WorldWideScience

Sample records for organic acid analysis

  1. Simultaneous analysis of small organic acids and humic acids using high performance size exclusion chromatography

    NARCIS (Netherlands)

    Qin, X.P.; Liu, F.; Wang, G.C.; Weng, L.P.

    2012-01-01

    An accurate and fast method for simultaneous determination of small organic acids and much larger humic acids was developed using high performance size exclusion chromatography. Two small organic acids, i.e. salicylic acid and 2,3-dihydroxybenzoic acid, and one purified humic acid material were used

  2. Improvement of gas chromatographic analysis for organic acids and ...

    African Journals Online (AJOL)

    Yomi

    2010-08-27

    Aug 27, 2010 ... and ethanol fermentation by using the anaerobic bacterium. Clostridium ... GC analysis. Standard solution for GC analysis consisted of acetic acid (Sigma-. Aldrich ... Microorganism and inoculum preparation. C. beijerinckii ...

  3. Simultaneous analysis of amino acid and organic acid by NMR spectrometry, 2

    International Nuclear Information System (INIS)

    Koda, Naoya; Yamaguchi, Shuichi; Mori, Takeshi.

    1987-01-01

    Analysis of urine from patients with inborn error of metabolism were studied by 1 H-nuclear magnetic resonance (NMR) spectrometry. Diseases studied were as follows; phenylketonuria, biotin responsive multiple carboxylase deficiency, non-ketotic hyperglycinemia, 3-ketothiolase deficiency, alkaptonuria, methylmalonic acidemia, isovaleric acidemia, glutaric aciduria, argininosuccinic aciduria and hyperornithinemia. In each disease, specific metabolites in urine were recognized by NMR spectrometry. This method is accomplished within 10 minutes with non-treated small volume of urine and will be successfully available for the screening and/or diagnosis of inherited metabolic diseases of amino acid and organic acid. (author)

  4. Capillary Electrophoresis Analysis of Organic Amines and Amino Acids in Saline and Acidic Samples Using the Mars Organic Analyzer

    Science.gov (United States)

    Stockton, Amanda M.; Chiesl, Thomas N.; Lowenstein, Tim K.; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A.

    2009-11-01

    The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pKa values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.

  5. Improvement of gas chromatographic analysis for organic acids and ...

    African Journals Online (AJOL)

    Yomi

    2010-08-27

    Aug 27, 2010 ... short retention time and fair recognition peak of the compounds were obtained under the ... GC for acid and solvent analysis from ABE fermentation ... FID was kept at 230°C. Nitrogen gas was used as a carrier gas at a.

  6. Selective removal of phosphate for analysis of organic acids in complex samples.

    Science.gov (United States)

    Deshmukh, Sandeep; Frolov, Andrej; Marcillo, Andrea; Birkemeyer, Claudia

    2015-04-03

    Accurate quantitation of compounds in samples of biological origin is often hampered by matrix interferences one of which occurs in GC-MS analysis from the presence of highly abundant phosphate. Consequently, high concentrations of phosphate need to be removed before sample analysis. Within this context, we screened 17 anion exchange solid-phase extraction (SPE) materials for selective phosphate removal using different protocols to meet the challenge of simultaneous recovery of six common organic acids in aqueous samples prior to derivatization for GC-MS analysis. Up to 75% recovery was achieved for the most organic acids, only the low pKa tartaric and citric acids were badly recovered. Compared to the traditional approach of phosphate removal by precipitation, SPE had a broader compatibility with common detection methods and performed more selectively among the organic acids under investigation. Based on the results of this study, it is recommended that phosphate removal strategies during the analysis of biologically relevant small molecular weight organic acids consider the respective pKa of the anticipated analytes and the detection method of choice. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Simultaneous analysis of amino acid and organic acid by NMR spectrometry, 2. Diagnostic aids for inborn error of metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Koda, Naoya; Yamaguchi, Shuichi; Mori, Takeshi.

    1987-09-01

    Analysis of urine from patients with inborn error of metabolism were studied by /sup 1/H-nuclear magnetic resonance (NMR) spectrometry. Diseases studied were as follows; phenylketonuria, biotin responsive multiple carboxylase deficiency, non-ketotic hyperglycinemia, 3-ketothiolase deficiency, alkaptonuria, methylmalonic acidemia, isovaleric acidemia, glutaric aciduria, argininosuccinic aciduria and hyperornithinemia. In each disease, specific metabolites in urine were recognized by NMR spectrometry. This method is accomplished within 10 minutes with non-treated small volume of urine and will be successfully available for the screening andor diagnosis of inherited metabolic diseases of amino acid and organic acid.

  8. Composition and content analysis of sugars and organic acids for 45 grape cultivars from northeast region of china

    International Nuclear Information System (INIS)

    Zaozhu, G.N.; Jia, Z.; Zhihu, R.; Zuhui, Z.; Quan, G.; Hongyan, G.; Xiuwu, G.

    2017-01-01

    The qualitative and quantitative analysis of sugars and acids of grape cultivars from northeast region of China was carried out for quality evaluation and variety improvement of grape. Analysis of major sugars and organic acids for 45 grape berries was carried out using High Performance Liquid Chromatography (HPLC). The result showed that glucose and fructose were the major sugars, beside that, some grape cultivars also contained sucrose. The quantity of glucose and fructose was almost equal in most of grape berries. A significant positive correlation existed between them, glucose content ranged from 53.24 mg/ml to 124.18mg/ml and fructose content ranged from 48.39 mg/ml to118.84 mg/ml. Tartaric acid, malic acid, citric acid and oxalic acid were organic acids and tartaric acid was the main constituent in most grape berries and its concentration was higher than the other organic acids. However, in some grape cultivars, malic acid and citric acid were two highest organic acids while oxalic acid content was the lowest and even in some cultivars it could not be detected. Tartaric acid ranged from 1.28mg/ml to 6.82 mg/ml, malic acid ranged from 0.09mg/ml to 3.95 mg/ml, citric acid ranged from 0.08mg/ml to 4.43 mg/ml, oxalic acid ranged from mg/ml to 0.370 mg/ml. Thirty-four grape cultivars out of 45 cultivars accounted more than 50% tartic acid of the total organic acid contents. However, in cultivars Bixiang Wuhe and Shennong Jinhuanghou citric acid was the main organic acid. Malic acid and citric acid were significantly positively related with total acid. In 43 grape cultivars, the soluble sugars were glucose and fructose. Besides glucose and fructose, sucrose was also observed in cultivars of LN33 and Cayuga white. (author)

  9. Determination of organic acids evolution during apple cider fermentation using an improved HPLC analysis method

    NARCIS (Netherlands)

    Zhang, H.; Zhou, F.; Ji, B.; Nout, M.J.R.; Fang, Q.; Zhang, Z.

    2008-01-01

    An efficient method for analyzing ten organic acids in food, namely citric, pyruvic, malic, lactic, succinic, formic, acetic, adipic, propionic and butyric acids, using HPLC was developed. Boric acid was added into the mobile phase to separate lactic and succinic acids, and a post-column buffer

  10. Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Ullah, A.; Orij, R.; Brul, S.; Smits, G.J.

    2012-01-01

    Weak organic acids are naturally occurring compounds that are commercially used as preservatives in the food and beverage industries. They extend the shelf life of food products by inhibiting microbial growth. There are a number of theories that explain the antifungal properties of these weak acids,

  11. On-line analysis of ETA and organic acids in secondary systems of PWR plants

    International Nuclear Information System (INIS)

    Kurashina, Masahiko; Uzawa, Hideo; Utagawa, Koya; Takaku, Hiroshi

    2005-01-01

    To reduce the iron concentration in the secondary water of plants with pressurized water reactors (PWRs), ethanolamine (ETA) is used as an alkalizing agent in the secondary cycle. An on-line ion chromatography (IC) monitoring system for monitoring concentrations of ETA and anions of organic acids was developed, its performance was evaluated, and verification tests were conducted at an actual PWR plant. It was demonstrated that the concentration of both ETA and anions of organic acids may be successfully monitored by IC in PWR secondary cycle streams alkalized by ETA. (orig.)

  12. Changes in monosaccharides, organic acids and amino acids during Cabernet Sauvignon wine ageing based on a simultaneous analysis using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Zhang, Xin-Ke; Lan, Yi-Bin; Zhu, Bao-Qing; Xiang, Xiao-Feng; Duan, Chang-Qing; Shi, Ying

    2018-01-01

    Monosaccharides, organic acids and amino acids are the important flavour-related components in wines. The aim of this article is to develop and validate a method that could simultaneously analyse these compounds in wine based on silylation derivatisation and gas chromatography-mass spectrometry (GC-MS), and apply this method to the investigation of the changes of these compounds and speculate upon their related influences on Cabernet Sauvignon wine flavour during wine ageing. This work presented a new approach for wine analysis and provided more information concerning red wine ageing. This method could simultaneously quantitatively analyse 2 monosaccharides, 8 organic acids and 13 amino acids in wine. A validation experiment showed good linearity, sensitivity, reproducibility and recovery. Multiple derivatives of five amino acids have been found but their effects on quantitative analysis were negligible, except for methionine. The evolution pattern of each category was different, and we speculated that the corresponding mechanisms involving microorganism activities, physical interactions and chemical reactions had a great correlation with red wine flavours during ageing. Simultaneously quantitative analysis of monosaccharides, organic acids and amino acids in wine was feasible and reliable and this method has extensive application prospects. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon.

    Directory of Open Access Journals (Sweden)

    Lei Gao

    Full Text Available Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar '203Z' and its near-isogenic line (NIL 'SW' (in the '203Z' background were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy, sucrose-phosphate synthase (SPSs, insoluble acid invertases (IAI, NAD-dependent malate dehydrogenase (NAD-cyt MDH, aluminum-activated malate transporter (ALMT, and citrate synthase (CS. This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening.

  14. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon.

    Science.gov (United States)

    Gao, Lei; Zhao, Shengjie; Lu, Xuqiang; He, Nan; Zhu, Hongju; Dou, Junling; Liu, Wenge

    2018-01-01

    Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus) fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar '203Z' and its near-isogenic line (NIL) 'SW' (in the '203Z' background) were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs) related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy), sucrose-phosphate synthase (SPSs), insoluble acid invertases (IAI), NAD-dependent malate dehydrogenase (NAD-cyt MDH), aluminum-activated malate transporter (ALMT), and citrate synthase (CS). This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening.

  15. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon

    Science.gov (United States)

    Gao, Lei; Zhao, Shengjie; Lu, Xuqiang; He, Nan; Zhu, Hongju; Dou, Junling

    2018-01-01

    Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus) fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar ‘203Z’ and its near-isogenic line (NIL) ‘SW’ (in the ‘203Z’ background) were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs) related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy), sucrose-phosphate synthase (SPSs), insoluble acid invertases (IAI), NAD-dependent malate dehydrogenase (NAD-cyt MDH), aluminum-activated malate transporter (ALMT), and citrate synthase (CS). This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening. PMID:29324867

  16. Production and analysis of organic acids in hairy-root cultures of Isatis indigotica Fort. (indigo woad).

    Science.gov (United States)

    Xu, Tiefeng; Zhang, Lei; Sun, Xiaofen; Zhang, Hanming; Tang, Kexuan

    2004-02-01

    Hairy roots were induced from both cotyledon and hypocotyl explants of Isatis indigotica Fort. (indigo woad) through transformation with Agrobaterium rhizogenes strain A4, R1601 and ATCC15834. The results showed that the cotyledons were the preferred explants to hypocotyls and A4 was the most suitable A. rhizogenes strain for the transformation and induction of hairy roots of I. indigotica. High-voltage paper electrophoresis (HVPE) analysis demonstrated the production of mannopine in hairy roots and confirmed the successful transfer of Ri T-DNA (root-inducing transferred DNA) of A. rhizogenes into the I. indigotica genome. Five organic acids, namely CPQ [3-(2-carboxyphenol)-4(3 H )-quinazolinone], syringic acid, salicylic acid, benzoic acid and 2-aminobenzoic acid, which were considered as main antiviral components of I. indigotica, were detected in natural roots, hairy roots and liquid media with high-performance capillary electrophoresis. The results showed CPQ production in hairy roots was significantly higher than that in natural roots. Our results also revealed that all the five organic acids could be excreted from hairy roots into liquid media, and the concentrations of organic acids in the liquid media paralleled those in hairy roots. The hairy roots of I. indigotica grew fast and showed an S-shaped growth curve that reached its apex on the day 24 of culture with a 20-fold increase in fresh weight compared with the starting inoculums. The accumulation of the two organic acids CPQ and syringic acid in liquid media paralleled the growth of hairy roots. MS [Murashige, T. and Skoog, F. (1962) Physiol. Plant. 15, 473-497] medium or half-strength MS medium supplemented with 30 g/l maltose was found to be best for hairy-root culture and accumulation of CPQ.

  17. Capillary electrophoresis method for the analysis of organic acids and amino acids in the presence of strongly alternating concentrations of aqueous lactic acid.

    Science.gov (United States)

    Laube, Hendrik; Boden, Jana; Schneider, Roland

    2017-07-01

    During the production of bio-based bulk chemicals, such as lactic acid (LA), organic impurities have to be removed to produce a ready-to-market product. A capillary electrophoresis method for the simultaneous detection of LA and organic impurities in less than 10 min was developed. LA and organic impurities were detected using a direct UV detection method with micellar background electrolyte, which consisted of borate and sodium dodecyl sulfate. We investigated the effects of electrolyte composition and temperature on the speed, sensitivity, and robustness of the separation. A few validation parameters, such as linearity, limit of detection, and internal and external standards, were evaluated under optimized conditions. The method was applied for the detection of LA and organic impurities, including tyrosine, phenylalanine, and pyroglutamic acid, in samples from a continuous LA fermentation process from post-extraction tapioca starch and yeast extract.

  18. Organic acids in naturally colored surface waters

    Science.gov (United States)

    Lamar, William L.; Goerlitz, D.F.

    1966-01-01

    Most of the organic matter in naturally colored surface waters consists of a mixture of carboxylic acids or salts of these acids. Many of the acids color the water yellow to brown; however, not all of the acids are colored. These acids range from simple to complex, but predominantly they are nonvolatile polymeric carboxylic acids. The organic acids were recovered from the water by two techniques: continuous liquid-liquid extraction with n-butanol and vacuum evaporation at 50?C (centigrade). The isolated acids were studied by techniques of gas, paper, and column chromatography and infrared spectroscopy. About 10 percent of the acids recovered were volatile or could be made volatile for gas chromatographic analysis. Approximately 30 of these carboxylic acids were isolated, and 13 of them were individually identified. The predominant part of the total acids could not be made volatile for gas chromatographic analysis. Infrared examination of many column chromatographic fractions indicated that these nonvolatile substances are primarily polymeric hydroxy carboxylic acids having aromatic and olefinic unsaturation. The evidence suggests that some of these acids result from polymerization in aqueous solution. Elemental analysis of the sodium fusion products disclosed the absence of nitrogen, sulfur, and halogens.

  19. Combined HPLC analysis of organic acids and furans formed during organosolv pulping of fiber hemp

    NARCIS (Netherlands)

    Gosselink, R.J.A.; Dam, van J.E.G.; Zomers, F.H.A.

    1995-01-01

    During organosolv pulping of fiber hemp (Cannabis sativa L) with a mixture of ethanol/water, delignification is catalyzed by released acetic acid and formic acid in the effluent. The major sources of acetic acid are the acetyl groups, as determined by means of the acetyl balance, whereas formic acid

  20. Acid digestion of organic materials

    International Nuclear Information System (INIS)

    Capp, P.D.

    1988-01-01

    To overcome the high temperatures involved in straight incineration of organic waste and the difficulty of extracting actinides from the ash various research establishments throughout the world, including Winfrith and Harwell in the UK, have carried out studies on an alternative chemical combustion method known as acid digestion. The basis of the technique is to digest the waste in concentrated sulphuric acid containing a few percent of nitric acid at a temperature of about 250 0 C. Acid digestion residues consist mainly of non-refractory inorganic sulphates and oxides from which any actinide materials can easily be extracted. (author)

  1. Simultaneous analysis of carbohydrates and organic acids by HPLC-DAD-RI for monitoring goat's milk yogurts fermentation.

    Science.gov (United States)

    da Costa, Marion Pereira; Frasao, Beatriz da Silva; Lima, Bruno Reis Carneiro da Costa; Rodrigues, Bruna Leal; Conte Junior, Carlos Adam

    2016-05-15

    During yogurt manufacture, the lactose fermentation and organic acid production can be used to monitor the fermentation process by starter cultures and probiotic bacteria. In the present work, a simple, sensitive and reproducible high-performance liquid chromatography with dual detectors, diode array detector and refractive index was validated by simultaneous analysis of carbohydrates and organic acids in goat milk yogurts. In addition, pH and bacterial analysis were performed. Separation of all the compounds was performed on an Aminex HPX-87H column (300×7.8 mm, 9 µm) utilizing a 3 mmol L(-1) sulfuric acid aqueous mobile phase under isocratic conditions. Lactose, glucose, galactose, citric, lactic and formic acids were used to evaluate the following performance parameters: selectivity, linearity, precision, limit of detection (LOD), limit of quantification (LOQ), decision limits (CCα), detection capabilities (CCβ), recovery and robustness. For the method application a six goat milk yogurts were elaborated: natural, probiotic, prebiotic, symbiotic, cupuassu fruit pulp, and probiotic with cupuassu fruit pulp. The validated method presented an excellent selectivity with no significant matrix effect, and a broad linear study range with coefficients of determination higher than 0.995. The relative standard deviation was lower than 10% under repeatability and within-laboratory reproducibility conditions for the studied analytes. The LOD of the method was defined from 0.001 to 0.003 µg g(-1), and the LOQ from 0.003 to 0.013 µg g(-1). The CCα was ranged from 0.032 to 0.943 µg g(-1), and the CCβ from 0.053 to 1.604 µg g(-1). The obtained recovery values were from 78% to 119%. In addition, the method exhibited an appropriate robustness for all parameter evaluated. Base in our data, it was concluded that the performance parameters demonstrated total method adequacy for the detection and quantification of carbohydrates and organic acids in goat milk yogurts. The

  2. Alkylation or Silylation for Analysis of Amino and Non-Amino Organic Acids by GC-MS?

    Directory of Open Access Journals (Sweden)

    Silas G. Villas-Bôas

    2011-01-01

    Full Text Available Gas chromatography–mass spectrometry (GC-MS is a widely used analytical technique in metabolomics. GC provides the highest resolution of any standard chromatographic separation method, and with modern instrumentation, retention times are very consistent between analyses. Electron impact ionization and fragmentation is generally reproducible between instruments and extensive libraries of spectra are available that enhance the identification of analytes. The major limitation is the restriction to volatile analytes, and hence the requirement to convert many metabolites to volatile derivatives through chemical derivatization. Here we compared the analytical performance of two derivatization techniques, silylation (TMS and alkylation (MCF, used for the analysis of amino and non-amino organic acids as well as nucleotides in microbial-derived samples. The widely used TMS derivatization method showed poorer reproducibility and instability during chromatographic runs while the MCF derivatives presented better analytical performance. Therefore, alkylation (MCF derivatization seems to be preferable for the analysis of polyfunctional amines, nucleotides and organic acids in microbial metabolomics studies.

  3. Meta-analysis of amino acid stable nitrogen isotope ratios for estimating trophic position in marine organisms.

    Science.gov (United States)

    Nielsen, Jens M; Popp, Brian N; Winder, Monika

    2015-07-01

    Estimating trophic structures is a common approach used to retrieve information regarding energy pathways, predation, and competition in complex ecosystems. The application of amino acid (AA) compound-specific nitrogen (N) isotope analysis (CSIA) is a relatively new method used to estimate trophic position (TP) and feeding relationships in diverse organisms. Here, we conducted the first meta-analysis of δ(15)N AA values from measurements of 359 marine species covering four trophic levels, and compared TP estimates from AA-CSIA to literature values derived from food items, gut or stomach content analysis. We tested whether the AA trophic enrichment factor (TEF), or the (15)N enrichment among different individual AAs is constant across trophic levels and whether inclusion of δ(15)N values from multiple AAs improves TP estimation. For the TEF of glutamic acid relative to phenylalanine (Phe) we found an average value of 6.6‰ across all taxa, which is significantly lower than the commonly applied 7.6‰. We found that organism feeding ecology influences TEF values of several trophic AAs relative to Phe, with significantly higher TEF values for herbivores compared to omnivores and carnivores, while TEF values were also significantly lower for animals excreting urea compared to ammonium. Based on the comparison of multiple model structures using the metadata of δ(15)N AA values we show that increasing the number of AAs in principle improves precision in TP estimation. This meta-analysis clarifies the advantages and limitations of using individual δ(15)N AA values as tools in trophic ecology and provides a guideline for the future application of AA-CSIA to food web studies.

  4. Acid digestion of organic liquids

    International Nuclear Information System (INIS)

    Partridge, J.A.; Bosuego, G.P.

    1980-10-01

    Laboratory studies on the destruction of liquid organic wastes by acid digestion are discussed. A variety of liquid waste types was tested, including those encountered in the nuclear industry as well as some organic liquids representative of non-nuclear industrial wastes. The liquids tested were vacuum pump oil, tri-n-butyl phosphate (TBP), normal paraffin hydrocarbon solvent (NPH), a mixture of 30 vol% TBP in NPH, carbon tetrachloride (CCl 4 ), trichloroethane, toluene, hexone (methyl isobutyl ketone), a mixture of hexone and NPH, polychlorobiphenyl (PCB), isopropanol, normal-decane, and two waste organic solutions from Hanford radioactive waste tanks. The tests demonstrated that several types of organic liquids can be destroyed by the acid digestion process. 8 figures, 19 tables

  5. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS: Application to Analysis of Experimentally Derived Hydrothermal Mineral-Catalyzed Organic Products

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.

    2012-01-01

    We report results of experiments to measure the H isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high temperature extraction furnace to make quantitative H isotope measurements. This work compliments our previous work that focused on the extraction and analysis of C isotopes from the same compounds [1]. Together with our carbon isotope analyses our experiments serve as a "proof of concept" for making C and H isotope measurements on more complex mixtures of organic compounds on mineral surfaces in abiotic hydrocarbon formation processes at elevated temperatures and pressures. Our motivation for undertaking this work stems from observations of methane detected within the Martian atmosphere [2-5], coupled with evidence showing extensive water-rock interaction during Mars history [6-8]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization [9,10]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [11-13]. Our H isotope measurements utilize an analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). This technique is designed to carry a split of the pyrolyzed GC-separated product to a Thermo DSQII quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  6. STUDY OF ORGANIC ACIDS IN ALMOND LEAVES

    Directory of Open Access Journals (Sweden)

    Lenchyk L.V.

    2015-05-01

    Full Text Available Introduction. Almond (Amygdalus communis is a stone fruit, from the Rosaceae family, closest to the peach. It is spread throughout the entire Mediterranean region and afterwards to the Southwestern USA, Northern Africa, Turkey, Iran, Australia and South Africa. It is sensitive to wet conditions, and therefore is not grown in wet climates. Iran is located in the semi-arid region of the world. Because of its special tolerance to water stress, almond is one of the main agricultural products in rainfed condition in Iran. Almond leaves have been investigated for their phenolic content and antioxidant activity. It was found that total antioxidant activity and phenolic compounds exhibited variations according to season, plant organ (leaf and stem and variety. Analysis of previous research on almonds focused on investigating compounds mostly in seeds and phenolic compounds in leaves, but organic acids in leaves have not been studied. Aim of this study was investigation of organic acids in leaves of almond variety which is distributed in Razavi Khorasan province of Iran. Materials and Methods. In August 2012 almond leaves were collected in Iran, dried and grinded. The study of qualitative composition and quantitative determination of carboxylic acids in almond leaves was carried out by gas chromatography with mass spectrometric detection. For determination organic acids content, to 50 mg of dried plant material in 2 ml vial internal standard (50 μg of tridecane in hexane was added and filled up with 1.0 ml of methylating agent (14 % BCl3 in methanol, Supelco 3-3033. The mixture was kept in a sealed vial during 8 hours at 65 °C. At this time fatty oil was fully extracted, and hydrolyzed into its constituent fatty acids and their methylation was done. At the same time free organic and phenolcarbonic acids were methylated too. The reaction mixture was poured from the plant material sediment and was diluted with 1 ml of distilled water. To extract methyl

  7. Physiological and Molecular Analysis of Aluminium-Induced Organic Acid Anion Secretion from Grain Amaranth (Amaranthus hypochondriacus L.) Roots

    OpenAIRE

    Fan, Wei; Xu, Jia-Meng; Lou, He-Qiang; Xiao, Chuan; Chen, Wei-Wei; Yang, Jian-Li

    2016-01-01

    Grain amaranth (Amaranthus hypochondriacus L.) is abundant in oxalate and can secrete oxalate under aluminium (Al) stress. However, the features of Al-induced secretion of organic acid anions (OA) and potential genes responsible for OA secretion are poorly understood. Here, Al-induced OA secretion in grain amaranth roots was characterized by ion charomatography and enzymology methods, and suppression subtractive hybridization (SSH) together with quantitative real-time PCR (qRT-PCR) was used t...

  8. Physico-Chemical Properties of Kaolin-Organic Acid

    Directory of Open Access Journals (Sweden)

    Yeo S.W.

    2017-01-01

    Full Text Available Soil with more than 20% of organic content is classified as organic soil in Malaysia. Contents of organic soil consist of different types of organic and inorganic matter. Each type of organic matter has its own characteristic and its effect on the properties of the soil is different. Hence, a good understanding on the effect of specific organic and inorganic matter on the physico-chemical characteristic of organic soils can serve as a guide for predicting the properties of organic soils. The main objective is to unveil the effect of organic acid on the physico-chemical properties of soil. Artificial organic soil (kaolin mixed with organic acid was utilized in order to minimize the geochemical variability of studied soil. The organic acid which consists of humic acid and fulvic acid was extracted from highly humificated plant–based compost. The effect of organic acid on the physico-chemical properties of soil was determined by varying the concentration of organic acid. The specific gravity, Atterberg limits, pH, bulk chemical composition and the functional group of kaolin-organic acid were determined. It was found that the plasticity index, specific gravity and pH value were decreased with lowered concentration of organic acid. However, the liquid limits and plastic limits were found to be increased with the concentration decrement of organic acid. The analysis of XRF on the bulk chemical composition and analysis of FTIR spectra on the functional group of artificial organic soils with different concentration have confirmed little geochemical variability between samples.

  9. Development of a volumetric Analysis method to determine uranium in the loaded phosphoric acid and the loaded organic phase (DEHPA/TOPO)

    International Nuclear Information System (INIS)

    Shlewit, H.; Koudsi, Y.

    2003-01-01

    Rapid and reliable volumetric analysis method has been developed to determine uranium, on line, at uranium extraction unit from wet-process phosphoric acid, in aqueous and organic phases. This process enable up 300 mg of uranium to be determined in the presence of nitric acid, in a sample volume of up to at least 10 ml. The volume of the sample, the amounts of reagents added, the temperature of the reagents and the standing time of various stages were investigated to ensure that the conditions selected for the final procedure were reasonably non-critical

  10. The application of thermospray LC/MS to the analysis of small organic acids in mixed hazardous wastes

    International Nuclear Information System (INIS)

    Campbell, J.A.; Grant, K.E.; Lucke, R.B.; Clauss, S.A.

    1993-01-01

    The Hanford site was built by the Army Corps of Engineers and the Du Pont Corporation in 1943 to produce plutonium for nuclear weapons in support of World War II. The facility was very successful; within two years after its conception, Hanford had supplied the plutonium used for the bomb dropped on Nagasaki in World War II. Plutonium production continued after the war until January 1987 when the last product reactor ceased operation at the Hanford site. Nine production reactors and five reprocessing facilities operated at the Hanford site to support that mission. These operations created a large quantity of radioactive wastes, much of which was and continues to be stored in underground storage tanks. There are 177 high-level waste storage tanks at Hanford. Of these, 23 tanks are being watched closely because of the possibility that flammable gas mixtures are being produced from the mixed waste contained in the storage tanks. One tank in particular, Tank 241-SY-101, has exhibited episodic release of flammable gas mixtures since its initial filing in the late 1970s. Studies of simulated waste mixtures (SWM) have indicated that the gas generation and retention are influenced by chelator concentration. It was postulated that the chelators form hydrophobic surfaces on solids in the SWM. These hydrophobic surfaces are more conducive to bubble attachment, which leads to flotation of the solids and eventually crust formation. The presence of chelators becomes very important for the understanding of crust formation and gas release. Among the degradation products of the chelators are a number of small organic acids, some of which may be linked to the production of flammable gases such as hydrogen and which also possess chelating properties. As a result, the authors have analyzed actual waste samples from Tank 101-SY for small organic acids

  11. Nanoparticles modified with multiple organic acids

    Science.gov (United States)

    Cook, Ronald Lee (Inventor); Luebben, Silvia DeVito (Inventor); Myers, Andrew William (Inventor); Smith, Bryan Matthew (Inventor); Elliott, Brian John (Inventor); Kreutzer, Cory (Inventor); Wilson, Carolina (Inventor); Meiser, Manfred (Inventor)

    2007-01-01

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  12. Nanoparticles modified with multiple organic acids

    Science.gov (United States)

    Cook, Ronald Lee; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew; Elliott, Brian John; Kreutzer, Cory; Wilson, Carolina; Meiser, Manfred

    2007-07-17

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  13. Physiological and Molecular Analysis of Aluminium-Induced Organic Acid Anion Secretion from Grain Amaranth (Amaranthus hypochondriacus L.) Roots

    Science.gov (United States)

    Fan, Wei; Xu, Jia-Meng; Lou, He-Qiang; Xiao, Chuan; Chen, Wei-Wei; Yang, Jian-Li

    2016-01-01

    Grain amaranth (Amaranthus hypochondriacus L.) is abundant in oxalate and can secrete oxalate under aluminium (Al) stress. However, the features of Al-induced secretion of organic acid anions (OA) and potential genes responsible for OA secretion are poorly understood. Here, Al-induced OA secretion in grain amaranth roots was characterized by ion charomatography and enzymology methods, and suppression subtractive hybridization (SSH) together with quantitative real-time PCR (qRT-PCR) was used to identify up-regulated genes that are potentially involved in OA secretion. The results showed that grain amaranth roots secrete both oxalate and citrate in response to Al stress. The secretion pattern, however, differs between oxalate and citrate. Neither lanthanum chloride (La) nor cadmium chloride (Cd) induced OA secretion. A total of 84 genes were identified as up-regulated by Al, in which six genes were considered as being potentially involved in OA secretion. The expression pattern of a gene belonging to multidrug and toxic compound extrusion (MATE) family, AhMATE1, was in close agreement with that of citrate secretion. The expression of a gene encoding tonoplast dicarboxylate transporter and four genes encoding ATP-binding cassette transporters was differentially regulated by Al stress, but the expression pattern was not correlated well with that of oxalate secretion. Our results not only reveal the secretion pattern of oxalate and citrate from grain amaranth roots under Al stress, but also provide some genetic information that will be useful for further characterization of genes involved in Al toxicity and tolerance mechanisms. PMID:27144562

  14. Physiological and Molecular Analysis of Aluminium-Induced Organic Acid Anion Secretion from Grain Amaranth (Amaranthus hypochondriacus L.) Roots.

    Science.gov (United States)

    Fan, Wei; Xu, Jia-Meng; Lou, He-Qiang; Xiao, Chuan; Chen, Wei-Wei; Yang, Jian-Li

    2016-04-30

    Grain amaranth (Amaranthus hypochondriacus L.) is abundant in oxalate and can secrete oxalate under aluminium (Al) stress. However, the features of Al-induced secretion of organic acid anions (OA) and potential genes responsible for OA secretion are poorly understood. Here, Al-induced OA secretion in grain amaranth roots was characterized by ion charomatography and enzymology methods, and suppression subtractive hybridization (SSH) together with quantitative real-time PCR (qRT-PCR) was used to identify up-regulated genes that are potentially involved in OA secretion. The results showed that grain amaranth roots secrete both oxalate and citrate in response to Al stress. The secretion pattern, however, differs between oxalate and citrate. Neither lanthanum chloride (La) nor cadmium chloride (Cd) induced OA secretion. A total of 84 genes were identified as up-regulated by Al, in which six genes were considered as being potentially involved in OA secretion. The expression pattern of a gene belonging to multidrug and toxic compound extrusion (MATE) family, AhMATE1, was in close agreement with that of citrate secretion. The expression of a gene encoding tonoplast dicarboxylate transporter and four genes encoding ATP-binding cassette transporters was differentially regulated by Al stress, but the expression pattern was not correlated well with that of oxalate secretion. Our results not only reveal the secretion pattern of oxalate and citrate from grain amaranth roots under Al stress, but also provide some genetic information that will be useful for further characterization of genes involved in Al toxicity and tolerance mechanisms.

  15. Physiological and Molecular Analysis of Aluminium-Induced Organic Acid Anion Secretion from Grain Amaranth (Amaranthus hypochondriacus L. Roots

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2016-04-01

    Full Text Available Grain amaranth (Amaranthus hypochondriacus L. is abundant in oxalate and can secrete oxalate under aluminium (Al stress. However, the features of Al-induced secretion of organic acid anions (OA and potential genes responsible for OA secretion are poorly understood. Here, Al-induced OA secretion in grain amaranth roots was characterized by ion charomatography and enzymology methods, and suppression subtractive hybridization (SSH together with quantitative real-time PCR (qRT-PCR was used to identify up-regulated genes that are potentially involved in OA secretion. The results showed that grain amaranth roots secrete both oxalate and citrate in response to Al stress. The secretion pattern, however, differs between oxalate and citrate. Neither lanthanum chloride (La nor cadmium chloride (Cd induced OA secretion. A total of 84 genes were identified as up-regulated by Al, in which six genes were considered as being potentially involved in OA secretion. The expression pattern of a gene belonging to multidrug and toxic compound extrusion (MATE family, AhMATE1, was in close agreement with that of citrate secretion. The expression of a gene encoding tonoplast dicarboxylate transporter and four genes encoding ATP-binding cassette transporters was differentially regulated by Al stress, but the expression pattern was not correlated well with that of oxalate secretion. Our results not only reveal the secretion pattern of oxalate and citrate from grain amaranth roots under Al stress, but also provide some genetic information that will be useful for further characterization of genes involved in Al toxicity and tolerance mechanisms.

  16. Acidity controls on dissolved organic carbon mobility in organic soils

    Czech Academy of Sciences Publication Activity Database

    Evans, Ch. D.; Jones, T.; Burden, A.; Ostle, N.; Zielinski, P.; Cooper, M.; Peacock, M.; Clark, J.; Oulehle, Filip; Cooper, D.; Freeman, Ch.

    2012-01-01

    Roč. 18, č. 11 (2012), s. 3317-3331 ISSN 1354-1013 Institutional support: RVO:67179843 Keywords : acidity * dissolved organic carbon * organic soil * peat * podzol * soil carbon * sulphur Subject RIV: EH - Ecology, Behaviour Impact factor: 6.910, year: 2012

  17. Phospholipid fatty acid analysis to monitor the co-composting process of olive oil mill wastes and organic household refuse

    OpenAIRE

    Barje , F.; Amir , S.; Winterton , Peter; Pinelli , Eric; Merlina , Georges; Cegarra , J.; Revel , Jean-Claude; Hafidi , Mohamed

    2008-01-01

    International audience; The co-composting of olive oil mill wastes and household refuse was followed for 5 months. During the thermophilic phase of composting, the aerobic heterotrophic bacteria (AHB) count, showed a significant rise with a slight regression of fungal biomass. In the same way, phospholipid fatty acids PLFAs common in bacteria, showed a significant increase of hydroxyl and branched PLFAs. The evaluation of the ratio of octadecenoic PLFAs to stearic acid (C18:1/C18:0) revealed ...

  18. Thermal properties and heat storage analysis of palmitic acid-TiO_2 composite as nano-enhanced organic phase change material (NEOPCM)

    International Nuclear Information System (INIS)

    Sharma, R.K.; Ganesan, P.; Tyagi, V.V.; Metselaar, H.S.C.; Sandaran, S.C.

    2016-01-01

    Highlights: • Novel composite of palmitic acid and TiO_2 nanoparticles with enhanced thermal energy storage capabilities • The composite is thermally reliable and chemically stable. • Thermal conductivity of the composite increases significantly with the loading. - Graphical Abstract: - Abstract: In the present study, the phase change behavior of prepared novel composites of palmitic acid and solid nanoparticles of titanium dioxide (TiO_2) for thermal energy storage has been investigated. The nanoparticles are dispersed into the base fluid in various mass fractions (0.5, 1, 3, and 5%), and their effects on the thermo-physical properties have been investigated. Structural analysis has been carried out by using FESEM, and crystallography was checked by XRD technique. The chemical/functional groups of the base fluid and composite PCMs have been analyzed by using FT-IR spectrum. The observations showed that the TiO_2 nanoparticles do not affect the chemical structure of palmitic acid; however they improve the chemical stability. The phase transition temperature and latent heat of fusion has shown the significant stability with the increase in nanoparticle weight fractions. The accelerated thermal cycle test of the composite shows good thermal reliability for 1500 melt/freeze cycles. Thermal conductivity of palmitic acid increased gradually by 12.7, 20.6, 46.6, and 80% for the nanoparticle weight fractions of 0.5, 1, 3, and 5% respectively. Based on the results, it can be mentioned that the prepared palmitic acid based nano-enhanced organic phase change composite materials can be very well used as potential solar thermal energy storage materials.

  19. Organic acid profile of commercial sour cassava starch

    Directory of Open Access Journals (Sweden)

    DEMIATE I.M.

    1999-01-01

    Full Text Available Organic acids are present in sour cassava starch ("polvilho azedo" and contribute with organoleptic and physical characteristics like aroma, flavor and the exclusive baking property, that differentiate this product from the native cassava starch. Samples of commercial sour cassava starch collected in South and Southeast Brazil were prepared for high performance liquid chromatography (HPLC analysis. The HPLC equipment had a Biorad Aminex HPX-87H column for organic acid analysis and a refractometric detector. Analysis was carried out with 0.005M sulfuric acid as mobile phase, 0.6ml/min flow rate and column temperature of 60° C. The acids quantified were lactic (0.036 to 0.813 g/100g, acetic (0 to 0.068 g/100g, propionic (0 to 0.013 g/100g and butyric (0 to 0.057 g/100g, that are produced during the natural fermentation of cassava starch. Results showed large variation among samples, even within the same region. Some samples exhibited high acid levels, mainly lactic acid, but in these neither propionic nor butyric acids were detected. Absence of butyric acid was not expected because this is an important component of the sour cassava starch aroma, and the lack of this acid may suggest that such samples were produced without the natural fermentation step.

  20. ORGANIC ACIDS CONCENTRATION IN WINE STOCKS AFTER Saccharomyces cerevisiae FERMENTATION

    Directory of Open Access Journals (Sweden)

    V. N. Bayraktar

    2013-04-01

    Full Text Available The biochemical constituents in wine stocks that influence the flavor and quality of wine are investigated in the paper. The tested parameters consist of volume fraction of ethanol, residual sugar, phenolic compounds, tartaric, malic, citric, lactic, acetic acids, titratable acidity and volatile acids. The wine stocks that were received from white and red grape varieties Tairov`s selection were tested. There was a correlation between titratable acidity and volatile acids in the wine stocks from white and red grape varieties. High correlation was also found between lactic and acetic acids, between volatile acids, acetic acid and sugar. It was determined that wine stocks with a high concentration of ethanol originated from those yeast strains of Saccharomyces cerevisiae, in a fermented grape must of high speed of enzyme activity. The taste of wine stocks correlated with the ratio of tartaric to malic acid. Analysis showed significant differences between the varieties of white and red wine stocks in concentrations of organic acids, phenolic compounds, residual sugar, and volume fraction of ethanol. Positive correlation was indicated for both studied groups for volatile acids and acetic acid, tartaric, malic, lactic acids and total sugar. Prospective yeast cultures with high productivity of alcohol (ethanol were selected for winemaking biotechnology.

  1. Processing of Unsaturated Organic Acid Aerosols by Ozone

    Science.gov (United States)

    Aloisio, S.; Donaldson, D. J.; Eliason, T. L.; Cziczo, D.; Vaida, V.

    2002-05-01

    We present results of in-situ studies of the oxidative "processing" of organic aerosols composed of unsaturated organic compounds. Aerosol samples of 2-octenoic acid and undecylenic acid were exposed to approx. 10 mbar ozone in a room temperature, atmospheric pressure flow tube reactor. In-situ spectroscopic probing of the reaction mixture, as well as GC-MS analysis of the flow tube effluent, shows evidence of efficient oxidation of double bonds in the organic species, with production of gas-phase and aerosol phase ozonolysis products.

  2. Comparative analysis of the effect of pretreating aspen wood with aqueous and aqueous-organic solutions of sulfuric and nitric acid on its reactivity during enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Dotsenko, Gleb; Osipov, D. O.; Zorov, I. N.

    2016-01-01

    The effect of aspen wood pretreatment methods with the use of both aqueous solutions of sulfuric and nitric acids and aqueous-organic solutions (ethanol, butanol) of sulfuric acid (organosolv) on the limiting degree of conversion of this type of raw material into simple sugars during enzymatic...

  3. Weak organic acid stress in Bacillus subtilis

    NARCIS (Netherlands)

    ter Beek, A.S.

    2009-01-01

    Weak organic acids are commonly used food preservatives that protect food products from bacterial contamination. A variety of spore-forming bacterial species pose a serious problem to the food industry by causing extensive food spoilage or even food poisoning. Understanding the mechanisms of

  4. Comparing the Effect of Diets Treated with Different Organic Acids ...

    African Journals Online (AJOL)

    An experiment was conducted to compare the growth and economics of adding organic acids to diets of broiler chickens. The organic acids were sorbic benzoic lactic and propionic acids. 150 day old Hubbard chicks were used. There were five treatments. Diet 1 which served as control contained no organic acid. Diets 2, 3 ...

  5. Energy densification of biomass-derived organic acids

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, M. Clayton; van Walsum, G. Peter; Schwartz, Thomas J.; van Heiningen, Adriaan

    2013-01-29

    A process for upgrading an organic acid includes neutralizing the organic acid to form a salt and thermally decomposing the resulting salt to form an energy densified product. In certain embodiments, the organic acid is levulinic acid. The process may further include upgrading the energy densified product by conversion to alcohol and subsequent dehydration.

  6. Analysis of organic acids and phenols of interest in the wine industry using Langmuir-Blodgett films based on functionalized nanoparticles.

    Science.gov (United States)

    Medina-Plaza, C; García-Cabezón, C; García-Hernández, C; Bramorski, C; Blanco-Val, Y; Martín-Pedrosa, F; Kawai, T; de Saja, J A; Rodríguez-Méndez, M L

    2015-01-01

    A chemically modified electrode consisting of Langmuir-Blodgett (LB) films of n-dodecanethiol functionalized gold nanoparticles (SDODAuNP-LB), was investigated as a voltammetric sensor of organic and phenolic acids of interest in the wine industry. The nanostructured films demonstrated interfacial properties being able to detect the main organic acids present in grapes and wines (tartaric, malic, lactic and citric). Compared to a bare ITO electrode, the modified electrodes exhibited a shift of the reduction potential in the less positive direction and a marked enhancement in the current response. Moreover, the increased electrocatalytic properties made it possible to distinguish between the different dissociable protons of polyprotic acids. The SDODAuNP-LB sensor was also able to provide enhanced responses toward aqueous solutions of phenolic acids commonly found in wines (caffeic and gallic acids). The presence of nanoparticles increased drastically the sensitivity toward organic acids and phenolic compounds. Limits of detection as low as 10(-6) mol L(-1) were achieved. Efficient catalytic activity was also observed in mixtures of phenolic acid/tartaric in the range of pHs typically found in wines. In such mixtures, the electrode was able to provide simultaneous information about the acid and the phenol concentrations with a complete absence of interferences. The excellent sensing properties shown by these sensors could be attributed to the electrocatalytic properties of the nanoparticles combined with the high surface to volume ratio and homogeneity provided by the LB technique used for the immobilization. Moreover, the LB technique also provided an accurate method to immobilize the gold nanoparticles giving rise to stable and reproducible sensors showing repeatability lower than 2% and reproducibility lower than 4% for all the compounds analyzed. Copyright © 2014. Published by Elsevier B.V.

  7. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    Science.gov (United States)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  8. Economics of feeding drinking water containing organic acids to ...

    African Journals Online (AJOL)

    A feeding trial was conducted to determine the economic effect of acidifying drinking water of broiler chickens with organic acids. The organic acids were acetic, butyric, citric and formic acids, each offered at 0.25%. The control did not contain any of the acids. One hundred and fifty (150) day old AborAcre - plus chicks were ...

  9. Comparative analysis of QSAR models for predicting pK(a) of organic oxygen acids and nitrogen bases from molecular structure.

    Science.gov (United States)

    Yu, Haiying; Kühne, Ralph; Ebert, Ralf-Uwe; Schüürmann, Gerrit

    2010-11-22

    For 1143 organic compounds comprising 580 oxygen acids and 563 nitrogen bases that cover more than 17 orders of experimental pK(a) (from -5.00 to 12.23), the pK(a) prediction performances of ACD, SPARC, and two calibrations of a semiempirical quantum chemical (QC) AM1 approach have been analyzed. The overall root-mean-square errors (rms) for the acids are 0.41, 0.58 (0.42 without ortho-substituted phenols with intramolecular H-bonding), and 0.55 and for the bases are 0.65, 0.70, 1.17, and 1.27 for ACD, SPARC, and both QC methods, respectively. Method-specific performances are discussed in detail for six acid subsets (phenols and aromatic and aliphatic carboxylic acids with different substitution patterns) and nine base subsets (anilines, primary, secondary and tertiary amines, meta/para-substituted and ortho-substituted pyridines, pyrimidines, imidazoles, and quinolines). The results demonstrate an overall better performance for acids than for bases but also a substantial variation across subsets. For the overall best-performing ACD, rms ranges from 0.12 to 1.11 and 0.40 to 1.21 pK(a) units for the acid and base subsets, respectively. With regard to the squared correlation coefficient r², the results are 0.86 to 0.96 (acids) and 0.79 to 0.95 (bases) for ACD, 0.77 to 0.95 (acids) and 0.85 to 0.97 (bases) for SPARC, and 0.64 to 0.87 (acids) and 0.43 to 0.83 (bases) for the QC methods, respectively. Attention is paid to structural and method-specific causes for observed pitfalls. The significant subset dependence of the prediction performances suggests a consensus modeling approach.

  10. Analysis of organic acids and phenols of interest in the wine industry using Langmuir–Blodgett films based on functionalized nanoparticles

    International Nuclear Information System (INIS)

    Medina-Plaza, C.; García-Cabezón, C.; García-Hernández, C.; Bramorski, C.; Blanco-Val, Y.; Martín-Pedrosa, F.; Kawai, T.; Saja, J.A. de; Rodríguez-Méndez, M.L.

    2015-01-01

    Highlights: • For the first time functionalized NPs immobilized in LB films have been used as voltammetric sensors. • Films showed excellent electrocatalytic properties toward phenols and acids found in wines. • Improved performance is due to combination of electrocatalytic NPs with the high surface/volume of LB films. • The potential applications in the wine industry have been evidenced. - Abstract: A chemically modified electrode consisting of Langmuir–Blodgett (LB) films of n-dodecanethiol functionalized gold nanoparticles (S DOD AuNP-LB), was investigated as a voltammetric sensor of organic and phenolic acids of interest in the wine industry. The nanostructured films demonstrated interfacial properties being able to detect the main organic acids present in grapes and wines (tartaric, malic, lactic and citric). Compared to a bare ITO electrode, the modified electrodes exhibited a shift of the reduction potential in the less positive direction and a marked enhancement in the current response. Moreover, the increased electrocatalytic properties made it possible to distinguish between the different dissociable protons of polyprotic acids. The S DOD AuNP-LB sensor was also able to provide enhanced responses toward aqueous solutions of phenolic acids commonly found in wines (caffeic and gallic acids). The presence of nanoparticles increased drastically the sensitivity toward organic acids and phenolic compounds. Limits of detection as low as 10 −6 mol L −1 were achieved. Efficient catalytic activity was also observed in mixtures of phenolic acid/tartaric in the range of pHs typically found in wines. In such mixtures, the electrode was able to provide simultaneous information about the acid and the phenol concentrations with a complete absence of interferences. The excellent sensing properties shown by these sensors could be attributed to the electrocatalytic properties of the nanoparticles combined with the high surface to volume ratio and homogeneity

  11. Analysis of organic acids and phenols of interest in the wine industry using Langmuir–Blodgett films based on functionalized nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Plaza, C. [Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid (Spain); García-Cabezón, C. [Department of Materials Science, Engineers School, Universidad de Valladolid (Spain); García-Hernández, C.; Bramorski, C. [Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid (Spain); Blanco-Val, Y.; Martín-Pedrosa, F. [Department of Materials Science, Engineers School, Universidad de Valladolid (Spain); Kawai, T. [Department of Industrial Chemistry, Tokyo University of Science (Japan); Saja, J.A. de [Department of Condensed Matter Physics, Universidad de Valladolid (Spain); Rodríguez-Méndez, M.L., E-mail: mluz@eii.uva.es [Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid (Spain)

    2015-01-01

    Highlights: • For the first time functionalized NPs immobilized in LB films have been used as voltammetric sensors. • Films showed excellent electrocatalytic properties toward phenols and acids found in wines. • Improved performance is due to combination of electrocatalytic NPs with the high surface/volume of LB films. • The potential applications in the wine industry have been evidenced. - Abstract: A chemically modified electrode consisting of Langmuir–Blodgett (LB) films of n-dodecanethiol functionalized gold nanoparticles (S{sub DOD}AuNP-LB), was investigated as a voltammetric sensor of organic and phenolic acids of interest in the wine industry. The nanostructured films demonstrated interfacial properties being able to detect the main organic acids present in grapes and wines (tartaric, malic, lactic and citric). Compared to a bare ITO electrode, the modified electrodes exhibited a shift of the reduction potential in the less positive direction and a marked enhancement in the current response. Moreover, the increased electrocatalytic properties made it possible to distinguish between the different dissociable protons of polyprotic acids. The S{sub DOD}AuNP-LB sensor was also able to provide enhanced responses toward aqueous solutions of phenolic acids commonly found in wines (caffeic and gallic acids). The presence of nanoparticles increased drastically the sensitivity toward organic acids and phenolic compounds. Limits of detection as low as 10{sup −6} mol L{sup −1} were achieved. Efficient catalytic activity was also observed in mixtures of phenolic acid/tartaric in the range of pHs typically found in wines. In such mixtures, the electrode was able to provide simultaneous information about the acid and the phenol concentrations with a complete absence of interferences. The excellent sensing properties shown by these sensors could be attributed to the electrocatalytic properties of the nanoparticles combined with the high surface to volume ratio

  12. The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis

    International Nuclear Information System (INIS)

    Chapman, Pippa J.; Clark, Joanna M.; Reynolds, Brian; Adamson, John K.

    2008-01-01

    Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer. - Seasonal variations in soil solution ANC is controlled by seasonal variations in seasalt deposition and production of dissolved organic acids

  13. Effect of organic acids on shrimp pathogen, Vibrio harveyi.

    Science.gov (United States)

    Mine, Saori; Boopathy, Raj

    2011-07-01

    Shrimp farming accounts for more than 40% of the world shrimp production. Luminous vibriosis is a shrimp disease that causes major economic losses in the shrimp industry as a result of massive shrimp kills due to infection. Some farms in the South Asia use antibiotics to control Vibrio harveyi, a responsible pathogen for luminous vibriosis. However, the antibiotic-resistant strain was found recently in many shrimp farms, which makes it necessary to develop alternative pathogen control methods. Short-chain fatty acids are metabolic products of organisms, and they have been used as food preservatives for a long time. Organic acids are also commonly added in feeds in animal husbandry, but not in aquaculture. In this study, growth inhibitory effects of short-chain fatty acids, namely formic acid, acetic acid, propionic acid, and butyric acid, on V. harveyi were investigated. Among four acids, formic acid showed the strongest inhibitory effect followed by acetic acid, propionic acid, and butyric acid. The minimum inhibitory concentration (MIC) of 0.035% formic acid suppressed growth of V. harveyi. The major inhibitory mechanism seems to be the pH effect of organic acids. The effective concentration 50 (EC50) values at 96 h inoculation for all organic acids were determined to be 0.023, 0.041, 0.03, and 0.066% for formic, acetic, propionic, and butyric acid, respectively. The laboratory study results are encouraging to formulate shrimp feeds with organic acids to control vibrio infection in shrimp aquaculture farms.

  14. Acidic organic compounds in beverage, food, and feed production.

    Science.gov (United States)

    Quitmann, Hendrich; Fan, Rong; Czermak, Peter

    2014-01-01

    Organic acids and their derivatives are frequently used in beverage, food, and feed production. Acidic additives may act as buffers to regulate acidity, antioxidants, preservatives, flavor enhancers, and sequestrants. Beneficial effects on animal health and growth performance have been observed when using acidic substances as feed additives. Organic acids could be classified in groups according to their chemical structure. Each group of organic acids has its own specific properties and is used for different applications. Organic acids with low molecular weight (e.g. acetic acid, lactic acid, and citric acid), which are part of the primary metabolism, are often produced by fermentation. Others are produced more economically by chemical synthesis based on petrochemical raw materials on an industrial scale (e.g. formic acid, propionic and benzoic acid). Biotechnology-based production is of interest due to legislation, consumer demand for natural ingredients, and increasing environmental awareness. In the United States, for example, biocatalytically produced esters for food applications can be labeled as "natural," whereas identical conventional acid catalyst-based molecules cannot. Natural esters command a price several times that of non-natural esters. Biotechnological routes need to be optimized regarding raw materials and yield, microorganisms, and recovery methods. New bioprocesses are being developed for organic acids, which are at this time commercially produced by chemical synthesis. Moreover, new organic acids that could be produced with biotechnological methods are under investigation for food applications.

  15. Organic acids in cloud water and rainwater at a mountain site in acid rain areas of South China.

    Science.gov (United States)

    Sun, Xiao; Wang, Yan; Li, Haiyan; Yang, Xueqiao; Sun, Lei; Wang, Xinfeng; Wang, Tao; Wang, Wenxing

    2016-05-01

    To investigate the chemical characteristics of organic acids and to identify their source, cloud water and rainwater samples were collected at Mount Lu, a mountain site located in the acid rain-affected area of south China, from August to September of 2011 and March to May of 2012. The volume-weighted mean (VWM) concentration of organic acids in cloud water was 38.42 μeq/L, ranging from 7.45 to 111.46 μeq/L, contributing to 2.50 % of acidity. In rainwater samples, organic acid concentrations varied from 12.39 to 68.97 μeq/L (VWM of 33.39 μeq/L). Organic acids contributed significant acidity to rainwater, with a value of 17.66 %. Formic acid, acetic acid, and oxalic acid were the most common organic acids in both cloud water and rainwater. Organic acids had an obviously higher concentration in summer than in spring in cloud water, whereas there was much less discrimination in rainwater between the two seasons. The contribution of organic acids to acidity was lower during summer than during spring in both cloud water (2.20 % in summer vs 2.83 % in spring) and rainwater (12.24 % in summer vs 19.89 % in spring). The formic-to-acetic acid ratio (F/A) showed that organic acids were dominated by primary emissions in 71.31 % of the cloud water samples and whole rainwater samples. Positive matrix factorization (PMF) analysis determined four factors as the sources of organic acids in cloud water, including biogenic emissions (61.8 %), anthropogenic emissions (15.28 %), marine emissions (15.07 %) and soil emissions (7.85 %). The findings from this study imply an indispensable role of organic acids in wet deposition, but organic acids may have a limited capacity to increase ecological risks in local environments.

  16. Separation and recovery of organic acids from fermented kitchen ...

    African Journals Online (AJOL)

    Organic acids produced from anaerobic digestion of kitchen waste were recovered using a new integrated method which consisted of freezing and thawing, centrifugation, filtration and evaporation. The main organic acid produced was lactic acid (98%). After the freezing and thawing process, 73% of the total suspended ...

  17. Formation of organic acids from trace carbon in acidic oxidizing media

    International Nuclear Information System (INIS)

    Terrassier, C.

    2003-01-01

    Carbon 14 does not fully desorb as CO 2 during the hot concentrated nitric acid dissolution step of spent nuclear fuel reprocessing: a fraction is entrained in solution into the subsequent process steps as organic species. The work described in this dissertation was undertaken to identify the compounds arising from the dissolution in 3 N nitric acid of uranium carbides (selected as models of the chemical form of carbon 14 in spent fuel) and to understand their formation and dissolution mechanism. The compounds were present at traces in solution, and liquid-solid extraction on a specific stationary phase (porous graphite carbon) was selected to concentrate the monoaromatic poly-carboxylic acids including mellitic acid, which is mentioned in the literature but has not been formally identified. The retention of these species and of oxalic acid - also cited in the literature - was studied on this stationary phase as a function of the mobile phase pH, revealing an ion exchange retention mechanism similar to the one observed for benzyltrimethylammonium polystyrene resins. The desorption step was then optimized by varying the eluent pH and ionic strength. Mass spectrometry analysis of the extracts identified acetic acid, confirmed the presence of mellitic acid, and revealed compounds of high molecular weight (about 200 g/mol); the presence of oxalic acid was confirmed by combining gas chromatography and mass spectrometry. Investigating the dissolution of uranium and zirconium carbides in nitric acid provided considerable data on the reaction and suggested a reaction mechanism. The reaction is self-catalyzing via nitrous acid, and the reaction rate de pends on the acidity and nitrate ion concentration in solution. Two uranium carbide dissolution mechanisms are proposed: one involves uranium at oxidation state +IV in solution, coloring the dissolution solution dark green, and the other assumes that uranium monocarbide is converted to uranium oxide. The carboxylic acid

  18. The Influence of Mineralogy on Recovering Organic Acids from Mars Analogue Materials Using the One-Pot Derivatization Experiment on the Sample Analysis at Mars(SAM) Instrument Suite

    Science.gov (United States)

    Stalport, Fabien; Glavin, Daniel P.; Eigenbrode, J. L.; Bish, D.; Blake, D.; Coll, P.; Szopa, C.; Buch, A.; McAdam, A.; Dworkin, J. P.; hide

    2012-01-01

    The search for complex organic molecules on Mars, including important biomolecules such as amino acids and carboxylic acids, will require a chemical extraction and a derivatization step to transform these organic compounds into species that are sufficiently volatile to be detected by gas chromatography mass spectrometry (GCMS). We have developed a ''one-pot'' extraction and chemical derivatization protocol using N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF) for the Sample Analysis at Mars (SAM) experiment instrument suite on NASA's the Mars Science Laboratory (MSL) mission. The temperature and duration of the derivatization reaction, pre-concentration of chemical derivatives, and gas chromatographic separation parameters have been optimized under SAM instrument design constraints. MTBSTFA/DMF extraction and derivatization at 300 1C for several minutes of a variety of terrestrial Mars analog materials facilitated the detection of amino acids and carboxylic acids in a surface soil sample collected from the Atacama Desert and a carbonate-rich stromatolite sample from Svalbard. However, the rapid reaction of MTBSTFA with water in several analog materials that contained high abundances of hydrated minerals, and the possible deactivation of derivatized compounds by iron oxides, as detected by XRD/XRF using the CheMin field unit Terra, proved to be highly problematic for the direct extraction of organics using MTBSTFA. The combination of pyrolysis and two different wet-chemical derivatization methods employed by SAM should enable a wide range of organic compounds to be detected by GCMS if present on Mars.

  19. Biobased organic acids production by metabolically engineered microorganisms

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2016-01-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further...... expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high...... performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed...

  20. In-situ methylation of strongly polar organic acids in natural waters supported by ion-pairing agents for headspace GC-MSD analysis

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, P.L.; Walther, W. [Dresden University of Technology, Institute for Groundwater Managemant, Dresden (Germany); Nestler, W. [Institute for Technology and Economics, Department of Civil Engineering and Architecture, Dresden (Germany)

    1998-06-01

    Strongly polar organic substances like halogenated acetic acids have been analyzed in surface water and groundwater in the catchment area of the upper Elbe river in Saxony since 1992. Coming directly from anthropogenic sources like industry, agriculture and indirectly by rainfall, their concentrations can increase up to 100 {mu}g/L in the aquatic environment of this catchment area. A new static headspace GC-MSD method without a manual pre-concentration step is presented to analyze the chlorinated acetic acids relevant to the Elbe river as their volatile methyl esters. Using an ion-pairing agent as modifier for the in-situ methylation of the analytes by dimethylsulfate, a minimal detection limit of 1 {mu}g/L can be achieved. Problems like the thermal degradation of chlorinated acetic acids to halogenated hydrocarbons and changing reaction yields during the headspace methylation, could be effectively reduced. The method has been successfully applied to monitoring bank infiltrate, surface water, groundwater and water works pumped raw water according to health provision principles. (orig.) With 3 figs., 2 tabs., 29 refs.

  1. Uranium leaching using mixed organic acids produced by Aspergillus niger

    International Nuclear Information System (INIS)

    Yong-dong Wang; Guang-yue Li; De-xin Ding; Zhi-xiang Zhou; Qin-wen Deng; Nan Hu; Yan Tan

    2013-01-01

    Both of culture temperature and pH value had impacts on the degree of uranium extraction through changing types and concentrations of mixed organic acids produced by Aspergillus niger, and significant interactions existed between them though pH value played a leading role. And with the change of pH value of mixed organic acids, the types and contents of mixed organic acids changed and impacted on the degree of uranium extraction, especially oxalic acid, citric acid and malic acid. The mean degree of uranium extraction rose to peak when the culture temperature was 25 deg C (76.14 %) and pH value of mixed organic acids was 2.3 (82.40 %) respectively. And the highest one was 83.09 %. The optimal culture temperature (25 deg C) of A. niger for uranium leaching was different from the most appropriate growing temperature (37 deg C). (author)

  2. An Organic Puzzle Using Meldrum's Acid

    Science.gov (United States)

    Crouch, R. David; Holden, Michael S.

    2002-04-01

    Meldrum's acid or 2,2-dimethyl-1,3-dioxane-4,6-dione undergoes a Knoevenagel condensation with formaldehyde to form an active Michael acceptor for a second molecule of Meldrum's acid. The structure of the resulting product is determined by correlation of the products of possible reactions of Meldrum's acid and formaldehyde with the NMR spectrum of the product.

  3. Preparation of fulvic acid and low-molecular organic acids by oxidation of weathered coal humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shinozuka, T.; Ito, A.; Sasaki, O.; Yazawa, Y.; Yamaguchi, T. [Chiba Institute of Technolgy, Chiba (Japan). Dept. of Industrial Chemistry

    2002-07-01

    Weathered coal contains much humic acid and a little fulvic acid. Therefore, the production of fulvic acid, the most valuable humic substance because of its water-solubility, was examined by ozone and hydrogen peroxide oxidation of humic acid extracted form Xinjiang (China) weathered coal. The resulting products of the oxidation were water soluble fulvic acid and organic acids, mainly formic acid and oxalic acid. The product yield of fulvic acid was 20 (C%) and that of organic acids were 39 (C%) for formic and acid 13 (C%) for oxalic acid. The formed fulvic acid showed a higher content of oxygen and carboxyl groups, than those of the extracted one from the original weathered coal.

  4. PCI-GC-MS-MS approach for identification of non-amino organic acid and amino acid profiles.

    Science.gov (United States)

    Luan, Hemi; Yang, Lin; Ji, Fenfen; Cai, Zongwei

    2017-03-15

    Alkyl chloroformate have been wildly used for the fast derivatization of metabolites with amino and/or carboxyl groups, coupling of powerful separation and detection systems, such as GC-MS, which allows the comprehensive analysis of non-amino organic acids and amino acids. The reagents involving n-alkyl chloroformate and n-alcohol are generally employed for providing symmetric labeling terminal alkyl chain with the same length. Here, we developed an asymmetric labeling strategy and positive chemical ionization gas chromatography-tandem mass spectrometry (PCI-GC-MS-MS) approach for determination of non-amino organic acids and amino acids, as well as the short chain fatty acids. Carboxylic and amino groups could be selectively labelled by propyl and ethyl groups, respectively. The specific neutral loss of C 3 H 8 O (60Da), C 3 H 5 O 2 (74Da) and C 4 H 8 O 2 (88Da) were useful in the selective identification for qualitative analysis of organic acids and amino acid derivatives. PCI-GC-MS-MS using multiple reaction monitoring (MRM) was applied for semi-quantification of typical non-amino organic acids and amino acids. This method exhibited a wide range of linear range, good regression coefficient (R 2 ) and repeatability. The relative standard deviation (RSD) of targeted metabolites showed excellent intra- and inter-day precision (chloroformate derivatization. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Dietary preferences of weaned piglets offered diets containing organic acids

    Directory of Open Access Journals (Sweden)

    K. PARTANEN

    2008-12-01

    Full Text Available A preference test and a performance trial were carried out to examine weaned piglets’ feed intake response to diets containing either lactic acid,formic acid,calcium formate,or sodium benzoate (8 g kg-1 feed.In Experiment 1, throughout a 21-d post-weaning period,30 entire litters (306 piglets weaned at the age of 30 d were allowed to choose between two organic-acid-supplemented diets. All of the four different organic-acid-supplemented diets were tested in pairs against each other,and the six possible combinations were lactic acid +formic acid,lactic acid +calcium formate,lactic acid + sodium benzoate,formic acid +calcium formate,formic acid +sodium benzoate,and calcium for-mate +sodium benzoate.Piglets preferred diets supplemented with sodium benzoate to ones supplemented with formic acid or calcium formate.The acceptability of diets supplemented with lactic acid,formic acid,or calcium formate was similar.In Experiment 2,until the age of 58 d,60 piglets from 10 litters weaned at the age of 28 or 38 d were fed non-acidified diets or ones supplemented with lactic acid,formic acid,calcium formate,or sodium benzoate.Feed consumption did not differ between piglets fed non-acidified and those fed organic-acid-supplemented diets. Growth performance was reduced by dietary calcium formate supplementation, while the performance of piglets fed other organic-acid-supplemented diets did not differ significantly from those fed the non-acidified control diet.The frequency of post-weaning diarrhoea was highest in piglets fed diets supplemented with calcium formate and lowest in piglets fed diets supplemented with formic acid.;

  6. Herbal additives and organic acids as antibiotic alternatives in ...

    African Journals Online (AJOL)

    Herbal additives and organic acids as antibiotic alternatives in broiler chickens diet for organic production. ... Significant increase in lactic acid bacteria counts in ileum and cecum of broiler chicken was shown by all treatments as compared to the control at day 21. In comparison to the control, all treatments significantly ...

  7. Production of organic acids in an immobilized cell reactor using ...

    African Journals Online (AJOL)

    Immobilized cell reactor (ICR) was developed as a novel bioreactor to convert hydrolyzed sugars to organic acids. Sugar fermentation by Propionibacterium acid-propionici entraped by calcium alginate was carried out in continuous mode to produce propionic and acetic acids. In continuous fermentation, more than 90 ...

  8. Modeling the influence of organic acids on soil weathering

    Science.gov (United States)

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  9. Profile of preoperative fecal organic acids closely predicts the incidence of postoperative infectious complications after major hepatectomy with extrahepatic bile duct resection: Importance of fecal acetic acid plus butyric acid minus lactic acid gap.

    Science.gov (United States)

    Yokoyama, Yukihiro; Mizuno, Takashi; Sugawara, Gen; Asahara, Takashi; Nomoto, Koji; Igami, Tsuyoshi; Ebata, Tomoki; Nagino, Masato

    2017-10-01

    To investigate the association between preoperative fecal organic acid concentrations and the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection for biliary malignancies. The fecal samples of 44 patients were collected before undergoing hepatectomy with bile duct resection for biliary malignancies. The concentrations of fecal organic acids, including acetic acid, butyric acid, and lactic acid, and representative fecal bacteria were measured. The perioperative clinical characteristics and the concentrations of fecal organic acids were compared between patients with and without postoperative infectious complications. Among 44 patients, 13 (30%) developed postoperative infectious complications. Patient age and intraoperative bleeding were significantly greater in patients with postoperative infectious complications compared with those without postoperative infectious complications. The concentrations of fecal acetic acid and butyric acid were significantly less, whereas the concentration of fecal lactic acid tended to be greater in the patients with postoperative infectious complications. The calculated gap between the concentrations of fecal acetic acid plus butyric acid minus lactic acid gap was less in the patients with postoperative infectious complications (median 43.5 vs 76.1 μmol/g of feces, P = .011). Multivariate analysis revealed that an acetic acid plus butyric acid minus lactic acid gap acid profile (especially low acetic acid, low butyric acid, and high lactic acid) had a clinically important impact on the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection. Copyright © 2017. Published by Elsevier Inc.

  10. Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    M. R. Beaver

    2006-01-01

    Full Text Available Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10 and ketones (C3 and C9 on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed.

  11. Sources and transformation of dissolved and particulate organic nitrogen in the North Pacific Subtropical Gyre indicated by compound-specific δ15N analysis of amino acids

    Science.gov (United States)

    Yamaguchi, Yasuhiko T.; McCarthy, Matthew D.

    2018-01-01

    This study explores the use of compound-specific nitrogen isotopes of amino acids (δ15NAA) of coupled dissolved and particulate organic nitrogen (DON, PON) samples as a new approach to examine relative sources, transformation processes, and the potential coupling of these two major forms of N cycle in the ocean water column. We measured δ15NAA distributions in high-molecular-weight dissolved organic nitrogen (HMW DON) and suspended PON in the North Pacific Subtropical Gyre (NPSG) from surface to mesopelagic depths. A new analytical approach achieved far greater δ15NAA measurement precision for DON than earlier work, allowing us to resolve previously obscured differences in δ15NAA signatures, both with depth and between ON pools. We propose that δ15N values of total hydrolysable amino acids (THAA) represents a proxy for proteinaceous ON δ15N values in DON and PON. Together with bulk δ15N values, this allows δ15N values and changes in bulk, proteinaceous, and ;other-N; to be directly evaluated. These novel measurements suggest three main conclusions. First, the δ15NAA signatures of both surface and mesopelagic HMW DON suggest mainly heterotrophic bacterial sources, with mesopelagic HMW DON bearing signatures of far more degraded material compared to surface material. These results contrast with a previous proposal that HMW DON δ15NAA patterns are essentially ;pre-formed; by cyanobacteria in the surface ocean, undergo little change with depth. Second, different δ15NAA values and patterns of HMW DON vs. suspended PON in the surface NPSG suggest that sources and cycling of these two N reservoirs are surpisingly decoupled. Based on molecular δ15N signatures, we propose a new hypothesis that production of surface HMW DON is ultimately derived from subsurface nitrate, while PON in the mixed layer is strongly linked to N2 fixation and N recycling. In contrast, the comparative δ15NAA signatures of HMW DON vs. suspended PON in the mesopelagic also suggest a

  12. Production of Valuables Organic Acids from Organic Wastes with Hydrothermal Treatment Process

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal

    2009-06-01

    Full Text Available This article reports production of valuables organic acids from the hydrothermal treatment of representative organic wastes and compounds (i. e. domestic sludge, proteinaceous, cellulosic and plastic wastes with or without oxidant (H2O2. Organic acids such as acetic, formic, propionic, succinic and lactic acids were obtained in significant amounts. At 623 K (16.5 MPa, acetic acid of about 26 mg/g-dry waste fish entrails was obtained. This increased to 42 mg/g dry waste fish entrails in the presence of H2O2. Experiments on glucose to represent cellulosic wastes were also carried out, getting acetic acid of about 29 mg/g-glucose. The study was extended to terephthalic acid and glyceraldehyde, reaction intermediates of hydrothermal treatment of PET plastic wastes and glucose, respectively. Studies on temperature dependence of formation of organic acids showed thermal stability of acetic acid, whereas, formic acid decomposed readily under hydrothermal conditions. In general, results demonstrated that the presence of oxidants favored formation of organic acids with acetic acid being the major product. Keywords: hydrothermal treatment, organic acids, organic wastes, oxidant, supercritical water oxidation

  13. Complex Formation of Selected Radionuclides with Ligands Commonly Found in Ground Water: Low Molecular Organic Acids

    DEFF Research Database (Denmark)

    Jensen, Bror Skytte; Jensen, H.

    1985-01-01

    A general approach to the analysis of potentiometric data on complex formation between cations and polybasic amphoteric acids is described. The method is used for the characterisation of complex formation between Cs+, Sr2+, Co2+, La 3+, and Eu3+ with a α-hydroxy acids, tartaric acid and citric ac......, and with the α-amino acids, aspartic acid and L-cysteine. The cations have been chosen as typical components of reactor waste, and the acids because they are often found as products of microbial activity in pits or wherever organic material decays...

  14. Effect of acidic seed on biogenic secondary organic aerosol growth

    Science.gov (United States)

    Czoschke, Nadine M.; Jang, Myoseon; Kamens, Richard M.

    Secondary organic aerosol (SOA) growth in the presence of acid aerosols was studied in twin 500 l Teflon bags and in a 4 m flow reactor. In Teflon bags, isoprene, acrolein and α-pinene were all made to react individually with ozone and exposed to either acid or non-acid inorganic seed aerosols to determine the effect of acid-catalyzed heterogeneous reactions on SOA growth. α-Pinene and ozone were made to react in a flow reactor to assess the immediate effect of mixing an acid aerosol with SOA at high and low relative humidity levels. In all cases, exposure to acid seed aerosol increased the amount of SOA mass produced. Fourier transform infrared spectra of the SOA in acid systems confirmed the transformation of carbonyl functional groups through acid-catalyzed heterogeneous reactions when SOAs formed in acidic environments or were exposed to acidic aerosols. Organic products initially produced from ozonation in the gas phase partition onto the inorganic seed aerosol and react heterogeneously with an acid catalyst forming low vapor pressure products. These acid-catalyzed heterogeneous reactions are implicated in generating the increased SOA mass observed in acidic aerosol systems as they transform predominantly gas phase compounds of high volatility into low vapor pressure predominantly particle phase products.

  15. Reactive Distillation for Esterification of Bio-based Organic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  16. Concentration and fractionation of hydrophobic organic acid constituents from natural waters by liquid chromatography

    Science.gov (United States)

    Thurman, E.M.; Malcolm, R.L.

    1979-01-01

    A scheme is presented which used adsorption chromatography with pH gradient elution and size-exclusion chromatography to concentrate and separate hydrophobic organic acids from water. A review of chromatographic processes involved in the flow scheme is also presented. Organic analytes which appear in each aqueous fraction are quantified by dissolved organic carbon analysis. Hydrophobic organic acids in a water sample are concentrated on a porous acrylic resin. These acids usually constitute approximately 30-50 percent of the dissolved organic carbon in an unpolluted water sample and are eluted with an aqueous eluent (dilute base). The concentrate is then passed through a column of polyacryloylmorpholine gel, which separates the acids into high- and low-molecular-weight fractions. The high- and low-molecular-weight eluates are reconcentrated by adsorption chromatography, then are eluted with a pH gradient into strong acids (predominately carboxylic acids) and weak acids (predominately phenolic compounds). For standard compounds and samples of unpolluted waters, the scheme fractionates humic substances into strong and weak acid fractions that are separated from the low molecular weight acids. A new method utilizing conductivity is also presented to estimate the acidic components in the methanol fraction.

  17. Use of organic acids in acne and skin discolorations therapy

    Directory of Open Access Journals (Sweden)

    Alicja Kapuścińska

    2015-03-01

    Full Text Available Acne is one of the most frequent skin disorders that occurs in puberty, but often adults also have acne. The most important factors responsible for acne are elevated production of sebum by hyperactive sebaceous glands and blockage of the follicle because of hyperkeratosis [14]. The third etiopathogenic factor of acne is excessive microflora reproduction [8]. The most significant bacterium that is responsible for formation of skin lesions is Propionibacterium acnes, a rod-shaped Gram-positive and aerotolerant anaerobic bacterium. It is estimated that P. acnes is responsible for acne in approximately 80% of people aged 11 to 30 [27,40]. Even healed skin lesions can often cause skin discolorations and scar formation [51]. Exfoliating chemical substances that are commonly used in dermatology and cosmetology are organic acids. Exfoliating treatment using organic acids is called “chemical peeling” and consists of controlled application of those substances on the skin [38]. The depth of exfoliation depends on organic acid concentration, type of substance and contact time with the skin [41]. Using exfoliating agents seems to be helpful in excessive keratinization – one of several factors responsible for acne. Moreover, epidermis exfoliation is a popular method of removing skin discoloration [22]. Considering chemical structure, exfoliating substances that are most often used in cosmetology contain alpha-hydroxyacids (glycolic acid, lactic acid, mandelic acid and citric acid, beta-hydroxyacids (salicylic acid and other organic acids, such as trichloroacetic acid and pyruvic acid [47]. In this article, a literature review of use of organic acids in acne and skin discoloration therapy is presented.

  18. The non-participation of organic sulphur in acid mine drainage generation.

    Science.gov (United States)

    Casagrande, D J; Finkelman, R B; Caruccio, F T

    1989-12-01

    Acid mine drainage is commonly associated with land disturbances that encounter and expose iron sulphides to oxidising atmospheric conditions. The attendant acidic conditions solubilise a host of trace metals. Within this flow regime the potential exists to contaminate surface drinking water supplies with a variety of trace materials. Accordingly, in evaluating the applications for mines located in the headwaters of water sheds, the pre-mining prediction of the occurrence of acid mine drainage is of paramount importance.There is general agreement among investigators that coal organic sulphur is a nonparticipant in acid mine drainage generation; however, there is no scientific documentation to support this concensus. Using simulated weathering, kinetic, mass balance, petrographic analysis and a peroxide oxidation procedure, coal organic sulphur is shown to be a nonparticipant in acid mine drainage generation. Calculations for assessing the acid-generating potential of a sedimentary rock should not include organic sulphur content.

  19. Acoustic properties of organic acid mixtures in water

    Science.gov (United States)

    Macavei, I.; Petrisor, V.; Auslaender, D.

    1974-01-01

    The variation of the rate of propagation of ultrasounds in organic acid mixtures in water points to structural changes caused by interactions that take place under conditions of thermal agitation, at different acid concentrations. At the same time, a difference is found in the changes in velocity as a function of the length of the carbon chain of the acids in the mixture as a result of their effect on the groups of water molecules associated by hydrogen bonds.

  20. Association mapping of main tomato fruit sugars and organic acids

    Directory of Open Access Journals (Sweden)

    Jiantao Zhao

    2016-08-01

    Full Text Available Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of S. lycopersicum (123 accessions and S. lycopersicum var cerasiforme (51 accessions to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS over two years using the mixed linear model (MLM. We detected a total of 58 significantly associated loci (P<0.001 for the 17 sugars and organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding.

  1. Separation and recovery of organic acids from fermented kitchen ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... Figure 1 shows the recovery process of organic acids from fermen- ted kitchen waste. ... freezing process was carried out using a deep freezer at -30°C for overnight. .... few factors which affect the production of lactic acid in the.

  2. Metabolic evolution of Escherichia coli strains that produce organic acids

    Science.gov (United States)

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  3. Effect of fermentation period on the organic acid and amino acid contents of Ogiri from castor oil bean seeds

    Directory of Open Access Journals (Sweden)

    Ojinnaka, M-T. C.

    2013-01-01

    Full Text Available Aims: To monitor the changes in the concentration of organic acid and amino acid contents during the fermentation of castor oil bean seed into ogiri.Methodology and results: In this study, ogiri, a Nigerian fermented food condiment was prepared from castor oil bean using Bacillus subtilis as a monoculture starter for the production of three different fermented castor oil bean condiment samples: B1 (0% NaCl/lime, B2 (2% NaCl, B3 (3% lime. Variations in the composition of the castor oil bean with fermentation over 96 h periods were evaluated for organic acid and amino acid contents using High Performance Liquid Chromatography. Organic acids were detected in the fermented castor oil bean samples as fermentation period increased to 96 h. Organic acids identified were oxalic, citric, tartaric, malic, succinic, lactic, formic, acetic, propionic and butyric acids. The lactic acid contents in sample B1 (0% NaCl/lime decreased initially and then increased as the fermentation period progressed. The value at 96 h fermentation was 1.336 µg/mL as against 0.775 µg/mL at 0 h fermentation. Sample B3 (3% lime had lactic acid content that increased as fermentation period increased with lactic acid content of 1.298 µg/mL at 96 h fermentation. The acetic acid content of sample B1 increased as fermentation progressed and at 96 h fermentation, its value was 1.204 µg/mL while those of B2 and B3 were 0.677 µg/mL and 1.401 µg/mL respectively. The three fermented castor oil bean samples also contained sufficient amount of amino acids. Sample B1 had the highest values in isoleucine glycine and histidine with values 1.382 µg/mL, 0.814 µg/mL and 1.022 µg/mL respectively while sample B2 had the highest value in leucine content with 0.915 µg/mL at 96 h fermentation, closely followed by sample B3 and B1 with 0.798 µg/mL and 0.205 µg/mL respectively. The results of amino acid analysis indicated a high concentration of all amino acids at 96 h of fermentation

  4. On the solubility of nicotinic acid and isonicotinic acid in water and organic solvents

    International Nuclear Information System (INIS)

    Abraham, Michael H.; Acree, William E.

    2013-01-01

    Highlights: ► Solubilities of nicotinic acid and isonicotinic acids in organicsolvents have been determined. ► Solubilities are used to calculate Abraham descriptors for the two acids. ► These descriptors then yield water-solvent and gas-solvent partitions into numerous solvents. ► The solubility of the neutral acids in water is obtained. ► The method is straightforward and can be applied to any set of compound solubilities. -- Abstract: We have determined the solubility of nicotinic acid in four solvents and the solubility of isonicotinic acid in another four solvents. These results, together with literature data on the solubility of nicotinic acid in five other organic solvents and isonicotinic acid in four other organic solvents, have been analyzed through two linear Gibbs energy relationships in order to extract compound properties, or descriptors, that encode various solute–solvent interactions. The descriptors for nicotinic acid and isonicotinic acid can then be used in known equations for partition of solutes between water and organic solvents to predict partition coefficients and then further solubility in a host of organic solvents, as well as to predict a number of other physicochemical properties

  5. Alleviating soil acidity through plant organic compounds

    Directory of Open Access Journals (Sweden)

    Anderson R. Meda

    2001-06-01

    Full Text Available A laboratory experiment was conducted to evaluate the effects of water soluble plant extracts on soil acidity. The plant materials were: black oat, oil seed radish, white and blue lupin, gray and dwarf mucuna, Crotalaria spectabilis and C. breviflora, millet, pigeon pea, star grass, mato grosso grass, coffee leaves, sugar cane leaves, rice straw, and wheat straw. Plant extracts were added on soil surface in a PVC soil column at a rate of 1.0 ml min-1. Both soil and drainage water were analyzed for pH, Ca, Al, and K. Plant extracts applied on the soil surface increased soil pH, exchangeable Ca ex and Kex and decreased Al ex. Oil seed radish, black oat, and blue lupin were the best and millet the worst materials to alleviate soil acidity. Oil seed radish markedly increased Al in the drainage water. Chemical changes were associated with the concentrations of basic cations in the plant extract: the higher the concentration the greater the effects in alleviating soil acidity.Foram conduzidos experimentos de laboratórios para avaliar os efeitos de extratos de plantas solúveis em água na acidez do solo. Os materiais de plantas foram: aveia preta, nabo, tremoço branco e azul, mucuna cinza e anã, Crotalaria spectabilis e C. breviflora, milheto, guandu, grama estrela, grama mato grosso, folhas de café, folhas de cana-de-açúcar, palhada de arroz e palhada de trigo. Foi utilizado o seguinte procedimento para o extrato da planta solúvel em água: pesar 3g de material de planta, adicionar 150 ml de água, agitar por 8h e filtrar. Os extratos de plantas foram adicionados na superfície do solo em uma coluna de PVC (1 ml min-1. Após, adicionou-se água deionizada em quantidade equivalente a três volumes de poros. Os extratos de plantas aumentaram o pH, Ca e K trocável e diminuíram Al. Nabo, aveia preta e tremoço azul foram os melhores e milheto o pior material para amenizar a acidez do solo. Nabo aumentou Al na água de drenagem. As altera

  6. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids

    Directory of Open Access Journals (Sweden)

    Hongbin Lin

    2018-05-01

    Full Text Available Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC. Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln, glutamic acid (Glu, aspartic acid (Asp and asparagines (Asn were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  7. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids.

    Science.gov (United States)

    Lin, Hongbin; Yu, Xiaoyu; Fang, Jiaxing; Lu, Yunhao; Liu, Ping; Xing, Yage; Wang, Qin; Che, Zhenming; He, Qiang

    2018-05-29

    Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC). Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln), glutamic acid (Glu), aspartic acid (Asp) and asparagines (Asn) were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  8. Corrosion of alloy C-22 in organic acid solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Rodriguez, Martin A.; Giordano, Celia M.

    2007-01-01

    Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90 C degrees. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric acids. Results show that the corrosion rate of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and Picric acids showed a slightly higher corrosion rate, and Acetic acid maintained the corrosion rate of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions. Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids. (author) [es

  9. Crystal structures of seven molecular salts derived from benzylamine and organic acidic components

    Science.gov (United States)

    Wen, Xianhong; Jin, Xiunan; Lv, Chengcai; Jin, Shouwen; Zheng, Xiuqing; Liu, Bin; Wang, Daqi; Guo, Ming; Xu, Weiqiang

    2017-07-01

    Cocrystallization of the commonly available organic amine, benzylamine, with a series of organic acids gave a total of seven molecular salts with the compositions: (benzylamine): (p-toluenesulfonic acid) (1) [(HL)+ · (tsa-)], (benzylamine): (o-nitrobenzoic acid) (2) [(HL+) · (onba)-], (benzylamine): (3,4-methylenedioxybenzoic acid) (3) [(HL+) · (mdba-)], (benzylamine): (mandelic acid) (4) [(HL+) · (mda-)], (benzylamine): (5-bromosalicylic acid)2(5) [(HL+) · (bsac-) · (Hbsac)], (benzylamine): (m-phthalic acid) (6) [(HL+) · (Hmpta-)], and (benzylamine)2: (trimesic acid) (7) [(HL+)2 · (Htma2-)]. The seven salts have been characterised by X-ray diffraction technique, IR, and elemental analysis, and the melting points of all the salts were also reported. And their structural and supramolecular aspects are fully analyzed. The result reveals that among the seven investigated crystals the NH2 groups in the benzylamine moieties are protonated when the organic acids are deprotonated, and the crystal packing is interpreted in terms of the strong charge-assisted Nsbnd H⋯O hydrogen bond formation between the ammonium and the deprotonated acidic groups. Except the Nsbnd H⋯O hydrogen bond, the Osbnd H⋯O hydrogen bonds (charge assisted or neutral) were also found at the salts 4-7. Further analysis of the crystal packing of the salts indicated that a different family of additional CHsbnd O/CH2sbnd O, CHsbnd π/CH2sbnd π, Osbnd O, and Osbnd Cπ associations contribute to the stabilization and expansion of the total high-dimensional (2D-3D) framework structures. For the coexistence of the various weak nonbonding interactions these structures adopted homo or hetero supramolecular synthons or both. Some classical supramolecular synthons, such as R42(8), R43(10) and R44(12), usually observed in organic solids of organic acids with amine, were again shown to be involved in constructing most of these hydrogen bonding networks.

  10. Sugars, organic acids, minerals and lipids in jabuticaba

    Directory of Open Access Journals (Sweden)

    Annete de Jesus Boari Lima

    2011-06-01

    Full Text Available The aim of this work was to determine the sugar, organic acid and mineral compositions of the whole fruit and fractions (skin, pulp and seed of the Paulista (Plinia cauliflora and Sabará (Plinia jaboticaba jabuticaba tree genotypes, as well as the oil compositions of their skin and seeds. High levels of sugar, especially fructose, followed by glucose and sucrose, were encountered in the fruit. In the Paulista genotype, higher levels of total and reducing sugars were found in the pulp and skin, which was not observed when comparing the whole fruit of both genotypes. Five organic acids were found in the whole fruit and in the fractions of the two jabuticaba genotypes in quantitative order: citric acid > succinic acid > malic acid > oxalic acid > acetic acid. Potassium was the most abundant mineral found. This fruit was also shown to be rich in magnesium, phosphorus, calcium and copper. The seed oil had nearly the same constitution as the oil extracted from the skin in both genotypes and the major compounds were an unidentified phytosterol, palmitic, linoleic and oleic acids, and squalene.

  11. Chloroacetic acids - Degradation intermediates of organic matter in forest soil

    Czech Academy of Sciences Publication Activity Database

    Matucha, Miroslav; Gryndler, Milan; Schröder, P.; Forczek, Sándor; Uhlířová, H.; Fuksová, Květoslava; Rohlenová, Jana

    2007-01-01

    Roč. 39, č. 1 (2007), s. 382-385 ISSN 0038-0717 R&D Projects: GA ČR GA522/02/0874; GA ČR GA526/05/0636 Institutional research plan: CEZ:AV0Z50380511 Keywords : trichloroacetic acid * dichloroacetic acid * chlorination * soil organic matter Subject RIV: EF - Botanics Impact factor: 2.580, year: 2007

  12. Fermentation process for the production of organic acids

    Science.gov (United States)

    Hermann, Theron; Reinhardt, James; Yu, Xiaohui; Udani, Russell; Staples, Lauren

    2018-05-01

    This invention relates to improvements in the fermentation process used in the production of organic acids from biological feedstock using bacterial catalysts. The improvements in the fermentation process involve providing a fermentation medium comprising an appropriate form of inorganic carbon, an appropriate amount of aeration and a biocatalyst with an enhanced ability to uptake and assimilate the inorganic carbon into the organic acids. This invention also provides, as a part of an integrated fermentation facility, a novel process for producing a solid source of inorganic carbon by sequestering carbon released from the fermentation in an alkali solution.

  13. Evaluation of different approaches to quantify strong organic acidity and acid-base buffering of organic-rich surface waters in Sweden.

    Science.gov (United States)

    Köhler, Stephan; Hruska, Jakub; Jönsson, Jörgen; Lövgren, Lars; Lofts, Stephen

    2002-11-01

    The role of organic acids in buffering pH in surface waters has been studied using a small brownwater stream (26mg L(-1) TOC) draining a forested catchment in Northern Sweden. Under the conditions of elevated pressure of CO2 stream field pH was changed between 3.5 and 6.1 during the acidification and alkalinization experiment. Acid-base characteristics of the natural organic matter were also determined using a high precision potentiometric method for a concentrated sample from the same stream. We compared the predictions from the Windermere Humic Aqueous Model (WHAM Model V), a model derived from the potentiometric titration (diprotic/monoprotic acid model) and a previously derived triprotic acid model which only uses alkalinity and TOC as input variables. The predicted buffering characteristics of all three models are very similar in the pH range 4.5-7 which suggests that during routine analysis alkalinity and TOC are sufficient to give a good estimate of organic acid anion charge contribution in a large range of surface waters. A slightly adjusted version of WHAM V successfully describes the organic charge contribution in a large number of sampled surface water lakes, which were previously used to calibrate the triprotic model.

  14. Biochar: a green sorbent to sequester acidic organic contaminants

    Science.gov (United States)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2015-04-01

    Biochar is a carbon rich product of biomass pyrolysis that exhibits a high sorption potential towards a wide variety of inorganic and organic contaminants. Because it is a valuable soil additive and a potential carbon sink that can be produced from renewable resources, biochar has gained growing attention for the development of more sustainable remediation strategies. A lot of research efforts have been dedicated to the sorption of hydrophobic contaminants and metals to biochar. Conversely, the understanding of the sorption of acidic organic contaminants remains limited, and questions remain on the influence of biochar characteristics (e.g. ash content) on the sorption behaviour of acidic organic contaminants. To address this knowledge gap, sorption batch experiments were conducted with a series of structurally similar acidic organic contaminants covering a range of dissociation constant (2,4-D, MCPA, 2,4-DB and triclosan). The sorbents selected for experimentation included a series of 10 biochars covering a range of characteristics, multiwalled carbon nanotubes as model for pure carbonaceous phases, and an activated carbon as benchmark. Overall, sorption coefficient [L/kg] covered six orders of magnitude and generally followed the order 2,4-D pH dependent lipophilicity ratio (i.e. D instead of Kow), ash content and ionic strength are key factors influencing the sorption of acidic organic contaminants to biochars. Overall, the identified factors, as well as the environmental matrix, should be carefully considered when selecting the type of biochar for sequestration purposes.

  15. Effect of inorganic salts on the volatility of organic acids.

    Science.gov (United States)

    Häkkinen, Silja A K; McNeill, V Faye; Riipinen, Ilona

    2014-12-02

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance.

  16. The development of quantitative determination method of organic acids in complex poly herbal extraction

    Directory of Open Access Journals (Sweden)

    I. L. Dyachok

    2016-08-01

    Full Text Available Aim. The development of sensible, economical and expressive method of quantitative determination of organic acids in complex poly herbal extraction counted on izovaleric acid with the use of digital technologies. Materials and methods. Model complex poly herbal extraction of sedative action was chosen as a research object. Extraction is composed of these medical plants: Valeriana officinalis L., Crataégus, Melissa officinalis L., Hypericum, Mentha piperita L., Húmulus lúpulus, Viburnum. Based on chemical composition of plant components, we consider that main pharmacologically active compounds, which can be found in complex poly herbal extraction are: polyphenolic substances (flavonoids, which are contained in Crataégus, Viburnum, Hypericum, Mentha piperita L., Húmulus lúpulus; also organic acids, including izovaleric acid, which are contained in Valeriana officinalis L., Mentha piperita L., Melissa officinalis L., Viburnum; the aminoacid are contained in Valeriana officinalis L. For the determination of organic acids content in low concentration we applied instrumental method of analysis, namely conductometry titration which consisted in the dependences of water solution conductivity of complex poly herbal extraction on composition of organic acids. Result. The got analytical dependences, which describes tangent lines to the conductometry curve before and after the point of equivalence, allow to determine the volume of solution expended on titration and carry out procedure of quantitative determination of organic acids in the digital mode. Conclusion. The proposed method enables to determine the point of equivalence and carry out quantitative determination of organic acids counted on izovaleric acid with the use of digital technologies, that allows to computerize the method on the whole.

  17. Molecular physiology of weak organic acid stress in Bacillus subtilis

    NARCIS (Netherlands)

    van Beilen, J.W.A.

    2013-01-01

    The mechanism by which weak organic acid (WOA) preservatives inhibit growth of microorganisms may differ between different WOAs and these differences are not well understood. The aim of this thesis has been to obtain a better understanding of the mode of action of these preservatives by which they

  18. Effects of organic acid supplementation on antioxidant capacity and ...

    African Journals Online (AJOL)

    Four commercial organic acids and a reference antibiotic, Neoxyval, were administered to commercial broilers to evaluate the efficacy of these products during pre- and post-challenge with Salmonella enterica subsp. enterica Typhimurium (S. Typhimurium) on selected indicators of their antioxidant status and immune ...

  19. Organic acid production in Aspergillus niger and other filamentous fungi

    NARCIS (Netherlands)

    Odoni, Dorett I.

    2017-01-01

    The aim of the thesis was to increase the understanding of organic acid production in Aspergillus niger and other filamentous fungi, with the ultimate purpose to improve A. niger as biotechnological production host.

    In Chapter 1, the use of microbial

  20. Relationship between plant growth and organic acid exudates from ...

    African Journals Online (AJOL)

    Plant–mycorrhizal interaction is an important association in the ecosystem with significant impacts on the physical, biological and chemical properties of the soil. In the present study, potential relationships that exist between organic acid production by ectomycorrhizal pine seedlings and plant parameters in the absence of ...

  1. Effects of organic acid and probiotic on performance and gut ...

    African Journals Online (AJOL)

    user

    2015-12-02

    Dec 2, 2015 ... The effects of organic acid, probiotic and a combination of the two on performance and gut .... −3 dilution level. One mL of the dilution was pipetted and inoculated on .... animal by stimulating synthesis of vitamins of the B-group, improving .... Cowan and Steel's Manual for Identification of Medical Bacteria.

  2. Side-by-side comparison of techniques for analyzing organic acids, total organic carbon, and anions. Final report

    International Nuclear Information System (INIS)

    Byers, W.A.; Richards, J.; Silva, H.; Miller, M.R.; Palino, G.F.; Wall, P.S.

    1986-09-01

    The objective of this project was to compare the organic acids sampling and analysis methods of Westinghouse and NWT Corporation. Sampling was performed at three sites, chosen to represent units with high, intermediate and low levels of organic contamination. To check the precision of each method, concurrent sampling was employed. To check the accuracy of each method, additions of standard organic solutions were made at one of the sites. Inorganic anions were also analyzed at each site by each contractor. Theoretical values of cation conductivity were calculated from organic and inorganic analytical data and compared to values measured onsite at the time of sampling. Total organic carbon (TOC) analyses were performed to evaluate different instruments and sampling techniques, as well as provide additional information on the relationship between TOC and organic acids concentrations. It was concluded that either of the organic acid sampling/analysis techniques used by the contractors can produce reliable results. TOC samples lose organics content with storage time and should be analyzed no later than one week after they are taken; if at all possible, they should be stored in a refrigerated condition. State-of-the art techniques for TOC sampling and analysis can produce results varying by 20 to 50 ppB for levels in the range of 50 to 120 ppB; any proposed limits for TOC should be reviewed in that light. Results of anion analyses are quite sensitive to sampling and analytical techniques. Reasonable agreement between calculated and measured values of cation conductivity suggests that both contractors had accurately determined all major anionic species

  3. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    Science.gov (United States)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase

  4. An ion-neutral model to investigate chemical ionization mass spectrometry analysis of atmospheric molecules - application to a mixed reagent ion system for hydroperoxides and organic acids

    Science.gov (United States)

    Heikes, Brian G.; Treadaway, Victoria; McNeill, Ashley S.; Silwal, Indira K. C.; O'Sullivan, Daniel W.

    2018-04-01

    An ion-neutral chemical kinetic model is described and used to simulate the negative ion chemistry occurring within a mixed-reagent ion chemical ionization mass spectrometer (CIMS). The model objective was the establishment of a theoretical basis to understand ambient pressure (variable sample flow and reagent ion carrier gas flow rates), water vapor, ozone and oxides of nitrogen effects on ion cluster sensitivities for hydrogen peroxide (H2O2), methyl peroxide (CH3OOH), formic acid (HFo) and acetic acid (HAc). The model development started with established atmospheric ion chemistry mechanisms, thermodynamic data and reaction rate coefficients. The chemical mechanism was augmented with additional reactions and their reaction rate coefficients specific to the analytes. Some existing reaction rate coefficients were modified to enable the model to match laboratory and field campaign determinations of ion cluster sensitivities as functions of CIMS sample flow rate and ambient humidity. Relative trends in predicted and observed sensitivities are compared as instrument specific factors preclude a direct calculation of instrument sensitivity as a function of sample pressure and humidity. Predicted sensitivity trends and experimental sensitivity trends suggested the model captured the reagent ion and cluster chemistry and reproduced trends in ion cluster sensitivity with sample flow and humidity observed with a CIMS instrument developed for atmospheric peroxide measurements (PCIMSs). The model was further used to investigate the potential for isobaric compounds as interferences in the measurement of the above species. For ambient O3 mixing ratios more than 50 times those of H2O2, O3-(H2O) was predicted to be a significant isobaric interference to the measurement of H2O2 using O2-(H2O2) at m/z 66. O3 and NO give rise to species and cluster ions, CO3-(H2O) and NO3-(H2O), respectively, which interfere in the measurement of CH3OOH using O2-(CH3OOH) at m/z 80. The CO3-(H2O

  5. Organic [6,6]-phenyl-C61-butyric-acid-methyl-ester field effect transistors: Analysis of the contact properties by combined photoemission spectroscopy and electrical measurements

    Science.gov (United States)

    Scheinert, S.; Grobosch, M.; Sprogies, J.; Hörselmann, I.; Knupfer, M.; Paasch, G.

    2013-05-01

    Carrier injection barriers determined by photoemission spectroscopy for organic/metal interfaces are widely accepted to determine the performance of organic field-effect transistors (OFET), which strongly depends on this interface at the source/drain contacts. This assumption is checked here in detail, and a more sophisticated connection is presented. According to the preparation process described in our recently published article [S. Scheinert, J. Appl. Phys. 111, 064502 (2012)], we prepared PCBM/Au and PCBM/Al samples to characterize the interface by photoemission and electrical measurements of PCBM based OFETs with bottom and top (TOC) contacts, respectively. The larger drain currents for TOC OFETs indicate the presence of Schottky contacts at source/drain for both metals. The hole injection barrier as determined by photoemission is 1.8 eV for both Al and Au. Therefore, the electron injection barriers are also the same. In contrast, the drain currents are orders of magnitude larger for the transistors with the Al contacts than for those with the Au contacts. We show that indeed the injection is determined by two other properties measured also by photoemission, the (reduced) work functions, and the interface dipoles, which have different sign for each contact material. In addition, we demonstrate by core-level and valence band photoemission that the deposition of gold as top contact onto PCBM results in the growth of small gold clusters. With increasing gold coverage, the clusters grow inside and begin to form a metallic, but not uniform, closed film onto PCBM.

  6. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    Directory of Open Access Journals (Sweden)

    F. Riccobono

    2012-10-01

    Full Text Available Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to the formation and early growth of nucleated particles. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two chemical ionization mass spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.

    New analysis methods were applied to the data collected with a condensation particle counter battery and a scanning mobility particle sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ, defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is already dominated by organic compounds at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size, supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particle growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. Finally, the size resolved growth analysis indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.

  7. Acid-base properties of Baltic Sea dissolved organic matter

    Science.gov (United States)

    Hammer, Karoline; Schneider, Bernd; Kuliński, Karol; Schulz-Bull, Detlef E.

    2017-09-01

    Calculations related to the marine CO2 system that are based on alkalinity data may be strongly biased if the contributions of organic compounds are ignored. In coastal seas, concentrations of dissolved organic matter (DOM) are frequently high and alkalinity from inorganic compounds is low. In this study, based on measurements of total alkalinity, total CO2, and pH, we determined the organic alkalinity, Aorg, in water from the central Baltic Sea. The maximum Aorg measured in the surface mixed layer during the spring bloom was > 50 μmol/kg-SW but the Aorg decreased with depth and approached zero below the permanent halocline. This behavior could be attributed to the decreased pH of deeper water layers. The data were used to calculate the bulk dissociation constant, KDOM, for marine DOM and the fraction f of dissolved organic carbon (DOC) that acts as a carrier for acid-base functional groups. The p KDOM (7.27) agreed well with the value (7.34) previously estimated in a preliminary study of organic alkalinity in the Baltic Sea. The fraction of carbon atoms carrying acid-base groups was 17% and was somewhat higher than previously reported (12%). Spike experiments performed using artificial seawater and three different humic/fulvic substances tested whether the acid-base properties of these substances explain the results of our field study. Specifically, Aorg was determined at different concentrations (DOC) of the added humic/fulvic substances. The relationship between Aorg and the DOC concentrations indicated that humic/fulvic substances are more acidic (p KDOM < 6.5) than the bulk DOC natural occurring in the Baltic Sea.

  8. Synthesis, characterization and crystal structures of new organic compounds containing cyanoacrylic acid

    Czech Academy of Sciences Publication Activity Database

    Khalaji, A.D.; Mogheiseh, M.; Eigner, Václav; Dušek, Michal; Chow, T.J.; Maddahi, E.

    2015-01-01

    Roč. 1098, Oct (2015), s. 318-323 ISSN 0022-2860 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : organic compounds * cyanoacrylic acid * single-crystal structure analysis * dye-sensitized solar cells * density functional theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.780, year: 2015

  9. The Acid-Base Balance Between Organic Acids and Circumneutral Ground Waters in Large Peatlands

    Science.gov (United States)

    Siegel, D. I.; Glaser, P. H.; So, J.

    2006-05-01

    Organic acids supply most of the acidity in the surface waters of bogs in peatlands. Yet, the fundamental geochemical properties of peatland organic acids are still poorly known. To assess the geochemical properties of typical organic acid assemblages in peatlands, we used a triprotic analog model for peat pore waters and surface waters in the Glacial Lake Agassiz Peatlands, optimizing on charge balance and calibrated to estimates of mole site density in DOC and triprotic acid dissociation constants. Before the calibration process, all bog waters and 76% of fen waters had more than +20% charge imbalance. After calibration, most electrochemically balanced within 20%. In the best calibration, the mole site denisty of bog DOC was estimated as ~0.05 mmol/mmol C., approximately 6 times smaller than that for fen DOC or the DOC in the fen deeper fen peats that underlie bogs. The three modeled de-protonation constants were; pKa1 = ~3.0, pKa2 = ~4.5 and pKa3 = ~7.0 for the bog DOC, and; pKa1 = ~5.2, pKa2 =~ 6.5 and pKa3 = ~7.0 for the fen DOC. Bog DOC, behaves as a strong acid despite its small mole site density. The DOC in bog runoff can therefore theoretically acidify the surface waters in adjacent fens wherever these waters do not receive sufficient buffering alkalinity from active groundwater seepage.

  10. The Role of Organic Acids on the Release of Phosphorus and Zinc in a Calcareous Soil

    Directory of Open Access Journals (Sweden)

    Sareh Nezami

    2017-02-01

    Full Text Available Introduction: Phosphorus (P and zinc (Zn fixation by soil minerals and their precipitation is one of the major constraints for crop production in calcareous soils. Recent Studies show that root exudates are effective for the extraction of the large amounts of nutrients in calcareous soils. A part of the root exudations are Low Molecular Weight Organic Acids (LMWOAs. LMWOAs are involved in the nutrients availability and uptake by plants, nutrients detoxification, minerals weathering and microbial proliferation in the soil. At nutrients deficiency conditions citric and oxalic acids are released by plants root in large quantities and increase nutrient solubility like P, Zn, Fe, Mn and Cu in the rhizosphere. These components are the large portion of the carbon source in the soil after exudations are mineralized by microorganisms, quickly. In addition, soil surface sorption can affect their half-life and other behaviors in the soil. In order to study the effect of oxalic and citric organic acids on the extraction of phosphorus and zinc from a calcareous soil, an experiment was conducted. Materials and Methods: Studied soil was calcareous and had P and Zn deficiency. Soil sample was collected from A horizon (0-30 cm of Damavand region. 3 g of dried soil sample was extracted with 30 ml of oxalic and citric acids extraction solutions at different concentrations (0.1, 1 and 10 mM and different time periods (10, 60, 180 and 360 minutes on an orbital shaker at 200 rev min-1.The soil extracts then centrifuged for 10 minutes (16000g. After filtering, the pH of the extractions was recorded and then phosphorus, calcium and zinc amounts were determined. Soil extraction with distilled water was used as control. Each treatment was performed in 3 replications. Statistical analysis was performed with ANOVA test followed by the Bonferroni method significant level adjustments due to multiple comparisons. Results and Discussion: The results of variance analysis showed

  11. Nitric-phosphoric acid oxidation of organic waste materials

    International Nuclear Information System (INIS)

    Pierce, R.A.; Smith, J.R.

    1995-01-01

    A wet chemical oxidation technology has been developed to address issues facing defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate a heterogenous mixture of radioactive-contaminated solid waste, the technology can also remediate other hazardous waste forms. The process, unique to Savannah River, offers a valuable alternative to incineration and other high-temperature or high-pressure oxidation processes. The process uses nitric acid in phosphoric acid; phosphoric acid allows nitric acid to be retained in solution well above its normal boiling point. The reaction converts organics to carbon dioxide and water, and generates NO x vapors which can be recycled using air and water. Oxidation is complete in one to three hours. In previous studies, many organic compounds were completely oxidized, within experimental error, at atmospheric pressure below 180 degrees C; more stable compounds were decomposed at 200 degrees C and 170 kPa. Recent studies have evaluated processing parameters and potential throughputs for three primary compounds: EDTA, polyethylene, and cellulose. The study of polyvinylchloride oxidation is incomplete at this time

  12. Intestinal tract is an important organ for lowering serum uric acid in rats

    Science.gov (United States)

    Gao, Zhiyi; Li, Yue; Gao, Tao; Duan, Jinlian; Yang, Rong; Dong, Xianxiang; Zhang, Lumei

    2017-01-01

    The kidney was recognized as a dominant organ for uric acid excretion. The main aim of the study demonstrated intestinal tract was an even more important organ for serum uric acid (SUA) lowering. Sprague-Dawley rats were treated normally or with antibiotics, uric acid, adenine, or inosine of the same molar dose orally or intraperitoneally for 5 days. Rat’s intestinal tract was equally divided into 20 segments except the cecum. Uric acid in serum and intestinal segment juice was assayed. Total RNA in the initial intestinal tract and at the end ileum was extracted and sequenced. Protein expression of xanthine dehydrogenase (XDH) and urate oxidase (UOX) was tested by Western blot analysis. The effect of oral UOX in lowering SUA was investigated in model rats treated with adenine and an inhibitor of uric oxidase for 5 days. SUA in the normal rats was 20.93±6.98 μg/ml, and total uric acid in the intestinal juice was 308.27±16.37 μg, which is two times more than the total SUA. The uric acid was very low in stomach juice, and attained maximum in the juice of the first segment (duodenum) and then declined all the way till the intestinal end. The level of uric acid in the initial intestinal tissue was very high, where XDH and most of the proteins associated with bicarbonate secretion were up-regulated. In addition, SUA was decreased by oral UOX in model rats. The results suggested that intestinal juice was an important pool for uric acid, and intestinal tract was an important organ for SUA lowering. The uric acid distribution was associated with uric acid synthesis and secretion in the upper intestinal tract, and reclamation in the lower. PMID:29267361

  13. Intestinal tract is an important organ for lowering serum uric acid in rats.

    Science.gov (United States)

    Yun, Yu; Yin, Hua; Gao, Zhiyi; Li, Yue; Gao, Tao; Duan, Jinlian; Yang, Rong; Dong, Xianxiang; Zhang, Lumei; Duan, Weigang

    2017-01-01

    The kidney was recognized as a dominant organ for uric acid excretion. The main aim of the study demonstrated intestinal tract was an even more important organ for serum uric acid (SUA) lowering. Sprague-Dawley rats were treated normally or with antibiotics, uric acid, adenine, or inosine of the same molar dose orally or intraperitoneally for 5 days. Rat's intestinal tract was equally divided into 20 segments except the cecum. Uric acid in serum and intestinal segment juice was assayed. Total RNA in the initial intestinal tract and at the end ileum was extracted and sequenced. Protein expression of xanthine dehydrogenase (XDH) and urate oxidase (UOX) was tested by Western blot analysis. The effect of oral UOX in lowering SUA was investigated in model rats treated with adenine and an inhibitor of uric oxidase for 5 days. SUA in the normal rats was 20.93±6.98 μg/ml, and total uric acid in the intestinal juice was 308.27±16.37 μg, which is two times more than the total SUA. The uric acid was very low in stomach juice, and attained maximum in the juice of the first segment (duodenum) and then declined all the way till the intestinal end. The level of uric acid in the initial intestinal tissue was very high, where XDH and most of the proteins associated with bicarbonate secretion were up-regulated. In addition, SUA was decreased by oral UOX in model rats. The results suggested that intestinal juice was an important pool for uric acid, and intestinal tract was an important organ for SUA lowering. The uric acid distribution was associated with uric acid synthesis and secretion in the upper intestinal tract, and reclamation in the lower.

  14. Profiling of the Contents of Amino Acids, Water-Soluble Vitamins, Minerals, Sugars and Organic Acids in Turkish Hazelnut Varieties

    Directory of Open Access Journals (Sweden)

    Taş Neslihan Göncüoğlu

    2018-09-01

    Full Text Available Proximate composition, profiles of amino acids, sugars, organic acids, vitamins and minerals of fourteen Turkish hazelnut varieties harvested in 2013 and 2014 were investigated. Glutamic acid, arginine and aspartic acid were the most predominant amino acids, representing of about 50% of hazelnut protein. Individual amino acid profiles showed significant differences depending upon the harvest year (p<0.05. Concentration of sucrose was the highest followed by fructose, glucose, stachyose, raffinose and myo-inositol, respectively. Phytic acid was predominant organic acid in all varieties, followed by malic acid. Independent of the variety, hazelnuts were rich in pantothenic acid, nicotinic acid, pyridoxal, biotin, thiamine, nicotinamide. Pantothenic and nicotinic acid were significantly higher in most of the varieties in harvest year 2014. Potassium was the most predominant mineral, followed by magnesium, calcium, sodium, manganese, zinc, iron and copper, respectively.

  15. Thermally induced processes in mixtures of aluminum with organic acids after plastic deformations under high pressure

    Science.gov (United States)

    Zhorin, V. A.; Kiselev, M. R.; Roldugin, V. I.

    2017-11-01

    DSC is used to measure the thermal effects of processes in mixtures of solid organic dibasic acids with powdered aluminum, subjected to plastic deformation under pressures in the range of 0.5-4.0 GPa using an anvil-type high-pressure setup. Analysis of thermograms obtained for the samples after plastic deformation suggests a correlation between the exothermal peaks observed around the temperatures of degradation of the acids and the thermally induced chemical reactions between products of acid degradation and freshly formed surfaces of aluminum particles. The release of heat in the mixtures begins at 30-40°C. The thermal effects in the mixtures of different acids change according to the order of acid reactivity in solutions. The extreme baric dependences of enthalpies of thermal effects are associated with the rearrangement of the electron subsystem of aluminum upon plastic deformation at high pressures.

  16. Progress on Zeolite-membrane-aided Organic Acid Esterification

    Science.gov (United States)

    Makertiharta, I. G. B. N.; Dharmawijaya, P. T.

    2017-07-01

    Esterification is a common route to produce carboxylic acid esters as important intermediates in chemical and pharmaceutical industries. However, the reaction is equilibrium limited and needs to be driven forward by selective removal one of the products. There have been some efforts to selectively remove water from reaction mixture via several separation processes (such as pervaporation and reactive distillation). Integrated pervaporation and esterification has gained increasing attention towards. Inorganic zeolite is the most popular material for pervaporation due to its high chemical resistant and separation performance towards water. Zeolite also has proven to be an effective material in removing water from organic compound. Zeolite can act not only as selective layer but also simultaneously act as a catalyst on promoting the reaction. Hence, there are many configurations in integrating zeolite membrane for esterification reaction. As a selective layer to remove water from reaction mixture, high Si/Al zeolite is preferred to enhance its hydrophilicity. However, low Si/Al zeolite is unstable in acid condition due to dealumination thus eliminate its advantages. As a catalyst, acid zeolites (e.g. H-ZSM-5) provide protons for autoprotolysis of the carboxylic acid similar to other catalyst for esterification (e.g. inorganic acid, and ion exchange resins). There are many studies related to zeolite membrane aided esterification. This paper will give brief information related to zeolite membrane role in esterification and also research trend towards it.

  17. Emulsion Liquid Membrane Technology in Organic Acid Purification

    International Nuclear Information System (INIS)

    Norela Jusoh; Norasikin Othman; Nur Alina Nasruddin

    2016-01-01

    Emulsion Liquid Membrane (ELM) process have shown a great potential in wide application of industrial separations such as in removal of many chemicals, organic compounds, metal ions, pollutants and biomolecules. This system promote many advantages including simple operation, high selectivity, low energy requirement, and single stage extraction and stripping process. One potential application of ELM is in the purification of succinic acid from fermentation broth. This study outline steps for developing emulsion liquid membrane process in purification of succinic acid. The steps include liquid membrane formulation, ELM stability and ELM extraction of succinic acid. Several carrier, diluent and stripping agent was screened to find appropriate membrane formulation. After that, ELM stability was investigated to enhance the recovery of succinic acid. Finally, the performance of ELM was evaluated in the extraction process. Results show that formulated liquid membrane using Amberlite LA2 as carrier, palm oil as diluent and sodium carbonate, Na_2CO_3 as stripping agent provide good performance in purification. On the other hand, the prepared emulsion was observed to be stable up to 1 hour and sufficient for extraction process. In conclusion, ELM has high potential to purify succinic acid from fermentation broth. (author)

  18. Spontaneous arylation of activated carbon from aminobenzene organic acids as source of diazonium ions in mild conditions

    International Nuclear Information System (INIS)

    Lebègue, Estelle; Brousse, Thierry; Gaubicher, Joël; Cougnon, Charles

    2013-01-01

    Activated carbon products modified with benzoic, benzenesulfonic and benzylphosphonic acid groups were prepared by spontaneous reduction of aryldiazonium ions in situ generated in water from the corresponding aminobenzene organic acids without addition of an external acid. Electrochemistry and NMR studies show that the advancement of the diazotization reaction depends both on the acidity and the electronic effect of the organic acid substituent, giving a mixture of diazonium, amine and triazene functionalities. Carbon products prepared by reaction of activated carbon Norit with 4-aminobenzenecarboxylic acid, 4-aminobenzenesulfonic acid and (4-aminobenzyl)phosphonic acid were analyzed by chemical elemental analysis and X-ray photoelectron spectroscopy experiments. Results show that this strategy is well suited for the chemical functionalization, giving a maximized grafting yield due to a chemical cooperation of amine and diazonium functionalities

  19. Phthalic acid esters found in municipal organic waste

    DEFF Research Database (Denmark)

    Hartmann, Hinrich; Ahring, Birgitte Kiær

    2003-01-01

    Contamination of the organic fraction of municipal solid waste (OFMSW) with xenobiotic compounds and their fate during anaerobic digestion was investigated. The phthalic acid ester di-(2- ethylhexyl)phthalate (DEHP) was identified as the main contaminant in OFMSW in concentrations more than half.......41-0.79 d(-1), which is much higher than in previous investigations. It can be concluded that the higher removal rates are due to the higher temperature and higher initial concentrations per kg dry matter. These results suggest that the limiting factor for DEHP degradation is the bioavailability, which...... is enhanced at higher temperature and higher degradation of solid organic matter, to which the highly hydrophobic DEHP is adsorbed. The investigated reactor configuration with a thermophilic and a hyper-thermophilic treatment is, therefore, a good option for CD combining high rate degradation of organic...

  20. Organic acids and aldehydes in rainwater in a northwest region of Spain

    Energy Technology Data Exchange (ETDEWEB)

    Pena, R.M.; Garcia, S.; Herrero, C. [Universidad de Santiago de Compostela, Lugo (Spain). Departamento de Quimica Analitica, Nutricion y Bromatologia

    2002-11-01

    During a 1 year period, measurements of carboxylic acids and aldehydes were carried out in rainwater samples collected at nine different sites in NW Spain surrounding a thermal power plant in order to determine concentration levels and sources. In addition, certain major ions (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, Na{sup +}, NH{sub 4}{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}) were also determined. Aldehyde and carboxylic acid concentration patterns and their effects on rainwater composition concerning temporal, seasonal and spatial variations were evaluated. Among carboxylic acids, formic and acetic were predominant (VWA 7.0 and 8.3 {mu}M), while formaldehyde and acroleine were the dominant aldehydes (VWA 0.42 and 1.25 {mu}M). Carboxylic acids were estimated to account for 27.5% of the total free acidity (TFA), whereas sulphuric and nitric acid accounted for 46.2% and 26.2%, respectively. Oxalic acid was demonstrated to be an important contributing compound to the acidification in rainwater representing 7.1% of the TFA. The concentration of aldehydes and carboxylic acids, which originated mainly from biogenic emissions in the area studied, was strongly dependent on the season of the year (growing and non-growing). The ratios of formic to acetic acids are considerably different in the two seasons suggesting that there exist distinct sources in both growing and non-growing seasons. Principal component analysis was applied in order to elucidate the sources of aldehydes and organic acids in rainwater. The prevalence of natural vegetative origins for both of these compounds versus anthropogenic emissions was demonstrated and the importance of the oxidation of aldehydes as a relevant source of organic acids was also established. (author)

  1. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage.

    Science.gov (United States)

    Bai, Cheng; Reilly, Charles C; Wood, Bruce W

    2006-02-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan.

  2. Investigation of the atmospheric behavior of dicarboxylic acids and other polar organic aerosol constituents

    International Nuclear Information System (INIS)

    Limbeck, A.

    2001-05-01

    The objective of the present work was to improve the present knowledge about the atmospheric behavior of polar organic aerosol constituents with special respect to dicarboxylic acids. To enable the simultaneous determination of polar organic compounds in atmospheric samples like aerosol or precipitation samples (atmospheric hydrometeors) a new GCMS method was developed. Almost all classes of oxygenated organic compounds like mono- and dicarboxylic acids, aldehydes, alcohols or polar aromatic compounds like phthalates could be determined with only one sample preparation scheme. The separation into two classes of organic compounds with different polarity was performed using solid phase extraction. After a sample pre-treatment of the derived fractions, including esterification of the acids and extraction with cyclohexane, the samples were analyzed with a GCMS system. The new method was applied for the analysis of simultaneously collected interstitial aerosol and cloud water samples from a continental background site in Central Europe (Sonnblick Observatory, located at 3106-m elevation in the Austrian Alps). In all samples a large variety of mono- and dicarboxylic acids were identified and quantified, together with some aldehydes, alcohols and aromatic compounds. Using the obtained data set, for the first time in-cloud scavenging efficiencies for dicarboxylic acids, monocarboxylic acids, and other polar organic compounds were calculated. The results were compared to sulfate, which exhibited an average scavenging efficiency of 0.94. In the last part of the present work the results from laboratory and field investigations conducted with the intention to yield an improved sampling technique for the correction of the positive sampling artifact (adsorption of gas phase organics onto the filter substrate) were presented. (author)

  3. Organic Acids as Hetrotrophic Energy Sources in Hydrothermal Systems

    Science.gov (United States)

    Windman, T. O.; Zolotova, N.; Shock, E.

    2004-12-01

    Many thermophilic microbes are heterotrophs, but little is known about the organic compounds present in hydrothermal ecosystems. More is known about what these organisms will metabolize in lab experiments than what they do metabolize in nature. In an effort to bridge this gap, we have begun to incorporate organic analyses into ongoing research on Yellowstone hydrothermal ecosystems. After filtering at least a liter of hot spring water to minimize contamination, samples were collected into sixty-milliliter serum vials containing ultra-pure phosphoric acid, sodium hydroxide, or benzalkonium chloride. Approximately 80 sites were sampled spanning temperatures from 60 to 90°C and pH values from 2 to 9. Analytical data for organic acid anions (including formate, acetate, lactate, and succinate) were obtained by ion chromatography. Preliminary results indicate that concentrations of organic acids anions range from 5 to 300 ppb. These results can be used with other field and lab data (sulfate, sulfide, nitrate, ammonia, bicarbonate, pH, hydrogen) in thermodynamic calculations to evaluate the amounts of energy available in heterotrophic reactions. Preliminary results of such calculations show that sulfate reduction to sulfide coupled to succinate oxidation to bicarbonate yields about 6 kcal per mole of electrons transferred. When formate oxidation to bicarbonate or hydrogen oxidation to water is coupled to sulfate reduction there is less energy available by approximately a factor of two. A comparison with nitrate reduction to ammonia involving succinate and/or formate oxidation reveals several similarities. Using formate to reduce nitrate can yield about as much energy as nitrate reduction with hydrogen (typically 12 to 14 kcal per mole of electrons transferred), but using succinate can yield more than twice as much energy. In fact, reduction of nitrate with succinate can provide more energy than any of the inorganic nitrate reduction reactions involving sulfur, iron

  4. Diffusion cell investigations into the acidic degradation of organic coatings

    DEFF Research Database (Denmark)

    Møller, Victor Buhl; Wang, Ting; Dam-Johansen, Kim

    2018-01-01

    Protective organic coatings work by preventing contact between an aggressive environment and a vulnerable substrate. However, the long required lifetime of a barrier coating provides a challenge when attempting to evaluate coating performance. Diffusion cells can be used as a tool to estimate...... coating barrier properties and lifetime. In this work, a diffusion cell array was designed, constructed, and compared to previous designs, with simplicity being the most important design parameter. Sulfuric acid diffusion through five different coatings was monitored using a battery of cells...

  5. Concurrent Lactic and Volatile Fatty Acid Analysis of Microbial Fermentation Samples by Gas Chromatography with Heat Pre-treatment.

    Science.gov (United States)

    Darwin; WipaCharles; Cord-Ruwisch, Ralf

    2018-01-01

    Organic acid analysis of fermentation samples can be readily achieved by gas chromatography (GC), which detects volatile organic acids. However, lactic acid, a key fermentation acid is non-volatile and can hence not be quantified by regular GC analysis. However the addition of periodic acid to organic acid samples has been shown to enable lactic acid analysis by GC, as periodic acid oxidizes lactic acid to the volatile acetaldehyde. Direct GC injection of lactic acid standards and periodic acid generated inconsistent and irreproducible peaks, possibly due to incomplete lactic acid oxidation to acetaldehyde. The described method is developed to improve lactic acid analysis by GC by using a heat treated derivatization pre-treatment, such that it becomes independent of the retention time and temperature selection of the GC injector. Samples containing lactic acid were amended by periodic acid and heated in a sealed test tube at 100°C for at least 45 min before injecting it to the GC. Reproducible and consistent peaks of acetaldehyde were obtained. Simultaneous determination of lactic acid, acetone, ethanol, butanol, volatile fatty acids could also be accomplished by applying this GC method, enabling precise and convenient organic acid analysis of biological samples such as anaerobic digestion and fermentation processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Eight supramolecular assemblies constructed from bis(benzimidazole) and organic acids through strong classical hydrogen bonding and weak noncovalent interactions

    Science.gov (United States)

    Jin, Shouwen; Wang, Daqi

    2014-05-01

    Eight crystalline organic acid-base adducts derived from alkane bridged bis(N-benzimidazole) and organic acids (2,4,6-trinitrophenol, p-nitrobenzoic acid, m-nitrobenzoic acid, 3,5-dinitrobenzoic acid, 5-sulfosalicylic acid and oxalic acid) were prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the eight compounds five are organic salts (1, 4, 6, 7 and 8) and the other three (2, 3, and 5) are cocrystals. In all of the adducts except 1 and 8, the ratio of the acid and the base is 2:1. All eight supramolecular assemblies involve extensive intermolecular classical hydrogen bonds as well as other noncovalent interactions. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, all the complexes displayed 3D framework structure. The results presented herein indicate that the strength and directionality of the classical N+-H⋯O-, O-H⋯O, and O-H⋯N hydrogen bonds (ionic or neutral) and other nonbonding associations between acids and ditopic benzimidazoles are sufficient to bring about the formation of cocrystals or organic salts.

  7. Hydrogen bonded 1D-3D supramolecular structures from Benzylamine and organic acidic components

    Science.gov (United States)

    Gao, Xingjun; Li, XiaoLiang; Jin, Shouwen; Hu, Kaikai; Guo, Jianzhong; Guo, Ming; Xu, Weiqiang; Wang, Daqi

    2018-03-01

    Cocrystallization of the commonly available organic amine, benzylamine, with a series of organic acids afforded a total of seven organic salts with the compositions: (benzylamine)2: (p-nitrophenol)2: (H2O) (1) [(HL)2+⋯(npl-)2⋯(H2O), npl- = p-nitrophenolate], (benzylamine): (4-tert-butylbenzoic acid) (2) [(HL+)⋯(tba-), tba- = 4-tert-butylbenzoate], (benzylamine): (3,4-dichlorobenzoic acid) (3) [(HL+)⋯dcba-), dcba- = 3,4-dichlorobenzoate], (benzylamine): (2,5-dihydroxybenzoic acid) (4) [(HL+)⋯(dhba-), dhba- = 2,5-dihydroxybenzoate], (benzylamine): (2-bromo-but-2-enedioic acid) (5) [(HL+)⋯(Hbba-), Hbba- = 2-bromo-hydrogenbut-2-enedioate], (benzylamine): (2,6-pyridinedicarboxylic acid) (6) [(HL+)⋯(Hpdc-), Hpdc- = 2,6-pyridine hydrogendicarboxylate], and (benzylamine)2: (3-nitrophthalic acid): 2(H2O) (7) [(HL+)2⋯(npa2-)⋯(H2O)2, npa2- = 3-nitrophthalate]. The seven salts have been characterised by X-ray diffraction analysis, IR, and elemental analysis, and the melting points of all the salts were also reported. And their structural and supramolecular aspects are fully analyzed. The results reveal that among the seven investigated crystals the NH2 in the benzylamine are protonated when the organic acids are deprotonated, and the crystal packing is interpreted in terms of the strong charge-assisted Nsbnd H⋯O hydrogen bond between the NH3+ and deprotonated acidic groups. Except the Nsbnd H⋯O hydrogen bond, the Osbnd H⋯O hydrogen bonds (charge assisted or neutral) were also found at the salts 1, 4, 5, 6, and 7. Further analysis of the crystal packing of the salts indicated that a different family of additional CHsbnd O/CH2sbnd O, CH-π/CH2-π, Cπ-Cπ, Osbnd O, O-Cπ, O-π, and Cl-π associations also contribute to the stabilization and expansion of the total high-dimensional framework structures. For the coexistence of the various weak nonbonding interactions, these structures adopted a variety of

  8. Metal mobilization from metallurgical wastes by soil organic acids.

    Science.gov (United States)

    Potysz, Anna; Grybos, Malgorzata; Kierczak, Jakub; Guibaud, Gilles; Fondaneche, Patrice; Lens, Piet N L; van Hullebusch, Eric D

    2017-07-01

    Three types of Cu-slags differing in chemical and mineralogical composition (historical, shaft furnace, and granulated slags) and a matte from a lead recovery process were studied with respect to their susceptibility to release Cu, Zn and Pb upon exposure to organic acids commonly encountered in soil environments. Leaching experiments (24-960 h) were conducted with: i) humic acid (20 mg/L) at pH t 0  = 4.4, ii) fulvic acid (20 mg/L) at pH t 0  = 4.4, iii) an artificial root exudates (ARE) (17.4 g/L) solution at pH t 0  = 4.4, iv) ARE solution at pH t 0  = 2.9 and v) ultrapure water (pH t 0  = 5.6). The results demonstrated that the ARE contribute the most to the mobilization of metals from all the wastes analyzed, regardless of the initial pH of the solution. For example, up to 14%, 30%, 24% and 5% of Cu is released within 960 h from historical, shaft furnace, granulated slags and lead matte, respectively, when exposed to the artificial root exudates solution (pH 2.9). Humic and fulvic acids were found to have a higher impact on granulated and shaft furnace slags as compared to the ultrapure water control and increased the release of metals by a factor up to 37.5 (Pb) and 20.5 (Cu) for granulated and shaft furnace slags, respectively. Humic and fulvic acids amplified the mobilization of metals by a maximal factor of 13.6 (Pb) and 12.1 (Pb) for historical slag and lead matte, respectively. The studied organic compounds contributed to different release rates of metallic contaminants from individual metallurgical wastes under the conditions tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The role of organic acids exuded from roots in phosphorus nutrition and aluminium tolerance in acidic soils

    Energy Technology Data Exchange (ETDEWEB)

    Hocking, P J; Randall, P J; Delhaize, E [CSIRO Plant Industry, Canberra (Australia); Keerthisinghe, G [International Atomic Energy Agency, Vienna (Austria)

    2000-06-01

    Soil acidity is a major problem of large areas of arable land on a global scale. Many acid soils are low in plant-available phosphorus (P) or are highly P-fixing, resulting in poor plant growth. In addition, aluminium (Al) is soluble in acid soils in the toxic Al{sup 3+} form, which also reduces plant growth. There is considerable evidence that both P deficiency and exposure to Al{sup 3+} stimulate the efflux of organic acids from roots of a range of species. Organic acids such as citrate, malate and oxalate are able to desorb or solubilise fixed soil P, making it available for plant uptake. Organic acids also chelate Al{sup 3+} to render it non-toxic, and are, therefore, involved in Al tolerance mechanisms. In this review, we discuss the literature on the role of organic acids exuded from roots in improving plant P uptake and Al-tolerance in acid soils. Research is now attempting to understand how P deficiency or exposure to Al{sup 3+} activates or induces organic acid efflux at the molecular level, with the aim of improving P acquisition and Al tolerance by conventional plant breeding and by genetic engineering. At the agronomic level, it is desirable that existing crop and pasture plants with enhanced soil-P uptake and tolerance to Al due to organic acid exudation are integrated into farming systems. (author)

  10. The role of organic acids exuded from roots in phosphorus nutrition and aluminium tolerance in acidic soils

    International Nuclear Information System (INIS)

    Hocking, P.J.; Randall, P.J.; Delhaize, E.; Keerthisinghe, G.

    2000-01-01

    Soil acidity is a major problem of large areas of arable land on a global scale. Many acid soils are low in plant-available phosphorus (P) or are highly P-fixing, resulting in poor plant growth. In addition, aluminium (Al) is soluble in acid soils in the toxic Al 3+ form, which also reduces plant growth. There is considerable evidence that both P deficiency and exposure to Al 3+ stimulate the efflux of organic acids from roots of a range of species. Organic acids such as citrate, malate and oxalate are able to desorb or solubilise fixed soil P, making it available for plant uptake. Organic acids also chelate Al 3+ to render it non-toxic, and are, therefore, involved in Al tolerance mechanisms. In this review, we discuss the literature on the role of organic acids exuded from roots in improving plant P uptake and Al-tolerance in acid soils. Research is now attempting to understand how P deficiency or exposure to Al 3+ activates or induces organic acid efflux at the molecular level, with the aim of improving P acquisition and Al tolerance by conventional plant breeding and by genetic engineering. At the agronomic level, it is desirable that existing crop and pasture plants with enhanced soil-P uptake and tolerance to Al due to organic acid exudation are integrated into farming systems. (author)

  11. Pretreatment of various feedstocks for lactic acid production: detection of sugars, organic acids and furanics in liquid fractions

    NARCIS (Netherlands)

    Harmsen, P.F.H.; Lips, S.J.J.; Bakker, R.R.C.

    2012-01-01

    Barley straw, sugarcane bagasse and empty fruit bunches were pretreated under acid- and alkaline conditions. Solid phase was separated from the liquid phase and the concentration of dissolved monomeric sugars, organic acids and furanics was determined. Acid hydrolysis yielded monomeric xylose

  12. Novel Biochip Platform for Nucleic Acid Analysis

    Directory of Open Access Journals (Sweden)

    Juan J. Diaz-Mochon

    2012-06-01

    Full Text Available This manuscript describes the use of a novel biochip platform for the rapid analysis/identification of nucleic acids, including DNA and microRNAs, with very high specificity. This approach combines a unique dynamic chemistry approach for nucleic acid testing and analysis developed by DestiNA Genomics with the STMicroelectronics In-Check platform, which comprises two microfluidic optimized and independent PCR reaction chambers, and a sequential microarray area for nucleic acid capture and identification by fluorescence. With its compact bench-top “footprint” requiring only a single technician to operate, the biochip system promises to transform and expand routine clinical diagnostic testing and screening for genetic diseases, cancers, drug toxicology and heart disease, as well as employment in the emerging companion diagnostics market.

  13. Analysis of chemical signatures of alkaliphiles using fatty acid methyl ester analysis

    Directory of Open Access Journals (Sweden)

    Basha Sreenivasulu

    2017-01-01

    Full Text Available Background: Fatty acids occur in nearly all living organisms as the important predominant constituents of lipids. While all fatty acids have essentially the same chemical nature, they are an extremely diverse group of compounds. Materials and Methods: To test the hypothesis, fatty acids of alkaliphiles isolates, Bacillus subtilis SVUNM4, Bacillus licheniformis SVUNM8, Bacillus methylotrohicus SVUNM9, and Paenibacillus dendritiformis SVUNM11, were characterized compared using gas chromatography-mass spectrometry (GC-MS analysis. Results: The content of investigated ten fatty acids, 1, 2-benzenedicarboxylic acid butyl 2-methylpropyl ester, phthalic acid, isobutyl 2-pentyl ester, dibutyl phthalate, cyclotrisiloxane, hexamethyl, cyclotetrasiloxane, octamethyl, dodecamethyl, heptasiloxane 1,1,3,3,5,5,7,7,9,9,11,11,13,13-etradecamethyl, 7,15-dihydroxydehydroabietic acid, methyl ester, di (trimethylsilyl ether, hentriacontane, 2-thiopheneacetic acid, undec-2-enyl ester, obviously varied among four species, suggesting each species has its own fatty acid pattern. Conclusions: These findings demonstrated that GC-MS-based fatty acid profiling analysis provides the reliable platform to classify these four species, which is helpful for ensuring their biotechnological interest and novel chemotaxonomic.

  14. Flash pyrolysis of adsorbed aromatic organic acids on carbonate minerals: Assessing the impact of mineralogy for the identification of organic compounds in extraterrestrial bodies

    Science.gov (United States)

    Zafar, R.

    2017-12-01

    The relationship between minerals and organics is an essential factor in comprehending the origin of life on extraterrestrial bodies. So far organic molecules have been detected on meteorites, comets, interstellar medium and interplanetary dust particles. While on Mars, organic molecules may also be present as indicated by the Sample Analysis at Mars (SAM) instrument suite on the Curiosity Rover in Martian sediments. Minerals including hydrated phyllosilicate, carbonate, and sulfate minerals have been confirmed in carbonaceous chondrites. The presence of phyllosilicate minerals on Mars has been indicated by in situ elemental analysis by the Viking Landers, remote sensing infrared observations and the presence of smectites in meteorites. Likewise, the presence of carbonate minerals on the surface of Mars has been indicated by both Phoenix Lander and Spirit Rover. Considering the fact that both mineral and organic matter are present on the surface of extraterrestrial bodies including Mars, a comprehensive work is required to understand the interaction of minerals with specific organic compounds. The adsorption of the organic molecule at water/mineral surface is a key process of concentrating organic molecules on the surface of minerals. Carboxylic acids are abundantly observed in extraterrestrial material such as meteorites and interstellar space. It is highly suspected that carboxylic acids are also present on Mars due to the average organic carbon infall rate of 108 kg/yr. Further aromatic organic acids have also been observed in carbonaceous chondrite meteorites. This work presents the adsorption of an aromatic carboxylic acid at the water/calcite interface and characterization of the products formed after adsorption via on-line pyrolysis. Adsorption and online pyrolysis results are used to gain insight into adsorbed aromatic organic acid-calcite interaction. Adsorption and online pyrolysis results are related to the interpretation of organic compounds identified

  15. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    Energy Technology Data Exchange (ETDEWEB)

    White, T. L. [Savannah River Site (SRS), Aiken, SC (United States); Wiedenman, B. J. [Savannah River Site (SRS), Aiken, SC (United States); Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States); Crump, S. L. [Savannah River Site (SRS), Aiken, SC (United States); Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States); Papathanassiu, A. E. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Kot, W. K. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States); Pegg, I. L. [Catholic University of America Vitreous State Laboratory, Washington, DC (United States)

    2013-10-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  16. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    International Nuclear Information System (INIS)

    White, T. L.; Wiedenman, B. J.; Lambert, D. P.; Crump, S. L.; Fondeur, F. F.; Papathanassiu, A. E.; Kot, W. K.; Pegg, I. L.

    2013-01-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  17. Method for characterization of low molecular weight organic acids in atmospheric aerosols using ion chromatography mass spectrometry.

    Science.gov (United States)

    Brent, Lacey C; Reiner, Jessica L; Dickerson, Russell R; Sander, Lane C

    2014-08-05

    The structural composition of PM2.5 monitored in the atmosphere is usually divided by the analysis of organic carbon, black (also called elemental) carbon, and inorganic salts. The characterization of the chemical composition of aerosols represents a significant challenge to analysts, and studies are frequently limited to determination of aerosol bulk properties. To better understand the potential health effects and combined interactions of components in aerosols, a variety of measurement techniques for individual analytes in PM2.5 need to be implemented. The method developed here for the measurement of organic acids achieves class separation of aliphatic monoacids, aliphatic diacids, aromatic acids, and polyacids. The selective ion monitoring capability of a triple quadropole mass analyzer was frequently capable of overcoming instances of incomplete separations. Standard Reference Material (SRM) 1649b Urban Dust was characterized; 34 organic acids were qualitatively identified, and 6 organic acids were quantified.

  18. Organic acid derivatization techniques applied to petroleum hydrocarbon transformations in subsurface environments

    International Nuclear Information System (INIS)

    Barcelona, M.J.; Lu, J.; Tomczak, D.M.

    1995-01-01

    Evidence for the natural microbial remediation of subsurface fuel contamination situations should include identification and analysis of transformation or degradation products. In this way, a mass balance between fuel constituents and end products may be approached to monitor cleanup progress. Application of advanced organic acid metabolite derivatization techniques to several know sites of organic compounds and fuel mixture contamination provide valuable information on the pathways and progress of microbial transformation. Good correlation between observed metabolites and transformation pathways of aromatic fuel constituents were observed at the sites

  19. Comparison of Cultivable Acetic Acid Bacterial Microbiota in Organic and Conventional Apple Cider Vinegar

    Directory of Open Access Journals (Sweden)

    Aleksandra Štornik

    2016-01-01

    Full Text Available Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable acetic acid bacterial microbiota in the production of organic and conventional apple cider vinegars from a smoothly running oxidation cycle of a submerged industrial process. In this way we isolated and characterized 96 bacteria from organic and 72 bacteria from conventional apple cider vinegar. Using the restriction analysis of the PCR-amplifi ed 16S-23S rRNA gene ITS regions, we identified four different HaeIII and five different HpaII restriction profiles for bacterial isolates from organic apple cider vinegar. Each type of restriction profile was further analyzed by sequence analysis of the 16S-23S rRNA gene ITS regions, resulting in identification of the following species: Acetobacter pasteurianus (71.90 %, Acetobacter ghanensis (12.50 %, Komagataeibacter oboediens (9.35 % and Komagataeibacter saccharivorans (6.25 %. Using the same analytical approach in conventional apple cider vinegar, we identified only two different HaeIII and two different HpaII restriction profiles of the 16S‒23S rRNA gene ITS regions, which belong to the species Acetobacter pasteurianus (66.70 % and Komagataeibacter oboediens (33.30 %. Yeasts that are able to resist 30 g/L of acetic acid were isolated from the acetic acid production phase and further identified by sequence analysis of the ITS1-5.8S rDNA‒ITS2 region as Candida ethanolica, Pichia membranifaciens and Saccharomycodes ludwigii. This study has shown for the first time that the bacterial microbiota for the

  20. Comparison of Cultivable Acetic Acid Bacterial Microbiota in Organic and Conventional Apple Cider Vinegar.

    Science.gov (United States)

    Štornik, Aleksandra; Skok, Barbara; Trček, Janja

    2016-03-01

    Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable acetic acid bacterial microbiota in the production of organic and conventional apple cider vinegars from a smoothly running oxidation cycle of a submerged industrial process. In this way we isolated and characterized 96 bacteria from organic and 72 bacteria from conventional apple cider vinegar. Using the restriction analysis of the PCR-amplified 16S-23S rRNA gene ITS regions, we identified four different Hae III and five different Hpa II restriction profiles for bacterial isolates from organic apple cider vinegar. Each type of restriction profile was further analyzed by sequence analysis of the 16S-23S rRNA gene ITS regions, resulting in identification of the following species: Acetobacter pasteurianus (71.90%), Acetobacter ghanensis (12.50%), Komagataeibacter oboediens (9.35%) and Komagataeibacter saccharivorans (6.25%). Using the same analytical approach in conventional apple cider vinegar, we identified only two different Hae III and two different Hpa II restriction profiles of the 16S‒23S rRNA gene ITS regions, which belong to the species Acetobacter pasteurianus (66.70%) and Komagataeibacter oboediens (33.30%). Yeasts that are able to resist 30 g/L of acetic acid were isolated from the acetic acid production phase and further identified by sequence analysis of the ITS1-5.8S rDNA‒ITS2 region as Candida ethanolica , Pichia membranifaciens and Saccharomycodes ludwigii . This study has shown for the first time that the bacterial microbiota for the industrial production of

  1. Sensitive determination of nucleic acids using organic nanoparticle fluorescence probes

    Science.gov (United States)

    Zhou, Yunyou; Bian, Guirong; Wang, Leyu; Dong, Ling; Wang, Lun; Kan, Jian

    2005-06-01

    This paper describes the preparation of organic nanoparticles by reprecipitation method under sonication and vigorous stirring. Transmission electron microscopy (TEM) was used to characterize the size and size distribution of the luminescent nanoparticles. Their average diameter was about 25 nm with a size variation of ±18%. The fluorescence decay lifetime of the nanoparticles also was determined on a self-equipped fluorospectrometer with laser light source. The lifetime (˜0.09 μs) of nanoparticles is about three times long as that of the monomer. The nanoparticles were in abundant of hydrophilic groups, which increased their miscibility in aqueous solution. These organic nanoparticles have high photochemical stability, excellent resistance to chemical degradation and photodegradation, and a good fluorescence quantum yield (25%). The fluorescence can be efficiently quenched by nucleic acids. Based on the fluorescence quenching of nanoparticles, a fluorescence quenching method was developed for determination of microamounts of nucleic acids by using the nanoparticles as a new fluorescent probe. Under optimal conditions, maximum fluorescence quenching is produced, with maximum excitation and emission wavelengths of 345 and 402 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range 0.4-19.0 μg ml -1 for calf thymus DNA (ct-DNA) and 0.3-19.0 μg ml -1 for fish sperm DNA (fs-DNA). The corresponding detection limits are 0.25 μg ml -1 for ct-DNA and 0.17 μg ml -1 for fs-DNA. The relative standard deviation of six replicate measurements is 1.3-2.1%. The method is simple, rapid and sensitive with wide linear range. The recovery and relative standard deviation are very satisfactory.

  2. Mannan-oligosaccharide and organic acids for weaned piglets

    Directory of Open Access Journals (Sweden)

    Marcia de Souza Vieira

    2017-08-01

    Full Text Available This study aimed to evaluate the effect of acetic, propionic, and formic (50% organic acids and mannan-oligosaccharide (50% on growth performance, digestibility, and faecal score in challenged weaned piglets. Twenty male piglets (5.57 ± 0.32 kg of BW; 21-24 days of age were housed individually in metabolic cages for 28 days in an acclimatised room. The treatments were composed of the inclusion (0.1%; n = 10 or not (n = 10 of additive in the diet. The experimental design was completely randomised with two treatments, 10 replicates, and one piglet per replicate. The nutritional matrix was supplemented with 10% of barley and 35.9 to 34.0% of soybean meal in the pre-starter diet (3-14 days post-weaning and the starter diet (15-28 days post-weaning, respectively, to cause an intestinal challenge. Diets did not include any antimicrobial or growth promoters. Weekly, the animal and the leftover diet were weighed to evaluate growth performance. Digestibility was evaluated through total faeces and urine collection. Piglets fed diets with additive had 8.7% greater weight gain (P < 0.05 compared to those piglets in the control treatment in the starter phase. For other growth performance responses there was no treatment effect. Similarly, the inclusion of additive in the piglet diets did not affect the faecal score or the energy and nutrient digestibility. In the starter phase and throughout the experimental period, piglets fed diets with additive had 18.37% and 15.07% greater nitrogen (N intake and 19.53% and 16.05% greater N retention, respectively, compared to piglets in the control treatment (P < 0.05. In conclusion, the addition of additive composed by organic acids and mannan-oligosaccharide does not improve energy and nutrient digestibility but increases the N retention and weight gain in weaned piglets in the starting phase.

  3. Effects of organic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.

    2010-01-01

    mu m of the contaminated surface was required to reach corrosion rates less than 1 mm/year in salt spray condition. Among the three organic acids examined, acetic acid is the best choice. Oxalic acid can be an alternative while citric acid is not suitable for cleaning AZ31 sheet, because......Organic acids were used to clean AZ31 magnesium alloy sheet and the effect of the cleaning processes on the surface condition and corrosion performance of the alloy was investigated. Organic acid cleanings reduced the surface impurities and enhanced the corrosion resistance. Removal of at least 4...

  4. Mass Spectrometric Analysis of Synthetic Organic Pigments.

    Science.gov (United States)

    Sugaya, Naeko; Takahashi, Mitsuko; Sakurai, Katsumi; Tanaka, Nobuko; Okubo, Ichiro; Kawakami, Tsuyoshi

    2018-04-18

    Though synthetic organic colorants are used in various applications nowadays, there is the concern that impurities by-produced during the manufacturing and degradation products in some of these colorants are persistent organic pollutants and carcinogens. Thus, it is important to identify the synthetic organic colorants in various products, such as commercial paints, ink, cosmetics, food, textile, and plastics. Dyes, which are soluble in water and other solvents, could be analyzed by chromatographic methods. In contrast, it is difficult to analyze synthetic organic pigments by these methods because of their insolubility. This review is an overview of mass spectrometric analysis of synthetic organic pigments by various ionization methods. We highlight a recent study of textile samples by atmospheric pressure solid analysis probe MS. Furthermore, the mass spectral features of synthetic organic pigments and their separation from other components such as paint media and plasticizers are discussed.

  5. Predicting sorption of organic acids to a wide range of carbonized sorbents

    Science.gov (United States)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2016-04-01

    Many contaminants and infochemicals are organic acids that undergo dissociation under environmental conditions. The sorption of dissociated anions to biochar and other carbonized sorbents is typically lower than that of neutral species. It is driven by complex processes that are not yet fully understood. It is known that predictive approaches developed for neutral compounds are unlikely to be suitable for organic acids, due to the effects of dissociation on sorption. Previous studies on the sorption of organic acids to soils have demonstrated that log Dow, which describes the decrease in hydrophobicity of acids upon dissociation, is a useful alternative to log Kow. The aim of the present study was to adapt a log Dow based approach to describe the sorption of organic acids to carbonized sorbents. Batch experiments were performed with a series of 9 sorbents (i.e., carbonized wood shavings, pig manure, and sewage sludge, carbon nanotubes and activated carbon), and four acids commonly used for pesticidal and biocidal purposes (i.e., 2,4-D, MCPA, 2,4-DB, and triclosan). Sorbents were comprehensively characterized, including by N2 and CO2 physisorption, Fourier transform infrared spectroscopy, and elemental analysis. The wide range of sorbents considered allows (i) discussing the mechanisms driving the sorption of neutral and anionic species to biochar, and (ii) their dependency on sorbate and sorbent properties. Results showed that the sorption of the four acids was influenced by factors that are usually not considered for neutral compounds (i.e., pH, ionic strength). Dissociation affected the sorption of the four compounds, and sorption of the anions ranged over five orders of magnitude, thus substantially contributing to sorption in some cases. For prediction purposes, most of the variation in sorption to carbonized sorbents (89%) could be well described with a two-parameter regression equation including log Dow and sorbent specific surface area. The proposed model

  6. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids

    Science.gov (United States)

    Liheng Chen; Junyong Zhu; Carlos Baez; Peter Kitin; Thomas Elder

    2016-01-01

    Here we report the production of highly thermal stable and functional cellulose nanocrystals (CNC) and nanofibrils (CNF) by hydrolysis using concentrated organic acids. Due to their low water solubility, these solid organic acids can be easily recovered after hydrolysis reactions through crystallization at a lower or ambient temperature. When dicarboxylic acids were...

  7. Recovery of Organic and Amino Acids from Sludge and Fish Waste in Sub Critical Water Conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal

    2011-12-01

    Full Text Available The possibility of organic and amino acid production from the treatment of sludge and fish waste using water at sub critical conditions was investigated. The results indicated that at sub-critical conditions, where the ion product of water went through a maximum, the formation of organic acids was favorable. The presence of oxidant favored formation of acetic and formic acid. Other organic acids of significant amount were propionic, succinic and lactic acids. Depending on the type of wastes, formation of other organic acids was also possible. Knowing the organic acids obtained by hydrolysis and oxidation in sub-critical water of various wastes are useful in designing of applicable waste treatment process, complete degradation of organic wastes into volatile carbon and water, and also on the viewpoint of resource recovery. The production of lactic acid was discussed as well. The results indicated that temperature of 573 K, with the absence of oxidant, yield of lactic acid from fish waste was higher than sewage sludge. The maximum yield of total amino acids (137 mg/g-dry fish from waste fish entrails was obtained at subcritical condition (T = 523 K, P = 4 MPa at reaction time of 60 min by using the batch reactor. The amino acids obtained in this study were mainly alanine and glycine. Keywords:  organic acids, amino acids, sub-critical water, hydrothermal, resources recovery

  8. Newly developed standard reference materials for organic contaminant analysis

    Energy Technology Data Exchange (ETDEWEB)

    Poster, D.; Kucklick, J.; Schantz, M.; Porter, B.; Wise, S. [National Inst. of Stand. and Technol., Gaithersburg, MD (USA). Center for Anal. Chem.

    2004-09-15

    The National Institute of Standards and Technology (NIST) has issued a number of Standard Reference Materials (SRM) for specified analytes. The SRMs are biota and biological related materials, sediments and particle related SRMs. The certified compounds for analysis are polychlorinated biphenyls (PCB), polycylic aromatic hydrocarbons (PAH) and their nitro-analogues, chlorinated pesticides, methylmercury, organic tin compounds, fatty acids, polybrominated biphenyl ethers (PBDE). The authors report on origin of materials and analytic methods. (uke)

  9. Carbon isotope effects in carbohydrates and amino acids of photosynthesizing organisms

    International Nuclear Information System (INIS)

    Ivlev, A.A.; Kaloshin, A.G.; Koroleva, M.Ya.

    1982-01-01

    The analysis of the carbon isotope distribution in carbohydrates and amino acids of some photosynthesizing organisms revealed the close relationship between distribution and the pathways of biosynthesis of the molecules. This relationship is explained on the basis of the previously proposed mechanism of carbon isotope fractionation in a cell, in which the chief part is played by kinetic isotope effects in the pyruvate decarboxylation reaction progressively increased in the conjugated processes of gluconeogenesis. Isotope differences of C 2 and C 3 fragments arising in decarboxylation of pyruvate, as well as isotope differences of biogenic acceptor and environmental CO 2 appearing in assimilation are the main reasons of the observed intramolecular isotopic heterogeneity of biomolecules. The heterogeneity is preserved in metabolites owing to an incomplete mixing of carbon atoms in biochemical reactions. The probable existence of two pools of carbohydrates in photosynthesizing organisms different in isotopic composition is predicted. Two types of intramolecular isotope distribution in amino acids are shown. (author)

  10. Analysis of the Organization of Lexical Memory

    National Research Council Canada - National Science Library

    Miller, George

    1997-01-01

    The practical outcome of the project, Analysis of the Organization of Lexical Memory, is an electronic lexical database called WordNet that can be incorporated into computer systems for processing English text...

  11. Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead.

    Science.gov (United States)

    Niu, Zhixin; Li, Xiaodong; Sun, Lina; Sun, Tieheng

    2013-01-01

    Sunflower (Helianthus annuus L.) has been considered as a good candidate for bioaccumulation of heavy metals. In the present study, sunflower was used to enrich the cadmium and lead in sand culture during 90 days. Biomass, Cd and Pb uptake, three organic acids and pH in cultures were investigated. Results showed that the existence of Cd and Pb showed different interactions on the organic acids exudation. In single Cd treatments, malic and acetic acids in Cd10 showed an incremental tendency with time. In the mixed treatments of Cd and Pb, malic acids increased when 10 and 40 mg x L(-1) Cd were added into Pb50, but acetic acids in Pb50 were inhibited by Cd addition. The Cd10 supplied in Pb10 stimulated the secretion of malic and succinic acids. Moreover, the Cd or Pb uptake in sunflower showed various correlations with pH and some organic acids, which might be due to the fact that the Cd and Pb interfere with the organic acids secretion in rhizosphere of sunflower, and the changes of organic acids altered the form and bioavailability of Cd and Pb in cultures conversely.

  12. Impact of low molecular weight organic acids and dissolved organic matter on sorption and mobility of isoproturon in two soils.

    Science.gov (United States)

    Ding, Qing; Wu, Hai Lang; Xu, Yun; Guo, Li Juan; Liu, Kai; Gao, Hui Min; Yang, Hong

    2011-06-15

    Isoproturon is a selective herbicide belonging to the phenylurea family and widely used for pre- and post-emergence control of annual weeds. Soil amendments (e.g. organic compounds or dissolved organic matter) may affect environmental behavior and bioavailability of pesticides. However, whether the physiochemical process of isoproturon in soils is affected by organic amendments and how it is affected in different soil types are unknown. To evaluate the impact of low molecular weight organic acids (LMWOA) and dissolved organic matter (DOM) on sorption/desorption and mobility of isoproturon in soils, comprehensive analyses were performed using two distinct soil types (Eutric gleysols and Hap udic cambisols). Our analysis revealed that adsorption of isoproturon in Eutric gleysols was depressed, and desorption and mobility of isoproturon were promoted in the presence of DOM and LMWOA. However, the opposite result was observed with Hap udic cambisols, suggesting that the soil type affected predominantly the physiochemical process. We also characterized differential components of the soils using three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy and Fourier transform infrared (FT-IR) spectroscopy and show that the two soils displayed different intensity of absorption bands for several functional groups. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments

    NARCIS (Netherlands)

    Dauwe, B.; Middelburg, J.J.

    1998-01-01

    Sediment cores from six stations in the eastern North Sea were analyzed for protein amino acids, the nonprotein amino acids beta-alanine and gamma-aminobutyric acid and the hexosamines galactosamine and glucosamine, and bulk parameters (organic carbon, nitrogen, total hydrolyzable amino acids and

  14. Leaching of organic acids from macromolecular organic matter by non-supercritical CO2

    Science.gov (United States)

    Sauer, P.; Glombitza, C.; Kallmeyer, J.

    2012-04-01

    The storage of CO2 in underground reservoirs is discussed controversly in the scientific literature. The worldwide search for suitable storage formations also considers coal-bearing strata. CO2 is already injected into seams for enhanced recovery of coal bed methane. However, the effects of increased CO2 concentration, especially on organic matter rich formations, are rarely investigated. The injected CO2 will dissolve in the pore water, causing a decrease in pH and resulting in acidic formation waters. Huge amounts of low molecular weight organic acids (LMWOAs) are chemically bound to the macromolecular matrix of sedimentary organic matter and may be liberated by hydrolysis, which is enhanced by the acidic porewater. Recent investigations outlined the importance of LMWOAs as a feedstock for microbial life in the subsurface [1]. Therefore, injection of CO2 into coal formations may result in enhanced nutrient supply for subsurface microbes. To investigate the effect of high concentrations of dissolved CO2 on the release of LMWOAs from coal we developed an inexpensive high-pressure high temperature system that allows manipulating the partial pressure of dissolved gases at pressures and temperatures up to 60 MPa and 120° C, respectively. In a reservoir vessel, gases are added to saturate the extraction medium to the desired level. Inside the extraction vessel hangs a flexible and inert PVDF sleeve (polyvinylidene fluoride, almost impermeable for gases), holding the sample and separating it from the pressure fluid. The flexibility of the sleeve allows for subsampling without loss of pressure. Coal samples from the DEBITS-1 well, Waikato Basin, NZ (R0 = 0.29, TOC = 30%). were extracted at 90° C and 5 MPa, either with pure or CO2-saturated water. Subsamples were taken at different time points during the extraction. The extracted LMWOAs such as formate, acetate and oxalate were analysed by ion chromatography. Yields of LMWOAs were higher with pure water than with CO2

  15. AUTOMATED ANALYSIS OF AQUEOUS SAMPLES CONTAINING PESTICIDES, ACIDIC/BASIC/NEUTRAL SEMIVOLATILES AND VOLATILE ORGANIC COMPOUNDS BY SOLID PHASE EXTRACTION COUPLED IN-LINE TO LARGE VOLUME INJECTION GC/MS

    Science.gov (United States)

    Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line 10-m...

  16. Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system

    International Nuclear Information System (INIS)

    Yun, Hyejeong; Lim, Sangyong; Jo, Cheorun; Chung, Jinwoo; Kim, Soohyun; Kwon, Joong-Ho; Kim, Dongho

    2008-01-01

    The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent

  17. Highly Conductive and Reliable Copper-Filled Isotropically Conductive Adhesives Using Organic Acids for Oxidation Prevention

    Science.gov (United States)

    Chen, Wenjun; Deng, Dunying; Cheng, Yuanrong; Xiao, Fei

    2015-07-01

    The easy oxidation of copper is one critical obstacle to high-performance copper-filled isotropically conductive adhesives (ICAs). In this paper, a facile method to prepare highly reliable, highly conductive, and low-cost ICAs is reported. The copper fillers were treated by organic acids for oxidation prevention. Compared with ICA filled with untreated copper flakes, the ICA filled with copper flakes treated by different organic acids exhibited much lower bulk resistivity. The lowest bulk resistivity achieved was 4.5 × 10-5 Ω cm, which is comparable to that of commercially available Ag-filled ICA. After 500 h of 85°C/85% relative humidity (RH) aging, the treated ICAs showed quite stable bulk resistivity and relatively stable contact resistance. Through analyzing the results of x-ray diffraction, x-ray photoelectron spectroscopy, and thermogravimetric analysis, we found that, with the assistance of organic acids, the treated copper flakes exhibited resistance to oxidation, thus guaranteeing good performance.

  18. Detection of irradiation history for health foods. Calcium salt of organic acid and its basic ingredient

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Nakagawa, Seiko; Yunoki, Shunji; Ohyabu, Yoshimi

    2013-01-01

    Calcium carbonate and calcium salt of organic acid are well-known food additives used for the improvement of the shelf life and eating quality of health food. Calcium carbonate is a precursor in the synthesis of calcium salts of organic acid. Certain calcium carbonates made of natural limestone mined from very old stratum have silicate minerals exposed to a low level of natural radiation over a long period of time and food additives derived from calcium carbonates contained of such silicate minerals are possible to classify as irradiated foods by PSL and TL analysis in spite of non-irradiation. The study of calcium carbonates and calcium salts of organic acid obtained from different producers were allow to provided appropriate decisions by using the information of both the TL response (Glow1 peak temperature and TL ratio) and PSL ratio. ESR measurements of radicals in such food additives caused by gamma- irradiation were effective tool for correctly determining for irradiation history of those because the measurements were not affected by silicate minerals contained in those. (author)

  19. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids.

    Science.gov (United States)

    Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface.

  20. Efficiency of organic acid preparations for the elimination of naturally occurring Salmonella in feed material.

    Science.gov (United States)

    Axmann, Sonja; Kolar, Veronika; Adler, Andreas; Strnad, Irmengard

    2017-11-01

    Salmonella can enter animal stocks via feedstuffs, thus posing not only an infection risk for animals, but also threatening to contaminate food of animal origin and finally humans. Salmonella contamination in feedstuffs is still a recurring and serious issue in animal production (especially for the poultry sector), and is regularly detected upon self-monitoring by feed companies (self-checks) and official inspections authorities. Operators within the feed chain in certain cases need to use hygienic condition enhancers, such as organic acids, to improve the quality of feed for animal nutrition, providing additional guarantees for the protection of animal and public health. The present study investigated the efficiencies of five organic acid preparations. The acid products were added to three different feed materials contaminated with Salmonella (contamination occurred by recontamination in the course of the production process) at seven different inclusion rates (1-7%) and analysed after 1, 2, and 7 days' exposure time using culture method (tenfold analysis). A reliable standard was established for defining a successful decontamination under the prevailing test conditions: 10 Salmonella-negative results out of 10 tested samples (0/10: i.e. 0 positive samples and 10 negative samples). The results demonstrated that the tested preparations showed significant differences with regard to the reduction in Salmonella contamination. At an inclusion rate of 7% of the feed materials, two out of five acid preparations showed an insufficient, very small, decontamination effect, whereas two others had a relatively large partial effect. Reliable decontamination was demonstrated only for one acid preparation, however, subject to the use of the highest acid concentration.

  1. Analysis of Peptides and Conjugates by Amino Acid Analysis

    DEFF Research Database (Denmark)

    Højrup, Peter

    2015-01-01

    Amino acid analysis is a highly accurate method for characterization of the composition of synthetic peptides. Together with mass spectrometry, it gives a reliable control of peptide quality and quantity before conjugation and immunization.Peptides are hydrolyzed, preferably in gas phase, with 6 M...... HCl at 110 °C for 20-24 h and the resulting amino acids analyzed by ion-exchange chromatography with post-column ninhydrin derivatization. Depending on the hydrolysis conditions, tryptophan is destroyed, and cysteine also, unless derivatized, and the amides, glutamine and asparagine, are deamidated...... to glutamic acid and aspartic acid, respectively. Three different ways of calculating results are suggested, and taking the above limitations into account, a quantitation better than 5 % can usually be obtained....

  2. Pilot-scale recovery of low molecular weight organic acids from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-05

    Nov 5, 2008 ... 2Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibiniko, Wakamatsu- ... 2000) as well as for the recovery of organic acids from ..... Fellowship from Third World Organization for.

  3. Toxicity of Select Organic Acids to the Slightly Thermophilic Acidophile Acidithiobaccillus Caldus

    Energy Technology Data Exchange (ETDEWEB)

    John E Aston; William A Apel; Brady D Lee; Brent M Peyton

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 µM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 µM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids.

  4. Characteristics of organic acids in the fruit of different pumpkin species.

    Science.gov (United States)

    Nawirska-Olszańska, Agnieszka; Biesiada, Anita; Sokół-Łętowska, Anna; Kucharska, Alicja Z

    2014-04-01

    The aim of the research was to determine the composition of organic acids in fruit of different cultivars of three pumpkin species. The amount of acids immediately after fruit harvest and after 3 months of storage was compared. The content of organic acids in the examined pumpkin cultivars was assayed using the method of high performance liquid chromatography (HPLC). Three organic acids (citric acid, malic acid, and fumaric acid) were identified in the cultivars, whose content considerably varied depending on a cultivar. Three-month storage resulted in decreased content of the acids in the case of cultivars belonging to Cucurbita maxima and Cucurbita pepo species, while a slight increase was recorded for Cucurbita moschata species. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. The SWOT Analysis At The Educational Organizations

    OpenAIRE

    ÖZAN, Mukadder Boydak; Polat, Hakan; GÜNDÜZALP, Seda; YARAŞ, Zübeyde

    2015-01-01

    Being a basic method used to identify the strengths and weaknesses of organizations, and detect the existing opportunities and threats, the SWOT makes it possible to see the current situation of an organization. Objective of this study is to analyze the current situation of primary and secondary schools through the method of swot analysis, and evaluate the internal and external factors affecting school. In order to ensure that the participants reveal their perceptions related to the current s...

  6. Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans

    Directory of Open Access Journals (Sweden)

    Huang Chao

    2012-01-01

    Full Text Available Abstract Background Microbial lipids have drawn increasing attention in recent years as promising raw materials for biodiesel production, and the use of lignocellulosic hydrolysates as carbon sources seems to be a feasible strategy for cost-effective lipid fermentation with oleaginous microorganisms on a large scale. During the hydrolysis of lignocellulosic materials with dilute acid, however, various kinds of inhibitors, especially large amounts of organic acids, will be produced, which substantially decrease the fermentability of lignocellulosic hydrolysates. To overcome the inhibitory effects of organic acids, it is critical to understand their impact on the growth and lipid accumulation of oleaginous microorganisms. Results In our present work, we investigated for the first time the effect of ten representative organic acids in lignocellulosic hydrolysates on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans cells. In contrast to previous reports, we found that the toxicity of the organic acids to the cells was not directly related to their hydrophobicity. It is worth noting that most organic acids tested were less toxic than aldehydes to the cells, and some could even stimulate the growth and lipid accumulation at a low concentration. Unlike aldehydes, most binary combinations of organic acids exerted no synergistic inhibitory effects on lipid production. The presence of organic acids decelerated the consumption of glucose, whereas it influenced the utilization of xylose in a different and complicated way. In addition, all the organic acids tested, except furoic acid, inhibited the malic activity of T. fermentans. Furthermore, the inhibition of organic acids on cell growth was dependent more on inoculum size, temperature and initial pH than on lipid content. Conclusions This work provides some meaningful information about the effect of organic acid in lignocellulosic hydrolysates on the lipid production of

  7. Organic acid excretion in Penicillium ochrochloron increases with ambient pH

    Directory of Open Access Journals (Sweden)

    Pamela eVrabl

    2012-04-01

    Full Text Available Despite being of high biotechnological relevance, many aspects of organic acid excretion in filamentous fungi like the influence of ambient pH are still insufficiently understood. While the excretion of an individual organic acid may peak at a certain pH value, the few available studies investigating a broader range of organic acids indicate that total organic acid excretion rises with increasing external pH.We hypothesized that this phenomenon might be a general response of filamentous fungi to increased ambient pH. If this is the case, the observation should be widely independent of the organism, growth conditions or experimental design and might therefore be a crucial key point in understanding the function and mechanisms of organic acid excretion in filamentous fungi.In this study we explored this hypothesis using ammonium limited chemostat cultivations (pH 2-7, and ammonium or phosphate limited bioreactor batch cultivations (pH 5 and 7. Two strains of Penicillium ochrochloron were investigated differing in the spectrum of excreted organic acids.Confirming our hypothesis, the main result demonstrated that organic acid excretion in P. ochrochloron was enhanced at high external pH levels compared to low pH levels independent of the tested strain, nutrient limitation and cultivation method. We discuss these findings against the background of three hypotheses explaining organic acid excretion in filamentous fungi, i.e. overflow metabolism, charge balance and aggressive acidification hypothesis.

  8. Bile acid analysis in human disorders of bile acid biosynthesis

    NARCIS (Netherlands)

    Vaz, Frédéric M.; Ferdinandusse, Sacha

    2017-01-01

    Bile acids facilitate the absorption of lipids in the gut, but are also needed to maintain cholesterol homeostasis, induce bile flow, excrete toxic substances and regulate energy metabolism by acting as signaling molecules. Bile acid biosynthesis is a complex process distributed across many cellular

  9. Synthesis of N,N-Bis(nonaflyl) Squaric Acid Diamide and its Application to Organic Reactions

    International Nuclear Information System (INIS)

    Cheon, Cheol Hong; Yamamoto, Hisashi

    2010-01-01

    We have developed a new strong Brφnsted acid bearing two nonaflyl groups based on the squaric acid scaffold. The Brφnsted acid 2 showed the almost same reactivity as bistriflyl squaramide 1 in Mukaiyama aldol and Michael reactions of benzaldehyde with silyl enol ether. Moreover, the utility of Brφnsted acid 2 could be expanded to carbonyl ene reaction of rac-citronellal. Further application of this new Brφnsted acid to organic reactions and to flow system reactors is currently underway in our laboratory. Brφnsted acid catalysis is one of the growing fields in modern organic synthesis.1 Although several Brφnsted acids, such as urea/thiourea, TADDOL, and phosphoric acid, have been applied to a variety of organic reactions, other Brφnsted acid scaffolds have been much less explored. Recently, Rawal et al have developed a Brφnsted acid catalyst based on squaric acid moiety and successfully applied it as a catalyst for conjugate addition of 1,3-dicarbonyl compounds to nitroolefins. More recently, we have developed a strong Brφnsted acid derived from squaric acid by introducing a strong electron withdrawing trifluoromethanesulfonyl (Tf) group and applied it to Mukaiyama aldol and Michael reaction of a variety of aldehydes, ketones, and α,β-unsaturated ketones. As a continuing effort to develop strong Brφnsted acids based on the squaric acid scaffold, it was expected that replacement of Tf group with a longer perfluoro-alkanesulfonyl group would be able to tune the physical properties, such as solubilities in organic solvents and fluoro-philicity, without loss of reactivity. Herein, we report the development of a new Brφnsted acid based on the squaric acid scaffold carrying two nonafluorobutanesulfonyl (Nf) groups and the preliminary results of its reactivity to various organic reactions

  10. Formic and Acetic Acid Observations over Colorado by Chemical Ionization Mass Spectrometry and Organic Acids' Role in Air Quality

    Science.gov (United States)

    Treadaway, V.; O'Sullivan, D. W.; Heikes, B.; Silwal, I.; McNeill, A.

    2015-12-01

    Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic sources and a role in the atmospheric processing of carbon. These organic acids also have an increasing importance in setting the acidity of rain and snow as precipitation nitrate and sulfate concentrations have decreased. Primary emissions for both organic acids include biomass burning, agriculture, and motor vehicle emissions. Secondary production is also a substantial source for both acids especially from biogenic precursors, secondary organic aerosols (SOAs), and photochemical production from volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). Chemical transport models underestimate organic acid concentrations and recent research has sought to develop additional production mechanisms. Here we report HFo and HAc measurements during two campaigns over Colorado using the peroxide chemical ionization mass spectrometer (PCIMS). Iodide clusters of both HFo and HAc were recorded at mass-to-charge ratios of 173 and 187, respectively. The PCIMS was flown aboard the NCAR Gulfstream-V platform during the Deep Convective Clouds and Chemistry Experiment (DC3) and aboard the NCAR C-130 during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The DC3 observations were made in May and June 2012 extending from the surface to 13 km over the central and eastern United States. FRAPPE observations were made in July and August 2014 from the surface to 7 km over Colorado. DC3 measurements reported here are focused over the Colorado Front Range and complement the FRAPPE observations. DC3 HFo altitude profiles are characterized by a decrease up to 6 km followed by an increase either back to boundary layer mixing ratio values or higher (a "C" shape). Organic acid measurements from both campaigns are interpreted with an emphasis on emission sources (both natural and anthropogenic) over Colorado and in situ photochemical production especially ozone precursors.

  11. Synthesis and characterization of organic-inorganic hybrids formed between conducting polymers and crystalline antimonic acid

    Directory of Open Access Journals (Sweden)

    Beleze Fábio A.

    2001-01-01

    Full Text Available In this paper we report the synthesis and characterization of novel organic-inorganic hybrid materials between the crystalline antimonic acid (CAA and two conductive polymers: polypyrrole and polyaniline. The hybrids were obtained by in situ oxidative polymerization of monomers by the Sb(V present in the pyrochlore-like CAA structure. The materials were characterized by infrared and Raman spectroscopy, X-ray diffraction, cyclic voltammetry, CHN elemental analysis and electronic paramagnetic resonance spectroscopy. The results showed that both polymers were formed in their oxidized form, with the CAA structure acting as a counter anion.

  12. Effects of Organic Acids on Adsorption of Cadmium onto Kaolinite, Goethite, and Bayerite

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Effects of organic acids (oxalic, acetic, and citric) on adsorption characteristics of Cadmium (Cd) on soil clay minerals(kaolinite, goethite, and bayerite) were studied under different concentrations and different pH values. Although the types of organic acids and minerals were different, the effects of the organic acids on the adsorption of Cd on the minerals were similar, i.e., the amount of adsorbed Cd with an initial solution pH of 5.0 and initial Cd concentration of 35 mg L-1increased with increasing concentration of the organic acid in solution at lower concentrations, and decreased at higher concentrations. The percentage of Cd adsorbed on the minerals in the presence of the organic acids increased considerably with increasing pH of the solution. Meanwhile, different Cd adsorption in the presence of the organic acids, due to different properties on both organic acids and clay minerals, on kaolinite, goethite, or bayerite for different pHs or organic acid concentrations was found.

  13. Thermophysical properties of starch and whey protein composite prepared in presence of organic acid and esters

    Science.gov (United States)

    Previously, we prepared starch and protein composite by reactive mixing in presence of various organic acids and found that use of these acid esters resulted in composites with good mechanical properties. In this study, concentration (% w/w) of acid citrates in the starch-protein composites were var...

  14. Acyl Meldrum's acid derivatives: application in organic synthesis

    Science.gov (United States)

    Janikowska, K.; Rachoń, J.; Makowiec, S.

    2014-07-01

    This review is focused on an important class of Meldrum's acid derivatives commonly known as acyl Meldrum's acids. The preparation methods of these compounds are considered including the recently proposed and rather rarely used ones. The chemical properties of acyl Meldrum's acids are described in detail, including thermal stability and reactions with various nucleophiles. The possible mechanisms of these transformations are analyzed. The bibliography includes 134 references.

  15. Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids.

    Science.gov (United States)

    Xu, Ren-kou; Zhu, Yong-guan; Chittleborough, David

    2004-01-01

    Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by low-molecular-weight organic acids. Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the pKa values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was notcorrelated with pKa. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate.

  16. Hemolymph amino acid analysis of individual Drosophila larvae.

    Science.gov (United States)

    Piyankarage, Sujeewa C; Augustin, Hrvoje; Grosjean, Yael; Featherstone, David E; Shippy, Scott A

    2008-02-15

    One of the most widely used transgenic animal models in biology is Drosophila melanogaster, the fruit fly. Chemical information from this exceedingly small organism is usually accomplished by studying populations to attain sample volumes suitable for standard analysis methods. This paper describes a direct sampling technique capable of obtaining 50-300 nL of hemolymph from individual Drosophila larvae. Hemolymph sampling performed under mineral oil and in air at 30 s intervals up to 120 s after piercing larvae revealed that the effect of evaporation on amino acid concentrations is insignificant when the sample was collected within 60 s. Qualitative and quantitative amino acid analyses of obtained hemolymph were carried out in two optimized buffer conditions by capillary electrophoresis with laser-induced fluorescence detection after derivatizing with fluorescamine. Thirteen amino acids were identified from individual hemolymph samples of both wild-type (WT) control and the genderblind (gb) mutant larvae. The levels of glutamine, glutamate, and taurine in the gb hemolymph were significantly lower at 35%, 38%, and 57% of WT levels, respectively. The developed technique that samples only the hemolymph fluid is efficient and enables accurate organism-level chemical information while minimizing errors associated with possible sample contaminations, estimations, and effects of evaporation compared to the traditional hemolymph-sampling techniques.

  17. Preparation of High-purity Indium Oxalate Salt from Indium Scrap by Organic Acids

    International Nuclear Information System (INIS)

    Koo, Su-Jin; Ju, Chang-Sik

    2013-01-01

    Effect of organic acid on the preparation of indium-oxalate salt from indium scraps generated from ITO glass manufacturing process was studied. Effects of parameters, such as type and concentration of organic acids, pH of reactant, temperature, reaction time on indium-oxalate salt preparation were examined. The impurity removal efficiency was similar for both oxalic acid and citric acid, but citric acid did not make organic acid salt with indium. The optimum conditions were 1.5 M oxalic acid, pH 7, 80 .deg. C, and 6 hours. On the other hand, the recoveries increased with pH, but the purity decreased. The indium-oxalate salt purity prepared by two cycles was 99.995% (4N5). The indium-oxalate salt could be converted to indium oxide and indium metal by substitution reaction and calcination

  18. Extended survival of several organisms and amino acids under simulated martian surface conditions

    Science.gov (United States)

    Johnson, A. P.; Pratt, L. M.; Vishnivetskaya, T.; Pfiffner, S.; Bryan, R. A.; Dadachova, E.; Whyte, L.; Radtke, K.; Chan, E.; Tronick, S.; Borgonie, G.; Mancinelli, R. L.; Rothschild, L. J.; Rogoff, D. A.; Horikawa, D. D.; Onstott, T. C.

    2011-02-01

    Recent orbital and landed missions have provided substantial evidence for ancient liquid water on the martian surface as well as evidence of more recent sedimentary deposits formed by water and/or ice. These observations raise serious questions regarding an independent origin and evolution of life on Mars. Future missions seek to identify signs of extinct martian biota in the form of biomarkers or morphological characteristics, but the inherent danger of spacecraft-borne terrestrial life makes the possibility of forward contamination a serious threat not only to the life detection experiments, but also to any extant martian ecosystem. A variety of cold and desiccation-tolerant organisms were exposed to 40 days of simulated martian surface conditions while embedded within several centimeters of regolith simulant in order to ascertain the plausibility of such organisms' survival as a function of environmental parameters and burial depth. Relevant amino acid biomarkers associated with terrestrial life were also analyzed in order to understand the feasibility of detecting chemical evidence for previous biological activity. Results indicate that stresses due to desiccation and oxidation were the primary deterrent to organism survival, and that the effects of UV-associated damage, diurnal temperature variations, and reactive atmospheric species were minimal. Organisms with resistance to desiccation and radiation environments showed increased levels of survival after the experiment compared to organisms characterized as psychrotolerant. Amino acid analysis indicated the presence of an oxidation mechanism that migrated downward through the samples during the course of the experiment and likely represents the formation of various oxidizing species at mineral surfaces as water vapor diffused through the regolith. Current sterilization protocols may specifically select for organisms best adapted to survival at the martian surface, namely species that show tolerance to radical

  19. [Roles of organic acid metabolism in plant adaptation to nutrient deficiency and aluminum toxicity stress].

    Science.gov (United States)

    Wang, Jianfei; Shen, Qirong

    2006-11-01

    Organic acids not only act as the intermediates in carbon metabolism, but also exert key roles in the plant adaptation to nutrient deficiency and metal stress and in the plant-microbe interactions at root-soil interface. From the viewpoint of plant nutrition, this paper reviewed the research progress on the formation and physiology of organic acids in plant, and their functions in nitrogen metabolism, phosphorus and iron uptake, aluminum tolerance, and soil ecology. New findings in the membrane transport of organic acids and the biotechnological manipulation of organic acids in transgenic model were also discussed. This novel perspectives of organic acid metabolism and its potential manipulation might present a possibility to understand the fundamental aspects of plant physiology, and lead to the new strategies to obtain crop varieties better adapted to environmental and metal stress.

  20. Culture engineering examination and metabolism flux distribution system analysis for madding to convert into poly {beta}- hydroxybutyric acid (PHB) using the hydrogen bacteria of organic acid got in liquid-phase oxidation of lignite; Kattan no ekiso sanka de erareru yukisan wo suiso saikin wo riyoshite pori {beta}-hidorokishi rakusan(PHB) ni henkan saseru tameno baiyo kogakuteki kento to taisha ryusoku bunpu shisutemu kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimoto, Kinko; Seki, Suito; Shimizu, Kazuyuki; Mae, Kazuhiro; Miura, Koichi

    1999-04-05

    The culture engineering examination for madding to convert into poly {beta} - hydroxy Wisteria (PHB) which glycolic acid. Acetic acid, ant acid, malonic acid got in liquid-phase oxidation of lignite are raw material of biodegradable plastic using hydrogen bacteria Alcaligenes eutrophus was carried out. It was proven that acetic acid was the most efficiently converted into the PHB as a result of cultivating these organic acid as a single carbon source. And, it was utilized to the bacterial cell at the order of ant acid, acetic acid, glycolic acid, when it was cultivated in mixing organic acid, and it was proven to convert into the PHB. Though the malonic acid was not utilized for the bacterial cell breeding, it was indicated that as the result which analyzed metabolism flow distribution by calculating using the culture data, the succinate dehydrogenase of the tricarboxylic acid (TCA) circuit received competitive inhibition, when this is added in culture middle point, and that the flux of griot lysyl acid route and gluconeogenesis route lowers. And, it was proven that it was utilized in the route which comes to the PHB synthesis from acetoacetyl CoA with the lowering of the ammonia concentration on NADPH produced from the isocitric acid, though it was prior consumed to the glutamic acid of tricarboxylic acid cycle in the route, if ammonia concentration is high. (translated by NEDO)

  1. Complex forming properties of natural organic acids. Pt. 2

    International Nuclear Information System (INIS)

    Ephraim, J.H.; Mathuthu, A.S.; Marinsky, J.A.

    1990-07-01

    An ultrafiltration technique combined with ion-selective-electrode and atomic absorption methods have been employed to obtain information on the complex forming properties of fulvic acid with iron and calcium. A model for interpreting complexation of metal ions to fulvic acid at any pH, medium ionic strength and metal to fulvic acid ratio developed earlier has been used in an attempt to predict the nature of iron and calcium interaction to Armadale Horizon Bh fulvic acid. Binding of calcium to fulvic acid which is enhanced at pHs greater than 6.0 has reasonably been predicted by the model taking into consideration complications due to the polyelectrolyte nature and the heterogeneity of the fulvic acid. The lack of agreement observed between the model predicted binding behavior and the experimentally observed results for the fulvic acid-iron system has been attributed to the formation of metal-induced aggregation. Reduction of Fe(III) to Fe(II) by the fulvic acid as reported by other workers is corroborated. (orig.)

  2. Chemical constituents of the essential oil and organic acids from longkong (Aglaia dookkoo Griff. fruits

    Directory of Open Access Journals (Sweden)

    Abdulhakim Hamad

    2006-03-01

    Full Text Available The pulp of longkong fruits (Aglaia dookkoo Griff., collected from Narathiwat province, was dried and extracted by steam distillation to obtain the essential oil in 0.48% yield. The GC-MS data showed oleic acid (14.80%, α-copaene (11.15%, germacrene-D (9.16%, δ- cadinene (6.74%, τ -muurolol (6.34%, (+ spathulenol (5.72% and palmitic acid (5.49% as the major constituents. Organic acids were also extracted from dried pulp with methanol using a Soxhlet apparatus to give the crude extract in 36.26% yield. Four organic acids: glycolic, maleic, malic and citric acids were determined by HPLC. Maleic acid (1.23% was the major acid and the others were citric (0.22%, malic (0.15% and glycolic acids (0.14%.

  3. An accurate description of Aspergillus niger organic acid batch fermentation through dynamic metabolic modelling.

    Science.gov (United States)

    Upton, Daniel J; McQueen-Mason, Simon J; Wood, A Jamie

    2017-01-01

    Aspergillus niger fermentation has provided the chief source of industrial citric acid for over 50 years. Traditional strain development of this organism was achieved through random mutagenesis, but advances in genomics have enabled the development of genome-scale metabolic modelling that can be used to make predictive improvements in fermentation performance. The parent citric acid-producing strain of A. niger , ATCC 1015, has been described previously by a genome-scale metabolic model that encapsulates its response to ambient pH. Here, we report the development of a novel double optimisation modelling approach that generates time-dependent citric acid fermentation using dynamic flux balance analysis. The output from this model shows a good match with empirical fermentation data. Our studies suggest that citric acid production commences upon a switch to phosphate-limited growth and this is validated by fitting to empirical data, which confirms the diauxic growth behaviour and the role of phosphate storage as polyphosphate. The calibrated time-course model reflects observed metabolic events and generates reliable in silico data for industrially relevant fermentative time series, and for the behaviour of engineered strains suggesting that our approach can be used as a powerful tool for predictive metabolic engineering.

  4. Production of hydrogen and volatile fatty acid by Enterobacter sp. T4384 using organic waste materials.

    Science.gov (United States)

    Kim, Byung-Chun; Deshpande, Tushar R; Chun, Jongsik; Yi, Sung Chul; Kim, Hyunook; Um, Youngsoon; Sang, Byoung-In

    2013-02-01

    In a study of hydrogen-producing bacteria, strain T4384 was isolated from rice field samples in the Republic of Korea. The isolate was identified as Enterobacter sp. T4384 by phylogenetic analysis of 16S rRNA and rpoB gene sequences. Enterobacter sp. T4384 grew at a temperature range of 10-45 degrees C and at an initial pH range of 4.5-9.5. Strain T4384 produced hydrogen at 0-6% NaCl by using glucose, fructose, and mannose. In serum bottle cultures using a complete medium, Enterobacter sp. T4384 produced 1,098 ml/l H2, 4.0 g/l ethanol, and 1.0 g/l acetic acid. In a pH-regulated jar fermenter culture with the biogas removed, 2,202 ml/l H2, 6.2 g/l ethanol, and 1.0 g/l acetic acid were produced, and the lag-phase time was 4.8 h. Strain T4384 metabolized the hydrolysate of organic waste for the production of hydrogen and volatile fatty acid. The strain T4384 produced 947 ml/l H2, 3.2 g/l ethanol, and 0.2 g/l acetic acid from 6% (w/v) food waste hydrolysate; 738 ml/l H2, 4.2 g/l ethanol, and 0.8 g/l acetic acid from Miscanthus sinensis hydrolysate; and 805 ml/l H2, 5.0 g/l ethanol, and 0.7 g/l acetic acid from Sorghum bicolor hydrolysate.

  5. Using Willie's Acid-Base Box for Blood Gas Analysis

    Science.gov (United States)

    Dietz, John R.

    2011-01-01

    In this article, the author describes a method developed by Dr. William T. Lipscomb for teaching blood gas analysis of acid-base status and provides three examples using Willie's acid-base box. Willie's acid-base box is constructed using three of the parameters of standard arterial blood gas analysis: (1) pH; (2) bicarbonate; and (3) CO[subscript…

  6. Analysis of the organic matter which are present in solid organic wastes from urban areas

    International Nuclear Information System (INIS)

    Canellas, Luciano Pasqualoto; Santos, Gabriel de Araujo; Amarai Sobrinho, Nelson Moura Brasil do; Mazur, Nelson; Moraes, Anselmo Alpande

    1997-01-01

    This study analyses the organic matter which are present in the solid wastes from the Rio de Janeiro city - Brazil. The humic acids were extracted and purified. After the purification, the humic acids were dried by lyophilization. Visible UV, infrared and NMR spectra were obtained for the humic acids extracted

  7. Transmission of Hepatitis C Virus From Organ Donors Despite Nucleic Acid Test Screening.

    Science.gov (United States)

    Suryaprasad, A; Basavaraju, S V; Hocevar, S N; Theodoropoulos, N; Zuckerman, R A; Hayden, T; Forbi, J C; Pegues, D; Levine, M; Martin, S I; Kuehnert, M J; Blumberg, E A

    2015-07-01

    Nucleic acid testing (NAT) for hepatitis C virus (HCV) is recommended for screening of organ donors, yet not all donor infections may be detected. We describe three US clusters of HCV transmission from donors at increased risk for HCV infection. Donor's and recipients' medical records were reviewed. Newly infected recipients were interviewed. Donor-derived HCV infection was considered when infection was newly detected after transplantation in recipients of organs from increased risk donors. Stored donor sera and tissue samples were tested for HCV RNA with high-sensitivity quantitative PCR. Posttransplant and pretransplant recipient sera were tested for HCV RNA. Quasispecies analysis of hypervariable region-1 was used to establish genetic relatedness of recipient HCV variants. Each donor had evidence of injection drug use preceding death. Of 12 recipients, 8 were HCV-infected-6 were newly diagnosed posttransplant. HCV RNA was retrospectively detected in stored samples from donor immunologic tissue collected at organ procurement. Phylogenetic analysis showed two clusters of closely related HCV variants from recipients. These investigations identified the first known HCV transmissions from increased risk organ donors with negative NAT screening, indicating very recent donor infection. Recipient informed consent and posttransplant screening for blood-borne pathogens are essential when considering increased risk donors. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  8. Organic acid production from starchy waste by rumen derived microbial communities

    OpenAIRE

    Ayudthaya, S. P. N.; Van De Weijer, Antonius H. P.; Van Gelder, Antonie H.; Stams, Alfons Johannes Maria; De Vos, Willem M.; Plugge, Caroline M.

    2017-01-01

    Microbiology Centennial Symposium 2017 - Exploring Microbes for the Quality of Life (Book of Abstracts) Converting organic waste to energy carriers and valuable products such as organic acids (OA) using microbial fermentation is one of the sustainable options of renewable energy. Substrate and inoculum are important factors in optimizing the fermentation. In this study, we investigated organic acid production and microbial composition shift during the fermentation of starchy (p...

  9. Fate of trivalent chromium in presence of organic acids - a hydroponic study on soyabean plant using radiotracer

    International Nuclear Information System (INIS)

    Srivastava, Sonal; Prakash, Satya; Srivastava, M.M.

    1999-01-01

    Hydroponic experiments have been conducted to examine the uptake and translocation of root absorbed trivalent chromium in the presence of organic acid supplementation. Statistically significant increase in chromium accumulation in various plant tissues with increasing concentration of organic acids has been observed. Potentiality of organic acids to form labile organically bound Cr III is explored. (author)

  10. Heterogeneous uptake of the C1 to C4 organic acids on a swelling clay mineral

    Directory of Open Access Journals (Sweden)

    M. A. Tolbert

    2007-08-01

    Full Text Available Mineral aerosol is of interest due to its physiochemical impacts on the Earth's atmosphere. However, adsorbed organics could influence the chemical and physical properties of atmospheric mineral particles and alter their impact on the biosphere and climate. In this work, the heterogeneous uptake of a series of small organic acids on the swelling clay, Na-montmorillonite, was studied at 212 K as a function of relative humidity (RH, organic acid pressure and clay mass. A high vacuum chamber equipped with a quadrupole mass spectrometer and a transmission Fourier transform infrared spectrometer was used to detect the gas and condensed phases, respectively. Our results show that while the initial uptake efficiency was found to be independent of organic acid pressure, it increased linearly with increasing clay mass. Thus, the small masses studied allow access to the entire surface area of the clay sample with minimal effects due to surface saturation. Additionally, results from this study show that the initial uptake efficiency for butanoic (butyric acid on the clay increases by an order of magnitude as the RH is raised from 0% to 45% RH at 212 K while the initial uptake efficiency of formic, acetic and propanoic (propionic acids increases only slightly at higher humidities. However, the initial uptake efficiency decreases significantly in a short amount of time due to surface saturation effects. Thus, although the initial uptake efficiencies are appropriate for initial times, the fact that the uptake efficiency will decrease over time as the surface saturates should be considered in atmospheric models. Surface saturation results in sub-monolayer coverage of organic acid on montmorillonite under dry conditions and relevant organic acid pressures that increases with increasing humidity for all organic acids studied. Additionally, the presence of large organic acids may slightly enhance the water content of the clay above 45% RH. Our results indicate

  11. Multichannel Mars Organic Analyzer (McMOA): Microfluidic Networks for the Automated In Situ Microchip Electrophoretic Analysis of Organic Biomarkers on Mars

    Science.gov (United States)

    Chiesl, T. N.; Benhabib, M.; Stockton, A. M.; Mathies, R. A.

    2010-04-01

    We present the Multichannel Mars Organic Analyzer (McMOA) for the analysis of Amino Acids, PAHs, and Oxidized Carbon. Microfluidic architecures integrating automated metering, mixing, on chip reactions, and serial dilutions are also discussed.

  12. Acid rain compliance planning using decision analysis

    International Nuclear Information System (INIS)

    Norris, C.; Sweet, T.; Borison, A.

    1991-01-01

    Illinois Power Company (IP) is an investor-owned electric and natural gas utility serving portions of downstate Illinois. In addition to one nuclear unit and several small gas and/or oil-fired units, IP has ten coal-fired units. It is easy to understand the impact the Clean Air Act Amendments of 1990 (CAAA) could have on IP. Prior to passage of the CAAA, IP formed several teams to evaluate the specific compliance options at each of the high sulfur coal units. Following that effort, numerous economic analyses of compliance strategies were conducted. The CAAA have introduced a new dimension to planning under uncertainty. Not only are many of the familiar variables uncertain, but the specific form of regulation, and indeed, the compliance goal itself is hard to define. For IP, this led them to use techniques not widely used within their corporation. This paper summarizes the analytical methods used in these analyses and the preliminary results as of July, 1991. The analysis used three approaches to examine the acid rain compliance decision. These approaches were: (1) the 'most-likely,' or single-path scenario approach; (2) a multi-path strategy analysis using the strategies defined in the single-scenario analysis; and (3) a less constrained multi-path option analysis which selects the least cost compliance option for each unit

  13. Determination of free acid in highly concentrated organic and aqueous solutions of plutonium (IV) and uranium (VI) nitrate

    International Nuclear Information System (INIS)

    Wagner, J.F.; Lacour, J.L.

    1989-01-01

    Free acidity is an important parameter in the nuclear reprocessing control. The accuracy on the determination of free acidity is not really required in the nuclear reprocessing control itself but is necessary for certain types of analysis such as spectrophotometry (Pu (VI), Am (III),...), density determinations. A new titripotentiometric method for free acidity determination in concentrated U(VI) and Pu(IV) solutions is presented. This method is based on the complexing properties of dipicolinic acid (pyridine 2.6 dicarboxylic acid) and medium effect with H 2 O/DMSO mixture. This method can be used either in organic or aqueous phases with ratio /H + I/ metal ≥ 5.10 -2 and a relative standard deviation of 1%

  14. Analysis of the organically bound tritium

    International Nuclear Information System (INIS)

    Baglan, N.; Alanic, G.

    2011-01-01

    In environmental samples, tritium is very often combined with the fraction of bulk water accumulated in the sample but also in the form of organically bound tritium. When the tritium is organically bound, 2 forms can coexist: the exchangeable fraction and the non-exchangeable fraction. The analysis of the different forms of tritium present in the sample is necessary to assess the sanitary hazards due to tritium. The total tritium is obtained from the analysis of the water released when the fresh sample is burnt while the organically bound tritium is obtained from the analysis of the water released when the dry extract of the sample is burnt. The measurement of the exchangeable fraction and the non-exchangeable fraction requires an additional stage of labile exchange. The exchangeable fraction is determined from the analysis of the water released during the labile exchange and the non-exchangeable fraction is determined from the water released during the combustion of the dry extract of the labile exchange

  15. Anaerobic organic acid metabolism of Candida zemplinina in comparison with Saccharomyces wine yeasts.

    Science.gov (United States)

    Magyar, Ildikó; Nyitrai-Sárdy, Diána; Leskó, Annamária; Pomázi, Andrea; Kállay, Miklós

    2014-05-16

    Organic acid production under oxygen-limited conditions has been thoroughly studied in the Saccharomyces species, but practically never investigated in Candida zemplinina, which seems to be an acidogenic species under oxidative laboratory conditions. In this study, several strains of C. zemplinina were tested for organic acid metabolism, in comparison with Saccharomyces cerevisiae, Saccharomyces uvarum and Candida stellata, under fermentative conditions. Only C. stellata produced significantly higher acidity in simple minimal media (SM) with low sugar content and two different nitrogen sources (ammonia or glutamic acid) at low level. However, the acid profile differed largely between the Saccharomyces and Candida species and showed inverse types of N-dependence in some cases. Succinic acid production was strongly enhanced on glutamic acid in Saccharomyces species, but not in Candida species. 2-oxoglutarate production was strongly supported on ammonium nitrogen in Candida species, but remained low in Saccharomyces. Candida species, C. stellata in particular, produced more pyruvic acid regardless of N-sources. From the results, we concluded that the anaerobic organic acid metabolisms of C. zemplinina and C. stellata are different from each other and also from that of the Saccharomyces species. In the formation of succinic acid, the oxidative pathway from glutamic acid seems to play little or no role in C. zemplinina. The reductive branch of the TCA cycle, however, produces acidic intermediates (malic, fumaric, and succinic acid) in a level comparable with the production of the Saccharomyces species. An unidentified organic acid, which was produced on glutamic acid only by the Candida species, needs further investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Organic acids for control of Salmonella in different feed materials

    DEFF Research Database (Denmark)

    Koyuncu, Sevinc; Andersson, Mats Gunnar; Löfström, Charlotta

    2013-01-01

    of FA, propionic acid (PA) and sodium formate (SF) was investigated. Four Salmonella strains isolated from feed were assayed for their acid tolerance. Also, the effect of lower temperatures (5°C and 15°C) compared to room temperature was investigated in rape seed and soybean meal. Results The efficacy...... of acid treatments varied significantly between different feed materials. The strongest reduction was seen in pelleted and compound mash feed (2.5 log10 reduction) followed by rapeseed meal (1 log10 reduction) after 5 days exposure. However, in soybean meal the acid effects were limited (less than 0.5 log......10 reduction) even after several weeks’ exposure. In all experiments the survival curves showed a concave shape, with a fast initial death phase followed by reduction at a slower rate during the remaining time of the experiment. No difference in Salmonella reduction was observed between FA...

  17. Review article Herbal extracts and organic acids as natural feed ...

    African Journals Online (AJOL)

    2013-07-16

    Jul 16, 2013 ... time and improved activity of proteolytic enzymes. ... Modern laboratory techniques enable the isolation and characterization of ..... microbial metabolites such as ammonia and biogenic amines. ..... acid determine their efficacy.

  18. Synthesis of Amino Acid Precursors with Organic Solids in Planetesimals with Liquid Water

    Science.gov (United States)

    Kebukawa, Y; Misawa, S.; Matsukuma, J.; Chan, Q. H. S.; Kobayashi, J.; Tachibana, S.; Zolensky, M. E.

    2017-01-01

    Amino acids are important ingredients of life that would have been delivered to Earth by extraterrestrial sources, e.g., comets and meteorites. Amino acids are found in aqueously altered carbonaceous chondrites in good part in the form of precursors that release amino acids after acid hydrolysis. Meanwhile, most of the organic carbon (greater than 70 weight %) in carbonaceous chondrites exists in the form of solvent insoluble organic matter (IOM) with complex macromolecular structures. Complex macromolecular organic matter can be produced by either photolysis of interstellar ices or aqueous chemistry in planetesimals. We focused on the synthesis of amino acids during aqueous alteration, and demonstrated one-pot synthesis of a complex suite of amino acids simultaneously with IOM via hydrothermal experiments simulating the aqueous processing

  19. Amino acids analysis during lactic acid fermentation by single strain ...

    African Journals Online (AJOL)

    L. salivarius alone showed relatively good assimilation of various amino acids that existed at only a little amounts in MRS media (Asn, Asp, Cit, Cys, Glu, His, Lys, Orn, Phe, Pro, Tyr, Arg, Ile, Leu, Met, Ser, Thr, Trp and Val), whereas Ala and Gly accumulated in L. salivarius cultures. P. acidilactici, in contrast, hydrolyzed the ...

  20. Biochemical studies on the effect of fluoride on higher plants. I. Metabolism of carbohydrates, organic acids and amino acids. [Glycine max var. Hawkeye

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S F; Miller, G W

    1963-01-01

    Metabolic processes associated with free sugars, organic acids and amino acids in higher plants subjected to fluoride fumigation were studied quantitatively. Fluoride-fumigated leaves contained more reducing sugars and less sucrose than the normal leaves. This result suggested inhibition of sucrose synthesis by fluoride. Necrotic leaves contained increased total concentrations of organic acids, which were mostly attributable to malic acid, malonic acid and citric acid. The greater increase in malic acid relative to that of citric acid was the reverse of results observed in chlorotic tissue. Necrotic leaves contained enhanced amounts of free amino acids. The greatest increase occurred in the concentration of asparagine and might be related to the increased respiratory rate of necrotic leaves. Pipecolic acid accumulated in large quantities in nicrotic tissue and was not detected in normal leaves. The accumulation of organic acids and amino acids in leaves during fluoride fumigation was evidenced by a lowered respiratory quotient.

  1. Biotechnological Production of Organic Acids from Renewable Resources.

    Science.gov (United States)

    Pleissner, Daniel; Dietz, Donna; van Duuren, Jozef Bernhard Johann Henri; Wittmann, Christoph; Yang, Xiaofeng; Lin, Carol Sze Ki; Venus, Joachim

    2017-03-07

    Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.

  2. Organic Acids Regulation of Chemical-Microbial Phosphorus Transformations in Soils.

    Science.gov (United States)

    Menezes-Blackburn, Daniel; Paredes, Cecilia; Zhang, Hao; Giles, Courtney D; Darch, Tegan; Stutter, Marc; George, Timothy S; Shand, Charles; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Blackwell, Martin; Wearing, Catherine; Haygarth, Philip M

    2016-11-01

    We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg -1 . However, low organic acid doses (<2 mmol kg -1 ) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K d ) and desorption rate constants (k -1 ) decreased whereas an increase in the response time of solution P equilibration (T c ) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations.

  3. [Effects of low molecular weight organic acids on redox reactions of mercury].

    Science.gov (United States)

    Zhao, Shi-Bo; Sun, Rong-Guo; Wang, Ding-Yong; Wang, Xiao-Wen; Zhang, Cheng

    2014-06-01

    To study the effects of the main component of vegetation root exudates-low molecular weight organic acids on the redox reactions of mercury, laboratory experiments were conducted to investigate the roles of tartaric, citric, and succinic acid in the redox reactions of mercury, and to analyze their interaction mechanism. The results indicated that tartaric acid significantly stimulated the mercury reduction reaction, while citric acid had inhibitory effect. Succinic acid improved the reduction rate at low concentration, and inhibited the reaction at high concentration. The mercury reduction rate by tartaric acid treatment was second-order with respect to Hg2+ concentration, ranging from 0.0014 L x (ng x min)(-1) to 0.005 6 L x (ng x min)(-1). All three organic acids showed a capacity for oxidating Hg(0) in the early stage, but the oxidized Hg(0) was subsequently reduced. The oxidation capacity of the three organic acids was in the order of citric acid > tartaric acid > succinic acid.

  4. Genomic analysis of Xenopus organizer function

    Directory of Open Access Journals (Sweden)

    Suhai Sándor

    2006-06-01

    Full Text Available Abstract Background Studies of the Xenopus organizer have laid the foundation for our understanding of the conserved signaling pathways that pattern vertebrate embryos during gastrulation. The two primary activities of the organizer, BMP and Wnt inhibition, can regulate a spectrum of genes that pattern essentially all aspects of the embryo during gastrulation. As our knowledge of organizer signaling grows, it is imperative that we begin knitting together our gene-level knowledge into genome-level signaling models. The goal of this paper was to identify complete lists of genes regulated by different aspects of organizer signaling, thereby providing a deeper understanding of the genomic mechanisms that underlie these complex and fundamental signaling events. Results To this end, we ectopically overexpress Noggin and Dkk-1, inhibitors of the BMP and Wnt pathways, respectively, within ventral tissues. After isolating embryonic ventral halves at early and late gastrulation, we analyze the transcriptional response to these molecules within the generated ectopic organizers using oligonucleotide microarrays. An efficient statistical analysis scheme, combined with a new Gene Ontology biological process annotation of the Xenopus genome, allows reliable and faithful clustering of molecules based upon their roles during gastrulation. From this data, we identify new organizer-related expression patterns for 19 genes. Moreover, our data sub-divides organizer genes into separate head and trunk organizing groups, which each show distinct responses to Noggin and Dkk-1 activity during gastrulation. Conclusion Our data provides a genomic view of the cohorts of genes that respond to Noggin and Dkk-1 activity, allowing us to separate the role of each in organizer function. These patterns demonstrate a model where BMP inhibition plays a largely inductive role during early developmental stages, thereby initiating the suites of genes needed to pattern dorsal tissues

  5. Chiral metal-organic frameworks bearing free carboxylic acids for organocatalyst encapsulation.

    Science.gov (United States)

    Liu, Yan; Xi, Xiaobing; Ye, Chengcheng; Gong, Tengfei; Yang, Zhiwei; Cui, Yong

    2014-12-08

    Two chiral carboxylic acid functionalized micro- and mesoporous metal-organic frameworks (MOFs) are constructed by the stepwise assembly of triple-stranded heptametallic helicates with six carboxylic acid groups. The mesoporous MOF with permanent porosity functions as a host for encapsulation of an enantiopure organic amine catalyst by combining carboxylic acids and chiral amines in situ through acid-base interactions. The organocatalyst-loaded framework is shown to be an efficient and recyclable heterogeneous catalyst for the asymmetric direct aldol reactions with significantly enhanced stereoselectivity in relative to the homogeneous organocatalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cranberry juice and combinations of its organic acids are effective against experimental urinary tract infection

    DEFF Research Database (Denmark)

    Jensen, Heidi Dorthe; Struve, Carsten; Christensen, Søren Brøgger

    2017-01-01

    The antibacterial effect of cranberry juice and the organic acids therein on infection by uro28 pathogenic Escherichia coli was studied in an experimental mouse model of urinary tract infection (UTI). Reduced bacterial counts were found in the bladder (P ... administered singly, did not have any effect in the UTI model. Apparently, the antibacterial effect of the organic acids from cranberry juice on UTI can be obtained by administering a combination of malic acid and either citric or quinic acid. This study show for the first time that cranberry juice reduce E...

  7. Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds.

    Science.gov (United States)

    Slatnar, Ana; Klancar, Urska; Stampar, Franci; Veberic, Robert

    2011-11-09

    Fresh figs were subjected to two different drying processes: sun-drying and oven-drying. To assess their effect on the nutritional and health-related properties of figs, sugars, organic acids, single phenolics, total phenolics, and antioxidant activity were determined before and after processing. Samples were analyzed three times in a year, and phenolic compounds were determined using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). In figs, monomer sugars predominate, which is important nutritional information, and the content of sugars as well as organic acids in fresh figs was lower than in dried fruits. However, the best sugar/organic acid ratio was measured after the sun-drying process. Analysis of individual phenolic compounds revealed a higher content of all phenolic groups determined after the oven-drying process, with the exception of cyanidin-3-O-rutinoside. Similarly, higher total phenolic content and antioxidant activity were detected after the drying process. With these results it can be concluded that the differences in analyzed compounds in fresh and dried figs are significant. The differences between the sun-dried and oven-dried fruits were determined in organic acids, sugars, chlorogenic acid, catechin, epicatechin, kaempferol-3-O-glucoside, luteolin-8-C-glucoside, and total phenolic contents. The results indicate that properly dried figs can be used as a good source of phenolic compounds.

  8. Top value platform chemicals: bio-based production of organic acids.

    Science.gov (United States)

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Prediction of acid dissociation constants of organic compounds using group contribution methods

    DEFF Research Database (Denmark)

    Zhou, Teng; Jhamb, Spardha; Liang, Xiaodong

    2018-01-01

    data-points with average absolute error of 0.23; (b) a non-linear GC model for organic compounds using 1622 data-points with average absolute error of 1.18; (c) an artificial neural network (ANN) based GC model for the organic compounds with average absolute error of 0.17. For each of the developed......In this paper, group contribution (GC) property models for the estimation of acid dissociation constants (Ka) of organic compounds are presented. Three GC models are developed to predict the negative logarithm of the acid dissociation constant pKa: (a) a linear GC model for amino acids using 180...

  10. River inputs and organic matter fluxes in the northern Bay of Bengal: Fatty acids

    Digital Repository Service at National Institute of Oceanography (India)

    Reemtsma, T.; Ittekkot, V.; Bartsch, M.; Nair, R.R

    ) 55-71 55 Elsevier Science Publishers B.V., Amsterdam \\[RA\\] River inputs and organic matter fluxes in the northern Bay of Bengal: fatty acids T. Reemtsma a, V. Ittekkot a, M. Bartsch a and R.R. Nair b alnstitut fiir Biogeochemie und Meereschemie..., R.R., 1993. River inputs and organic matter fluxes in the northern Bay of Bengal: fatty acids. Chem. Geol., 103: 55-71. Total particulate matter flux and organic carbon and fatty acid fluxes associated with settling particles collected during...

  11. Liver function and bacteriology of organs in broiler inoculated with nalidixic acid-resistant Salmonella Typhimurium and treated with organic acids

    Directory of Open Access Journals (Sweden)

    Tatiane M. Rocha

    2013-07-01

    Full Text Available AbAns etxrpaecritment was carried out with 630 one-day-old chicks to evaluate the effects of organic acids when birds were experimentally inoculated with Salmonella Typhimurium. Liver damage and the persistence of the bacterium in the organs were evaluated as well. Broilers were distributed in a completely randomised experimental design in a 3×2 factorial arrangement of six treatments with seven replicates of 15 birds each. Birds were inoculated with saline solution or the bacterium via gavage at 1 day of age, or were offered a feed containing or not the organic acid blend for the period of 7 to 14 days of age. A dose of 5.0x102 colony-forming units (CFU/0.5 mL of Salmonella Typhimurium was used for inoculation both via gavage and feed. The parameters evaluated are weight, liver histopathology, liver and serum biochemistry, and bacteriological analyses of the caeca, crop, spleen, and liver and heart pool. At 21 and 28 days of age, the liver of the non-inoculated groups was significantly lighter as compared to the other treatments. Birds fed organic acids presented lower bacterial isolation rates in all organs tested. Birds inoculated in the crop and treated with organic acids presented lower E. coli CFU counts (P<0.05. Birds inoculated with Salmonella presented significant changes (P<0.05 in liver enzymes, as detected by serum biochemistry, and in liver histopathology. It was concluded that organic acids effectively controlled Salmonella Typhimurium and did not cause any liver damage.

  12. The Use of Supported Acidic Ionic Liquids in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Rita Skoda-Földes

    2014-06-01

    Full Text Available Catalysts obtained by the immobilisation of acidic ionic liquids (ILs on solid supports offer several advantages compared to the use of catalytically active ILs themselves. Immobilisation may result in an increase in the number of accessible active sites of the catalyst and a reduction of the amount of the IL required. The ionic liquid films on the carrier surfaces provide a homogeneous environment for catalytic reactions but the catalyst appears macroscopically as a dry solid, so it can simply be separated from the reaction mixture. As another advantage, it can easily be applied in a continuous fixed bed reactor. In the present review the main synthetic strategies towards the preparation of supported Lewis acidic and Brønsted acidic ILs are summarised. The most important characterisation methods and structural features of the supported ionic liquids are presented. Their efficiency in catalytic reactions is discussed with special emphasis on their recyclability.

  13. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review.

    Science.gov (United States)

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-11-10

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.

  14. Aliphatic, Cyclic, and Aromatic Organic Acids, Vitamins, and Carbohydrates in Soil: A Review

    Directory of Open Access Journals (Sweden)

    Valerie Vranova

    2013-01-01

    Full Text Available Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.

  15. Aliphatic, Cyclic, and Aromatic Organic Acids, Vitamins, and Carbohydrates in Soil: A Review

    Science.gov (United States)

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374

  16. Application of the CPA equation of state to organic acids

    DEFF Research Database (Denmark)

    Derawi, Samer; Zeuthen, Frederik Jacob; Michelsen, Michael Locht

    2004-01-01

    a strong tendency to dimerise in the vapor phase at normal condition resulting in strong non-ideal behavior, even at low pressures. Pure compound parameters have been determined from vapor pressure and liquid density data for the three acids. Among the three tested association schemes (one-site, two......-site, and four-site), only the one-site association scheme describes satisfactorily the association in both the gas and the liquid phase. Second virial coefficients axe predicted well with the proposed one-site model. Excellent binary VLE and acceptable LLE correlations have been obtained for acid + aliphatic...

  17. Fermentation characteristics in conversion of organic acids obtained by oxidation of low-rank coals to poly({beta}-hydroxybutyrate) using A. eutrophus cells with some analysis on metabolic flux distribution; Kattan no ekisosanka de erareru yukisan wo suiso saikin wo riyoshite pori {beta}-hidorokishi rakusan (PHB) ni henkansaseru tameno baiyo kogakuteki kento to taisha ryusoku bunpu shisutemu kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimoto, Shoko.; Shin, Huidong.; Shimizu, Kazuyuki. [Kyushu Institute of Technology, Fukuoka (Japan). Department of Biochemical engineering and science; Mae, Kazuhiro.; Miura, Koichi. [Kyoto University, Kyoto (Japan). Department of Chemical Engineering

    1999-03-10

    Fermentation characteristics are investigated for the conversion of glycolate, acetate, formate, and malonate obtained by the oxidation of low-rank coals to poly ({beta}-hydrox butyrate) (PHB) using A. eutrophus cells. Based on the cultivation experiments using one of the organic acids as a sole carbon source, it is found that acetate is the most effectively converted to PHB. When mixed organic acids are used, formate is preferentially consumed, followed by acetate, and finally glycolate. Although malate can not be utilized, it is implied that it might change the pathway flux distributions based on the metabolic flux analysis. Namely, it shows competitive inhibition to succinate dehydrogenase so that its addition during fermentation results in flux reduction from succinate to maleic acid as well as glyoxylate flux and gluconeogenesis flux. It is also found that NADPH generated from isocitrate is preferentially utilized for the reaction from {alpha}-ketoglutarate to glutamate when NH{sub 3} concentration is high, while it is eventually used for the PHB production from acetoacetyl CoA as NH{sub 3} concentration decreases. (author)

  18. Molecular structures of five adducts assembled from p-dimethylaminobenzaldehyde and organic acids

    Science.gov (United States)

    Jin, Shouwen; Wang, Lanqing; Liu, Hui; Liu, Li; Zhang, Huan; Wang, Daqi; Li, Minghui; Guo, Jianzhong; Guo, Ming

    2016-07-01

    Five adducts 1-5 derived from p-dimethylaminobenzaldehyde have been prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the five adducts two are organic salts (1, and 2) and the other three (3-5) are cocrystals. In salts 1, and 2, the L molecules are protonated. The supramolecular architectures of the adducts 1-5 involve extensive intermolecular N-H⋯O, O-H⋯O, O-H⋯S, and C-H⋯O hydrogen bonds as well as other non-covalent interactions. The role of weak and strong non-covalent interactions in the crystal packing is ascertained. The complexes displayed 2D/3D framework structure for the synergistic effect of the various non-covalent interactions. The results presented herein tell that the strength and directionality of the N-H⋯O, O-H⋯O, and O-H⋯S hydrogen bonds between organic acids and p-dimethylaminobenzaldehyde are sufficient to bring about the formation of binary cocrystals or organic salts.

  19. A new corresponding state-based correlation for the surface tension of organic fatty acids

    Science.gov (United States)

    Zhang, Cuihua; Tian, Jianxiang; Zheng, Mengmeng; Yi, Huili; Zhang, Laibin; Liu, Shuzhen

    2018-01-01

    In this paper, we proposed a new corresponding state-based correlation for organic fatty (aliphatic, carboxylic and polyfunctional) acids. By using the recently published surface tension data of the 99 acids [A. Mulero and I. Cachadiña, J. Phys. Chem. Ref. Data 45 (2016) 033105] and comparing with the recently published other corresponding state correlations, we found that this correlation reproduces the lowest absolute average deviation (AAD) values for 82 acids out of the 99 acids. It can reproduce the surface tension data with AAD less than 10% for 89 out of the 99 acids.

  20. GENETIC ANALYSIS OF ABSCISIC ACID BIOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    MCCARTY D R

    2012-01-10

    The carotenoid cleavage dioxygenases (CCD) catalyze synthesis of a variety of apo-carotenoid secondary metabolites in plants, animals and bacteria. In plants, the reaction catalyzed by the 11, 12, 9-cis-epoxy carotenoid dioxygenase (NCED) is the first committed and key regulated step in synthesis of the plant hormone, abscisic acid (ABA). ABA is a key regulator of plant stress responses and has critical functions in normal root and seed development. The molecular mechanisms responsible for developmental control of ABA synthesis in plant tissues are poorly understood. Five of the nine CCD genes present in the Arabidopsis genome encode NCED's involved in control of ABA synthesis in the plant. This project is focused on functional analysis of these five AtNCED genes as a key to understanding developmental regulation of ABA synthesis and dissecting the role of ABA in plant development. For this purpose, the project developed a comprehensive set of gene knockouts in the AtNCED genes that facilitate genetic dissection of ABA synthesis. These mutants were used in combination with key molecular tools to address the following specific objectives: (1) the role of ABA synthesis in root development; (2) developmental control of ABA synthesis in seeds; (3) analysis of ATNCED over-expressers; (4) preliminary crystallography of the maize VP14 protein.

  1. Students' Understanding of Acids/Bases in Organic Chemistry Contexts

    Science.gov (United States)

    Cartrette, David P.; Mayo, Provi M.

    2011-01-01

    Understanding key foundational principles is vital to learning chemistry across different contexts. One such foundational principle is the acid/base behavior of molecules. In the general chemistry sequence, the Bronsted-Lowry theory is stressed, because it lends itself well to studying equilibrium and kinetics. However, the Lewis theory of…

  2. Susceptibility of Campylobacter jejuni to Organic Acids and Monoacylglycerols

    Czech Academy of Sciences Publication Activity Database

    Molatová, Z.; Skřivanová, E.; Macias, B.; McEwan, N. R.; Březina, P.; Marounek, Milan

    2010-01-01

    Roč. 55, č. 3 (2010), s. 215-220 ISSN 0015-5632 R&D Projects: GA ČR GD525/08/H060 Institutional research plan: CEZ:AV0Z50450515 Keywords : CHAIN FATTY-ACIDS * POULTRY * COLONIZATION Subject RIV: EE - Microbiology, Virology Impact factor: 0.977, year: 2010

  3. Organ- and species-specific biological activity of rosmarinic acid

    NARCIS (Netherlands)

    Iswandana, R.; Pham, B.T.; van Haaften, W.T.; Luangmonkong, T.; Oosterhuis, D.; Mutsaers, H.A.M.; Olinga, P.

    2016-01-01

    Rosmarinic acid (RA), a compound found in several plant species, has beneficial properties, including anti-inflammatory and antibacterial effects. We investigated the toxicity, anti-inflammatory, and antifibrotic effects of RA using precision-cut liver slices (PCLS) and precision-cut intestinal

  4. Carbon isotope effects in carbohydrates and amino acids of photosynthesizing organisms

    Energy Technology Data Exchange (ETDEWEB)

    Ivlev, A.A.; Kaloshin, A.G.; Koroleva, M.Ya. (Ministerstvo Geologii SSR, Moscow)

    1982-02-10

    The analysis of the carbon isotope distribution in carbohydrates and amino acids of some photosynthesizing organisms revealed the close relationship between distribution and the pathways of biosynthesis of the molecules. This relationship is explained on the basis of the previously proposed mechanism of carbon isotope fractionation in a cell, in which the chief part is played by kinetic isotope effects in the pyruvate decarboxylation reaction progressively increased in the conjugated processes of gluconeogenesis. Isotope differences of C/sub 2/ and C/sub 3/ fragments arising in decarboxylation of pyruvate, as well as isotope differences of biogenic acceptor and environmental CO/sub 2/ appearing in assimilation are the main reasons of the observed intramolecular isotopic heterogeneity of biomolecules. The heterogeneity is preserved in metabolites owing to an incomplete mixing of carbon atoms in biochemical reactions. The probable existence of two pools of carbohydrates in photosynthesizing organisms different in isotopic composition is predicted. Two types of intramolecular isotope distribution in amino acids are shown.

  5. Thermal decomposition of organic solvent with nitric acid in nuclear fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Tadao; Nishio, Gunji; Takada, Junichi; Tukamoto, Michio; Watanabe, Kouji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Miyata, Sadaichirou

    1995-02-01

    Since a thermal decomposition of organic solvent containing TBP (tributyl phosphate) with nitric acid and heavy metal nitrates is an exothermic reaction, it is possible to cause an explosive decomposition of TBP-complex materials formed by a nitration between the solvent and nitric acid, if the solvent involving TBP-complex is heated upto a thermal limit in an evaporator to concentrate a fuel liquid solution from the extraction process in the reprocessing plant. In JAERI, the demonstration test for explosive decomposition of TBP-complex by the nitration was performed to elucidate the safety margin of the evaporator in the event of hypothetical explosion under auspices of the Science and Technology Agency. The demonstration test was carried out by heating TBP/n-dodecane solvent mixed with nitric acid and uranium nitrate. In the test, the thermal decomposition behavior of the solvent was examined, and also a kinematic reaction constant and a heat formation of the TBP-complex decomposition were measured by the test. In the paper, a safety analysis of a model evaporator was conducted during accidental conditions under the explosive decomposition of the solvent. (author).

  6. Recombinant cells and organisms having persistent nonstandard amino acid dependence and methods of making them

    Science.gov (United States)

    Church, George M.; Mandell, Daniel J.; Lajoie, Marc J.

    2017-12-05

    Recombinant cells and recombinant organisms persistently expressing nonstandard amino acids (NSAAs) are provided. Methods of making recombinant cells and recombinant organisms dependent on persistently expressing NSAAs for survival are also provided. These methods may be used to make safe recombinant cells and recombinant organisms and/or to provide a selective pressure to maintain one or more reassigned codon functions in recombinant cells and recombinant organisms.

  7. Modeling the acid-base chemistry of organic solutes in Adirondack, New York, lakes

    Science.gov (United States)

    Driscoll, Charles T.; Lehtinen, Michael D.; Sullivan, Timothy J.

    1994-02-01

    Data from the large and diverse Adirondack Lake Survey were used to calibrate four simple organic acid analog models in an effort to quantify the influence of naturally occurring organic acids on lake water pH and acid-neutralizing capacity (ANC). The organic acid analog models were calibrated to observations of pH, dissolved organic carbon (DOC), and organic anion (An-) concentrations from a reduced data set representing 1128 individual lake samples, expressed as 41 observations of mean pH, in intervals of 0.1 pH units from pH 3.9 to 7.0. Of the four organic analog approaches examined, including the Oliver et al. (1983) model, as well as monoprotic, diprotic, and triprotic representations, the triprotic analog model yielded the best fit (r2 = 0.92) to the observed data. Moreover, the triprotic model was qualitatively consistent with observed patterns of change in organic solute charge density as a function of pH. A low calibrated value for the first H+ dissociation constant (pKal = 2.62) and the observation that organic anion concentrations were significant even at very low pH (acidic functional groups. Inclusion of organic acidity in model calculations resulted in good agreement between measured and predicted values of lake water pH and ANC. Assessments to project the response of surface waters to future changes in atmospheric deposition, through the use of acidification models, will need to include representations of organic acids in model structure to make accurate predictions of pH and ANC.

  8. Organic carbon and humic acids in sediments of the Arabian Sea and factors governing their distribution

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    acids are enriched on the slope compared to the inner and outer shelf. While upwelling, primary productivity and redox conditions at the bottom are known to influence organic matter accumulation in sediments, bacterial population and sediment texture...

  9. Enzymatic regulation of organic acid metabolism in an alkali-tolerant ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-10-05

    Oct 5, 2016 ... seedlings of C. virgata were treated with varying salt and alkali stress. First, the composition and .... mechanisms of organic acid accumulation in C. virgata ..... dehydrogenase and ferredoxin-dependent glutamate synthase in.

  10. Effect of organic acids traces on the carbon steel corrosion behavior

    International Nuclear Information System (INIS)

    Stefanescu, D.; Radulescu; Mogosan, S.

    2009-01-01

    There are many different ways in which organic matter may get in water-steam cycles. One important pathway is constituted by organic matter admitted into the system by chemical make-up water under standard operation conditions (without inverse osmosis). The high molecular weight organic matter, in particularly polysaccharides are broken in organic acids, in particular acetic and formic acid. This paper presents an overview of the investigations undertaken referring to the behavior SA106 gr. B mild steel in secondary circuit aqueous environment contaminated with formic and acetic acid traces. The samples were filmed in static autoclaves in operation conditions of secondary circuit, in contaminated environment and after that they were investigated using metallographic microscopy and SEM. In addition, an electrochemical technique videlicet impedance spectroscopy (EIS) was used to investigate the corrosion behavior of SA106 gr. B carbon steel in secondary circuit medium contaminated with formic and acetic acid traces. (authors)

  11. ROC analysis of acid demineralized artificial caries

    International Nuclear Information System (INIS)

    Kang, Byung Cheol

    1997-01-01

    This study is designed to determine the artificial incipient proximal caries lesion detectability by dentists on Ektaspeed Plus film using ROC analysis. Sixteen premolars and 30 molars, which have 52 proximal caries-like demineralized lesions using acid-gel technique were added to 20 sound premolars and 30 sound molars to make 24 plaster blocks. Each block with 4 teeth and 6 contacting proximal surfaces was placed in an optical bench to take 12 bitewing radiographs with Ektaspeed Plus film. Thirty-six dentists acted as observers to evaluated the proximal lesions using five rating scales for ROC analysis. They were also asked to determine the presence or absence of the proximal caries. The true status of the proximal caries was established by the consensus of three oral and maxillofacila radiologists. For evaluation of intra-observer agreement, 9 dentist reread the radiographs at an interval of 1 month. The Pearson correlation coefficient for the intra-observer agreement was 0.746 (good agreement). Ten observer's data set were degenerated. The mean area under ROC curve from 26 observers was 0.806 and standard deviation was 0.061. The sensitivity and the specificity of the binary response were 0.17 (SD=0.11) and 0.78 (SD=0.17) respectively. The binary response only reveal a single values of sensitivity and the specificity. The ROC analysis to assess the diagnostic accuracy in caries detection, which producing estimates of sensitivities for all specifities, yield more comprehensive measures of diagnostic performance than single values for sensitivity and specificity.

  12. Production of starch with antioxidative activity by baking starch with organic acids.

    Science.gov (United States)

    Miwa, Shoji; Nakamura, Megumi; Okuno, Michiko; Miyazaki, Hisako; Watanabe, Jun; Ishikawa-Takano, Yuko; Miura, Makoto; Takase, Nao; Hayakawa, Sachio; Kobayashi, Shoichi

    2011-01-01

    A starch ingredient with antioxidative activity, as measured by the DPPH method, was produced by baking corn starch with an organic acid; it has been named ANOX sugar (antioxidative sugar). The baking temperature and time were fixed at 170 °C and 60 min, and the organic acid used was selected from preliminary trials of various kinds of acid. The phytic acid ANOX sugar preparation showed the highest antioxidative activity, but the color of the preparation was almost black; we therefore selected L-tartaric acid which had the second highest antioxidative activity. The antioxidative activity of the L-tartaric acid ANOX sugar preparation was stable against temperature, light, and enzyme treatments (α-amylase and glucoamylase). However, the activity was not stable against variations in water content and pH value. The antioxidative activity of ANOX sugar was stabilized by treating with boiled water or nitrogen gas, or by pH adjustment.

  13. Simultaneous determination of low-molecular-weight organic acids and chlorinated acid herbicides in environmental water by a portable CE system with contactless conductivity detection.

    Science.gov (United States)

    Xu, Yan; Wang, Weilong; Li, Sam Fong Yau

    2007-05-01

    This report describes a method to simultaneously determine 11 low-molecular-weight (LMW) organic acids and 16 chlorinated acid herbicides within a single run by a portable CE system with contactless conductivity detection (CCD) in a poly(vinyl alcohol) (PVA)-coated capillary. Under the optimized condition, the LODs of CE-CCD ranged from 0.056 to 0.270 ppm, which were better than for indirect UV (IUV) detection of the 11 LMW organic acids or UV detection of the 16 chlorinated acid herbicides. Combined with an on-line field-amplified sample stacking (FASS) procedure, sensitivity enhancement of 632- to 1078-fold was achieved, with satisfactory reproducibility (RSDs of migration times less than 2.2%, and RSDs of peak areas less than 5.1%). The FASS-CE-CCD method was successfully applied to determine the two groups of acidic pollutants in two kinds of environmental water samples. The portable CE-CCD system shows advantages such as simplicity, cost effectiveness, and miniaturization. Therefore, the method presented in this report has great potential for onsite analysis of various pollutants at the trace level.

  14. Organic acid production from potato starch waste fermentation by rumen microbial communities from Dutch and Thai dairy cows

    NARCIS (Netherlands)

    Palakawong Na Ayudthaya, Susakul; De Weijer, Van Antonius H.P.; Gelder, Van Antonie H.; Stams, Alfons J.M.; Vos, De Willem M.; Plugge, Caroline M.

    2018-01-01

    Background: Exploring different microbial sources for biotechnological production of organic acids is important. Dutch and Thai cow rumen samples were used as inocula to produce organic acid from starch waste in anaerobic reactors. Organic acid production profiles were determined and microbial

  15. Organic analysis progress report FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Clauss, S.A.; Grant, K.E.; Hoopes, V.; Mong, G.M.; Steele, R.; Bellofatto, D.; Sharma, A.

    1998-04-01

    The Organic Analysis and Methods Development Task is being conducted by Pacific Northwest National Laboratory (PNNL) as part of the Organic Tank Waste Safety Project. The objective of the task is to apply developed analytical methods to identify and/or quantify the amount of particular organic species in tank wastes. In addition, this task provides analytical support for the Gas Generation Studies Task, Waste Aging, and Solubility Studies. This report presents the results from analyses of tank waste samples archived at Pacific Northwest National Laboratory (PNNL) and received from the Project Hanford Management Contractor (PHMC), which included samples associated with both the Flammable Gas and Organic Tank Waste Safety Programs. The data are discussed in Section 2.0. In addition, the results of analytical support for analyzing (1) simulated wastes for Waste Aging, (2) tank waste samples for Gas Generation, and (3) simulated wastes associated with solubility studies discussed in Sections 3.0, 4.0, and 5.0, respectively. The latter part of FY 1997 was devoted to documenting the analytical procedures, including derivation gas chromatography/mass spectrometry (GC/MS) and GC/FID for quantitation, ion-pair chromatography (IPC), IC, and the cation exchange procedure for reducing the radioactivity of samples. The documentation of analytical procedures is included here and discussed in Section 6.0 and Section 7.0 discusses other analytical procedures. The references are listed in Section 8.0 and future plans are discussed in Section 9.0. Appendix A is a preprint of a manuscript accepted for publication. Appendix B contains the cc mail messages and chain-of-custody forms for the samples received for analyses. Appendix C contains the test plan for analysis of tank waste samples.

  16. Organic analysis progress report FY 1997

    International Nuclear Information System (INIS)

    Clauss, S.A.; Grant, K.E.; Hoopes, V.; Mong, G.M.; Steele, R.; Bellofatto, D.; Sharma, A.

    1998-04-01

    The Organic Analysis and Methods Development Task is being conducted by Pacific Northwest National Laboratory (PNNL) as part of the Organic Tank Waste Safety Project. The objective of the task is to apply developed analytical methods to identify and/or quantify the amount of particular organic species in tank wastes. In addition, this task provides analytical support for the Gas Generation Studies Task, Waste Aging, and Solubility Studies. This report presents the results from analyses of tank waste samples archived at Pacific Northwest National Laboratory (PNNL) and received from the Project Hanford Management Contractor (PHMC), which included samples associated with both the Flammable Gas and Organic Tank Waste Safety Programs. The data are discussed in Section 2.0. In addition, the results of analytical support for analyzing (1) simulated wastes for Waste Aging, (2) tank waste samples for Gas Generation, and (3) simulated wastes associated with solubility studies discussed in Sections 3.0, 4.0, and 5.0, respectively. The latter part of FY 1997 was devoted to documenting the analytical procedures, including derivation gas chromatography/mass spectrometry (GC/MS) and GC/FID for quantitation, ion-pair chromatography (IPC), IC, and the cation exchange procedure for reducing the radioactivity of samples. The documentation of analytical procedures is included here and discussed in Section 6.0 and Section 7.0 discusses other analytical procedures. The references are listed in Section 8.0 and future plans are discussed in Section 9.0. Appendix A is a preprint of a manuscript accepted for publication. Appendix B contains the cc mail messages and chain-of-custody forms for the samples received for analyses. Appendix C contains the test plan for analysis of tank waste samples

  17. Influence of electron beam irradiation in the organic acids profile of Portuguese chestnuts (Castanea sativa Mill.)

    OpenAIRE

    Carocho, Márcio; Antonio, Amilcar L.; Barros, Lillian; Barreira, João C.M.; Bento, Albino; Rafalski, Andrzej; Ferreira, Isabel C.F.R.

    2013-01-01

    Organic acids are primary metabolites that play important roles in plant metabolism and confer distinct flavors in fruits. Their consumption is beneficial for humans, namely against certain illnesses. The food industry uses them as preservatives and flavor enhancers. In fruits conservation and transport, organic acids should be preserved at all costs in order to maintain physical quality and pleasant flavors until they reach the consumer. In 2010, due to European legislation, meth...

  18. Comparison of cultivable acetic acid bacterial microbiota in organic and conventional apple cider vinegar

    OpenAIRE

    Mori Štornik, Aleksandra; Skok, Barbara; Trček, Janja

    2017-01-01

    Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable ...

  19. Effectiveness of Hand Sanitizers with and without Organic Acids for Removal of Rhinovirus from Hands ▿

    Science.gov (United States)

    Turner, Ronald B.; Fuls, Janice L.; Rodgers, Nancy D.

    2010-01-01

    These studies evaluated the effectiveness of ethanol hand sanitizers with or without organic acids to remove detectable rhinovirus from the hands and prevent experimental rhinovirus infection. Ethanol hand sanitizers were significantly more effective than hand washing with soap and water. The addition of organic acids to the ethanol provided residual virucidal activity that persisted for at least 4 h. Whether these treatments will reduce rhinovirus infection in the natural setting remains to be determined. PMID:20047916

  20. The use of Syrian bentonite to remove organics and other ions from commercial Syrian phosphoric acid

    International Nuclear Information System (INIS)

    Khorfan, S.; Abdulbaki, M.; Zein, A.

    2006-01-01

    Using of activated carbon to remove organic matter from phosphoric acid in uranium and P 2 O 5 extraction units has high cost. A new study was conducted to establish a new material instead of activated carbon. Experiments were carried out on removing organic matter by adsorption on Syrian bentonite. The experiments of the removal of humic acid by Syrian bentonite gave good results and showed that the chemical and thermal activation of bentonite increased the adsorption efficiency. (Authors)

  1. The use of Syrian bentonite to remove organics and other ions from commercial Syrian phosphoric acid

    International Nuclear Information System (INIS)

    Khorfan, S.; Abdulbaki, M.; Zein, A.

    2005-03-01

    Using of activated carbon to remove organic matter from phosphoric acid in uranium and P 2 O 5 extraction units has high cost. A new study was conducted to establish a new material instead of activated carbon. Experiments were carried out on removing organic matter by adsorption on Syrian bentonite. The experiments of the removal of humic acid by Syrian bentonite gave good results and showed that the chemical and thermal activation of bentonite increased the adsorption efficiency. (Authors)

  2. An estimation of influence of humic acid and organic matter originated from bentonite on samarium solubility

    International Nuclear Information System (INIS)

    Kanaji, Mariko; Sato, Haruo; Sasahira, Akira

    1999-10-01

    Organic acids in groundwater are considered to form complexes and increase the solubility of radionuclides released from vitrified waste in a high-level radioactive waste (HLW) repository. To investigate whether the solubility of samarium (Sm) is influenced by organic substances, we measured Sm solubility in the presence of different organic substances and compared those values with results from thermodynamic predictions. Humic acid (Aldrich) is commercially available and soluble organic matter originated from bentonite were used as organic substances in this study. Consequently, the solubility of Sm showed a tendency to apparently increase with increasing the concentration of humic acid, but in the presence of carbonate, thermodynamic predictions suggested that the dominant species are carbonate complexes and that the effect of organic substances are less than that of carbonate. Based on total organic carbon (TOC), the increase of Sm solubility measured with humic acid (Aldrich) was more significant than that in the case with soluble organic matter originated from bentonite. Since bentonite is presumed to include also simple organic matters of which stability constant for forming complexes is low, the effect of soluble organic matter originated from bentonite on the solubility of Sm is considered to be less effective than that of humic acid (Aldrich). Experimental values were compared with model prediction, proposed by Kim, based on data measured in a low pH region. Tentatively we calculated the increase in Sm solubility assuming complexation with humic acid. Trial calculations were carried out on the premise that the complexation reaction of metal ion with humic acid is based on neutralization process by 1-1 complexation. In this process, it was assumed that one metal ion coordinates with one unit of complexation sites which number of proton exchange sites is equal to ionic charge. Consequently, Kim's model indicated that carbonate complexes should be dominant

  3. Phosphoric acid as a matrix additive for MALDI MS analysis of phosphopeptides and phosphoproteins

    DEFF Research Database (Denmark)

    Kjellström, Sven; Jensen, Ole Nørregaard

    2004-01-01

    Phosphopeptides are often detected with low efficiency by MALDI MS analysis of peptide mixtures. In an effort to improve the phosphopeptide ion response in MALDI MS, we investigated the effects of adding low concentrations of organic and inorganic acids during peptide sample preparation in 2,5-di...... acid to 2,5-DHB were also observed in LC-MALDI-MS analysis of tryptic phosphopeptides of B. subtilis PrkC phosphoprotein. Finally, the mass resolution of MALDI mass spectra of intact proteins was significantly improved by using phosphoric acid in 2,5-DHB matrix....

  4. Renal response to acute acid loading--an organ physiological approach

    DEFF Research Database (Denmark)

    Osther, P J; Engel, K; Kildeberg, P

    2004-01-01

    , as the extracellular acid-base status would be expected to be the key physiological trigger for renal NAE. The object of this study was to investigate the renal response to acute non-carbonic acid loading using a quantitative organ physiological approach. MATERIAL AND METHODS: Five-h NH4Cl loading studies were...

  5. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Science.gov (United States)

    Jing, Bo; Wang, Zhen; Tan, Fang; Guo, Yucong; Tong, Shengrui; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2018-04-01

    While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO3)2) and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA). The nitrate salt / organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH), the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  6. Light-enhanced acid catalysis over a metal-organic framework.

    Science.gov (United States)

    Xu, Caiyun; Sun, Keju; Zhou, Yu-Xiao; Ma, Xiao; Jiang, Hai-Long

    2018-03-06

    A Brønsted acid-functionalized metal-organic framework (MOF), MIL-101-SO 3 H, was prepared for acid-engaged esterification reactions. Strikingly, for the first time, the MOF exhibits significantly light-enhanced activity and possesses excellent activity and recyclability, with even higher activity than H 2 SO 4 under light irradiation.

  7. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Directory of Open Access Journals (Sweden)

    B. Jing

    2018-04-01

    Full Text Available While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO32 and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA. The nitrate salt ∕ organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH, the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  8. Mefenamic acid conjugates based on a hydrophilic biopolymer hydroxypropylcellulose: novel prodrug design, characterization and thermal analysis

    International Nuclear Information System (INIS)

    Hussain, M.A.; Kausar, R.; Amin, M.

    2015-01-01

    Macromolecular prodrugs (MPDs) of mefenamic acid were designed onto a cellulose ether derivative hydroxypropylcellulose (HPC) as ester conjugates. Fabrication of HPC-mefenamic acid conjugates was achieved by using p-toluenesulfonyl chloride as carboxylic acid (a functional group in drug) activator at 80 degree C for 24 h under nitrogen atmosphere. Reaction was preceded under homogeneous reaction conditions as HPC was dissolved before use in DMAc solvent. Imidazole was used as a base. Easy workup reactions resulted in good yields (55-65%) and degree of substitution (DS) of drug (0.37-0.99) onto HPC. The DS was calculated by acid-base titration after saponification and UV/Vis spectrophotometry after hydrolysis. DS by both of the methods was found in good agreement with each other. Aqueous and organic soluble novel prodrugs of mefenamic acid were purified and characterized by different spectroscopic and thermal analysis techniques. The initial, maximum and final degradation temperatures of HPC, mefenamic acid and HPC-mefenamic acid conjugates were drawn from thermogravimetric (TG) and derivative TG curves and compared to access relative thermal stability. The TG analysis has indicated that samples obtained were thermally more stable especially with increased stability of mefenamic acid in HPC-mefenamic acid conjugates. These novel MPDs of mefenamic acid (i.e., HPC-mefenamic acid conjugates) may have potential applications in pharmaceutically viable drug design due to wide range of solubility and extra thermal stability imparted after MPD formation. (author)

  9. Impedance analysis on organic ultrathin layers

    Energy Technology Data Exchange (ETDEWEB)

    Bom, Sidhant; Wagner, Veit [Jacobs University Bremen, School of Engineering and Science, Campus Ring 8, 28759 Bremen (Germany)

    2008-07-01

    Impedance spectroscopy is a standard technique for thin film analysis to obtain important information as thicknesses, diffusion properties of mobile ions and leakage currents. The measured electrical impedance of a sample is modeled by a physical equivalent circuit of resistors and capacitors. In the present work this information is obtained as a function of frequency also for ultrathin organic layers in the monolayer regime. A series of semiconducting and insulating polymers (regioregular poly-3-hexylthiophene (rr-P3HT), polymethylmethacrylate (PMMA)) and self assembled monolayers (octadecyltrichlorosilane (OTS), hexamethyldisilazane (HMDS), thiolated phospholipids) were deposited either on highly n-doped silicon wafers or on gold surfaces. E.g. ultrathin layers were obtained by dip coating a silicon wafer in rr-P3HT solution in chloroform. The thickness of 2 nm determined for this system by impedance measurement agrees well with the atomic force microscopy analysis and corresponds to a single layer of polymer chains. The leakage current is seen as an ohmic contribution at low frequencies and allows a systematic optimization of process parameters. In summary, impedance spectroscopy allows very fast and convenient analysis of thin organic layers even down to the monolayer regime.

  10. Amino Acid Composition of an Organic Brown Rice Protein Concentrate and Isolate Compared to Soy and Whey Concentrates and Isolates

    Directory of Open Access Journals (Sweden)

    Douglas S. Kalman

    2014-06-01

    Full Text Available A protein concentrate (Oryzatein-80™ and a protein isolate (Oryzatein-90™ from organic whole-grain brown rice were analyzed for their amino acid composition. Two samples from different batches of Oryzatein-90™ and one sample of Oryzatein-80™ were provided by Axiom Foods (Los Angeles, CA, USA. Preparation and analysis was carried out by Covance Laboratories (Madison, WI, USA. After hydrolysis in 6-N hydrochloric acid for 24 h at approximately 110 °C and further chemical stabilization, samples were analyzed by HPLC after pre-injection derivitization. Total amino acid content of both the isolate and the concentrate was approximately 78% by weight with 36% essential amino acids and 18% branched-chain amino acids. These results are similar to the profiles of raw and cooked brown rice except in the case of glutamic acid which was 3% lower in the isolate and concentrate. The amino acid content and profile of the Oryzatein-90™ isolate was similar to published values for soy protein isolate but the total, essential, and branched-chain amino acid content of whey protein isolate was 20%, 39% and 33% greater, respectively, than that of Oryzatein-90™. These results provide a valuable addition to the nutrient database of protein isolates and concentrates from cereal grains.

  11. Amino Acid Composition of an Organic Brown Rice Protein Concentrate and Isolate Compared to Soy and Whey Concentrates and Isolates.

    Science.gov (United States)

    Kalman, Douglas S

    2014-06-30

    A protein concentrate (Oryzatein-80™) and a protein isolate (Oryzatein-90™) from organic whole-grain brown rice were analyzed for their amino acid composition. Two samples from different batches of Oryzatein-90™ and one sample of Oryzatein-80™ were provided by Axiom Foods (Los Angeles, CA, USA). Preparation and analysis was carried out by Covance Laboratories (Madison, WI, USA). After hydrolysis in 6-N hydrochloric acid for 24 h at approximately 110 °C and further chemical stabilization, samples were analyzed by HPLC after pre-injection derivitization. Total amino acid content of both the isolate and the concentrate was approximately 78% by weight with 36% essential amino acids and 18% branched-chain amino acids. These results are similar to the profiles of raw and cooked brown rice except in the case of glutamic acid which was 3% lower in the isolate and concentrate. The amino acid content and profile of the Oryzatein-90™ isolate was similar to published values for soy protein isolate but the total, essential, and branched-chain amino acid content of whey protein isolate was 20%, 39% and 33% greater, respectively, than that of Oryzatein-90™. These results provide a valuable addition to the nutrient database of protein isolates and concentrates from cereal grains.

  12. Organic acids as analytical reagent: Part 1. Estimation of zirconium by gallic acid

    International Nuclear Information System (INIS)

    Pande, C.S.; Singh, A.K.; Kumar, Ashok

    1975-01-01

    Gallic acid has been found to be a selective reagent for the estimation of zirconium. The acid gives crystalline precipitate at pH of 4.8. The precipitate is ignited and weighed as ZrO 2 . Cations like Ca +2 , Ba +2 , Sr +2 , Mn +2 , Co +2 , Ni +2 , Fe +3 do not interfere in the estimation. (author)

  13. [Trace analysis of aristolochic acid A].

    Science.gov (United States)

    Liu, Yalin; Gao, Huimin; Wang, Zhimin; Zhang, Qiwei

    2010-12-01

    A HPLC method for limit detection of aristolochic acid A in the Chinese herbs containing aristolochic acid or suspected-containing aristolochic acid and their preparations was established. The samples were analyzed on an Alltima C18 column eluted with methanol-water-acetic acid (68:32:1.5) as the mobile phase. Flow rate was at 1.0 mL x min(-1) and the detection wavelength was at 390 nm. The calibration curve was linear over the range from 0.016 to 0.51 g (r = 0.9993) and LOD was 4 ng. The average recovery was 101.2% with RSD of 2.01%. The procedures of sample preparation were systematically investigated. The contents of aristolochic acid A in Radix et Rhizoma Asari bought from market or drugstore were fluctuated from 3.1 to 26.6 microg x g(-1) and 3 of 11 samples accorded with the quality requirement of current Chinese Pharmacopoeia. Among 15 batches samples of Chinese medicaments, only one sample was found to contain aristolochic acid A. The present investigation shows that the method is sensitive and repeatable and it could be used for the limit detection of aristolochic acid A in the Chinese herbal medicines containing trace amount of aristolochic acid A or suspected-containing aristolochic acid A and their preparations.

  14. Nickel Deficiency Disrupts Metabolism of Ureides, Amino Acids, and Organic Acids of Young Pecan Foliage[OA

    Science.gov (United States)

    Bai, Cheng; Reilly, Charles C.; Wood, Bruce W.

    2006-01-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan. PMID:16415214

  15. SPORTS ORGANIZATIONS MANAGEMENT IMPROVEMENT: A SURVEY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Alin Molcut

    2015-07-01

    Full Text Available Sport organizations exist to perform tasks that can only be executed through cooperative effort, and sport management is responsible for the performance and success of these organizations. The main of the paper is to analyze several issues of management sports organizations in order to asses their quality management. In this respect a questionnaire has been desingned for performing a survey analysis through a statistical approach. Investigation was conducted over a period of 3 months, and have been questioned a number of managers and coaches of football, all while pursuing an activity in football clubs in the counties of Timis and Arad, the level of training for children and juniors. The results suggest that there is a significant interest for the improvement of management across teams of children and under 21 clubs, emphasis on players' participation and rewarding performance. Furthermore, we can state that in the sports clubs there is established a vision and a mission as well as the objectives of the club's general refers to both sporting performance, and financial performance.

  16. Verification of Organic Feed Identity by Fatty Acid Fingerprinting

    NARCIS (Netherlands)

    Tres, A.; Ruth, van S.M.

    2011-01-01

    The origin and authenticity of feed for laying hens is an important and fraud-susceptible aspect in the production of organic eggs. Chemical fingerprinting in combination with chemometric methods is increasingly used in conjunction with administrative controls to verify and safeguard the

  17. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle.

    Science.gov (United States)

    Zahn, Daniel; Frömel, Tobias; Knepper, Thomas P

    2016-09-15

    Mobile and persistent organic micropollutants may impact raw and drinking waters and are thus of concern for human health. To identify such possible substances of concern nineteen water samples from five European countries (France, Switzerland, The Netherlands, Spain and Germany) and different compartments of the water cycle (urban effluent, surface water, ground water and drinking water) were enriched with mixed-mode solid phase extraction. Hydrophilic interaction liquid chromatography - high resolution mass spectrometry non-target screening of these samples led to the detection and structural elucidation of seven novel organic micropollutants. One structure could already be confirmed by a reference standard (trifluoromethanesulfonic acid) and six were tentatively identified based on experimental evidence (chloromethanesulfonic acid, dichloromethanesulfonic acid, trichloromethanesulfonic acid, bromomethanesulfonic acid, dibromomethanesulfonic acid and bromochloromethanesulfonic acid). Approximated concentrations for these substances show that trifluoromethanesulfonic acid, a chemical registered under the European Union regulation REACH with a production volume of more than 100 t/a, is able to spread along the water cycle and may be present in concentrations up to the μg/L range. Chlorinated and brominated methanesulfonic acids were predominantly detected together which indicates a common source and first experimental evidence points towards water disinfection as a potential origin. Halogenated methanesulfonic acids were detected in drinking waters and thus may be new substances of concern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. New techniques for analysis of organic pollutants in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Kissinger, L.D.

    1979-01-01

    An abstractor packing prepared by coating Chromosorb G AW/DMCS with copper(II) chloride was effective for removal of amines from gas-chromatographic streams, but it did not affect the chromatographic behavior of nonamine compounds. By using pre-columns packed with the abstractor packing, solventless chromatograms were obtained for samples in pyridine. A method was developed for determining haloforms in drinking water by sorption of the haloforms on columns packed with acetylated XAD-2. A pre-column of the abstractor packing was used to remove the pyridine solvent from the samples containing the haloforms concentrated from waters. Detection limits for the four chloro-, bromo- haloforms in a 100-ml water sample using an electron capture detector were below 1 ppB. Addition of ascorbic acid to chlorinated waters was effective for stopping the production of haloforms. Design of the inlet allowed samples to be introduced to the capillary column in a Tracor model 550 gas chromatograph with or without splitting of the carrier-gas stream. An exit splitter was implemented that carried the effluent from the capillary column to two detectors. The capillary-column system was applied to the analysis of trace components in complex mixtures. Small columns packed with Florisil were used to fractionate mixtures of organic compounds by gravity-flow liquid chromatography. Three fractions of organic compounds were collected from the Florisil columns. The recovery and elution behavior of many organic compounds was investigated. Organic compounds from fifteen waters were fractionated on Florisil.

  19. Visualization of amino acid composition differences between processed protein from different animal species by self-organizing feature maps

    Directory of Open Access Journals (Sweden)

    Xingfan ZHOU,Zengling YANG,Longjian CHEN,Lujia HAN

    2016-06-01

    Full Text Available Amino acids are the dominant organic components of processed animal proteins, however there has been limited investigation of differences in their composition between various protein sources. Information on these differences will not only be helpful for their further utilization but also provide fundamental information for developing species-specific identification methods. In this study, self-organizing feature maps (SOFM were used to visualize amino acid composition of fish meal, and meat and bone meal (MBM produced from poultry, ruminants and swine. SOFM display the similarities and differences in amino acid composition between protein sources and effectively improve data transparency. Amino acid composition was shown to be useful for distinguishing fish meal from MBM due to their large concentration differences between glycine, lysine and proline. However, the amino acid composition of the three MBMs was quite similar. The SOFM results were consistent with those obtained by analysis of variance and principal component analysis but more straightforward. SOFM was shown to have a robust sample linkage capacity and to be able to act as a powerful means to link different sample for further data mining.

  20. Acid-resistant organic coatings for the chemical industry: a review

    DEFF Research Database (Denmark)

    Møller, Victor Buhl; Dam-Johansen, Kim; Frankær, Sarah Maria Grundahl

    2017-01-01

    Industries that work with acidic chemicals in their processes need to make choices on how to properly contain the substances and avoid rapid corrosion of equipment. Certain organic coatings and linings can be used in such environments, either to protect vulnerable construction materials, or......, in combination with fiber reinforcement, to replace them. However, degradation mechanisms of organic coatings in acid service are not thoroughly understood and relevant quantitative investigations are scarce. This review describes the uses and limitations of acid-resistant coatings in the chemical industry...

  1. Amino acid analysis in biological fluids by GC-MS

    OpenAIRE

    Kaspar, Hannelore

    2009-01-01

    Amino acids are intermediates in cellular metabolism and their quantitative analysis plays an important role in disease diagnostics. A gas chromatography-mass spectrometry (GC-MS) based method was developed for the quantitative analysis of free amino acids as their propyl chloroformate derivatives in biological fluids. Derivatization with propyl chloroformate could be carried out directly in the biological samples without prior protein precipitation or solid-phase extraction of the amino acid...

  2. Eliminating amino acid interference during spectrophotometric NH4+ analysis

    NARCIS (Netherlands)

    Ros, G.H.; Leeuwen, van A.G.; Temminghoff, E.J.M.

    2011-01-01

    Amino acids can interfere with NH4+ in spectrophotometric NH4+ determination hampering accurate quantification of the fate of NH4+ and dissolved organic N in soils. Serious interference has been reported for soils rich in organic matter, and for soils that have been fumigated, oven-dried or

  3. Organically bound tritium analysis in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Baglan, N. [CEA/DAM/DIF, Arpajon (France); Kim, S.B. [AECL, Chalk River Laboratories, Chalk River, ON (Canada); Cossonnet, C. [IRSN/PRP-ENV/STEME/LMRE, Orsay (France); Croudace, I.W.; Warwick, P.E. [GAU-Radioanalytical, University of Southampton, Southampton (United Kingdom); Fournier, M. [IRSN/DG/DMQ, Fontenay-aux-Roses (France); Galeriu, D. [IFIN-HH, Horia-Hulubei, Inst. Phys. and Nucl. Eng., Bucharest (Romania); Momoshima, N. [Kyushu University, Radioisotope Ctr., Fukuoka (Japan); Ansoborlo, E. [CEA/DEN/DRCP/CETAMA, Bagnols-sur-Ceze (France)

    2015-03-15

    Organically bound tritium (OBT) has become of increased interest within the last decade, with a focus on its behaviour and also its analysis, which are important to assess tritium distribution in the environment. In contrast, there are no certified reference materials and no standard analytical method through the international organization related to OBT. In order to resolve this issue, an OBT international working group was created in May 2012. Over 20 labs from around the world participated and submitted their results for the first intercomparison exercise results on potato (Sep 2013). The samples, specially-prepared potatoes, were provided in March 2013 to each participant. Technical information and results from this first exercise are discussed here for all the labs which have realised the five replicates necessary to allow a reliable statistical treatment. The results are encouraging as the increased number of participating labs did not degrade the observed dispersion of the results for a similar activity level. Therefore, the results do not seem to depend on the analytical procedure used. From this work an optimised procedure can start to be developed to deal with OBT analysis and will guide subsequent planned OBT trials by the international group.

  4. Acid-Base Learning Outcomes for Students in an Introductory Organic Chemistry Course

    Science.gov (United States)

    Stoyanovich, Carlee; Gandhi, Aneri; Flynn, Alison B.

    2015-01-01

    An outcome-based approach to teaching and learning focuses on what the student demonstrably knows and can do after instruction, rather than on what the instructor teaches. This outcome-focused approach can then guide the alignment of teaching strategies, learning activities, and assessment. In organic chemistry, mastery of organic acid-base…

  5. Design of homo-organic acid producing strains using multi-objective optimization

    DEFF Research Database (Denmark)

    Kim, Tae Yong; Park, Jong Myoung; Kim, Hyun Uk

    2015-01-01

    Production of homo-organic acids without byproducts is an important challenge in bioprocess engineering to minimize operation cost for separation processes. In this study, we used multi-objective optimization to design Escherichia coli strains with the goals of maximally producing target organic ...

  6. Organic acids as analytical reagent: Part 1. Estimation of zirconium by gallic acid

    Energy Technology Data Exchange (ETDEWEB)

    Pande, C S; Singh, A K; Kumar, Ashok [Lucknow Univ. (India). Dept. of Chemistry

    1975-07-01

    Gallic acid has been found to be a selective reagent for the estimation of zirconium. The acid gives a crystalline precipitate at pH of 4.8 which is ignited and weighed as ZrO/sub 2/. Cations like Ca/sup +2/, Ba/sup +2/, Sr/sup +2/, Mn/sup +2/, Co/sup +2/, Ni/sup +2/, Fe/sup +3/ do not interfere in the estimation.

  7. Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; Nielsen, Michael Lynge; Olsson, Lisbeth

    2009-01-01

    With the availability of the genome sequence of the filamentous fungus Aspergillus niger, the use of targeted genetic modifications has become feasible. This, together with the fact that A. niger is well established industrially, makes this fungus an attractive micro-organism for creating a cell...... factory platform for production of chemicals. Using molecular biology techniques, this study focused on metabolic engineering of A. niger to manipulate its organic acid production in the direction of succinic acid. The gene target for complete gene deletion was cytosolic ATP: citrate lyase (acl), which...... the acl gene. Additionally, the total amount of organic acids produced in the deletion strain was significantly increased. Genome-scale stoichiometric metabolic model predictions can be used for identifying gene targets. Deletion of the acl led to increased succinic acid production by A. niger....

  8. Optimisation of a wet FGD pilot plant using fine limestone and organic acids

    DEFF Research Database (Denmark)

    Frandsen, Jan; Kiil, Søren; Johnsson, Jan Erik

    2001-01-01

    , but the residual limestone content in the gypsum increased to somewhere between 19 and 30 wt%, making this pH range unsuitable for use in a full-scale plant. The investigations have shown that both the addition of organic acids and the use of a limestone with a fine PSD can be used to optimise wet FGD plants. (C......The effects of adding an organic acid or using a limestone with a fine particle size distribution (PSD) have been examined in a wet flue gas desulphurisation (FGD) pilot plant. Optimisation of the plant with respect to the degree of desulphurisation and the residual limestone content of the gypsum...... has been the aim of the work. In contrast to earlier investigations with organic acids, all essential process parameters (i.e. gas phase concentration profiles of SO(2), slurry pH profiles. and residual limestone in the gypsum) were considered. Slurry concentrations of adipic acid in the range of 0...

  9. Speleothem records of acid sulphate deposition and organic carbon mobilisation

    Science.gov (United States)

    Wynn, Peter; Fairchild, Ian; Bourdin, Clement; Baldini, James; Muller, Wolfgang; Hartland, Adam; Bartlett, Rebecca

    2017-04-01

    Dramatic increases in measured surface water DOC in recent decades have been variously attributed to either temperature rise, or destabilisation of long-term soil carbon pools following sulphur peak emissions status. However, whilst both drivers of DOC dynamics are plausible, they remain difficult to test due to the restricted nature of the available records of riverine DOC flux (1978 to present), and the limited availability of SO2 emissions inventory data at the regional scale. Speleothems offer long term records of both sulphur and carbon. New techniques to extract sulphur concentrations and isotopes from speleothem calcite have enabled archives of pollution history and environmental acidification to be reconstructed. Due to the large dynamic range in sulphur isotopic values from end member sources (marine aerosol +21 ‰ to continental biogenic emissions -30 ‰) and limited environmental fractionation under oxidising conditions, sulphur isotopes form an ideal tracer of industrial pollution and environmental acidification in the palaeo-record. We couple this acidification history to the carbon record, using organic matter fluorescence and trace metals. Trace metal ratios and abundance can be used to infer the type and size of organic ligand and are therefore sensitive to changes in temperature as a driver of organic carbon processing and biodegradation. This allows fluorescent properties and ratios of trace metals in speleothem carbonate to be used to represent both the flux of organic carbon into the cave as well as the degradation pathway. Here we present some of the first results of this work, exploring sulphur acidification as a mechanistic control on carbon solubility and export throughout the twentieth century.

  10. Protein haze formation in wines revisited. The stabilising effect of organic acids

    OpenAIRE

    Batista, L.; Monteiro, L.; Loureiro, V.; Teixeira, A.R.; Ferreira, R.B.

    2010-01-01

    The effect on the wine protein haze potential of five organic acids commonly encountered in wines (L(+)- tartaric, L( )-malic, citric, succinic and gluconic acids) was assessed. All five acids, tested at 20 mM, reduced dramatically the haze potential of proteins, either in wine or dissolved in water, throughout the range of pH values typical of wines (i.e., from 2.8 through 3.8). Subtle differences among the acid effects did not correlate with the number of their carboxyl groups, ...

  11. The drying method affects the organic acid content of alfalfa forages

    Directory of Open Access Journals (Sweden)

    P. Pezzi

    2011-03-01

    Full Text Available Malic acid (the main organic acid contained in alfalfa; Callaway et al., 1997 is an important metabolite for ruminal microbial population since it improves the uptake of lactic acid by Selenomonas ruminantium (Evans and Martin, 1997 and Megasphaera elsdenii (Rossi and Piva, 1999. Several studies have shown the effect of adding malic acid to the diet of steers and dairy cows on ruminal fermentation (Martin et al., 1999; Martin et al., 2000 and animal performances (Krummrey et al., 1979; Stallcup, 1979; Kung et al., 1982. Aim of this study was the evaluation of the influence of drying method.......

  12. Effect of organic acids on biofilm formation and quorum signaling of pathogens from fresh fruits and vegetables.

    Science.gov (United States)

    Amrutha, Balagopal; Sundar, Kothandapani; Shetty, Prathapkumar Halady

    2017-10-01

    Organic acids are known to be used as food preservatives due to their antimicrobial potential. This study evaluated the ability of three organic acids, namely, acetic acid, citric acid and lactic acid to manage E. coli and Salmonella sp. from fresh fruits and vegetables. Effect of these organic acids on biofilm forming ability and anti-quorum potential was also investigated. The effect of organic acids on inactivation of E. coli and Salmonella sp. on the surface of a selected vegetable (cucumber) was determined. The minimum inhibitory concentration of the organic acids were found to be 1.5, 2 and 0.2% in E. coli while it was observed to be 1, 1.5 and 1% in Salmonella sp. for acetic, citric and lactic acids respectively. Maximum inhibition of biofilm formation was recorded at 39.13% with lactic acid in E. coli and a minimum of 22.53% with citric acid in Salmonella sp. EPS production was affected in E. coli with lactic acid showing reduction by 13.42% while citric acid and acetic acid exhibited only 6.25% and 10.89% respectively. Swimming and swarming patterns in E. coli was notably affected by both acetic and lactic acids. Lactic and acetic acids showed higher anti-quorum sensing (QS) potential when compared to citric acid. 2% lactic acid showed a maximum inhibition of violacein production by 37.7%. Organic acids can therefore be used as potential quorum quenching agents in food industry. 2% lactic acid treatment on cucumber demonstrated that it was effective in inactivating E. coli and Salmonella sp. There was 1 log reduction in microbial count over a period of 6 days after the lactic acid treatment. Thus, organic acids can act as effective potential sanitizers in reducing the microbial load associated with fresh fruits and vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Use of organic acids to inactivate Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh apples and lettuce.

    Science.gov (United States)

    Park, Sang-Hyun; Choi, Mi-Ran; Park, Jeong-Woong; Park, Ki-Hwan; Chung, Myung-Sub; Ryu, Sangryeol; Kang, Dong-Hyun

    2011-08-01

    This study was undertaken to investigate the antimicrobial effect of organic acids against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on whole red organic apples and lettuce. Several studies have been conducted to evaluate organic acids as sanitizers. However, no studies have compared antimicrobial effects of various organic acids on organic fresh produce, including evaluation of color changes of produce. Apples and lettuce were inoculated with a cocktail of 3 strains each of 3 foodborne pathogens provided above and treated with 1% and 2% organic acids (propionic, acetic, lactic, malic, and citric acid) for 0, 0.5, 1, 5, and 10 min. With increasing treatment time and acid concentration, organic acid treatments showed significant reduction compared to the control treatment (distilled water), and differences in antimicrobial effects between organic acids were observed. After 10 min of treatment with 1% and 2% organic acids in apples, propionic (0.92 to 2.75 log reduction), acetic (0.52 to 2.78 log reduction), lactic (1.69 to >3.42 log reduction), malic (1.48 to >3.42 log reduction), and citric acid (1.52 to >3.42 log reduction) exhibited significant (P acid (1.85 to 2.86 log reduction) showed significant (P acids treatment were not significant during storage. It is suggested that organic acids have a potential as sanitizers for organic fresh produce. These data may help the organic produce industry provide safe fresh produce for consumers. © 2011 Institute of Food Technologists®

  14. Uric Acid Spherulites in the Reflector Layer of Firefly Light Organ

    Science.gov (United States)

    Goh, King-Siang; Sheu, Hwo-Shuenn; Hua, Tzu-En; Kang, Mei-Hua; Li, Chia-Wei

    2013-01-01

    Background In firefly light organs, reflector layer is a specialized tissue which is believed to play a key role for increasing the bioluminescence intensity through reflection. However, the nature of this unique tissue remains elusive. In this report, we investigated the role, fine structure and nature of the reflector layer in the light organ of adult Luciola cerata. Principal Findings Our results indicated that the reflector layer is capable of reflecting bioluminescence, and contains abundant uric acid. Electron microscopy (EM) demonstrated that the cytosol of the reflector layer's cells is filled with densely packed spherical granules, which should be the uric acid granules. These granules are highly regular in size (∼700 nm in diameter), and exhibit a radial internal structure. X-ray diffraction (XRD) analyses revealed that an intense single peak pattern with a d-spacing value of 0.320 nm is specifically detected in the light organ, and is highly similar to the diffraction peak pattern and d-spacing value of needle-formed crystals of monosodium urate monohydrate. However, the molar ratio evaluation of uric acid to various cations (K+, Na+, Ca2+ and Mg2+) in the light organ deduced that only a few uric acid molecules were in the form of urate salts. Thus, non-salt uric acid should be the source of the diffraction signal detected in the light organ. Conclusions In the light organ, the intense single peak diffraction signal might come from a unique needle-like uric acid form, which is different from other known structures of non-salt uric acid form. The finding of a radial structure in the granules of reflector layer implies that the spherical uric acid granules might be formed by the radial arrangement of needle-formed packing matter. PMID:23441187

  15. Social network analysis of sustainable transportation organizations.

    Science.gov (United States)

    2012-07-15

    Studying how organizations communicate with each other can provide important insights into the influence, and policy success of different types of organizations. This study examines the communication networks of 121 organizations promoting sustainabl...

  16. Role of Organic Acids in Bioformation of Kaolinite: Results of Laboratory Experiments

    Science.gov (United States)

    Bontognali, T. R. R.; Vasconcelos, C.; McKenzie, J. A.

    2012-04-01

    Clay minerals and other solid silica phases have a broad distribution in the geological record and greatly affect fundamental physicochemical properties of sedimentary rocks, including porosity. An increasing number of studies suggests that microbial activity and microbially produced organic acids might play an important role in authigenic clay mineral formation, at low temperatures and under neutral pH conditions. In particular, early laboratory experiments (Linares and Huertas, 1971) reported the precipitation of kaolinite in solutions of SiO2 and Al2O3 with different molar ratios SiO2/Al2O3, together with fulvic acid (a non-characterized mixture of many different acids containing carboxyl and phenolate groups) that was extracted from peat soil. Despite many attempts, these experiments could not be reproduced until recently. Fiore et al. (2011) hypothesized that the non-sterile fulvic acid might have contained microbes that participated in the formation of kaolinite. Using solutions saturated with Si and Al and containing oxalate and/or mixed microbial culture extracted from peat-moss soil, they performed incubation experiments, which produced kaolinite exclusively in solutions containing oxalate and microbes. We proposed to test the role of specific organic acids for kaolinite formation, conducting laboratory experiments at 25˚C, with solutions of sodium silicate, aluminum chloride and various organic compounds (i.e. EDTA, citric acid, succinic acid and oxalic acid). Specific organic acids may stabilize aluminum in octahedral coordination positions, which is crucial for the initial nucleation step. In our experiments, a poorly crystalline mineral that is possibly a kaolinite precursor formed exclusively in the presence of succinic acid. In experiments with other organic compounds, no incorporation of Al was observed, and amorphous silica was the only precipitated phase. In natural environments, succinic acid is produced by a large variety of microbes as an

  17. Extraction and characterisation of aqueous organic acids from natural waters

    International Nuclear Information System (INIS)

    Smith, B.; Moody, P.M.; Higgo, J.J.W.

    1993-01-01

    Humic and fulvic acids were extracted from large volumes of groundwater associated with the Broubster and Needle's Eye natural analogue sites, and the BGS research site at Drigg in Cumbria. Extractions were performed by both batchwise extraction and radial flow chromatography using DEAE-cellulose. Retained humic substances were eluted using NaOH and separated into humic and fulvic components by acidification to pH 1. After separation the humic component was purified by repetitive precipitation and dissolution whilst the fulvic component was purified by absorption chromatography. The resulting humic substances were shown to be of high purity with respect to metallic elements, with less than 1% of available sites being occupied. During elution the association of trace elements with humic substances was monitored and a high degree of association between humic substances, U and the Rare Earth Elements was noted. (author)

  18. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    Science.gov (United States)

    Scott, Durelle T.; Runkel, Robert L.; McKnight, Diane M.; Voelker, Bettina M.; Kimball, Briant A.; Carraway, Elizabeth R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  19. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation.

    Science.gov (United States)

    Wei, Yuquan; Zhao, Yue; Shi, Mingzi; Cao, Zhenyu; Lu, Qian; Yang, Tianxue; Fan, Yuying; Wei, Zimin

    2018-01-01

    Enriched phosphate-solubilizing bacteria (PSB) agent were acquired by domesticated cultivation, and inoculated into kitchen waste composting in different stages. The effect of different treatments on organic acids production, tricalcium phosphate (TCP) solubilization and their relationship with bacterial community were investigated during composting. Our results pointed out that inoculation affected pH, total acidity and the production of oxalic, lactic, citric, succinic, acetic and formic acids. We also found a strong advantage in the solubilization of TCP and phosphorus (P) availability for PSB inoculation especially in the cooling stage. Redundancy analysis and structural equation models demonstrated inoculation by different methods changed the correlation of the bacterial community composition with P fractions as well as organic acids, and strengthened the cooperative function related to P transformation among species during composting. Finally, we proposed a possible mechanism of P solubilization with enriched PSB inoculation, which was induced by bacterial community and organic acids production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Diversity of lactic acid bacteria on organic flours and application of isolates in sourdough fermentation

    OpenAIRE

    Stanzer, Damir; Ivanuša, Ines; Kazazić, Snježana; Hanousek Čiča, Karla; Mrvčić, Jasna

    2017-01-01

    Organic farming preserves biodiversity and organic products can be the source of many microbial species. The species diversity in organically grown wheat, spelt and rye was investigated in order to find strains suitable for sourdough fermentation. Colonies representing various morphological appearances were isolated and catalase-negative colonies were identified by mass spectrometer Microflex LT ™ MALDI-TOF. The fermentation products (lactic, acetic, formic and phenyllactic acid) were determi...

  1. Predicting nitrogen and acidity effects on long-term dynamics of dissolved organic matter

    OpenAIRE

    Rowe, E.C.; Tipping, E.; Posch, M.; Oulehle, Filip; Cooper, D.M.; Jones, T.G.; Burden, A.; Hall, J.; Evans, C.D.

    2014-01-01

    Increases in dissolved organic carbon (DOC) fluxes may relate to changes in sulphur and nitrogen pollution. We integrated existing models of vegetation growth and soil organic matter turnover, acid-base dynamics, and organic matter mobility, to form the ‘MADOC’ model. After calibrating parameters governing interactions between pH and DOC dissolution using control treatments on two field experiments, MADOC reproduced responses of pH and DOC to additions of acidifying and alkalising solutions. ...

  2. Enhancing Skin Permeation of Biphenylacetic Acid (BPA) Using Salt Formation with Organic and Alkali Metal Bases

    OpenAIRE

    PAWAR, Vijay; NAIK, Prashant; GIRIDHAR, Rajani; YADAV, Mange Ram

    2014-01-01

    In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanol-amine, and diethylamine) had lowered ...

  3. [Pollution characteristics of organic acids in atmospheric particles during haze periods in autumn in Guangzhou].

    Science.gov (United States)

    Tan, Ji-hua; Zhao, Jing-ping; Duan, Jing-chun; Ma, Yong-liang; He, Ke-bin; Yang, Fu-mo

    2013-05-01

    Total suspended particles (TSP), collected during a typical haze period in Guangzhou, were analyzed for the fatty acids (C12-C30) and low molecular weight dicarboxylic acids (C3-C9) using gas chromatography/mass spectrometry (GC/MS). The results showed that the concentration of total fatty and carboxylic acids was pretty high during the haze episode. The ratios of fatty acids and carboxylic acids in haze to those in normal days were 1.9 and 2.5, respectively. During the episode of the increasing pollution, the fatty acids and carboxylic acids at night (653 ng x m(-3)) was higher than that (487 ng x m(-3)) in days. After that, the level of fatty acids and carboxylic acids in days (412 ng x m(-3)) was higher than that (336 ng x m(-3)) at night. In general, the time-series of fatty acids and carboxylic acids was similar to that of the air particle and carbonaceous species, however, the trend of the ratio of fatty acids and carboxylic acids to organic carbon was opposite to that of air particle and carbonaceous species. This ratio decreased with the increase of the concentration of air particle and after the night of 27th, the ratio increased with the decrease in the concentration of air particle. The results showed that haze pollution had a significant inhibitory effect on the enrichment of fatty and carboxylic acids. Based on the ratio of malonate to succinate (C3/C4), it could be found that primary sources contribute more to the atmospheric fatty and carboxylic acids during the autumn haze pollution periods in Guangzhou.

  4. Inhibitory Effects of Caffeic Acid, a Coffee-Related Organic Acid, on the Propagation of Hepatitis C Virus.

    Science.gov (United States)

    Tanida, Isei; Shirasago, Yoshitaka; Suzuki, Ryosuke; Abe, Ryo; Wakita, Takaji; Hanada, Kentaro; Fukasawa, Masayoshi

    2015-01-01

    Multipurpose cohort studies have demonstrated that coffee consumption reduces the risk of hepatocellular carcinoma (HCC). Given that one of the main causes of HCC is hepatitis C virus (HCV) infection, we examined the effect of caffeic acid, a major organic acid derived from coffee, on the propagation of HCV using an in vitro naïve HCV particle-infection and production system within human hepatoma-derived Huh-7.5.1-8 cells. When cells were treated with 1% coffee extract or 0.1% caffeic acid for 1-h post HCV infection, the amount of HCV particles released into the medium at 3 and 4 days post-infection considerably decreased. In addition, HCV-infected cells cultured with 0.001% caffeic acid for 4 days, also released less HCV particles into the medium. Caffeic acid treatment inhibited the initial stage of HCV infection (i.e., between virion entry and the translation of the RNA genome) in both HCV genotypes 1b and 2a. These results suggest that the treatment of cells with caffeic acid may inhibit HCV propagation.

  5. Role of Organic Solutes in the Chemistry Of Acid-Impacted Bog Waters of the Western Czech Republic

    Science.gov (United States)

    HrušKa, Jakub; Johnson, Chris E.; KráM, Pavel

    1996-04-01

    In many regions, naturally occurring organic acid anions can effectively buffer mineral acid inputs from atmospheric deposition, moderating their effect on surface water pH. We studied the effect of chronically high inputs of acid rain on the chemistry of three brown-water streams in the western Czech Republic. The dissolved organic acids in the streams were similar in character to those of other systems in Europe and North America. The site densities (the carboxyl group content per mass of C) were similar to values reported from Fenno-Scandia, and the relationship between the apparent pKa and pH conformed to those from two North American studies. Sulfate and organic acid anions (OA-) were the dominant anions in all three streams, yet despite high dissolved organic carbon and total organic acid concentrations, OA - comprised only 21-32% of total anion charge. This pattern was due to very high sulfate concentrations and, in two of the streams, a low degree of dissociation of the organic acids, probably the results of high long-term inputs of strong acids. Stream water pH was highly correlated to sulfate concentration, but uncorrelated with OA-, suggesting that free acidity is controlled by strong mineral acids rather than organic acids. Thus future reductions in strong acid inputs should result in increased pH and a return to organic control over acid-base chemistry.

  6. Characterization of polar organic compounds and source analysis of fine organic aerosols in Hong Kong

    Science.gov (United States)

    Li, Yunchun

    Organic aerosols, as an important fraction of airborne particulate mass, significantly affect the environment, climate, and human health. Compared with inorganic species, characterization of individual organic compounds is much less complete and comprehensive because they number in thousands or more and are diverse in chemical structures. The source contributions of organic aerosols are far from being well understood because they can be emitted from a variety of sources as well as formed from photochemical reactions of numerous precursors. This thesis work aims to improve the characterization of polar organic compounds and source apportionment analysis of fine organic carbon (OC) in Hong Kong, which consists of two parts: (1) An improved analytical method to determine monocarboxylic acids, dicarboxylic acids, ketocarboxylic acids, and dicarbonyls collected on filter substrates has been established. These oxygenated compounds were determined as their butyl ester or butyl acetal derivatives using gas chromatography-mass spectrometry. The new method made improvements over the original Kawamura method by eliminating the water extraction and evaporation steps. Aerosol materials were directly mixed with the BF 3/BuOH derivatization agent and the extracting solvent hexane. This modification improves recoveries for both the more volatile and the less water-soluble compounds. This improved method was applied to study the abundances and sources of these oxygenated compounds in PM2.5 aerosol samples collected in Hong Kong under different synoptic conditions during 2003-2005. These compounds account for on average 5.2% of OC (range: 1.4%-13.6%) on a carbon basis. Oxalic acid was the most abundant species. Six C2 and C3 oxygenated compounds, namely oxalic, malonic, glyoxylic, pyruvic acids, glyoxal, and methylglyoxal, dominated this suite of oxygenated compounds. More efforts are therefore suggested to focus on these small compounds in understanding the role of oxygenated

  7. Ascorbic acid metabolism in the organism under the lack of oxygen supply to the tissues

    Directory of Open Access Journals (Sweden)

    Sergiy Petrov

    2017-06-01

    Full Text Available The number and ratios of the metabolites of vitamin C - ascorbic, dehydroascorbic and diketogulonic acids were studied under the action of closed space hypoxia, acute blood loss and during sleep – the conditions associated with various oxygen saturation of the organism. It was found that in case of closed space hypoxia, the level of ascorbic and diketogulonic acid decreased with a simultaneous increase in the content of dehydroascorbic acid in the heart and brain. Acute blood loss resulted in decrease in the level of all metabolites of ascorbic acid. During sleep, the level of ascorbic acid metabolites increased. The ratio of vitamin-active metabolites to vitamin-inactive form of ascorbic acid in case of closed space hypoxia and acute blood loss decreased, and during sleep – it did not change significantly.

  8. Classification analysis of organization factors related to system safety

    International Nuclear Information System (INIS)

    Liu Huizhen; Zhang Li; Zhang Yuling; Guan Shihua

    2009-01-01

    This paper analyzes the different types of organization factors which influence the system safety. The organization factor can be divided into the interior organization factor and exterior organization factor. The latter includes the factors of political, economical, technical, law, social culture and geographical, and the relationships among different interest groups. The former includes organization culture, communication, decision, training, process, supervision and management and organization structure. This paper focuses on the description of the organization factors. The classification analysis of the organization factors is the early work of quantitative analysis. (authors)

  9. Nutritional value of organic acid lime juice (Citrus latifolia T., cv. Tahiti

    Directory of Open Access Journals (Sweden)

    Carolina Netto Rangel

    2011-12-01

    Full Text Available Acid lime can be used as fresh fruit or as juice to increase the flavor of drinks. Therefore, it is necessary to analyze organic acid lime nutritional composition in order to evaluate if there are important differences among those conventionally produced. No significant differences in total titrable acidity, pH, ascorbic acid, sucrose, calcium, and zinc were found between the acid lime juice from organic biodynamic crops and conventional crops. However, the organic biodynamic fruits presented higher peel percentage than the conventional ones leading to lower juice yield. On the other hand, fructose, glucose, total soluble solids contents, potassium, manganese, iron, and copper were higher in the conventional samples. These results indicated few nutritional differences between organic and conventional acid lime juices in some constituents. Nevertheless, fruit juice from biodynamic crops could be a good choice since it is free from pesticides and other agents that cause problems to human health maintaining the levels similar to those of important nutritional compounds.

  10. Fructose decomposition kinetics in organic acids-enriched high temperature liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinghua; Lu, Xiuyang; Yuan, Lei; Liu, Xin [Department of Chemical and Biochemical Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, Zhejiang (China)

    2009-09-15

    Biomass continues to be an important candidate as a renewable resource for energy, chemicals, and feedstock. Decomposition of biomass in high temperature liquid water is a promising technique for producing industrially important chemicals such as 5-hydroxymethylfurfural (5-HMF), furfural, levulinic acid with high efficiency. Hexose, which is the hydrolysis product of cellulose, will be one of the most important starting chemicals in the coming society that is highly dependent on biomass. Taking fructose as a model compound, its decomposition kinetics in organic acids-enriched high temperature liquid water was studied in the temperature range from 180 C to 220 C under the pressure of 10 MPa to further improve reaction rate and selectivity of the decomposition reactions. The results showed that the reaction rate is greatly enhanced with the addition of organic acids, especially formic acid. The effects of temperature, residence time, organic acids and their concentrations on the conversion of fructose and yield of 5-HMF were investigated. The evaluated apparent activation energies of fructose decomposition are 126.8 {+-} 3.3 kJ mol{sup -1} without any catalyst, 112.0 {+-} 13.7 kJ mol{sup -1} catalyzed with formic acid, and 125.6 {+-} 3.8 kJ mol{sup -1} catalyzed with acetic acid, respectively, which shows no significant difference. (author)

  11. Study of organic acids in Schisandrae Chinensis Fructus after vinegar processing.

    Science.gov (United States)

    Yin, Fangzhou; Dai, Hui; Li, Lin; Lu, Tuling; Li, Weidong; Cai, Baochang; Yin, Wu

    2017-10-01

    The ripened fruit of Schisandrae Chinensis Fructus has unique medical properties in Chinese medicine. It is commonly used after vinegar steaming. Vinegar steaming changes the color of Schisandrae Chinensis Fructus from red to black and enhances its acidic and astringent properties. Lignans are the well-investigated components in this herb. However, Schisandrae Chinensis Fructus is acidic in the theory of Chinese medicine, and whether vinegar processing changes its organic acid components remains largely unknown. In this study, the organic acids in this herb were derived by the method of methyl esterification, and further analyzed by gas chromatography with mass spectrometry. A total of 39 organic acid compounds were identified. Interestingly, Schisandrae Chinensis Fructus after vinegar processing showed a significant increase in the content of levulinic acid as compared to the unprocessed ones. Pharmacological experiments demonstrated that levulinic acid inhibited the contractility of isolated intestine and had an inhibitory effect on the excessive hyperfunction of small intestinal propulsion. Moreover, the extracts of vinegar-processed Schisandrae Chinensis Fructus had a stronger inhibitory on the excessive hyperfunction of small intestinal propulsion than that of unprocessed ones. Taken together, this study offers novel insight into the effect of Schisandrae Chinensis Fructus after vinegar processing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Changes in sugars, organic acids and amino acids in medlar (Mespilus germanica L.) during fruit development and maturation

    Czech Academy of Sciences Publication Activity Database

    Glew, R. H.; Ayaz, F. A.; Sanz, C.; VanderJagt, D. J.; Huang, H. S.; Chuang, L. T.; Strnad, Miroslav

    2003-01-01

    Roč. 83, č. 3 (2003), s. 363-369 ISSN 0308-8146 R&D Projects: GA AV ČR IBS5038351 Grant - others:Scientific and Research Council of Turkey(TR) TUBITAK-NATO Institutional research plan: CEZ:AV0Z5038910 Keywords : Medlar (Mespilus germanica L.) * Sugar * Organic acid Subject RIV: EF - Botanics Impact factor: 1.204, year: 2003

  13. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    CERN Document Server

    Schobesberger, Siegfried; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molec...

  14. Influence of containing of asphaltenes and naphthenic acids over organic deposition inhibitor performance

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Geiza E.; Mansur, Claudia R.E.; Pires, Renata V.; Passos, Leonardo B.; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas; Alvares, Dellyo R.S.; Gonzalez, Gaspar [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    Organic deposition is a serious problem confronted by the petroleum industry in Brazil and worldwide. Among the main petroleum components that may cause deposition problems are waxes and asphaltenes. This work aims at evaluating the influence of petroleum fractions (asphaltenes and naphthenic acids) on the organic deposition phenomenon as well as on organic deposition inhibitors performance. The influence of the organic fractions was evaluated by their ability to change wax crystals, to lower the pour point and to alter the initial wax appearance temperature. The efficiency of the additives was tested by pour point measurements. The results show that asphaltenes seem to act as organic deposition inhibitors, while naphthenic acids do not significantly change the system. Moreover, employing both of them produces no synergic effect. Among polymeric inhibitors, all of the chemically modified EVA copolymer presented better results than the non-modified commercial EVA copolymer. The best result was observed for EVA28C{sub 16}. (author)

  15. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chao; Cao, Yujin; Zou, Huibin; Xian, Mo [Chinese Academy of Sciences, Qingdao (China). Key Lab. of Biofuels

    2011-02-15

    Confronted with the gradual and inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now. (orig.)

  16. /sup 1/H-NMR urinalysis. Simultaneous screening of inborn errors of metabolism of amino acid and organic acid disorders

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Hideaki; Yamaguchi, Shuichi

    1988-02-01

    In an effort to examine the usefulness of /sup 1/H-nuclear magnetic resonance (NMR) urinalysis in the diagnosis of congenital metabolic disorders, 70 kinds of urinary metabolites were analysed in relation to the diagnosis of inborn errors of amino acid and organic acid disorders. Homogated decoupling (HMG) method failed to analyze six metabolites within the undetectable range. When non-decoupling method (NON), in which the materials are dissolved in dimethyl sulfoxide, was used, the identification of signals became possible. The combination of HMG and NON methods was, therefore, considered to identify all of the metabolites. When the urine samples, which were obtained from patients with hyperglycerolemia, hyperornithinemia, glutaric acidemia type II, or glycerol kinase deficiency, were analysed by using both HMG and NON methods, abnormally increased urinary metabolites were detected. /sup 1/H-NMR urinalysis, if used in the combination of HMG and NON methods, may allow simultanenous screening of inborn errors of metabolism of amino acid and organic acid disorders. (Namekawa, K.).

  17. Surface complexation modeling of uranium (Vi) retained onto zirconium diphosphate in presence of organic acids

    International Nuclear Information System (INIS)

    Almazan T, M. G.; Garcia G, N.; Ordonez R, E.

    2010-10-01

    In the field of nuclear waste disposal, predictions regarding radionuclide migration through the geosphere, have to take account the effects of natural organic matter. This work presents an investigation of interaction mechanisms between U (Vi) and zirconium diphosphate (ZrP 2 O 7 ) in presence of organic acids (citric acid and oxalic acid). The retention reactions were previously examined using a batch equilibrium method. Previous results showed that U (Vi) retention was more efficient when citric acid or oxalic acid was present in solid surface at lower ph values. In order to determine the retention equilibria for both systems studied, a phosphorescence spectroscopy study was carried out. The experimental data were then fitted using the Constant Capacitance Model included in the FITEQL4.0 code. Previous results concerning surface characterization of ZrP 2 O 7 (surface sites density and surface acidity constants) were used to constraint the modeling. The best fit for U (Vi)/citric acid/ZrP 2 O 7 and U (Vi)/oxalic acid/ZrP 2 O 7 systems considered the formation of a ternary surface complex. (Author)

  18. Antimony leaching release from brake pads: Effect of pH, temperature and organic acids.

    Science.gov (United States)

    Hu, Xingyun; He, Mengchang; Li, Sisi

    2015-03-01

    Metals from automotive brake pads pollute water, soils and the ambient air. The environmental effect on water of antimony (Sb) contained in brake pads has been largely untested. The content of Sb in one abandoned brake pad reached up to 1.62×10(4) mg/kg. Effects of initial pH, temperature and four organic acids (acetic acid, oxalic acid, citric acid and humic acid) on Sb release from brake pads were studied using batch reactors. Approximately 30% (97 mg/L) of the total Sb contained in the brake pads was released in alkaline aqueous solution and at higher temperature after 30 days of leaching. The organic acids tested restrained Sb release, especially acetic acid and oxalic acid. The pH-dependent concentration change of Sb in aqueous solution was best fitted by a logarithmic function. In addition, Sb contained in topsoil from land where brake pads were discarded (average 9×10(3) mg/kg) was 3000 times that in uncontaminated soils (2.7±1 mg/kg) in the same areas. Because potentially high amounts of Sb may be released from brake pads, it is important that producers and environmental authorities take precautions. Copyright © 2015. Published by Elsevier B.V.

  19. The response of quartz crystals coated with thin fatty acid film to organic gases

    CERN Document Server

    Jin, C N; Kim, K H; Kwon, Y S

    1999-01-01

    We tried to apply a quartz crystal as a sensor by using the resonant frequency and the resistance properties of quartz crystals. Four kinds of fatty acids that have the same head groups were coated on the surfaces of the quartz crystals, and the shift of the resonant frequency and the resistance were observed based on the lengths of the tail groups. Myristic acid (C sub 1 sub 4), palmitic acid (C sub 1 sub 6), stearic acid (C sub 1 sub 8), and arachidic acid (C sub 2 sub 0) were deposited on the surfaces of quartz crystals by using the Langmuir-Blodgett (LB) method. As a result, the resonant frequency change was more sensitive to high molecular-weight fatty acids than to low molecular-weight ones. We also observed the effect of temperature on stearic acid LB films, and the response properties of quartz crystals coated with stearic-acid LB films to organic gases were investigated. As a result, the sensitivity of quartz crystals to organic gases was higher for higher molecular-weight gas, and we found that quar...

  20. Organic acid formation in steam–water cycles: Influence of temperature, retention time, heating rate and O2

    International Nuclear Information System (INIS)

    Moed, D.H.; Verliefde, A.R.D.; Heijman, S.G.J.; Rietveld, L.C.

    2014-01-01

    Organic carbon breaks down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam–water cycle components. Prediction of the identity and quantity of these anions, based on feedwater organic carbon concentrations, has not been attempted, making it hard to establish a well-founded organic carbon guideline. By using a batch-reactor and flow reactor, the influence of temperature (276–352 °C), retention time (1–25 min), concentration (150–2400 ppb) and an oxygen scavenger (carbohydrazide) on organic acid anion formation from organic carbon was investigated. By comparing this to data gathered at a case-study site, the validity of setups was tested as well. The flow reactor provided results more representative for steam–water cycles than the batch reactor. It was found that lower heating rates give more organic acid anions as degradation products of organic carbon, both in quantity and species variety. The thermal stability of the organic acid anions is key. As boiler temperature increases, acetate becomes the dominant degradation product, due to its thermal stability. Shorter retention times lead to more variety and quantity of organic acid anions, due to a lack of time for the thermally less stable ones to degrade. Reducing conditions (or the absence of oxygen) increase the thermal stability of organic acid anions. As the feedwater organic carbon concentration decreases, there are relatively more organic acid anions formed. - Highlights: •Formation of organic acids from hydrothermolysis of organic carbon has been investigated. •The lower the temperature, the higher the variety of organic acid anions. •At the higher tested temperatures (331–352 °C) acetate is the dominant degradation product. •At longer retention times acetate is the dominant degradation product. •There is no linear relation between the organic carbon concentration and formed organic acids

  1. Distribution equilibria of Eu(III) in the system: bis(2-ethylhexyl)phosphoric acid organic diluent-NaCl, lactic acid, polyaminocarboxylic acid, water

    International Nuclear Information System (INIS)

    Danesi, P.R.; Cianetti, C.; Horwitz, E.P.

    1982-01-01

    The distribution equilibria of Eu 3+ between aqueous phases containing lactic acid and N'-(2hydroxyethyl)ethylenediamine-N,N,N'-triacetic acid (HEDTA) or diethylenetriamine-N,N,N',N',N''-penetaacetic acid (DTPA) at constant ionic strength (μ = 1.0), and n-dodecane solutions of HDEHP have been studied. The formation constants of the simple Eu-lactate complexes and Eu-lactate-HEDTA mixed complex were evaluated from the k/sub d/ data. The conclusion is reached that no lactic acid is coextracted into the organic phase at tracer metal concentrations. The separation factors between Eu 3+ , Pm 3+ , and Am 3+ have been evaluated in the presence of HEDTA

  2. Dissolved organic matter signatures vary between naturally acidic, circumneutral and groundwater-fed freshwaters in Australia.

    Science.gov (United States)

    Holland, Aleicia; Stauber, Jenny; Wood, Chris M; Trenfield, Melanie; Jolley, Dianne F

    2018-06-15

    Dissolved organic matter (DOM) plays important roles in both abiotic and biotic processes within aquatic ecosystems, and these in turn depend on the quality of the DOM. We collected and characterized chromophoric DOM (CDOM) from different Australian freshwater types (circumneutral, naturally acidic and groundwater-fed waterways), climatic regions and seasons. CDOM quality was characterized using absorbance and fluorescence spectroscopy. Excitation emission scans followed by parallel factor (PARAFAC) analysis showed that CDOM was characterized by three main components: protein-like, fulvic-like and humic-like components commonly associated with various waters globally in the Openfluor database. Principal component analysis showed that CDOM quality varied between naturally acidic, circumneutral and groundwater-fed waters, with unique CDOM quality signatures shown for each freshwater type. CDOM quality also differed significantly within some sites between seasons. Clear differences in dominant CDOM components were shown between freshwater types. Naturally acidic waters were dominated by highly aromatic (as indicated by the specific absorbance co-efficient (SAC 340 ) and the specific UV absorbance (SUVA 254 ) values which ranged between 31 and 50 cm 2  mg -1 and 3.9-5.7 mg C -1  m -1 respectively), humic-like CDOM of high molecular weight (as indicated by abs 254/365 which ranged from 3.8 to 4.3). In contrast, circumneutral waters were dominated by fulvic-like CDOM of lower aromaticity (SAC 340 : 7-21 cm 2  mg -1 and SUVA 254 : 1.5-3.0 mg C -1  m -1 ) and lower molecular weight (abs 254/365 5.1-9.3). The groundwater-fed site had a higher abundance of protein-like CDOM, which was the least aromatic (SAC 340 : 2-5 cm 2  mg -1 and SUVA 254 : 0.58-1.1 mg C -1  m -1 ). CDOM was generally less aromatic, of a lower molecular weight and more autochthonous in nature during the summer/autumn sampling compared to winter/spring. Significant

  3. Solvent extraction of hafnium(IV) by dinonylnaphthalene sulfonic acid from mixed aqueous-organic media

    International Nuclear Information System (INIS)

    Hala, J.; Piperkovova, H.

    1979-01-01

    The extraction of hafnium(IV) by heptane and toluene solutions of dinonylnaphthalene sulfonic acid (HD) from mixed aqueous-organic solutions has been studied. Alcohols, ketones, carboxylic acids, cyclic ethers, dimethylsulfoxide and dimethylformamide were used as the organic component of the mixed phase. Methanol, ethanol, formic acid and dioxane increased the extractability of Hf(IV) whereas other solvents showed only an antagonistic effect. The results were discussed from the point of view of the changes in micellar structure of HD, and compared with the uptake of Hf(IV) by resinous cation exchangers. The solubilization by HD of alcohols, carboxylic acids and dimethylsulfoxide was demonstrated by using the corresponding 14 C and 35 S labelled compounds. (author)

  4. Carbon and Hydrogen Isotope Measurements of Alcohols and Organic Acids by Online Pyroprobe-GC-IRMS

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.

    2012-01-01

    The detection of methane in the atmosphere of Mars, combined with evidence showing widespread water-rock interaction during martian history, suggests that the production of methane on Mars may be the result of mineral surface-catalyzed CO2 and or CO reduction during Fisher-Tropsch Type (FTT) reactions. A better understanding of these reaction pathways and corresponding C and H isotope fractionations is critical to deciphering the synthesis of organic compounds produced under abiotic hydrothermal conditions. Described here is a technique for the extraction and analysis of both C and H isotopes from alcohols (C1-C4) and organic acids (C1-C6). This work is meant to provide a "proof of concept" for making meaningful isotope measurements on complex mixtures of solid-phase hydrocarbons and other intermediary products produced during high-temperature and high-pressure synthesis on mineral-catalyzed surfaces. These analyses are conducted entirely "on-line" utilizing a CDS model 5000 Pyroprobe connected to a Thermo Trace GC Ultra that is interfaced with a Thermo MAT 253 isotope ratio mass spectrometer operating in continuous flow mode. Also, this technique is designed to carry a split of the GC-separated product to a DSQ II quadrupole mass spectrometer as a means of making semi-quantitative compositional measurements. Therefore, both chemical and isotopic measurements can be carried out on the same sample.

  5. Acid Rain Analysis by Standard Addition Titration.

    Science.gov (United States)

    Ophardt, Charles E.

    1985-01-01

    The standard addition titration is a precise and rapid method for the determination of the acidity in rain or snow samples. The method requires use of a standard buret, a pH meter, and Gran's plot to determine the equivalence point. Experimental procedures used and typical results obtained are presented. (JN)

  6. Sugars and organic acids in plum fruit affected by Plum pox virus.

    Science.gov (United States)

    Usenik, Valentina; Marn, Mojca Virscek

    2017-05-01

    Plum pox virus (PPV) causes severe economic losses in stone fruit production, but little is known about its effect on plum fruit composition. In this study, the influence of PPV on sugars and organic acids was evaluated in a susceptible plum (Prunus domestica L.) cultivar. PPV infection significantly affected the content and composition of sugars and organic acids. The composition of necrotic tissue was modified the most. A short-time infected tree yielded fruit with similar sugar composition to fruit from a healthy tree, but the decline of organic acids was faster. Prematurely ripened symptomatic fruit had reduced fruit weight and low sugar content. Infected trees of the studied cultivar produce fruit of inferior quality. Fruits are not suitable for processing, especially when most of them exhibit visual symptoms of PPV infection. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Morphology and adsorption of chromium ion on uranium 1,2,4,5-benzenetetracarboxylic acid metal organic framework (MOF

    Directory of Open Access Journals (Sweden)

    Vala Remy M.K.

    2016-01-01

    Full Text Available In this paper, we report the synthesis of metal organic framework of uranium 1,2,4,5-benzene tetracarboxylic acid (U-H4btec MOF by solvothermal method. The obtained MOF was characterized by Fourier transform infrared spectroscopy (FTIR, Scanning electron microscopy (SEM, Transmission electron microscopy (TEM, X-ray diffraction spectroscopy (XRD, Energy dispersive spectroscopy (EDS, thermogravimetric and differential thermogravimetric analysis (TGA/DTA. The morphology of the uranium 1,2,4,5-benzene tetracarboxylic acid MOF observed by SEM, revealed the presence of flaky porous structure. Adsorption of Cr3+ from aqueous solution onto the uranium 1,2,4,5-benzene tetracarboxylic acid MOF was systematically studied. Langmuir and Freundlich adsorption isotherms were applied to determine the adsorption capacity of the MOF to form a monolayer. Kinetic determination of the adsorption of Cr3+ suggested both chemisorption and physisorption probably due to the presence of carbonyl groups within the MOF and its porous structure.

  8. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    OpenAIRE

    Ch’ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixt...

  9. Physicochemical properties and analysis of Malaysian palm fatty acid distilled

    Science.gov (United States)

    Jumaah, Majd Ahmed; Yusoff, Mohamad Firdaus Mohamad; Salimon, Jumat

    2018-04-01

    Palm fatty acid distillate (PFAD) is cheap and valuable byproduct of edible oil processing industries. This study was carried out to determine the physicochemical properties of Malaysian palm fatty acid distilled (PFAD). The physicochemical properties showed that the free fatty acid (FFA %), acid value, iodine value, saponification value, unsaponifiable matter, hydroxyl value, specific gravity at 28°C, moisture content, viscosity at 40°C and colour at 28°C values were 87.04± 0.1 %, 190.6± 1 mg/g, 53.3±0.2 mg/g, 210.37±0.8 mg/g, 1.5±0.1%, 47±0.2 mg/g, 0.87 g/ml, 0.63 %, 30 cSt and yellowish respectively. Gas chromatography (GC) was used to determine the fatty acid (FA) composition in PFAD. The fatty acids were found to be comprised mostly with 48.9 % palmitic acid (C16:0), 37.4 % oleic acid (C18:1), 9.7 % linoleic acid (C18:2), 2.7 % stearic acid (C18:0) and 1.1 % myristic acid (C14:0). The analysis of high performance liquid chromatography (HPLC) has resulted with 99.2 % of FFA, while diacylglycerol and monoacylglycerol were 0.69 and 0.062 % respectively.

  10. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Geng, Peng; Zhang, Liang; Shi, Gui Yang

    2017-05-01

    Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.

  11. Isolation of fucoxanthin and fatty acids analysis of Padina australis ...

    African Journals Online (AJOL)

    Fucoxanthin has been successfully isolated from species of Malaysian brown seaweed, namely Padina australis. The purity of the fucoxanthin is >98% as indicated by high performance liquid chromatography analysis. This seaweed also contains a considerable amount of unsaturated fatty acids. Thirteen fatty acids were ...

  12. [Effects of simulated acid rain on decomposition of soil organic carbon and crop straw].

    Science.gov (United States)

    Zhu, Xue-Zhu; Huang, Yao; Yang, Xin-Zhong

    2009-02-01

    To evaluate the effects of acid rain on the organic carbon decomposition in different acidity soils, a 40-day incubation test was conducted with the paddy soils of pH 5.48, 6.70 and 8.18. The soils were amended with 0 and 15 g x kg(-1) of rice straw, adjusted to the moisture content of 400 g x kg(-1) air-dried soil by using simulated rain of pH 6.0, 4.5, and 3.0, and incubated at 20 degrees C. The results showed that straw, acid rain, and soil co-affected the CO2 emission from soil system. The amendment of straw increased the soil CO2 emission rate significantly. Acid rain had no significant effects on soil organic carbon decomposition, but significantly affected the straw decomposition in soil. When treated with pH 3.0 acid rain, the amount of decomposed straw over 40-day incubation in acid (pH 5.48) and alkaline (pH 8.18) soils was 8% higher, while that in neutral soil (pH 6.70) was 15% lower, compared to the treatment of pH 6.0 rain. In the treatment of pH 3.0 acid rain, the decomposition rate of soil organic C in acid (pH 5.48) soil was 43% and 50% (P pH 6.70) and alkaline (pH 8.18) soils, while the decomposition rate of straw in neutral soil was 17% and 16% (P < 0.05) lower than that in acid and alkaline soils, respectively.

  13. Comparative evaluation of volatiles, phenolics, sugars, organic acids and antioxidant properties of Sel-42 and Tainung papaya varieties.

    Science.gov (United States)

    Kelebek, Hasim; Selli, Serkan; Gubbuk, Hamide; Gunes, Esma

    2015-04-15

    The present study was designed to determine the phenolic compounds, organic acids, sugars, aroma profiles and antioxidant properties of Sel-42 and Tainung papayas grown in Turkey. High-performance liquid chromatography/electrospray ionisation tandem mass spectrometry (HPLC-ESI-MS/MS) method was used for the phenolic compounds analysis. Twelve phenolic compounds were identified and quantified in the samples. The total phenolic content of Sel-42 was clearly higher than that of Tainung. Protocatechuic acid-hexoside, gallic acid-deoxyhexoside, ferulic acid and chlorogenic acids were the most abundant phenolics in both cultivars. Aroma composition of papaya was analysed by gas chromatography-mass spectrometry (GC-MS). A total of 46 and 42 aroma compounds, including esters, alcohols, terpenes, lactones, acids, carbonyl compounds, and volatile phenols were identified in the Sel-42 and Tainung, respectively. The significant linear correlation was confirmed between the values for the total phenolic content and antioxidant activity of papaya extracts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Quantification of organic acids in beer by nuclear magnetic resonance (NMR)-based methods

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, J.E.A. [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Erny, G.L. [CESAM - Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Barros, A.S. [QOPNAA-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Esteves, V.I. [CESAM - Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Brandao, T.; Ferreira, A.A. [UNICER, Bebidas de Portugal, Leca do Balio, 4466-955 S. Mamede de Infesta (Portugal); Cabrita, E. [Department of Chemistry, New University of Lisbon, 2825-114 Caparica (Portugal); Gil, A.M., E-mail: agil@ua.pt [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal)

    2010-08-03

    The organic acids present in beer provide important information on the product's quality and history, determining organoleptic properties and being useful indicators of fermentation performance. NMR spectroscopy may be used for rapid quantification of organic acids in beer and different NMR-based methodologies are hereby compared for the six main acids found in beer (acetic, citric, lactic, malic, pyruvic and succinic). The use of partial least squares (PLS) regression enables faster quantification, compared to traditional integration methods, and the performance of PLS models built using different reference methods (capillary electrophoresis (CE), both with direct and indirect UV detection, and enzymatic essays) was investigated. The best multivariate models were obtained using CE/indirect detection and enzymatic essays as reference and their response was compared with NMR integration, either using an internal reference or an electrical reference signal (Electronic REference To access In vivo Concentrations, ERETIC). NMR integration results generally agree with those obtained by PLS, with some overestimation for malic and pyruvic acids, probably due to peak overlap and subsequent integral errors, and an apparent relative underestimation for citric acid. Overall, these results make the PLS-NMR method an interesting choice for organic acid quantification in beer.

  15. Quantification of organic acids in beer by nuclear magnetic resonance (NMR)-based methods

    International Nuclear Information System (INIS)

    Rodrigues, J.E.A.; Erny, G.L.; Barros, A.S.; Esteves, V.I.; Brandao, T.; Ferreira, A.A.; Cabrita, E.; Gil, A.M.

    2010-01-01

    The organic acids present in beer provide important information on the product's quality and history, determining organoleptic properties and being useful indicators of fermentation performance. NMR spectroscopy may be used for rapid quantification of organic acids in beer and different NMR-based methodologies are hereby compared for the six main acids found in beer (acetic, citric, lactic, malic, pyruvic and succinic). The use of partial least squares (PLS) regression enables faster quantification, compared to traditional integration methods, and the performance of PLS models built using different reference methods (capillary electrophoresis (CE), both with direct and indirect UV detection, and enzymatic essays) was investigated. The best multivariate models were obtained using CE/indirect detection and enzymatic essays as reference and their response was compared with NMR integration, either using an internal reference or an electrical reference signal (Electronic REference To access In vivo Concentrations, ERETIC). NMR integration results generally agree with those obtained by PLS, with some overestimation for malic and pyruvic acids, probably due to peak overlap and subsequent integral errors, and an apparent relative underestimation for citric acid. Overall, these results make the PLS-NMR method an interesting choice for organic acid quantification in beer.

  16. Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution Droplets

    Science.gov (United States)

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol. PMID:24107221

  17. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress

    International Nuclear Information System (INIS)

    Zeng Fanrong; Chen Song; Miao Ying; Wu Feibo; Zhang Guoping

    2008-01-01

    The effect of chromium (Cr) stress on the changes of rhizosphere pH, organic acid exudation, and Cr accumulation in plants was studied using two rice genotypes differing in grain Cr accumulation. The results showed that rhizosphere pH increased with increasing level of Cr in the culture solution and with an extended time of Cr exposure. Among the six organic acids examined in this experiment, oxalic and malic acid contents were relatively higher, and had a significant positive correlation with the rhizosphere pH, indicating that they play an important role in changing rhizosphere pH. The Cr content in roots was significantly higher than that in stems and leaves. Cr accumulation in plants was significantly and positively correlated with rhizosphere pH, and the exudation of oxalic, malic and citric acids, suggesting that an increase in rhizosphere pH, and exudation of oxalic, malic and citric acid enhances Cr accumulation in rice plants. - Rhizosphere pH and organic acid exudation of rice roots are markedly affected by chromium level in culture solution

  18. Seasonal measurements of organic acid fluxes over a ponderosa pine forest

    Science.gov (United States)

    Fulgham, S. R.; Brophy, P.; Link, M.; Ortega, J. V.; Farmer, D.

    2016-12-01

    The biosphere acts as both a source and a sink of oxidized organic compounds. Ignoring dry deposition leads to overestimation of secondary organic aerosols by aerosol models, while ignoring emission sources underestimates the budget of organic acids. Developing parameterizations for oxidized organic dry deposition and emission requires observational constraints. Although biosphere parameters are impacted by seasonal variability, most reactive, trace-gas exchange measurements are made for only short periods of time in the main growing season. Here we make fast (5 - 10 Hz) and sensitive (e.g. 0.73 ppt mean limit of detection for formic acid with 10 s averaging) eddy covariance measurements of gas-phase organic acids and other oxidized organic species with a high resolution Time-of-Flight Chemical Ionization Mass Spectrometer with acetate and iodide reagent ions. Measurements were made in 4 - 6 week campaigns over five seasons from summer 2015 to fall 2016 as part of the Seasonal Particles in Forests Flux studY (SPIFFY) at the Manitou Experimental Forest Observatory near Woodland Park, Colorado. Permeation tubes were used for online calibration of carboxylic acids including formic (C1), propionic (C3), butyric (C4), methacrylic (CH2C(CH3)COOH), valeric (C5), and heptanoic (C7) acids. Average daytime mixing ratios for formic acid were 100 ± 100 ppt in winter and 1500 ± 1000 ppt in summer 2016. Upward fluxes of formic acid were observed throughout the experiment, daytime averages and standard deviations ranging from 1900 ± 1000 ppt cm s-1 in winter to 170 ± 130 ppt cm s-1 in spring. Propionic (22 ± 22 ppt cm s-1), butyric (17 ± 16 ppt cm s-1), and methacrylic (3.5 ± 6.1 ppt cm s-1) acids exhibit a mix of upward, near-zero, and downward fluxes. Fluxes were exponentially correlated to temperature, suggesting an ecosystem-scale source of these acids. We also measure exchange velocities of a broad suite of other oxidized organic compounds (31.99 m/z to 311.523 m/z in

  19. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    Science.gov (United States)

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effects of organic solvents on hyaluronic acid nanoparticles obtained by precipitation and chemical crosslinking.

    Science.gov (United States)

    Bicudo, Rafaela Costa Souza; Santana, Maria Helena Andrade

    2012-03-01

    Hyaluronic acid is a hydrophilic mucopolysaccharide composed of alternating units of D-glucuronic acid and N-acetylglucosamine. It is used in many medical, pharmaceutical, and cosmetic applications, as sponges, films, or particle formulations. Hyaluronic acid nanoparticles can be synthesized free of oil and surfactants by nanoprecipitation in organic solvents, followed by chemical crosslinking. The organic solvent plays an important role in particles size and structure. Therefore, this study aimed to investigate the influence of acetone, ethanol, and isopropyl alcohol on the synthesis and physico-chemical properties of hyaluronic acid nanoparticles. Particles were crosslinked with adipic hydrazide and chloride carbodiimide under controlled conditions. The nanoparticles obtained with all three studied solvents were moderately electrostatically stable. Experiments with acetone produced the smallest particle size (120.44 nm) and polydispersity (0.27). The size and polydispersity of hyaluronic acid nanoparticles correlated with the surface tension between water and the organic solvents, not with the thermodynamic affinity of water for the organic solvents.

  1. Biotechnological production of caffeic acid derivatives from cell and organ cultures of Echinacea species.

    Science.gov (United States)

    Murthy, Hosakatte Niranjana; Kim, Yun-Soo; Park, So-Young; Paek, Kee-Yoeup

    2014-09-01

    Caffeic acid derivatives (CADs) are a group of bioactive compounds which are produced in Echinacea species especially Echinacea purpurea, Echinacea angustifolia, and Echinacea pallida. Echinacea is a popular herbal medicine used in the treatment of common cold and it is also a prominent dietary supplement used throughout the world. Caffeic acid, chlorogenic acid (5-O-caffeoylquinic acid), caftaric acid (2-O-caffeoyltartaric acid), cichoric acid (2, 3-O-dicaffeoyltartaric acid), cynarin, and echinacoside are some of the important CADs which have varied pharmacological activities. The concentrations of these bioactive compounds are species specific and also they vary considerably with the cultivated Echinacea species due to geographical location, stage of development, time of harvest, and growth conditions. Due to these reasons, plant cell and organ cultures have become attractive alternative for the production of biomass and caffeic acid derivatives. Adventitious and hairy roots have been induced in E. pupurea and E. angustifolia, and suspension cultures have been established from flask to bioreactor scale for the production of biomass and CADs. Tremendous progress has been made in this area; various bioprocess methods and strategies have been developed for constant high-quality productivity of biomass and secondary products. This review is aimed to discuss biotechnological methods and approaches employed for the sustainable production of CADs.

  2. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods

    Science.gov (United States)

    Dragoi, D.; Kanik, I.; Bar-Cohen, Y.; Sherrit, S.; Tsapin, A.; Kulleck, J.

    2004-01-01

    In this work we describe an analytical method for determining the presence of organic compounds in rocks, limestone, and other composite materials. Our preliminary laboratory experiments on different rocks/limestone show that the organic component in mineralogical matrices is a minor phase on order of hundreds of ppm and can be better detected using high precision liquid chromatography (HPLC). The matrix, which is the major phase, plays an important role in embedding and protecting the organic molecules from the harsh Martian environment. Some rocks bear significant amounts of amino acids therefore, it is possible to identify these phases using powder x-ray diffraction (XRD) by crystallizing the organic. The method of detection/analysis of organics, in particular amino acids, that have been associated with life will be shown in the next section.

  3. Selection of organic acid leaching reagent for recovery of zinc and manganese from zinc-carbon and alkaline spent batteries

    Science.gov (United States)

    Yuliusman; Amiliana, R. A.; Wulandari, P. T.; Ramadhan, I. T.; Kusumadewi, F. A.

    2018-03-01

    Zinc-carbon and alkaline batteries are often used in electronic equipment that requires small quantities of power. The waste from these batteries contains valuable metals, such as zinc and manganese, that are needed in many industries and can pollute the environment if not treated properly. This paper concerns the recovery of zinc and manganese metals from zinc-carbon and alkaline spent batteries with leaching method and using organic acid as the environmental friendly leaching reagent. Three different organic acids, namely citric acid, malic acid and aspartic acid, were used as leaching reagents and compared with sulfuric acid as non-organic acid reagents that often used for leaching. The presence of hydrogen peroxide as manganese reducers was investigated for both organic and non-organic leaching reagents. The result showed that citric acid can recover 64.37% Zinc and 51.32% Manganese, while malic acid and aspartic acid could recover less than these. Hydrogen peroxide gave the significant effect for leaching manganese with non-organic acid, but not with organic acid.

  4. Analytical and preparative separation of organic acids from water by extraction with trioctylamine

    International Nuclear Information System (INIS)

    Eberle, S.H.; Hoyer, O.; Knobel, K.P.; Hodenberg, S. von

    1977-12-01

    The extraction of pure organic acids and of humic and ligninsulfonic acid from water by a solution of trioctylamine in chloroform was investigated (technical grade amine = ALAMINE). Quantitative separation is achieved by double extraction with 5% ALAMINE at pH 3,5 - 4. The acids may be back-extracted with dilute sodium hydroxide solution. Procedures are described for the analytical extraction of water samples of 200 to 2.000 ml and for the flow-through processing of large water volumes. (orig.) [de

  5. Synthesis,crystal structure and properties of inorganic-organic hybrid polymers based on 8-hydroxylquinoline-5-sulfonic acid

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two new inorganic-organic hybrid polymers, Mn(QS)(H2O) (1) and Co(QS)(H2O)2 (2) (H2QS=8-hydroxyl-quinoline-5-sulfonic acid), based on 8-hydroxylquinoline-5-sulfonate ligand, have been synthesized under solvothermal conditions and their structures were solved by single-crystal X-ray diffraction analysis. Compound 1 is a three-dimensional open framework with rutile topology structure, and compound 2 is a three-dimensional supramolecular structure. These compounds were characterized by powder XRD, infrared spectroscopy, thermogravimetric analysis, fluorescence properties and magnetism properties.

  6. Nutritional and amino acid analysis of raw, partially fermented and ...

    African Journals Online (AJOL)

    African Journal of Food, Agriculture, Nutrition and Development ... The nutritional and amino acid analysis of raw and fermented seeds of Parkia ... between 4.27 and 8.33 % for the fully fermented and the partially fermented seeds, respectively.

  7. Low molecular weight organic acids in fogwater in an urban area (Strasbourg, France)

    Energy Technology Data Exchange (ETDEWEB)

    Millet, M.; Wortham, H.; Sanusi, A.; Mirabel, P. [Centre de Geochime de la Surface, Equipe de Physico-Chimie de l`Atmosphere, Strasbourg (France)

    1997-10-27

    This work presents the chemical analysis of low weight carboxylic acids: formate and acetate in two droplet-size categories (2-6 and 5-8 {mu}m) of fogwater collected in Strasbourg (eastern France) between 1991 and 1994. For each sample, the ratio between acetate and formate was calculated, in many cases, this ratio was typically higher than one. This calculation indicates that the origin of acetate and formate can be attributed to automobile exhaust. Maximum contribution of these acids to the total free acidity of fogwater was also checked and the results show that the contribution is very low in regard to the strong mineral acids from anthropogenic origin

  8. [Integrated health care organizations: guideline for analysis].

    Science.gov (United States)

    Vázquez Navarrete, M Luisa; Vargas Lorenzo, Ingrid; Farré Calpe, Joan; Terraza Núñez, Rebeca

    2005-01-01

    There has been a tendency recently to abandon competition and to introduce policies that promote collaboration between health providers as a means of improving the efficiency of the system and the continuity of care. A number of countries, most notably the United States, have experienced the integration of health care providers to cover the continuum of care of a defined population. Catalonia has witnessed the steady emergence of increasing numbers of integrated health organisations (IHO) but, unlike the United States, studies on health providers' integration are scarce. As part of a research project currently underway, a guide was developed to study Catalan IHOs, based on a classical literature review and the development of a theoretical framework. The guide proposes analysing the IHO's performance in relation to their final objectives of improving the efficiency and continuity of health care by an analysis of the integration type (based on key characteristics); external elements (existence of other suppliers, type of services' payment mechanisms); and internal elements (model of government, organization and management) that influence integration. Evaluation of the IHO's performance focuses on global strategies and results on coordination of care and efficiency. Two types of coordination are evaluated: information coordination and coordination of care management. Evaluation of the efficiency of the IHO refers to technical and allocative efficiency. This guide may have to be modified for use in the Catalan context.

  9. One-pot synthesis of amino acid precursors with insoluble organic matter in planetesimals with aqueous activity

    Science.gov (United States)

    Kebukawa, Yoko; Chan, Queenie H. S.; Tachibana, Shogo; Kobayashi, Kensei; Zolensky, Michael E.

    2017-01-01

    The exogenous delivery of organic molecules could have played an important role in the emergence of life on the early Earth. Carbonaceous chondrites are known to contain indigenous amino acids as well as various organic compounds and complex macromolecular materials, such as the so-called insoluble organic matter (IOM), but the origins of the organic matter are still subject to debate. We report that the water-soluble amino acid precursors are synthesized from formaldehyde, glycolaldehyde, and ammonia with the presence of liquid water, simultaneously with macromolecular organic solids similar to the chondritic IOM. Amino acid products from hydrothermal experiments after acid hydrolysis include α-, β-, and γ-amino acids up to five carbons, for which relative abundances are similar to those extracted from carbonaceous chondrites. One-pot aqueous processing from simple ubiquitous molecules can thus produce a wide variety of meteoritic organic matter from amino acid precursors to macromolecular IOM in chondrite parent bodies. PMID:28345041

  10. Enhancement in extraction rates by addition of organic acids to aqueous phase in solvent extraction of rare earth metals in presence of diethylenetriaminepentaacetic acid

    International Nuclear Information System (INIS)

    Matsuyama, Hideto; Azis, A.; Fujita, Mamoru; Teramoto, Masaaki.

    1996-01-01

    It is well known that the selectivity of rare earth metals by solvent extraction is increased by the addition of a chelating agent such as diethylenetriaminepentaacetic acid (DTPA) in the aqueous phase. One of the disadvantages of this method is the decrease in extraction rates due to complexation in the aqueous phase. In this paper, further addition of organic acids to the aqueous phase was examined for the purpose of enhancing the extraction rates in solvent extraction with DTPA. The addition of several kind of organic acids such as formic acid, acetic acid, malonic acid, lactic acid and citric acid was investigated for a Er/Y separation system. A remarkable enhancement in extraction rates was observed with a slight decrease in the selectivity by the addition of citric acid or lactic acid. Extraction rates in the presence of both DTPA and citric acid increased with the increase in citric acid concentration and with the increase in proton concentration. A 150 times enhancement in extraction rates was found in the low proton concentration condition. In order to analyze the extraction rates and selectivities obtained, mass transfer equations were presented by considering both the dissociation reaction of rare earth metal-DTPA complexes and the complex formation between rare earth metal and organic acid in the aqueous phase. The experimental data were analyzed by these equations. (author)

  11. Nitric-phosphoric acid oxidation of solid and liquid organic materials

    International Nuclear Information System (INIS)

    Pierce, R.A.; Smith, J.R.; Poprik, D.C.

    1995-01-01

    Nitric-phosphoric acid oxidation has been developed specifically to address issues that face the Savannah River Site, other defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate SRS solid, Pu-contaminated job-control waste, the technology has also exhibited potential for remediating hazardous and mixed-hazardous waste forms. The process is unique to Savannah River and offers a valuable alternative to other oxidation processes that require extreme temperatures and/or elevated pressures. To address the broad categories of waste, many different organic compounds which represent a cross-section of the waste that must be treated have been successfully oxidized. Materials that have been quantitatively oxidized at atmospheric pressure below 180 degrees C include neoprene, cellulose, EDTA, tributylphosphate, and nitromethane. More stable compounds such as benzoic acid, polyethylene, oils, and resins have been completely decomposed below 200 degrees C and 10 psig. The process uses dilute nitric acid in a concentrated phosphoric acid media as the main oxidant for the organic compounds. Phosphoric acid allow nitric acid to be retained in solution well above its normal boiling point. The reaction forms NOx vapors which can be reoxidized and recycled using air and water. The addition of 0.001M Pd(II) reduces CO generation to near 1% of the released carbon gases. The advantages of this process are that it is straightforward, uses relatively inexpensive reagents, operates at relatively low temperature and pressure, and produces final solutions which are compatible with stainless steel equipment. For organic wastes, all carbon, hydrogen, and nitrogen are converted to gaseous products. If interfaced with an acid recovery system which converts NOx back to nitric acid, the net oxidizer would be oxygen from air

  12. Features of obtaining malt with use of aqueous solutions of organic acids

    Directory of Open Access Journals (Sweden)

    O. Pivovarov

    2017-12-01

    Full Text Available Recently, the traditional formulations of essential food products are actively including malt – a valuable dietary product rich in extractives and hydrolytic enzymes, obtained by germination in artificially created conditions. Containing a full set of essential amino acids and a high saccharifying ability of malt, obtained from grain cereals, determines its wide use in the production of beer, alcohol, mono- and poly-malt extracts, bakery products, special types of flour, food additives, cereals, non-alcoholic beverages, lactic acid products and, in particular, in the production of natural coffee substitutes. However, the classical germination technology, which includes 2-3 days of soaking and 5-8 days of germination due to the considerable duration and laboriousness of the process, does not meet the requirements of modern technology and the constantly growing rates of industrial production, so this problem requires finding new and improving existing scientific and technical solutions. The features of malt production using organic acids of different concentrations are presented. The malt production technology has been analyzed and investigated. It includes washing, disinfection, air and water soaking of grains, germination and drying. The feature of the technology under investigation is using of aqueous solutions of butadiene, 3-pyridinecarboxylic acid and pteroylglutamic acid. The results of the inquiry of the effect of these organic acids on energy and the ability of germination of the grain are presented. The optimal values of concentrations of active substances in solutions are revealed. The influence of organic acids on the absorption of grain moisture has been investigated. It has been established that in comparison with the classical technology, the use of these acids as a growth stimulator can reduce the overall length of the reproduction process of the material from 1.5 to 2 times and increase the yield of flour grains in the batch of

  13. Effect of organic solvents on dissolution process of mechano-chemically activated molybdenum by inorganic acid solutions

    International Nuclear Information System (INIS)

    Shevtsova, I.Ya.; Chernyak, A.S.; Khal'zov, A.A.

    1992-01-01

    The process of chemical dissolution of mechanochemically activated and nonactivated molybdenite by inorganic acid solutions in certain organic solvents of different nature was considered. It is shown that the highest extraction of molybdenum in solution is achieved in the presence of nitric acid. The dissociation constant of the acid used in the given organic solvent does not affect molybdenite solubility. When dissolving molybdenite by solutions of nitric acid in carbonic acids, alcohols and esters, the solubility of the concentrate depends on the length of hydrocarbon chain of the organic solvent and dispersion degree of mineral source material

  14. EFFECT OF THE USE OF MOS AND ORGANIC ACIDS IN PERFORMANCE PIGLETS

    Directory of Open Access Journals (Sweden)

    L. Vargas

    2017-02-01

    Full Text Available The production chain of swine has been developed to meet the consumer market , seeking a more lean meat and produced cleanly. Faced with this demand , key areas of swine as genetics, nutrition , health , ambience , animal welfare, management of costs and environmental management are increasingly studied and debated to the organs concerned . Have advances in the field of nutrition has also contributed to a cleaner animal production through the use of enhancers efficiency as prebiotics and organic acids in the diets of pigs as potential substitutes for conventional growth promoters . The mannan oligosaccharides ( MOS along with organic acids , are able to maintain the integrity of the digestive tract , by benefiting the multiplication of beneficial bacteria and also in the specific case of MOS , act as adsorbents of pathogenic bacteria , preventing their adhesion in the intestinal epithelium and causing their elimination . Since these effects improve the absorption of nutrients with gains in production rates . Given the above , the objective of this study is to evaluate the effects of MOS and organic acid in the performance parameters of piglets during 15-30 Kg The experiment will be conducted in the UEP on Swine Campuses Two Neighbors - UTFPR . Crusaders 18 pigs with an initial average weight of 15kg with 50 days of age , distributed in a completely randomized design with two treatments will be used : T1 - basal ration T2 - ration + 0.2% MOS + organic acid , with 3 replications and 3 animals per experimental unit . The parameters evaluated were weight gain , feed intake , feed conversion , stool consistency and feed cost per kg of produced pig . There was no difference ( P > 0.05 on growth performance and fecal consistency between treatments . However , the cost per kg pig was highest in treatment 2 (with additives compared to Treatment 1 (control. In the conditions of the present study was conducted , it can be concluded that the use of MOS and

  15. Lewis Acid-Base Chemistry of 7-Azaisoindigo-Based Organic Semiconductors.

    Science.gov (United States)

    Randell, Nicholas M; Fransishyn, Kyle M; Kelly, Timothy L

    2017-07-26

    Low-band-gap organic semiconductors are important in a variety of organic electronics applications, such as organic photovoltaic devices, photodetectors, and field effect transistors. Building on our previous work, which introduced 7-azaisoindigo as an electron-deficient building block for the synthesis of donor-acceptor organic semiconductors, we demonstrate how Lewis acids can be used to further tune the energies of the frontier molecular orbitals. Coordination of a Lewis acid to the pyridinic nitrogen of 7-azaisoindigo greatly diminishes the electron density in the azaisoindigo π-system, resulting in a substantial reduction in the lowest unoccupied molecular orbital (LUMO) energy. This results in a smaller highest occupied molecular orbital-LUMO gap and shifts the lowest-energy electronic transition well into the near-infrared region. Both H + and BF 3 are shown to coordinate to azaisoindigo and affect the energy of the S 0 → S 1 transition. A combination of time-dependent density functional theory and UV/vis and 1 H NMR spectroscopic titrations reveal that when two azaisoindigo groups are present and high concentrations of acid are used, both pyridinic nitrogens bind Lewis acids. Importantly, we demonstrate that this acid-base chemistry can be carried out at the solid-vapor interface by exposing thin films of aza-substituted organic semiconductors to vapor-phase BF 3 ·Et 2 O. This suggests the possibility of using the BF 3 -bound 7-azaisoindigo-based semiconductors as n-type materials in various organic electronic applications.

  16. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis.

    Directory of Open Access Journals (Sweden)

    Cassiano Felippe Gonçalves-de-Albuquerque

    Full Text Available Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA, a monounsaturated fatty acid (MUFA. We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP. OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A mRNA levels were increased, while uncoupling protein 2 (UCP2 liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA.

  17. Sulfation of metal-organic framework: Opportunities for acid catalysis and proton conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Goesten, M.G.; Stavitski, E.; Juan-Alcaniz, J.; Ramos-Fernandez, E.V.; Sai Sankar Gupta, K.B.; van Bekkum, H.; Gascon, J. and Kapteijn, F.

    2011-05-24

    A new post-functionalization method for metal-organic frameworks (MOFs) has been developed to introduce acidity for catalysis. Upon treatment with a mixture of triflic anhydride and sulfuric acid, chemically stable MOF structures MIL-101(Cr) and MIL-53(Al) can be sulfated, resulting in a Broensted sulfoxy acid group attached to up to 50% of the aromatic terephthalate linkers of the structure. The sulfated samples have been extensively characterized by solid-state NMR, XANES, and FTIR spectroscopy. The functionalized acidic frameworks show catalytic activity similar to that of acidic polymers like Nafion{reg_sign} display in the esterification of n-butanol with acetic acid (TOF {approx} 1 min{sup -1} {at} 343 K). Water adsorbs strongly up to 4 molecules per sulfoxy acid group, and an additional 2 molecules are taken up at lower temperatures in the 1-D pore channels of S-MIL-53(Al). The high water content and Broensted acidity provide the structure S-MIL-53(Al) a high proton conductivity up to moderate temperatures.

  18. Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae.

    Science.gov (United States)

    Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Li, Yuhao; Hu, Jiajun; Tsang, Yiu Fai; Zhang, Hongsheng; Gao, Min-Tian

    2018-01-31

    Rice straw can be used as carbon sources for lactic acid fermentation. However, only a small amount of lactic acid is produced even though Rhizopus oryzae can consume glucose in rice straw-derived hydrolysates. This study correlated the inhibitory effect of rice straw with rice straw-derived dissolved organic matter (DOM). Lactic acid fermentations with and without DOM were conducted to investigate the effect of DOM on lactic acid fermentation by R. oryzae. Fermentation using control medium with DOM showed a similar trend to fermentation with rice straw-derived hydrolysates, showing that DOM contained the major inhibitor of rice straw. DOM assay indicated that it mainly consisted of polyphenols and polysaccharides. The addition of polyphenols and polysaccharides derived from rice straw confirmed that lactic acid fermentation was promoted by polysaccharides and significantly inhibited by polyphenols. The removal of polyphenols also improved lactic acid production. However, the loss of polysaccharides during the removal of polyphenols resulted in low glucose consumption. This study is the first to investigate the effects of rice straw-derived DOM on lactic acid fermentation by R. oryzae. The results may provide a theoretical basis for identifying inhibitors and promoters associated with lactic acid fermentation and for establishing suitable pretreatment methods. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Sustainable carbon sources for microbial organic acid production with filamentous fungi.

    Science.gov (United States)

    Dörsam, Stefan; Fesseler, Jana; Gorte, Olga; Hahn, Thomas; Zibek, Susanne; Syldatk, Christoph; Ochsenreither, Katrin

    2017-01-01

    The organic acid producer Aspergillus oryzae and Rhizopus delemar are able to convert several alternative carbon sources to malic and fumaric acid. Thus, carbohydrate hydrolysates from lignocellulose separation are likely suitable as substrate for organic acid production with these fungi. Before lignocellulose hydrolysate fractions were tested as substrates, experiments with several mono- and disaccharides, possibly present in pretreated biomass, were conducted for their suitability for malic acid production with A. oryzae. This includes levoglucosan, glucose, galactose, mannose, arabinose, xylose, ribose, and cellobiose as well as cheap and easy available sugars, e.g., fructose and maltose. A. oryzae is able to convert every sugar investigated to malate, albeit with different yields. Based on the promising results from the pure sugar conversion experiments, fractions of the organosolv process from beechwood ( Fagus sylvatica ) and Miscanthus giganteus were further analyzed as carbon source for cultivation and fermentation with A. oryzae for malic acid and R. delemar for fumaric acid production. The highest malic acid concentration of 37.9 ± 2.6 g/L could be reached using beechwood cellulose fraction as carbon source in bioreactor fermentation with A. oryzae and 16.2 ± 0.2 g/L fumaric acid with R. delemar . We showed in this study that the range of convertible sugars for A. oryzae is even higher than known before. We approved the suitability of fiber/cellulose hydrolysate obtained from the organosolv process as carbon source for A. oryzae in shake flasks as well as in a small-scale bioreactor. The more challenging hemicellulose fraction of F. sylvatica was also positively evaluated for malic acid production with A. oryzae .

  20. Uptake of Alkylamines on Dicarboxylic Acids Relevant to Secondary Organic Aerosol Formation

    Science.gov (United States)

    Marrero-Ortiz, W.; Secrest, J.; Zhang, R.

    2017-12-01

    Aerosols play a critical role in climate directly by scattering and absorbing solar radiation, and indirectly by functioning as cloud condensation nuclei (CCN); both represent the largest uncertainties in climate predictions. New particle formation contributes significantly to CCN production; however, the mechanisms related to particle nucleation and growth processes are not well understood. Organic acids are atmospherically abundant, and their neutralization by low molecular weight amines may result in the formation of stable low volatility aminium salt products contributing to the growth of secondary organic aerosols and even the alteration of the aerosol properties. The acid-base neutralization of particle phase succinic acid and tartaric acid by low molecular weight aliphatic amines, i.e. methylamine, dimethylamine, and trimethylamine, has been investigated by employing a low-pressure fast flow reactor at 298K with an ion drift - chemical ionization mass spectrometer (ID-CIMS). The heterogeneous uptake is time dependent and influenced by organic acids functionality, alkylamines basicity, and steric effect. The implications of our results to atmospheric nanoparticle growth will be discussed.

  1. Heat shock and salicylic acid on postharvest preservation of organic strawberries

    Directory of Open Access Journals (Sweden)

    Sidiane Coltro

    2014-06-01

    Full Text Available Heat shock and salicylic acid have been studied on shelf-life extension of fruits. The benefits of these techniques have been related to their effect on inducing physiological defense responses against the oxidative stress and pathogen development. The objective of this study was to evaluate the effect of heat shock and salicylic acid on the postharvest preservation and contents of total phenolics, anthocyanins, ascorbic acid, fresh weight loss and microbiological quality of organic strawberries cv. Dover. Strawberries produced organically and stored at 5 ºC were subjected to heat shock (45 ºC ± 3 ºC for 3 h, application of salicylic acid (soaking in 2.0 mmol L-1 solution, heat shock in combination with salicylic acid and control. After treatment, the fruits were packed and stored in a climatic chamber at 5 ºC ± 2 ºC. At 1, 7 and 14 days, the experimental units were removed from refrigeration and kept at room temperature of approximately 20 ºC for two days. There was no effect of treatments on fresh weight loss, incidence of pathogens or chemical variations in strawberry fruits during the storage period. In natural conditions, organically grown strawberries remained in good condition for sale up to seven days of storage in all treatments.

  2. Knowledge Organization: A Sociohistorical Analysis and Critique

    Science.gov (United States)

    Andersen, Jack; Skouvig, Laura

    2006-01-01

    In this article, the authors examine the discipline of knowledge organization by harnessing the theories of Michel Foucault and Jurgen Habermas. The argument is that knowledge organization is not just a question of improved technology; as an academic discipline, it has to define and legitimize its relevance for society. The authors use the…

  3. ANALYSIS OF INTERCULTURAL COMMUNICATION IN ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    Ruxandra GEORGESCU

    2016-11-01

    Full Text Available This article want to highlight the communication mechanisms that influence intercultural management and the behaviour of people from different cultures in a company and the attire that must wear some of the world's cultures. This research aims to analyze how the overall objectives of the internal communication in organizations influence the effectiveness and organizational effectiveness, namely the organization's performance.

  4. Drip irrigation emitter clogging in Dutch greenhouses as affected by methane and organic acids

    NARCIS (Netherlands)

    Kreij, de C.; Burg, van der A.M.M.; Runia, W.T.

    2003-01-01

    It is believed that the serious clogging of drip irrigation emitters in the Dutch greenhouse industry is caused by methane-oxidising bacteria and/or organic acids used as anti-clogging agents. In this study greenhouses with moderate to severe emitter clogging have been examined. High methane

  5. Determination of alcohols, ethers and organic acids in irradiated sweet potato wine by capillary gas chromatography

    International Nuclear Information System (INIS)

    Zhou Yingcai; Yuan Bihuai; Xu Peishu; Wang Xiuying

    1986-01-01

    Alcohols, ethers and organic acids in irradiated sweet potato wine have been determined with capillary GC. The results show that the contents of some components have changed after irradiation, but no new species are formed. The G values of the changed components have been calculated

  6. Exploring orange peel treatment with deep eutectic solvents and diluted organic acids

    NARCIS (Netherlands)

    van den Bruinhorst, A.; Kouris, P.; Timmer, J.M.K.; de Croon, M.H.J.M.; Kroon, M.C.

    2016-01-01

    The disintegration of orange peel waste in deep eutectic solvents and diluted organic acids is presented in this work. The albedo and flavedo layers of the peel were studied separately, showing faster disintegration of the latter. Addition of water to the deep eutectic solvents lowered the amount of

  7. Volatile fatty acids production from sewage organic matter by combined bioflocculation and anaerobic fermentation

    NARCIS (Netherlands)

    Khiewwijit, R.; Keesman, K.J.; Rijnaarts, H.H.M.; Temmink, B.G.

    2014-01-01

    This work aims at exploring the feasibility of a combined process bioflocculation to concentrate sewage organic matter and anaerobic fermentation to produce volatile fatty acids (VFA). Bioflocculation, using a high-loaded aerobic membrane bioreactor (HL-MBR), was operated at an HRT of 1 h and an SRT

  8. Aggregation behavior of cholic acid derivatives in organic solvents and in water

    NARCIS (Netherlands)

    Willemen, H.M.

    2002-01-01

    In this thesis various cholic acid derivatives are reported that display aggregation in water or in organic solvents. Spontaneous aggregation of single molecules into larger, ordered structures occurs at the borderline of solubility. Amphiphilic compounds, or surfactants, which possess a

  9. Functional genomics for food microbiology: Molecular mechanisms of weak organic acid preservative adaptation in yeast

    NARCIS (Netherlands)

    Brul, S.; Kallemeijn, W.; Smits, G.

    2008-01-01

    The recent era of genomics has offered tremendous possibilities to biology. This concise review describes the possibilities of applying (functional) genomics studies to the field of microbial food stability. In doing so, the studies on weak-organic-acid stress response in yeast are discussed by way

  10. A Green Polymerization of Aspartic Acid for the Undergraduate Organic Laboratory

    Science.gov (United States)

    Bennett, George D.

    2005-01-01

    The green polymerization of aspartic acid carried out during an organic-inorganic synthesis laboratory course for undergraduate students is described. The procedure is based on work by Donlar Corporation, a Peru, Illinois-based company that won a Green Chemistry Challenge Award in 1996 in the Small Business category for preparing thermal…

  11. Influence of aluminum on growth, mineral nutrition and organic acid exudation of rambutan (Nephelium lappaceum)

    Science.gov (United States)

    A randomized complete block design experiment with six aluminum (Al) concentrations was carried out to evaluate the effect of aluminum on nutrient content, plant growth, dry matter production and Al-induced organic acid exudation in rambutan (Nephelium lappaceum). One rambutan cultivar was grown in...

  12. Consensus report on therapeutic drug monitoring of mycophenolic acid in solid organ transplantation

    NARCIS (Netherlands)

    D. Kuypers (Dirk); Y. le Meur (Yann); M. Cantarovich (Marcelo); M.J. Tredger (Michael); S.E. Tett (Susan); D. Cattaneo (Dario); B. Tönshoff (Burkhard); D.W. Holt (David); J. Chapman (Jeremy); T. van Gelder (Teun)

    2010-01-01

    textabstractWith the increasing use of mycophenolic acid (MPA) in solid organ transplantation, the need for more accurate drug dosing has become evident. Personalized immunosuppressive therapy requires better strategies for avoidance of drug-related toxicity while maintaining efficacy. Few studies

  13. Disinfection of vegetable seed by treatment with essential oils, organic acids and plant extract

    NARCIS (Netherlands)

    Wolf, van der J.M.; Birnbaum, Y.E.; Zouwen, van der P.S.; Groot, S.P.C.

    2008-01-01

    Various essential oils, organic acids, Biosept, (grapefruit extract), Tillecur and extracts of stinging nettle and golden rod were tested for their antimicrobial properties in order to disinfect vegetable seed. In in vitro assays, thyme oil, oregano oil, cinnamon oil, clove oil and Biosept had the

  14. Enzymatic regulation of organic acid metabolism in an alkali-tolerant ...

    African Journals Online (AJOL)

    Chloris virgata, an alkali-tolerant halophyte, was chosen as the test material for our research. The seedlings of C. virgata were treated with varying salt and alkali stress. First, the composition and content of organic acids in shoots were analyzed and the results indicated that there was not only a significant increase in total ...

  15. Influence of acid rain and organic matter on the adsorption of trace elements on soil

    International Nuclear Information System (INIS)

    Wang, H.; Ambe, S.; Takematsu, N.; Ambe, F.

    1998-01-01

    Acid rain has become one of the most serious environmental problems. Soil loses its buffering capacity by long exposure to acid rain, and the soil pH value decreases significantly. The acidification of the soil disturbs the adsorption equilibrium of many elements in the soil-water system. Soil is a very complex heterogeneous system, primarily consisting of clay minerals, hydrous oxides and polymeric organic substances, which possess their own characteristic element-adsorbing properties. On the other hand, the intrinsic properties of elements are reflected in their adsorption process as a matter of course. Therefore, both the effects of the pH of acid rain and that of the components of the soil on the adsorption of different elements should be studied when the adsorption process in acid soils is to be clarified. Although leaching of major cations in soil, such as Ca 2+ , Mg 2+ and Al 3+ , by acid rain, has been extensively studied, relatively little attention has been focused on trace elements which can also seriously affect the ecological system. We studied the acid rain effects on element adsorption by kaolin, forest soil, black soil, and also these soils with Fe- and Mn-oxides or organic matter selectively removed by using the radioactive multitracer technique. (author)

  16. Crystal structures of eight 3D molecular adducts derived from bis-imidazole, bis(benzimidazole), and organic acids

    Science.gov (United States)

    Ding, Aihua; Jin, Shouwen; Jin, Shide; Hu, KaiKai; Lin, Zhihao; Liu, Hui; Wang, Daqi

    2018-01-01

    Cocrystallization of the bis(imidazole)/bis(benzimidazole) with a series of organic acids gave a total of eight molecular adducts with the compositions: (3,6-bis(imidazole-1-yl)pyridazine): (trichloroacetic acid)2(1) [(H2L1)2+ · (tca-)2, L1 = 3,6-bis(imidazole-1-yl)pyridazine, tca- = trichloroacetate], (bis(N-imidazolyl)methane): (suberic acid) (2) [(L2) · (H2suba), L2 = bis(N-imidazolyl)methane, H2suba = suberic acid], bis(N-imidazolyl)methane: (3-nitrophthalic acid): 3H2O (3) [(H2L2)2+ · (3-Hnpa-)2 · 3H2O, 3-Hnpa- = 3-nitro hydrogenphthalate], (bis(N-imidazolyl)butane)0.5: (4-nitrophthalic acid): H2O (4) [(H2L3)0.5+ · (4-Hnpa-)- · H2O, L3 = bis(N-imidazolyl)butane, 4-Hnpa- = 4-nitro hydrogenphthalate], (1-(3-(1H-benzimidazol-1-yl)propyl)-1H-benzimidazole): (3,5-dinitrosalicylic acid) (5) [(HL4) · (3,5-dns-), L4 = 1-(3-(1H-benzimidazol-1-yl)propyl)-1H-benzimidazole, 3,5-dns- = 3,5-dinitrosalicylate], (1-(3-(1H-benzimidazol-1-yl)propyl)-1H-benzimidazole): (3-nitrophthalic acid) (6) [(H2L4) · (3-npa2-), L4 = 1-(3-(1H-benzimidazol-1-yl)propyl)-1H-benzimidazole, 3-npa2-=3-nitrogenphthalate], (bis(N-imidazolyl)butane): (pamoic acid) (7) [(H2L3) · (pam), pam = pamoate], and (3,6-bis(imidazole-1-yl)pyridazine): (1,5-naphthalenedisulfonic acid) [(H2L1)2+ · (npda)2- = 1,5-naphthalenedisulfonate] (8). The eight adducts have been characterized by X-ray diffraction technique, infrared spectrum, and elemental analysis, and the melting points of all adducts were also reported. And their structural and supramolecular aspects are fully analyzed. The result reveals that among the eight investigated crystals both the end ring N in the bis(imidazole) moieties are protonated when the organic acids are deprotonated except 2, and 5, and the crystal packing is interpreted in terms of the strong ionic Nsbnd H⋯O H-bond between the imidazolium and the deprotonated acidic groups. Except the Nsbnd H⋯O H-bond, the Osbnd H⋯O H-bonds were also found at the salts 3, 4

  17. Correlation between organic acid exudation and metal uptake by ectomycorrhizal fungi grown on pond ash in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ray, P.; Adholeya, A. [Energy & Resources Institute, New Delhi (India). India Habitat Centre

    2009-04-15

    Experiments were conducted to investigate the effect of coal ash on organic acid exudation and subsequent metal uptake by ectomycorrhizal fungi. Four isolates of ectomycorrhizal fungi namely, Pisolithus tinctorius (EM-1293 and EM-1299), Scleroderma verucosum (EM-1283) and Scleroderma cepa (EM-1233) were grown on pond ash moistened with Modified Melin-Norkans medium in vitro. Exudation of formic acid, malic acid and succinic acid by these fungi were detected by HPLC. Mycelial accumulation of Al, As, Cd, Cr, Ni and Pb by these fungi was assayed by atomic absorption spectrophotometer. Relationship between organic acid exudation and metal uptake was determined using classical multivariate linear regression model. Correlation between organic acid exudation and metal uptake could be substantiated when several metals are considered collectively. The finding supports the widespread role of low molecular weight organic acid as a function of tolerance, when exposed to metals in vitro.

  18. RESEARCH OF THE ADSORPTION OF ORGANIC ACIDS IN SUGARCANE BAGASSE ASH

    Directory of Open Access Journals (Sweden)

    Julio Omar Prieto García

    2017-07-01

    Full Text Available In this research a study of the adsorption of acetic, benzoic, butanoic, fumaric, maleic and succinic acids on sugarcane baggase ash is made. The adsorber material is characterized through physical criteria such as apparent and pictometric density, compressibility, porosity, superficial area and tortuosity. The sample has been examined by X-rays Diffraction, thermal analysis, IR-quality analysis. The isotherm for the sorption process is determined, where it is shown that the Freundlich model is adjusted to benzoic acid, the Langmuir and Toth model to acetic acid, Bunauer- Emmett- Teller (BET model to succinic acid and the butiric, maleic and fumaric acids are adjusted to Langmoir model. It is established that the first-order model is adjusted to the adsorption kinetics of the acetic and benzoic acids; while the rest of the acids are adjusted to a second-order model, in the case of the butanoic, succinic and maleic acids it is possible the occurrence of chemisorption processes.

  19. Evaluate the role of organic acids in the protection of ligands from radiolytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Anneka [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mezyk, Stehpen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterman, Dean [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    In the Advanced TALSPEAK process, the bis(2-ethylhexyl)phosphoric acid (HDEHP) extractant used in the traditional TALSPEAK process is replaced by the extractant 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]). In addition, the aqueous phase complexant and buffer used in traditional TALSPEAK is replaced with the combination of N-(2-hydroxyethyl)ethylenediamine-N,N’,N’-triacetic acid (HEDTA) and citric acid. In order to evaluate the possible impacts of gamma radiolysis upon the efficacy of the Advanced TALSPEAK flowsheet, aqueous and organic phases corresponding to the extraction section of the proposed flowsheet were irradiated in the INL test loop under an ambient atmosphere. The results of these studies conducted at INL, led INL researchers to conclude that the scarcity of values of rate constants for the reaction of hydroxyl radical with the components of the Advanced TALSPEAK process chemistry was severely limiting the interpretation of the results of radiolysis studies performed at the INL. In this work, the rate of reaction of hydroxyl radical with citric acid at several pH values was measured using a competitive pulse radiolysis technique. This report describes those results and is written in completion of milestone M3FT-16IN030102028, the goal of which was to evaluate the role of organic acids in the protection of ligands from radiolytic degradation. The results reported here demonstrate the importance of obtaining hydroxyl radical reaction rate data for the conditions that closely resemble actual solution conditions expected to be used in an actual solvent extraction process. This report describes those results and is written in completion of milestone M3FT-16IN030102028, the goal of which was to evaluate the role of organic acids in the protection of ligands from radiolytic degradation.

  20. Hydrogen isotope exchange of organic compounds in dilute acid at elevated temperatures

    International Nuclear Information System (INIS)

    Werstiuk, N.H.

    1987-01-01

    Introduction of one or more deuterium (or tritium) atoms into organic molecules can be accomplished in many ways depending on the nature of the substrate and the extent and sterochemistry of deuteriation or tritiation required. Some of the common methods include acid- and base-catalyzed exchange of carbonyl compounds, metal hydride reductions, dissolving metal reductions, catalytic reduction of double bonds, chromatographic exchange, homogeneous and heterogeneous metal-catalyzed exchange, base-catalyzed exchange of carbon acids other than carbonyl compounds and acid-catalyzed exchange via electrophilic substitution. Only the latter three methods have been used for perdeuteriation of organic compounds. A very useful compendium of labeling methods with examples has been available to chemists for some time. Although metal-catalyzed exchange has been used extensively, the method suffers from some deficiencies: irreproducibility of catalyst surfaces, catalyst poisoning, side reactions such as coupling and hydrogenolysis of labile groups and low deuterium incorporation. Usually a number of cycles are required with fresh catalyst and fresh deuterium source to achieve substantial isotope incorporation. Acid-catalyzed exchange of aromatics and alkenes, strongly acidic media such as liquid DBr, concentrated DBr, acetic acid/stannic chloride, concentrated D 3 PO 4 , concentrated DC1, D 3 PO 4 /BF 3 SO 2 , 50-80% D 2 SO 4 and DFSO 4 /SbF 5 at moderate temperatures (<100 degrees) have been used to effect exchange. The methods are not particularly suitable for large scale deuteriations because of the cost and the fact that the recovery and upgrading of the diluted deuterium pool is difficult. This paper describes the hydrogen isotope exchange of a variety of organic compounds in dilute aqueous acid (0.1-0.5 M) at elevated temperatures (150-300 degrees)

  1. ORGANIC ACIDS PRODUCTION OF RICE STRAW FERMENTED WITH SEVERAL TYPES OF MICROORGANISM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Surahmanto

    2012-09-01

    Full Text Available The experiment was carried out to examine the organic acids production of rice straw fermented with some types of microorganisms at different temperatures. The experiment was designed as Split Plot-Completely Randomized Design. The main plot was temperatures treatments (25, 35, 45°C and the sub plot were microorganisms (Control, Control+Mollases, Lactobacillus fermentum, Bacillus subtilis, Bacillus coagulant, Saccharomyces cerevisiae, Aspergillus niger. The highest lactic acid productions was in B. coagulans treatment at 35°C (53.79 g/kg DM. The highest acetic acid productions was in L. fermentum at 35°C (13.20 g/kg DM, while the highest propionic acid productions were in Control treatment at 35°C (0.37 g/kg DM.

  2. ORGANIC ACIDS PRODUCTION OF RICE STRAW FERMENTED WITH SEVERAL TYPES OF MICROORGANISM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Y. Yanti

    2014-10-01

    Full Text Available The experiment was carried out to examine the organic acids production of rice straw fermentedwith some types of microorganisms at different temperatures. The experiment was designed as SplitPlot-Completely Randomized Design. The main plot was temperatures treatments (25, 35, 45°C and thesub plot were microorganisms (Control, Control+Mollases, Lactobacillus fermentum, Bacillus subtilis,Bacillus coagulant, Saccharomyces cerevisiae, Aspergillus niger. The highest lactic acid productionswas in B. coagulans treatment at 35°C (53.79 g/kg DM. The highest acetic acid productions was in L.fermentum at 35°C (13.20 g/kg DM, while the highest propionic acid productions were in Controltreatment at 35°C (0.37 g/kg DM.

  3. Effects of salinity and organic matter on the partitioning of perfluoroalkyl acid (PFAs) to clay particles.

    Science.gov (United States)

    Jeon, Junho; Kannan, Kurunthachalam; Lim, Byung J; An, Kwang Guk; Kim, Sang Don

    2011-06-01

    The influence of salinity and organic matter on the distribution coefficient (K(d)) for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in a brackish water-clay system was studied. The distribution coefficients (K(d)) for PFAs onto inorganic clay surfaces increased with salinity, providing evidence for electrostatic interaction for the sorption of PFAs, whereas the relationship between K(d) and organic carbon content (f(oc)) suggested that hydrophobic interaction is the primary driving force for the sorption of PFAs onto organic matter. The organic carbon normalized adsorption coefficient (K(oc)) of PFAs can be slightly overestimated due to the electrostatic interaction within uncoated inorganic surfaces. In addition, the dissolved organic matter released from coated clay particles seemed to solvate PFA molecules in solution, which contributed to a decrease in K(d). A positive relationship between K(d) and salinity was apparent, but an empirical relationship for the 'salting-out' effect was not evident. The K(d) values of PFAs are relatively small compared with those reported for persistent organic pollutants. Thus, sorption may not be a significant route of mass transfer of PFAs from water columns in estuarine environments. However, enhancement of sorption of PFAs to particulate matter at high salinity values could evoke potential risks to benthic organisms in estuarine areas.

  4. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    Science.gov (United States)

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  5. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    Directory of Open Access Journals (Sweden)

    Huck Ywih Ch’ng

    2014-01-01

    Full Text Available In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp. to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus, and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  6. Methods of analysis by the U.S. Geological Survey Organic Geochemistry Research Group; determination of glyphosate, aminomethylphosphonic acid, and glufonsinate in water using online solid-phase extraction and high-performance liquid chromat

    Science.gov (United States)

    Lee, E.A.; Strahan, A.P.; Thurman, E.M.

    2001-01-01

    An analytical method for the determination of glyphosate, its principal degradation compound, aminomethylphosphonic acid (AMPA), and glufosinate in water with varying matrices has been developed. Four different sample matrices fortified at 0.2 and 2.0 ?g/L (micrograms per liter) were analyzed using precolumn derivatization with 9-fluorenylmethylchloroformate (FMOC). After derivatization, cleanup and concentration were accomplished using automated online solid-phase extraction followed by elution with the mobile phase allowing for direct injection into a liquid chromatograph/mass spectrometer (LC/MS). Analytical conditions for MS detection were optimized, and quantitation was carried out using the following representative ions: 390 and 168 for glyphosate; 332, 110, and 136 for AMPA; and 402, 180, and 206 for glufosinate. Matrix effects were minimized by utilizing standard addition for quantification and an isotope-labeled glyphosate (2-13C,15N) as the internal standard. Method detection limits (MDLs) were 0.084 ?g/L for glyphosate, 0.078 ?g/L for AMPA, and 0.057 ?g/L for glufosinate. The method reporting limits (MRLs) were set at 0.1 ?g/L for all three compounds. The mean recovery values ranged from 88.0 to 128.7 percent, and relative standard deviation values ranged from 5.6 to 32.6 percent.

  7. Cirrus cloud mimic surfaces in the laboratory: organic acids, bases and NOx heterogeneous reactions

    Science.gov (United States)

    Sodeau, J.; Oriordan, B.

    2003-04-01

    CIRRUS CLOUD MIMIC SURFACES IN THE LABORATORY:ORGANIC ACIDS, BASES AND NOX HETEROGENEOUS REACTIONS. B. ORiordan, J. Sodeau Department of Chemistry and Environment Research Institute, University College Cork, Ireland j.sodeau@ucc.ie /Fax: +353-21-4902680 There are a variety of biogenic and anthropogenic sources for the simple carboxylic acids to be found in the troposphere giving rise to levels as high as 45 ppb in certain urban areas. In this regard it is of note that ants of genus Formica produce some 10Tg of formic acid each year; some ten times that produced by industry. The expected sinks are those generally associated with tropospheric chemistry: the major routes studied, to date, being wet and dry deposition. No studies have been carried out hitherto on the role of water-ice surfaces in the atmospheric chemistry of carboxylic acids and the purpose of this paper is to indicate their potential function in the heterogeneous release of atmospheric species such as HONO. The deposition of formic acid on a water-ice surface was studied using FT-RAIR spectroscopy over a range of temperatures between 100 and 165K. In all cases ionization to the formate (and oxonium) ions was observed. The results were confirmed by TPD (Temperature Programmed Desorption) measurements, which indicated that two distinct surface species adsorb to the ice. Potential reactions between the formic acid/formate ion surface and nitrogen dioxide were subsequently investigated by FT-RAIRS. Co-deposition experiments showed that N2O3 and the NO+ ion (associated with water) were formed as products. A mechanism is proposed to explain these results, which involves direct reaction between the organic acid and nitrogen dioxide. Similar experiments involving acetic acid also indicate ionization on a water-ice surface. The results are put into the context of atmospheric chemistry potentially occuring on cirrus cloud surfaces.

  8. Photometric method for determination of acidity constants through integral spectra analysis.

    Science.gov (United States)

    Zevatskiy, Yuriy Eduardovich; Ruzanov, Daniil Olegovich; Samoylov, Denis Vladimirovich

    2015-04-15

    An express method for determination of acidity constants of organic acids, based on the analysis of the integral transmittance vs. pH dependence is developed. The integral value is registered as a photocurrent of photometric device simultaneously with potentiometric titration. The proposed method allows to obtain pKa using only simple and low-cost instrumentation. The optical part of the experimental setup has been optimized through the exclusion of the monochromator device. Thus it only takes 10-15 min to obtain one pKa value with the absolute error of less than 0.15 pH units. Application limitations and reliability of the method have been tested for a series of organic acids of various nature. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Photometric method for determination of acidity constants through integral spectra analysis

    Science.gov (United States)

    Zevatskiy, Yuriy Eduardovich; Ruzanov, Daniil Olegovich; Samoylov, Denis Vladimirovich

    2015-04-01

    An express method for determination of acidity constants of organic acids, based on the analysis of the integral transmittance vs. pH dependence is developed. The integral value is registered as a photocurrent of photometric device simultaneously with potentiometric titration. The proposed method allows to obtain pKa using only simple and low-cost instrumentation. The optical part of the experimental setup has been optimized through the exclusion of the monochromator device. Thus it only takes 10-15 min to obtain one pKa value with the absolute error of less than 0.15 pH units. Application limitations and reliability of the method have been tested for a series of organic acids of various nature.

  10. Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    Directory of Open Access Journals (Sweden)

    E. M. Knipping

    2011-02-01

    Full Text Available The secondary organic aerosol (SOA yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS. A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS.

  11. Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter.

    Science.gov (United States)

    Gao, Yaohuan; Deshusses, Marc A

    2011-12-01

    The adsorption of two acidic pharmaceutically active compounds (PhACs), clofibric acid and ketoprofen, onto powdered activated carbon (PAC) was investigated with a particular focus on the influence of natural organic matter (NOM) on the adsorption of the PhACs. Suwannee River humic acids (SRHAs) were used as a substitute for NOM. Batch adsorption experiments were conducted to obtain adsorption kinetics and adsorption isotherms with and without SRHAs in the system. The adsorption isotherms and adsorption kinetics showed that the adsorption ofclofibric acid was not significantly affected by the presence of SRHAs at a concentration of 5 mg (as carbon) L(-1). An adsorption capacity of 70 to 140 mg g(-1) was observed and equilibrium was reached within 48 h. In contrast, the adsorption of ketoprofen was markedly decreased (from about 120 mg g(-1) to 70-100 mg g(-1)) in the presence of SRHAs. Higher initial concentrations of clofibric acid than ketoprofen during testing may explain the different behaviours that were observed. Also, the more hydrophobic ketoprofen molecules may have less affinity for PAC when humic acids (which are hydrophilic) are present. The possible intermolecular forces that could account for the different behaviour of clofibric acid and ketoprofen adsorption onto PAC are discussed. In particular, the relevance of electrostatic forces, electron donor-acceptor interaction, hydrogen bonding and London dispersion forces are discussed

  12. Burbank Transportation Management Organization: Impact Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brown, E.; Aabakken, J.

    2006-11-01

    The Burbank Transportation Management Organization (BTMO), a private, membership-based, nonprofit organization dedicated to traffic reduction and air quality improvement, contracted with the National Renewable Energy Laboratory (NREL), a U.S. Department of Energy-owned, contractor-operated national laboratory, to analyze its member programs and their benefits and effects. This report uses trip data collected by the BTMO, and defines and implements a methodology for quantifying non-traffic benefits such as gasoline savings, productivity, and pollution reduction.

  13. The chromatographic behavior of arsenic compounds on anion exchange columns with binary organic acids as mobile phases

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, J.; Goessler, W.; Kosmus, W. [Graz Univ. (Austria). Inst. fuer Analytische Chemie

    1998-03-01

    Identification and quantification of arsenic compounds was performed with high-performance liquid chromatography (HPLC) and flame atomic absorption spectrometry (FAAS) as element-specific detector. Arsenous acid, methylarsonic acid, dimethylarsinic acid, arsenic acid, arsenobetaine, and arsenocholine were separated on two anion-exchange columns (Synchropak Q 300 and PRP-X 100) with different binary organic acids as mobile phases. The influence of chromatographic parameters, such as pH and the concentration of the mobile phase were investigated. An unusual chromatographic behavior of arsenous acid was observed when tartaric acid was used as mobile phase. (orig.)

  14. Detection of COL III in Parchment by Amino Acid Analysis

    DEFF Research Database (Denmark)

    Vestergaard Poulsen Sommer, Dorte; Larsen, René

    2016-01-01

    Cultural heritage parchments made from the reticular dermis of animals have been subject to studies of deterioration and conservation by amino acid analysis. The reticular dermis contains a varying mixture of collagen I and III (COL I and III). When dealing with the results of the amino acid...... analyses, till now the COL III content has not been taken into account. Based on the available amino acid sequences we present a method for determining the amount of COL III in the reticular dermis of new and historical parchments calculated from the ratio of Ile/Val. We find COL III contents between 7...... and 32 % in new parchments and between 0.2 and 40 % in the historical parchments. This is consistent with results in the literature. The varying content of COL III has a significant influence on the uncertainty of the amino acid analysis. Although we have not found a simple correlation between the COL...

  15. Complexation of the actinides (III, IV and V) with organic acids

    International Nuclear Information System (INIS)

    Leguay, S.

    2012-01-01

    A thorough knowledge of the chemical properties of actinides is now required in a wide variety of fields: extraction processes involved in spent fuel reprocessing, groundwater in the vicinity of radioactive waste packages, environmental and biological media in the case of accidental release of radionuclides. In this context, the present work has been focused on the complexation of Am(III), Cm(III), Cf(III), Pu(IV) and Pa(V) with organic ligands: DTPA, NTA and citric acid. The complexation of pentavalent protactinium with citric and nitrilotriacetic acids was studied using liquid-liquid extraction with the element at tracer scale (C Pa ≤ 10 -10 M). The order and the mean charge of each complex were determined from the analysis of the systematic variations of the distribution coefficient of Pa(V) as function of ligand and proton concentration. Then, the apparent formation constants related of the so-identified complexes were calculated. The complexation of trivalent actinides with DTPA was studied by fluorescence spectroscopy (TRLFS) and capillary electrophoresis (CE-ICP-MS). The coexistence of the mono-protonated and non-protonated complexes (AnHDTPA - and AnDTPA 2- ) in acidic media (1.5 ≤ pH ≤ 3.5) was shown unambiguously. Literature data have been reinterpreted by taking into account both complexes and a consistent set of formation constants of An(III)-DTPA has been obtained. The experimental study was completed by theoretical calculations (DFT) on Cm-DTPA system. The coordination geometry of Cm in CmDTPA 2- and CmHDTPA - including water molecules in the first coordination sphere has been determined as well as interatomic distances. Finally, a study on the complexation of Pu(IV) with DTPA was initiated in order to more closely mimic physiological conditions. A three-step approach was proposed to avoid plutonium hydrolysis: i/ complexation of Pu(IV) with (NTA) in order to protect Pu(IV) from hydrolysis (at low pH) ii/ increase of pH toward neutral conditions

  16. OPERATIONS NECESSARY FOR THE DIAGNOSIS ANALYSIS OF THE ORGANIZATION

    Directory of Open Access Journals (Sweden)

    CAIUS LĂZĂRESCU

    2014-12-01

    Full Text Available The diagnosis analysis is as important as is necessary for any profit or non-profit organization, it shows the situation of the organization, helps to prevent the risks, threats and future forecast. The diagnosis analysis must present: the general situation, financial situation, human and managerial potential, technical and technological potential of the organization. Once known these aspects important for the organization, the decision or decisions can be made being aware of it and in real time. The diagnosis analysis is a procedure which is achieved in a relatively short period of time and offers solutions with global character, formulates an action program which will include detailed analysis. The high degree of complexity of the analysis needs a multidisciplinary training which can establish the method, to collect and process the data and to offer the solutions, for which this can be made by specialized companies or by specialized staff from organization self-analysis.

  17. Chirality of meteoritic free and IOM-derived monocarboxylic acids and implications for prebiotic organic synthesis

    Science.gov (United States)

    Aponte, José C.; Tarozo, Rafael; Alexandre, Marcelo R.; Alexander, Conel M. O.'D.; Charnley, Steven B.; Hallmann, Christian; Summons, Roger E.; Huang, Yongsong

    2014-04-01

    The origin of homochirality and its role in the development of life on Earth are among the most intriguing questions in science. It has been suggested that carbonaceous chondrites seeded primitive Earth with the initial organic compounds necessary for the origin of life. One of the strongest pieces of evidence supporting this theory is that certain amino acids in carbonaceous chondrites display a significant L-enantiomeric excess (ee), similar to those use by terrestrial life. Analyses of ee in meteoritic molecules other than amino acids would shed more light on the origins of homochirality. In this study we investigated the stereochemistry of two groups of compounds: (1) free monocarboxylic acids (MCAs) from CM2 meteorites LON 94101 and Murchison; and (2) the aliphatic side chains present in the insoluble organic matter (IOM) and extracted in the form of monocarboxylic acids (MCAs) from EET 87770 (CR2) and Orgueil (CI1). Contrary to the well-known ee observed for amino acids in meteorites, we found that meteoritic branched free and IOM-derived MCAs with 5-8 carbon atoms are essentially racemic. The racemic nature of these compounds is used to discuss the possible influence of ultraviolet circularly polarized light (UVCPL) and aqueous alterations on the parent body on chirality observed in in carbonaceous chondrites.

  18. Wet oxidation of glycerol into fine organic acids: catalyst selection and kinetic evaluation

    Directory of Open Access Journals (Sweden)

    J. E. N. Brainer

    2014-12-01

    Full Text Available The liquid phase oxidation of glycerol was performed producing fine organic acids. Catalysts based on Pt, Pd and Bi supported on activated carbon were employed to perform the conversion of glycerol into organic acids at 313 K, 323 K and 333 K, under atmospheric pressure (1.0 bar, in a mechanically agitated slurry reactor (MASR. The experimental results indicated glycerol conversions of 98% with production of glyceric, tartronic and glycolic acids, and dihydroxyacetone. A yield of glyceric acid of 69.8%, and a selectivity of this compound of 70.6% were reached after 4 h of operation. Surface mechanisms were proposed and rate equations were formulated to represent the kinetic behavior of the process. Selective formation of glyceric acid was observed, and the kinetic parameter values indicated the lowest activation energy (38.5 kJ/mol for its production reaction step, and the highest value of the adsorption equilibrium constant of the reactant glycerol (10-4 dm³/mol.

  19. Direct Capture of Organic Acids From Fermentation Media Using Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, K.T.

    2004-11-03

    Several ionic liquids have been investigated for the extraction of organic acids from fermentation broth. Partitioning of representative organic acids (lactic, acetic, and succinic) between aqueous solution and nine hydrophobic ionic liquids was measured. The extraction efficiencies were strongly dependent on pH of the aqueous phase. Distribution coefficient was very good (approximately 60) at low succinic acid concentrations for one of the ionic liquids (trihexyltetradecylphosphonium methanesulfonate) at neutral pH. However, this ionic liquid had to be diluted with nonanol due to its high viscosity in order to be useful. A diluent (trioctylamine) was also added to this mixture. The results suggest that an extraction system based on ionic liquids may be feasible for succinic acid recovery from fermentation broth and that two ideal extraction stages are needed to reduce the concentration from 33 g/L to 1 g/L of succinic acid. Further studies are needed to evaluate other issues related to practical applications, including ionic liquid loss in the process, toxicity effects of ionic liquids during simultaneous fermentation and extractions.

  20. Influence of pH on organic acid production by Clostridium sporogenes in test tube and fermentor cultures.

    Science.gov (United States)

    Montville, T J; Parris, N; Conway, L K

    1985-01-01

    The influence of pH on the growth parameters of and the organic acids produced by Clostridium sporogenes 3121 cultured in test tubes and fermentors at 35 degrees C was examined. Specific growth rates in the fermentor maintained at a constant pH ranged from 0.20 h-1 at pH 5.00 to 0.86 h-1 at pH 6.50. Acetic acid was the primary organic acid in supernatants of 24-h cultures; total organic acid levels were 2.0 to 22.0 mumol/ml. Supernatants from pH 5.00 and 5.50 cultures had total organic acid levels less than one-third of those found at pH 6.00 to 7.00. The specific growth rates of the test tube cultures ranged from 0.51 h-1 at pH 5.00 to 0.95 h-1 at pH 6.50. The pH of the medium did not affect the average total organic acid content (51.5 mumol/ml) but did affect the distribution of the organic acids, which included formic, acetic, propionic, butyric, 3-(p-hydroxyphenyl)propionic, and 3-phenylpropionic acids. Butyric acid levels were lower, but formic and propionic acid levels were higher, at pH 5.00 than at other pHs. PMID:4004207

  1. Initial pH of medium affects organic acids production but do not affect phosphate solubilization.

    Science.gov (United States)

    Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S

    2015-06-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization.

  2. Organic Acid Characteristics and Tolerance of Sengon (Paraserianthes falcataria L Nielsen to Lead

    Directory of Open Access Journals (Sweden)

    Luluk Setyaningsih

    2012-12-01

    Full Text Available This study aimed to find out the lead tolerance of sengon (Paraserianthes falcataria seedling based on growth performance, tolerance index, and secretion and accumulation of organic acids content. Seedlings were exposed to lead (Pb with the concentration of 0, 0.5, 1, 1.5, 5, and 10 mM in liquid nutrient culture for 4 days in order to investigate secretion and accumulation  of  oxalic, malic, and citric content, and for 15 days to examine growth performance and tolerance index. The result showed that tolerance index and growth performance of sengon seedling were insignificant (p > 0.05 to the rising of Pb concentration up to 1.5 mM with tolerance index at least 95%, and even caused an increase of fresh weight.  However, the tolerance index and growth of sengon  decreased significantly due to Pb exposure of 5 and 10 mM.  Among the three organic acids, citrate was most dominant as compared to malate and oxalate.  Secretion of citrate increased significantly (p < 0.05 with the rising concentration of Pb 0.5, 1 and 1.5 mM,  reaching to 0.464, 0.540, and 0.587 µg mℓ-1, respectively, or rising according linear line (r = 0.9, p < 0.5.  Citrate accumulation showed inconsistent pattern with the rising Pb exposure.  The result suggested that sengon seedling have a slightly tolerance to lead by secretion of organic acid especially citric acid.Keywords: lead, sengon, tolerance, organic acid, liquid nutrient culture

  3. Humic and fluvic acids and organic colloidal materials in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, J.S.; Marley, N.A. [Argonne National Lab., IL (United States); Clark, S.B. [Univ. of Georgia, Aiken, SC (United States)

    1996-04-01

    Humic substances are ubiquitous in the environment, occurring in all soils, waters, and sediments of the ecosphere. Humic substances arise from the decomposition of plant and animal tissues yet are more stable than their precursors. Their size, molecular weight, elemental composition, structure, and the number and position of functional groups vary, depending on the origin and age of the material. Humic and fulvic substances have been studied extensively for more than 200 years; however, much remains unknown regarding their structure and properties. Humic substances are those organic compounds found in the environment that cannot be classified as any other chemical class of compounds. They are traditionally defined according to their solubilities. Fulvic acids are those organic materials that are soluble in water at all pH values. Humic acids are those materials that are insoluble at acidic pH values (pH < 2) but are soluble at higher pH values. Humin is the fraction of natural organic materials that is insoluble in water at all pH values. These definitions reflect the traditional methods for separating the different fractions from the original mixture. The humic content of soils varies from 0 to almost 10%. In surface waters, the humic content, expressed as dissolved organic carbon (DOC), varies from 0.1 to 50 ppm in dark-water swamps. In ocean waters, the DOC varies from 0.5 to 1.2 ppm at the surface, and the DOC in samples from deep groundwaters varies from 0.1 to 10 ppm. In addition, about 10% of the DOC in surface waters is found in suspended matter, either as organic or organically coated inorganic particulates. Humic materials function as surfactants, with the ability to bind both hydrophobic and hydrophyllic materials, making numic and fluvic materials effective agents in transporting both organic and inorganic contaminants in the environment.

  4. Fatty acid analysis of Erwinia amylovora from Serbia and Montenegro

    Directory of Open Access Journals (Sweden)

    Milan Ivanović

    2011-01-01

    Full Text Available Automated method of fatty acid analysis was used to identify and study heterogeneity of 41 Erwinia amylovora strains, originating from 8 plant species grown in 13 locations in Serbia and one in Montenegro. All strains contained 14:0 3OH fatty acid,characteristic for the “amylovora” group. According to fatty acid composition 39 strains were identified as E. amylovora as the first choice from the database. Due to their specific fatty acid composition, two strains were identified as E. amylovora, but as a second choice. Fatty acid analysis also showed that E. amylovora population from Serbia could be differentiated in three groups, designated in this study as α, β and γ. All strains originating from central or south Serbia, as well as four strains from north Serbia clustered into group α. Group β and γ contained only strains isolated in northern Serbia (Vojvodina. The results show that E. amylovora population in this area is heterogeneous and indicate pathogen introduction from different directions. Fatty acid analysis enabled identificationat species level, as well as new insights of heterogeneity of E. amylovora population.

  5. Surfactant-Enhanced Organic Acid Inactivation of Tulane Virus, a Human Norovirus Surrogate.

    Science.gov (United States)

    Lacombe, Alison; Niemira, Brendan A; Gurtler, Joshua B; Kingsley, David H; Li, Xinhui; Chen, Haiqiang

    2018-02-01

    Combination treatments of surfactants and phenolic or short-chain organic acids (SCOA) may act synergistically or additively as sanitizers to inactive foodborne viruses and prevent outbreaks. The purpose of this study was to investigate the effect of gallic acid (GA), tannic acid, p-coumaric acid, lactic acid (LA), or acetic acid (AA), in combination with sodium dodecyl sulfate (SDS), against Tulane virus (TV), a surrogate for human norovirus. An aqueous stock solution of phenolic acids or SCOA with or without SDS was prepared and diluted in a twofold dilution series to 2× the desired concentration with cell growth media (M119 plus 10% fetal bovine serum). The solution was inoculated with an equal proportion of 6 log PFU/mL TV with a treatment time of 5 min. The survival of TV was quantified using a plaque assay with LLC-MK2 cells. The minimum virucidal concentration was 0.5:0.7% (v/v) for LA-SDS at pH 3.5 (4.5-PFU/mL reduction) and 0.5:0.7% (v/v) AA-SDS at pH 4.0 (2.6-log PFU/mL reduction). GA and SDS demonstrated a minimum virucidal concentration of 12.5 mM GA-SDS at pH 7.0 (0.2:0.3% GA-SDS) with an 0.8-log PFU/mL reduction and 50 mM GA-SDS (0.8:1.4% GA-SDS at pH 7.0) increased log reduction to 1.6 log PFU/mL. The combination treatments of AA or LA with SDS at pH 7.0 did not produce significant log reduction, nor did individual treatments of tannic acid, GA, p-coumaric acid, AA, LA, or SDS. This study demonstrates that a surfactant, such as SDS, aids in the phenolic acid and SCOA toxicities against viruses. However, inactivation of TV by combination treatments is contingent upon the pH of the sanitizing solution being lower than the pK a value of the organic acid being used. This information can be used to develop sanitizing washes to disinfect food contact surfaces, thereby aiding in the prevention of foodborne outbreaks.

  6. Effect of Organic Acids and Marination Ingredients on the Survival of Campylobacter jejuni on Meat

    DEFF Research Database (Denmark)

    Birk, Tina; Grønlund, Anne Christine Jørgensen; Christensen, Bjarke Bak

    2010-01-01

    inoculated in brain heart infusion broth containing 0.3% tartaric acid. On chicken meat medallions, reductions of C. jejuni were 0.5 to 2 log units when tartaric acid solutions (2, 4, 6, and 10%) were spread onto the meal. Analysis of acidic food ingredient (e.g., vinegar. lemon juice, pomegranate syrup......, and soya sauce) revealed that such ingredients reduced counts of C. jejuni by at least 0.8 log units Oil meat medallions. Three low pH marinades (pH lemon juice, and white wine vinegar were prepared. When applied in whole filets, these marinades resulted in a reduction...

  7. [Total analysis of organic rubber additives].

    Science.gov (United States)

    He, Wen-Xuan; Robert, Shanks; You, Ye-Ming

    2010-03-01

    In the present paper, after middle pressure chromatograph separation using both positive phase and reversed-phase conditions, the organic additives in ethylene-propylene rubber were identified by infrared spectrometer. At the same time, by using solid phase extraction column to maintain the main component-fuel oil in organic additves to avoid its interfering with minor compounds, other organic additves were separated and analysed by GC/Ms. In addition, the remaining active compound such as benzoyl peroxide was identified by CC/Ms, through analyzing acetone extract directly. Using the above mentioned techniques, soften agents (fuel oil, plant oil and phthalte), curing agent (benzoylperoxide), vulcanizing accelerators (2-mercaptobenzothiazole, ethyl thiuram and butyl thiuram), and antiagers (2, 6-Di-tert-butyl-4-methyl phenol and styrenated phenol) in ethylene-propylene rubber were identified. Although the technique was established in ethylene-propylene rubber system, it can be used in other rubber system.

  8. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment... Constructed on or Before September 20, 1994 § 60.33b Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals...

  9. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals are specified in paragraphs (a)(1) through (a)(3) of this section. (1) The owner or...

  10. The effect of organic acids on base cation leaching from the forest floor under six North American tree species

    NARCIS (Netherlands)

    Dijkstra, F.A.; Geibe, C.; Holmstrom, S.; Lundstrom, U.S.; Breemen, van N.

    2001-01-01

    Organic acidity and its degree of neutralization in the forest floor can have large consequences for base cation leaching under different tree species. We investigated the effect of organic acids on base cation leaching from the forest floor under six common North American tree species. Forest floor

  11. Ultraviolet-absorbing organic anions in uremic serum separated by capillary zone electrophoresis, and quantification of hippuric acid

    NARCIS (Netherlands)

    Schoots, A.C.; Verheggen, T.P.E.M.; Vries, de P.M.J.M.; Everaerts, F.M.

    1990-01-01

    Organic anions accumulated in blood serum of patients with chronic renal failure were separated by a novel technique: closed-system capillary zone electrophoresis (CZE) in a pH6 carrier-electrolyte system. Hippuric acid (HA), p-hydroxyhippuric acid, and uric acid were identified by their co-elution

  12. Interactions between hydrated cement paste and organic acids: Thermodynamic data and speciation modeling

    Energy Technology Data Exchange (ETDEWEB)

    De Windt, Laurent, E-mail: laurent.dewindt@mines-paristech.fr [MINES ParisTech, PSL Research University, Centre de Géosciences, 35 Rue St-Honoré, 77305 Fontainebleau Cedex (France); Bertron, Alexandra; Larreur-Cayol, Steeves; Escadeillas, Gilles [University of Toulouse, UPS/INSA/LMDC, 135 Av. de Rangueil, 31077 Toulouse Cedex 04 (France)

    2015-03-15

    Interactions of short-chain organic acids with hydrated cement phases affect structure durability in the agro-food and nuclear waste industries but can also be used to modify cement properties. Most previous studies have been experimental, performed at fixed concentrations and pH, without quantitatively discriminating among polyacidity effects, or complexation and salt precipitation processes. This paper addresses such issues by thermodynamic equilibrium calculations for acetic, citric, oxalic, succinic acids and a simplified hydrated CEM-I. The thermodynamic constants collected from the literature allow the speciation to be modeled over a wide range of pH and concentrations. Citric and oxalic had a stronger chelating effect than acetic acid, while succinic acid was intermediate. Similarly, Ca-citrate and Ca-oxalate salts were more insoluble than Ca-acetate and Ca-succinate salts. Regarding aluminium complexation, hydroxyls, sulfates, and acid competition was highlighted. The exploration of acid mixtures showed the preponderant effect of oxalate and citrate over acetate and succinate.

  13. pH-independent release of propranolol hydrochloride from HPMC-based matrices using organic acids

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background and purpose of the study: Propranolol HCl, a widely used drug in the treatment of cardiac arrhythmias and hypertension, is a weak basic drug with pH-dependent solubility that may show release problems from sustained release dosage forms at higher pH of small intestine. This might decrease drug bioavailability and cause variable oral absorption. Preparation of a sustained release matrix system with a pH-independent release profile was the aim of the present study. Methods: Three types of organic acids namely tartaric, citric and fumaric acid in the concentrations of 5, 10 and 15 % were added to the matrices prepared by hydroxypropyl methylcellulose (HPMC and dicalcium phosphate. The drug release studies were carried out at pH 1.2 and pH 6.8 separately and mean dissolution time (MDT as well as similarity factor (¦2 were calculated for all formulations. Results and discussion: It was found that incorporation of 5 and 10 % tartaric acid in tablet formulations with 30 % HPMC resulted in a suitable pH-independent release profiles with significant higher ¦2 values (89.9 and 87.6 respectively compared to acid free tablet (58.03. The other two acids did not show the desirable effects. It seems that lower pKa of tartaric acid accompanied by its higher solubility were the main factors in the achievement of pH-independent release profiles.

  14. Usefulness of organic acid produced by Exiguobacterium sp. 12/1 on neutralization of alkaline wastewater.

    Science.gov (United States)

    Kulshreshtha, Niha Mohan; Kumar, Anil; Bisht, Gopal; Pasha, Santosh; Kumar, Rita

    2012-01-01

    The aim of this study was to investigate the role of organic acids produced by Exiguobacterium sp. strain 12/1 (DSM 21148) in neutralization of alkaline wastewater emanated from beverage industry. This bacterium is known to be able to grow in medium of pH as high as pH 12.0 and to neutralize alkaline industrial wastewater from pH 12.0 to pH 7.5. The initial investigation on the type of functional groups present in medium, carried out using FT-IR spectroscopy, revealed the presence of peaks corresponding to carbonyl group and hydroxyl group, suggesting the release of carboxylic acid or related metabolic product(s). The identification of specific carboxylic group, carried out using RP-HPLC, revealed the presence of a single peak in the culture supernatant with retention time most similar to formic acid. The concentration of acid produced on different carbon sources was studied as a function of time. Although acid was present in same final concentration, the rate of acid production was highest in case of medium supplemented with sucrose followed by fructose and glucose. The knowledge of metabolic products of the bacterium can be considered as a first step towards realization of its potential for large-scale bioremediation of alkaline wastewater from beverage industry.

  15. The neutralization of acidic coal mine lakes by additions of natural organic matter: a mesocosm test

    International Nuclear Information System (INIS)

    Brugam, R.B.; Gastineau, J.; Ratcliff, E.

    1995-01-01

    Cylindrical polyethylene enclosures 3 m in length and 1 m in diameter reaching from the surface to the bottom were constructed in an acid (pH=3.1) lake on a coal surface mine in southern Illinois. Wheat straw was added to the enclosures to test the effects of dissimilatory sulfate reduction on water chemistry. Added straw increased sulfide concentrations, raised pH to 6.5, reduced O 2 and increased acid neutralizing capacity of the enclosed water columns when compared with a control enclosure and with the open lake. Generation of acid neutralizing capacity exceeded the standing stock of sulfide indicating that sulfide was removed either by precipitation of FeS or outgassing of H 2 S. The pH and acid neutralizing capacity within the enclosures eventually returned to the level of the surrounding lake because of water exchange around the enclosure walls. Our results show that additions of organic matter to acid surface mine lakes result in the generation of acid neutralizing capacity

  16. Characterizing Corrosion Effects of Weak Organic Acids Using a Modified Bono Test

    Science.gov (United States)

    Zhou, Yuqin; Turbini, Laura J.; Ramjattan, Deepchand; Christian, Bev; Pritzker, Mark

    2013-12-01

    To meet environmental requirements and achieve benefits of cost-effective manufacturing, no-clean fluxes (NCFs) or low-solids fluxes have become popular in present electronic manufacturing processes. Weak organic acids (WOAs) as the activation ingredients in NCFs play an important role, especially in the current lead-free and halogen-free soldering technology era. However, no standard or uniform method exists to characterize the corrosion effects of WOAs on actual metallic circuits of printed wiring boards (PWBs). Hence, the development of an effective quantitative test method for evaluating the corrosion effects of WOAs on the PWB's metallic circuits is imperative. In this paper, the modified Bono test, which was developed to quantitatively examine the corrosion properties of flux residues, is used to characterize the corrosion effects of five WOAs (i.e., abietic acid, succinic acid, glutaric acid, adipic acid, and malic acid) on PWB metallic circuits. Experiments were performed under three temperature/humidity conditions (85°C/85% RH, 60°C/93% RH, and 40°C/93% RH) using two WOA solution concentrations. The different corrosion effects among the various WOAs were best reflected in the testing results at 40°C and 60°C. Optical microscopy was used to observe the morphology of the corroded copper tracks, and scanning electron microscopy (SEM) energy-dispersive x-ray (EDX) characterization was performed to determine the dendrite composition.

  17. Inactivation of Pseudomonas fluorescens in skim milk by combinations of pulsed electric fields and organic acids.

    Science.gov (United States)

    Fernández-Molina, Juan J; Altunakar, Bilge; Bermúdez-Aguirre, Daniela; Swanson, Barry G; Barbosa-Cánovas, Gustavo V

    2005-06-01

    Pseudomonas fluorescens suspended in skim milk was inactivated by application of pulsed electric fields (PEF) either alone or in combination with acetic or propionic acid. The initial concentration of microorganisms ranged from 10(5) to 10(6) CFU/ml. Addition of acetic acid and propionic acid to skim milk inactivated 0.24 and 0.48 log CFU/ml P. fluorescens, respectively. Sets of 10, 20, and 30 pulses were applied to the skim milk using exponentially decaying pulses with pulse lengths of 2 micros and pulse frequencies of 3 Hz. Treatment temperature was maintained between 16 and 20 degrees C. In the absence of organic acids, PEF treatment of skim milk at field intensities of 31 and 38 kV/cm reduced P. fluorescens populations by 1.0 to 1.8 and by 1.2 to 1.9 log CFU/ml, respectively. Additions of acetic and propionic acid to the skim milk in a pH range of 5.0 to 5.3 and PEF treatment at 31, 33, and 34 kV/cm, and 36, 37, and 38 kV/cm reduced the population of P. fluorescens by 1.4 and 1.8 log CFU/ml, respectively. No synergistic effect resulted from the combination of PEF with acetic or propionic acid.

  18. Roles of Organic Acid Anion Secretion in Aluminium Tolerance of Higher Plants

    Science.gov (United States)

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium(Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H+-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed. PMID:23509687

  19. Usefulness of Organic Acid Produced by Exiguobacterium sp. 12/1 on Neutralization of Alkaline Wastewater

    Directory of Open Access Journals (Sweden)

    Niha Mohan Kulshreshtha

    2012-01-01

    Full Text Available The aim of this study was to investigate the role of organic acids produced by Exiguobacterium sp. strain 12/1 (DSM 21148 in neutralization of alkaline wastewater emanated from beverage industry. This bacterium is known to be able to grow in medium of pH as high as pH 12.0 and to neutralize alkaline industrial wastewater from pH 12.0 to pH 7.5. The initial investigation on the type of functional groups present in medium, carried out using FT-IR spectroscopy, revealed the presence of peaks corresponding to carbonyl group and hydroxyl group, suggesting the release of carboxylic acid or related metabolic product(s. The identification of specific carboxylic group, carried out using RP-HPLC, revealed the presence of a single peak in the culture supernatant with retention time most similar to formic acid. The concentration of acid produced on different carbon sources was studied as a function of time. Although acid was present in same final concentration, the rate of acid production was highest in case of medium supplemented with sucrose followed by fructose and glucose. The knowledge of metabolic products of the bacterium can be considered as a first step towards realization of its potential for large-scale bioremediation of alkaline wastewater from beverage industry.

  20. Characterization of micro-organisms isolated from dairy industry after cleaning and fogging disinfection with alkyl amine and peracetic acid.

    Science.gov (United States)

    Bore, E; Langsrud, S

    2005-01-01

    To characterize micro-organisms isolated from Norwegian dairy production plants after cleaning and fogging disinfection with alkyl amine/peracetic acid and to indicate reasons for survival. Microbial samples were collected from five dairy plants after cleaning and fogging disinfection. Isolates from two of these production plants, which used fogging with alkylamino acetate (plant A), and peracetic acid (plant B), were chosen for further characterization. The sequence of the 16S ribosomal DNA, fatty acid analysis and biochemical characteristics were used to identify isolates. Three isolates identified as Rhodococcus erythropolis, Methylobacterium rhodesianum and Rhodotorula mucilaginosa were isolated from plant A and one Sphingomonas sp. and two M. extorquens from plant B. Different patterns of resistance to seven disinfectants in a bactericidal suspension test and variable degree of attachment to stainless steel were found. The strains with higher disinfectant resistance showed lower degree of attachment than susceptible strains. The study identifies and characterizes micro-organisms present after cleaning and fogging disinfection. Both surface attachment and resistance were shown as possible reasons for the presence of the isolates after cleaning and disinfection. These results contribute to the awareness of disinfectant resistance as well as attachment as mechanisms of survival in dairy industry. It also strengthens the argument of frequent alternation of disinfectants in the food processing industry to avoid the establishment of resistant house strains.

  1. Influence of Fruit Ripening on Color, Organic Acid Contents, Capsaicinoids, Aroma Compounds, and Antioxidant Capacity of Shimatogarashi (Capsicum frutescens).

    Science.gov (United States)

    Manikharda; Takahashi, Makoto; Arakaki, Mika; Yonamine, Kaoru; Hashimoto, Fumio; Takara, Kensaku; Wada, Koji

    2018-01-01

    Shimatogarashi (Capsicum frutescens) is a typical chili pepper domesticated in southern Japan. Important traits of Shimatogarashi peppers, such as color; proportion of organic acids, capsaicinoids, and aromatic compounds; and antioxidant activity in three stages of maturity (green (immature), orange (turning), and red (mature) stages) were characterized. The results indicated that the concentration of organic acids, including ascorbic, citric, and malic acid, increased during ripening. In addition, the amount of capsaicinoids, which are responsible for the pungent taste of chili peppers, increased as the fruit matured to the orange and red stages. The volatile compound profile of Shimatogarashi was dominated by the presence of esters, which mainly contributed to fruity notes. The total amount of volatile compounds analyzed by gas chromatography-headspace solid-phase microextraction (GC-HS-SPME), especially esters, decreased as the fruit changed in color from green to red. This was in contrast to the amount of terpenoids, especially limonene, which increased at the red stage, denoting a change in flavor from fruity to a more citrus-like aroma. Based on the total phenolic content (TPC), the oxygen radical absorbance capacity (ORAC) and the diphenylpicrylhydrazyl (DPPH) free radical method, the antioxidant capacity of Shimatogarashi showed an increase at the mature red stage. However, while the red stage showed higher pungency and antioxidant capacity as well as an attractive color, the results of aromatic compound analysis revealed that the immature green stage had the advantages of having pleasant fruity smell, making it suitable for use in condiments.

  2. Analysis of Seasonal Soil Organic Carbon Content at Bukit Jeriau Forest, Fraser Hill, Pahang

    International Nuclear Information System (INIS)

    Ahmad Adnan Mohamed; Ahmad Adnan Mohamed; Sahibin Abd Rahim; David Allan Aitman; Mohd Khairul Amri Kamarudin; Mohd Khairul Amri Kamarudin

    2016-01-01

    Soil carbon is the carbon held within the soil, primarily in association with its organic content. The total soil organic carbon study was determined in a plot at Bukit Jeriau forest in Bukit Fraser, Pahang, Malaysia. The aim of this study is to determine the changing of soil organic carbon between wet season and dry season. Soil organic carbon was fined out using titrimetric determination. The soil organic carbon content in wet season is 223.24 t/ ha while dry season is 217.90 t/ ha. The soil pH range in wet season is between 4.32 to 4.45 and in dry season in 3.95 to 4.08 which is considered acidic. Correlation analysis showed that soil organic carbon value is influenced by pH value and climate. Correlation analysis between clay and soil organic carbon with depth showed positively significant differences and clay are very much influenced soil organic carbon content. Correlation analysis between electrical conductivity and soil organic carbon content showed negative significantly difference on wet season and positively significant different in dry season. (author)

  3. A Robust Analysis Method For Δ13c Signal Of Bulk Organic Matter In Speleothems

    Science.gov (United States)

    Bian, F.; Blyth, A. J.; Smith, C.; Baker, A.

    2017-12-01

    Speleothems preserve organic matter that is derived from both the surface soil and cave environments. This organic matter can be used to understand paleoclimate and paleoenvironments. However, a stable and quick micro-analysis method to measure the δ13C signals from speleothem organic matter separate from the total δ13C remains absent. And speleothem organic geochemistry is still relatively unexplored compared to inorganic geochemistry. In this research, for the organic matter analysis, bulk homogeneous power samples were obtained from one large stalagmite. These were dissolved by phosphoric acid to produce the aqueous solution. Then, the processed solution was degassed through a rotational vacuum concentrator. A liquid chromatograph was coupled to IRMS to control the oxidization and the measurement of analytes. This method is demonstrated to be robust for the analysis of speleothem d13C organic matter analysis under different preparation and instrumental settings, with the low standard deviation ( 0.2‰), and low sample consumption (<25 mg). Considering the complexity of cave environments, this method will be useful in further investigations the δ13C of entrapped organic matter and environmental controls in other climatic and ecological contexts, including the determination of whether vegetation or soil microbial activity is the dominant control on speleothem d13C of organic matter.

  4. Phosphatidic acid is a major phospholipid class in reproductive organs of Arabidopsis thaliana.

    Science.gov (United States)

    Yunus, Ian Sofian; Cazenave-Gassiot, Amaury; Liu, Yu-Chi; Lin, Ying-Chen; Wenk, Markus R; Nakamura, Yuki

    2015-01-01

    Phospholipids are the crucial components of biological membranes and signal transduction. Among different tissues, flower phospholipids are one of the least characterized features of plant lipidome. Here, we report that floral reproductive organs of Arabidopsis thaliana contain high levels of phosphatidic acid (PA), a known lipid second messenger. By using floral homeotic mutants enriched with specific floral organs, lipidomics study showed increased levels of PA species in ap3-3 mutant with enriched pistils. Accompanied gene expression study for 7 diacylglycerol kinases and 11 PA phosphatases revealed distinct floral organ specificity, suggesting an active phosphorylation/dephosphorylation between PA and diacylglycerol in flowers. Our results suggest that PA is a major phospholipid class in floral reproductive organs of A. thaliana.

  5. (13)C/(12)C isotope ratios of organic acids, glucose and fructose determined by HPLC-co-IRMS for lemon juices authenticity.

    Science.gov (United States)

    Guyon, Francois; Auberger, Pauline; Gaillard, Laetita; Loublanches, Caroline; Viateau, Maryse; Sabathié, Nathalie; Salagoïty, Marie-Hélène; Médina, Bernard

    2014-03-01

    High performance liquid chromatography linked to isotope ratio mass spectrometry via an interface allowing the chemical oxidation of organic matter (HPLC-co-IRMS) was used to simultaneously determine carbon 13 isotope ratio (δ(13)C) of organic acids, glucose and fructose in lime and lemon juices. Because of the significant difference between organic acids and sugars concentrations, the experimental protocol was optimised by applying a "current jump" to the IRMS device. The filament current is increased of 300μA during elution in order to enhance IRMS sensitivity. Then, analysis were performed on 35 lemon and lime fruits from various geographical origins and squeezed in the laboratory. An overall average δ(13)C values of -25.40±1.62‰, -23.83±1.82‰ and -25.67±1.72‰ is found for organic acids mixture mainly made up of citric acid, glucose and fructose, respectively. These authentic samples allowed the definition of a confidence domain to which have been confronted 30 commercial juices (24 "pure juices" and 6 coming from concentrate). Among these 30 samples, 10 present δ(13)C values outside the defined range revealing an added "C4" type organic acids or sugars, addition not specified on the label that is not in agreement with EU regulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Organic acids enhance bioavailability of tetracycline in water to Escherichia coli for uptake and expression of antibiotic resistance.

    Science.gov (United States)

    Zhang, Yingjie; Boyd, Stephen A; Teppen, Brian J; Tiedje, James M; Li, Hui

    2014-11-15

    Tetracyclines are a large class of antimicrobials used most extensively in livestock feeding operations. A large portion of tetracyclines administered to livestock is excreted in manure and urine which is collected in waste lagoons. Subsequent land application of these wastes introduces tetracyclines into the soil environment, where they could exert selective pressure for the development of antibiotic resistance genes in bacteria. Tetracyclines form metal-complexes in natural waters, which could reduce their bioavailability for bacterial uptake. We hypothesized that many naturally-occurring organic acids could effectively compete with tetracyclines as ligands for metal cations, hence altering the bioavailability of tetracyclines to bacteria in a manner that could enhance the selective pressure. In this study, we investigated the influence of acetic acid, succinic acid, malonic acid, oxalic acid and citric acid on tetracycline uptake from water by Escherichia coli bioreporter construct containing a tetracycline resistance gene which induces the emission of green fluorescence when activated. The presence of the added organic acid ligands altered tetracycline speciation in a manner that enhanced tetracycline uptake by E. coli. Increased bacterial uptake of tetracycline and concomitant enhanced antibiotic resistance response were quantified, and shown to be positively related to the degree of organic acid ligand complexation of metal cations in the order of citric acid > oxalic acid > malonic acid > succinic acid > acetic acid. The magnitude of the bioresponse increased with increasing aqueous organic acid concentration. Apparent positive relation between intracellular tetracycline concentration and zwitterionic tetracycline species in aqueous solution indicates that (net) neutral tetracycline is the species which most readily enters E. coli cells. Understanding how naturally-occurring organic acid ligands affect tetracycline speciation in solution, and how speciation

  7. Application of Potential Phosphate-Solubilizing Bacteria and Organic Acids on Phosphate Solubilization from Phosphate Rock in Aerobic Rice

    Directory of Open Access Journals (Sweden)

    Qurban Ali Panhwar

    2013-01-01

    Full Text Available A study was conducted at Universiti Putra Malaysia to determine the effect of phosphate-solubilizing bacteria (PSB and organic acids (oxalic & malic on phosphate (P solubilization from phosphate rock (PR and growth of aerobic rice. Four rates of each organic acid (0, 10, 20, and 30 mM, and PSB strain (Bacillus sp. were applied to aerobic rice. Total bacterial populations, amount of P solubilization, P uptake, soil pH, and root morphology were determined. The results of the study showed significantly high P solubilization in PSB with organic acid treatments. Among the two organic acids, oxalic acid was found more effective compared to malic acid. Application of oxalic acid at 20 mM along with PSB16 significantly increased soluble soil P (28.39 mg kg−1, plant P uptake (0.78 P pot−1, and plant biomass (33.26 mg. Addition of organic acids with PSB and PR had no influence on soil pH during the planting period. A higher bacterial population was found in rhizosphere (8.78 log10 cfu g−1 compared to the nonrhizosphere and endosphere regions. The application of organic acids along with PSB enhanced soluble P in the soil solution, improved root growth, and increased plant biomass of aerobic rice seedlings without affecting soil pH.

  8. Acidity and origin of dissolved organic carbon in different vegetation zones

    Science.gov (United States)

    Hruška, Jakub; Oulehle, Filip; Myška, Oldřích; Chuman, Tomáš

    2016-04-01

    The acid/base character of aquatic dissolved organic carbon (DOC) has been studied intensively during recent decades with regard to the role of DOC in stream water acidity and the balance between natural acidity and anthropogenic acidification. Recently, DOC has been shown to play an important role in preindustrial surface waters. Studies focused on the acid/base properties of DOC have been carried out in mainly in Europe and North America and paint a conflicting picture. Some studies reported large differences in acid base properties, sometimes between quite similar and nearby localities, or between seasons at the same site. Other studies, however, found similar acid/base properties in waters from a variety of sites, sometimes far from each other as well as stable acid/base properties at the same site through different seasons or runoff events. Site density of DOC (amount of carboxylic groups per milligram of DOC) and SUVA was measured for streams (or small tundra ponds respectively) from the tundra in northern Alaska, boreal zone of Sweden, western Czech Republic (temperate region), and tropical Congo rain forest in central Africa. At least 10 samples from each region were taken from surface waters during the growing season. Titration of carboxylic groups after proton saturation on cation-exchange resin was used for site density determination. Despite very different climatic and vegetation properties and internal variation within a region, there was no statistically significant difference among regions for site density (it varied between 10.2-10.5 ueq/mg DOC) as well as for SUVA (tested by ANOVA). Results suggest that different vegetation and climate produced generally the same DOC in respect of acid/base character and SUVA. It also suggests that use of the one analytical technique was more important than differences between climatic zones itself.

  9. The influence of humic acids derived from earthworm-processed organic wastes on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Atiyeh, R.M.; Lee, S.; Edwards, C.A.; Arancon, N.Q.; Metzger, J.D. [Ohio State University, Columbus, OH (United States). Soil Ecology Lab.

    2002-08-01

    Some effects of humic acids, formed during the breakdown of organic wastes by earthworms (vermicomposting), on plant growth were evaluated. In the first experiment, humic acids were extracted from pig manure vermicompost using the classic alkali/acid fractionation procedure and mixed with a soilless container medium (Metro-Mix 360), to provide a range of 0, 50, 100, 150, 200, 250, 500, 1000, 2000 and 4000 mg of humate per kg of dry weight of container medium, and tomato seedlings were grown in the mixtures. In the second experiment, humates extracted from pig manure and food wastes vermicomposts were mixed with vermiculite to provide a range of 0, 50, 125, 250, 500, 1000 and 4000 mg of humate per kg of dry weight of the container medium, and cucumber seedlings were grown in the mixtures. Both tomato and cucumber seedlings were watered daily with a solution containing all nutrients required to ensure that any differences in growth responses were not nutrient-mediated. The incorporation of both types of vermicompost-derived humic acids, into either type of soilless plant growth media, increased the growth of tomato and cucumber plants significantly, in terms of plant heights, leaf areas, shoot and root dry weights. Plant growth increased with increasing concentrations of humic acids incorporated into the medium up to a certain proportion, but this differed according to the plant species, the source of the vermicompost, and the nature of the container medium. Plant growth tended to be increased by treatments of the plants with 50-500 mg/kg humic acids, but often decreased significantly when the concentrations of humic acids derived in the container medium exceeded 500-1000 mg/kg. These growth responses were most probably due to hormone-like activity of humic acids from the vermicomposts or could have been due to plant growth hormones adsorbed onto the humates. (author)

  10. Organic acid enhanced electrodialytic extraction of lead from contaminated soil fines in suspension

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ahring, Birgitte Kiær; Ottosen, Lisbeth M.

    2007-01-01

    for decontamination of the sludge was investigated. The ability of 11 organic acids to extract Pb from the fine fraction of contaminated soil (grains soil fines in suspension......The implementation of soil washing technology for the treatment of heavy metal contaminated soils is limited by the toxicity and unwieldiness of the remaining heavy metal contaminated sludge. In this work, the feasibility of combining electrodialytic remediation with heterotrophic leaching...... was tested. Five of the acids showed the ability to extract Ph from the soil fines in excess of the effect caused solely by pH changes. Addition of the acids, however, severely impeded EDR, hence promotion of EDR by combination with heterotrophic leaching was rejected. In contrast, enhancement of EDR...

  11. Modeling of RO/NF membrane rejections of PhACs and organic compounds : A statistical analysis

    NARCIS (Netherlands)

    Yangali-Quintanilla, V.; Kim, T.U.; Kennedy, M.; Amy, G.

    2008-01-01

    Rejections of pharmaceutical compounds (Ibuprofen, Diclofenac, Clofibric acid, Naproxen, Primidone, Phenacetin) and organic compounds (Dichloroacetic acid, Trichloroacetic acid, Chloroform, Bromoform, Trichloroethene, Perchloroethene, Carbontetrachloride, Carbontetrabromide) by NF (Filmtec, Saehan)

  12. Control of Listeria monocytogenes in turkey deli loaves using organic acids as formulation ingredients.

    Science.gov (United States)

    Lloyd, T; Alvarado, C Z; Brashears, M M; Thompson, L D; McKee, S R; Berrang, M

    2009-10-01

    The growth of Listeria monocytogenes in further-processed meat products has become a major concern and an important food safety issue. The meat and poultry industries have incorporated interventions such as organic acids in marinades to inhibit the growth of L. monocytogenes. In this study, organic acids were utilized in the raw product and as a postcook dip to determine their inhibitory effect on the growth of L. monocytogenes in turkey deli loaves. The turkey deli loaves were processed, cooked, cooled, inoculated with streptomycin-resistant L. monocytogenes, and then dipped. Treatments were potassium lactate (PL) in the raw product with sodium lactate (SL), sodium diacetate (SD) dip, PL with SL/PL/SD dip, SL with SL/SD dip, and SL with SL/PL/SD dip. There was also a positive (inoculated) and negative (noninoculated) control, which was dipped in distilled water. Days 0, 7, 14, 21, 28, 42, and 56 were sampled for L. monocytogenes. There were no differences (P>0.05) among the organic acid treatments in the turkey deli loaves at any time points; therefore, all of the treatments increased the lag phase of L. monocytogenes, extending the shelf-life of the product. However, there was a difference between the treatments and the positive control at d 7, 14, 21, 28, 42, and 56. The growth of L. monocytogenes increased immediately in the positive control, whereas the negative control appeared to have no growth. These organic acids can provide meat processors with a useful method for extending the lag phase of L. monocytogenes in ready-to-eat meat and poultry products.

  13. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost

    Energy Technology Data Exchange (ETDEWEB)

    Scaglia, Barbara, E-mail: barbara.scaglia@unimi.it [Gruppo Ricicla Labs – DiSAA, Università degli Studi di Milano, Via Celoria 2 (Italy); Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira [Laboratório de Química Ambiental, Universidade de São Paulo, Instituto de Química de São Carlos, Avenida Trabalhador São Carlense, 400, São Carlos (Brazil); Tambone, Fulvia [Gruppo Ricicla Labs – DiSAA, Università degli Studi di Milano, Via Celoria 2 (Italy); Adani, Fabrizio, E-mail: fabrizio.adani@unimi.it [Gruppo Ricicla Labs – DiSAA, Università degli Studi di Milano, Via Celoria 2 (Italy)

    2016-08-15

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100–6000 mg carbon L{sup −1}. {sup 13}C CPMAS-NMR and GC–MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS {sup 13}CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R{sup 2} = − 0.85; p < 0.01, n = 6). - Highlights: • Vermicomposting converts waste into organic fertilizer. • Vermicomposts can have biostimulating effect for the presence of hormone-like molecules. • Auxine-like activity was associated to the vermicompost humic acid fraction (HA). • HA carboxylic acids and amino acids, were reported to act as auxin-like molecules. • A linear regression was found between molecules and auxin-like activity.

  14. Fermentation of liquid coproducts and liquid compound diets: Part 2. Effects on pH, acid-binding capacity, organic acids and ethanol during a 6-day period

    NARCIS (Netherlands)

    Scholten, R.H.J.; Rijnen, M.M.J.A.; Schrama, J.W.; Boer, H.; Peet-Schwering, van der C.M.C.; Hartog, den L.A.; Vesseur, P.C.

    2001-01-01

    The effects of a 6-day storage period on changes in pH, acid-binding capacity, level of organic acids and ethanol of three liquid coproducts [liquid wheat starch (LWS), mashed potato steam peel (PSP) and cheese whey (CW)] and two liquid compound diets [liquid grower diet (LGD) and liquid finisher

  15. Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets

    Directory of Open Access Journals (Sweden)

    B. J. Murray

    2008-09-01

    Full Text Available Homogeneous nucleation of ice within aqueous solution droplets and their subsequent crystallisation is thought to play a significant role in upper tropospheric ice cloud formation. It is normally assumed that homogeneous nucleation will take place at a threshold supersaturation, irrespective of the identity of the solute, and that rapid growth of ice particles will follow immediately after nucleation. However, it is shown here through laboratory experiments that droplets may not readily freeze in the very cold tropical tropopause layer (TTL, typical temperatures of 186–200 K. In these experiments ice crystal growth in citric acid solution droplets did not occur when ice nucleated below 197±6 K. Citric acid, 2-hydroxypropane-1,2,3-tricarboxyllic acid, is a molecule with similar functionality to oxygenated organic compounds which are ubiquitous in atmospheric aerosol. It is therefore thought to be a sensible proxy for atmospheric organic material. Evidence is presented that suggests citric acid solution droplets become ultra-viscous and form glassy solids under atmospherically relevant conditions. Diffusion of liquid water molecules to ice nuclei is expected to be very slow in ultra-viscous solution droplets and nucleation is negligible in glassy droplets; this most likely provides an explanation for the experimentally observed inhibition of ice crystallisation. The implications of ultra-viscous and glassy solution droplets for ice cloud formation and supersaturations in the TTL are discussed.

  16. Wet Chemical Oxidation of Organic Waste Using Nitric-Phosphoric Acid Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, R.A.

    1998-10-06

    Experimental progress has been made in a wide range of areas which support the continued development of the nitric-phosphoric acid oxidation process for combustible, solid organic wastes. An improved understanding of the overall process operation has been obtained, acid recovery and recycle systems have been studied, safety issues have been addressed, two potential final waste forms have been tested, preliminary mass flow diagrams have been prepared, and process flowsheets have been developed. The flowsheet developed is essentially a closed-loop system which addresses all of the internally generated waste streams. The combined activities aim to provide the basis for building and testing a 250-400 liter pilot-scale unit. Variations of the process now must be evaluated in order to address the needs of the primary customer, SRS Solid Waste Management. The customer is interested in treating job control waste contaminated with Pu-238 for shipment to WIPP. As a result, variations for feed preparation, acid recycle, and final form manufacturing must be considered to provide for simpler processing to accommodate operations in high radiation and contamination environments. The purpose of this program is to demonstrate a nitric-phosphoric acid destruction technology which can treat a heterogeneous waste by oxidizing the solid and liquid organic compounds while decontaminating noncombustible items.

  17. Fat and fatty acid composition of cooked meat from UK retail chickens labelled as from organic and non-organic production systems

    OpenAIRE

    Dalziel, C. J.; Kliem, Kirsty E.; Givens, D. Ian

    2015-01-01

    This study compared fat and fatty acids in cooked retail chicken meat from conventional and organic systems. Fat contents were 1.7, 5.2, 7.1 and 12.9 g/100 g cooked weight in skinless breast, breast with skin, skinless leg and leg with skin respectively, with organic meat containing less fat overall (P < 0.01). Meat was rich in cis-monounsaturated fatty acids, although organic meat contained less than did conventional meat (1850 vs. 2538 mg/100 g; P < 0.001). Organic meat was also lower (P < ...

  18. PRINCIPAL COMPONENT ANALYSIS OF FACTORS DETERMINING PHOSPHATE ROCK DISSOLUTION ON ACID SOILS

    Directory of Open Access Journals (Sweden)

    Yusdar Hilman

    2016-10-01

    Full Text Available Many of the agricultural soils in Indonesia are acidic and low in both total and available phosphorus which severely limits their potential for crops production. These problems can be corrected by application of chemical fertilizers. However, these fertilizers are expensive, and cheaper alternatives such as phosphate rock (PR have been considered. Several soil factors may influence the dissolution of PR in soils, including both chemical and physical properties. The study aimed to identify PR dissolution factors and evaluate their relative magnitude. The experiment was conducted in Soil Chemical Laboratory, Universiti Putra Malaysia and Indonesian Center for Agricultural Land Resources Research and Development from January to April 2002. The principal component analysis (PCA was used to characterize acid soils in an incubation system into a number of factors that may affect PR dissolution. Three major factors selected were soil texture, soil acidity, and fertilization. Using the scores of individual factors as independent variables, stepwise regression analysis was performed to derive a PR dissolution function. The factors influencing PR dissolution in order of importance were soil texture, soil acidity, then fertilization. Soil texture factors including clay content and organic C, and soil acidity factor such as P retention capacity interacted positively with P dissolution and promoted PR dissolution effectively. Soil texture factors, such as sand and silt content, soil acidity factors such as pH, and exchangeable Ca decreased PR dissolution.

  19. Influence of humified organic matter on copper behavior in acid polluted soils

    International Nuclear Information System (INIS)

    Fernandez-Calvino, D.; Soler-Rovira, P.; Polo, A.; Arias-Estevez, M.; Plaza, C.

    2010-01-01

    The main purpose of this work was to identify the role of soil humic acids (HAs) in controlling the behavior of Cu(II) in vineyard soils by exploring the relationship between the chemical and binding properties of HA fractions and those of soil as a whole. The study was conducted on soils with a sandy loam texture, pH 4.3-5.0, a carbon content of 12.4-41.0 g kg -1 and Cu concentrations from 11 to 666 mg kg -1 . The metal complexing capacity of HA extracts obtained from the soils ranged from 0.69 to 1.02 mol kg -1 , and the stability constants for the metal ion-HA complexes formed, log K, from 5.07 to 5.36. Organic matter-quality related characteristics had little influence on Cu adsorption in acid soils, especially if compared with pH, the degree of Cu saturation and the amount of soil organic matter. - The effect of organic matter quality on Cu adsorption in acid soils was low compared with other soil characteristics such as pH or degree of Cu saturation.

  20. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger

    Science.gov (United States)

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-04-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03.

  1. Effect of curd freezing and packaging methods on the organic acid contents of goat cheeses during storage

    Directory of Open Access Journals (Sweden)

    Pınar Balkir

    2011-09-01

    Full Text Available Effects of freezing and packaging methods on organic acid content of goat cheese during 12 weeks of storage were determined. Goat cheese milk curds were divided into two batches; one of the batches was directly processed in to goat cheese while the other was frozen at -18 °C and stored for six months and processed into cheese after being thawed. Cheese samples were packed in three parts and stored at 4 °C refrigerated control sample and at -18 °C for six months frozen experimental samples. Cheese samples were packed in three different packaging methods: aerobic, vacuum or modified atmosphere. Citric, malic, fumaric, acetic, lactic, pyruvic and propionic acids were analyzed using HPLC method after 1st, 3rd, 6th, 9th and 12th week of storage period. Lactic acid was the main organic acids while pyruvic acid had the lowest content in all cheese samples. Citric and fumaric acid levels of frozen samples increased during storage whereas malic, acetic, pyruvic and propionic acid amounts were decreased compared to the beginning of storage. Packaging methods and freezing process also effected lactic acid levels statistically (p<0.05. Fumaric, acetic and lactic acid concentration of refrigerated samples were increased but citric, malic and propionic acids decreased during storage. Pyruvic acid level did not change significantly. It was determined that organic acid concentrations were effected by freezing process, storage time and packaging methods significantly (p<0.05.

  2. Differences in sheep and goats milk fatty acid profile between conventional and organic farming systems.

    Science.gov (United States)

    Tsiplakou, Eleni; Kotrotsios, Vaios; Hadjigeorgiou, Ioannis; Zervas, George

    2010-08-01

    The objective of this study was to investigate whether there is a difference in chemical composition and particularly in fatty acid (FA) profile, with emphasis on cis-9, trans-11 CLA, of milk obtained from conventional and organic dairy sheep and goats farms under the farming conditions practiced in Greece. Four dairy sheep and four dairy goat farms, representing common conventional production systems and another four dairy sheep and four dairy goat farms, organically certified, representing organic production and feeding systems were selected from all over Greece. One hundred and sixty two individual milk samples were collected from those farms in January-February 2009, about three months after parturition. The milk samples were analyzed for their main chemical constituents and their FA profile. The results showed that the production system affected milk chemical composition: in particular fat content was lower in the organic sheep and goats milk compared with the corresponding conventional. Milk from organic sheep had higher content in MUFA, PUFA, alpha-LNA, cis-9, trans-11 CLA, and omega-3 FA, whereas in milk from organic goats alpha-LNA and omega-3 FA content was higher than that in conventional one. These differences are, mainly, attributed to different feeding practices used by the two production systems. The results of this study show that the organic milk produced under the farming conditions practiced in Greece has higher nutritional value, due to its FA profile, compared with the respective conventional milk.

  3. Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol

    Directory of Open Access Journals (Sweden)

    P. J. Gallimore

    2011-12-01

    Full Text Available Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH in the range of <5–90% on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. Due to the slow reaction kinetics relatively high ozone concentrations of 160–200 ppm were used to achieve an appreciable degree of oxidation of maleic acid. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50% and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50% there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after a low RH ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent

  4. The effect of phytobiotics, organic acids and humic acids on the utility and egg quality of laying hens

    Directory of Open Access Journals (Sweden)

    Henrieta Arpášová

    2017-11-01

    Full Text Available The aim of this study was the assessment of an influence of supplement of dietary herbal additive in combination with organic acids into feed mixture or drinking water of laying hens on performance parameters and egg quality. The Lohmann Brown Lite laying hens (n = 30 were divided into 3 groups (n = 10, and fed for 20 weeks ad libitum with complete feed mixtures (CFM. Hens in the control group received the complete feed mixture (CFM and drank drinking water without any supplements. In the first experimental group hens received CFM without supplements but phytobiotics (bergamot oil (Citrus bergamia, thyme (Thymus vulgaris, clove (Syzygium aromaticum, pepper (Piper nigrum in combination with the fumaric acid and citric acid at 60 mg per 1 liter of water were added to their drinking water. In the second experimental group was CFM enriched with humic acids in the concentration of 0.5%, and phytobiotcs with organic acids at the same dose as in the first experimental group were added to their drinking water. Monitored parameters: body weight (g, egg production (%, the weight of all produced eggs (g, egg albumen weight (g, egg albumen index, Haugh unit (HU, egg yolk weight (g, egg yolk index, egg yolk colour (° HLR, egg shell weight (g and egg shell strength (N.cm-2. The results showed no significant differences between the both experimental groups and the control group in the parameter body weight of hens (P>0.05. The highest average body weight was found in the hens from the second experimental group (values in the order of groups:  1792.22 ± 80.85; 1768.42 ±55.55; 1820.12 ±78.56 g±S.D.. We observed positive trend of increasing of egg production by adding of used supplements, especially in the second experimental group with the addition of humic acids, although with no statistically significant difference compared to the control group (P>0.05. The mean laying intensity in the order of groups: 90.42; 91.16; 91.56%. We observed statistically

  5. Exudation of organic acids by Lupinus albus and Lupinus angustifolius as affected by phosphorus supply

    Science.gov (United States)

    Hentschel, Werner; Wiche, Oliver

    2016-04-01

    In phytomining and phytoremediation research mixed cultures of bioenergy crops with legumes hold promise to enhance availability of trace metals and metalloids in the soil plant system. This is due to the ability of certain legumes to mobilize trace elements during acquisition of nutrients making these elements available for co-cultured species. The legumes achieve this element mobilization by exudating carboxylates and enzymes as well as by lowering the pH value in the rhizosphere. The aim of our research was to determine characteristics and differences in the exudation of Lupinus albus and Lupinus angustifolius regarding to quantitative as to qualitative aspects. Especially the affection by phosphorus (P) supply was a point of interest. Thus we conducted laboratory batch experiments, wherein the plants were grown over four weeks under controlled light, moisture and nutritional conditions on sand as substrate. Half of the plants were supplied with 12 mg P per kg substrate, the other half were cultivated under a total lack of P. After cultivation the plants were transferred from the cultivation substrate into a 0,05 mmolṡL-1 CaCl2 solution. After two hours the plants were removed, moist and dry mass off shoots and roots were measured together with the root length (Tennants' method). Concentrations of exudated carboxylates in the CaCl2 solution were determined via IC (column: Metrosept OrganicAcids, eluent 0.5 molṡL-1 H2SO4 + 15% acetone, pH=3; 0.5 mLṡmin-1). As a result four different organic acids were identified (citric acid, fumaric acid, tartaric acid, malic acid) in concentration ranges of 0.15 mgṡL-1 (fumaric acid) to 9.21 mgṡL-1 (citric acid). Lupinus angustifolius showed a higher exudation rate (in nmol per cm root length per hour) than Lupinus albus in the presence of phosphorus (e.g. regarding citric acid: 1.99 vs 0.64 nmolṡ(gṡh)-1). However, as the root complexity and length of L. albus were far higher than of L. angustifolius, the total

  6. Copper Metal-Organic Framework Nanoparticles Stabilized with Folic Acid Improve Wound Healing in Diabetes.

    Science.gov (United States)

    Xiao, Jisheng; Zhu, Yunxiao; Huddleston, Samantha; Li, Peng; Xiao, Baixue; Farha, Omar K; Ameer, Guillermo A

    2018-02-27

    The successful treatment of chronic nonhealing wounds requires strategies that promote angiogenesis, collagen deposition, and re-epithelialization of the wound. Copper ions have been reported to stimulate angiogenesis; however, several applications of copper salts or oxides to the wound bed are required, leading to variable outcomes and raising toxicity concerns. We hypothesized that copper-based metal-organic framework nanoparticles (Cu-MOF NPs), referred to as HKUST-1, which are rapidly degraded in protein solutions, can be modified to slowly release Cu 2+ , resulting in reduced toxicity and improved wound healing rates. Folic acid was added during HKUST-1 synthesis to generate folic-acid-modified HKUST-1 (F-HKUST-1). The effect of folic acid incorporation on NP stability, size, hydrophobicity, surface area, and copper ion release profile was measured. In addition, cytotoxicity and in vitro cell migration processes due to F-HKUST-1 and HKUST-1 were evaluated. Wound closure rates were assessed using the splinted excisional dermal wound model in diabetic mice. The incorporation of folic acid into HKUST-1 enabled the slow release of copper ions, which reduced cytotoxicity and enhanced cell migration in vitro. In vivo, F-HKUST-1 induced angiogenesis, promoted collagen deposition and re-epithelialization, and increased wound closure rates. These results demonstrate that folic acid incorporation into HKUST-1 NPs is a simple, safe, and promising approach to control Cu 2+ release, thus enabling the direct application of Cu-MOF NPs to wounds.

  7. Correlations between the 1H NMR chemical shieldings and the pKa values of organic acids and amines.

    Science.gov (United States)

    Lu, Juanfeng; Lu, Tingting; Zhao, Xinyun; Chen, Xi; Zhan, Chang-Guo

    2018-06-01

    The acid dissociation constants and 1 H NMR chemical shieldings of organic compounds are important properties that have attracted much research interest. However, few studies have explored the relationship between these two properties. In this work, we theoretically studied the NMR chemical shifts of a series of carboxylic acids and amines in the gas phase and in aqueous solution. It was found that the negative logarithms of the experimental acid dissociation constants (i.e., the pK a values) of the organic acids and amines in aqueous solution correlate almost linearly with the corresponding calculated NMR chemical shieldings. Key factors that affect the theoretically predicted pK a values are discussed in this paper. The present work provides a new way to predict the pK a values of organic/biochemical compounds. Graphical abstract The chemical shielding values of organic acids and amines correlate near linearly with their corresponding pK a values.

  8. Determination of Some Physicochemical Properties, Fatty Acid Composition and Antioxidant Capacity, of Organic and Conventional Milk in Turkey Produced

    Directory of Open Access Journals (Sweden)

    Bayram Ürkek

    2018-04-01

    Full Text Available In this study, determination of effect of production systems (conventional and organic and time of milk collection on some physicochemical properties, fatty acids and antioxidant capacity of conventional and organic raw milk in produced Turkey were aimed. In this research, the milk samples was collected from nine conventional farms and nine organic farms at bimonthly years for one year. Fatty acid composition, antioxidant capacity, total phenolic matter, dry matter, fat, protein, ash, titratable acidity (lactic acid % and pH values of organic and conventional milk were investigated. According to results of this research, the mean values of conventional and organic milk samples respectively for dry matter, fat, protein, ash, specific gravity, acidity and pH was determined as 12.06-11.97%, 3.67-3.50%, 3.33-3.34%, 0.67-0.66%, 1.0381-1.0381 g mL-1, 0.18-0.16% and 6.67-6.73, respectively. Conjugated linoliec acid proportions changed between 1.39% and 2.87% in organic milk, between 1.67% and 2.96% in conventional milk. Consequently, the farm production type did not have effects on the milk compassion (dry matter, fat, protein and ash, fatty acid composition, EC50 and total phenolic compounds. On the other hand, the significant variations in the fat, protein, fatty acid proportions, EC50, inhibition and total phenolic compound values were determined as regarding time of milk collection.

  9. Discovery and Validation of Pyridoxic Acid and Homovanillic Acid as Novel Endogenous Plasma Biomarkers of Organic Anion Transporter (OAT) 1 and OAT3 in Cynomolgus Monkeys.

    Science.gov (United States)

    Shen, Hong; Nelson, David M; Oliveira, Regina V; Zhang, Yueping; Mcnaney, Colleen A; Gu, Xiaomei; Chen, Weiqi; Su, Ching; Reily, Michael D; Shipkova, Petia A; Gan, Jinping; Lai, Yurong; Marathe, Punit; Humphreys, W Griffith

    2018-02-01

    Perturbation of organic anion transporter (OAT) 1- and OAT3-mediated transport can alter the exposure, efficacy, and safety of drugs. Although there have been reports of the endogenous biomarkers for OAT1/3, none of these have all of the characteristics required for a clinical useful biomarker. Cynomolgus monkeys were treated with intravenous probenecid (PROB) at a dose of 40 mg/kg in this study. As expected, PROB increased the area under the plasma concentration-time curve (AUC) of coadministered furosemide, a known substrate of OAT1 and OAT3, by 4.1-fold, consistent with the values reported in humans (3.1- to 3.7-fold). Of the 233 plasma metabolites analyzed using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics method, 29 metabolites, including pyridoxic acid (PDA) and homovanillic acid (HVA), were significantly increased after either 1 or 3 hours in plasma from the monkeys pretreated with PROB compared with the treated animals. The plasma of animals was then subjected to targeted LC-MS/MS analysis, which confirmed that the PDA and HVA AUCs increased by approximately 2- to 3-fold by PROB pretreatments. PROB also increased the plasma concentrations of hexadecanedioic acid (HDA) and tetradecanedioic acid (TDA), although the increases were not statistically significant. Moreover, transporter profiling assessed using stable cell lines constitutively expressing transporters demonstrated that PDA and HVA are substrates for human OAT1, OAT3, OAT2 (HVA), and OAT4 (PDA), but not OCT2, MATE1, MATE2K, OATP1B1, OATP1B3, and sodium taurocholate cotransporting polypeptide. Collectively, these findings suggest that PDA and HVA might serve as blood-based endogenous probes of cynomolgus monkey OAT1 and OAT3, and investigation of PDA and HVA as circulating endogenous biomarkers of human OAT1 and OAT3 function is warranted. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Effect of Humic Acid and Organic Manure Tea on Plant Physiology and Fruit Characteristics of Pepino

    Directory of Open Access Journals (Sweden)

    Jamal Javanmardi

    2017-02-01

    Full Text Available Introduction Pepino (SolanummuricatumAit., a Solanaceous vegetable fruit has been recently introduced to Iran markets. Organic farming is currently the fastest growing agricultural sector worldwide. Although several investigations are available on chemical fertilization of pepino, the knowledge of organic fertilization ismostly lacking. Therefore, at the beginning of introducing pepino plant to Iranian farmers it worth to evaluate the impact of organic fertilization on the productivity, profitability, acceptability and sustainability of farming systemsto this plant. High chemical fertilization of pepinoincreases the vegetative growth over the generative and fruit production. The aim of this investigation was to introduce the possibility of organic production of pepino. Materials and Methods.A two-year experiment was carried out to assess the possibility of organic production of pepino using organic fertilizers. Humistar® organic fertilizer (containing 8.6% humic acid at 50 L/ha and sheep or cow manure teas at 1:10 and 1:5 ratios were used for production of pepino cv. Kanseola to evaluate their effects on the physiology of reproductive stage and some fruit quality characteristics. The experiments were arranged as factorial in a randomized complete block design comprised of 3 replications, each of which 10 plants. Mother plants were obtained from Mashhad Ferdowsi University and incubated in a greenhouse (mean temperature of 25 °C and 60-70% relative humidity for 1 month to proliferate. Cuttings with 2-3 leaves at the top, 3-5 healthy buds and 20 cm length were rooted for 14 days in a rooting media, ( 1:1:2 of field soil, composted leaf and perlite, respectively. Plants were transplanted into the field in 100 × 75 cm spacing after the danger of frost was over. Treatments consisted of two levels of 1:5 and 1:10 (w:w cow or sheep manure teas in combination with two levels of Humistar® organic fertilizer as 0 and 50L/ha levels. Control plants

  11. Effects of Dietary Zinc Oxide and a Blend of Organic Acids on Broiler Live Performance, Carcass Traits, and Serum Parameters

    Directory of Open Access Journals (Sweden)

    BG Sarvari

    2015-12-01

    Full Text Available ABSTRACT This experiment was carried out to evaluate the effect of different dietary supplementation levels of zinc oxide and of an organic acid blend on broiler performance, carcass traits, and serum parameters. A total of 2400 one-day-old male Ross 308 broiler chicks, with average initial body weight 44.21±0.19g, was distributed according to a completely randomized design in a 2 x 3 factorial arrangement. Six treatments, consisting of diets containing two zinc oxide levels (0 and 0.01% of the diet and three organic acid blend levels (0, 0.15, and 0.30% were applied, with eight replicates of 50 birds each. The experimental diets were supplied ad libitum for 42 days. There were significant performance differences among birds fed the different zinc oxide and organic acid blend levels until 42 d of age (p<0.01. The result of this experiment showed that the organic acid blend did not affect feed intake, but zinc oxide increased feed intake. Carcass traits were not influenced by the experimental supplements. Zinc oxide supplementation increased serum alkaline phosphatase level (p<0.01. The organic acid blend reduced serum cholesterol and triglyceride levels (p<0.05. No interactions were found between zinc oxide and the organic acid blend for none of the evaluated parameters. We concluded that zinc oxide and the evaluated organic acid blend improve broiler performance.

  12. Microporous metal organic framework [M2(hfipbb)2(ted)] (M=Zn, Co; H2hfipbb=4,4-(hexafluoroisopropylidene)-bis(benzoic acid); ted=triethylenediamine): Synthesis, structure analysis, pore characterization, small gas adsorption and CO2/N2 separation properties

    Science.gov (United States)

    Xu, William W.; Pramanik, Sanhita; Zhang, Zhijuan; Emge, Thomas J.; Li, Jing

    2013-04-01

    Carbon dioxide is a greenhouse gas that is a major contributor to global warming. Developing methods that can effectively capture CO2 is the key to reduce its emission to the atmosphere. Recent research shows that microporous metal organic frameworks (MOFs) are emerging as a promising family of adsorbents that may be promising for use in adsorption based capture and separation of CO2 from power plant waste gases. In this work we report the synthesis, crystal structure analysis and pore characterization of two microporous MOF structures, [M2(hfipbb)2(ted)] (M=Zn (1), Co (2); H2hfipbb=4,4-(hexafluoroisopropylidene)-bis(benzoic acid); ted=triethylenediamine). The CO2 and N2 adsorption experiments and IAST calculations are carried out on [Zn2(hfipbb)2(ted)] under conditions that mimic post-combustion flue gas mixtures emitted from power plants. The results show that the framework interacts with CO2 strongly, giving rise to relatively high isosteric heats of adsorption (up to 28 kJ/mol), and high adsorption selectivity for CO2 over N2, making it promising for capturing and separating CO2 from CO2/N2 mixtures.

  13. Enhancing Skin Permeation of Biphenylacetic Acid (BPA) Using Salt Formation with Organic and Alkali Metal Bases.

    Science.gov (United States)

    Pawar, Vijay; Naik, Prashant; Giridhar, Rajani; Yadav, Mange Ram

    2015-01-01

    In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanolamine, and diethylamine) had lowered melting points while the alkali metal salt (sodium) had a higher melting point than BPA. The in vitro study showed that salt formation improves the physicochemical properties of BPA, leading to improved permeability through the skin. Amongst all the prepared salts, ethanolamine salt (1b) showed 7.2- and 5.4-fold higher skin permeation than the parent drug at pH 7.4 and 5.0, respectively, using rat skin.

  14. Milk phospholipids: Organic milk and milk rich in conjugated linoleic acid compared with conventional milk.

    Science.gov (United States)

    Ferreiro, T; Gayoso, L; Rodríguez-Otero, J L

    2015-01-01

    The objective of this study was to compare the phospholipid content of conventional milk with that of organic milk and milk rich in conjugated linoleic acid (CLA). The membrane enclosing the fat globules of milk is composed, in part, of phospholipids, which have properties of interest for the development of so-called functional foods and technologically novel ingredients. They include phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylserine (PS), and the sphingophospholipid sphingomyelin (SM). Milk from organically managed cows contains higher levels of vitamins, antioxidants, and unsaturated fatty acids than conventionally produced milk, but we know of no study with analogous comparisons of major phospholipid contents. In addition, the use of polyunsaturated-lipid-rich feed supplement (extruded linseed) has been reported to increase the phospholipid content of milk. Because supplementation with linseed and increased unsaturated fatty acid content are the main dietary modifications used for production of CLA-rich milk, we investigated whether these modifications would lead to this milk having higher phospholipid content. We used HPLC with evaporative light scattering detection to determine PE, PI, PC, PS, and SM contents in 16 samples of organic milk and 8 samples of CLA-rich milk, in each case together with matching reference samples of conventionally produced milk taken on the same days and in the same geographical areas as the organic and CLA-rich samples. Compared with conventional milk and milk fat, organic milk and milk fat had significantly higher levels of all the phospholipids studied. This is attributable to the differences between the 2 systems of milk production, among which the most influential are probably differences in diet and physical exercise. The CLA-rich milk fat had significantly higher levels of PI, PS, and PC than conventional milk fat, which is also attributed to dietary differences: rations for

  15. Effects of low molecular weight organic acids on 137Cs release from contaminated soils

    International Nuclear Information System (INIS)

    Chiang, Po Neng; Wang, Ming Kuang; Huang, Pan Ming; Wang, Jeng Jong

    2011-01-01

    Radio pollutant removal is one of several priority restoration strategies for the environment. This study assessed the effect of low molecular weight organic acid on the lability and mechanisms for release of 137 Cs from contaminated soils. The amount of 137 Cs radioactivity released from contaminated soils reacting with 0.02 M low molecular weight organic acids (LMWOAs) specifically acetic, succinic, oxalic, tartaric, and citric acid over 48 h were 265, 370, 760, 850, and 1002 Bq kg -1 , respectively. The kinetic results indicate that 137 Cs exhibits a two-step parabolic diffusion equation and a good linear relationship, indicating that the parabolic diffusion equation describes the data quite well, as shown by low p and high r 2 values. The fast stage, which was found to occur within a short period of time (0.083-3 h), corresponds to the interaction of LMWOAs with the surface of clay minerals; meanwhile, during the slow stage, which occurs over a much longer time period (3-24 h), desorption primarily is attributed to inter-particle or intra-particle diffusion. After a fifth renewal of the LMWOAs, the total levels of 137 Cs radioactivity released by acetic, succinic, oxalic, tartaric, and citric acid were equivalent to 390, 520, 3949, 2061, and 4422 Bq kg -1 soil, respectively. H + can protonate the hydroxyl groups and oxygen atoms at the broken edges or surfaces of the minerals, thereby weakening Fe-O and Al-O bonds. After protonation of H + , organic ligands can attack the OH and OH 2 groups in the minerals easily, to form complexes with surface structure cations, such as Al and Fe. The amounts of 137 Cs released from contaminated soil treated with LMWOAs were substantially increased, indicating that the LMWOAs excreted by the roots of plants play a critical role in 137 Cs release.

  16. Mechanism of the extraction of nitric acid and water by organic solutions of tertiary alkyl-amines

    International Nuclear Information System (INIS)

    Gourisse, D.

    1966-06-01

    The micellar aggregation of tri-alkyl-ammonium nitrates in low polarity organic solvents has been verified by viscosity, conductivity and sedimentation velocity measurements. The aggregation depends upon the polarity of solvent, the length of the alkyl radicals and the organic concentration of the various constituents (tri-alkyl-ammonium nitrate, tri-alkyl-amine, nitric acid, water). The amine salification law has been established and the excess nitric acid and water solubilities in the organic solutions have been measured. Nitric acid and water are slightly more soluble in micellar organic solutions than in molecular organic solutions. A description of excess nitric acid containing tri-alkyl-ammonium nitrate solutions is proposed. (author) [fr

  17. Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines.

    Science.gov (United States)

    Bobeica, Natalia; Poni, Stefano; Hilbert, Ghislaine; Renaud, Christel; Gomès, Eric; Delrot, Serge; Dai, Zhanwu

    2015-01-01

    Grape berry composition mainly consists of primary and secondary metabolites. Both are sensitive to environment and viticultural management. As a consequence, climate change can affect berry composition and modify wine quality and typicity. Leaf removal techniques can impact berry composition by modulating the source-to-sink balance and, in turn, may mitigate some undesired effects due to climate change. The present study investigated the balance between technological maturity parameters such as sugars and organic acids, and phenolic maturity parameters such as anthocyanins in response to source-sink modulation. Sugar, organic acid, and anthocyanin profiles were compared under two contrasting carbon supply levels in berries of cv. Cabernet Sauvignon and Sangiovese collected at 9 and 14 developmental stages respectively. In addition, whole-canopy net carbon exchange rate was monitored for Sangiovese vines and a mathematic model was used to calculate the balance between carbon fixation and berry sugar accumulation. Carbon limitation affected neither berry size nor the concentration of organic acids at harvest. However, it significantly reduced the accumulation of sugars and total anthocyanins in both cultivars. Most interestingly, carbon limitation decreased total anthocyanin concentration by 84.3% as compared to the non source-limited control, whereas it decreased sugar concentration only by 27.1%. This suggests that carbon limitation led to a strong imbalance between sugars and anthocyanins. Moreover, carbon limitation affected anthocyanin profiles in a cultivar dependent manner. Mathematical analysis of carbon-balance indicated that berries used a higher proportion of fixed carbon for sugar accumulation under carbon limitation (76.9%) than under carbon sufficiency (48%). Thus, under carbon limitation, the grape berry can manage the metabolic fate of carbon in such a way that sugar accumulation is maintained at the expense of secondary metabolites.

  18. Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines

    Directory of Open Access Journals (Sweden)

    Natalia eBobeica

    2015-05-01

    Full Text Available Grape berry composition mainly consists of primary and secondary metabolites. Both are sensitive to environment and viticultural management. As a consequence, climate change can affect berry composition and modify wine quality and typicity. Leaf removal techniques can impact berry composition by modulating the source-to-sink balance and, in turn, may mitigate some undesired effects due to climate change. The present study investigated the balance between technological maturity parameters such as sugars and organic acids, and phenolic maturity parameters such as anthocyanins in response to source-sink modulation. Sugar, organic acid, and anthocyanin profiles were compared under two contrasting carbon supply levels in berries of cv. Cabernet Sauvignon and Sangiovese collected at 9 and 14 developmental stages respectively. In addition, whole-canopy net carbon exchange rate was monitored for Sangiovese vines and a mathematic model was used to calculate the balance between carbon fixation and berry sugar accumulation. Carbon limitation affected neither berry size nor the concentration of organic acids at harvest. However, it significantly reduced the accumulation of sugars and total anthocyanins in both cultivars. Most interestingly, carbon limitation decreased total anthocyanin concentration by 84.3 % as compared to the non source-limited control, whereas it decreased sugar concentration only by 27.1 %. This suggests that carbon limitation led to a strong imbalance between sugars and anthocyanins. Moreover, carbon limitation affected anthocyanin profiles in a cultivar dependent manner. Mathematical analysis of carbon-balance indicated that berries used a higher proportion of fixed carbon for sugar accumulation under carbon limitation (76.9% than under carbon sufficiency (48%. Thus, under carbon limitation, the grape berry can manage the metabolic fate of carbon in such a way that sugar accumulation is maintained at the expense of secondary

  19. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    One possible process responsible for methane generation on Mars is abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions. Measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane by tracing the geochemical pathway during formation. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible hydrogen isotope measurements. Reported here are results of experiments to characterize the hydrogen isotope composition of low molecular weight organic acids and alcohols. The presence of these organic compounds has been suggested by others as intermeadiary products made during mineral surface catalyzed reactions. This work compliments our previous study characterizing the carbon isotope composition of similar low molecular weight intermediary organic compounds (Socki, et al, American Geophysical Union Fall meeting, Abstr. #V51B-2189, Dec., 2010). Our hydrogen isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). Our technique is unique in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II? quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  20. Ursolic acid inhibits superoxide production in activated neutrophils and attenuates trauma-hemorrhage shock-induced organ injury in rats.

    Directory of Open Access Journals (Sweden)

    Tsong-Long Hwang

    Full Text Available Neutrophil activation is associated with the development of organ injury after trauma-hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma-hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma-hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma-hemorrhagic shock-induced organ injury in rats.

  1. Organics.

    Science.gov (United States)

    Chian, Edward S. K.; DeWalle, Foppe B.

    1978-01-01

    Presents water analysis literature for 1978. This review is concerned with organics, and it covers: (1) detergents and surfactants; (2) aliphatic and aromatic hydrocarbons; (3) pesticides and chlorinated hydrocarbons; and (4) naturally occurring organics. A list of 208 references is also presented. (HM)

  2. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators' preferences than organic acids and inorganic ions.

    Science.gov (United States)

    Tiedge, Kira; Lohaus, Gertrud

    2017-01-01

    Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino

  3. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators’ preferences than organic acids and inorganic ions

    Science.gov (United States)

    Tiedge, Kira; Lohaus, Gertrud

    2017-01-01

    Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino

  4. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators' preferences than organic acids and inorganic ions.

    Directory of Open Access Journals (Sweden)

    Kira Tiedge

    Full Text Available Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold. As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context

  5. Policy Research and Analysis Organizations: An Account of Recent ...

    African Journals Online (AJOL)

    user

    policy research organizations operate, and touches on the negligible influence that the latter have ... organizations under considerations. The interviews were ... Drawing from the theoretical and empirical literatures, the next section sets ... institutionalizing policy research and analysis, however, politicians and bureaucrats ...

  6. A Meta-Analysis of Advance-Organizer Studies.

    Science.gov (United States)

    Stone, Carol Leth

    Long term studies of advance organizers (AO) were analyzed with Glass's meta-analysis technique. AO's were defined as bridges from reader's previous knowledge to what is to be learned. The results were compared with predictions from Ausubel's model of assimilative learning. The results of the study indicated that advance organizers were associated…

  7. Comparative Analysis of the Effects of Organization Development ...

    African Journals Online (AJOL)

    Comparative Analysis of the Effects of Organization Development Interventions on Organizational Leadership and Management Practice: A Case Of Green Earth Program (GEP) ... Journal of Language, Technology & Entrepreneurship in Africa.

  8. Supercritical Water Oxidation Total Organic Carbon (TOC) Analysis

    Science.gov (United States)

    The work presented here is the evaluation of the modified wet‐oxidation method described as Supercritical Water Oxidation (SCWO) for the analysis of total organic carbon (TOC) in very difficult oil/gas produced water sample matrices.

  9. The Role of Concentration and Solvent Character in the Molecular Organization of Humic Acids

    Directory of Open Access Journals (Sweden)

    Martina Klučáková

    2016-10-01

    Full Text Available The molecular organization of humic acids in different aqueous solutions was studied over a wide concentration range (0.01–10 g·dm−3. Solutions of humic acids were prepared in three different media: NaOH, NaCl, and NaOH neutralized by HCl after dissolution of the humic sample. Potentiometry, conductometry, densitometry, and high resolution ultrasound spectrometry were used in order to investigate conformational changes in the humic systems. The molecular organization of humic acids in the studied systems could be divided into three concentration ranges. The rearrangements were observed at concentrations of ~0.02 g·dm−3 and ~1 g·dm−3. The first “switch-over point” was connected with changes in the hydration shells of humic particles resulting in changes in their elasticity. The compressibility of water in the hydration shells is less than the compressibility of bulk water. The transfer of hydration water into bulk water increased the total compressibility of the solution, reducing the ultrasonic velocity. The aggregation of humic particles and the formation of rigid structures in systems with concentrations higher than 1 g·dm−3 was detected.

  10. Organic compounds containing methoxy and cyanoacrylic acid: Synthesis, characterization, crystal structures, and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Khalaji, A. D., E-mail: alidkhalaji@yahoo.com [Golestan University, Department of Chemistry, Faculty of Science (Iran, Islamic Republic of); Maddahi, E. [Iran University of Science & Technology, Ms.C Educated, Department of Chemistry (Iran, Islamic Republic of); Dusek, M.; Fejfarova, K. [Institute of Physics of the ASCR, v.v.i. (Czech Republic); Chow, T. J. [Academia Sinica, Institute of Chemistry (China)

    2015-12-15

    Metal-free organic compounds 24-SC ((E)-2-cyano-3-(2,4-dimethoxyphenyl)acrylic acid) and 34-SC ((E)-2-cyano-3-(3,4-dimethoxyphenyl)acrylic acid), containing methoxy groups as a donor and the acrylic acid as an acceptor were synthesized and characterized by CHN, FT-IR, UV-Vis, {sup 1}H-NMR and single crystal X-ray diffraction and used as photosensitizers for the application of dye-sensitized solar cells (DSSC). The sensitizing characteristics of them were evaluated. Both compounds contain the natural molecule, its anionic form and the piperidinium cation and they differ by number of these molecules in the asymmetric unit. To get further insight into the effect of molecular structure on the performance of DSSC, their geometry and energies of HOMO and LUMO were optimized by density functional theory calculation at the B3LYP/6-31G(d) level with Gaussian 03. Overall conversion efficiencies of 0.78 under full sunlight irradiation are obtained for DSSCs based on the new metal-free organic dyes 24-SC and 34-SC.

  11. Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones.

    Science.gov (United States)

    Jalan, Amrit; Allen, Joshua W; Green, William H

    2013-10-21

    Reactions of the Criegee intermediate (CI, ˙CH2OO˙) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between ˙CH2OO˙ and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48-51 kcal mol(-1) lower in energy, formed via 1,3-cycloaddition of ˙CH2OO˙ across the C=O bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O-O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  12. Quantification and role of organic acids in cucumber root exudates in Trichoderma harzianum T-E5 colonization.

    Science.gov (United States)

    Zhang, Fengge; Meng, Xiaohui; Yang, Xingming; Ran, Wei; Shen, Qirong

    2014-10-01

    The ability to colonize on plant roots is recognized as one of the most important characteristics of the beneficial fungi Trichoderma spp. The aim of this study is to prove that the utilization of organic acids is a major trait of Trichoderma harzianum T-E5 for colonization of cucumber roots. A series experiments in split-root hydroponic system and in vitro were designed to demonstrate the association between the utilization of organic acids and T-E5 colonization on cucumber roots. In the split-root hydroponic system, inoculation with T-E5 (T) significantly increased the biomass of cucumber plants compared with CK (non-inoculation with T-E5). The T-E5 hyphae densely covering the cucumber root surface were observed by scanning electron microscopy (SEM). Three organic acids (oxalic acid, malic acid and citric acid) were identified from both the CK and T treatments by HPLC and LC/ESI-MS procedures. The amounts of oxalic acid and malic acid in T were significantly higher than those in CK. All the organic acids exhibited different and significant stimulation effects on the mycelial growth and conidial germination of T-E5 in vitro. An additional hydroponic experiment demonstrated the positive effects of organic acids on the T-E5 colonization of cucumber roots. In conclusion, the present study revealed that certain organic acids could be used as nutritional sources for Trichoderma harzianum T-E5 to reinforce its population on cucumber roots. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Electrophysiological studies of salty taste modification by organic acids in the labellar taste cell of the blowfly.

    Science.gov (United States)

    Murata, Yoshihiro; Kataoka-Shirasugi, Naoko; Amakawa, Taisaku

    2002-01-01

    Using the labellar salt receptor cells of the blowfly, Phormia regina, we electrophysiologically showed that the response to NaCl and KCl aqueous solutions was enhanced and depressed by acetic, succinic and citric acids. The organic acid concentrations at which the most enhanced salt response (MESR) was obtained were found to be different: 0.05-1 mM citric acid, 0.5-2 mM succinic acid and 5-50 mM acetic acid. Moreover, the degree of the salt response was not always dependent on the pH values of the stimulating solutions. The salt response was also enhanced by HCl (pH 3.5-3.0) only when the NaCl concentration was greater than the threshold, indicating that the salty taste would be enhanced by the comparatively lower concentrations of hydrogen ions. Another explanation for the enhancement is that the salty taste may also be enhanced by undissociated molecules of the organic acids, because the MESRs were obtained at the pH values lower than the pKa(1) or pKa(2) values of these organic acids. On the other hand, the salty taste could be depressed by both the lower pH range (pH 2.5-2.0) and the dissociated organic anions from organic acid molecules with at least two carboxyl groups.

  14. PRODUCT SAFETY AND COLOR CHARACTERISTICS OF GROUND BEEF PROCESSED FROM BEEF TRIMMINGS TREATED WITH PEROXYACETIC ACID ALONE OR FOLLOWED BY NOVEL ORGANIC ACIDS

    Directory of Open Access Journals (Sweden)

    Fred Pohlman

    2014-10-01

    Full Text Available The objective of this study was to evaluate the effectiveness of antimicrobial interventions using peroxyacetic acetic acid (PAA followed by novel organic acids on beef trimmings prior to grinding with conventional spray (CS or electrostatic spray (ES on ground beef microbial populations and color. Beef trimmings (80/20; 25kg were inoculated with E. coli O157:H7, non- O157:H7 shiga toxin producing (STEC E. coli (EC and Salmonella spp. (SA at 105 CFU/g. Inoculated trimmings (1.5 kg /treatment/replicate, 2 replicates were treated with CS application of 0.02% PAA alone or followed by CS or ES application of 3% octanoic acid (PO, 3% pyruvic acid (PP, 3% malic acid (PM, saturated solution of fumaric acid (PF or deionized water (W. Findings from this study suggest that PA as a single or multiple chemical hurdle approach with malic, pyruvic, octanoic and fumaric acid on beef trimmings may be effective in reducing E. coli O157:H7 as well as non-STEC serotypes and Salmonella in ground beef up to day 2 of simulated retail display. Results of this study showed that instrumental color properties of ground beef treated with peroxyacetic acid followed by organic acids had little or no difference (P > 0.05 compared to the untreated un-inoculated control ground beef samples. The results also indicate that ES application of some organic acids may have similar or greater efficiency in controlling ground beef microbial populations compared to the CS application of the same acid providing a more economical and waste manageable decontamination approach.

  15. Thermodynamic analysis of fatty acid esterification for fatty acid alkyl esters production

    International Nuclear Information System (INIS)

    Voll, Fernando A.P.; Silva, Camila da; Rossi, Carla C.R.S.; Guirardello, Reginaldo; Castilhos, Fernanda de; Oliveira, J. Vladimir; Cardozo-Filho, Lucio

    2011-01-01

    The development of renewable energy source alternatives has become a planet need because of the unavoidable fossil fuel scarcity and for that reason biodiesel production has attracted growing interest over the last decade. The reaction yield for obtaining fatty acid alkyl esters varies significantly according to the operating conditions such as temperature and the feed reactants ratio and thus investigation of the thermodynamics involved in such reactional systems may afford important knowledge on the effects of process variables on biodiesel production. The present work reports a thermodynamic analysis of fatty acid esterification reaction at low pressure. For this purpose, Gibbs free energy minimization was employed with UNIFAC and modified Wilson thermodynamic models through a nonlinear programming model implementation. The methodology employed is shown to reproduce the most relevant investigations involving experimental studies and thermodynamic analysis.

  16. Computational 17O-NMR spectroscopy of organic acids and peracids: comparison of solvation models

    International Nuclear Information System (INIS)

    Baggioli, Alberto; Castiglione, Franca; Raos, Guido; Crescenzi, Orlando; Field, Martin J.

    2013-01-01

    We examine several computational strategies for the prediction of the 17 O-NMR shielding constants for a selection of organic acids and peracids in aqueous solution. In particular, we consider water (the solvent and reference for the chemical shifts), hydrogen peroxide, acetic acid, lactic acid and peracetic acid. First of all, we demonstrate that the PBE0 density functional in combination with the 6-311+G(d,p) basis set provides an excellent compromise between computational cost and accuracy in the calculation of the shielding constants. Next, we move on to the problem of the solvent representation. Our results confirm the shortcomings of the Polarizable Continuum Model (PCM) in the description of systems susceptible to strong hydrogen bonding interactions, while at the same time they demonstrate its usefulness within a molecular-continuum approach, whereby PCM is applied to describe the solvation of the solute surrounded by some explicit solvent molecules. We examine different models of the solvation shells, sampling their configurations using both energy minimizations of finite clusters and molecular dynamics simulations of bulk systems. Hybrid molecular dynamics simulations, in which the solute is described at the PM6 semiempirical level and the solvent by the TIP3P model, prove to be a promising sampling method for medium-to-large sized systems. The roles of solvent shell size and structure are also briefly discussed. (authors)

  17. Anaerobic acidification of sugar-containing wastewater for biotechnological production of organic acids and ethanol.

    Science.gov (United States)

    Darwin; Charles, Wipa; Cord-Ruwisch, Ralf

    2018-05-03

    Anaerobic acidification of sugars can produce some useful end-products such as alcohol, volatile fatty acids (e.g. acetate, propionate, and butyrate) and lactic acid. The production of end-products is highly dependent on factors including pH, temperature, hydraulic retention time and the types of sugar being fermented. Results of this current study indicate that the pH and hydraulic retention time played significant roles in determining the end products from the anaerobic acidification of maltose and glucose. Under uncontrolled pH, the anaerobic acidification of maltose ceased when pH in the reactor dropped below 5 while anaerobic acidification of glucose continued and produced ethanol as the main end-product. Under controlled pH, lactic acid was found to be the dominant end-product produced from both maltose and glucose at pH 5. Acetate was the main end-product from both maltose and glucose fermented at neutral pH (6 and 7). Short hydraulic retention time (HRT) of 2 days could induce the production of ethanol from the anaerobic acidification of glucose. However, the anaerobic acidification of maltose could stop when short HRT of 2 days was applied in the reactor. This finding is significant for industrial fermentation and waste management systems, and selective production of different types of organic acids could be achieved by managing pH and HRT in the reactor.

  18. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids.

    Science.gov (United States)

    Aasen, Inga Marie; Ertesvåg, Helga; Heggeset, Tonje Marita Bjerkan; Liu, Bin; Brautaset, Trygve; Vadstein, Olav; Ellingsen, Trond E

    2016-05-01

    Thraustochytrids have been applied for industrial production of the omega-3 fatty acid docosahexaenoic (DHA) since the 1990s. During more than 20 years of research on this group of marine, heterotrophic microorganisms, considerable increases in DHA productivities have been obtained by process and medium optimization. Strains of thraustochytrids also produce high levels of squalene and carotenoids, two other commercially interesting compounds with a rapidly growing market potential, but where yet few studies on process optimization have been reported. Thraustochytrids use two pathways for fatty acid synthesis. The saturated fatty acids are produced by the standard fatty acid synthesis, while DHA is synthesized by a polyketide synthase. However, fundamental knowledge about the relationship between the two pathways is still lacking. In the present review, we extract main findings from the high number of reports on process optimization for DHA production and interpret these in the light of the current knowledge of DHA synthesis in thraustochytrids and lipid accumulation in oleaginous microorganisms in general. We also summarize published reports on squalene and carotenoid production and review the current status on strain improvement, which has been hampered by the yet very few published genome sequences and the lack of tools for gene transfer to the organisms. As more sequences now are becoming available, targets for strain improvement can be identified and open for a system-level metabolic engineering for improved productivities.

  19. determination of TOC value (sugar, organic acid and pesticides) in sewage waste water in Damascus city

    International Nuclear Information System (INIS)

    Takriti, S.; Odah, A.

    2000-03-01

    The determination and radiation degradation of organic pollutant existing in municipal sewage wastewater of Damascus plant were investigated. The wastewater samples were analyzed using TOC, HPLC, and GC techniques, and irradiation was carried out using gamma radiation with dose rate 3.5 kGy/h. The results have shown that the TOC value increases in hot season. Some of pesticides have been noticed in wastewater. These pesticides need 2.5 kGy to be degraded. The variation of TOC gives the raison to determined the existence of organic acids as function of gamma doses. Therefore, the concentration of the citric, malic, oxalic and acitic acids was increased with the increase of gamma dose. it is clear that the high value of TOC need high dose to be degraded. It is shown that with low dose the value of TOC increased and then started to be decreased. This remark may be due to the radiation reactions in aqueous phase. Significant decrease of organic pollutants degradation is caused by the presence of very small amount of hydroxyl group which known as effective scavenger for radicals. (Author)

  20. Omega-3 Polyunsaturated Fatty Acids Attenuate Radiation-induced Oxidative Stress and Organ Dysfunctions in Rats

    International Nuclear Information System (INIS)

    Abdel Aziz, N.; Yacoub, S.F.

    2013-01-01

    The Aim of the present study was to determine the possible protective effect of omega-3 polyunsaturated fatty acids (omega-3 PUFA) against radiation-induced oxidative stress associated with organ dysfunctions. Omega-3 PUFA was administered by oral gavages to male albino rats at a dose of 0.4 g/ kg body wt daily for 4 weeks before whole body γ-irradiation with 4Gy. Significant increase of serum lipid peroxidation end product as malondialdehyde (MDA) along with the reduction in blood glutathione (GSH) content, superoxide dismutase (SOD) and glutathione peroxidase (GPX) enzyme activities were recorded on 3rd and 8th days post-irradiation. Oxidative stress was associated with a significant increase in lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) enzyme activities, markers of heart damage, significant increases in uric acid, urea and creatinine levels, markers of kidney damage, significant increases of alkaline phosphatase (ALP) and transaminases (ALT and AST) activities, markers of liver damage. Moreover significant increases in total cholesterol and triglycerides levels were recorded. Omega-3 PUFA administration pre-irradiation significantly attenuated the radiation-induced oxidative stress and organ dysfunctions tested in this study. It could be concluded that oral supplementation of omega-3 PUFA before irradiation may afford protection against radiation-induced oxidative stress and might preserve the integrity of tissue functions of the organs under investigations.

  1. Fat and fatty acid composition of cooked meat from UK retail chickens labelled as from organic and non-organic production systems.

    Science.gov (United States)

    Dalziel, Courtney J; Kliem, Kirsty E; Givens, D Ian

    2015-07-15

    This study compared fat and fatty acids in cooked retail chicken meat from conventional and organic systems. Fat contents were 1.7, 5.2, 7.1 and 12.9 g/100 g cooked weight in skinless breast, breast with skin, skinless leg and leg with skin respectively, with organic meat containing less fat overall (Porganic meat contained less than did conventional meat (1850 vs. 2538 mg/100 g; POrganic meat was also lower (Pvs. 180 mg/100 g) and, whilst it contained more (Pvs. 13.7 mg/100 g), this was due to the large effect of one supermarket. This system by supermarket interaction suggests that poultry meat labelled as organic is not a guarantee of higher long chain n-3 fatty acids. Overall there were few major differences in fatty acid contents/profiles between organic and conventional meat that were consistent across all supermarkets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Modeling the degradation of Portland cement pastes by biogenic organic acids

    International Nuclear Information System (INIS)

    De Windt, Laurent; Devillers, Philippe

    2010-01-01

    Reactive transport models can be used to assess the long-term performance of cement-based materials subjected to biodegradation. A bioleaching test (with Aspergillus niger fungi) applied to ordinary Portland cement pastes during 15 months is modeled with HYTEC. Modeling indicates that the biogenic organic acids (acetic, butyric, lactic and oxalic) strongly accelerate hydrate dissolution by acidic hydrolysis whilst their complexation of aluminum has an effect on the secondary gel stability only. The deepest degradation front corresponds to portlandite dissolution and decalcification of calcium silicate hydrates. A complex pattern of sulfate phases dissolution and precipitation takes place in an intermediate zone. The outermost degraded zone consists of alumina and silica gels. The modeling accurateness of calcium leaching, pH evolution and degradation thickness is consistently enhanced whilst considering increase of diffusivity in the degraded zones. Precipitation of calcium oxalate is predicted by modeling but was hindered in the bioleaching reactor.

  3. Oleic acid-associated bronchiolitis obliterans-organizing pneumonia in beagle dogs.

    Science.gov (United States)

    Li, X; Botts, S; Morton, D; Knickerbocker, M J; Adler, R

    2006-03-01

    Accidental intra-airway exposure of dogs with pure oleic acid produced bronchiolitis obliterans and bronchopneumonia. Pulmonary changes included multifocal to coalescing necrosis of bronchioles and adjacent alveoli, hemorrhage, inflammation, and exudation of fibrin. Hyperplasia of bronchiolar and alveolar epithelial cells and proliferation of loose fibrovascular connective tissue formed polyps or plugs of variable size and shape. Polyps in the airways primarily consisted of fibroblasts with loose or myxoid stroma and were variably covered with attenuated epithelial cells. Some polyps had prominent vasculature, mixed inflammatory cell infiltration, and/or necrosis. Polyps or plugs variably effaced bronchioles and adjacent alveoli. The changes closely resembled human bronchiolitis obliterans-organizing pneumonia (BOOP). Controlled intra-airway delivery of oleic acid in dogs may be a potential animal model of obstructive pulmonary diseases such as BOOP or bronchiolitis obliterans.

  4. Reaction of hypotaurine or taurine with superoxide produces the organic peroxysulfonic acid peroxytaurine.

    Science.gov (United States)

    Grove, Roxanna Q; Karpowicz, Steven J

    2017-07-01

    Hypotaurine and taurine are amino acid derivatives and abundant molecules in many eukaryotes. The biological reaction in which hypotaurine is converted to taurine remains poorly understood. Here, hypotaurine and taurine were observed to react with superoxide anion in vitro to form the novel molecule peroxytaurine. In contrast, hypotaurine reacts with hydrogen peroxide to form taurine, but taurine does not react with hydrogen peroxide in vitro. Mass and NMR spectrometry as well as FTIR and Raman spectroscopy support the molecular characterization of peroxytaurine. Gravitometric and spectroscopy experiments suggest a stoichiometry of two superoxide anions reacting with one hypotaurine or two taurines. The newly identified molecule is a semi-stable, organic peroxysulfonic acid that may be an intermediate metabolite in taurine synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Comparative study of electroless nickel film on different organic acids modified cuprammonium fabric (CF)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hang; Lu, Yinxiang, E-mail: yxlu@fudan.edu.cn

    2016-01-30

    Graphical abstract: - Highlights: • An etchant-free and moderate surface pre-treatment process was studied. • Citric acid, malic acid and oxalic acid were selected as modification agents. • High adhesive nickel coating on cuprammonium fabric was obtained. • The electromagnetic parameters were evaluated from the experimental data. - Abstract: Nickel films were grown on citric acid (CA), malic acid (MA) and oxalic acid (OA) modified cuprammonium fabric (CF) substrates via electroless nickel deposition. The nickel films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and electromagnetic interference (EMI) shielding effectiveness (SE) were also investigated to compare the properties of electroless nickel films. SEM images illustrated that the nickel film on MA modified CF substrate was smooth and uniform, and the density of nickel nuclei was much higher. Compared with that of CA modified CF, the coverage of nickel nuclei on OA and MA modified CF substrate was very limited and the nickel particles size was too big. XRD analysis showed that the nickel films deposited on the different modified CF substrates had a structure with Ni (1 1 1) preferred orientation. All the nickel coatings via different acid modification were firmly adhered to the CF substrates, as demonstrated by an ultrasonic washing test. The result of tensile test indicated that the electroless nickel plating on CF has ability to strengthen the CF substrate while causes limited effect on tensile elongation. Moreover, the nickel film deposited on MA modified CF substrate showed more predominant in EMI SE than that deposited on CA or OA modified CF.

  6. Identification of a transcription factor controlling pH-dependent organic acid response in Aspergillus niger.

    Directory of Open Access Journals (Sweden)

    Lars Poulsen

    Full Text Available Acid formation in Aspergillus niger is known to be subjected to tight regulation, and the acid production profiles are fine-tuned to respond to the ambient pH. Based on transcriptome data, putative trans-acting pH responding transcription factors were listed and through knock out studies, mutants exhibiting an oxalate overproducing phenotype were identified. The yield of oxalate was increased up to 158% compared to the wild type and the corresponding transcription factor was therefore entitled Oxalic Acid repression Factor, OafA. Detailed physiological characterization of one of the ΔoafA mutants, compared to the wild type, showed that both strains produced substantial amounts of gluconic acid, but the mutant strain was more efficient in re-uptake of gluconic acid and converting it to oxalic acid, particularly at high pH (pH 5.0. Transcriptional profiles showed that 241 genes were differentially expressed due to the deletion of oafA and this supported the argument of OafA being a trans-acting transcription factor. Furthermore, expression of two phosphoketolases was down-regulated in the ΔoafA mutant, one of which has not previously been described in fungi. It was argued that the observed oxalate overproducing phenotype was a consequence of the efficient re-uptake of gluconic acid and thereby a higher flux through glycolysis. This results in a lower flux through the pentose phosphate pathway, demonstrated by the down-regulation of the phosphoketolases. Finally, the physiological data, in terms of the specific oxygen consumption, indicated a connection between the oxidative phosphorylation and oxalate production and this was further substantiated through transcription analysis.

  7. Structural elucidation and physicochemical properties of an organic NLO crystal: 4-Nitrotoluene-2-sulphonic acid dihydrate

    Science.gov (United States)

    Sangeetha, K.; Guru Prasad, L.; Mathammal, R.

    2018-03-01

    4-nitrotoluene-2-sulphonic acid dihydrate single crystals have been developed using slow evaporation technique in methanol. Lattice parameters of the NTSAD crystal have been calculated and it confirms the grown material. The intermolecular interactions are studied from the 3D Hirshfeld surface analysis and 2D fingerprint plots. The NMR spectral analysis has been carried out to confirm the molecular structure of the grown material. Optical properties have been obtained from UV-VIS spectral analysis and photoluminescence studies. Frequency conversion property of the NTSAD crystal was investigated with the aid of Kurtz and Perry method.

  8. The effect of dietary supplementation of salts of organic acid on production performance of laying hens

    Directory of Open Access Journals (Sweden)

    Ravinder Dahiya

    2016-12-01

    Full Text Available Aim: An experiment was conducted to evaluate the effect of supplementing different levels of salts of organic acid in the laying hen’s diet on their production performance and egg quality parameters during a period of 16-week. Materials and Methods: A total of 140 white leghorn laying hens at 24 weeks of age were randomly distributed to seven dietary treatment groups, i.e. T1 (control, T2 (0.5% sodium-butyrate, T3 (1.0% sodium-butyrate, T4 (1.5% sodium-butyrate, T5 (0.5% calcium-propionate, T6 (1.0% calcium-propionate and T7 (1.5% calcium-propionate consisting of 5 replications of 4 birds each in each treatment and housed in individual cages from 24 to 40 weeks of age. Feed intake, percent hen-day egg production, egg weight, egg mass production, feed conversion ratio (FCR, and economics of supplementation of salts of organic acids in layers’ ration were evaluated. Results: The dietary supplementation of salts of organic acids did not significantly affect the feed intake (g/day/hen and body weight gain (g. Different levels of supplementation significantly (p<0.05 improved production performance (percent hen-day egg production and egg mass production as compared to control group. FCR in terms of feed intake (kg per dozen eggs was lowest (1.83±0.05 in T4 and feed intake (kg per kg egg mass was lowest (2.87±0.05 in T5 as comparison to control (T1 group. Salts of organic acids supplementation resulted in significant (p<0.05 improvement in FCR. Egg weight was significantly (p<0.05 increased at 0.5% level of salts of organic acids in the diet. The cumulative mean values of feed cost per dozen egg production were Rs. 44.14, 42.40, 42.85, 43.26, 42.57, 43.29 and 43.56 in treatment groups T1, T2, T3, T4, T5, T6 and T7, respectively, and reduction in feed cost per kg egg mass production for Rs. 0.52 and 0.99 in groups T2 and T5, respectively, in comparison to T1 group. Conclusions: It can be concluded that supplementation of salts of organic acids

  9. Evolution of amino acid metabolism inferred through cladistic analysis.

    Science.gov (United States)

    Cunchillos, Chomin; Lecointre, Guillaume

    2003-11-28

    Because free amino acids were most probably available in primitive abiotic environments, their metabolism is likely to have provided some of the very first metabolic pathways of life. What were the first enzymatic reactions to emerge? A cladistic analysis of metabolic pathways of the 16 aliphatic amino acids and 2 portions of the Krebs cycle was performed using four criteria of homology. The analysis is not based on sequence comparisons but, rather, on coding similarities in enzyme properties. The properties used are shared specific enzymatic activity, shared enzymatic function without substrate specificity, shared coenzymes, and shared functional family. The tree shows that the earliest pathways to emerge are not portions of the Krebs cycle but metabolisms of aspartate, asparagine, glutamate, and glutamine. The views of Horowitz (Horowitz, N. H. (1945) Proc. Natl. Acad. Sci. U. S. A. 31, 153-157) and Cordón (Cordón, F. (1990) Tratado Evolucionista de Biologia, Aguilar, Madrid, Spain), according to which the upstream reactions in the catabolic pathways and the downstream reactions in the anabolic pathways are the earliest in evolution, are globally corroborated; however, with some exceptions. These are due to later opportunistic connections of pathways (actually already suggested by these authors). Earliest enzymatic functions are mostly catabolic; they were deaminations, transaminations, and decarboxylations. From the consensus tree we extracted four time spans for amino acid metabolism development. For some amino acids catabolism and biosynthesis occurred at the same time (Asp, Glu, Lys, Leu, Ala, Val, Ile, Pro, Arg). For others ultimate reactions that use amino acids as a substrate or as a product are distinct in time, with catabolism preceding anabolism for Asn, Gln, and Cys and anabolism preceding catabolism for Ser, Met, and Thr. Cladistic analysis of the structure of biochemical pathways makes hypotheses in biochemical evolution explicit and parsimonious.

  10. Effects-Directed Analysis of Dissolved Organic Compounds in Oil Sands Process-Affected Water.

    Science.gov (United States)

    Morandi, Garrett D; Wiseman, Steve B; Pereira, Alberto; Mankidy, Rishikesh; Gault, Ian G M; Martin, Jonathan W; Giesy, John P

    2015-10-20

    Acute toxicity of oil sands process-affected water (OSPW) is caused by its complex mixture of bitumen-derived organics, but the specific chemical classes that are most toxic have not been demonstrated. Here, effects-directed analysis was used to determine the most acutely toxic chemical classes in OSPW collected from the world's first oil sands end-pit lake. Three sequential rounds of fractionation, chemical analysis (ultrahigh resolution mass spectrometry), and acute toxicity testing (96 h fathead minnow embryo lethality and 15 min Microtox bioassay) were conducted. Following primary fractionation, toxicity was primarily attributable to the neutral extractable fraction (F1-NE), containing 27% of original organics mass. In secondary fractionation, F1-NE was subfractionated by alkaline water washing, and toxicity was primarily isolated to the ionizable fraction (F2-NE2), containing 18.5% of the original organic mass. In the final round, chromatographic subfractionation of F2-NE2 resulted in two toxic fractions, with the most potent (F3-NE2a, 11% of original organic mass) containing predominantly naphthenic acids (O2(-)). The less-toxic fraction (F3-NE2b, 8% of original organic mass) contained predominantly nonacid species (O(+), O2(+), SO(+), NO(+)). Evidence supports naphthenic acids as among the most acutely toxic chemical classes in OSPW, but nonacidic species also contribute to acute toxicity of OSPW.

  11. RodZ and PgsA Play Intertwined Roles in Membrane Homeostasis of Bacillus subtilis and Resistance to Weak Organic Acid Stress

    NARCIS (Netherlands)

    van Beilen, Johan; Blohmke, Christoph J.; Folkerts, Hendrik; de Boer, Richard; Zakrzewska, Anna; Kulik, Wim; Vaz, Fred M.; Brul, Stanley; Ter Beek, Alexander

    2016-01-01

    Weak organic acids like sorbic and acetic acid are widely used to prevent growth of spoilage organisms such as Bacilli. To identify genes involved in weak acid stress tolerance we screened a transposon mutant library of Bacillus subtilis for sorbic acid sensitivity. Mutants of the rodZ (ymfM) gene

  12. Hierarchically organized architecture of potassium hydrogen phthalate and poly(acrylic acid): toward a general strategy for biomimetic crystal design.

    Science.gov (United States)

    Oaki, Yuya; Imai, Hiroaki

    2005-12-28

    A hierarchically organized architecture in multiple scales was generated from potassium hydrogen phthalate crystals and poly(acrylic acid) based on our novel biomimetic approach with an exquisite association of polymers on crystallization.

  13. Bioleaching of heavy metals from soil using fungal-organic acids : bench scale testing

    Energy Technology Data Exchange (ETDEWEB)

    Cathum, S.J.; Ousmanova, D.; Somers, A.; Punt, M. [SAIC Canada, Ottawa, ON (Canada); Brown, C.E. [Environment Canada, Ottawa, ON (Canada). Emergencies Engineering Division]|[Environment Canada, Ottawa, ON (Canada). Environmental Technology Centre

    2006-07-01

    The ability of fungi to solubilize metals from solid materials may present new opportunities in environmental remediation. This paper presented details of a bench scale experiment that evaluated the leaching of heavy metals from contaminated soil using in situ fungal-generated organic acids. Rice was used as the growing media for organic acid production by A. foetidus. The cultivated fungus was placed on large pieces of potato-dextrose agar (PDA) plates and suspended in 5 L of sterilized water. The cooked rice was inoculated by pouring the 5 L spore suspension over the rice layer. Soil was obtained from a soil pile impacted with heavy metals at a private industrial site and augmented with Pb-contaminated soil. A polyethylene tub was used with a drain pipe leading to a leachate vessel. Crushed stone was spread over the bottom of the tub to assist leachate drainage. Approximately 45 kg of the contaminated soil was spread evenly over the stone layer to a depth of 10 cm. The concentrated spore suspension was sprinkled over the rice. Each week the leachate collection vessel was removed from the bioleaching system and the fine soil particles were allowed to settle. A control was run using the contaminated soil and solid substrate without fungus. Growth of A. foetidus was observed in both control experiment and test experiment after a period of 35 days. The pH of the leachate was measured as the fungal growth progressed. The process was assessed using ICP Mass Spectroscopy and electron spectroscopy, which showed that approximately 65 g of heavy metals were mobilized from 45 kg of soil, and that the biological leaching process resulted in greater mobilization of heavy metals relative to the control experiment. It was concluded that organic acids generated by A. foetidus were capable of leaching heavy metals from the soil. 30 refs., 4 tabs., 15 figs.

  14. Organic analysis of the headspace in Hanford waste tanks

    International Nuclear Information System (INIS)

    Lucke, R.B.; McVeety, B.D.; Clauss, T.W.; Fruchter, J.S.; Goheen, S.C.

    1994-01-01

    Before radioactive mixed waste in Hanford waste tanks can be isolated and permanently stored, several safety issues need to be addressed. The headspace vapors in Hanford Tank 103-C raise two issues: (1) the potential flammability of the vapor and aerosol, and (2) the potential worker health and safety hazards associated with the toxicity of the constituents. As a result, the authors have implemented organic analysis methods to characterize the headspace vapors in Hanford waste tanks. To address the flammability issue, they have used OSHA versatile sampling (OVS) tubes as the sampling method followed by solvent extraction and GC/MS analysis. For analyzing volatile organics and organic air toxins, they have implemented SUMMA trademark canisters as the collection device followed by cryogenic trapping and GC/MS analysis. Strategies for modifying existing NIOSH and EPA methods to make them applicable to vapors in Hanford waste tanks are discussed. Identification and quantification results of volatile and semivolatile organics are presented

  15. Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage.

    Science.gov (United States)

    Gibert, Oriol; de Pablo, Joan; Luis Cortina, José; Ayora, Carlos

    2004-11-01

    The current approach of the biological treatment of acid mine drainage by means of a passive remediation system involves the choice of an appropriate organic substrate as electron donor for sulphate reducers. Nowadays this selection is one of the critical steps in the performance of such treatment, as this depends to a great extent on the degradability of the organic substrate. Thus, a prior characterisation of the organic substrate predicting its biodegradability would be desirable before embarking on an extensive large-scale application. The aim of this study was to correlate the chemical composition (lignin content) of four different natural organic substrates (compost, sheep and poultry manures, oak leaf) and their capacity to sustain bacterial activity in an attempt to predict biodegradation from chemical characterisation. The results showed that the lower the content of lignin in the organic substrate, the higher its biodegradability and capacity for developing bacterial activity. Of the four organic materials, sheep and poultry manures and oak leaf evolved reducing conditions and sustained active sulphidogenesis, which coupled with the decrease in sulphate concentration indicated bacterial activity. Sheep manure was clearly the most successful organic material as electron donor (sulphate removal >99%), followed by poultry manure and oak leaf (sulphate removal of 80%). Compost appeared to be too poor in carbon to promote sulphate-reducing bacteria activity by itself. Column experiments emphasised the importance of considering the residence time as a key factor in the performance of continuous systems. With a residence time of 0.73 days, sheep manure did not promote sulphidogenesis. However, extending residence time to 2.4 and 9.0 days resulted in an increase in the sulphate removal to 18% and 27%, respectively.

  16. Role of organic acids on the bioavailability of selenium in soil: A review.

    Science.gov (United States)

    Dinh, Quang Toan; Li, Zhe; Tran, Thi Anh Thu; Wang, Dan; Liang, Dongli

    2017-10-01

    Organic Acids (OAs) are important components in the rhizosphere soil and influence Se bioavailability in soil. OAs have a bidirectional contrasting effect on Se bioavailability. Understanding the interaction of OAs with Se is essential to assessing Se bioavailability in soil and clarifying the role of OAs in controlling the behavior and fate of Se in soil. This review examines the mechanisms for the (im)mobilization of Se by OAs and discusses the practical implications of these mechanisms in relation to sequestration and bioavailability of Se in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Ambient air monitoring for organic compounds, acids, and metals at Los Alamos National Laboratory, January 1991

    International Nuclear Information System (INIS)

    Williams, C.H.; Eberhart, C.F.

    1992-01-01

    Los Alamos National Laboratory (LANL) contracted Radian Corporation (Radian) to conduct a short-term, intensive air monitoring program whose goal was to estimate the impact of chemical emissions from LANL on the ambient air environment. A comprehensive emission inventory had identified more than 600 potential air contaminants in LANL's emissions. A subset of specific target chemicals was selected for monitoring: 20 organic vapors, 6 metals and 5 inorganic acid vapors. These were measured at 5 ground level sampling sites around LANL over seven consecutive days in January 1991. The sampling and analytical strategy used a combination of EPA and NIOSH methods modified for ambient air applications

  18. Spectroscopy of charge transfer complexes of four amino acids as organic two-dimensional conductors

    International Nuclear Information System (INIS)

    Padhiyar, Ashvin; Patel, A J; Oza, A T

    2007-01-01

    It is found in this study that four amino acids, namely asparagine, arginine, histidine and glutamine form two-dimensional conducting systems which are charge transfer complexes (CTCs) with organic acceptors like TCNQ, TCNE, chloranil, DDQ, TNF and iodine. It is verified using optical absorption edges that these are 2d conductors like transition metal dichalcogenides obeying absorption functions different from 1d and 3d conductors. This 2d nature is related to the network of intermolecular H-bonding in these complexes, which leads to a global H-bonded network resulting in the absence of local deformation due to the relaxation of strain

  19. Content and distribution of phytanic acid diastereomers in organic milk as affected by feed composition

    DEFF Research Database (Denmark)

    Che, Brita Ngum; Kristensen, Troels; Nebel, Caroline

    2013-01-01

    Phytanic acid (PA) is a bioactive compound found in milk that is derived from the phytol chain of chlorophyll, and the content of PA in milk fat depends on the availability of phytol from feed. In this study, the content of PA diastereomers was analyzed in milk sampled from five organic herds twice...... during the grazing season (May and September). The total content of PA was higher in September compared to May, but was not affected by breed (Danish Holstein or Danish Jersey). Total PA could not be directly related to intake of green feed items. The distribution between diastereomers was closely...

  20. Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of 'Honeycrisp' apple (Malus domestica Borkh) with excessive accumulation of carbohydrates.

    Science.gov (United States)

    Wang, Huicong; Ma, Fangfang; Cheng, Lailiang

    2010-07-01

    Metabolite profiles and activities of key enzymes in the metabolism of organic acids, nitrogen and amino acids were compared between chlorotic leaves and normal leaves of 'Honeycrisp' apple to understand how accumulation of non-structural carbohydrates affects the metabolism of organic acids, nitrogen and amino acids. Excessive accumulation of non-structural carbohydrates and much lower CO(2) assimilation were found in chlorotic leaves than in normal leaves, confirming feedback inhibition of photosynthesis in chlorotic leaves. Dark respiration and activities of several key enzymes in glycolysis and tricarboxylic acid (TCA) cycle, ATP-phosphofructokinase, pyruvate kinase, citrate synthase, aconitase and isocitrate dehydrogenase were significantly higher in chlorotic leaves than in normal leaves. However, concentrations of most organic acids including phosphoenolpyruvate (PEP), pyruvate, oxaloacetate, 2-oxoglutarate, malate and fumarate, and activities of key enzymes involved in the anapleurotic pathway including PEP carboxylase, NAD-malate dehydrogenase and NAD-malic enzyme were significantly lower in chlorotic leaves than in normal leaves. Concentrations of soluble proteins and most free amino acids were significantly lower in chlorotic leaves than in normal leaves. Activities of key enzymes in nitrogen assimilation and amino acid synthesis, including nitrate reductase, glutamine synthetase, ferredoxin and NADH-dependent glutamate synthase, and glutamate pyruvate transaminase were significantly lower in chlorotic leaves than in normal leaves. It was concluded that, in response to excessive accumulation of non-structural carbohydrates, glycolysis and TCA cycle were up-regulated to "consume" the excess carbon available, whereas the anapleurotic pathway, nitrogen assimilation and amino acid synthesis were down-regulated to reduce the overall rate of amino acid and protein synthesis.