Author) 15 refs.

  20. Production of hydrogen from organic waste via hydrogen sulfide

    International Nuclear Information System (INIS)

    McMahon, M.; Davis, B.R.; Roy, A.; Daugulis, A.

    2007-01-01

    In this paper an integrated process is proposed that converts organic waste to hydrogen via hydrogen sulphide. The designed bioreactor has achieved high volumetric productivities comparable to methanogenic bioreactors. Proposed process has advantages of bio-methane production and is more resilient to process upset. Thermochemical conversion of hydrogen sulphide to hydrogen is exothermic and also requires smaller plant infrastructure

  1. Organization of monitoring of agricultural products in NPP region

    International Nuclear Information System (INIS)

    Panteleev, L.I.; Spirin, E.V.; Sanzharova, N.I.

    1990-01-01

    Problem of organizing chemical and radiation monitoring of agricultural products in NPP region is considered. Attention is paid to monitoring during NPP siting and designing, to monitoring of radioactive contamination of agricultural products under normal NPP operation, emergency situations and decommissioning

  2. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes.

    Science.gov (United States)

    Chen, Kequan; Jiang, Min; Wei, Ping; Yao, Jiaming; Wu, Hao

    2010-01-01

    Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 degrees C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO(3) neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113.

  3. CERTIFICATION OF ORGANIC AGRICULTURE FOR RICE PRODUCTION IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Dedik Budianta

    2016-11-01

    Full Text Available To make better the life, it is required safety foods for health. The health foods can be satisfied by organic farming. Organic farming is farming system based on biomass recycling or eliminating the use of materials as a synthetic agrochemical inputs. To determine whether the result of rice called as an organic product needs to be certified by the Organic Certification Board (OCB. According to the Indonesian National Standard (INS 6729: 2013, organic farming systems (OFS are not only limited to not use material agrochemical synthetic, but must meet the requirements of OFS in rice production ranging from cultivating, handling, storage, processing, transportation, labeling, marketing, production facilities and other materials that are allowed start on farm to off farm should be separated from conventional agriculture. The farm is just a negate the use of synthetic agrochemicals without regard to the cultivation process and the system of post-harvest organic results are said to be premium food which is not as organic food, because organic food is food produced from OFS by applying processing practices to preserve the ecosystem of sustainable, control of weeds, pests, diseases, selection and crop rotation, water management, land preparation and planting and the use of biological materials. Thus the system of organic agriculture is a holistic management system to improve and develop the agro-ecosystem health, including biodiversity, biological cycles and soil biological activity. The first step that must be done is the conversion of land for food crops from anorganic to organic farming for 2 years did not get the requisite amount of agrochemical applied to the soil for annual crop and 3 years for perennial crops. If agriculture in paddy soil can control the conventional farms into OFS, then the resulting rice is as an organic product.

  4. Prevalent fatty acids in cashew nuts obtained from conventional and organic cultivation in different stages of processing

    Directory of Open Access Journals (Sweden)

    Denise Josino Soares

    2013-06-01

    Full Text Available Brazil is one of the three largest producers of fruits in the world, and among those fruit trees, the cashew tree stands out due to the high nutritional and commercial value of its products. During its fruit processing, there are losses in some compounds and few studies address this issue. Over the last decade the conventional system of food production has been substituted for the organic cultivation system, which is a promising alternative source of income given the global demand for healthy food. Therefore, this research aimed to characterize and quantify the prevalent fatty acids found in cashew nuts obtained from conventional and organic cultivation during various stages of processing. The prevalent fatty acids found were palmitic, linoleic, oleic, and stearic acid. The average of these fatty acids were 6.93 ± 0.55; 16.99 ± 0.61; 67.62 ± 1.00 and 8.42 ± 0.55 g/100 g, respectively. There was no reduction in the palmitic, oleic and stearic fatty acid contents during processing. Very little difference was observed between the nuts obtained from conventional and organic cultivation, indicating that the method of cultivation used has little or no influence on the content of cashew nut fatty acids.

  5. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids.

    Science.gov (United States)

    Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface.

  6. Technology and economic assessment of lactic acid production and uses

    Energy Technology Data Exchange (ETDEWEB)

    Datta, R.; Tsai, S.P.

    1996-03-01

    Lactic acid has been an intermediate-volume specialty chemical (world production {approximately}50,000 tons/yr) used in a wide range of food-processing and industrial applications. Potentially, it can become a very large-volume, commodity-chemical intermediate produced from carbohydrates for feedstocks of biodegradable polymers, oxygenated chemicals, environmentally friendly ``green`` solvents, and other intermediates. In the past, efficient and economical technologies for the recovery and purification of lactic acid from fermentation broths and its conversion to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. Development and deployment of novel separations technologies, such as electrodialysis with bipolar membranes, extractive and catalytic distillations, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The emerging technologies can use environmentally sound lactic acid processes to produce environmentally useful products, with attractive process economics. These technology advances and recent product and process commercialization strategies are reviewed and assessed.

  7. Lactic acid bacteria as a cell factory for riboflavin production.

    Science.gov (United States)

    Thakur, Kiran; Tomar, Sudhir Kumar; De, Sachinandan

    2016-07-01

    Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin-enriched functional foods, proper selection and exploitation of riboflavin-producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. Direct fermentation of sweet sorghum juice by Clostridium acetobutylicum and Clostridium tetanomorphum to produce bio-butanol and organic acids

    Directory of Open Access Journals (Sweden)

    B. Ndaba

    2015-06-01

    Full Text Available Single- and co-culture clostridial fermentation was conducted to obtain organic alcohols and acids from sweet sorghum juice as a low cost feedstock. Different inoculum concentrations of single cultures (3, 5, 10 v/v % as well as different ratios of C. acetobutylicum to C. tetanomorphum (3:10, 10:3, 6.5:6.5, 3:3, and 10:10 v/v %, respectively were utilized for the fermentation. The maximum butanol concentration of 6.49 g/L was obtained after 96 h fermentation with 10 % v/v C. acetobutylicum as a single culture. The fermentation with 10% v/v C. tetanomorphum resulted in more than 5 g/l butyric acid production. Major organic acid concentration (lactic acid of 2.7 g/L was produced when an inoculum ratio of 6.5: 6.5 %v/v C. acetobutylicum to C. tetanomorphum was used.

  9. HACCP based quality assurance systems for organic food production systems

    OpenAIRE

    Knight, C.; Stanley, R.

    2007-01-01

    HACCP provides an effective, logical and structured means of assuring food safety. Although first used in food manufacturing operations, HACCP can be – and, increasingly is – applied to food production and handling operations at all stages in the food chain. This includes the primary production sector. The purpose of this paper is to illustrate how the principles of HACCP can be applied to organic production with special reference to the primary sector.

  10. The Production of Goat Milk under Organic Requests

    Directory of Open Access Journals (Sweden)

    Roger Stan

    2011-10-01

    Full Text Available Organic farming has turned into a very important subject who consists in a food production label and it has become very popular. That is because, especially in the EU the majority of the dairy goat farms want or have already applied the organic farming in order to benefit not only from the good price of milk but also from the given positive image. The main issue of this study is the high production of goat milk using organic farming under specific regulations. Therefore, the organic farming is based on a safe environment, 100% organic feedstuffs, healthy animals (by prevention of diseases, natural mating, reduced stress in animal rearing, modern stables and milking equipment. A few feeding rations were established to improve the quantity and quality of goat milk.

  11. MODELLING CONSUMERS' DEMAND FOR ORGANIC FOOD PRODUCTS: THE SWEDISH EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Manuchehr Irandoust

    2016-07-01

    Full Text Available This paper attempts to examine a few factors characterizing consumer preferences and behavior towards organic food products in the south of Sweden using a proportional odds model which captures the natural ordering of dependent variables and any inherent nonlinearities. The findings show that consumer's choice for organic food depends on perceived benefits of organic food (environment, health, and quality and consumer's perception and attitudes towards labelling system, message framing, and local origin. In addition, high willingness to pay and income level will increase the probability to buy organic food, while the cultural differences and socio-demographic characteristics have no effect on consumer behaviour and attitudes towards organic food products. Policy implications are offered.

  12. Microbial Community Pathways for the Production of Volatile Fatty Acids From CO2 and Electricity

    Directory of Open Access Journals (Sweden)

    Jorge Wenzel

    2018-04-01

    Full Text Available This study aims at elucidating the metabolic pathways involved in the production of volatile fatty acids from CO2 and electricity. Two bioelectrochemical systems (BES were fed with pure CO2 (cells A and B. The cathode potential was first poised at −574 mV vs. standard hydrogen electrode (SHE and then at −756 mV vs. SHE in order to ensure the required reducing power. Despite applying similar operation conditions to both BES, they responded differently. A mixture of organic compounds (1.87 mM acetic acid, 2.30 mM formic acid, 0.43 mM propionic acid, 0.15 mM butyric acid, 0.55 mM valeric acid, and 0.62 mM ethanol was produced in cell A while mainly 1.82 mM acetic acid and 0.23 mM propionic acid were produced in cell B. The microbial community analysis performed by 16S rRNA gene pyrosequencing showed a predominance of Clostridium sp. and Serratia sp. in cell A whereas Burkholderia sp. and Xanthobacter sp. predominated in cell B. The coexistence of three metabolic pathways involved in carbon fixation was predicted. Calvin cycle was predicted in both cells during the whole experiment while Wood-Ljungdahl and Arnon-Buchanan pathways predominated in the period with higher coulombic efficiency. Metabolic pathways which transform organic acids into anabolic intermediaries were also predicted, indicating the occurrence of complex trophic interactions. These results further complicate the understanding of these mixed culture microbial processes but also expand the expectation of compounds that could potentially be produced with this technology.

  13. Pilot-scale recovery of low molecular weight organic acids from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-05

    Nov 5, 2008 ... 2Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibiniko, Wakamatsu- ... 2000) as well as for the recovery of organic acids from ..... Fellowship from Third World Organization for.

  14. Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones.

    Science.gov (United States)

    Jalan, Amrit; Allen, Joshua W; Green, William H

    2013-10-21

    Reactions of the Criegee intermediate (CI, ˙CH2OO˙) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between ˙CH2OO˙ and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48-51 kcal mol(-1) lower in energy, formed via 1,3-cycloaddition of ˙CH2OO˙ across the C=O bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O-O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  15. Mitigation of naphthenate related production upsets in high TAN (Total Acid Number) crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Ostojic, Nik [Maersk Oil, Copenhagen (Denmark); Vijn, Pieter; Reiners, Robert [Champion Technologies Europe BV, Delden (Netherlands)

    2012-07-01

    This paper describes a strategy for prediction, evaluation and mitigation of calcium naphthenate related production problems. Developing fields with acidic crude in the North Sea, West Africa, Bohai Bay (China) and Brazil is becoming more common in recent years. The high acid crude contains a considerable amount of naphthenic acids, typically having a Total Acid Number (TAN) higher than 0.5 mg KOH/g. Formation of either hard type 'calcium naphthenate precipitates' or soft type 'sodium carboxylate/emulsions' during crude oil production can lead to severe flow assurance and separation problems. In severe cases this may lead to production shutdowns to clean-up the equipment. A number of different naphthenate mitigation approaches have been published but no one particular approach is considered to be the most efficient as it depends significantly on the particular field conditions. Initially, this problem was addressed by deploying large volumes of (usually organic) acid, but more recently high efficiency low dose naphthenate inhibitors have been introduced. For predicting naphthenate scaling potential, methods were developed to determine the concentration of 1230 Dalton naphthenic tetra acid (ARN acids) in either deposit or crude oil and this information can be used to locate and potentially isolate the problem to a certain reservoir. Also, methods were developed to design suitable low dose naphthenate inhibitors. As these inhibitors are field tested, monitoring is required to ensure the product is performing most efficiently. In cases of tight emulsions however, this is less difficult as the oil dehydration and water quality is affected instantly. Methods were developed to allow monitoring of the calcium naphthenate deposition in field trails, thus allow trending and evaluation of the chemicals performance. After detailed analyses and discussions of the developed methods, a North Sea case history is presented reviewing several years of treating

  16. Bio-hydrogen production from renewable organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Shihwu Sung

    2004-04-30

    Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

  17. Toxicity of Select Organic Acids to the Slightly Thermophilic Acidophile Acidithiobaccillus Caldus

    Energy Technology Data Exchange (ETDEWEB)

    John E Aston; William A Apel; Brady D Lee; Brent M Peyton

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 µM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 µM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids.

  18. Characteristics of organic acids in the fruit of different pumpkin species.

    Science.gov (United States)

    Nawirska-Olszańska, Agnieszka; Biesiada, Anita; Sokół-Łętowska, Anna; Kucharska, Alicja Z

    2014-04-01

    The aim of the research was to determine the composition of organic acids in fruit of different cultivars of three pumpkin species. The amount of acids immediately after fruit harvest and after 3 months of storage was compared. The content of organic acids in the examined pumpkin cultivars was assayed using the method of high performance liquid chromatography (HPLC). Three organic acids (citric acid, malic acid, and fumaric acid) were identified in the cultivars, whose content considerably varied depending on a cultivar. Three-month storage resulted in decreased content of the acids in the case of cultivars belonging to Cucurbita maxima and Cucurbita pepo species, while a slight increase was recorded for Cucurbita moschata species. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Electrochemical monitoring of citric acid production by Aspergillus niger

    International Nuclear Information System (INIS)

    Kutyła-Olesiuk, Anna; Wawrzyniak, Urszula E.; Ciosek, Patrycja; Wróblewski, Wojciech

    2014-01-01

    Highlights: • Citric acid fermentation process (production) by Aspergillus niger. • Qualitative/quantitative monitoring of standard culture and culture infected with yeast. • Electronic tongue based on potentiometric and voltammetric sensors. • Evaluation of the progress and the correctness of the fermentation process. • The highest classification abilities of the hybrid electronic tongue. - Abstract: Hybrid electronic tongue was developed for the monitoring of citric acid production by Aspergillus niger. The system based on various potentiometric/voltammetric sensors and appropriate chemometric techniques provided correct qualitative and quantitative classification of the samples collected during standard Aspergillus niger culture and culture infected with yeast. The performance of the proposed approach was compared with the monitoring of the fermentation process carried out using classical methods. The results obtained proved, that the designed hybrid electronic tongue was able to evaluate the progress and correctness of the fermentation process

  20. Electrochemical monitoring of citric acid production by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Kutyła-Olesiuk, Anna; Wawrzyniak, Urszula E.; Ciosek, Patrycja; Wróblewski, Wojciech, E-mail: wuwu@ch.pw.edu.pl

    2014-05-01

    Highlights: • Citric acid fermentation process (production) by Aspergillus niger. • Qualitative/quantitative monitoring of standard culture and culture infected with yeast. • Electronic tongue based on potentiometric and voltammetric sensors. • Evaluation of the progress and the correctness of the fermentation process. • The highest classification abilities of the hybrid electronic tongue. - Abstract: Hybrid electronic tongue was developed for the monitoring of citric acid production by Aspergillus niger. The system based on various potentiometric/voltammetric sensors and appropriate chemometric techniques provided correct qualitative and quantitative classification of the samples collected during standard Aspergillus niger culture and culture infected with yeast. The performance of the proposed approach was compared with the monitoring of the fermentation process carried out using classical methods. The results obtained proved, that the designed hybrid electronic tongue was able to evaluate the progress and correctness of the fermentation process.