Directory of Open Access Journals (Sweden)
Ahmad Mufid
2016-01-01
Full Text Available Assessment of PNPM-MPd’s proposal not run quickly and objectively. The purpose of this research is to create software to help the verification team in conducting an objective assessment of the proposals using the profile matching method and the analytic hierarchy process (AHP. Profile matching method is used to provide an assessment, determination of the gap, and the weighting criteria. While the AHP method is used to calculate the pairwise comparison matrices, eigenvalues, priorities, maximum eigenvalues, consistency index (CI and consistency ratio (CR. CR values are used to determine the order in which proposals will be funded by BLM. The final result of this research is decision support system software for assessment of PNPM-MPd’s proposal that can determine the rank of the highest value to lowest. Keywords : Assessment; Profile matching; Analytic Hierarchy Process (AHP
High Order Semi-Lagrangian Advection Scheme
Malaga, Carlos; Mandujano, Francisco; Becerra, Julian
2014-11-01
In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).
Unsymmetric ordering using a constrained Markowitz scheme
Energy Technology Data Exchange (ETDEWEB)
Amestoy, Patrick R.; Xiaoye S.; Pralet, Stephane
2005-01-18
We present a family of ordering algorithms that can be used as a preprocessing step prior to performing sparse LU factorization. The ordering algorithms simultaneously achieve the objectives of selecting numerically good pivots and preserving the sparsity. We describe the algorithmic properties and challenges in their implementation. By mixing the two objectives we show that we can reduce the amount of fill-in in the factors and reduce the number of numerical problems during factorization. On a set of large unsymmetric real problems, we obtained the median reductions of 12% in the factorization time, of 13% in the size of the LU factors, of 20% in the number of operations performed during the factorization phase, and of 11% in the memory needed by the multifrontal solver MA41-UNS. A byproduct of this ordering strategy is an incomplete LU-factored matrix that can be used as a preconditioner in an iterative solver.
Airfoil noise computation use high-order schemes
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær
2007-01-01
High-order finite difference schemes with at least 4th-order spatial accuracy are used to simulate aerodynamically generated noise. The aeroacoustic solver with 4th-order up to 8th-order accuracy is implemented into the in-house flow solver, EllipSys2D/3D. Dispersion-Relation-Preserving (DRP) fin...
An accurate scheme by block method for third order ordinary ...
African Journals Online (AJOL)
problems of ordinary differential equations is presented in this paper. The approach of collocation approximation is adopted in the derivation of the scheme and then the scheme is applied as simultaneous integrator to special third order initial value problem of ordinary differential equations. This implementation strategy is ...
Directory of Open Access Journals (Sweden)
Teguh Narutomo
2014-06-01
Full Text Available The aim of this study was to evaluate the PNPM program and follow the program with SIDA Strengthening Program. The research method used is a qualitative method approach of this research through the evaluation research design that builds on the CIPP evaluation model (Context-Input-Process-Product. Since the failure of theories and models of development are too glorifies growth, makes many people turn to focus on people development, which includes requiring optimization of local resources, participation, and empowerment. Since then, "empowerment" which was introduced in Indonesia has been anesthetized and made many hopes among many parties. In 2007 started the National Program for Community Empowerment (PNPM which continue Kecamatan Development Program (KDP. PNPM 2014 which is part of the United Indonesia Cabinet Volume 2 is going to end. For that we need to look for an exit strategy program that can maintain sustainability of PNPM. Regional Innovation Systems Strengthening Program (SIDA is a program of the whole process in one system to foster innovation made between government institutions, local governments, research institutions, educational institutions, innovation support institutions, businesses, and communities in areas that have been implemented since the 2012 SIDA program is an empowerment program as well, both to the public and even empowering to all elements such as academia, private industry, government and society.
Ariastuti, Ivon Sagyta; Sulistyowati; Manar, Dzunuwanus Ghulam
2017-01-01
Program Nasional Pemberdayaan Masyarakat (PNPM) MandiriPerkotaan is one of the programs that comes as a solution to the problem ofpoverty. PNPM Mandiri Perkotaan is also present to overcome the problem ofpoverty in Pekalongan Regency, one of the assisted areas is in Babalan LorVillage Sub-Distric of Bojong Regency of Pekalongan. Furthermore, inimplementing a development program, it is necessary to involve all parties inother words, it requires participation of all components involved. Poverty...
Designing synchronization schemes for chaotic fractional-order unified systems
International Nuclear Information System (INIS)
Wang Junwei; Zhang Yanbin
2006-01-01
Synchronization in chaotic fractional-order differential systems is studied both theoretically and numerically. Two schemes are designed to achieve chaos synchronization of so-called unified chaotic systems and the corresponding numerical algorithms are established. Some sufficient conditions on synchronization are also derived based on the Laplace transformation theory. Computer simulations are used for demonstration
Slab geometry spatial discretization schemes with infinite-order convergence
International Nuclear Information System (INIS)
Adams, M.L.; Martin, W.R.
1985-01-01
Spatial discretization schemes for the slab geometry discrete ordinates transport equation have received considerable attention in the past several years, with particular interest shown in developing methods that are more computationally efficient that standard schemes. Here the authors apply to the discrete ordinates equations a spectral method that is significantly more efficient than previously proposed schemes for high-accuracy calculations of homogeneous problems. This is a direct consequence of the exponential (infinite-order) convergence of spectral methods for problems with every smooth solutions. For heterogeneous problems where smooth solutions do not exist and exponential convergence is not observed with spectral methods, a spectral element method is proposed which does exhibit exponential convergence
Directory of Open Access Journals (Sweden)
Elparianti Elparianti
2017-01-01
Full Text Available This article background is information about the data differences between statistically and realities in society about PNPM-MP Programe. Statistically PNPM-MP is considered good enough in the effort to reduce poverty have been able to reduce the number of target households in the Balai Gadang, but the reality in the field are still many poor people. In general view of the target households are not re-categorized as the objectives of the program provides pastures that show received a position as a party that can not accept a revolving fund, As for the efforts made by the PNPM-MP after the target households are not back to being targeted by inviting households to be targeted to training events associated with increased economic cooperation with the family and other financial institutions greater. As for the view of the target households on the implementation of the revolving fund PNPM-MP in the fight against poverty can be concluded that in general the target households provide a positive outlook for feel that the borrowing of funds on a rolling basis from PNPM-MP, especially for households sesaran the installment lending smoothly and has had previous attempts Artikel ini dilatarbelakangi oleh adanya perbedaan informasi antara data secara statistik dengan realitas yang ada dalam masyarakat. secara statistik pelaksanaan PNPM-MP dinilai cukup baik dalam upaya menanggulangi kemiskinan telah mampu menurunkan jumlah rumah tangga sasaran (RTS di Kelurahan Balai Gadang, namun realitasnya dilapangan masih banyak masyarakat misikin. Secara umum pandangan rumah tangga sasaran (RTS tidak kembali terkategori sebagai sasaran pelaksanaan program yaitu RTS memberikan padangan yang menunjukkan menerima posisi sebagai pihak yang sudah tidak bisa menerima dana bergulir, adapun upaya yang dilakukan oleh pihak pelaksanaan PNPM-MP setelah RTS tidak kembali menjadi sasaran dengan mengundang RTS ke acara pelatihan yang berhubungan dengan peningkatan ekonomi keluarga
Ordering schemes for parallel processing of certain mesh problems
International Nuclear Information System (INIS)
O'Leary, D.
1984-01-01
In this work, some ordering schemes for mesh points are presented which enable algorithms such as the Gauss-Seidel or SOR iteration to be performed efficiently for the nine-point operator finite difference method on computers consisting of a two-dimensional grid of processors. Convergence results are presented for the discretization of u /SUB xx/ + u /SUB yy/ on a uniform mesh over a square, showing that the spectral radius of the iteration for these orderings is no worse than that for the standard row by row ordering of mesh points. Further applications of these mesh point orderings to network problems, more general finite difference operators, and picture processing problems are noted
Optimized low-order explicit Runge-Kutta schemes for high- order spectral difference method
Parsani, Matteo
2012-01-01
Optimal explicit Runge-Kutta (ERK) schemes with large stable step sizes are developed for method-of-lines discretizations based on the spectral difference (SD) spatial discretization on quadrilateral grids. These methods involve many stages and provide the optimal linearly stable time step for a prescribed SD spectrum and the minimum leading truncation error coefficient, while admitting a low-storage implementation. Using a large number of stages, the new ERK schemes lead to efficiency improvements larger than 60% over standard ERK schemes for 4th- and 5th-order spatial discretization.
Third Order Reconstruction of the KP Scheme for Model of River Tinnelva
Directory of Open Access Journals (Sweden)
Susantha Dissanayake
2017-01-01
Full Text Available The Saint-Venant equation/Shallow Water Equation is used to simulate flow of river, flow of liquid in an open channel, tsunami etc. The Kurganov-Petrova (KP scheme which was developed based on the local speed of discontinuity propagation, can be used to solve hyperbolic type partial differential equations (PDEs, hence can be used to solve the Saint-Venant equation. The KP scheme is semi discrete: PDEs are discretized in the spatial domain, resulting in a set of Ordinary Differential Equations (ODEs. In this study, the common 2nd order KP scheme is extended into 3rd order scheme while following the Weighted Essentially Non-Oscillatory (WENO and Central WENO (CWENO reconstruction steps. Both the 2nd order and 3rd order schemes have been used in simulation in order to check the suitability of the KP schemes to solve hyperbolic type PDEs. The simulation results indicated that the 3rd order KP scheme shows some better stability compared to the 2nd order scheme. Computational time for the 3rd order KP scheme for variable step-length ode solvers in MATLAB is less compared to the computational time of the 2nd order KP scheme. In addition, it was confirmed that the order of the time integrators essentially should be lower compared to the order of the spatial discretization. However, for computation of abrupt step changes, the 2nd order KP scheme shows a more accurate solution.
Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.
2018-01-01
High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw [1] how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemann problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. The upwind scheme is shown to be robust and provide high-order accuracy.
High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids
Mazaheri, Alireza; Nishikawa, Hiroaki
2015-01-01
In this paper, we construct high-order hyperbolic residual-distribution schemes for general advection-diffusion problems on arbitrary triangular grids. We demonstrate that the second-order accuracy of the hyperbolic schemes can be greatly improved by requiring the scheme to preserve exact quadratic solutions. We also show that the improved second-order scheme can be easily extended to third-order by further requiring the exactness for cubic solutions. We construct these schemes based on the LDA and the SUPG methodology formulated in the framework of the residual-distribution method. For both second- and third-order-schemes, we construct a fully implicit solver by the exact residual Jacobian of the second-order scheme, and demonstrate rapid convergence of 10-15 iterations to reduce the residuals by 10 orders of magnitude. We demonstrate also that these schemes can be constructed based on a separate treatment of the advective and diffusive terms, which paves the way for the construction of hyperbolic residual-distribution schemes for the compressible Navier-Stokes equations. Numerical results show that these schemes produce exceptionally accurate and smooth solution gradients on highly skewed and anisotropic triangular grids, including curved boundary problems, using linear elements. We also present Fourier analysis performed on the constructed linear system and show that an under-relaxation parameter is needed for stabilization of Gauss-Seidel relaxation.
Robust second-order scheme for multi-phase flow computations
Shahbazi, Khosro
2017-06-01
A robust high-order scheme for the multi-phase flow computations featuring jumps and discontinuities due to shock waves and phase interfaces is presented. The scheme is based on high-order weighted-essentially non-oscillatory (WENO) finite volume schemes and high-order limiters to ensure the maximum principle or positivity of the various field variables including the density, pressure, and order parameters identifying each phase. The two-phase flow model considered besides the Euler equations of gas dynamics consists of advection of two parameters of the stiffened-gas equation of states, characterizing each phase. The design of the high-order limiter is guided by the findings of Zhang and Shu (2011) [36], and is based on limiting the quadrature values of the density, pressure and order parameters reconstructed using a high-order WENO scheme. The proof of positivity-preserving and accuracy is given, and the convergence and the robustness of the scheme are illustrated using the smooth isentropic vortex problem with very small density and pressure. The effectiveness and robustness of the scheme in computing the challenging problem of shock wave interaction with a cluster of tightly packed air or helium bubbles placed in a body of liquid water is also demonstrated. The superior performance of the high-order schemes over the first-order Lax-Friedrichs scheme for computations of shock-bubble interaction is also shown. The scheme is implemented in two-dimensional space on parallel computers using message passing interface (MPI). The proposed scheme with limiter features approximately 50% higher number of inter-processor message communications compared to the corresponding scheme without limiter, but with only 10% higher total CPU time. The scheme is provably second-order accurate in regions requiring positivity enforcement and higher order in the rest of domain.
Universal block diagram based modeling and simulation schemes for fractional-order control systems.
Bai, Lu; Xue, Dingyü
2017-05-08
Universal block diagram based schemes are proposed for modeling and simulating the fractional-order control systems in this paper. A fractional operator block in Simulink is designed to evaluate the fractional-order derivative and integral. Based on the block, the fractional-order control systems with zero initial conditions can be modeled conveniently. For modeling the system with nonzero initial conditions, the auxiliary signal is constructed in the compensation scheme. Since the compensation scheme is very complicated, therefore the integrator chain scheme is further proposed to simplify the modeling procedures. The accuracy and effectiveness of the schemes are assessed in the examples, the computation results testify the block diagram scheme is efficient for all Caputo fractional-order ordinary differential equations (FODEs) of any complexity, including the implicit Caputo FODEs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
High order scheme for the non-local transport in ICF plasmas
Energy Technology Data Exchange (ETDEWEB)
Feugeas, J.L.; Nicolai, Ph.; Schurtz, G. [Bordeaux-1 Univ., Centre Lasers Intenses et Applications (UMR 5107), 33 - Talence (France); Charrier, P.; Ahusborde, E. [Bordeaux-1 Univ., MAB, 33 - Talence (France)
2006-06-15
A high order practical scheme for a model of non-local transport is here proposed to be used in multidimensional radiation hydrodynamic codes. A high order scheme is necessary to solve non-local problems on strongly deformed meshes that are on hot point or ablation front zones. It is shown that the errors made by a classical 5 point scheme on a disturbed grid can be of the same order of magnitude as the non-local effects. The use of a 9 point scheme in a simulation of inertial confinement fusion appears to be essential.
Construction of Low Dissipative High Order Well-Balanced Filter Schemes for Non-Equilibrium Flows
Wang, Wei; Yee, H. C.; Sjogreen, Bjorn; Magin, Thierry; Shu, Chi-Wang
2009-01-01
The goal of this paper is to generalize the well-balanced approach for non-equilibrium flow studied by Wang et al. [26] to a class of low dissipative high order shock-capturing filter schemes and to explore more advantages of well-balanced schemes in reacting flows. The class of filter schemes developed by Yee et al. [30], Sjoegreen & Yee [24] and Yee & Sjoegreen [35] consist of two steps, a full time step of spatially high order non-dissipative base scheme and an adaptive nonlinear filter containing shock-capturing dissipation. A good property of the filter scheme is that the base scheme and the filter are stand alone modules in designing. Therefore, the idea of designing a well-balanced filter scheme is straightforward, i.e., choosing a well-balanced base scheme with a well-balanced filter (both with high order). A typical class of these schemes shown in this paper is the high order central difference schemes/predictor-corrector (PC) schemes with a high order well-balanced WENO filter. The new filter scheme with the well-balanced property will gather the features of both filter methods and well-balanced properties: it can preserve certain steady state solutions exactly; it is able to capture small perturbations, e.g., turbulence fluctuations; it adaptively controls numerical dissipation. Thus it shows high accuracy, efficiency and stability in shock/turbulence interactions. Numerical examples containing 1D and 2D smooth problems, 1D stationary contact discontinuity problem and 1D turbulence/shock interactions are included to verify the improved accuracy, in addition to the well-balanced behavior.
Ordering schemes for sparse matrices using modern programming paradigms
International Nuclear Information System (INIS)
Oliker, Leonid; Li, Xiaoye; Husbands, Parry; Biswas, Rupak
2000-01-01
The Conjugate Gradient (CG) algorithm is perhaps the best-known iterative technique to solve sparse linear systems that are symmetric and positive definite. In previous work, we investigated the effects of various ordering and partitioning strategies on the performance of CG using different programming paradigms and architectures. This paper makes several extensions to our prior research. First, we present a hybrid(MPI+OpenMP) implementation of the CG algorithm on the IBM SP and show that the hybrid paradigm increases programming complexity with little performance gains compared to a pure MPI implementation. For ill-conditioned linear systems, it is often necessary to use a preconditioning technique. We present MPI results for ILU(0) preconditioned CG (PCG) using the BlockSolve95 library, and show that the initial ordering of the input matrix dramatically affect PCG's performance. Finally, a multithreaded version of the PCG is developed on the Cray (Tera) MTA. Unlike the message-passing version, this implementation did not require the complexities of special orderings or graph dependency analysis. However, only limited scalability was achieved due to the lack of available thread level parallelism
Finite difference schemes for second order systems describing black holes
International Nuclear Information System (INIS)
Motamed, Mohammad; Kreiss, H-O.; Babiuc, M.; Winicour, J.; Szilagyi, B.
2006-01-01
In the harmonic description of general relativity, the principal part of Einstein's equations reduces to 10 curved space wave equations for the components of the space-time metric. We present theorems regarding the stability of several evolution-boundary algorithms for such equations when treated in second order differential form. The theorems apply to a model black hole space-time consisting of a spacelike inner boundary excising the singularity, a timelike outer boundary and a horizon in between. These algorithms are implemented as stable, convergent numerical codes and their performance is compared in a 2-dimensional excision problem
International Nuclear Information System (INIS)
Bouard, Anne de; Debussche, Arnaud
2006-01-01
In this article we analyze the error of a semidiscrete scheme for the stochastic nonlinear Schrodinger equation with power nonlinearity. We consider supercritical or subcritical nonlinearity and the equation can be either focusing or defocusing. Allowing sufficient spatial regularity we prove that the numerical scheme has strong order 1/2 in general and order 1 if the noise is additive. Furthermore, we also prove that the weak order is always 1
Brain source localization using a fourth-order deflation scheme
Albera, Laurent; Ferréol, Anne; Cosandier-Rimélé, Delphine; Merlet, Isabel; Wendling, Fabrice
2008-01-01
A high resolution method for solving potentially ill-posed inverse problems is proposed. This method named FO-D-MUSIC allows for localization of brain current sources with unconstrained orientations from surface electro- or magnetoencephalographic data using spherical or realistic head geometries. The FO-D-MUSIC method is based on i) the separability of the data transfer matrix as a function of location and orientation parameters, ii) the Fourth Order (FO) virtual array theory, and iii) the deflation concept extended to FO statistics accounting for the presence of potentially but not completely statistically dependent sources. Computer results display the superiority of the FO-D-MUSIC approach in different situations (very closed sources, small number of electrodes, additive Gaussian noise with unknown spatial covariance, …) compared to classical algorithms. PMID:18269984
Chao, Luo
2015-11-01
In this paper, a novel digital secure communication scheme is firstly proposed. Different from the usual secure communication schemes based on chaotic synchronization, the proposed scheme employs asynchronous communication which avoids the weakness of synchronous systems and is susceptible to environmental interference. Moreover, as to the transmission errors and data loss in the process of communication, the proposed scheme has the ability to be error-checking and error-correcting in real time. In order to guarantee security, the fractional-order complex chaotic system with the shifting of order is utilized to modulate the transmitted signal, which has high nonlinearity and complexity in both frequency and time domains. The corresponding numerical simulations demonstrate the effectiveness and feasibility of the scheme.
A stable higher order space time Galerkin marching-on-in-time scheme
Pray, Andrew J.; Shanker, Balasubramaniam; Bagci, Hakan
2013-01-01
We present a method for the stable solution of time-domain integral equations. The method uses a technique developed in [1] to accurately evaluate matrix elements. As opposed to existing stabilization schemes, the method presented uses higher order
A second-order iterative implicit-explicit hybrid scheme for hyperbolic systems of conservation laws
International Nuclear Information System (INIS)
Dai, Wenlong; Woodward, P.R.
1996-01-01
An iterative implicit-explicit hybrid scheme is proposed for hyperbolic systems of conservation laws. Each wave in a system may be implicitly, or explicitly, or partially implicitly and partially explicitly treated depending on its associated Courant number in each numerical cell, and the scheme is able to smoothly switch between implicit and explicit calculations. The scheme is of Godunov-type in both explicit and implicit regimes, is in a strict conservation form, and is accurate to second-order in both space and time for all Courant numbers. The computer code for the scheme is easy to vectorize. Multicolors proposed in this paper may reduce the number of iterations required to reach a converged solution by several orders for a large time step. The feature of the scheme is shown through numerical examples. 38 refs., 12 figs
Calatroni, Luca
2013-08-01
We present directional operator splitting schemes for the numerical solution of a fourth-order, nonlinear partial differential evolution equation which arises in image processing. This equation constitutes the H -1-gradient flow of the total variation and represents a prototype of higher-order equations of similar type which are popular in imaging for denoising, deblurring and inpainting problems. The efficient numerical solution of this equation is very challenging due to the stiffness of most numerical schemes. We show that the combination of directional splitting schemes with implicit time-stepping provides a stable and computationally cheap numerical realisation of the equation.
Calatroni, Luca; Dü ring, Bertram; Schö nlieb, Carola-Bibiane
2013-01-01
We present directional operator splitting schemes for the numerical solution of a fourth-order, nonlinear partial differential evolution equation which arises in image processing. This equation constitutes the H -1-gradient flow of the total variation and represents a prototype of higher-order equations of similar type which are popular in imaging for denoising, deblurring and inpainting problems. The efficient numerical solution of this equation is very challenging due to the stiffness of most numerical schemes. We show that the combination of directional splitting schemes with implicit time-stepping provides a stable and computationally cheap numerical realisation of the equation.
SOLVING FRACTIONAL-ORDER COMPETITIVE LOTKA-VOLTERRA MODEL BY NSFD SCHEMES
Directory of Open Access Journals (Sweden)
S.ZIBAEI
2016-12-01
Full Text Available In this paper, we introduce fractional-order into a model competitive Lotka- Volterra prey-predator system. We will discuss the stability analysis of this fractional system. The non-standard nite difference (NSFD scheme is implemented to study the dynamic behaviors in the fractional-order Lotka-Volterra system. Proposed non-standard numerical scheme is compared with the forward Euler and fourth order Runge-Kutta methods. Numerical results show that the NSFD approach is easy and accurate for implementing when applied to fractional-order Lotka-Volterra model.
Compact high order schemes with gradient-direction derivatives for absorbing boundary conditions
Gordon, Dan; Gordon, Rachel; Turkel, Eli
2015-09-01
We consider several compact high order absorbing boundary conditions (ABCs) for the Helmholtz equation in three dimensions. A technique called "the gradient method" (GM) for ABCs is also introduced and combined with the high order ABCs. GM is based on the principle of using directional derivatives in the direction of the wavefront propagation. The new ABCs are used together with the recently introduced compact sixth order finite difference scheme for variable wave numbers. Experiments on problems with known analytic solutions produced very accurate results, demonstrating the efficacy of the high order schemes, particularly when combined with GM. The new ABCs are then applied to the SEG/EAGE Salt model, showing the advantages of the new schemes.
Analysis of a fourth-order compact scheme for convection-diffusion
International Nuclear Information System (INIS)
Yavneh, I.
1997-01-01
In, 1984 Gupta et al. introduced a compact fourth-order finite-difference convection-diffusion operator with some very favorable properties. In particular, this scheme does not seem to suffer excessively from spurious oscillatory behavior, and it converges with standard methods such as Gauss Seidel or SOR (hence, multigrid) regardless of the diffusion. This scheme has been rederived, developed (including some variations), and applied in both convection-diffusion and Navier-Stokes equations by several authors. Accurate solutions to high Reynolds-number flow problems at relatively coarse resolutions have been reported. These solutions were often compared to those obtained by lower order discretizations, such as second-order central differences and first-order upstream discretizations. The latter, it was stated, achieved far less accurate results due to the artificial viscosity, which the compact scheme did not include. We show here that, while the compact scheme indeed does not suffer from a cross-stream artificial viscosity (as does the first-order upstream scheme when the characteristic direction is not aligned with the grid), it does include a streamwise artificial viscosity that is inversely proportional to the natural viscosity. This term is not always benign. 7 refs., 1 fig., 1 tab
Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation
International Nuclear Information System (INIS)
Liu Yingchuan; Kuang Leman
2011-01-01
In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that the visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.
Chu, Chunlei; Stoffa, Paul L.; Seif, Roustam
2009-01-01
We present two Lax‐Wendroff type high‐order time stepping schemes and apply them to solving the 3D elastic wave equation. The proposed schemes have the same format as the Taylor series expansion based schemes, only with modified temporal extrapolation coefficients. We demonstrate by both theoretical analysis and numerical examples that the modified schemes significantly improve the stability conditions.
Validation of a RANS transition model using a high-order weighted compact nonlinear scheme
Tu, GuoHua; Deng, XiaoGang; Mao, MeiLiang
2013-04-01
A modified transition model is given based on the shear stress transport (SST) turbulence model and an intermittency transport equation. The energy gradient term in the original model is replaced by flow strain rate to saving computational costs. The model employs local variables only, and then it can be conveniently implemented in modern computational fluid dynamics codes. The fifth-order weighted compact nonlinear scheme and the fourth-order staggered scheme are applied to discrete the governing equations for the purpose of minimizing discretization errors, so as to mitigate the confusion between numerical errors and transition model errors. The high-order package is compared with a second-order TVD method on simulating the transitional flow of a flat plate. Numerical results indicate that the high-order package give better grid convergence property than that of the second-order method. Validation of the transition model is performed for transitional flows ranging from low speed to hypersonic speed.
High-order asynchrony-tolerant finite difference schemes for partial differential equations
Aditya, Konduri; Donzis, Diego A.
2017-12-01
Synchronizations of processing elements (PEs) in massively parallel simulations, which arise due to communication or load imbalances between PEs, significantly affect the scalability of scientific applications. We have recently proposed a method based on finite-difference schemes to solve partial differential equations in an asynchronous fashion - synchronization between PEs is relaxed at a mathematical level. While standard schemes can maintain their stability in the presence of asynchrony, their accuracy is drastically affected. In this work, we present a general methodology to derive asynchrony-tolerant (AT) finite difference schemes of arbitrary order of accuracy, which can maintain their accuracy when synchronizations are relaxed. We show that there are several choices available in selecting a stencil to derive these schemes and discuss their effect on numerical and computational performance. We provide a simple classification of schemes based on the stencil and derive schemes that are representative of different classes. Their numerical error is rigorously analyzed within a statistical framework to obtain the overall accuracy of the solution. Results from numerical experiments are used to validate the performance of the schemes.
A stable higher order space time Galerkin marching-on-in-time scheme
Pray, Andrew J.
2013-07-01
We present a method for the stable solution of time-domain integral equations. The method uses a technique developed in [1] to accurately evaluate matrix elements. As opposed to existing stabilization schemes, the method presented uses higher order basis functions in time to improve the accuracy of the solver. The method is validated by showing convergence in temporal basis function order, time step size, and geometric discretization order. © 2013 IEEE.
Analysis and Improvement of the Generic Higher-Order Masking Scheme of FSE 2012
Roy, Arnab; Venkatesh, Srinivas Vivek
2013-01-01
Masking is a well-known technique used to prevent block cipher implementations from side-channel attacks. Higher-order side channel attacks (e.g. higher-order DPA attack) on widely used block cipher like AES have motivated the design of efficient higher-order masking schemes. Indeed, it is known that as the masking order increases, the difficulty of side-channel attack increases exponentially. However, the main problem in higher-order masking is to design an efficient and secure technique for...
Directory of Open Access Journals (Sweden)
Yulihardi
2015-07-01
Full Text Available Koto Timur sub-district of Padang Pariaman, revolving funds by the women's savings and loans to Group Activity Management Unit and analyzing the effect of channeling funds to changes in income. The research method with a descriptive approach to the analysis based on the technical guidance of the PNPM-MP by the Directorate General of Community and Village Year 2008 and regression. The population in this study is the whole group SPP in District V East Koto with 74 members on 3 Nagari, with a sample of 30 people. Results of socialization that understanding of the goals and objectives of the PNPM-MP as much as 63.33%, while 36.67% of them do not understand, from the aspect of the use of funds 70% of the group is the recipient of poor households (RTM and 30% are not poor households (non-RTM. 66.67% of the group receiving states can increase revenues increased 33.33% said no. Refunds showed 83.33% and 16.67% current substandard. Members who obtained a loan (SPP, 80% stated that their efforts receive guidance / assistance of the technical team and the facilitator. There was no significant effect of the amount of lending revolving fund SPP in increased revenues members of the group. Suggested improvements in the implementation of programs in the field, especially in the dissemination to the public, especially to members of the group and that the board is more selective and better yet in selecting loan recipients in assessing the feasibility of the business.
International Nuclear Information System (INIS)
Abgrall, Remi; Mezine, Mohamed
2003-01-01
The aim of this paper is to construct upwind residual distribution schemes for the time accurate solution of hyperbolic conservation laws. To do so, we evaluate a space-time fluctuation based on a space-time approximation of the solution and develop new residual distribution schemes which are extensions of classical steady upwind residual distribution schemes. This method has been applied to the solution of scalar advection equation and to the solution of the compressible Euler equations both in two space dimensions. The first version of the scheme is shown to be, at least in its first order version, unconditionally energy stable and possibly conditionally monotonicity preserving. Using an idea of Csik et al. [Space-time residual distribution schemes for hyperbolic conservation laws, 15th AIAA Computational Fluid Dynamics Conference, Anahein, CA, USA, AIAA 2001-2617, June 2001], we modify the formulation to end up with a scheme that is unconditionally energy stable and unconditionally monotonicity preserving. Several numerical examples are shown to demonstrate the stability and accuracy of the method
A simple smoothness indicator for the WENO scheme with adaptive order
Huang, Cong; Chen, Li Li
2018-01-01
The fifth order WENO scheme with adaptive order is competent for solving hyperbolic conservation laws, its reconstruction is a convex combination of a fifth order linear reconstruction and three third order linear reconstructions. Note that, on uniform mesh, the computational cost of smoothness indicator for fifth order linear reconstruction is comparable with the sum of ones for three third order linear reconstructions, thus it is too heavy; on non-uniform mesh, the explicit form of smoothness indicator for fifth order linear reconstruction is difficult to be obtained, and its computational cost is much heavier than the one on uniform mesh. In order to overcome these problems, a simple smoothness indicator for fifth order linear reconstruction is proposed in this paper.
Class of unconditionally stable second-order implicit schemes for hyperbolic and parabolic equations
International Nuclear Information System (INIS)
Lui, H.C.
The linearized Burgers equation is considered as a model u/sub t/ tau/sub x/ = bu/sub xx/, where the subscripts t and x denote the derivatives of the function u with respect to time t and space x; a and b are constants (b greater than or equal to 0). Numerical schemes for solving the equation are described that are second-order accurate, unconditionally stable, and dissipative of higher order. (U.S.)
Solution of Euler unsteady equations using a second order numerical scheme
International Nuclear Information System (INIS)
Devos, J.P.
1992-08-01
In thermal power plants, the steam circuits experience incidents due to the noise and vibration induced by trans-sonic flow. In these configurations, the compressible fluid can be considered the perfect ideal. Euler equations therefore constitute a good model. However, processing of the discontinuities induced by the shockwaves are a particular problem. We give a bibliographical synthesis of the work done on this subject. The research by Roe and Harten leads to TVD (Total Variation Decreasing) type schemes. These second order schemes generate no oscillation and converge towards physically acceptable weak solutions. (author). 12 refs
Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José
2013-11-18
We present a high-order UWB pulses generator based on a microwave photonic filter which provides a set of positive and negative samples by using the slicing of an incoherent optical source and the phase inversion in a Mach-Zehnder modulator. The simple scalability and high reconfigurability of the system permit a better accomplishment of the FCC requirements. Moreover, the proposed scheme permits an easy adaptation to pulse amplitude modulation, bi phase modulation, pulse shape modulation and pulse position modulation. The flexibility of the scheme for being adaptable to multilevel modulation formats permits to increase the transmission bit rate by using hybrid modulation formats.
LOO: a low-order nonlinear transport scheme for acceleration of method of characteristics
International Nuclear Information System (INIS)
Li, Lulu; Smith, Kord; Forget, Benoit; Ferrer, Rodolfo
2015-01-01
This paper presents a new physics-based multi-grid nonlinear acceleration method: the low-order operator method, or LOO. LOO uses a coarse space-angle multi-group method of characteristics (MOC) neutron transport calculation to accelerate the fine space-angle MOC calculation. LOO is designed to capture more angular effects than diffusion-based acceleration methods through a transport-based low-order solver. LOO differs from existing transport-based acceleration schemes in that it emphasizes simplified coarse space-angle characteristics and preserves physics in quadrant phase-space. The details of the method, including the restriction step, the low-order iterative solver and the prolongation step are discussed in this work. LOO shows comparable convergence behavior to coarse mesh finite difference on several two-dimensional benchmark problems while not requiring any under-relaxation, making it a robust acceleration scheme. (author)
Computational Aero-Acoustic Using High-order Finite-Difference Schemes
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær
2007-01-01
are solved using the in-house flow solver EllipSys2D/3D which is a second-order finite volume code. The acoustic solution is found by solving the acoustic equations using high-order finite difference schemes. The incompressible flow equations and the acoustic equations are solved at the same time levels......In this paper, a high-order technique to accurately predict flow-generated noise is introduced. The technique consists of solving the viscous incompressible flow equations and inviscid acoustic equations using a incompressible/compressible splitting technique. The incompressible flow equations...
Periphony-Lattice Mixed-Order Ambisonic Scheme for Spherical Microphone Arrays
DEFF Research Database (Denmark)
Chang, Jiho; Marschall, Marton
2018-01-01
to performance that is independent of the incident direction of the sound waves. On the other hand, mixed-order ambisonic (MOA) schemes that select an appropriate subset of spherical harmonics can improve the performance for horizontal directions at the expense of other directions. This paper proposes an MOA......Most methods for sound field reconstruction and spherical beamforming with spherical microphone arrays are mathematically based on the spherical harmonics expansion. In many cases, this expansion is truncated at a certain order as in higher order ambisonics (HOA). This truncation leads...
Higher-order schemes for the Laplace transformation method for parabolic problems
Douglas, C.
2011-01-01
In this paper we solve linear parabolic problems using the three stage noble algorithms. First, the time discretization is approximated using the Laplace transformation method, which is both parallel in time (and can be in space, too) and extremely high order convergent. Second, higher-order compact schemes of order four and six are used for the the spatial discretization. Finally, the discretized linear algebraic systems are solved using multigrid to show the actual convergence rate for numerical examples, which are compared to other numerical solution methods. © 2011 Springer-Verlag.
International Nuclear Information System (INIS)
Surya Mohan, P.; Tarvainen, Tanja; Schweiger, Martin; Pulkkinen, Aki; Arridge, Simon R.
2011-01-01
Highlights: → We developed a variable order global basis scheme to solve light transport in 3D. → Based on finite elements, the method can be applied to a wide class of geometries. → It is computationally cheap when compared to the fixed order scheme. → Comparisons with local basis method and other models demonstrate its accuracy. → Addresses problems encountered n modeling of light transport in human brain. - Abstract: We propose the P N approximation based on a finite element framework for solving the radiative transport equation with optical tomography as the primary application area. The key idea is to employ a variable order spherical harmonic expansion for angular discretization based on the proximity to the source and the local scattering coefficient. The proposed scheme is shown to be computationally efficient compared to employing homogeneously high orders of expansion everywhere in the domain. In addition the numerical method is shown to accurately describe the void regions encountered in the forward modeling of real-life specimens such as infant brains. The accuracy of the method is demonstrated over three model problems where the P N approximation is compared against Monte Carlo simulations and other state-of-the-art methods.
Energy Technology Data Exchange (ETDEWEB)
Ismagilov, Timur Z., E-mail: ismagilov@academ.org
2015-02-01
This paper presents a second order finite volume scheme for numerical solution of Maxwell's equations with discontinuous dielectric permittivity and magnetic permeability on unstructured meshes. The scheme is based on Godunov scheme and employs approaches of Van Leer and Lax–Wendroff to increase the order of approximation. To keep the second order of approximation near dielectric permittivity and magnetic permeability discontinuities a novel technique for gradient calculation and limitation is applied near discontinuities. Results of test computations for problems with linear and curvilinear discontinuities confirm second order of approximation. The scheme was applied to modelling propagation of electromagnetic waves inside photonic crystal waveguides with a bend.
A Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin for Diffusion
Huynh, H. T.
2009-01-01
We introduce a new approach to high-order accuracy for the numerical solution of diffusion problems by solving the equations in differential form using a reconstruction technique. The approach has the advantages of simplicity and economy. It results in several new high-order methods including a simplified version of discontinuous Galerkin (DG). It also leads to new definitions of common value and common gradient quantities at each interface shared by the two adjacent cells. In addition, the new approach clarifies the relations among the various choices of new and existing common quantities. Fourier stability and accuracy analyses are carried out for the resulting schemes. Extensions to the case of quadrilateral meshes are obtained via tensor products. For the two-point boundary value problem (steady state), it is shown that these schemes, which include most popular DG methods, yield exact common interface quantities as well as exact cell average solutions for nearly all cases.
Relaxation approximations to second-order traffic flow models by high-resolution schemes
International Nuclear Information System (INIS)
Nikolos, I.K.; Delis, A.I.; Papageorgiou, M.
2015-01-01
A relaxation-type approximation of second-order non-equilibrium traffic models, written in conservation or balance law form, is considered. Using the relaxation approximation, the nonlinear equations are transformed to a semi-linear diagonilizable problem with linear characteristic variables and stiff source terms with the attractive feature that neither Riemann solvers nor characteristic decompositions are in need. In particular, it is only necessary to provide the flux and source term functions and an estimate of the characteristic speeds. To discretize the resulting relaxation system, high-resolution reconstructions in space are considered. Emphasis is given on a fifth-order WENO scheme and its performance. The computations reported demonstrate the simplicity and versatility of relaxation schemes as numerical solvers
High-Order Multioperator Compact Schemes for Numerical Simulation of Unsteady Subsonic Airfoil Flow
Savel'ev, A. D.
2018-02-01
On the basis of high-order schemes, the viscous gas flow over the NACA2212 airfoil is numerically simulated at a free-stream Mach number of 0.3 and Reynolds numbers ranging from 103 to 107. Flow regimes sequentially varying due to variations in the free-stream viscosity are considered. Vortex structures developing on the airfoil surface are investigated, and a physical interpretation of this phenomenon is given.
Directory of Open Access Journals (Sweden)
Hua Wang
2016-01-01
Full Text Available This paper proposes a new fractional-order approach for synchronization of a class of fractional-order chaotic systems in the presence of model uncertainties and external disturbances. A simple but practical method to synchronize many familiar fractional-order chaotic systems has been put forward. A new theorem is proposed for a class of cascade fractional-order systems and it is applied in chaos synchronization. Combined with the fact that the states of the fractional chaotic systems are bounded, many coupled items can be taken as zero items. Then, the whole system can be simplified greatly and a simpler controller can be derived. Finally, the validity of the presented scheme is illustrated by numerical simulations of the fractional-order unified system.
NLL order contributions for exclusive processes in jet-calculus scheme
International Nuclear Information System (INIS)
Tanaka, Hidekazu
2011-01-01
We investigate the next-to-leading logarithmic (NLL) order contributions of the quantum chromodynamics (QCD) for exclusive processes evaluated by Monte Carlo methods. Ambiguities of the Monte Carlo calculation based on the leading-logarithmic (LL) order approximations are pointed out. To remove these ambiguities, we take into account the NLL order terms. In a model presented in this paper, interference contributions due to the NLL order terms are included for the generation of the transverse momenta in initial-state parton radiations. Furthermore, a kinematical constraint due to parton radiation, which is also a part of the NLL order contributions, is taken into account. This method guarantees a proper phase space boundary for hard scattering cross sections as well as parton radiations. As an example, cross sections for lepton pair productions mediated by a virtual photon in hadron-hadron collisions are calculated, using the jet-calculus scheme for flavor nonsinglet quarks. (author)
A high-order solver for aerodynamic flow simulations and comparison of different numerical schemes
Mikhaylov, Sergey; Morozov, Alexander; Podaruev, Vladimir; Troshin, Alexey
2017-11-01
An implementation of high order of accuracy Discontinuous Galerkin method is presented. Reconstruction is done for the conservative variables. Gradients are calculated using the BR2 method. Coordinate transformations are done by serendipity elements. In computations with schemes of order higher than 2, curvature of the mesh lines is taken into account. A comparison with finite volume methods is performed, including WENO method with linear weights and single quadrature point on a cell side. The results of the following classical tests are presented: subsonic flow around a circular cylinder in an ideal gas, convection of two-dimensional isentropic vortex, and decay of the Taylor-Green vortex.
A New Grünwald-Letnikov Derivative Derived from a Second-Order Scheme
Directory of Open Access Journals (Sweden)
B. A. Jacobs
2015-01-01
Full Text Available A novel derivation of a second-order accurate Grünwald-Letnikov-type approximation to the fractional derivative of a function is presented. This scheme is shown to be second-order accurate under certain modifications to account for poor accuracy in approximating the asymptotic behavior near the lower limit of differentiation. Some example functions are chosen and numerical results are presented to illustrate the efficacy of this new method over some other popular choices for discretizing fractional derivatives.
High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains
Fisher, Travis C.; Carpenter, Mark H.
2013-01-01
Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.
Haussaire, J.-M.; Bocquet, M.
2015-08-01
Bocquet and Sakov (2013) have introduced a low-order model based on the coupling of the chaotic Lorenz-95 model which simulates winds along a mid-latitude circle, with the transport of a tracer species advected by this zonal wind field. This model, named L95-T, can serve as a playground for testing data assimilation schemes with an online model. Here, the tracer part of the model is extended to a reduced photochemistry module. This coupled chemistry meteorology model (CCMM), the L95-GRS model, mimics continental and transcontinental transport and the photochemistry of ozone, volatile organic compounds and nitrogen oxides. Its numerical implementation is described. The model is shown to reproduce the major physical and chemical processes being considered. L95-T and L95-GRS are specifically designed and useful for testing advanced data assimilation schemes, such as the iterative ensemble Kalman smoother (IEnKS) which combines the best of ensemble and variational methods. These models provide useful insights prior to the implementation of data assimilation methods on larger models. We illustrate their use with data assimilation schemes on preliminary, yet instructive numerical experiments. In particular, online and offline data assimilation strategies can be conveniently tested and discussed with this low-order CCMM. The impact of observed chemical species concentrations on the wind field can be quantitatively estimated. The impacts of the wind chaotic dynamics and of the chemical species non-chaotic but highly nonlinear dynamics on the data assimilation strategies are illustrated.
International Nuclear Information System (INIS)
Zhong Xiaolin; Tatineni, Mahidhar
2003-01-01
The direct numerical simulation of receptivity, instability and transition of hypersonic boundary layers requires high-order accurate schemes because lower-order schemes do not have an adequate accuracy level to compute the large range of time and length scales in such flow fields. The main limiting factor in the application of high-order schemes to practical boundary-layer flow problems is the numerical instability of high-order boundary closure schemes on the wall. This paper presents a family of high-order non-uniform grid finite difference schemes with stable boundary closures for the direct numerical simulation of hypersonic boundary-layer transition. By using an appropriate grid stretching, and clustering grid points near the boundary, high-order schemes with stable boundary closures can be obtained. The order of the schemes ranges from first-order at the lowest, to the global spectral collocation method at the highest. The accuracy and stability of the new high-order numerical schemes is tested by numerical simulations of the linear wave equation and two-dimensional incompressible flat plate boundary layer flows. The high-order non-uniform-grid schemes (up to the 11th-order) are subsequently applied for the simulation of the receptivity of a hypersonic boundary layer to free stream disturbances over a blunt leading edge. The steady and unsteady results show that the new high-order schemes are stable and are able to produce high accuracy for computations of the nonlinear two-dimensional Navier-Stokes equations for the wall bounded supersonic flow
Energy Technology Data Exchange (ETDEWEB)
Lee, Won Woong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)
2016-05-15
The existing nuclear system analysis codes such as RELAP5, TRAC, MARS and SPACE use the first-order numerical scheme in both space and time discretization. However, the first-order scheme is highly diffusive and less accurate due to the first order of truncation error. So, the numerical diffusion problem which makes the gradients to be smooth in the regions where the gradients should be steep can occur during the analysis, which often predicts less conservatively than the reality. Therefore, the first-order scheme is not always useful in many applications such as boron solute transport. RELAP7 which is an advanced nuclear reactor system safety analysis code using the second-order numerical scheme in temporal and spatial discretization is being developed by INL (Idaho National Laboratory) since 2011. Therefore, for better predictive performance of the safety of nuclear reactor systems, more accurate nuclear reactor system analysis code is needed for Korea too to follow the global trend of nuclear safety analysis. Thus, this study will evaluate the feasibility of applying the higher-order numerical scheme to the next generation nuclear system analysis code to provide the basis for the better nuclear system analysis code development. The accuracy is enhanced in the spatial second-order scheme and the numerical diffusion problem is alleviated while indicates significantly lower maximum Courant limit and the numerical dispersion issue which produces spurious oscillation and non-physical results in the higher-order scheme. If the spatial scheme is the first order scheme then the temporal second-order scheme provides almost the same result with the temporal firstorder scheme. However, when the temporal second order scheme and the spatial second-order scheme are applied together, the numerical dispersion can occur more severely. For the more in-depth study, the verification and validation of the NTS code built in MATLAB will be conducted further and expanded to handle two
A higher order space-time Galerkin scheme for time domain integral equations
Pray, Andrew J.; Beghein, Yves; Nair, Naveen V.; Cools, Kristof; Bagci, Hakan; Shanker, Balasubramaniam
2014-01-01
Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method's efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.
International Nuclear Information System (INIS)
Delfin L, A.; Alonso V, G.; Valle G, E. del
2003-01-01
In this work two nodal schemes of finite element are presented, one of second and the other of third order of accurate that allow to determine the radial distribution of power starting from the corresponding reactivities.The schemes here developed were obtained taking as starting point the equation developed by Driscoll et al, the one which is based on the diffusion approach of 1-1/2 energy groups. This equation relates the power fraction of an assemble with their reactivity and with the power fractions and reactivities of the assemblies that its surround it. Driscoll and collaborators they solve in form approximate such equation supposing that the reactivity of each assemble it is but a lineal function of the burnt one of the fuel. The spatial approach carries out it with the classic technique of finite differences centered in mesh. Nevertheless that the algebraic system to which its arrive it can be solved without more considerations introduce some additional suppositions and adjustment parameters that it allows them to predict results comparable to those contributed by three dimensions analysis and this way to reduce the one obtained error when its compare their results with those of a production code like CASMO. Also in the two schemes that here are presented the same approaches of Driscoll were used being obtained errors of the one 10% and of 5% for the second schemes and third order respectively for a test case that it was built starting from data of the Cycle 1 of the Unit 1 of the Laguna Verde Nucleo electric plant. These errors its were obtained when comparing with a computer program based on the matrix response method. It is sought to have this way a quick and efficient tool for the multicycle analysis in the fuel management. However, this model presents problems in the appropriate prediction of the average burnt of the nucleus and of the burnt one by lot. (Author)
Development and application of a third order scheme of finite differences centered in mesh
International Nuclear Information System (INIS)
Delfin L, A.; Alonso V, G.; Valle G, E. del
2003-01-01
In this work the development of a third order scheme of finite differences centered in mesh is presented and it is applied in the numerical solution of those diffusion equations in multi groups in stationary state and X Y geometry. Originally this scheme was developed by Hennart and del Valle for the monoenergetic diffusion equation with a well-known source and they show that the one scheme is of third order when comparing the numerical solution with the analytical solution of a model problem using several mesh refinements and boundary conditions. The scheme by them developed it also introduces the application of numeric quadratures to evaluate the rigidity matrices and of mass that its appear when making use of the finite elements method of Galerkin. One of the used quadratures is the open quadrature of 4 points, no-standard, of Newton-Cotes to evaluate in approximate form the elements of the rigidity matrices. The other quadrature is that of 3 points of Radau that it is used to evaluate the elements of all the mass matrices. One of the objectives of these quadratures are to eliminate the couplings among the Legendre moments 0 and 1 associated to the left and right faces as those associated to the inferior and superior faces of each cell of the discretization. The other objective is to satisfy the particles balance in weighed form in each cell. In this work it expands such development to multiplicative means considering several energy groups. There are described diverse details inherent to the technique, particularly those that refer to the simplification of the algebraic systems that appear due to the space discretization. Numerical results for several test problems are presented and are compared with those obtained with other nodal techniques. (Author)
Construction of low dissipative high-order well-balanced filter schemes for non-equilibrium flows
International Nuclear Information System (INIS)
Wang Wei; Yee, H.C.; Sjoegreen, Bjoern; Magin, Thierry; Shu, Chi-Wang
2011-01-01
The goal of this paper is to generalize the well-balanced approach for non-equilibrium flow studied by Wang et al. (2009) to a class of low dissipative high-order shock-capturing filter schemes and to explore more advantages of well-balanced schemes in reacting flows. More general 1D and 2D reacting flow models and new examples of shock turbulence interactions are provided to demonstrate the advantage of well-balanced schemes. The class of filter schemes developed by Yee et al. (1999) , Sjoegreen and Yee (2004) and Yee and Sjoegreen (2007) consist of two steps, a full time step of spatially high-order non-dissipative base scheme and an adaptive non-linear filter containing shock-capturing dissipation. A good property of the filter scheme is that the base scheme and the filter are stand-alone modules in designing. Therefore, the idea of designing a well-balanced filter scheme is straightforward, i.e. choosing a well-balanced base scheme with a well-balanced filter (both with high-order accuracy). A typical class of these schemes shown in this paper is the high-order central difference schemes/predictor-corrector (PC) schemes with a high-order well-balanced WENO filter. The new filter scheme with the well-balanced property will gather the features of both filter methods and well-balanced properties: it can preserve certain steady-state solutions exactly; it is able to capture small perturbations, e.g. turbulence fluctuations; and it adaptively controls numerical dissipation. Thus it shows high accuracy, efficiency and stability in shock/turbulence interactions. Numerical examples containing 1D and 2D smooth problems, 1D stationary contact discontinuity problem and 1D turbulence/shock interactions are included to verify the improved accuracy, in addition to the well-balanced behavior.
Directory of Open Access Journals (Sweden)
Rahmawati Ahfan
2015-03-01
Full Text Available Before Undang-Undang Number 6 Year 2014 about Village was issued, there is no legislation that explicitly set the task, the function, the authority, budget the village government in the context of community empowerment. Objectives of the study is to identify rural community empowerment program before the enactment of Undang-Undang Nomor 6 Tahun 2014 and assess the empowerment community aspect in Undang-Undang Nomor 6 Tahun 2014. This study used a qualitative approach and are explanatory, with qualitative analysis techniques. Community empowerment programs in this study focus on 4 program (PNPM MP, Desa Peradaban, CSR and Posdaya not entirely relevant to Undang Undang Nomor 6 Tahun 2014 because government institutions in empowering involvement village structurally weak. The village administration has not carried out the empowerment function caused the absence of the community delegation of authority and financing from the district government. While community empowerment models villages that in accordance with Undang Undang Nomor 6 Tahun 2014 focused on aspects: the involvement of the community empowerment actor; The direction of community empowerment; A collaborative aspects village development in community empowerment; Community empowerment implementing; Institutionalization of community empowerment acceleration; and ethics/ a norm community empowerment.
Second-order splitting schemes for a class of reactive systems
International Nuclear Information System (INIS)
Ren Zhuyin; Pope, Stephen B.
2008-01-01
We consider the numerical time integration of a class of reaction-transport systems that are described by a set of ordinary differential equations for primary variables. In the governing equations, the terms involved may require the knowledge of secondary variables, which are functions of the primary variables. Specifically, we consider the case where, given the primary variables, the evaluation of the secondary variables is computationally expensive. To solve this class of reaction-transport equations, we develop and demonstrate several computationally efficient splitting schemes, wherein the portions of the governing equations containing chemical reaction terms are separated from those parts containing the transport terms. A computationally efficient solution to the transport sub-step is achieved through the use of linearization or predictor-corrector methods. The splitting schemes are applied to the reactive flow in a continuously stirred tank reactor (CSTR) with the Davis-Skodjie reaction model, to the CO+H 2 oxidation in a CSTR with detailed chemical kinetics, and to a reaction-diffusion system with an extension of the Oregonator model of the Belousov-Zhabotinsky reaction. As demonstrated in the test problems, the proposed splitting schemes, which yield efficient solutions to the transport sub-step, achieve second-order accuracy in time
A Statistically-Hiding Integer Commitment Scheme Based on Groups with Hidden Order
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Fujisaki, Eiichiro
2002-01-01
We present a statistically-hiding commitment scheme allowing commitment to arbitrary size integers, based on any (Abelian) group with certain properties, most importantly, that it is hard for the committer to compute its order. We also give efficient zero-knowledge protocols for proving knowledge...... input is chosen by the (possibly cheating) prover. - - Our results apply to any group with suitable properties. In particular, they apply to a much larger class of RSA moduli than the safe prime products proposed in [14] - Potential examples include RSA moduli, class groups and, with a slight...
Prasertwattana, Kanit; Shimizu, Yoshiaki; Chiadamrong, Navee
This paper studied the material ordering and inventory control of supply chain systems. The effect of controlling policies is analyzed under three different configurations of the supply chain systems, and the formulated problem has been solved by using an evolutional optimization method known as Differential Evolution (DE). The numerical results show that the coordinating policy with the incentive scheme outperforms the other policies and can improve the performance of the overall system as well as all members under the concept of supply chain management.
Asymptotically stable fourth-order accurate schemes for the diffusion equation on complex shapes
International Nuclear Information System (INIS)
Abarbanel, S.; Ditkowski, A.
1997-01-01
An algorithm which solves the multidimensional diffusion equation on complex shapes to fourth-order accuracy and is asymptotically stable in time is presented. This bounded-error result is achieved by constructing, on a rectangular grid, a differentiation matrix whose symmetric part is negative definite. The differentiation matrix accounts for the Dirichlet boundary condition by imposing penalty-like terms. Numerical examples in 2-D show that the method is effective even where standard schemes, stable by traditional definitions, fail. The ability of the paradigm to be applied to arbitrary geometric domains is an important feature of the algorithm. 5 refs., 14 figs
Directory of Open Access Journals (Sweden)
De Vuyst Florian
2016-11-01
Full Text Available In a recent paper [Poncet R., Peybernes M., Gasc T., De Vuyst F. (2016 Performance modeling of a compressible hydrodynamics solver on multicore CPUs, in “Parallel Computing: on the road to Exascale”], we have achieved the performance analysis of staggered Lagrange-remap schemes, a class of solvers widely used for hydrodynamics applications. This paper is devoted to the rethinking and redesign of the Lagrange-remap process for achieving better performance using today’s computing architectures. As an unintended outcome, the analysis has lead us to the discovery of a new family of solvers – the so-called Lagrange-flux schemes – that appear to be promising for the CFD community.
DEFF Research Database (Denmark)
Fasano, Andrea; Rasmussen, Henrik K.
2017-01-01
A third order accurate, in time and space, finite element scheme for the numerical simulation of three- dimensional time-dependent flow of the molecular stress function type of fluids in a generalized formu- lation is presented. The scheme is an extension of the K-BKZ Lagrangian finite element me...
A higher order space-time Galerkin scheme for time domain integral equations
Pray, Andrew J.
2014-12-01
Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method\\'s efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.
An Authenticated Key Agreement Scheme Based on Cyclic Automorphism Subgroups of Random Orders
Directory of Open Access Journals (Sweden)
Yang Jun
2017-01-01
Full Text Available Group-based cryptography is viewed as a modern cryptographic candidate solution to blocking quantum computer attacks, and key exchange protocols on the Internet are one of the primitives to ensure the security of communication. In 2016 Habeeb et al proposed a “textbook” key exchange protocol based on the semidirect product of two groups, which is insecure for use in real-world applications. In this paper, after discarding the unnecessary disguising notion of semidirect product in the protocol, we establish a simplified yet enhanced authenticated key agreement scheme based on cyclic automorphism subgroups of random orders by making hybrid use of certificates and symmetric-key encryption as challenge-and-responses in the public-key setting. Its passive security is formally analyzed, which is relative to the cryptographic hardness assumption of a computational number-theoretic problem. Cryptanalysis of this scheme shows that it is secure against the intruder-in-the-middle attack even in the worst case of compromising the signatures, and provides explicit key confirmation to both parties.
Ji, Xing; Zhao, Fengxiang; Shyy, Wei; Xu, Kun
2018-03-01
Most high order computational fluid dynamics (CFD) methods for compressible flows are based on Riemann solver for the flux evaluation and Runge-Kutta (RK) time stepping technique for temporal accuracy. The advantage of this kind of space-time separation approach is the easy implementation and stability enhancement by introducing more middle stages. However, the nth-order time accuracy needs no less than n stages for the RK method, which can be very time and memory consuming due to the reconstruction at each stage for a high order method. On the other hand, the multi-stage multi-derivative (MSMD) method can be used to achieve the same order of time accuracy using less middle stages with the use of the time derivatives of the flux function. For traditional Riemann solver based CFD methods, the lack of time derivatives in the flux function prevents its direct implementation of the MSMD method. However, the gas kinetic scheme (GKS) provides such a time accurate evolution model. By combining the second-order or third-order GKS flux functions with the MSMD technique, a family of high order gas kinetic methods can be constructed. As an extension of the previous 2-stage 4th-order GKS, the 5th-order schemes with 2 and 3 stages will be developed in this paper. Based on the same 5th-order WENO reconstruction, the performance of gas kinetic schemes from the 2nd- to the 5th-order time accurate methods will be evaluated. The results show that the 5th-order scheme can achieve the theoretical order of accuracy for the Euler equations, and present accurate Navier-Stokes solutions as well due to the coupling of inviscid and viscous terms in the GKS formulation. In comparison with Riemann solver based 5th-order RK method, the high order GKS has advantages in terms of efficiency, accuracy, and robustness, for all test cases. The 4th- and 5th-order GKS have the same robustness as the 2nd-order scheme for the capturing of discontinuous solutions. The current high order MSMD GKS is a
International Nuclear Information System (INIS)
Zhang Li-Min; Sun Ke-Hui; Liu Wen-Hao; He Shao-Bo
2017-01-01
In this paper, Adomian decomposition method (ADM) with high accuracy and fast convergence is introduced to solve the fractional-order piecewise-linear (PWL) hyperchaotic system. Based on the obtained hyperchaotic sequences, a novel color image encryption algorithm is proposed by employing a hybrid model of bidirectional circular permutation and DNA masking. In this scheme, the pixel positions of image are scrambled by circular permutation, and the pixel values are substituted by DNA sequence operations. In the DNA sequence operations, addition and substraction operations are performed according to traditional addition and subtraction in the binary, and two rounds of addition rules are used to encrypt the pixel values. The simulation results and security analysis show that the hyperchaotic map is suitable for image encryption, and the proposed encryption algorithm has good encryption effect and strong key sensitivity. It can resist brute-force attack, statistical attack, differential attack, known-plaintext, and chosen-plaintext attacks. (paper)
Immersed boundary method combined with a high order compact scheme on half-staggered meshes
International Nuclear Information System (INIS)
Księżyk, M; Tyliszczak, A
2014-01-01
This paper presents the results of computations of incompressible flows performed with a high-order compact scheme and the immersed boundary method. The solution algorithm is based on the projection method implemented using the half-staggered grid arrangement in which the velocity components are stored in the same locations while the pressure nodes are shifted half a cell size. The time discretization is performed using the predictor-corrector method in which the forcing terms used in the immersed boundary method acts in both steps. The solution algorithm is verified based on 2D flow problems (flow in a lid-driven skewed cavity, flow over a backward facing step) and turns out to be very accurate on computational meshes comparable with ones used in the classical approaches, i.e. not based on the immersed boundary method.
Potocki, J K; Tharp, H S
1993-01-01
The success of treating cancerous tissue with heat depends on the temperature elevation, the amount of tissue elevated to that temperature, and the length of time that the tissue temperature is elevated. In clinical situations the temperature of most of the treated tissue volume is unknown, because only a small number of temperature sensors can be inserted into the tissue. A state space model based on a finite difference approximation of the bioheat transfer equation (BHTE) is developed for identification purposes. A full-order extended Kalman filter (EKF) is designed to estimate both the unknown blood perfusion parameters and the temperature at unmeasured locations. Two reduced-order estimators are designed as computationally less intensive alternatives to the full-order EKF. Simulation results show that the success of the estimation scheme depends strongly on the number and location of the temperature sensors. Superior results occur when a temperature sensor exists in each unknown blood perfusion zone, and the number of sensors is at least as large as the number of unknown perfusion zones. Unacceptable results occur when there are more unknown perfusion parameters than temperature sensors, or when the sensors are placed in locations that do not sample the unknown perfusion information.
Rokhzadi, Arman; Mohammadian, Abdolmajid; Charron, Martin
2018-01-01
The objective of this paper is to develop an optimized implicit-explicit (IMEX) Runge-Kutta scheme for atmospheric applications focusing on stability and accuracy. Following the common terminology, the proposed method is called IMEX-SSP2(2,3,2), as it has second-order accuracy and is composed of diagonally implicit two-stage and explicit three-stage parts. This scheme enjoys the Strong Stability Preserving (SSP) property for both parts. This new scheme is applied to nonhydrostatic compressible Boussinesq equations in two different arrangements, including (i) semiimplicit and (ii) Horizontally Explicit-Vertically Implicit (HEVI) forms. The new scheme preserves the SSP property for larger regions of absolute monotonicity compared to the well-studied scheme in the same class. In addition, numerical tests confirm that the IMEX-SSP2(2,3,2) improves the maximum stable time step as well as the level of accuracy and computational cost compared to other schemes in the same class. It is demonstrated that the A-stability property as well as satisfying "second-stage order" and stiffly accurate conditions lead the proposed scheme to better performance than existing schemes for the applications examined herein.
Boscheri, Walter; Dumbser, Michael; Loubère, Raphaël; Maire, Pierre-Henri
2018-04-01
In this paper we develop a conservative cell-centered Lagrangian finite volume scheme for the solution of the hydrodynamics equations on unstructured multidimensional grids. The method is derived from the Eucclhyd scheme discussed in [47,43,45]. It is second-order accurate in space and is combined with the a posteriori Multidimensional Optimal Order Detection (MOOD) limiting strategy to ensure robustness and stability at shock waves. Second-order of accuracy in time is achieved via the ADER (Arbitrary high order schemes using DERivatives) approach. A large set of numerical test cases is proposed to assess the ability of the method to achieve effective second order of accuracy on smooth flows, maintaining an essentially non-oscillatory behavior on discontinuous profiles, general robustness ensuring physical admissibility of the numerical solution, and precision where appropriate.
A new color image encryption scheme using CML and a fractional-order chaotic system.
Directory of Open Access Journals (Sweden)
Xiangjun Wu
Full Text Available The chaos-based image cryptosystems have been widely investigated in recent years to provide real-time encryption and transmission. In this paper, a novel color image encryption algorithm by using coupled-map lattices (CML and a fractional-order chaotic system is proposed to enhance the security and robustness of the encryption algorithms with a permutation-diffusion structure. To make the encryption procedure more confusing and complex, an image division-shuffling process is put forward, where the plain-image is first divided into four sub-images, and then the position of the pixels in the whole image is shuffled. In order to generate initial conditions and parameters of two chaotic systems, a 280-bit long external secret key is employed. The key space analysis, various statistical analysis, information entropy analysis, differential analysis and key sensitivity analysis are introduced to test the security of the new image encryption algorithm. The cryptosystem speed is analyzed and tested as well. Experimental results confirm that, in comparison to other image encryption schemes, the new algorithm has higher security and is fast for practical image encryption. Moreover, an extensive tolerance analysis of some common image processing operations such as noise adding, cropping, JPEG compression, rotation, brightening and darkening, has been performed on the proposed image encryption technique. Corresponding results reveal that the proposed image encryption method has good robustness against some image processing operations and geometric attacks.
International Nuclear Information System (INIS)
Clarisse, J.M.
2007-01-01
A numerical scheme for computing linear Lagrangian perturbations of spherically symmetric flows of gas dynamics is proposed. This explicit first-order scheme uses the Roe method in Lagrangian coordinates, for computing the radial spherically symmetric mean flow, and its linearized version, for treating the three-dimensional linear perturbations. Fulfillment of the geometric conservation law discrete formulations for both the mean flow and its perturbation is ensured. This scheme capabilities are illustrated by the computation of free-surface mode evolutions at the boundaries of a spherical hollow shell undergoing an homogeneous cumulative compression, showing excellent agreement with reference results. (author)
Ullah, Asmat; Chen, Wen; Khan, Mushtaq Ahmad
2017-07-01
This paper introduces a fractional order total variation (FOTV) based model with three different weights in the fractional order derivative definition for multiplicative noise removal purpose. The fractional-order Euler Lagrange equation which is a highly non-linear partial differential equation (PDE) is obtained by the minimization of the energy functional for image restoration. Two numerical schemes namely an iterative scheme based on the dual theory and majorization- minimization algorithm (MMA) are used. To improve the restoration results, we opt for an adaptive parameter selection procedure for the proposed model by applying the trial and error method. We report numerical simulations which show the validity and state of the art performance of the fractional-order model in visual improvement as well as an increase in the peak signal to noise ratio comparing to corresponding methods. Numerical experiments also demonstrate that MMAbased methodology is slightly better than that of an iterative scheme.
Ohwada, Taku; Shibata, Yuki; Kato, Takuma; Nakamura, Taichi
2018-06-01
Developed is a high-order accurate shock-capturing scheme for the compressible Euler/Navier-Stokes equations; the formal accuracy is 5th order in space and 4th order in time. The performance and efficiency of the scheme are validated in various numerical tests. The main ingredients of the scheme are nothing special; they are variants of the standard numerical flux, MUSCL, the usual Lagrange's polynomial and the conventional Runge-Kutta method. The scheme can compute a boundary layer accurately with a rational resolution and capture a stationary contact discontinuity sharply without inner points. And yet it is endowed with high resistance against shock anomalies (carbuncle phenomenon, post-shock oscillations, etc.). A good balance between high robustness and low dissipation is achieved by blending three types of numerical fluxes according to physical situation in an intuitively easy-to-understand way. The performance of the scheme is largely comparable to that of WENO5-Rusanov, while its computational cost is 30-40% less than of that of the advanced scheme.
Simulations of viscous and compressible gas-gas flows using high-order finite difference schemes
Capuano, M.; Bogey, C.; Spelt, P. D. M.
2018-05-01
A computational method for the simulation of viscous and compressible gas-gas flows is presented. It consists in solving the Navier-Stokes equations associated with a convection equation governing the motion of the interface between two gases using high-order finite-difference schemes. A discontinuity-capturing methodology based on sensors and a spatial filter enables capturing shock waves and deformable interfaces. One-dimensional test cases are performed as validation and to justify choices in the numerical method. The results compare well with analytical solutions. Shock waves and interfaces are accurately propagated, and remain sharp. Subsequently, two-dimensional flows are considered including viscosity and thermal conductivity. In Richtmyer-Meshkov instability, generated on an air-SF6 interface, the influence of the mesh refinement on the instability shape is studied, and the temporal variations of the instability amplitude is compared with experimental data. Finally, for a plane shock wave propagating in air and impacting a cylindrical bubble filled with helium or R22, numerical Schlieren pictures obtained using different grid refinements are found to compare well with experimental shadow-photographs. The mass conservation is verified from the temporal variations of the mass of the bubble. The mean velocities of pressure waves and bubble interface are similar to those obtained experimentally.
Zhu, Jun; Shu, Chi-Wang
2017-11-01
A new class of high order weighted essentially non-oscillatory (WENO) schemes (Zhu and Qiu, 2016, [50]) is applied to solve Euler equations with steady state solutions. It is known that the classical WENO schemes (Jiang and Shu, 1996, [23]) might suffer from slight post-shock oscillations. Even though such post-shock oscillations are small enough in magnitude and do not visually affect the essentially non-oscillatory property, they are truly responsible for the residue to hang at a truncation error level instead of converging to machine zero. With the application of this new class of WENO schemes, such slight post-shock oscillations are essentially removed and the residue can settle down to machine zero in steady state simulations. This new class of WENO schemes uses a convex combination of a quartic polynomial with two linear polynomials on unequal size spatial stencils in one dimension and is extended to two dimensions in a dimension-by-dimension fashion. By doing so, such WENO schemes use the same information as the classical WENO schemes in Jiang and Shu (1996) [23] and yield the same formal order of accuracy in smooth regions, yet they could converge to steady state solutions with very tiny residue close to machine zero for our extensive list of test problems including shocks, contact discontinuities, rarefaction waves or their interactions, and with these complex waves passing through the boundaries of the computational domain.
A Hybrid Optimization Framework with POD-based Order Reduction and Design-Space Evolution Scheme
Ghoman, Satyajit S.
The main objective of this research is to develop an innovative multi-fidelity multi-disciplinary design, analysis and optimization suite that integrates certain solution generation codes and newly developed innovative tools to improve the overall optimization process. The research performed herein is divided into two parts: (1) the development of an MDAO framework by integration of variable fidelity physics-based computational codes, and (2) enhancements to such a framework by incorporating innovative features extending its robustness. The first part of this dissertation describes the development of a conceptual Multi-Fidelity Multi-Strategy and Multi-Disciplinary Design Optimization Environment (M3 DOE), in context of aircraft wing optimization. M 3 DOE provides the user a capability to optimize configurations with a choice of (i) the level of fidelity desired, (ii) the use of a single-step or multi-step optimization strategy, and (iii) combination of a series of structural and aerodynamic analyses. The modularity of M3 DOE allows it to be a part of other inclusive optimization frameworks. The M 3 DOE is demonstrated within the context of shape and sizing optimization of the wing of a Generic Business Jet aircraft. Two different optimization objectives, viz. dry weight minimization, and cruise range maximization are studied by conducting one low-fidelity and two high-fidelity optimization runs to demonstrate the application scope of M3 DOE. The second part of this dissertation describes the development of an innovative hybrid optimization framework that extends the robustness of M 3 DOE by employing a proper orthogonal decomposition-based design-space order reduction scheme combined with the evolutionary algorithm technique. The POD method of extracting dominant modes from an ensemble of candidate configurations is used for the design-space order reduction. The snapshot of candidate population is updated iteratively using evolutionary algorithm technique of
International Nuclear Information System (INIS)
Wang Haifeng; Popov, Pavel P.; Pope, Stephen B.
2010-01-01
We study a class of methods for the numerical solution of the system of stochastic differential equations (SDEs) that arises in the modeling of turbulent combustion, specifically in the Monte Carlo particle method for the solution of the model equations for the composition probability density function (PDF) and the filtered density function (FDF). This system consists of an SDE for particle position and a random differential equation for particle composition. The numerical methods considered advance the solution in time with (weak) second-order accuracy with respect to the time step size. The four primary contributions of the paper are: (i) establishing that the coefficients in the particle equations can be frozen at the mid-time (while preserving second-order accuracy), (ii) examining the performance of three existing schemes for integrating the SDEs, (iii) developing and evaluating different splitting schemes (which treat particle motion, reaction and mixing on different sub-steps), and (iv) developing the method of manufactured solutions (MMS) to assess the convergence of Monte Carlo particle methods. Tests using MMS confirm the second-order accuracy of the schemes. In general, the use of frozen coefficients reduces the numerical errors. Otherwise no significant differences are observed in the performance of the different SDE schemes and splitting schemes.
International Nuclear Information System (INIS)
Abgrall, Remi; Mezine, Mohamed
2004-01-01
After having recalled the basic concepts of residual distribution (RD) schemes, we provide a systematic construction of distribution schemes able to handle general unstructured meshes, extending the work of Sidilkover. Then, by using the concept of simple waves, we show how to generalize this technique to symmetrizable linear systems. A stability analysis is provided. We formally extend this construction to the Euler equations. Several test cases are presented to validate our approach
Directory of Open Access Journals (Sweden)
Shahid Hasnain
2017-07-01
Full Text Available This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman
2017-07-01
This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
A third-order moving mesh cell-centered scheme for one-dimensional elastic-plastic flows
Cheng, Jun-Bo; Huang, Weizhang; Jiang, Song; Tian, Baolin
2017-11-01
A third-order moving mesh cell-centered scheme without the remapping of physical variables is developed for the numerical solution of one-dimensional elastic-plastic flows with the Mie-Grüneisen equation of state, the Wilkins constitutive model, and the von Mises yielding criterion. The scheme combines the Lagrangian method with the MMPDE moving mesh method and adaptively moves the mesh to better resolve shock and other types of waves while preventing the mesh from crossing and tangling. It can be viewed as a direct arbitrarily Lagrangian-Eulerian method but can also be degenerated to a purely Lagrangian scheme. It treats the relative velocity of the fluid with respect to the mesh as constant in time between time steps, which allows high-order approximation of free boundaries. A time dependent scaling is used in the monitor function to avoid possible sudden movement of the mesh points due to the creation or diminishing of shock and rarefaction waves or the steepening of those waves. A two-rarefaction Riemann solver with elastic waves is employed to compute the Godunov values of the density, pressure, velocity, and deviatoric stress at cell interfaces. Numerical results are presented for three examples. The third-order convergence of the scheme and its ability to concentrate mesh points around shock and elastic rarefaction waves are demonstrated. The obtained numerical results are in good agreement with those in literature. The new scheme is also shown to be more accurate in resolving shock and rarefaction waves than an existing third-order cell-centered Lagrangian scheme.
Investigation of the factorization scheme dependence of finite order perturbative QCD calculations
Czech Academy of Sciences Publication Activity Database
Kolář, Karel
-, č. 11 (2011), 005/1-005/44 ISSN 1126-6708 R&D Projects: GA MŠk LC527 Institutional research plan: CEZ:AV0Z10100502 Keywords : QCD * parton distribution functions * factorization schemes * NLO Monte Carlo event generators Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.831, year: 2011
Pole Mass of the W Boson at Two-Loop Order in the Pure $\\overline {MS}$ Scheme
Energy Technology Data Exchange (ETDEWEB)
Martin, Stephen P. [Northern Illinois U.
2015-06-03
I provide a calculation at full two-loop order of the complex pole squared mass of the W boson in the Standard Model in the pure MS¯ renormalization scheme, with Goldstone boson mass effects resummed. This approach is an alternative to earlier ones that use on-shell or hybrid renormalization schemes. The renormalization scale dependence of the real and imaginary parts of the resulting pole mass is studied. Both deviate by about ±4 MeV from their median values as the renormalization scale is varied from 50 to 200 GeV, but the theory error is likely larger. A surprising feature of this scheme is that the two-loop QCD correction has a larger scale dependence, but a smaller magnitude, than the two-loop non-QCD correction, unless the renormalization scale is chosen very far from the top-quark mass.
Peng, Qiujin; Qiao, Zhonghua; Sun, Shuyu
2017-01-01
In this paper, we present two second-order numerical schemes to solve the fourth order parabolic equation derived from a diffuse interface model with Peng-Robinson Equation of state (EOS) for pure substance. The mass conservation, energy decay property, unique solvability and L-infinity convergence of these two schemes are proved. Numerical results demonstrate the good approximation of the fourth order equation and confirm reliability of these two schemes.
Peng, Qiujin
2017-09-18
In this paper, we present two second-order numerical schemes to solve the fourth order parabolic equation derived from a diffuse interface model with Peng-Robinson Equation of state (EOS) for pure substance. The mass conservation, energy decay property, unique solvability and L-infinity convergence of these two schemes are proved. Numerical results demonstrate the good approximation of the fourth order equation and confirm reliability of these two schemes.
International Nuclear Information System (INIS)
Mukhamedov, Farrukh; Saburov, Mansoor
2010-06-01
In the present paper we study forward Quantum Markov Chains (QMC) defined on a Cayley tree. Using the tree structure of graphs, we give a construction of quantum Markov chains on a Cayley tree. By means of such constructions we prove the existence of a phase transition for the XY-model on a Cayley tree of order three in QMC scheme. By the phase transition we mean the existence of two distinct QMC for the given family of interaction operators {K }. (author)
Directory of Open Access Journals (Sweden)
Alina BOGOI
2016-12-01
Full Text Available Supersonic/hypersonic flows with strong shocks need special treatment in Computational Fluid Dynamics (CFD in order to accurately capture the discontinuity location and his magnitude. To avoid numerical instabilities in the presence of discontinuities, the numerical schemes must generate low dissipation and low dispersion error. Consequently, the algorithms used to calculate the time and space-derivatives, should exhibit a low amplitude and phase error. This paper focuses on the comparison of the numerical results obtained by simulations with some high resolution numerical schemes applied on linear and non-linear one-dimensional conservation low. The analytical solutions are provided for all benchmark tests considering smooth periodical conditions. All the schemes converge to the proper weak solution for linear flux and smooth initial conditions. However, when the flux is non-linear, the discontinuities may develop from smooth initial conditions and the shock must be correctly captured. All the schemes accurately identify the shock position, with the price of the numerical oscillation in the vicinity of the sudden variation. We believe that the identification of this pure numerical behavior, without physical relevance, in 1D case is extremely useful to avoid problems related to the stability and convergence of the solution in the general 3D case.
Ashyralyyeva, Maral; Ashyraliyev, Maksat
2016-08-01
In the present paper, a second order of accuracy difference scheme for the approximate solution of a source identification problem for hyperbolic-parabolic equations is constructed. Theorem on stability estimates for the solution of this difference scheme and their first and second order difference derivatives is presented. In applications, this abstract result permits us to obtain the stability estimates for the solutions of difference schemes for approximate solutions of two source identification problems for hyperbolic-parabolic equations.
Multi-domain, higher order level set scheme for 3D image segmentation on the GPU
DEFF Research Database (Denmark)
Sharma, Ojaswa; Zhang, Qin; Anton, François
2010-01-01
to evaluate level set surfaces that are $C^2$ continuous, but are slow due to high computational burden. In this paper, we provide a higher order GPU based solver for fast and efficient segmentation of large volumetric images. We also extend the higher order method to multi-domain segmentation. Our streaming...
Efficiency of High-Order Accurate Difference Schemes for the Korteweg-de Vries Equation
Directory of Open Access Journals (Sweden)
Kanyuta Poochinapan
2014-01-01
Full Text Available Two numerical models to obtain the solution of the KdV equation are proposed. Numerical tools, compact fourth-order and standard fourth-order finite difference techniques, are applied to the KdV equation. The fundamental conservative properties of the equation are preserved by the finite difference methods. Linear stability analysis of two methods is presented by the Von Neumann analysis. The new methods give second- and fourth-order accuracy in time and space, respectively. The numerical experiments show that the proposed methods improve the accuracy of the solution significantly.
Energy Technology Data Exchange (ETDEWEB)
Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, University of Tokyo, 113-0033 (Japan)
2016-11-01
A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell’s equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron–positron or an electron–proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten–Lax–Van Leer) Riemann solver is proposed that exactly preserves the two divergence constraints for Maxwell’s equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small scales. This shows that the RTFED model is a promising tool for high energy astrophysics application.
Balsara, Dinshaw S.; Dumbser, Michael
2015-10-01
Several advances have been reported in the recent literature on divergence-free finite volume schemes for Magnetohydrodynamics (MHD). Almost all of these advances are restricted to structured meshes. To retain full geometric versatility, however, it is also very important to make analogous advances in divergence-free schemes for MHD on unstructured meshes. Such schemes utilize a staggered Yee-type mesh, where all hydrodynamic quantities (mass, momentum and energy density) are cell-centered, while the magnetic fields are face-centered and the electric fields, which are so useful for the time update of the magnetic field, are centered at the edges. Three important advances are brought together in this paper in order to make it possible to have high order accurate finite volume schemes for the MHD equations on unstructured meshes. First, it is shown that a divergence-free WENO reconstruction of the magnetic field can be developed for unstructured meshes in two and three space dimensions using a classical cell-centered WENO algorithm, without the need to do a WENO reconstruction for the magnetic field on the faces. This is achieved via a novel constrained L2-projection operator that is used in each time step as a postprocessor of the cell-centered WENO reconstruction so that the magnetic field becomes locally and globally divergence free. Second, it is shown that recently-developed genuinely multidimensional Riemann solvers (called MuSIC Riemann solvers) can be used on unstructured meshes to obtain a multidimensionally upwinded representation of the electric field at each edge. Third, the above two innovations work well together with a high order accurate one-step ADER time stepping strategy, which requires the divergence-free nonlinear WENO reconstruction procedure to be carried out only once per time step. The resulting divergence-free ADER-WENO schemes with MuSIC Riemann solvers give us an efficient and easily-implemented strategy for divergence-free MHD on
Collocated electrodynamic FDTD schemes using overlapping Yee grids and higher-order Hodge duals
Deimert, C.; Potter, M. E.; Okoniewski, M.
2016-12-01
The collocated Lebedev grid has previously been proposed as an alternative to the Yee grid for electromagnetic finite-difference time-domain (FDTD) simulations. While it performs better in anisotropic media, it performs poorly in isotropic media because it is equivalent to four overlapping, uncoupled Yee grids. We propose to couple the four Yee grids and fix the Lebedev method using discrete exterior calculus (DEC) with higher-order Hodge duals. We find that higher-order Hodge duals do improve the performance of the Lebedev grid, but they also improve the Yee grid by a similar amount. The effectiveness of coupling overlapping Yee grids with a higher-order Hodge dual is thus questionable. However, the theoretical foundations developed to derive these methods may be of interest in other problems.
Higher order hierarchical discretization scheme for surface integral equations for layered media
DEFF Research Database (Denmark)
Jørgensen, Erik; Kim, Oleksiy S.; Meincke, Peter
2004-01-01
This paper presents an efficient technique for the analysis of electromagnetic scattering by arbitrarily shaped perfectly conducting objects in layered media. The technique is based on a higher order method of moments (MoM) solution of the electric field, magnetic field, or combined-field integra...
Akkerman, Erik M.
2010-01-01
Both in diffusion tensor imaging (DTI) and in generalized diffusion tensor imaging (GDTI) the relation between the diffusion tensor and the measured apparent diffusion coefficients is given by a tensorial equation, which needs to be inverted in order to solve the diffusion tensor. The traditional
DEFF Research Database (Denmark)
Ryttov, Thomas A.; Shrock, Robert
2017-01-01
, adjoint, and symmetric rank-2 tensor representation are considered. We present scheme-independent calculations of the anomalous dimension $\\gamma_{\\bar\\psi\\psi,IR}$ to $O(\\Delta_f^4)$ and $\\beta'_{IR}$ to $O(\\Delta_f^5)$ at this IRFP, where $\\Delta_f$ is an $N_f$-dependent expansion parameter. Comparisons...... are made with conventional $n$-loop calculations and lattice measurements. As a test of the accuracy of the $\\Delta_f$ expansion, we calculate $\\gamma_{\\bar\\psi\\psi,IR}$ to $O(\\Delta_f^3)$ in ${\\cal N}=1$ SU($N_c$) supersymmetric quantum chromodynamics and find complete agreement, to this order...
European Workshop on High Order Nonlinear Numerical Schemes for Evolutionary PDEs
Beaugendre, Héloïse; Congedo, Pietro; Dobrzynski, Cécile; Perrier, Vincent; Ricchiuto, Mario
2014-01-01
This book collects papers presented during the European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs (HONOM 2013) that was held at INRIA Bordeaux Sud-Ouest, Talence, France in March, 2013. The central topic is high order methods for compressible fluid dynamics. In the workshop, and in this proceedings, greater emphasis is placed on the numerical than the theoretical aspects of this scientific field. The range of topics is broad, extending through algorithm design, accuracy, large scale computing, complex geometries, discontinuous Galerkin, finite element methods, Lagrangian hydrodynamics, finite difference methods and applications and uncertainty quantification. These techniques find practical applications in such fields as fluid mechanics, magnetohydrodynamics, nonlinear solid mechanics, and others for which genuinely nonlinear methods are needed.
High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids
2015-06-22
for efficient CFD calculations in high-order methods,3 because the grid adaptation almost necessarily introduces irregularity in the grid. In fact...problems. References 1P.A. Gnoffo. Multi-dimensional, inviscid flux reconstruction for simulation of hypersonic heating on tetrahedral grids. In Proc. of...Kitamura, E. Shima, Y. Nakamura, and P.L. Roe. Evaluation of euler fluxes for hypersonic heating computations. AIAA J., 48(4):763–776, 2010. 3Z.J. Wang, K
A second order anti-diffusive Lagrange-remap scheme for two-component flows
Directory of Open Access Journals (Sweden)
Lagoutière Frédéric
2011-11-01
Full Text Available We build a non-dissipative second order algorithm for the approximate resolution of the one-dimensional Euler system of compressible gas dynamics with two components. The considered model was proposed in [1]. The algorithm is based on [8] which deals with a non-dissipative first order resolution in Lagrange-remap formalism. In the present paper we describe, in the same framework, an algorithm that is second order accurate in time and space, and that preserves sharp interfaces. Numerical results reported at the end of the paper are very encouraging, showing the interest of the second order accuracy for genuinely non-linear waves. Nous construisons un algorithme d’ordre deux et non dissipatif pour la résolution approchée des équations d’Euler de la dynamique des gaz compressibles à deux constituants en dimension un. Le modèle que nous considérons est celui à cinq équations proposé et analysé dans [1]. L’algorithme est basé sur [8] qui proposait une résolution approchée à l’ordre un et non dissipative au moyen d’un splitting de type Lagrange-projection. Dans le présent article, nous décrivons, dans le même formalisme, un algorithme d’ordre deux en temps et en espace, qui préserve des interfaces « parfaites » entre les constituants. Les résultats numériques rapportés à la fin de l’article sont très encourageants ; ils montrent clairement les avantages d’un schéma d’ordre deux pour les ondes vraiment non linéaires.
A simple finite-difference scheme for handling topography with the first-order wave equation
Mulder, W. A.; Huiskes, M. J.
2017-07-01
One approach to incorporate topography in seismic finite-difference codes is a local modification of the difference operators near the free surface. An earlier paper described an approach for modelling irregular boundaries in a constant-density acoustic finite-difference code, based on the second-order formulation of the wave equation that only involves the pressure. Here, a similar method is considered for the first-order formulation in terms of pressure and particle velocity, using a staggered finite-difference discretization both in space and in time. In one space dimension, the boundary conditions consist in imposing antisymmetry for the pressure and symmetry for particle velocity components. For the pressure, this means that the solution values as well as all even derivatives up to a certain order are zero on the boundary. For the particle velocity, all odd derivatives are zero. In 2D, the 1-D assumption is used along each coordinate direction, with antisymmetry for the pressure along the coordinate and symmetry for the particle velocity component parallel to that coordinate direction. Since the symmetry or antisymmetry should hold along the direction normal to the boundary rather than along the coordinate directions, this generates an additional numerical error on top of the time stepping errors and the errors due to the interior spatial discretization. Numerical experiments in 2D and 3D nevertheless produce acceptable results.
Schwing, Alan Michael
For computational fluid dynamics, the governing equations are solved on a discretized domain of nodes, faces, and cells. The quality of the grid or mesh can be a driving source for error in the results. While refinement studies can help guide the creation of a mesh, grid quality is largely determined by user expertise and understanding of the flow physics. Adaptive mesh refinement is a technique for enriching the mesh during a simulation based on metrics for error, impact on important parameters, or location of important flow features. This can offload from the user some of the difficult and ambiguous decisions necessary when discretizing the domain. This work explores the implementation of adaptive mesh refinement in an implicit, unstructured, finite-volume solver. Consideration is made for applying modern computational techniques in the presence of hanging nodes and refined cells. The approach is developed to be independent of the flow solver in order to provide a path for augmenting existing codes. It is designed to be applicable for unsteady simulations and refinement and coarsening of the grid does not impact the conservatism of the underlying numerics. The effect on high-order numerical fluxes of fourth- and sixth-order are explored. Provided the criteria for refinement is appropriately selected, solutions obtained using adapted meshes have no additional error when compared to results obtained on traditional, unadapted meshes. In order to leverage large-scale computational resources common today, the methods are parallelized using MPI. Parallel performance is considered for several test problems in order to assess scalability of both adapted and unadapted grids. Dynamic repartitioning of the mesh during refinement is crucial for load balancing an evolving grid. Development of the methods outlined here depend on a dual-memory approach that is described in detail. Validation of the solver developed here against a number of motivating problems shows favorable
Directory of Open Access Journals (Sweden)
Ari Saptono
2013-08-01
Full Text Available This research is to evaluate the process of economy empowerment on PNPM Mandiri Perkotaan in Officer North Bekasi with targeted research that examines the implementation of economic development programs related to community participation, community capacity building, as well as assessing the degree of empowerment community. Model of evaluation which is used in this research is CIPP evaluation. In general, this evaluation model consists of four evaluation objectives, namely: Context Evaluation, Input Evaluation, Process Evaluation, Product evaluation. Research results showed: there is no standard criteria or indicators to determine the receivers of loan; achievement rate in providing infrastructure BKM is 42.85%, it’s in moderate category; staffing is in accordance with the procedures set out in the guidelines; public institutions is fully established. People's understanding of revolving loans varies. Public participation has achieve minimum target of 40%. The quantity of training which can improve skill must be increased since skills owned by the members are expected can increase family income through home businesses. Perwira District has not develop partnership yet with external party such as: bank, corporate, and higher education institution. This economy empowerment program has satisfactory result, indicated by: 93% of repayment rate, 2,63% of loans at risk , 211,36% cost coverage ratio, and 6,54% return on investment.
Improved Fractional Order VSS Inc-Cond MPPT Algorithm for Photovoltaic Scheme
Directory of Open Access Journals (Sweden)
R. Arulmurugan
2014-01-01
Full Text Available Nowadays a hot topic among the research community is the harnessing energy from the free sunlight which is abundant and pollution-free. The availability of cheap solar photovoltaic (PV modules has to harvest solar energy with better efficiency. The nature of solar modules is nonlinear and therefore the proper impedance matching is essential. The proper impedance matching ensures the extraction of the maximum power from solar PV module. Maximum power point tracking (MPPT algorithm is acting as a significant part in solar power generating system because it varies in the output power from a PV generating set for various climatic conditions. This paper suggested a new improved work for MPPT of PV energy system by using the optimized novel improved fractional order variable step size (FOVSS incremental conductance (Inc-Cond algorithm. The new proposed controller combines the merits of both improved fractional order (FO and variable step size (VSS Inc-Cond which is well suitable for design control and execution. The suggested controller results in attaining the desired transient reaction under changing operating points. MATLAB simulation effort shows MPPT controller and a DC to DC Luo converter feeding a battery load is achieved. The laboratory experimental results demonstrate that the new proposed MPPT controller in the photovoltaic generating system is valid.
DEFF Research Database (Denmark)
Kristensen, Kasper; Jørgensen, Poul; Jansik, Branislav
2012-01-01
We demonstrate that the divide-expand-consolidate (DEC) scheme – which has previously been used to determine the second-order Møller–Plesset (MP2) correlation energy – can be applied to evaluate the MP2 molecular gradient in a linear-scaling and embarrassingly parallel manner using a set of local......-box manner to ensure that the error in the DEC-MP2 correlation energy compared to a standard MP2 calculation is proportional to a single input threshold denoted the fragment optimization threshold (FOT). The FOT also implicitly controls the error in the DEC-MP2 molecular gradient as substantiated...... by a theoretical analysis and numerical results. The development of the DEC-MP2 molecular gradient is the initial step towards calculating higher order energy derivatives for large molecular systems using the DEC framework, both at the MP2 level of theory and for more accurate coupled-cluster methods....
Directory of Open Access Journals (Sweden)
Zool H. Ismail
2015-01-01
Full Text Available The main goal in developing closed loop control system for an Autonomous Underwater Vehicle (AUV is to make a robust vehicle from natural and exogenous perturbations such as wind, wave, and ocean currents. However a well-known robust control, for instance, Sliding Mode Controller (SMC, gives a chattering effect and it influences the stability of an AUV. Furthermore, some researchers combined other controls to get better result but it tends to present long computational time and causes large energy consumption. Thus, this paper proposed a Super Twisting Sliding Mode Controller (STSMC with dynamic region concept for an AUV. STSMC or a second order SMC is adopted as a robust controller which is free from chattering effect. Meanwhile, the implementation of dynamic region is useful to reduce the energy usage. As a result, the proposed controller obtains global asymptotic stability which is validated by using Lyapunov-like function. Moreover, some simulations present the efficiency of proposed controller. In conclusion, STSMC with region based control is effective to be applied for the robust tracking of an AUV. It contributes to give a fast response when handling the perturbations, short computational time, and low energy demand.
Vagh, Hardik A.; Baghai-Wadji, Alireza
2008-12-01
Current technological challenges in materials science and high-tech device industry require the solution of boundary value problems (BVPs) involving regions of various scales, e.g. multiple thin layers, fibre-reinforced composites, and nano/micro pores. In most cases straightforward application of standard variational techniques to BVPs of practical relevance necessarily leads to unsatisfactorily ill-conditioned analytical and/or numerical results. To remedy the computational challenges associated with sub-sectional heterogeneities various sophisticated homogenization techniques need to be employed. Homogenization refers to the systematic process of smoothing out the sub-structural heterogeneities, leading to the determination of effective constitutive coefficients. Ordinarily, homogenization involves a sophisticated averaging and asymptotic order analysis to obtain solutions. In the majority of the cases only zero-order terms are constructed due to the complexity of the processes involved. In this paper we propose a constructive scheme for obtaining homogenized solutions involving higher order terms, and thus, guaranteeing higher accuracy and greater robustness of the numerical results. We present
International Nuclear Information System (INIS)
Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo
2016-01-01
Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier
Energy Technology Data Exchange (ETDEWEB)
Dumbser, Michael, E-mail: michael.dumbser@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Peshkov, Ilya, E-mail: peshkov@math.nsc.ru [Open and Experimental Center for Heavy Oil, Université de Pau et des Pays de l' Adour, Avenue de l' Université, 64012 Pau (France); Romenski, Evgeniy, E-mail: evrom@math.nsc.ru [Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk (Russian Federation); Zanotti, Olindo, E-mail: olindo.zanotti@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy)
2016-06-01
Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier
Yuan, Hao; Zhang, Qin; Hong, Liang; Yin, Wen-jie; Xu, Dong
2014-08-01
We present a novel scheme for deterministic secure quantum communication (DSQC) over collective rotating noisy channel. Four special two-qubit states are found can constitute a noise-free subspaces, and so are utilized as quantum information carriers. In this scheme, the information carriers transmite over the quantum channel only one time, which can effectively reduce the influence of other noise existing in quantum channel. The information receiver need only perform two single-photon collective measurements to decode the secret messages, which can make the present scheme more convenient in practical application. It will be showed that our scheme has a relatively high information capacity and intrisic efficiency. Foremostly, the decoy photon pair checking technique and the order rearrangement of photon pairs technique guarantee that the present scheme is unconditionally secure.
International Nuclear Information System (INIS)
Xing Yulong; Shu Chiwang
2006-01-01
Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source term. In our earlier work [J. Comput. Phys. 208 (2005) 206-227; J. Sci. Comput., accepted], we designed a well-balanced finite difference weighted essentially non-oscillatory (WENO) scheme, which at the same time maintains genuine high order accuracy for general solutions, to a class of hyperbolic systems with separable source terms including the shallow water equations, the elastic wave equation, the hyperbolic model for a chemosensitive movement, the nozzle flow and a two phase flow model. In this paper, we generalize high order finite volume WENO schemes and Runge-Kutta discontinuous Galerkin (RKDG) finite element methods to the same class of hyperbolic systems to maintain a well-balanced property. Finite volume and discontinuous Galerkin finite element schemes are more flexible than finite difference schemes to treat complicated geometry and adaptivity. However, because of a different computational framework, the maintenance of the well-balanced property requires different technical approaches. After the description of our well-balanced high order finite volume WENO and RKDG schemes, we perform extensive one and two dimensional simulations to verify the properties of these schemes such as the exact preservation of the balance laws for certain steady state solutions, the non-oscillatory property for general solutions with discontinuities, and the genuine high order accuracy in smooth regions
Directory of Open Access Journals (Sweden)
Ernest G. Kalnins
2013-10-01
Full Text Available We show explicitly that all 2nd order superintegrable systems in 2 dimensions are limiting cases of a single system: the generic 3-parameter potential on the 2-sphere, S9 in our listing. We extend the Wigner-Inönü method of Lie algebra contractions to contractions of quadratic algebras and show that all of the quadratic symmetry algebras of these systems are contractions of that of S9. Amazingly, all of the relevant contractions of these superintegrable systems on flat space and the sphere are uniquely induced by the well known Lie algebra contractions of e(2 and so(3. By contracting function space realizations of irreducible representations of the S9 algebra (which give the structure equations for Racah/Wilson polynomials to the other superintegrable systems, and using Wigner's idea of ''saving'' a representation, we obtain the full Askey scheme of hypergeometric orthogonal polynomials. This relationship directly ties the polynomials and their structure equations to physical phenomena. It is more general because it applies to all special functions that arise from these systems via separation of variables, not just those of hypergeometric type, and it extends to higher dimensions.
International Nuclear Information System (INIS)
Sulbhewar, Litesh N; Raveendranath, P
2014-01-01
An efficient piezoelectric smart beam finite element based on Reddy’s third-order displacement field and layerwise linear potential is presented here. The present formulation is based on the coupled polynomial field interpolation of variables, unlike conventional piezoelectric beam formulations that use independent polynomials. Governing equations derived using a variational formulation are used to establish the relationship between field variables. The resulting expressions are used to formulate coupled shape functions. Starting with an assumed cubic polynomial for transverse displacement (w) and a linear polynomial for electric potential (φ), coupled polynomials for axial displacement (u) and section rotation (θ) are found. This leads to a coupled quadratic polynomial representation for axial displacement (u) and section rotation (θ). The formulation allows accommodation of extension–bending, shear–bending and electromechanical couplings at the interpolation level itself, in a variationally consistent manner. The proposed interpolation scheme is shown to eliminate the locking effects exhibited by conventional independent polynomial field interpolations and improve the convergence characteristics of HSDT based piezoelectric beam elements. Also, the present coupled formulation uses only three mechanical degrees of freedom per node, one less than the conventional formulations. Results from numerical test problems prove the accuracy and efficiency of the present formulation. (paper)
Bocquet, M.; Haussaire, J. M.
2015-12-01
Bocquet and Sakov have recently introduced a low-order model based on the coupling of thechaotic Lorenz-95 model which simulates winds along a mid-latitude circle, with thetransport of a tracer species advected by this wind field. It has been used to testadvanced data assimilation methods with an online model that couples meteorology andtracer transport. In the present study, the tracer subsystem of the model is replacedwith a reduced photochemistry module meant to emulate reactive air pollution. Thiscoupled chemistry meteorology model, the L95-GRS model, mimics continental andtranscontinental transport and photochemistry of ozone, volatile organic compounds andnitrogen dioxides.The L95-GRS is specially useful in testing advanced data assimilation schemes, such as theiterative ensemble Kalman smoother (IEnKS) that combines the best of ensemble andvariational methods. The model provides useful insights prior to any implementation ofthe data assimilation method on larger models. For instance, online and offline dataassimilation strategies based on the ensemble Kalman filter or the IEnKS can easily beevaluated with it. It allows to document the impact of species concentration observationson the wind estimation. The model also illustrates a long standing issue in atmosphericchemistry forecasting: the impact of the wind chaotic dynamics and of the chemical speciesnon-chaotic but highly nonlinear dynamics on the selected data assimilation approach.
Pont, Grégoire; Brenner, Pierre; Cinnella, Paola; Maugars, Bruno; Robinet, Jean-Christophe
2017-12-01
A Godunov's type unstructured finite volume method suitable for highly compressible turbulent scale-resolving simulations around complex geometries is constructed by using a successive correction technique. First, a family of k-exact Godunov schemes is developed by recursively correcting the truncation error of the piecewise polynomial representation of the primitive variables. The keystone of the proposed approach is a quasi-Green gradient operator which ensures consistency on general meshes. In addition, a high-order single-point quadrature formula, based on high-order approximations of the successive derivatives of the solution, is developed for flux integration along cell faces. The proposed family of schemes is compact in the algorithmic sense, since it only involves communications between direct neighbors of the mesh cells. The numerical properties of the schemes up to fifth-order are investigated, with focus on their resolvability in terms of number of mesh points required to resolve a given wavelength accurately. Afterwards, in the aim of achieving the best possible trade-off between accuracy, computational cost and robustness in view of industrial flow computations, we focus more specifically on the third-order accurate scheme of the family, and modify locally its numerical flux in order to reduce the amount of numerical dissipation in vortex-dominated regions. This is achieved by switching from the upwind scheme, mostly applied in highly compressible regions, to a fourth-order centered one in vortex-dominated regions. An analytical switch function based on the local grid Reynolds number is adopted in order to warrant numerical stability of the recentering process. Numerical applications demonstrate the accuracy and robustness of the proposed methodology for compressible scale-resolving computations. In particular, supersonic RANS/LES computations of the flow over a cavity are presented to show the capability of the scheme to predict flows with shocks
Settle, Sean O.
2013-01-01
The primary aim of this paper is to answer the question, What are the highest-order five- or nine-point compact finite difference schemes? To answer this question, we present several simple derivations of finite difference schemes for the one- and two-dimensional Poisson equation on uniform, quasi-uniform, and nonuniform face-to-face hyperrectangular grids and directly prove the existence or nonexistence of their highest-order local accuracies. Our derivations are unique in that we do not make any initial assumptions on stencil symmetries or weights. For the one-dimensional problem, the derivation using the three-point stencil on both uniform and nonuniform grids yields a scheme with arbitrarily high-order local accuracy. However, for the two-dimensional problem, the derivation using the corresponding five-point stencil on uniform and quasi-uniform grids yields a scheme with at most second-order local accuracy, and on nonuniform grids yields at most first-order local accuracy. When expanding the five-point stencil to the nine-point stencil, the derivation using the nine-point stencil on uniform grids yields at most sixth-order local accuracy, but on quasi- and nonuniform grids yields at most fourth- and third-order local accuracy, respectively. © 2013 Society for Industrial and Applied Mathematics.
Balsara, Dinshaw S.; Garain, Sudip; Taflove, Allen; Montecinos, Gino
2018-02-01
The Finite Difference Time Domain (FDTD) scheme has served the computational electrodynamics community very well and part of its success stems from its ability to satisfy the constraints in Maxwell's equations. Even so, in the previous paper of this series we were able to present a second order accurate Godunov scheme for computational electrodynamics (CED) which satisfied all the same constraints and simultaneously retained all the traditional advantages of Godunov schemes. In this paper we extend the Finite Volume Time Domain (FVTD) schemes for CED in material media to better than second order of accuracy. From the FDTD method, we retain a somewhat modified staggering strategy of primal variables which enables a very beneficial constraint-preservation for the electric displacement and magnetic induction vector fields. This is accomplished with constraint-preserving reconstruction methods which are extended in this paper to third and fourth orders of accuracy. The idea of one-dimensional upwinding from Godunov schemes has to be significantly modified to use the multidimensionally upwinded Riemann solvers developed by the first author. In this paper, we show how they can be used within the context of a higher order scheme for CED. We also report on advances in timestepping. We show how Runge-Kutta IMEX schemes can be adapted to CED even in the presence of stiff source terms brought on by large conductivities as well as strong spatial variations in permittivity and permeability. We also formulate very efficient ADER timestepping strategies to endow our method with sub-cell resolving capabilities. As a result, our method can be stiffly-stable and resolve significant sub-cell variation in the material properties within a zone. Moreover, we present ADER schemes that are applicable to all hyperbolic PDEs with stiff source terms and at all orders of accuracy. Our new ADER formulation offers a treatment of stiff source terms that is much more efficient than previous ADER
Directory of Open Access Journals (Sweden)
Ana Zahrotun Nihayah
2015-12-01
Full Text Available The national community empowerment program (PNPM Self-sufficient Rural is a program set up by the Government with the aim of alleviating poverty and improving the well-being of the community. Save Loan group of women is a program of the PNPM with the goal of providing capital for the housewife who has a productive effort. This research aims to (1 know the income of micro small and medium enterprises before and after a program, (2 to knowing the decline in poverty, and (3 to see the economic values of Islam on the Save program Loan group of women. The population of this research is a member of save the loan group of women which amounted to 215 people scattered in 16 groups. Samples taken as many as 70 people with random sampling techniques. Data analysis using the method analysis of test of wilcoxon sign rank, the analysis of poverty reduction and analysis of the economic values of Islam in the program. Based on the analysis of the data found that (1 the Save program loan group of women provides increased revenues against the small micro enterprises, (2 the Save program Loan due to women's groups can decrease the poverty rate of 20 persen, and (3 Economic values of Islam in the Save Program Loan group of women which is extra time, is not subject to fines, there are social activities, improvement of the well -being of the community.
Directory of Open Access Journals (Sweden)
Zelens'ka L.I.
2009-08-01
Full Text Available The scheme planning of land reserved for the creation of a national park "Orilskyi" within Shulhivskoyi village council Petrikov district of Dnipropetrovsk region, which is based on a functional concept of territory planning. Dedicated areas protected mode, recreational and economic of subzones. Grounded floral-faunistic value protected territory types rationalization of nature. The results introduced in local government institutions for the planning scheme area.
Xamán, J.; Zavala-Guillén, I.; Hernández-López, I.; Uriarte-Flores, J.; Hernández-Pérez, I.; Macías-Melo, E. V.; Aguilar-Castro, K. M.
2018-03-01
In this paper, we evaluated the convergence rate (CPU time) of a new mathematical formulation for the numerical solution of the radiative transfer equation (RTE) with several High-Order (HO) and High-Resolution (HR) schemes. In computational fluid dynamics, this procedure is known as the Normalized Weighting-Factor (NWF) method and it is adopted here. The NWF method is used to incorporate the high-order resolution schemes in the discretized RTE. The NWF method is compared, in terms of computer time needed to obtain a converged solution, with the widely used deferred-correction (DC) technique for the calculations of a two-dimensional cavity with emitting-absorbing-scattering gray media using the discrete ordinates method. Six parameters, viz. the grid size, the order of quadrature, the absorption coefficient, the emissivity of the boundary surface, the under-relaxation factor, and the scattering albedo are considered to evaluate ten schemes. The results showed that using the DC method, in general, the scheme that had the lowest CPU time is the SOU. In contrast, with the results of theDC procedure the CPU time for DIAMOND and QUICK schemes using the NWF method is shown to be, between the 3.8 and 23.1% faster and 12.6 and 56.1% faster, respectively. However, the other schemes are more time consuming when theNWFis used instead of the DC method. Additionally, a second test case was presented and the results showed that depending on the problem under consideration, the NWF procedure may be computationally faster or slower that the DC method. As an example, the CPU time for QUICK and SMART schemes are 61.8 and 203.7%, respectively, slower when the NWF formulation is used for the second test case. Finally, future researches to explore the computational cost of the NWF method in more complex problems are required.
WASHINGTON, D.C. – An Amherst, New York, man was ordered to pay over $400,000 in restitution and fines and placed on five years’ probation for his role in a kickback scheme at the Federal Creosote and Diamond Alkali Superfund sites in New Jersey.
Energy Technology Data Exchange (ETDEWEB)
López, R., E-mail: ralope1@ing.uc3m.es; Lecuona, A., E-mail: lecuona@ing.uc3m.es; Nogueira, J., E-mail: goriba@ing.uc3m.es; Vereda, C., E-mail: cvereda@ing.uc3m.es
2017-03-15
Highlights: • A two-phase flows numerical algorithm with high order temporal schemes is proposed. • Transient solutions route depends on the temporal high order scheme employed. • ESDIRK scheme for two-phase flows events exhibits high computational performance. • Computational implementation of the ESDIRK scheme can be done in a very easy manner. - Abstract: An extension for 1-D transient two-phase flows of the SIMPLE-ESDIRK method, initially developed for incompressible viscous flows by Ijaz is presented. This extension is motivated by the high temporal order of accuracy demanded to cope with fast phase change events. This methodology is suitable for boiling heat exchangers, solar thermal receivers, etc. The methodology of the solution consist in a finite volume staggered grid discretization of the governing equations in which the transient terms are treated with the explicit first stage singly diagonally implicit Runge-Kutta (ESDIRK) method. It is suitable for stiff differential equations, present in instant boiling or condensation processes. It is combined with the semi-implicit pressure linked equations algorithm (SIMPLE) for the calculation of the pressure field. The case of study consists of the numerical reproduction of the Bartolomei upward boiling pipe flow experiment. The steady-state validation of the numerical algorithm is made against these experimental results and well known numerical results for that experiment. In addition, a detailed study reveals the benefits over the first order Euler Backward method when applying 3rd and 4th order schemes, making emphasis in the behaviour when the system is subjected to periodic square wave wall heat function disturbances, concluding that the use of the ESDIRK method in two-phase calculations presents remarkable accuracy and computational advantages.
Orlek, Alex; Phan, Hang; Sheppard, Anna E; Doumith, Michel; Ellington, Matthew; Peto, Tim; Crook, Derrick; Walker, A Sarah; Woodford, Neil; Anjum, Muna F; Stoesser, Nicole
2017-05-01
Plasmid typing can provide insights into the epidemiology and transmission of plasmid-mediated antibiotic resistance. The principal plasmid typing schemes are replicon typing and MOB typing, which utilize variation in replication loci and relaxase proteins respectively. Previous studies investigating the proportion of plasmids assigned a type by these schemes ('typeability') have yielded conflicting results; moreover, thousands of plasmid sequences have been added to NCBI in recent years, without consistent annotation to indicate which sequences represent complete plasmids. Here, a curated dataset of complete Enterobacteriaceae plasmids from NCBI was compiled, and used to assess the typeability and concordance of in silico replicon and MOB typing schemes. Concordance was assessed at hierarchical replicon type resolutions, from replicon family-level to plasmid multilocus sequence type (pMLST)-level, where available. We found that 85% and 65% of the curated plasmids could be replicon and MOB typed, respectively. Overall, plasmid size and the number of resistance genes were significant independent predictors of replicon and MOB typing success. We found some degree of non-concordance between replicon families and MOB types, which was only partly resolved when partitioning plasmids into finer-resolution groups (replicon and pMLST types). In some cases, non-concordance was attributed to ambiguous boundaries between MOBP and MOBQ types; in other cases, backbone mosaicism was considered a more plausible explanation. β-lactamase resistance genes tended not to show fidelity to a particular plasmid type, though some previously reported associations were supported. Overall, replicon and MOB typing schemes are likely to continue playing an important role in plasmid analysis, but their performance is constrained by the diverse and dynamic nature of plasmid genomes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Dumbser, Michael; Guercilena, Federico; Köppel, Sven; Rezzolla, Luciano; Zanotti, Olindo
2018-04-01
We present a strongly hyperbolic first-order formulation of the Einstein equations based on the conformal and covariant Z4 system (CCZ4) with constraint-violation damping, which we refer to as FO-CCZ4. As CCZ4, this formulation combines the advantages of a conformal and traceless formulation, with the suppression of constraint violations given by the damping terms, but being first order in time and space, it is particularly suited for a discontinuous Galerkin (DG) implementation. The strongly hyperbolic first-order formulation has been obtained by making careful use of first and second-order ordering constraints. A proof of strong hyperbolicity is given for a selected choice of standard gauges via an analytical computation of the entire eigenstructure of the FO-CCZ4 system. The resulting governing partial differential equations system is written in nonconservative form and requires the evolution of 58 unknowns. A key feature of our formulation is that the first-order CCZ4 system decouples into a set of pure ordinary differential equations and a reduced hyperbolic system of partial differential equations that contains only linearly degenerate fields. We implement FO-CCZ4 in a high-order path-conservative arbitrary-high-order-method-using-derivatives (ADER)-DG scheme with adaptive mesh refinement and local time-stepping, supplemented with a third-order ADER-WENO subcell finite-volume limiter in order to deal with singularities arising with black holes. We validate the correctness of the formulation through a series of standard tests in vacuum, performed in one, two and three spatial dimensions, and also present preliminary results on the evolution of binary black-hole systems. To the best of our knowledge, these are the first successful three-dimensional simulations of moving punctures carried out with high-order DG schemes using a first-order formulation of the Einstein equations.
Additive operator-difference schemes splitting schemes
Vabishchevich, Petr N
2013-01-01
Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods)and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for sy
Beltrame, R.; Bonito, A. B.; Celandroni, N.; Ferro, E.
1985-11-01
A FIFO Order based Demand Assignment (FODA) access scheme was designed to handle packetized data and voice traffic in a multiple access satellite broadcast channel of Mbits band. The channel is shared by as many as 64 simultaneously active stations in a range of 255 addressable stations. A sophisticated traffic environment is assumed, including different types of service requirements and an arbitrary load distribution among the stations. The results of 2Mbit/sec simulation tests for an existing hardware environment are presented.
International Nuclear Information System (INIS)
Silva, Goncalo; Talon, Laurent; Ginzburg, Irina
2017-01-01
The present contribution focuses on the accuracy of reflection-type boundary conditions in the Stokes–Brinkman–Darcy modeling of porous flows solved with the lattice Boltzmann method (LBM), which we operate with the two-relaxation-time (TRT) collision and the Brinkman-force based scheme (BF), called BF-TRT scheme. In parallel, we compare it with the Stokes–Brinkman–Darcy linear finite element method (FEM) where the Dirichlet boundary conditions are enforced on grid vertices. In bulk, both BF-TRT and FEM share the same defect: in their discretization a correction to the modeled Brinkman equation appears, given by the discrete Laplacian of the velocity-proportional resistance force. This correction modifies the effective Brinkman viscosity, playing a crucial role in the triggering of spurious oscillations in the bulk solution. While the exact form of this defect is available in lattice-aligned, straight or diagonal, flows; in arbitrary flow/lattice orientations its approximation is constructed. At boundaries, we verify that such a Brinkman viscosity correction has an even more harmful impact. Already at the first order, it shifts the location of the no-slip wall condition supported by traditional LBM boundary schemes, such as the bounce-back rule. For that reason, this work develops a new class of boundary schemes to prescribe the Dirichlet velocity condition at an arbitrary wall/boundary-node distance and that supports a higher order accuracy in the accommodation of the TRT-Brinkman solutions. For their modeling, we consider the standard BF scheme and its improved version, called IBF; this latter is generalized in this work to suppress or to reduce the viscosity correction in arbitrarily oriented flows. Our framework extends the one- and two-point families of linear and parabolic link-wise boundary schemes, respectively called B-LI and B-MLI, which avoid the interference of the Brinkman viscosity correction in their closure relations. The performance of LBM
Energy Technology Data Exchange (ETDEWEB)
Silva, Goncalo, E-mail: goncalo.nuno.silva@gmail.com [Irstea, Antony Regional Centre, HBAN, 1 rue Pierre-Gilles de Gennes CS 10030, 92761 Antony cedex (France); Talon, Laurent, E-mail: talon@fast.u-psud.fr [CNRS (UMR 7608), Laboratoire FAST, Batiment 502, Campus University, 91405 Orsay (France); Ginzburg, Irina, E-mail: irina.ginzburg@irstea.fr [Irstea, Antony Regional Centre, HBAN, 1 rue Pierre-Gilles de Gennes CS 10030, 92761 Antony cedex (France)
2017-04-15
The present contribution focuses on the accuracy of reflection-type boundary conditions in the Stokes–Brinkman–Darcy modeling of porous flows solved with the lattice Boltzmann method (LBM), which we operate with the two-relaxation-time (TRT) collision and the Brinkman-force based scheme (BF), called BF-TRT scheme. In parallel, we compare it with the Stokes–Brinkman–Darcy linear finite element method (FEM) where the Dirichlet boundary conditions are enforced on grid vertices. In bulk, both BF-TRT and FEM share the same defect: in their discretization a correction to the modeled Brinkman equation appears, given by the discrete Laplacian of the velocity-proportional resistance force. This correction modifies the effective Brinkman viscosity, playing a crucial role in the triggering of spurious oscillations in the bulk solution. While the exact form of this defect is available in lattice-aligned, straight or diagonal, flows; in arbitrary flow/lattice orientations its approximation is constructed. At boundaries, we verify that such a Brinkman viscosity correction has an even more harmful impact. Already at the first order, it shifts the location of the no-slip wall condition supported by traditional LBM boundary schemes, such as the bounce-back rule. For that reason, this work develops a new class of boundary schemes to prescribe the Dirichlet velocity condition at an arbitrary wall/boundary-node distance and that supports a higher order accuracy in the accommodation of the TRT-Brinkman solutions. For their modeling, we consider the standard BF scheme and its improved version, called IBF; this latter is generalized in this work to suppress or to reduce the viscosity correction in arbitrarily oriented flows. Our framework extends the one- and two-point families of linear and parabolic link-wise boundary schemes, respectively called B-LI and B-MLI, which avoid the interference of the Brinkman viscosity correction in their closure relations. The performance of LBM
Haussaire, J.-M.; Bocquet, M.
2016-01-01
Bocquet and Sakov (2013) introduced a low-order model based on the coupling of the chaotic Lorenz-95 (L95) model, which simulates winds along a mid-latitude circle, with the transport of a tracer species advected by this zonal wind field. This model, named L95-T, can serve as a playground for testing data assimilation schemes with an online model. Here, the tracer part of the model is extended to a reduced photochemistry module. This coupled chemistry meteorology model (CCMM), the L95-GRS (generic reaction set) model, mimics continental and transcontinental transport and the photochemistry of ozone, volatile organic compounds and nitrogen oxides. Its numerical implementation is described. The model is shown to reproduce the major physical and chemical processes being considered. L95-T and L95-GRS are specifically designed and useful for testing advanced data assimilation schemes, such as the iterative ensemble Kalman smoother (IEnKS), which combines the best of ensemble and variational methods. These models provide useful insights prior to the implementation of data assimilation methods into larger models. We illustrate their use with data assimilation schemes on preliminary yet instructive numerical experiments. In particular, online and offline data assimilation strategies can be conveniently tested and discussed with this low-order CCMM. The impact of observed chemical species concentrations on the wind field estimate can be quantitatively assessed. The impacts of the wind chaotic dynamics and of the chemical species non-chaotic but highly nonlinear dynamics on the data assimilation strategies are illustrated.
Pan, Liang; Xu, Kun; Li, Qibing; Li, Jiequan
2016-12-01
For computational fluid dynamics (CFD), the generalized Riemann problem (GRP) solver and the second-order gas-kinetic scheme (GKS) provide a time-accurate flux function starting from a discontinuous piecewise linear flow distributions around a cell interface. With the adoption of time derivative of the flux function, a two-stage Lax-Wendroff-type (L-W for short) time stepping method has been recently proposed in the design of a fourth-order time accurate method for inviscid flow [21]. In this paper, based on the same time-stepping method and the second-order GKS flux function [42], a fourth-order gas-kinetic scheme is constructed for the Euler and Navier-Stokes (NS) equations. In comparison with the formal one-stage time-stepping third-order gas-kinetic solver [24], the current fourth-order method not only reduces the complexity of the flux function, but also improves the accuracy of the scheme. In terms of the computational cost, a two-dimensional third-order GKS flux function takes about six times of the computational time of a second-order GKS flux function. However, a fifth-order WENO reconstruction may take more than ten times of the computational cost of a second-order GKS flux function. Therefore, it is fully legitimate to develop a two-stage fourth order time accurate method (two reconstruction) instead of standard four stage fourth-order Runge-Kutta method (four reconstruction). Most importantly, the robustness of the fourth-order GKS is as good as the second-order one. In the current computational fluid dynamics (CFD) research, it is still a difficult problem to extend the higher-order Euler solver to the NS one due to the change of governing equations from hyperbolic to parabolic type and the initial interface discontinuity. This problem remains distinctively for the hypersonic viscous and heat conducting flow. The GKS is based on the kinetic equation with the hyperbolic transport and the relaxation source term. The time-dependent GKS flux function
International Nuclear Information System (INIS)
Zhou, Lei; Luo, Kai Hong; Qin, Wenjin; Jia, Ming; Shuai, Shi Jin
2015-01-01
Highlights: • MUSCL differencing scheme in LES method is used to investigate liquid fuel spray and combustion process. • Using MUSCL can accurately capture the gas phase velocity distribution and liquid spray features. • Detailed chemistry mechanism with a parallel algorithm was used to calculate combustion process. • Increasing oxygen concentration can decrease ignition delay time and flame LOL. - Abstract: The accuracy of large eddy simulation (LES) for turbulent combustion depends on suitably implemented numerical schemes and chemical mechanisms. In the original KIVA3V code, finite difference schemes such as QSOU (Quasi-second-order upwind) and PDC (Partial Donor Cell Differencing) cannot achieve good results or even computational stability when using coarse grids due to large numerical diffusion. In this paper, the MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) differencing scheme is implemented into KIVA3V-LES code to calculate the convective term. In the meantime, Lu’s n-heptane reduced 58-species mechanisms (Lu, 2011) is used to calculate chemistry with a parallel algorithm. Finally, improved models for spray injection are also employed. With these improvements, the KIVA3V-LES code is renamed as KIVALES-CP (Chemistry with Parallel algorithm) in this study. The resulting code was used to study the gas–liquid two phase jet and combustion under various diesel engine-like conditions in a constant volume vessel. The results show that using the MUSCL scheme can accurately capture the spray shape and fuel vapor penetration using even a coarse grid, in comparison with the Sandia experimental data. Similarly good results are obtained for three single-component fuels, i-Octane (C8H18), n-Dodecanese (C12H26), and n-Hexadecane (C16H34) with very different physical properties. Meanwhile the improved methodology is able to accurately predict ignition delay and flame lift-off length (LOL) under different oxygen concentrations from 10% to 21
International Nuclear Information System (INIS)
Kniehl, B.A.; Kramer, G.; Schienbein, I.; Spiesberger, H.
2009-02-01
We discuss the inclusive production of D *± mesons in γp collisions at DESY HERA, based on a calculation at next-to-leading order in the general-mass variable-flavor-number scheme. In this approach, MS subtraction is applied in such a way that large logarithmic corrections are resummed in universal parton distribution and fragmentation functions and finite mass terms are taken into account. We present detailed numerical results for a comparison with data obtained at HERA and discuss various sources of theoretical uncertainties. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kniehl, B.A.; Kramer, G. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Schienbein, I. [Univ. Joseph Fourier/CNRS-IN2P3, INPG, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie; Spiesberger, H. [Mainz Univ. (Germany). Inst. fuer Physik
2009-02-15
We discuss the inclusive production of D{sup *{+-}} mesons in {gamma}p collisions at DESY HERA, based on a calculation at next-to-leading order in the general-mass variable-flavor-number scheme. In this approach, MS subtraction is applied in such a way that large logarithmic corrections are resummed in universal parton distribution and fragmentation functions and finite mass terms are taken into account. We present detailed numerical results for a comparison with data obtained at HERA and discuss various sources of theoretical uncertainties. (orig.)
Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Loubère, Raphaël; Rebourcet, Bernard
2013-02-01
In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.
International Nuclear Information System (INIS)
Chyla, J.
1989-01-01
Several recent papers attempting to apply the optimised QCD perturbation theory to reactions involving real or virtual photons are discussed with particular attention paid to the ambiguity appearing in the definition of parton distribution and fragmentation functions at the next-to-leading order (NLO). The necessity to use NLO parametrisations of quark densities is stressed and the problem with respect to the factorisation mass M for the 'physical' definition of parton densities is pointed out. (orig.)
Directory of Open Access Journals (Sweden)
Tao Jia
2016-01-01
Full Text Available Practically, the supplier frequently offers the retailer credit period to stimulate his/her ordering quantity. However, such credit-period-only policy may lead to the dilemma that the supplier’s account receivable increases with sale volume during delay period, especially for the item with inventory-level-dependent demand. Thus, a line-of-credit (LOC payment scheme is usually adopted by the supplier for better controlling account receivables. In this paper, the two-parameter LOC clause is firstly applied to develop an economic order quantity (EOQ model with inventory-level-dependent demand, aiming to explore its influences on the retailer’s ordering policy. Under this new policy, the retailer will be granted full delay payment if his/her order quantity is below a predetermined quantity. Otherwise, the retailer should make immediate payment for the excess part. After analyzing the relationships among parameters, two distinct cases and several theoretical results can be derived. From numerical examples, two incentives, a longer credit period and a lower rate of the retailer’s capital opportunity cost, should account for the retailer’s excessive ordering policy. And a well-designed LOC clause can be applied to induce the retailer to place an appropriate ordering quantity and ensure the supplier maintains a reasonable account receivable.
Banks, H T; Birch, Malcolm J; Brewin, Mark P; Greenwald, Stephen E; Hu, Shuhua; Kenz, Zackary R; Kruse, Carola; Maischak, Matthias; Shaw, Simon; Whiteman, John R
2014-04-13
We revisit a method originally introduced by Werder et al. (in Comput. Methods Appl. Mech. Engrg., 190:6685-6708, 2001) for temporally discontinuous Galerkin FEMs applied to a parabolic partial differential equation. In that approach, block systems arise because of the coupling of the spatial systems through inner products of the temporal basis functions. If the spatial finite element space is of dimension D and polynomials of degree r are used in time, the block system has dimension ( r + 1) D and is usually regarded as being too large when r > 1. Werder et al. found that the space-time coupling matrices are diagonalizable over [Formula: see text] for r ⩽ 100, and this means that the time-coupled computations within a time step can actually be decoupled. By using either continuous Galerkin or spectral element methods in space, we apply this DG-in-time methodology, for the first time, to second-order wave equations including elastodynamics with and without Kelvin-Voigt and Maxwell-Zener viscoelasticity. An example set of numerical results is given to demonstrate the favourable effect on error and computational work of the moderately high-order (up to degree 7) temporal and spatio-temporal approximations, and we also touch on an application of this method to an ambitious problem related to the diagnosis of coronary artery disease. Copyright © 2014 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.
DEFF Research Database (Denmark)
Laitinen, Tommi; Pivnenko, Sergey; Nielsen, Jeppe Majlund
2011-01-01
In this paper, the relatively recently introduced double phi-step theta-scanning scheme and the probe correction technique associated with it is examined against the traditional phi-scanning scheme and the first-order probe correction. The important result of this paper is that the double phi......-step theta-scanning scheme is shown to be clearly less sensitive to the probe misalignment errors compared to the phi-scanning scheme. The two methods show similar sensitivity to noise and channel balance error....
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Université Pierre et Marie Curie, CNRS-UMR 7095, Institut d' Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Am Mühlenberg 1, 14476 Potsdam-Golm (Germany)
2016-01-01
We implement the effective field theory for gravitating spinning objects in the post-Newtonian scheme at the next-to-next-to-leading order level to derive the gravitational spin-orbit interaction potential at the third and a half post-Newtonian order for rapidly rotating compact objects. From the next-to-next-to-leading order interaction potential, which we obtain here in a Lagrangian form for the first time, we derive straightforwardly the corresponding Hamiltonian. The spin-orbit sector constitutes the most elaborate spin dependent sector at each order, and accordingly we encounter a proliferation of the relevant Feynman diagrams, and a significant increase of the computational complexity. We present in detail the evaluation of the interaction potential, going over all contributing Feynman diagrams. The computation is carried out in terms of the ''nonrelativistic gravitational'' fields, which are advantageous also in spin dependent sectors, together with the various gauge choices included in the effective field theory for gravitating spinning objects, which also optimize the calculation. In addition, we automatize the effective field theory computations, and carry out the automated computations in parallel. Such automated effective field theory computations would be most useful to obtain higher order post-Newtonian corrections. We compare our Hamiltonian to the ADM Hamiltonian, and arrive at a complete agreement between the ADM and effective field theory results. Finally, we provide Hamiltonians in the center of mass frame, and complete gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to third and a half post-Newtonian order. The derivation presented here is essential to obtain further higher order post-Newtonian corrections, and to reach the accuracy level required for the successful detection of gravitational radiation.
International Nuclear Information System (INIS)
Miller, Willard Jr
2014-01-01
We describe a contraction theory for 2nd order superintegrable systems, showing that all such systems in 2 dimensions are limiting cases of a single system: the generic 3-parameter potential on the 2-sphere, S9 in our listing. Analogously, all of the quadratic symmetry algebras of these systems can be obtained by a sequence of contractions starting from S9. By contracting function space realizations of irreducible representations of the S9 algebra (which give the structure equations for Racah/Wilson polynomials) to the other superintegrable systems one obtains the full Askey scheme of orthogonal hypergeometric polynomials.This relates the scheme directly to explicitly solvable quantum mechanical systems. Amazingly, all of these contractions of superintegrable systems with potential are uniquely induced by Wigner Lie algebra contractions of so(3, C) and e(2, C). The present paper concentrates on describing this intimate link between Lie algebra and superintegrable system contractions, with the detailed calculations presented elsewhere. Joint work with E. Kalnins, S. Post, E. Subag and R. Heinonen.
D'Alessandro, Valerio; Binci, Lorenzo; Montelpare, Sergio; Ricci, Renato
2018-01-01
Open-source CFD codes provide suitable environments for implementing and testing low-dissipative algorithms typically used to simulate turbulence. In this research work we developed CFD solvers for incompressible flows based on high-order explicit and diagonally implicit Runge-Kutta (RK) schemes for time integration. In particular, an iterated PISO-like procedure based on Rhie-Chow correction was used to handle pressure-velocity coupling within each implicit RK stage. For the explicit approach, a projected scheme was used to avoid the "checker-board" effect. The above-mentioned approaches were also extended to flow problems involving heat transfer. It is worth noting that the numerical technology available in the OpenFOAM library was used for space discretization. In this work, we additionally explore the reliability and effectiveness of the proposed implementations by computing several unsteady flow benchmarks; we also show that the numerical diffusion due to the time integration approach is completely canceled using the solution techniques proposed here.
Energy Technology Data Exchange (ETDEWEB)
Lefrancois, Daniel; Dreuw, Andreas, E-mail: dreuw@uni-heidelberg.de [Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg (Germany); Rehn, Dirk R. [Departments of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden)
2016-08-28
For the calculation of adiabatic singlet-triplet gaps (STG) in diradicaloid systems the spin-flip (SF) variant of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator in third order perturbation theory (SF-ADC(3)) has been applied. Due to the methodology of the SF approach the singlet and triplet states are treated on an equal footing since they are part of the same determinant subspace. This leads to a systematically more accurate description of, e.g., diradicaloid systems than with the corresponding non-SF single-reference methods. Furthermore, using analytical excited state gradients at ADC(3) level, geometry optimizations of the singlet and triplet states were performed leading to a fully consistent description of the systems, leading to only small errors in the calculated STGs ranging between 0.6 and 2.4 kcal/mol with respect to experimental references.
International Nuclear Information System (INIS)
Sciannandrone, Daniele
2015-01-01
The topic of our research is the application of the Method of Long Characteristics (MOC) to solve the Neutron Transport Equation in three-dimensional axial geometries. The strength of the MOC is in its precision and versatility. As a drawback, it requires a large amount of computational resources. This problem is even more severe in three dimensional geometries, for which unknowns reach the order of tens of billions for assembly-level calculations. The first part of the research has dealt with the development of optimized tracking and reconstruction techniques which take advantage of the regularities of three-dimensional axial geometries. These methods have allowed a strong reduction of the memory requirements and a reduction of the execution time of the MOC calculation. The convergence of the iterative scheme has been accelerated with a lower order transport operator (DPN) which is used for the initialization of the solution and for solving the synthetic problem during MOC iterations. The algorithms for the construction and solution of the MOC and DPN operators have been accelerated by using shared-memory parallel paradigms which are more suitable for standard desktop working stations. An important part of this research has been devoted to the implementation of scheduling techniques to improve the parallel efficiency. The convergence of the angular quadrature formula for three-dimensional cases is also studied. Some of these formulas take advantage of the reduced computational costs of the treatment of planar directions and the vertical direction to speed up the algorithm. The verification of the MOC solver has been done by comparing results with continuous-in-energy Monte Carlo calculations. For this purpose a coupling of the 3D MOC solver with the Subgroup method is proposed to take into account the effects of cross sections resonances. The full calculation of a FBR assembly requires about 2 h of execution time with differences of few pcm with respect to the
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Université Pierre et Marie Curie, CNRS-UMR 7095, Institut d' Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Am Mühlenberg 1, 14476 Potsdam-Golm (Germany)
2016-01-01
The next-to-next-to-leading order spin-squared interaction potential for generic compact binaries is derived for the first time via the effective field theory for gravitating spinning objects in the post-Newtonian scheme. The spin-squared sector is an intricate one, as it requires the consideration of the point particle action beyond minimal coupling, and mainly involves the spin-squared worldline couplings, which are quite complex, compared to the worldline couplings from the minimal coupling part of the action. This sector also involves the linear in spin couplings, as we go up in the nonlinearity of the interaction, and in the loop order. Hence, there is an excessive increase in the number of Feynman diagrams, of which more are higher loop ones. We provide all the Feynman diagrams and their values. The beneficial ''nonrelativistic gravitational'' fields are employed in the computation. This spin-squared correction, which enters at the fourth post-Newtonian order for rapidly rotating compact objects, completes the conservative sector up to the fourth post-Newtonian accuracy. The robustness of the effective field theory for gravitating spinning objects is shown here once again, as demonstrated in a recent series of papers by the authors, which obtained all spin dependent sectors, required up to the fourth post-Newtonian accuracy. The effective field theory of spinning objects allows to directly obtain the equations of motion, and the Hamiltonians, and these will be derived for the potential obtained here in a forthcoming paper.
International Nuclear Information System (INIS)
Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho
2016-01-01
always divergence-free. This collocation also ensures that electromagnetic radiation that is propagating in a vacuum has both electric and magnetic fields that are exactly divergence-free. Coupled relativistic fluid dynamic equations are solved for the positively and negatively charged fluids. The fluids' numerical fluxes also provide a self-consistent current density for the update of the electric field. Our reconstruction strategy ensures that fluid velocities always remain sub-luminal. Our third innovation consists of an efficient design for several popular IMEX schemes so that they provide strong coupling between the finite-volume-based fluid solver and the electromagnetic fields at high order. This innovation makes it possible to efficiently utilize high order IMEX time update methods for stiff source terms in the update of high order finite-volume methods for hyperbolic conservation laws. We also show that this very general innovation should extend seamlessly to Runge–Kutta discontinuous Galerkin methods. The IMEX schemes enable us to use large CFL numbers even in the presence of stiff source terms. Several accuracy analyses are presented showing that our method meets its design accuracy in the MHD limit as well as in the limit of electromagnetic wave propagation. Several stringent test problems are also presented. We also present a relativistic version of the GEM problem, which shows that our algorithm can successfully adapt to challenging problems in high energy astrophysics.
Energy Technology Data Exchange (ETDEWEB)
Balsara, Dinshaw S., E-mail: dbalsara@nd.edu [Physics Department, University of Notre Dame (United States); Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033 (Japan); Garain, Sudip, E-mail: sgarain@nd.edu [Physics Department, University of Notre Dame (United States); Kim, Jinho, E-mail: jkim46@nd.edu [Physics Department, University of Notre Dame (United States)
2016-08-01
always divergence-free. This collocation also ensures that electromagnetic radiation that is propagating in a vacuum has both electric and magnetic fields that are exactly divergence-free. Coupled relativistic fluid dynamic equations are solved for the positively and negatively charged fluids. The fluids' numerical fluxes also provide a self-consistent current density for the update of the electric field. Our reconstruction strategy ensures that fluid velocities always remain sub-luminal. Our third innovation consists of an efficient design for several popular IMEX schemes so that they provide strong coupling between the finite-volume-based fluid solver and the electromagnetic fields at high order. This innovation makes it possible to efficiently utilize high order IMEX time update methods for stiff source terms in the update of high order finite-volume methods for hyperbolic conservation laws. We also show that this very general innovation should extend seamlessly to Runge–Kutta discontinuous Galerkin methods. The IMEX schemes enable us to use large CFL numbers even in the presence of stiff source terms. Several accuracy analyses are presented showing that our method meets its design accuracy in the MHD limit as well as in the limit of electromagnetic wave propagation. Several stringent test problems are also presented. We also present a relativistic version of the GEM problem, which shows that our algorithm can successfully adapt to challenging problems in high energy astrophysics.
Caplan, R. M.
2013-04-01
We present a simple to use, yet powerful code package called NLSEmagic to numerically integrate the nonlinear Schrödinger equation in one, two, and three dimensions. NLSEmagic is a high-order finite-difference code package which utilizes graphic processing unit (GPU) parallel architectures. The codes running on the GPU are many times faster than their serial counterparts, and are much cheaper to run than on standard parallel clusters. The codes are developed with usability and portability in mind, and therefore are written to interface with MATLAB utilizing custom GPU-enabled C codes with the MEX-compiler interface. The packages are freely distributed, including user manuals and set-up files. Catalogue identifier: AEOJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOJ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 124453 No. of bytes in distributed program, including test data, etc.: 4728604 Distribution format: tar.gz Programming language: C, CUDA, MATLAB. Computer: PC, MAC. Operating system: Windows, MacOS, Linux. Has the code been vectorized or parallelized?: Yes. Number of processors used: Single CPU, number of GPU processors dependent on chosen GPU card (max is currently 3072 cores on GeForce GTX 690). Supplementary material: Setup guide, Installation guide. RAM: Highly dependent on dimensionality and grid size. For typical medium-large problem size in three dimensions, 4GB is sufficient. Keywords: Nonlinear Schröodinger Equation, GPU, high-order finite difference, Bose-Einstien condensates. Classification: 4.3, 7.7. Nature of problem: Integrate solutions of the time-dependent one-, two-, and three-dimensional cubic nonlinear Schrödinger equation. Solution method: The integrators utilize a fully-explicit fourth-order Runge-Kutta scheme in time
Li, Gaohua; Fu, Xiang; Wang, Fuxin
2017-10-01
The low-dissipation high-order accurate hybrid up-winding/central scheme based on fifth-order weighted essentially non-oscillatory (WENO) and sixth-order central schemes, along with the Spalart-Allmaras (SA)-based delayed detached eddy simulation (DDES) turbulence model, and the flow feature-based adaptive mesh refinement (AMR), are implemented into a dual-mesh overset grid infrastructure with parallel computing capabilities, for the purpose of simulating vortex-dominated unsteady detached wake flows with high spatial resolutions. The overset grid assembly (OGA) process based on collection detection theory and implicit hole-cutting algorithm achieves an automatic coupling for the near-body and off-body solvers, and the error-and-try method is used for obtaining a globally balanced load distribution among the composed multiple codes. The results of flows over high Reynolds cylinder and two-bladed helicopter rotor show that the combination of high-order hybrid scheme, advanced turbulence model, and overset adaptive mesh refinement can effectively enhance the spatial resolution for the simulation of turbulent wake eddies.
International Nuclear Information System (INIS)
Aruchunan, E.
2015-01-01
In this paper, we have examined the effectiveness of the quarter-sweep iteration concept on conjugate gradient normal residual (CGNR) iterative method by using composite Simpson's (CS) and finite difference (FD) discretization schemes in solving Fredholm integro-differential equations. For comparison purposes, Gauss- Seidel (GS) and the standard or full- and half-sweep CGNR methods namely FSCGNR and HSCGNR are also presented. To validate the efficacy of the proposed method, several analyses were carried out such as computational complexity and percentage reduction on the proposed and existing methods. (author)
Energy Technology Data Exchange (ETDEWEB)
Xu, Kuan-Man [NASA Langley Research Center, Hampton, VA (United States); Cheng, Anning [NASA Langley Research Center, Hampton, VA (United States); Science Systems and Applications, Inc., Hampton, VA (United States)
2015-11-24
The intermediately-prognostic higher-order turbulence closure (IPHOC) introduces a joint double-Gaussian distribution of liquid water potential temperature (θ_{l} ), total water mixing ratio (q_{t}), and vertical velocity (w) to represent any skewed turbulence circulation. The distribution is inferred from the first-, second-, and third-order moments of the variables given above, and is used to diagnose cloud fraction and gridmean liquid water mixing ratio, as well as the buoyancy term and fourth-order terms in the equations describing the evolution of the second- and third-order moments. Only three third-order moments, i.e., the triple moments of θ_{l}, q_{t}, and w, are predicted in IPHOC.
DEFF Research Database (Denmark)
van Leeuwen, Theo
2013-01-01
This chapter presents a framework for analysing colour schemes based on a parametric approach that includes not only hue, value and saturation, but also purity, transparency, luminosity, luminescence, lustre, modulation and differentiation.......This chapter presents a framework for analysing colour schemes based on a parametric approach that includes not only hue, value and saturation, but also purity, transparency, luminosity, luminescence, lustre, modulation and differentiation....
Energy Technology Data Exchange (ETDEWEB)
Delfin L, A.; Alonso V, G. [ININ, Km. 36.5 Carretera Mexico-Toluca, 52045 Ocoyocac, Estado de Mexico (Mexico); Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: adl@nuclear.inin.mx
2003-07-01
In this work two nodal schemes of finite element are presented, one of second and the other of third order of accurate that allow to determine the radial distribution of power starting from the corresponding reactivities.The schemes here developed were obtained taking as starting point the equation developed by Driscoll et al, the one which is based on the diffusion approach of 1-1/2 energy groups. This equation relates the power fraction of an assemble with their reactivity and with the power fractions and reactivities of the assemblies that its surround it. Driscoll and collaborators they solve in form approximate such equation supposing that the reactivity of each assemble it is but a lineal function of the burnt one of the fuel. The spatial approach carries out it with the classic technique of finite differences centered in mesh. Nevertheless that the algebraic system to which its arrive it can be solved without more considerations introduce some additional suppositions and adjustment parameters that it allows them to predict results comparable to those contributed by three dimensions analysis and this way to reduce the one obtained error when its compare their results with those of a production code like CASMO. Also in the two schemes that here are presented the same approaches of Driscoll were used being obtained errors of the one 10% and of 5% for the second schemes and third order respectively for a test case that it was built starting from data of the Cycle 1 of the Unit 1 of the Laguna Verde Nucleo electric plant. These errors its were obtained when comparing with a computer program based on the matrix response method. It is sought to have this way a quick and efficient tool for the multicycle analysis in the fuel management. However, this model presents problems in the appropriate prediction of the average burnt of the nucleus and of the burnt one by lot. (Author)
International Nuclear Information System (INIS)
Balsara, D.S.
1999-01-01
In this paper we analyze some of the numerical issues that are involved in making time-implicit higher-order Godunov schemes for the equations of radiation hydrodynamics (and the Euler or Navier-Stokes equations). This is done primarily with the intent of incorporating such methods in the author's RIEMANN code. After examining the issues it is shown that the construction of a time-implicit higher-order Godunov scheme for radiation hydrodynamics would be benefited by our ability to evaluate exact Jacobians of the numerical flux that is based on Roe-type flux difference splitting. In this paper we show that this can be done analytically in a form that is suitable for efficient computational implementation. It is also shown that when multiple fluid species are used or when multiple radiation frequencies are used the computational cost in the evaluation of the exact Jacobians scales linearly with the number of fluid species or the number of radiation frequencies. Connections are made to other types of numerical fluxes, especially those based on flux difference splittings. It is shown that the evaluation of the exact Jacobian for such numerical fluxes is also benefited by the present strategy and the results given here. It is, however, pointed out that time-implicit schemes that are based on the evaluation of the exact Jacobians for flux difference splittings using the methods developed here are both computationally more efficient and numerically more stable than corresponding time-implicit schemes that are based on the evaluation of the exact or approximate Jacobians for flux vector splittings. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Energy Technology Data Exchange (ETDEWEB)
Delfin L, A.; Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: adl@nuclear.inin.mx
2003-07-01
In this work the development of a third order scheme of finite differences centered in mesh is presented and it is applied in the numerical solution of those diffusion equations in multi groups in stationary state and X Y geometry. Originally this scheme was developed by Hennart and del Valle for the monoenergetic diffusion equation with a well-known source and they show that the one scheme is of third order when comparing the numerical solution with the analytical solution of a model problem using several mesh refinements and boundary conditions. The scheme by them developed it also introduces the application of numeric quadratures to evaluate the rigidity matrices and of mass that its appear when making use of the finite elements method of Galerkin. One of the used quadratures is the open quadrature of 4 points, no-standard, of Newton-Cotes to evaluate in approximate form the elements of the rigidity matrices. The other quadrature is that of 3 points of Radau that it is used to evaluate the elements of all the mass matrices. One of the objectives of these quadratures are to eliminate the couplings among the Legendre moments 0 and 1 associated to the left and right faces as those associated to the inferior and superior faces of each cell of the discretization. The other objective is to satisfy the particles balance in weighed form in each cell. In this work it expands such development to multiplicative means considering several energy groups. There are described diverse details inherent to the technique, particularly those that refer to the simplification of the algebraic systems that appear due to the space discretization. Numerical results for several test problems are presented and are compared with those obtained with other nodal techniques. (Author)
DEFF Research Database (Denmark)
Boby, Mathews; Rahul, Arun; Gopakumar, K.
2018-01-01
Conventional voltage-source inverters used for induction motor drives generate a hexagonal space vector structure. In the overmodulation range, the hexagonal space vector structure generates low-order harmonics in the phase voltage resulting in low-order torque ripple in the motor. Inverter...... topologies with an octadecagonal (18 sided) space vector structure eliminate fifth-, seventh-, eleventh-, and thirteenth-order harmonics from the phase voltage, and hence, the dominant sixth- and twelfth-order torque ripple generation is eliminated. Octadecagonal space vector structures proposed in the past...... require multiple dc sources, which makes four-quadrant operation of the drive system difficult and costly. In this paper, the formation of a multilevel nine-concentric octadecagonal space vector structure using a single dc source is proposed. Detailed experimental results, using open-loop V/f control...
Settle, Sean O.; Douglas, Craig C.; Kim, Imbunm; Sheen, Dongwoo
2013-01-01
- and two-dimensional Poisson equation on uniform, quasi-uniform, and nonuniform face-to-face hyperrectangular grids and directly prove the existence or nonexistence of their highest-order local accuracies. Our derivations are unique in that we do not make
2016-06-08
Ideal Magnetohydrodynamics,” J. Com- put. Phys., Vol. 153, No. 2, 1999, pp. 334–352. [14] Tang, H.-Z. and Xu, K., “A high-order gas -kinetic method for...notwithstanding any other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if it does...Riemann-solver-free spacetime discontinuous Galerkin method for general conservation laws to solve compressible magnetohydrodynamics (MHD) equations. The
J.K. Hoogland (Jiri); C.D.D. Neumann
2000-01-01
textabstractIn this article we present a new approach to the numerical valuation of derivative securities. The method is based on our previous work where we formulated the theory of pricing in terms of tradables. The basic idea is to fit a finite difference scheme to exact solutions of the pricing
DEFF Research Database (Denmark)
Ryttov, Thomas A.; Shrock, Robert
2017-01-01
We study a vectorial asymptotically free gauge theory, with gauge group $G$ and $N_f$ massless fermions in a representation $R$ of this group, that exhibits an infrared (IR) zero in its beta function, $\\beta$, at the coupling $\\alpha=\\alpha_{IR}$ in the non-Abelian Coulomb phase. For general $G......_f$-dependent expansion variable. These are the highest orders to which these expansions have been calculated. We apply these general results to theories with $G={\\rm SU}(N_c)$ and $R$ equal to the fundamental, adjoint, and symmetric and antisymmetric rank-2 tensor representations. It is shown that for all...
Ding, Xiaoshuai; Cao, Jinde; Zhao, Xuan; Alsaadi, Fuad E
2017-08-01
This paper is concerned with the drive-response synchronization for a class of fractional-order bidirectional associative memory neural networks with time delays, as well as in the presence of discontinuous activation functions. The global existence of solution under the framework of Filippov for such networks is firstly obtained based on the fixed-point theorem for condensing map. Then the state feedback and impulsive controllers are, respectively, designed to ensure the Mittag-Leffler synchronization of these neural networks and two new synchronization criteria are obtained, which are expressed in terms of a fractional comparison principle and Razumikhin techniques. Numerical simulations are presented to validate the proposed methodologies.
CANONICAL BACKWARD DIFFERENTIATION SCHEMES FOR ...
African Journals Online (AJOL)
This paper describes a new nonlinear backward differentiation schemes for the numerical solution of nonlinear initial value problems of first order ordinary differential equations. The schemes are based on rational interpolation obtained from canonical polynomials. They are A-stable. The test problems show that they give ...
Comparative study of numerical schemes of TVD3, UNO3-ACM and optimized compact scheme
Lee, Duck-Joo; Hwang, Chang-Jeon; Ko, Duck-Kon; Kim, Jae-Wook
1995-01-01
Three different schemes are employed to solve the benchmark problem. The first one is a conventional TVD-MUSCL (Monotone Upwind Schemes for Conservation Laws) scheme. The second scheme is a UNO3-ACM (Uniformly Non-Oscillatory Artificial Compression Method) scheme. The third scheme is an optimized compact finite difference scheme modified by us: the 4th order Runge Kutta time stepping, the 4th order pentadiagonal compact spatial discretization with the maximum resolution characteristics. The problems of category 1 are solved by using the second (UNO3-ACM) and third (Optimized Compact) schemes. The problems of category 2 are solved by using the first (TVD3) and second (UNO3-ACM) schemes. The problem of category 5 is solved by using the first (TVD3) scheme. It can be concluded from the present calculations that the Optimized Compact scheme and the UN03-ACM show good resolutions for category 1 and category 2 respectively.
Selectively strippable paint schemes
Stein, R.; Thumm, D.; Blackford, Roger W.
1993-03-01
In order to meet the requirements of more environmentally acceptable paint stripping processes many different removal methods are under evaluation. These new processes can be divided into mechanical and chemical methods. ICI has developed a paint scheme with intermediate coat and fluid resistant polyurethane topcoat which can be stripped chemically in a short period of time with methylene chloride free and phenol free paint strippers.
Energy Technology Data Exchange (ETDEWEB)
Clarisse, J.M
2007-07-01
A numerical scheme for computing linear Lagrangian perturbations of spherically symmetric flows of gas dynamics is proposed. This explicit first-order scheme uses the Roe method in Lagrangian coordinates, for computing the radial spherically symmetric mean flow, and its linearized version, for treating the three-dimensional linear perturbations. Fulfillment of the geometric conservation law discrete formulations for both the mean flow and its perturbation is ensured. This scheme capabilities are illustrated by the computation of free-surface mode evolutions at the boundaries of a spherical hollow shell undergoing an homogeneous cumulative compression, showing excellent agreement with reference results. (author)
Scalable Nonlinear Compact Schemes
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Debojyoti [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil M. [Univ. of Chicago, IL (United States); Brown, Jed [Univ. of Colorado, Boulder, CO (United States)
2014-04-01
In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.
Good governance for pension schemes
Thornton, Paul
2011-01-01
Regulatory and market developments have transformed the way in which UK private sector pension schemes operate. This has increased demands on trustees and advisors and the trusteeship governance model must evolve in order to remain fit for purpose. This volume brings together leading practitioners to provide an overview of what today constitutes good governance for pension schemes, from both a legal and a practical perspective. It provides the reader with an appreciation of the distinctive characteristics of UK occupational pension schemes, how they sit within the capital markets and their social and fiduciary responsibilities. Providing a holistic analysis of pension risk, both from the trustee and the corporate perspective, the essays cover the crucial role of the employer covenant, financing and investment risk, developments in longevity risk hedging and insurance de-risking, and best practice scheme administration.
Nonlinear secret image sharing scheme.
Shin, Sang-Ho; Lee, Gil-Je; Yoo, Kee-Young
2014-01-01
Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2 m⌉ bit-per-pixel (bpp), respectively.
Numerical schemes for explosion hazards
International Nuclear Information System (INIS)
Therme, Nicolas
2015-01-01
In nuclear facilities, internal or external explosions can cause confinement breaches and radioactive materials release in the environment. Hence, modeling such phenomena is crucial for safety matters. Blast waves resulting from explosions are modeled by the system of Euler equations for compressible flows, whereas Navier-Stokes equations with reactive source terms and level set techniques are used to simulate the propagation of flame front during the deflagration phase. The purpose of this thesis is to contribute to the creation of efficient numerical schemes to solve these complex models. The work presented here focuses on two major aspects: first, the development of consistent schemes for the Euler equations, then the buildup of reliable schemes for the front propagation. In both cases, explicit in time schemes are used, but we also introduce a pressure correction scheme for the Euler equations. Staggered discretization is used in space. It is based on the internal energy formulation of the Euler system, which insures its positivity and avoids tedious discretization of the total energy over staggered grids. A discrete kinetic energy balance is derived from the scheme and a source term is added in the discrete internal energy balance equation to preserve the exact total energy balance at the limit. High order methods of MUSCL type are used in the discrete convective operators, based solely on material velocity. They lead to positivity of density and internal energy under CFL conditions. This ensures that the total energy cannot grow and we can furthermore derive a discrete entropy inequality. Under stability assumptions of the discrete L8 and BV norms of the scheme's solutions one can prove that a sequence of converging discrete solutions necessarily converges towards the weak solution of the Euler system. Besides it satisfies a weak entropy inequality at the limit. Concerning the front propagation, we transform the flame front evolution equation (the so called
Multiuser switched diversity scheduling schemes
Shaqfeh, Mohammad; Alnuweiri, Hussein M.; Alouini, Mohamed-Slim
2012-01-01
Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed, and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in Rayleigh fading conditions. © 2012 IEEE.
Multiuser switched diversity scheduling schemes
Shaqfeh, Mohammad
2012-09-01
Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed, and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in Rayleigh fading conditions. © 2012 IEEE.
Sman, van der R.G.M.
2006-01-01
In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the
Betatron tune correction schemes in nuclotron
International Nuclear Information System (INIS)
Shchepunov, V.A.
1992-01-01
Algorithms of the betatron tune corrections in Nuclotron with sextupolar and octupolar magnets are considered. Second order effects caused by chromaticity correctors are taken into account and sextupolar compensation schemes are proposed to suppress them. 6 refs.; 1 tab
Order aggressiveness and order book dynamics
DEFF Research Database (Denmark)
Hall, Anthony D.; Hautsch, Nikolaus
2006-01-01
In this paper, we study the determinants of order aggressiveness and traders’ order submission strategy in an open limit order book market. Applying an order classification scheme, we model the most aggressive market orders, limit orders as well as cancellations on both sides of the market...... employing a six-dimensional autoregressive conditional intensity model. Using order book data from the Australian Stock Exchange, we find that market depth, the queued volume, the bid-ask spread, recent volatility, as well as recent changes in both the order flow and the price play an important role...... in explaining the determinants of order aggressiveness. Overall, our empirical results broadly confirm theoretical predictions on limit order book trading. However, we also find evidence for behavior that can be attributed to particular liquidity and volatility effects...
Generalization of binary tensor product schemes depends upon four parameters
International Nuclear Information System (INIS)
Bashir, R.; Bari, M.; Mustafa, G.
2018-01-01
This article deals with general formulae of parametric and non parametric bivariate subdivision scheme with four parameters. By assigning specific values to those parameters we get some special cases of existing tensor product schemes as well as a new proposed scheme. The behavior of schemes produced by the general formulae is interpolating, approximating and relaxed. Approximating bivariate subdivision schemes produce some other surfaces as compared to interpolating bivariate subdivision schemes. Polynomial reproduction and polynomial generation are desirable properties of subdivision schemes. Capability of polynomial reproduction and polynomial generation is strongly connected with smoothness, sum rules, convergence and approximation order. We also calculate the polynomial generation and polynomial reproduction of 9-point bivariate approximating subdivision scheme. Comparison of polynomial reproduction, polynomial generation and continuity of existing and proposed schemes has also been established. Some numerical examples are also presented to show the behavior of bivariate schemes. (author)
Vector domain decomposition schemes for parabolic equations
Vabishchevich, P. N.
2017-09-01
A new class of domain decomposition schemes for finding approximate solutions of timedependent problems for partial differential equations is proposed and studied. A boundary value problem for a second-order parabolic equation is used as a model problem. The general approach to the construction of domain decomposition schemes is based on partition of unity. Specifically, a vector problem is set up for solving problems in individual subdomains. Stability conditions for vector regionally additive schemes of first- and second-order accuracy are obtained.
Scheme Program Documentation Tools
DEFF Research Database (Denmark)
Nørmark, Kurt
2004-01-01
are separate and intended for different documentation purposes they are related to each other in several ways. Both tools are based on XML languages for tool setup and for documentation authoring. In addition, both tools rely on the LAML framework which---in a systematic way---makes an XML language available...... as named functions in Scheme. Finally, the Scheme Elucidator is able to integrate SchemeDoc resources as part of an internal documentation resource....
Analysis of Program Obfuscation Schemes with Variable Encoding Technique
Fukushima, Kazuhide; Kiyomoto, Shinsaku; Tanaka, Toshiaki; Sakurai, Kouichi
Program analysis techniques have improved steadily over the past several decades, and software obfuscation schemes have come to be used in many commercial programs. A software obfuscation scheme transforms an original program or a binary file into an obfuscated program that is more complicated and difficult to analyze, while preserving its functionality. However, the security of obfuscation schemes has not been properly evaluated. In this paper, we analyze obfuscation schemes in order to clarify the advantages of our scheme, the XOR-encoding scheme. First, we more clearly define five types of attack models that we defined previously, and define quantitative resistance to these attacks. Then, we compare the security, functionality and efficiency of three obfuscation schemes with encoding variables: (1) Sato et al.'s scheme with linear transformation, (2) our previous scheme with affine transformation, and (3) the XOR-encoding scheme. We show that the XOR-encoding scheme is superior with regard to the following two points: (1) the XOR-encoding scheme is more secure against a data-dependency attack and a brute force attack than our previous scheme, and is as secure against an information-collecting attack and an inverse transformation attack as our previous scheme, (2) the XOR-encoding scheme does not restrict the calculable ranges of programs and the loss of efficiency is less than in our previous scheme.
A Spatial Domain Quantum Watermarking Scheme
International Nuclear Information System (INIS)
Wei Zhan-Hong; Chen Xiu-Bo; Niu Xin-Xin; Yang Yi-Xian; Xu Shu-Jiang
2016-01-01
This paper presents a spatial domain quantum watermarking scheme. For a quantum watermarking scheme, a feasible quantum circuit is a key to achieve it. This paper gives a feasible quantum circuit for the presented scheme. In order to give the quantum circuit, a new quantum multi-control rotation gate, which can be achieved with quantum basic gates, is designed. With this quantum circuit, our scheme can arbitrarily control the embedding position of watermark images on carrier images with the aid of auxiliary qubits. Besides reversely acting the given quantum circuit, the paper gives another watermark extracting algorithm based on quantum measurements. Moreover, this paper also gives a new quantum image scrambling method and its quantum circuit. Differ from other quantum watermarking schemes, all given quantum circuits can be implemented with basic quantum gates. Moreover, the scheme is a spatial domain watermarking scheme, and is not based on any transform algorithm on quantum images. Meanwhile, it can make sure the watermark be secure even though the watermark has been found. With the given quantum circuit, this paper implements simulation experiments for the presented scheme. The experimental result shows that the scheme does well in the visual quality and the embedding capacity. (paper)
Homogenization scheme for acoustic metamaterials
Yang, Min
2014-02-26
We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from that of coherent potential approximation, which is based on adjusting the effective-medium parameters to minimize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters, such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial\\'s structural unit cell with a piece of homogenized material. From the Green\\'s theorem applied to the exterior domain problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost exactly with numerical simulations and experiments and the scheme\\'s validity is constrained by the number of dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.
Multiresolution signal decomposition schemes
J. Goutsias (John); H.J.A.M. Heijmans (Henk)
1998-01-01
textabstract[PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis
Directory of Open Access Journals (Sweden)
R. Sitharthan
2016-09-01
Full Text Available This paper aims at modelling an electronically coupled distributed energy resource with an adaptive protection scheme. The electronically coupled distributed energy resource is a microgrid framework formed by coupling the renewable energy source electronically. Further, the proposed adaptive protection scheme provides a suitable protection to the microgrid for various fault conditions irrespective of the operating mode of the microgrid: namely, grid connected mode and islanded mode. The outstanding aspect of the developed adaptive protection scheme is that it monitors the microgrid and instantly updates relay fault current according to the variations that occur in the system. The proposed adaptive protection scheme also employs auto reclosures, through which the proposed adaptive protection scheme recovers faster from the fault and thereby increases the consistency of the microgrid. The effectiveness of the proposed adaptive protection is studied through the time domain simulations carried out in the PSCAD⧹EMTDC software environment.
A rational function based scheme for solving advection equation
International Nuclear Information System (INIS)
Xiao, Feng; Yabe, Takashi.
1995-07-01
A numerical scheme for solving advection equations is presented. The scheme is derived from a rational interpolation function. Some properties of the scheme with respect to convex-concave preserving and monotone preserving are discussed. We find that the scheme is attractive in surpressinging overshoots and undershoots even in the vicinities of discontinuity. The scheme can also be easily swicthed as the CIP (Cubic interpolated Pseudo-Particle) method to get a third-order accuracy in smooth region. Numbers of numerical tests are carried out to show the non-oscillatory and less diffusive nature of the scheme. (author)
Threshold Signature Schemes Application
Directory of Open Access Journals (Sweden)
Anastasiya Victorovna Beresneva
2015-10-01
Full Text Available This work is devoted to an investigation of threshold signature schemes. The systematization of the threshold signature schemes was done, cryptographic constructions based on interpolation Lagrange polynomial, elliptic curves and bilinear pairings were examined. Different methods of generation and verification of threshold signatures were explored, the availability of practical usage of threshold schemes in mobile agents, Internet banking and e-currency was shown. The topics of further investigation were given and it could reduce a level of counterfeit electronic documents signed by a group of users.
High-order finite volume advection
Shaw, James
2018-01-01
The cubicFit advection scheme is limited to second-order convergence because it uses a polynomial reconstruction fitted to point values at cell centres. The highOrderFit advection scheme achieves higher than second order by calculating high-order moments over the mesh geometry.
Navigators’ Behavior in Traffic Separation Schemes
Directory of Open Access Journals (Sweden)
Zbigniew Pietrzykowski
2015-03-01
Full Text Available One of the areas of decision support in the navigational ship conduct process is a Traffic Separation Scheme. TSSs are established in areas with high traffic density, often near the shore and in port approaches. The main purpose of these schemes is to improve maritime safety by channeling vessel traffic into streams. Traffic regulations as well as ships behavior in real conditions in chosen TSSs have been analyzed in order to develop decision support algorithms.
DEFF Research Database (Denmark)
Pötz, Katharina Anna; Haas, Rainer; Balzarova, Michaela
2013-01-01
of schemes that can be categorized on focus areas, scales, mechanisms, origins, types and commitment levels. Research limitations/implications – The findings contribute to conceptual and empirical research on existing models to compare and analyse CSR standards. Sampling technique and depth of analysis limit......Purpose – The rise of CSR followed a demand for CSR standards and guidelines. In a sector already characterized by a large number of standards, the authors seek to ask what CSR schemes apply to agribusiness, and how they can be systematically compared and analysed. Design....../methodology/approach – Following a deductive-inductive approach the authors develop a model to compare and analyse CSR schemes based on existing studies and on coding qualitative data on 216 CSR schemes. Findings – The authors confirm that CSR standards and guidelines have entered agribusiness and identify a complex landscape...
Energy Technology Data Exchange (ETDEWEB)
Willcock, J J; Lumsdaine, A; Quinlan, D J
2008-08-19
Tabled execution is a generalization of memorization developed by the logic programming community. It not only saves results from tabled predicates, but also stores the set of currently active calls to them; tabled execution can thus provide meaningful semantics for programs that seemingly contain infinite recursions with the same arguments. In logic programming, tabled execution is used for many purposes, both for improving the efficiency of programs, and making tasks simpler and more direct to express than with normal logic programs. However, tabled execution is only infrequently applied in mainstream functional languages such as Scheme. We demonstrate an elegant implementation of tabled execution in Scheme, using a mix of continuation-passing style and mutable data. We also show the use of tabled execution in Scheme for a problem in formal language and automata theory, demonstrating that tabled execution can be a valuable tool for Scheme users.
Evaluating statistical cloud schemes
Grützun, Verena; Quaas, Johannes; Morcrette , Cyril J.; Ament, Felix
2015-01-01
Statistical cloud schemes with prognostic probability distribution functions have become more important in atmospheric modeling, especially since they are in principle scale adaptive and capture cloud physics in more detail. While in theory the schemes have a great potential, their accuracy is still questionable. High-resolution three-dimensional observational data of water vapor and cloud water, which could be used for testing them, are missing. We explore the potential of ground-based re...
Gamma spectrometry; level schemes
International Nuclear Information System (INIS)
Blachot, J.; Bocquet, J.P.; Monnand, E.; Schussler, F.
1977-01-01
The research presented dealt with: a new beta emitter, isomer of 131 Sn; the 136 I levels fed through the radioactive decay of 136 Te (20.9s); the A=145 chain (β decay of Ba, La and Ce, and level schemes for 145 La, 145 Ce, 145 Pr); the A=47 chain (La and Ce, β decay, and the level schemes of 147 Ce and 147 Pr) [fr
International Nuclear Information System (INIS)
2002-04-01
This scheme defines the objectives relative to the renewable energies and the rational use of the energy in the framework of the national energy policy. It evaluates the needs and the potentialities of the regions and preconizes the actions between the government and the territorial organizations. The document is presented in four parts: the situation, the stakes and forecasts; the possible actions for new measures; the scheme management and the regional contributions analysis. (A.L.B.)
Analysis of central and upwind compact schemes
International Nuclear Information System (INIS)
Sengupta, T.K.; Ganeriwal, G.; De, S.
2003-01-01
Central and upwind compact schemes for spatial discretization have been analyzed with respect to accuracy in spectral space, numerical stability and dispersion relation preservation. A von Neumann matrix spectral analysis is developed here to analyze spatial discretization schemes for any explicit and implicit schemes to investigate the full domain simultaneously. This allows one to evaluate various boundary closures and their effects on the domain interior. The same method can be used for stability analysis performed for the semi-discrete initial boundary value problems (IBVP). This analysis tells one about the stability for every resolved length scale. Some well-known compact schemes that were found to be G-K-S and time stable are shown here to be unstable for selective length scales by this analysis. This is attributed to boundary closure and we suggest special boundary treatment to remove this shortcoming. To demonstrate the asymptotic stability of the resultant schemes, numerical solution of the wave equation is compared with analytical solution. Furthermore, some of these schemes are used to solve two-dimensional Navier-Stokes equation and a computational acoustic problem to check their ability to solve problems for long time. It is found that those schemes, that were found unstable for the wave equation, are unsuitable for solving incompressible Navier-Stokes equation. In contrast, the proposed compact schemes with improved boundary closure and an explicit higher-order upwind scheme produced correct results. The numerical solution for the acoustic problem is compared with the exact solution and the quality of the match shows that the used compact scheme has the requisite DRP property
How update schemes influence crowd simulations
International Nuclear Information System (INIS)
Seitz, Michael J; Köster, Gerta
2014-01-01
Time discretization is a key modeling aspect of dynamic computer simulations. In current pedestrian motion models based on discrete events, e.g. cellular automata and the Optimal Steps Model, fixed-order sequential updates and shuffle updates are prevalent. We propose to use event-driven updates that process events in the order they occur, and thus better match natural movement. In addition, we present a parallel update with collision detection and resolution for situations where computational speed is crucial. Two simulation studies serve to demonstrate the practical impact of the choice of update scheme. Not only do density-speed relations differ, but there is a statistically significant effect on evacuation times. Fixed-order sequential and random shuffle updates with a short update period come close to event-driven updates. The parallel update scheme overestimates evacuation times. All schemes can be employed for arbitrary simulation models with discrete events, such as car traffic or animal behavior. (paper)
Towards Symbolic Encryption Schemes
DEFF Research Database (Denmark)
Ahmed, Naveed; Jensen, Christian D.; Zenner, Erik
2012-01-01
, namely an authenticated encryption scheme that is secure under chosen ciphertext attack. Therefore, many reasonable encryption schemes, such as AES in the CBC or CFB mode, are not among the implementation options. In this paper, we report new attacks on CBC and CFB based implementations of the well......Symbolic encryption, in the style of Dolev-Yao models, is ubiquitous in formal security models. In its common use, encryption on a whole message is specified as a single monolithic block. From a cryptographic perspective, however, this may require a resource-intensive cryptographic algorithm......-known Needham-Schroeder and Denning-Sacco protocols. To avoid such problems, we advocate the use of refined notions of symbolic encryption that have natural correspondence to standard cryptographic encryption schemes....
Energy Technology Data Exchange (ETDEWEB)
Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.
2014-07-25
This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.
New analytic unitarization schemes
International Nuclear Information System (INIS)
Cudell, J.-R.; Predazzi, E.; Selyugin, O. V.
2009-01-01
We consider two well-known classes of unitarization of Born amplitudes of hadron elastic scattering. The standard class, which saturates at the black-disk limit includes the standard eikonal representation, while the other class, which goes beyond the black-disk limit to reach the full unitarity circle, includes the U matrix. It is shown that the basic properties of these schemes are independent of the functional form used for the unitarization, and that U matrix and eikonal schemes can be extended to have similar properties. A common form of unitarization is proposed interpolating between both classes. The correspondence with different nonlinear equations are also briefly examined.
TVD schemes in one and two space dimensions
International Nuclear Information System (INIS)
Leveque, R.J.; Goodman, J.B.; New York Univ., NY)
1985-01-01
The recent development of schemes which are second order accurate in smooth regions has made it possible to overcome certain difficulties which used to arise in numerical computations of discontinuous solutions of conservation laws. The present investigation is concerned with scalar conservation laws, taking into account the employment of total variation diminishing (TVD) schemes. The concept of a TVD scheme was introduced by Harten et al. (1976). Harten et al. first constructed schemes which are simultaneously TVD and second order accurate on smooth solutions. In the present paper, a summary is provided of recently conducted work in this area. Attention is given to TVD schemes in two space dimensions, a second order accurate TVD scheme in one dimension, and the entropy condition and spreading of rarefaction waves. 19 references
Fragment separator momentum compression schemes
Energy Technology Data Exchange (ETDEWEB)
Bandura, Laura, E-mail: bandura@anl.gov [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Erdelyi, Bela [Argonne National Laboratory, Argonne, IL 60439 (United States); Northern Illinois University, DeKalb, IL 60115 (United States); Hausmann, Marc [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Kubo, Toshiyuki [RIKEN Nishina Center, RIKEN, Wako (Japan); Nolen, Jerry [Argonne National Laboratory, Argonne, IL 60439 (United States); Portillo, Mauricio [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Sherrill, Bradley M. [National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States)
2011-07-21
We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.
Fragment separator momentum compression schemes
International Nuclear Information System (INIS)
Bandura, Laura; Erdelyi, Bela; Hausmann, Marc; Kubo, Toshiyuki; Nolen, Jerry; Portillo, Mauricio; Sherrill, Bradley M.
2011-01-01
We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.
WENO schemes for balance laws with spatially varying flux
International Nuclear Information System (INIS)
Vukovic, Senka; Crnjaric-Zic, Nelida; Sopta, Luka
2004-01-01
In this paper we construct numerical schemes of high order of accuracy for hyperbolic balance law systems with spatially variable flux function and a source term of the geometrical type. We start with the original finite difference characteristicwise weighted essentially nonoscillatory (WENO) schemes and then we create new schemes by modifying the flux formulations (locally Lax-Friedrichs and Roe with entropy fix) in order to account for the spatially variable flux, and by decomposing the source term in order to obtain balance between numerical approximations of the flux gradient and of the source term. We apply so extended WENO schemes to the one-dimensional open channel flow equations and to the one-dimensional elastic wave equations. In particular, we prove that in these applications the new schemes are exactly consistent with steady-state solutions from an appropriately chosen subset. Experimentally obtained orders of accuracy of the extended and original WENO schemes are almost identical on a convergence test. Other presented test problems illustrate the improvement of the proposed schemes relative to the original WENO schemes combined with the pointwise source term evaluation. As expected, the increase in the formal order of accuracy of applied WENO reconstructions in all the tests causes visible increase in the high resolution properties of the schemes
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Electronic Commerce - Payment Schemes. V Rajaraman. Series Article Volume 6 Issue 2 February 2001 pp 6-13. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/02/0006-0013 ...
Ronald, R.; Smith, S.J.; Elsinga, M.; Eng, O.S.; Fox O'Mahony, L.; Wachter, S.
2012-01-01
Contractual saving schemes for housing are institutionalised savings programmes normally linked to rights to loans for home purchase. They are diverse types as they have been developed differently in each national context, but normally fall into categories of open, closed, compulsory, and ‘free
Alternative reprocessing schemes evaluation
International Nuclear Information System (INIS)
1979-02-01
This paper reviews the parameters which determine the inaccessibility of the plutonium in reprocessing plants. Among the various parameters, the physical and chemical characteristics of the materials, the various processing schemes and the confinement are considered. The emphasis is placed on that latter parameter, and the advantages of an increased confinement in the socalled PIPEX reprocessing plant type are presented
Introduction to association schemes
Seidel, J.J.
1991-01-01
The present paper gives an introduction to the theory of association schemes, following Bose-Mesner (1959), Biggs (1974), Delsarte (1973), Bannai-Ito (1984) and Brouwer-Cohen-Neumaier (1989). Apart from definitions and many examples, also several proofs and some problems are included. The paragraphs
Reaction schemes of immunoanalysis
International Nuclear Information System (INIS)
Delaage, M.; Barbet, J.
1991-01-01
The authors apply a general theory for multiple equilibria to the reaction schemes of immunoanalysis, competition and sandwich. This approach allows the manufacturer to optimize the system and provide the user with interpolation functions for the standard curve and its first derivative as well, thus giving access to variance [fr
Alternative health insurance schemes
DEFF Research Database (Denmark)
Keiding, Hans; Hansen, Bodil O.
2002-01-01
In this paper, we present a simple model of health insurance with asymmetric information, where we compare two alternative ways of organizing the insurance market. Either as a competitive insurance market, where some risks remain uninsured, or as a compulsory scheme, where however, the level...... competitive insurance; this situation turns out to be at least as good as either of the alternatives...
Canonical, stable, general mapping using context schemes.
Novak, Adam M; Rosen, Yohei; Haussler, David; Paten, Benedict
2015-11-15
Sequence mapping is the cornerstone of modern genomics. However, most existing sequence mapping algorithms are insufficiently general. We introduce context schemes: a method that allows the unambiguous recognition of a reference base in a query sequence by testing the query for substrings from an algorithmically defined set. Context schemes only map when there is a unique best mapping, and define this criterion uniformly for all reference bases. Mappings under context schemes can also be made stable, so that extension of the query string (e.g. by increasing read length) will not alter the mapping of previously mapped positions. Context schemes are general in several senses. They natively support the detection of arbitrary complex, novel rearrangements relative to the reference. They can scale over orders of magnitude in query sequence length. Finally, they are trivially extensible to more complex reference structures, such as graphs, that incorporate additional variation. We demonstrate empirically the existence of high-performance context schemes, and present efficient context scheme mapping algorithms. The software test framework created for this study is available from https://registry.hub.docker.com/u/adamnovak/sequence-graphs/. anovak@soe.ucsc.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A numerical scheme for the generalized Burgers–Huxley equation
Directory of Open Access Journals (Sweden)
Brajesh K. Singh
2016-10-01
Full Text Available In this article, a numerical solution of generalized Burgers–Huxley (gBH equation is approximated by using a new scheme: modified cubic B-spline differential quadrature method (MCB-DQM. The scheme is based on differential quadrature method in which the weighting coefficients are obtained by using modified cubic B-splines as a set of basis functions. This scheme reduces the equation into a system of first-order ordinary differential equation (ODE which is solved by adopting SSP-RK43 scheme. Further, it is shown that the proposed scheme is stable. The efficiency of the proposed method is illustrated by four numerical experiments, which confirm that obtained results are in good agreement with earlier studies. This scheme is an easy, economical and efficient technique for finding numerical solutions for various kinds of (nonlinear physical models as compared to the earlier schemes.
The complete flux scheme in cylindrical coordinates
Anthonissen, M.J.H.; Thije Boonkkamp, ten J.H.M.
2014-01-01
We consider the complete ¿ux (CF) scheme, a ¿nite volume method (FVM) presented in [1]. CF is based on an integral representation for the ¿uxes, found by solving a local boundary value problem that includes the source term. It performs well (second order accuracy) for both diffusion and advection
On Converting Secret Sharing Scheme to Visual Secret Sharing Scheme
Directory of Open Access Journals (Sweden)
Wang Daoshun
2010-01-01
Full Text Available Abstract Traditional Secret Sharing (SS schemes reconstruct secret exactly the same as the original one but involve complex computation. Visual Secret Sharing (VSS schemes decode the secret without computation, but each share is m times as big as the original and the quality of the reconstructed secret image is reduced. Probabilistic visual secret sharing (Prob.VSS schemes for a binary image use only one subpixel to share the secret image; however the probability of white pixels in a white area is higher than that in a black area in the reconstructed secret image. SS schemes, VSS schemes, and Prob. VSS schemes have various construction methods and advantages. This paper first presents an approach to convert (transform a -SS scheme to a -VSS scheme for greyscale images. The generation of the shadow images (shares is based on Boolean XOR operation. The secret image can be reconstructed directly by performing Boolean OR operation, as in most conventional VSS schemes. Its pixel expansion is significantly smaller than that of VSS schemes. The quality of the reconstructed images, measured by average contrast, is the same as VSS schemes. Then a novel matrix-concatenation approach is used to extend the greyscale -SS scheme to a more general case of greyscale -VSS scheme.
A low order adaptive control scheme for hydraulic servo systems
DEFF Research Database (Denmark)
Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Bech, Michael Møller
2015-01-01
This paper deals with high-performance position control of hydraulics servo systems in general. The hydraulic servo system used is a two link robotic manipulator actuated by two hydraulic servo cylinders. A non-linear model of the hydraulic system and a Newton-Euler based model of the mechanical...
Evolutionary Algorithm for Optimal Vaccination Scheme
International Nuclear Information System (INIS)
Parousis-Orthodoxou, K J; Vlachos, D S
2014-01-01
The following work uses the dynamic capabilities of an evolutionary algorithm in order to obtain an optimal immunization strategy in a user specified network. The produced algorithm uses a basic genetic algorithm with crossover and mutation techniques, in order to locate certain nodes in the inputted network. These nodes will be immunized in an SIR epidemic spreading process, and the performance of each immunization scheme, will be evaluated by the level of containment that provides for the spreading of the disease
MIMO transmit scheme based on morphological perceptron with competitive learning.
Valente, Raul Ambrozio; Abrão, Taufik
2016-08-01
This paper proposes a new multi-input multi-output (MIMO) transmit scheme aided by artificial neural network (ANN). The morphological perceptron with competitive learning (MP/CL) concept is deployed as a decision rule in the MIMO detection stage. The proposed MIMO transmission scheme is able to achieve double spectral efficiency; hence, in each time-slot the receiver decodes two symbols at a time instead one as Alamouti scheme. Other advantage of the proposed transmit scheme with MP/CL-aided detector is its polynomial complexity according to modulation order, while it becomes linear when the data stream length is greater than modulation order. The performance of the proposed scheme is compared to the traditional MIMO schemes, namely Alamouti scheme and maximum-likelihood MIMO (ML-MIMO) detector. Also, the proposed scheme is evaluated in a scenario with variable channel information along the frame. Numerical results have shown that the diversity gain under space-time coding Alamouti scheme is partially lost, which slightly reduces the bit-error rate (BER) performance of the proposed MP/CL-NN MIMO scheme. Copyright © 2016 Elsevier Ltd. All rights reserved.
System Protection Schemes in Eastern Denmark
DEFF Research Database (Denmark)
Rasmussen, Joana
outages in the southern part of the 132-kV system introduce further stress in the power system, eventually leading to a voltage collapse. The local System Protection Scheme against voltage collapse is designed as a response-based scheme, which is dependent on local indication of reactive and active power...... effective measures, because they are associated with large reactive power losses in the transmission system. Ordered reduction of wind generation is considered an effective measure to maintain voltage stability in the system. Reactive power in the system is released due to tripping of a significant amount...... system. In that way, the power system capability could be extended beyond normal limits....
Security problem on arbitrated quantum signature schemes
International Nuclear Information System (INIS)
Choi, Jeong Woon; Chang, Ku-Young; Hong, Dowon
2011-01-01
Many arbitrated quantum signature schemes implemented with the help of a trusted third party have been developed up to now. In order to guarantee unconditional security, most of them take advantage of the optimal quantum one-time encryption based on Pauli operators. However, in this paper we point out that the previous schemes provide security only against a total break attack and show in fact that there exists an existential forgery attack that can validly modify the transmitted pair of message and signature. In addition, we also provide a simple method to recover security against the proposed attack.
Security problem on arbitrated quantum signature schemes
Energy Technology Data Exchange (ETDEWEB)
Choi, Jeong Woon [Emerging Technology R and D Center, SK Telecom, Kyunggi 463-784 (Korea, Republic of); Chang, Ku-Young; Hong, Dowon [Cryptography Research Team, Electronics and Telecommunications Research Institute, Daejeon 305-700 (Korea, Republic of)
2011-12-15
Many arbitrated quantum signature schemes implemented with the help of a trusted third party have been developed up to now. In order to guarantee unconditional security, most of them take advantage of the optimal quantum one-time encryption based on Pauli operators. However, in this paper we point out that the previous schemes provide security only against a total break attack and show in fact that there exists an existential forgery attack that can validly modify the transmitted pair of message and signature. In addition, we also provide a simple method to recover security against the proposed attack.
Yasas, F M
1977-01-01
In response to a United Nations resolution, the Mobile Training Scheme (MTS) was set up to provide training to the trainers of national cadres engaged in frontline and supervisory tasks in social welfare and rural development. The training is innovative in its being based on an analysis of field realities. The MTS team consisted of a leader, an expert on teaching methods and materials, and an expert on action research and evaluation. The country's trainers from different departments were sent to villages to work for a short period and to report their problems in fulfilling their roles. From these grass roots experiences, they made an analysis of the job, determining what knowledge, attitude and skills it required. Analysis of daily incidents and problems were used to produce indigenous teaching materials drawn from actual field practice. How to consider the problems encountered through government structures for policy making and decisions was also learned. Tasks of the students were to identify the skills needed for role performance by job analysis, daily diaries and project histories; to analyze the particular community by village profiles; to produce indigenous teaching materials; and to practice the role skills by actual role performance. The MTS scheme was tried in Nepal in 1974-75; 3 training programs trained 25 trainers and 51 frontline workers; indigenous teaching materials were created; technical papers written; and consultations were provided. In Afghanistan the scheme was used in 1975-76; 45 participants completed the training; seminars were held; and an ongoing Council was created. It is hoped that the training program will be expanded to other countries.
Bonus schemes and trading activity
Pikulina, E.S.; Renneboog, L.D.R.; ter Horst, J.R.; Tobler, P.N.
2014-01-01
Little is known about how different bonus schemes affect traders' propensity to trade and which bonus schemes improve traders' performance. We study the effects of linear versus threshold bonus schemes on traders' behavior. Traders buy and sell shares in an experimental stock market on the basis of
DEFF Research Database (Denmark)
Juhl, Hans Jørn; Stacey, Julia
2001-01-01
. In the spring of 2001 MAPP carried out an extensive consumer study with special emphasis on the Nordic environmentally friendly label 'the swan'. The purpose was to find out how much consumers actually know and use various labelling schemes. 869 households were contacted and asked to fill in a questionnaire...... it into consideration when I go shopping. The respondent was asked to pick the most suitable answer, which described her use of each label. 29% - also called 'the labelling blind' - responded that they basically only knew the recycling label and the Government controlled organic label 'Ø-mærket'. Another segment of 6...
International Nuclear Information System (INIS)
Grashilin, V.A.; Karyshev, Yu.Ya.
1982-01-01
A 6-cycle scheme of step motor is described. The block-diagram and the basic circuit of the step motor control are presented. The step motor control comprises a pulse shaper, electronic commutator and power amplifiers. The step motor supply from 6-cycle electronic commutator provides for higher reliability and accuracy than from 3-cycle commutator. The control of step motor work is realised by the program given by the external source of control signals. Time-dependent diagrams for step motor control are presented. The specifications of the step-motor is given
Asynchronous discrete event schemes for PDEs
Stone, D.; Geiger, S.; Lord, G. J.
2017-08-01
A new class of asynchronous discrete-event simulation schemes for advection-diffusion-reaction equations is introduced, based on the principle of allowing quanta of mass to pass through faces of a (regular, structured) Cartesian finite volume grid. The timescales of these events are linked to the flux on the face. The resulting schemes are self-adaptive, and local in both time and space. Experiments are performed on realistic physical systems related to porous media flow applications, including a large 3D advection diffusion equation and advection diffusion reaction systems. The results are compared to highly accurate reference solutions where the temporal evolution is computed with exponential integrator schemes using the same finite volume discretisation. This allows a reliable estimation of the solution error. Our results indicate a first order convergence of the error as a control parameter is decreased, and we outline a framework for analysis.
The Performance-based Funding Scheme of Universities
Directory of Open Access Journals (Sweden)
Juha KETTUNEN
2016-05-01
Full Text Available The purpose of this study is to analyse the effectiveness of the performance-based funding scheme of the Finnish universities that was adopted at the beginning of 2013. The political decision-makers expect that the funding scheme will create incentives for the universities to improve performance, but these funding schemes have largely failed in many other countries, primarily because public funding is only a small share of the total funding of universities. This study is interesting because Finnish universities have no tuition fees, unlike in many other countries, and the state allocates funding based on the objectives achieved. The empirical evidence of the graduation rates indicates that graduation rates increased when a new scheme was adopted, especially among male students, who have more room for improvement than female students. The new performance-based funding scheme allocates the funding according to the output-based indicators and limits the scope of strategic planning and the autonomy of the university. The performance-based funding scheme is transformed to the strategy map of the balanced scorecard. The new funding scheme steers universities in many respects but leaves the research and teaching skills to the discretion of the universities. The new scheme has also diminished the importance of the performance agreements between the university and the Ministry. The scheme increases the incentives for universities to improve the processes and structures in order to attain as much public funding as possible. It is optimal for the central administration of the university to allocate resources to faculties and other organisational units following the criteria of the performance-based funding scheme. The new funding scheme has made the universities compete with each other, because the total funding to the universities is allocated to each university according to the funding scheme. There is a tendency that the funding schemes are occasionally
Closed loop identification using a modified Hansen scheme
DEFF Research Database (Denmark)
Sekunda, André Krabdrup; Niemann, Hans Henrik; Poulsen, Niels Kjølstad
2015-01-01
in closed loop [4], and one such method is the Hansen scheme [1]. Standard identification using Hansen scheme demands generating the identification signals indirectly. In this paper it is instead proposed to use the relationship between the Youla factorization of a plant and its stabilizing controller...... in order to keep the system stable. Furthermore because the dynamics of such a system depends on the rotational speed it is needed to conduct an identification while the system is part of a closed loop scheme. The authors believe the paper able to contribute towards a simpler and more direct way...... of identifying closed loop plants using Hansen scheme....
A Digital Signature Scheme Based on MST3 Cryptosystems
Directory of Open Access Journals (Sweden)
Haibo Hong
2014-01-01
Full Text Available As special types of factorization of finite groups, logarithmic signature and cover have been used as the main components of cryptographic keys for secret key cryptosystems such as PGM and public key cryptosystems like MST1, MST2, and MST3. Recently, Svaba et. al proposed a revised MST3 encryption scheme with greater security. Meanwhile, they put forward an idea of constructing signature schemes on the basis of logarithmic signatures and random covers. In this paper, we firstly design a secure digital signature scheme based on logarithmic signatures and random covers. In order to complete the task, we devise a new encryption scheme based on MST3 cryptosystems.
Packet reversed packet combining scheme
International Nuclear Information System (INIS)
Bhunia, C.T.
2006-07-01
The packet combining scheme is a well defined simple error correction scheme with erroneous copies at the receiver. It offers higher throughput combined with ARQ protocols in networks than that of basic ARQ protocols. But packet combining scheme fails to correct errors when the errors occur in the same bit locations of two erroneous copies. In the present work, we propose a scheme that will correct error if the errors occur at the same bit location of the erroneous copies. The proposed scheme when combined with ARQ protocol will offer higher throughput. (author)
International Nuclear Information System (INIS)
Ma Hai-Qiang; Wei Ke-Jin; Yang Jian-Hui; Li Rui-Xue; Zhu Wu
2014-01-01
We present a full quantum network scheme using a modified BB84 protocol. Unlike other quantum network schemes, it allows quantum keys to be distributed between two arbitrary users with the help of an intermediary detecting user. Moreover, it has good expansibility and prevents all potential attacks using loopholes in a detector, so it is more practical to apply. Because the fiber birefringence effects are automatically compensated, the scheme is distinctly stable in principle and in experiment. The simple components for every user make our scheme easier for many applications. The experimental results demonstrate the stability and feasibility of this scheme. (general)
An Efficient Homomorphic Aggregate Signature Scheme Based on Lattice
Directory of Open Access Journals (Sweden)
Zhengjun Jing
2014-01-01
Full Text Available Homomorphic aggregate signature (HAS is a linearly homomorphic signature (LHS for multiple users, which can be applied for a variety of purposes, such as multi-source network coding and sensor data aggregation. In order to design an efficient postquantum secure HAS scheme, we borrow the idea of the lattice-based LHS scheme over binary field in the single-user case, and develop it into a new lattice-based HAS scheme in this paper. The security of the proposed scheme is proved by showing a reduction to the single-user case and the signature length remains invariant. Compared with the existing lattice-based homomorphic aggregate signature scheme, our new scheme enjoys shorter signature length and high efficiency.
Higher-Order Hybrid Gaussian Kernel in Meshsize Boosting Algorithm
African Journals Online (AJOL)
In this paper, we shall use higher-order hybrid Gaussian kernel in a meshsize boosting algorithm in kernel density estimation. Bias reduction is guaranteed in this scheme like other existing schemes but uses the higher-order hybrid Gaussian kernel instead of the regular fixed kernels. A numerical verification of this scheme ...
Convergent Difference Schemes for Hamilton-Jacobi equations
Duisembay, Serikbolsyn
2018-01-01
In this thesis, we consider second-order fully nonlinear partial differential equations of elliptic type. Our aim is to develop computational methods using convergent difference schemes for stationary Hamilton-Jacobi equations with Dirichlet
New advection schemes for free surface flows
International Nuclear Information System (INIS)
Pavan, Sara
2016-01-01
The purpose of this thesis is to build higher order and less diffusive schemes for pollutant transport in shallow water flows or 3D free surface flows. We want robust schemes which respect the main mathematical properties of the advection equation with relatively low numerical diffusion and apply them to environmental industrial applications. Two techniques are tested in this work: a classical finite volume method and a residual distribution technique combined with a finite element method. For both methods we propose a decoupled approach since it is the most advantageous in terms of accuracy and CPU time. Concerning the first technique, a vertex-centred finite volume method is used to solve the augmented shallow water system where the numerical flux is computed through an Harten-Lax-Van Leer-Contact Riemann solver. Starting from this solution, a decoupled approach is formulated and is preferred since it allows to compute with a larger time step the advection of a tracer. This idea was inspired by Audusse, E. and Bristeau, M.O. [13]. The Monotonic Upwind Scheme for Conservation Law, combined with the decoupled approach, is then used for the second order extension in space. The wetting and drying problem is also analysed and a possible solution is presented. In the second case, the shallow water system is entirely solved using the finite element technique and the residual distribution method is applied to the solution of the tracer equation, focusing on the case of time-dependent problems. However, for consistency reasons the resolution of the continuity equation must be considered in the numerical discretization of the tracer. In order to get second order schemes for unsteady cases a predictor-corrector scheme is used in this work. A first order but less diffusive version of the predictor-corrector scheme is also introduced. Moreover, we also present a new locally semi-implicit version of the residual distribution method which, in addition to good properties in
Modified Aggressive Packet Combining Scheme
International Nuclear Information System (INIS)
Bhunia, C.T.
2010-06-01
In this letter, a few schemes are presented to improve the performance of aggressive packet combining scheme (APC). To combat error in computer/data communication networks, ARQ (Automatic Repeat Request) techniques are used. Several modifications to improve the performance of ARQ are suggested by recent research and are found in literature. The important modifications are majority packet combining scheme (MjPC proposed by Wicker), packet combining scheme (PC proposed by Chakraborty), modified packet combining scheme (MPC proposed by Bhunia), and packet reversed packet combining (PRPC proposed by Bhunia) scheme. These modifications are appropriate for improving throughput of conventional ARQ protocols. Leung proposed an idea of APC for error control in wireless networks with the basic objective of error control in uplink wireless data network. We suggest a few modifications of APC to improve its performance in terms of higher throughput, lower delay and higher error correction capability. (author)
Transmission usage cost allocation schemes
International Nuclear Information System (INIS)
Abou El Ela, A.A.; El-Sehiemy, R.A.
2009-01-01
This paper presents different suggested transmission usage cost allocation (TCA) schemes to the system individuals. Different independent system operator (ISO) visions are presented using the proportional rata and flow-based TCA methods. There are two proposed flow-based TCA schemes (FTCA). The first FTCA scheme generalizes the equivalent bilateral exchanges (EBE) concepts for lossy networks through two-stage procedure. The second FTCA scheme is based on the modified sensitivity factors (MSF). These factors are developed from the actual measurements of power flows in transmission lines and the power injections at different buses. The proposed schemes exhibit desirable apportioning properties and are easy to implement and understand. Case studies for different loading conditions are carried out to show the capability of the proposed schemes for solving the TCA problem. (author)
Numerical investigation of sixth order Boussinesq equation
Kolkovska, N.; Vucheva, V.
2017-10-01
We propose a family of conservative finite difference schemes for the Boussinesq equation with sixth order dispersion terms. The schemes are of second order of approximation. The method is conditionally stable with a mild restriction τ = O(h) on the step sizes. Numerical tests are performed for quadratic and cubic nonlinearities. The numerical experiments show second order of convergence of the discrete solution to the exact one.
New Schemes for Positive Real Truncation
Directory of Open Access Journals (Sweden)
Kari Unneland
2007-07-01
Full Text Available Model reduction, based on balanced truncation, of stable and of positive real systems are considered. An overview over some of the already existing techniques are given: Lyapunov balancing and stochastic balancing, which includes Riccati balancing. A novel scheme for positive real balanced truncation is then proposed, which is a combination of the already existing Lyapunov balancing and Riccati balancing. Using Riccati balancing, the solution of two Riccati equations are needed to obtain positive real reduced order systems. For the suggested method, only one Lyapunov equation and one Riccati equation are solved in order to obtain positive real reduced order systems, which is less computationally demanding. Further it is shown, that in order to get positive real reduced order systems, only one Riccati equation needs to be solved. Finally, this is used to obtain positive real frequency weighted balanced truncation.
Two-level schemes for the advection equation
Vabishchevich, Petr N.
2018-06-01
The advection equation is the basis for mathematical models of continuum mechanics. In the approximate solution of nonstationary problems it is necessary to inherit main properties of the conservatism and monotonicity of the solution. In this paper, the advection equation is written in the symmetric form, where the advection operator is the half-sum of advection operators in conservative (divergent) and non-conservative (characteristic) forms. The advection operator is skew-symmetric. Standard finite element approximations in space are used. The standard explicit two-level scheme for the advection equation is absolutely unstable. New conditionally stable regularized schemes are constructed, on the basis of the general theory of stability (well-posedness) of operator-difference schemes, the stability conditions of the explicit Lax-Wendroff scheme are established. Unconditionally stable and conservative schemes are implicit schemes of the second (Crank-Nicolson scheme) and fourth order. The conditionally stable implicit Lax-Wendroff scheme is constructed. The accuracy of the investigated explicit and implicit two-level schemes for an approximate solution of the advection equation is illustrated by the numerical results of a model two-dimensional problem.
Performance comparison of renewable incentive schemes using optimal control
International Nuclear Information System (INIS)
Oak, Neeraj; Lawson, Daniel; Champneys, Alan
2014-01-01
Many governments worldwide have instituted incentive schemes for renewable electricity producers in order to meet carbon emissions targets. These schemes aim to boost investment and hence growth in renewable energy industries. This paper examines four such schemes: premium feed-in tariffs, fixed feed-in tariffs, feed-in tariffs with contract for difference and the renewable obligations scheme. A generalised mathematical model of industry growth is presented and fitted with data from the UK onshore wind industry. The model responds to subsidy from each of the four incentive schemes. A utility or ‘fitness’ function that maximises installed capacity at some fixed time in the future while minimising total cost of subsidy is postulated. Using this function, the optimal strategy for provision and timing of subsidy for each scheme is calculated. Finally, a comparison of the performance of each scheme, given that they use their optimal control strategy, is presented. This model indicates that the premium feed-in tariff and renewable obligation scheme produce the joint best results. - Highlights: • Stochastic differential equation model of renewable energy industry growth and prices, using UK onshore wind data 1992–2010. • Cost of production reduces as cumulative installed capacity of wind energy increases, consistent with the theory of learning. • Studies the effect of subsidy using feed-in tariff schemes, and the ‘renewable obligations’ scheme. • We determine the optimal timing and quantity of subsidy required to maximise industry growth and minimise costs. • The premium feed-in tariff scheme and the renewable obligations scheme produce the best results under optimal control
ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics
Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O.
2018-03-01
We present a new class of high-order accurate numerical algorithms for solving the equations of general-relativistic ideal magnetohydrodynamics in curved spacetimes. In this paper we assume the background spacetime to be given and static, i.e. we make use of the Cowling approximation. The governing partial differential equations are solved via a new family of fully-discrete and arbitrary high-order accurate path-conservative discontinuous Galerkin (DG) finite-element methods combined with adaptive mesh refinement and time accurate local timestepping. In order to deal with shock waves and other discontinuities, the high-order DG schemes are supplemented with a novel a-posteriori subcell finite-volume limiter, which makes the new algorithms as robust as classical second-order total-variation diminishing finite-volume methods at shocks and discontinuities, but also as accurate as unlimited high-order DG schemes in smooth regions of the flow. We show the advantages of this new approach by means of various classical two- and three-dimensional benchmark problems on fixed spacetimes. Finally, we present a performance and accuracy comparisons between Runge-Kutta DG schemes and ADER high-order finite-volume schemes, showing the higher efficiency of DG schemes.
International Nuclear Information System (INIS)
Lee, Goung Jin; Kim, Soong Pyung
1990-01-01
In solving the convection-diffusion phenomena, it is common to use central difference scheme or upwind scheme. The central difference scheme has second order accuracy, while the upwind scheme is only first order accurate. However, since the variation rising in the convection-diffusion problem is exponential, central difference scheme ceased to be a good method for anything but extremely small values of Δx. At large values of Δx, which is all one can afford in most practical problems, it is the upwind scheme that gives more reasonable results than the central scheme. But in the conventional upwind scheme, since the accuracy is only first order, false diffusion is somewhat large, and when the real diffusion is smaller than the numerical diffusion, solutions may be very errorneous. So in this paper, a method to reduce the numerical diffusion of upwind scheme is studied. Developed scheme uses same number of nodes as conventional upwind scheme, but it considers the direction of flow more sophistically. As a conclusion, the developed scheme shows very good results. It can reduce false diffusion greatly with the cost of small complexity. Also, algorithm of the developed scheme is presented at appendix. (Author)
Coordinated renewable energy support schemes
DEFF Research Database (Denmark)
Morthorst, P.E.; Jensen, S.G.
2006-01-01
. The first example covers countries with regional power markets that also regionalise their support schemes, the second countries with separate national power markets that regionalise their support schemes. The main findings indicate that the almost ideal situation exists if the region prior to regionalising...
Subtraction with hadronic initial states at NLO: an NNLO-compatible scheme
Somogyi, Gábor
2009-05-01
We present an NNLO-compatible subtraction scheme for computing QCD jet cross sections of hadron-initiated processes at NLO accuracy. The scheme is constructed specifically with those complications in mind, that emerge when extending the subtraction algorithm to next-to-next-to-leading order. It is therefore possible to embed the present scheme in a full NNLO computation without any modifications.
Subtraction with hadronic initial states at NLO: an NNLO-compatible scheme
International Nuclear Information System (INIS)
Somogyi, Gabor
2009-01-01
We present an NNLO-compatible subtraction scheme for computing QCD jet cross sections of hadron-initiated processes at NLO accuracy. The scheme is constructed specifically with those complications in mind, that emerge when extending the subtraction algorithm to next-to-next-to-leading order. It is therefore possible to embed the present scheme in a full NNLO computation without any modifications.
A new multi-symplectic scheme for the generalized Kadomtsev-Petviashvili equation
Li, Haochen; Sun, Jianqiang
2012-09-01
We propose a new scheme for the generalized Kadomtsev-Petviashvili (KP) equation. The multi-symplectic conservation property of the new scheme is proved. Back error analysis shows that the new multi-symplectic scheme has second order accuracy in space and time. Numerical application on studying the KPI equation and the KPII equation are presented in detail.
Decentralized Economic Dispatch Scheme With Online Power Reserve for Microgrids
DEFF Research Database (Denmark)
Nutkani, I. U.; Loh, Poh Chiang; Wang, P.
2017-01-01
Decentralized economic operation schemes have several advantages when compared with the traditional centralized management system for microgrids. Specifically, decentralized schemes are more flexible, less computationally intensive, and easier to implement without relying on communication...... costs, their power ratings, and other necessary constraints, before deciding the DG dispatch priorities and droop characteristics. The proposed scheme also allows online power reserve to be set and regulated within the microgrid. This, together with the generation cost saved, has been verified...... infrastructure. Economic operation of existing decentralized schemes is also usually achieved by either tuning the droop characteristics of distributed generators (DGs) or prioritizing their dispatch order. For the latter, an earlier scheme has tried to prioritize the DG dispatch based on their no...
Parallel S/sub n/ iteration schemes
International Nuclear Information System (INIS)
Wienke, B.R.; Hiromoto, R.E.
1986-01-01
The iterative, multigroup, discrete ordinates (S/sub n/) technique for solving the linear transport equation enjoys widespread usage and appeal. Serial iteration schemes and numerical algorithms developed over the years provide a timely framework for parallel extension. On the Denelcor HEP, the authors investigate three parallel iteration schemes for solving the one-dimensional S/sub n/ transport equation. The multigroup representation and serial iteration methods are also reviewed. This analysis represents a first attempt to extend serial S/sub n/ algorithms to parallel environments and provides good baseline estimates on ease of parallel implementation, relative algorithm efficiency, comparative speedup, and some future directions. The authors examine ordered and chaotic versions of these strategies, with and without concurrent rebalance and diffusion acceleration. Two strategies efficiently support high degrees of parallelization and appear to be robust parallel iteration techniques. The third strategy is a weaker parallel algorithm. Chaotic iteration, difficult to simulate on serial machines, holds promise and converges faster than ordered versions of the schemes. Actual parallel speedup and efficiency are high and payoff appears substantial
Lee, Tian-Fu; Liu, Chuan-Ming
2013-06-01
A smart-card based authentication scheme for telecare medicine information systems enables patients, doctors, nurses, health visitors and the medicine information systems to establish a secure communication platform through public networks. Zhu recently presented an improved authentication scheme in order to solve the weakness of the authentication scheme of Wei et al., where the off-line password guessing attacks cannot be resisted. This investigation indicates that the improved scheme of Zhu has some faults such that the authentication scheme cannot execute correctly and is vulnerable to the attack of parallel sessions. Additionally, an enhanced authentication scheme based on the scheme of Zhu is proposed. The enhanced scheme not only avoids the weakness in the original scheme, but also provides users' anonymity and authenticated key agreements for secure data communications.
Enhanced ID-Based Authentication Scheme Using OTP in Smart Grid AMI Environment
Directory of Open Access Journals (Sweden)
Sang-Soo Yeo
2014-01-01
Full Text Available This paper presents the vulnerabilities analyses of KL scheme which is an ID-based authentication scheme for AMI network attached SCADA in smart grid and proposes a security-enhanced authentication scheme which satisfies forward secrecy as well as security requirements introduced in KL scheme and also other existing schemes. The proposed scheme uses MDMS which is the supervising system located in an electrical company as a time-synchronizing server in order to synchronize smart devices at home and conducts authentication between smart meter and smart devices using a new secret value generated by an OTP generator every session. The proposed scheme has forward secrecy, so it increases overall security, but its communication and computation overhead reduce its performance slightly, comparing the existing schemes. Nonetheless, hardware specification and communication bandwidth of smart devices will have better conditions continuously, so the proposed scheme would be a good choice for secure AMI environment.
Exclusion from the Health Insurance Scheme
2003-01-01
A CERN pensioner, member of the Organization's Health Insurance Scheme (CHIS), recently provided fake documents in support of claims for medical expenses, in order to receive unjustified reimbursement from the CHIS. The Administrator of the CHIS, UNIQA, suspected a case of fraud: Accordingly, an investigation and interview of the person concerned was carried out and brought the Organization to the conclusion that fraud had actually taken place. Consequently and in accordance with Article VIII 3.12 of the CHIS Rules, it was decided to exclude this member permanently from the CHIS. The Organization takes the opportunity to remind Scheme members that any fraud or attempt to fraud established within the framework of the CHIS exposes them to: - disciplinary action, according to the Staff Rules and Regulations, for CERN members of the personnel; - definitive exclusion from the CHIS for members affiliated on a voluntary basis. Human Resources Division Tel. 73635
hybrid modulation scheme fo rid modulation scheme fo dulation
African Journals Online (AJOL)
eobe
control technique is done through simulations and ex control technique .... HYBRID MODULATION SCHEME FOR CASCADED H-BRIDGE INVERTER CELLS. C. I. Odeh ..... and OR operations. Referring to ... MATLAB/SIMULINK environment.
A robust anonymous biometric-based remote user authentication scheme using smart cards
Directory of Open Access Journals (Sweden)
Ashok Kumar Das
2015-04-01
Full Text Available Several biometric-based remote user authentication schemes using smart cards have been proposed in the literature in order to improve the security weaknesses in user authentication system. In 2012, An proposed an enhanced biometric-based remote user authentication scheme using smart cards. It was claimed that the proposed scheme is secure against the user impersonation attack, the server masquerading attack, the password guessing attack, and the insider attack and provides mutual authentication between the user and the server. In this paper, we first analyze the security of An’s scheme and we show that this scheme has three serious security flaws in the design of the scheme: (i flaw in user’s biometric verification during the login phase, (ii flaw in user’s password verification during the login and authentication phases, and (iii flaw in user’s password change locally at any time by the user. Due to these security flaws, An’s scheme cannot support mutual authentication between the user and the server. Further, we show that An’s scheme cannot prevent insider attack. In order to remedy the security weaknesses found in An’s scheme, we propose a new robust and secure anonymous biometric-based remote user authentication scheme using smart cards. Through the informal and formal security analysis, we show that our scheme is secure against all possible known attacks including the attacks found in An’s scheme. The simulation results of our scheme using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications tool ensure that our scheme is secure against passive and active attacks. In addition, our scheme is also comparable in terms of the communication and computational overheads with An’s scheme and other related existing schemes. As a result, our scheme is more appropriate for practical applications compared to other approaches.
Nonoscillatory shock capturing scheme using flux limited dissipation
International Nuclear Information System (INIS)
Jameson, A.
1985-01-01
A method for modifying the third order dissipative terms by the introduction of flux limiters is proposed. The first order dissipative terms can then be eliminated entirely, and in the case of a scalar conservation law the scheme is converted into a total variation diminishing scheme provided that an appropriate value is chosen for the dissipative coefficient. Particular attention is given to: (1) the treatment of the scalar conservation law; (2) the treatment of the Euler equations for inviscid compressible flow; (3) the boundary conditions; and (4) multistage time stepping and multigrid schemes. Numerical results for transonic flows suggest that a central difference scheme augmented by flux limited dissipative terms can lead to an effective nonoscillatory shock capturing method. 20 references
Convergent Difference Schemes for Hamilton-Jacobi equations
Duisembay, Serikbolsyn
2018-05-07
In this thesis, we consider second-order fully nonlinear partial differential equations of elliptic type. Our aim is to develop computational methods using convergent difference schemes for stationary Hamilton-Jacobi equations with Dirichlet and Neumann type boundary conditions in arbitrary two-dimensional domains. First, we introduce the notion of viscosity solutions in both continuous and discontinuous frameworks. Next, we review Barles-Souganidis approach using monotone, consistent, and stable schemes. In particular, we show that these schemes converge locally uniformly to the unique viscosity solution of the first-order Hamilton-Jacobi equations under mild assumptions. To solve the scheme numerically, we use Euler map with some initial guess. This iterative method gives the viscosity solution as a limit. Moreover, we illustrate our numerical approach in several two-dimensional examples.
Power corrections in the N-jettiness subtraction scheme
Energy Technology Data Exchange (ETDEWEB)
Boughezal, Radja [High Energy Physics Division, Argonne National Laboratory,Argonne, IL 60439 (United States); Liu, Xiaohui [Department of Physics, Beijing Normal University,Beijing, 100875 (China); Center of Advanced Quantum Studies, Beijing Normal University,Beijing, 100875 (China); Center for High-Energy Physics, Peking University,Beijing, 100871 (China); Maryland Center for Fundamental Physics, University of Maryland,College Park, MD 20742 (United States); Petriello, Frank [Department of Physics & Astronomy, Northwestern University,Evanston, IL 60208 (United States); High Energy Physics Division, Argonne National Laboratory,Argonne, IL 60439 (United States)
2017-03-30
We discuss the leading-logarithmic power corrections in the N-jettiness subtraction scheme for higher-order perturbative QCD calculations. We compute the next-to-leading order power corrections for an arbitrary N-jet process, and we explicitly calculate the power correction through next-to-next-to-leading order for color-singlet production for both qq̄ and gg initiated processes. Our results are compact and simple to implement numerically. Including the leading power correction in the N-jettiness subtraction scheme substantially improves its numerical efficiency. We discuss what features of our techniques extend to processes containing final-state jets.
IR subtraction schemes. Integrating the counterterms at NNLO in QCD
Energy Technology Data Exchange (ETDEWEB)
Bolzoni, Paolo; Somogyi, Gabor
2010-06-15
We briefly review a subtraction scheme for computing radiative corrections to QCD jet cross sections that can be defined at any order in perturbation theory. Hereafter we discuss the computational methods used to evaluate analytically and numerically the integrated counterterms arising from such a subtraction scheme. Basically these methods the Mellin-Barnes (MB) representations technique together with the harmonic summation and the sector decomposition. (orig.)
IR subtraction schemes. Integrating the counterterms at NNLO in QCD
International Nuclear Information System (INIS)
Bolzoni, Paolo; Somogyi, Gabor
2010-06-01
We briefly review a subtraction scheme for computing radiative corrections to QCD jet cross sections that can be defined at any order in perturbation theory. Hereafter we discuss the computational methods used to evaluate analytically and numerically the integrated counterterms arising from such a subtraction scheme. Basically these methods the Mellin-Barnes (MB) representations technique together with the harmonic summation and the sector decomposition. (orig.)
Optimum RA reactor fuelling scheme
International Nuclear Information System (INIS)
Strugar, P.; Nikolic, V.
1965-10-01
Ideal reactor refueling scheme can be achieved only by continuous fuel elements movement in the core, which is not possible, and thus approximations are applied. One of the possible approximations is discontinuous movement of fuel elements groups in radial direction. This enables higher burnup especially if axial exchange is possible. Analysis of refueling schemes in the RA reactor core and schemes with mixing the fresh and used fuel elements show that 30% higher burnup can be achieved by applying mixing, and even 40% if reactivity due to decrease in experimental space is taken into account. Up to now, mean burnup of 4400 MWd/t has been achieved, and the proposed fueling scheme with reduction of experimental space could achieve mean burnup of 6300 MWd/t which means about 25 Mwd/t per fuel channel [sr
A Novel Iris Segmentation Scheme
Directory of Open Access Journals (Sweden)
Chen-Chung Liu
2014-01-01
Full Text Available One of the key steps in the iris recognition system is the accurate iris segmentation from its surrounding noises including pupil, sclera, eyelashes, and eyebrows of a captured eye-image. This paper presents a novel iris segmentation scheme which utilizes the orientation matching transform to outline the outer and inner iris boundaries initially. It then employs Delogne-Kåsa circle fitting (instead of the traditional Hough transform to further eliminate the outlier points to extract a more precise iris area from an eye-image. In the extracted iris region, the proposed scheme further utilizes the differences in the intensity and positional characteristics of the iris, eyelid, and eyelashes to detect and delete these noises. The scheme is then applied on iris image database, UBIRIS.v1. The experimental results show that the presented scheme provides a more effective and efficient iris segmentation than other conventional methods.
Update schemes of multi-velocity floor field cellular automaton for pedestrian dynamics
Luo, Lin; Fu, Zhijian; Cheng, Han; Yang, Lizhong
2018-02-01
Modeling pedestrian movement is an interesting problem both in statistical physics and in computational physics. Update schemes of cellular automaton (CA) models for pedestrian dynamics govern the schedule of pedestrian movement. Usually, different update schemes make the models behave in different ways, which should be carefully recalibrated. Thus, in this paper, we investigated the influence of four different update schemes, namely parallel/synchronous scheme, random scheme, order-sequential scheme and shuffled scheme, on pedestrian dynamics. The multi-velocity floor field cellular automaton (FFCA) considering the changes of pedestrians' moving properties along walking paths and heterogeneity of pedestrians' walking abilities was used. As for parallel scheme only, the collisions detection and resolution should be considered, resulting in a great difference from any other update schemes. For pedestrian evacuation, the evacuation time is enlarged, and the difference in pedestrians' walking abilities is better reflected, under parallel scheme. In face of a bottleneck, for example a exit, using a parallel scheme leads to a longer congestion period and a more dispersive density distribution. The exit flow and the space-time distribution of density and velocity have significant discrepancies under four different update schemes when we simulate pedestrian flow with high desired velocity. Update schemes may have no influence on pedestrians in simulation to create tendency to follow others, but sequential and shuffled update scheme may enhance the effect of pedestrians' familiarity with environments.
Breeding schemes in reindeer husbandry
Directory of Open Access Journals (Sweden)
Lars Rönnegård
2003-04-01
Full Text Available The objective of the paper was to investigate annual genetic gain from selection (G, and the influence of selection on the inbreeding effective population size (Ne, for different possible breeding schemes within a reindeer herding district. The breeding schemes were analysed for different proportions of the population within a herding district included in the selection programme. Two different breeding schemes were analysed: an open nucleus scheme where males mix and mate between owner flocks, and a closed nucleus scheme where the males in non-selected owner flocks are culled to maximise G in the whole population. The theory of expected long-term genetic contributions was used and maternal effects were included in the analyses. Realistic parameter values were used for the population, modelled with 5000 reindeer in the population and a sex ratio of 14 adult females per male. The standard deviation of calf weights was 4.1 kg. Four different situations were explored and the results showed: 1. When the population was randomly culled, Ne equalled 2400. 2. When the whole population was selected on calf weights, Ne equalled 1700 and the total annual genetic gain (direct + maternal in calf weight was 0.42 kg. 3. For the open nucleus scheme, G increased monotonically from 0 to 0.42 kg as the proportion of the population included in the selection programme increased from 0 to 1.0, and Ne decreased correspondingly from 2400 to 1700. 4. In the closed nucleus scheme the lowest value of Ne was 1300. For a given proportion of the population included in the selection programme, the difference in G between a closed nucleus scheme and an open one was up to 0.13 kg. We conclude that for mass selection based on calf weights in herding districts with 2000 animals or more, there are no risks of inbreeding effects caused by selection.
Doppler Shift Compensation Schemes in VANETs
Directory of Open Access Journals (Sweden)
F. Nyongesa
2015-01-01
Full Text Available Over the last decade vehicle-to-vehicle (V2V communication has received a lot of attention as it is a crucial issue in intravehicle communication as well as in Intelligent Transportation System (ITS. In ITS the focus is placed on integration of communication between mobile and fixed infrastructure to execute road safety as well as nonsafety information dissemination. The safety application such as emergence alerts lays emphasis on low-latency packet delivery rate (PDR, whereas multimedia and infotainment call for high data rates at low bit error rate (BER. The nonsafety information includes multimedia streaming for traffic information and infotainment applications such as playing audio content, utilizing navigation for driving, and accessing Internet. A lot of vehicular ad hoc network (VANET research has focused on specific areas including channel multiplexing, antenna diversity, and Doppler shift compensation schemes in an attempt to optimize BER performance. Despite this effort few surveys have been conducted to highlight the state-of-the-art collection on Doppler shift compensation schemes. Driven by this cause we survey some of the recent research activities in Doppler shift compensation schemes and highlight challenges and solutions as a stock-taking exercise. Moreover, we present open issues to be further investigated in order to address the challenges of Doppler shift in VANETs.
A general scheme for obtaining graviton spectrums
International Nuclear Information System (INIS)
GarcIa-Cuadrado, G
2006-01-01
The aim of this contribution is to present a general scheme for obtaining graviton spectra from modified gravity theories, based on a theory developed by Grishchuk in the mid 1970s. We try to be pedagogical, putting in order some basic ideas in a compact procedure and also giving a review of the current trends in this arena. With the aim to fill a gap for the interface between quantum field theorists and observational cosmologist in this matter, we highlight two interesting applications to cosmology: clues as to the nature of dark energy; and the possibility of reconstruction of the scalar potential in scalar-tensor gravity theories
A classification scheme for risk assessment methods.
Energy Technology Data Exchange (ETDEWEB)
Stamp, Jason Edwin; Campbell, Philip LaRoche
2004-08-01
This report presents a classification scheme for risk assessment methods. This scheme, like all classification schemes, provides meaning by imposing a structure that identifies relationships. Our scheme is based on two orthogonal aspects--level of detail, and approach. The resulting structure is shown in Table 1 and is explained in the body of the report. Each cell in the Table represent a different arrangement of strengths and weaknesses. Those arrangements shift gradually as one moves through the table, each cell optimal for a particular situation. The intention of this report is to enable informed use of the methods so that a method chosen is optimal for a situation given. This report imposes structure on the set of risk assessment methods in order to reveal their relationships and thus optimize their usage.We present a two-dimensional structure in the form of a matrix, using three abstraction levels for the rows and three approaches for the columns. For each of the nine cells in the matrix we identify the method type by name and example. The matrix helps the user understand: (1) what to expect from a given method, (2) how it relates to other methods, and (3) how best to use it. Each cell in the matrix represent a different arrangement of strengths and weaknesses. Those arrangements shift gradually as one moves through the table, each cell optimal for a particular situation. The intention of this report is to enable informed use of the methods so that a method chosen is optimal for a situation given. The matrix, with type names in the cells, is introduced in Table 2 on page 13 below. Unless otherwise stated we use the word 'method' in this report to refer to a 'risk assessment method', though often times we use the full phrase. The use of the terms 'risk assessment' and 'risk management' are close enough that we do not attempt to distinguish them in this report. The remainder of this report is organized as follows. In
Liu, Meilin
2011-07-01
A discontinuous Galerkin finite element method (DG-FEM) with a highly-accurate time integration scheme is presented. The scheme achieves its high accuracy using numerically constructed predictor-corrector integration coefficients. Numerical results show that this new time integration scheme uses considerably larger time steps than the fourth-order Runge-Kutta method when combined with a DG-FEM using higher-order spatial discretization/basis functions for high accuracy. © 2011 IEEE.
A Modified Computational Scheme for the Stochastic Perturbation Finite Element Method
Directory of Open Access Journals (Sweden)
Feng Wu
Full Text Available Abstract A modified computational scheme of the stochastic perturbation finite element method (SPFEM is developed for structures with low-level uncertainties. The proposed scheme can provide second-order estimates of the mean and variance without differentiating the system matrices with respect to the random variables. When the proposed scheme is used, it involves finite analyses of deterministic systems. In the case of one random variable with a symmetric probability density function, the proposed computational scheme can even provide a result with fifth-order accuracy. Compared with the traditional computational scheme of SPFEM, the proposed scheme is more convenient for numerical implementation. Four numerical examples demonstrate that the proposed scheme can be used in linear or nonlinear structures with correlated or uncorrelated random variables.
Grimm, Uwe
2017-01-01
Quasicrystals are non-periodic solids that were discovered in 1982 by Dan Shechtman, Nobel Prize Laureate in Chemistry 2011. The mathematics that underlies this discovery or that proceeded from it, known as the theory of Aperiodic Order, is the subject of this comprehensive multi-volume series. This second volume begins to develop the theory in more depth. A collection of leading experts, among them Robert V. Moody, cover various aspects of crystallography, generalising appropriately from the classical case to the setting of aperiodically ordered structures. A strong focus is placed upon almost periodicity, a central concept of crystallography that captures the coherent repetition of local motifs or patterns, and its close links to Fourier analysis. The book opens with a foreword by Jeffrey C. Lagarias on the wider mathematical perspective and closes with an epilogue on the emergence of quasicrystals, written by Peter Kramer, one of the founders of the field.
Scalable Fault-Tolerant Location Management Scheme for Mobile IP
Directory of Open Access Journals (Sweden)
JinHo Ahn
2001-11-01
Full Text Available As the number of mobile nodes registering with a network rapidly increases in Mobile IP, multiple mobility (home of foreign agents can be allocated to a network in order to improve performance and availability. Previous fault tolerant schemes (denoted by PRT schemes to mask failures of the mobility agents use passive replication techniques. However, they result in high failure-free latency during registration process if the number of mobility agents in the same network increases, and force each mobility agent to manage bindings of all the mobile nodes registering with its network. In this paper, we present a new fault-tolerant scheme (denoted by CML scheme using checkpointing and message logging techniques. The CML scheme achieves low failure-free latency even if the number of mobility agents in a network increases, and improves scalability to a large number of mobile nodes registering with each network compared with the PRT schemes. Additionally, the CML scheme allows each failed mobility agent to recover bindings of the mobile nodes registering with the mobility agent when it is repaired even if all the other mobility agents in the same network concurrently fail.
Explicit TE/TM scheme for particle beam simulations
International Nuclear Information System (INIS)
Dohlus, M.; Zagorodnov, I.
2008-10-01
In this paper we propose an explicit two-level conservative scheme based on a TE/TM like splitting of the field components in time. Its dispersion properties are adjusted to accelerator problems. It is simpler and faster than the implicit version. It does not have dispersion in the longitudinal direction and the dispersion properties in the transversal plane are improved. The explicit character of the new scheme allows a uniformly stable conformal method without iterations and the scheme can be parallelized easily. It assures energy and charge conservation. A version of this explicit scheme for rotationally symmetric structures is free from the progressive time step reducing for higher order azimuthal modes as it takes place for Yee's explicit method used in the most popular electrodynamics codes. (orig.)
Improving multivariate Horner schemes with Monte Carlo tree search
Kuipers, J.; Plaat, A.; Vermaseren, J. A. M.; van den Herik, H. J.
2013-11-01
Optimizing the cost of evaluating a polynomial is a classic problem in computer science. For polynomials in one variable, Horner's method provides a scheme for producing a computationally efficient form. For multivariate polynomials it is possible to generalize Horner's method, but this leaves freedom in the order of the variables. Traditionally, greedy schemes like most-occurring variable first are used. This simple textbook algorithm has given remarkably efficient results. Finding better algorithms has proved difficult. In trying to improve upon the greedy scheme we have implemented Monte Carlo tree search, a recent search method from the field of artificial intelligence. This results in better Horner schemes and reduces the cost of evaluating polynomials, sometimes by factors up to two.
Optimized difference schemes for multidimensional hyperbolic partial differential equations
Directory of Open Access Journals (Sweden)
Adrian Sescu
2009-04-01
Full Text Available In numerical solutions to hyperbolic partial differential equations in multidimensions, in addition to dispersion and dissipation errors, there is a grid-related error (referred to as isotropy error or numerical anisotropy that affects the directional dependence of the wave propagation. Difference schemes are mostly analyzed and optimized in one dimension, wherein the anisotropy correction may not be effective enough. In this work, optimized multidimensional difference schemes with arbitrary order of accuracy are designed to have improved isotropy compared to conventional schemes. The derivation is performed based on Taylor series expansion and Fourier analysis. The schemes are restricted to equally-spaced Cartesian grids, so the generalized curvilinear transformation method and Cartesian grid methods are good candidates.
A Secure and Efficient Certificateless Short Signature Scheme
Directory of Open Access Journals (Sweden)
Lin Cheng
2013-07-01
Full Text Available Certificateless public key cryptography combines advantage of traditional public key cryptography and identity-based public key cryptography as it avoids usage of certificates and resolves the key escrow problem. In 2007, Huang et al. classified adversaries against certificateless signatures according to their attack power into normal, strong and super adversaries (ordered by their attack power. In this paper, we propose a new certificateless short signature scheme and prove that it is secure against both of the super type I and the super type II adversaries. Our new scheme not only achieves the strongest security level but also has the shortest signature length (one group element. Compared with the other short certificateless signature schemes which have a similar security level, our new scheme has less operation cost.
Electrical Injection Schemes for Nanolasers
DEFF Research Database (Denmark)
Lupi, Alexandra; Chung, Il-Sug; Yvind, Kresten
2014-01-01
Three electrical injection schemes based on recently demonstrated electrically pumped photonic crystal nanolasers have been numerically investigated: 1) a vertical p-i-n junction through a post structure; 2) a lateral p-i-n junction with a homostructure; and 3) a lateral p-i-n junction....... For this analysis, the properties of different schemes, i.e., electrical resistance, threshold voltage, threshold current, and internal efficiency as energy requirements for optical interconnects are compared and the physics behind the differences is discussed....
Signal multiplexing scheme for LINAC
International Nuclear Information System (INIS)
Sujo, C.I.; Mohan, Shyam; Joshi, Gopal; Singh, S.K.; Karande, Jitendra
2004-01-01
For the proper operation of the LINAC some signals, RF (radio frequency) as well as LF (low frequency) have to be available at the Master Control Station (MCS). These signals are needed to control, calibrate and characterize the RF fields in the resonators. This can be achieved by proper multiplexing of various signals locally and then routing the selected signals to the MCS. A multiplexing scheme has been designed and implemented, which will allow the signals from the selected cavity to the MCS. High isolation between channels and low insertion loss for a given signal are important issues while selecting the multiplexing scheme. (author)
Capacity-achieving CPM schemes
Perotti, Alberto; Tarable, Alberto; Benedetto, Sergio; Montorsi, Guido
2008-01-01
The pragmatic approach to coded continuous-phase modulation (CPM) is proposed as a capacity-achieving low-complexity alternative to the serially-concatenated CPM (SC-CPM) coding scheme. In this paper, we first perform a selection of the best spectrally-efficient CPM modulations to be embedded into SC-CPM schemes. Then, we consider the pragmatic capacity (a.k.a. BICM capacity) of CPM modulations and optimize it through a careful design of the mapping between input bits and CPM waveforms. The s...
Research Quality, Fairness, and Authorship Order
DEFF Research Database (Denmark)
Ackerman, Margareta; Branzei, Simina
2012-01-01
of their last names, implying that all contributed equally, and by contribution, where authors are listed in decreasing order of their contribution to the paper. We perform a game theoretic analysis of the impact of author ordering schemes, uncovering two considerable advantages of alphabetical ordering......The order in which authors are listed on an academic paper determines the credit that each receives on a co-authored publication, influencing hiring, tenure and promotions. Two of the prevalent author ordering schemes are alphabetical, which involves listing authors in lexicographical order......: it leads to improved research quality, and it is the more fair of the two approaches in the worst case. On the other hand, contribution-based ordering results in a denser collaboration network and a greater number of publications than is achieved using alphabetical author ordering. Furthermore, authors can...
International Nuclear Information System (INIS)
Ardisson, Claire; Ardisson, Gerard.
1976-01-01
A 165 Ho level scheme was constructed which led to the interpretation of sixty γ rays belonging to the decay of 165 Dy. A new 702.9keV level was identified to be the 5/2 - member of the 1/2 ) 7541{ Nilsson orbit. )] [fr
Homogenization scheme for acoustic metamaterials
Yang, Min; Ma, Guancong; Wu, Ying; Yang, Zhiyu; Sheng, Ping
2014-01-01
the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost
New practicable Siberian Snake schemes
International Nuclear Information System (INIS)
Steffen, K.
1983-07-01
Siberian Snake schemes can be inserted in ring accelerators for making the spin tune almost independent of energy. Two such schemes are here suggested which lend particularly well to practical application over a wide energy range. Being composed of horizontal and vertical bending magnets, the proposed snakes are designed to have a small maximum beam excursion in one plane. By applying in this plane a bending correction that varies with energy, they can be operated at fixed geometry in the other plane where most of the bending occurs, thus avoiding complicated magnet motion or excessively large magnet apertures that would otherwise be needed for large energy variations. The first of the proposed schemes employs a pair of standard-type Siberian Snakes, i.e. of the usual 1st and 2nd kind which rotate the spin about the longitudinal and the transverse horizontal axis, respectively. The second scheme employs a pair of novel-type snakes which rotate the spin about either one of the horizontal axes that are at 45 0 to the beam direction. In obvious reference to these axes, they are called left-pointed and right-pointed snakes. (orig.)
Nonlinear Secret Image Sharing Scheme
Directory of Open Access Journals (Sweden)
Sang-Ho Shin
2014-01-01
efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB and 1.74tlog2m bit-per-pixel (bpp, respectively.
Time-Discrete Higher-Order ALE Formulations: Stability
Bonito, Andrea; Kyza, Irene; Nochetto, Ricardo H.
2013-01-01
on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time
Hierarchical partial order ranking
International Nuclear Information System (INIS)
Carlsen, Lars
2008-01-01
Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritisation of polluted sites is given. - Hierarchical partial order ranking of polluted sites has been developed for prioritization based on a large number of parameters
A reduced feedback proportional fair multiuser scheduling scheme
Shaqfeh, Mohammad
2011-12-01
Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed and ordered scheduling mechanism. A slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we propose a novel proportional fair multiuser switched-diversity scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the per-user feedback thresholds. We demonstrate by numerical examples that our reduced feedback proportional fair scheduler operates within 0.3 bits/sec/Hz from the achievable rates by the conventional full feedback proportional fair scheduler in Rayleigh fading conditions. © 2011 IEEE.
Tunable fractional-order Fourier transformer
International Nuclear Information System (INIS)
Malyutin, A A
2006-01-01
A fractional two-dimensional Fourier transformer whose orders are tuned by means of optical quadrupoles is described. It is shown that in the optical scheme considered, the Fourier-transform order a element of [0,1] in one of the mutually orthogonal planes corresponds to the transform order (2-a) in another plane, i.e., to inversion and inverse Fourier transform of the order a. (laser modes and beams)
Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion
International Nuclear Information System (INIS)
Cui, Xia; Yuan, Guang-wei; Shen, Zhi-jun
2016-01-01
Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-order accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion. - Highlights: • Provide AP fully discrete schemes for non-equilibrium radiation diffusion. • Propose second order accurate schemes by asymmetric approach for boundary flux-limiter. • Show first order AP property of spatially and fully discrete schemes with IB evolution. • Devise subtle artificial solutions; verify accuracy and AP property quantitatively. • Ideas can be generalized to 3-dimensional problems and higher order implicit schemes.
Das, Ashok Kumar; Goswami, Adrijit
2014-06-01
Recently, Awasthi and Srivastava proposed a novel biometric remote user authentication scheme for the telecare medicine information system (TMIS) with nonce. Their scheme is very efficient as it is based on efficient chaotic one-way hash function and bitwise XOR operations. In this paper, we first analyze Awasthi-Srivastava's scheme and then show that their scheme has several drawbacks: (1) incorrect password change phase, (2) fails to preserve user anonymity property, (3) fails to establish a secret session key beween a legal user and the server, (4) fails to protect strong replay attack, and (5) lacks rigorous formal security analysis. We then a propose a novel and secure biometric-based remote user authentication scheme in order to withstand the security flaw found in Awasthi-Srivastava's scheme and enhance the features required for an idle user authentication scheme. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. In addition, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool and show that our scheme is secure against passive and active attacks, including the replay and man-in-the-middle attacks. Our scheme is also efficient as compared to Awasthi-Srivastava's scheme.
Market behavior and performance of different strategy evaluation schemes.
Baek, Yongjoo; Lee, Sang Hoon; Jeong, Hawoong
2010-08-01
Strategy evaluation schemes are a crucial factor in any agent-based market model, as they determine the agents' strategy preferences and consequently their behavioral pattern. This study investigates how the strategy evaluation schemes adopted by agents affect their performance in conjunction with the market circumstances. We observe the performance of three strategy evaluation schemes, the history-dependent wealth game, the trend-opposing minority game, and the trend-following majority game, in a stock market where the price is exogenously determined. The price is either directly adopted from the real stock market indices or generated with a Markov chain of order ≤2 . Each scheme's success is quantified by average wealth accumulated by the traders equipped with the scheme. The wealth game, as it learns from the history, shows relatively good performance unless the market is highly unpredictable. The majority game is successful in a trendy market dominated by long periods of sustained price increase or decrease. On the other hand, the minority game is suitable for a market with persistent zigzag price patterns. We also discuss the consequence of implementing finite memory in the scoring processes of strategies. Our findings suggest under which market circumstances each evaluation scheme is appropriate for modeling the behavior of real market traders.
Time-and-ID-Based Proxy Reencryption Scheme
Directory of Open Access Journals (Sweden)
Kambombo Mtonga
2014-01-01
Full Text Available Time- and ID-based proxy reencryption scheme is proposed in this paper in which a type-based proxy reencryption enables the delegator to implement fine-grained policies with one key pair without any additional trust on the proxy. However, in some applications, the time within which the data was sampled or collected is very critical. In such applications, for example, healthcare and criminal investigations, the delegatee may be interested in only some of the messages with some types sampled within some time bound instead of the entire subset. Hence, in order to carter for such situations, in this paper, we propose a time-and-identity-based proxy reencryption scheme that takes into account the time within which the data was collected as a factor to consider when categorizing data in addition to its type. Our scheme is based on Boneh and Boyen identity-based scheme (BB-IBE and Matsuo’s proxy reencryption scheme for identity-based encryption (IBE to IBE. We prove that our scheme is semantically secure in the standard model.
A novel grain cluster-based homogenization scheme
International Nuclear Information System (INIS)
Tjahjanto, D D; Eisenlohr, P; Roters, F
2010-01-01
An efficient homogenization scheme, termed the relaxed grain cluster (RGC), for elasto-plastic deformations of polycrystals is presented. The scheme is based on a generalization of the grain cluster concept. A volume element consisting of eight (= 2 × 2 × 2) hexahedral grains is considered. The kinematics of the RGC scheme is formulated within a finite deformation framework, where the relaxation of the local deformation gradient of each individual grain is connected to the overall deformation gradient by the, so-called, interface relaxation vectors. The set of relaxation vectors is determined by the minimization of the constitutive energy (or work) density of the overall cluster. An additional energy density associated with the mismatch at the grain boundaries due to relaxations is incorporated as a penalty term into the energy minimization formulation. Effectively, this penalty term represents the kinematical condition of deformation compatibility at the grain boundaries. Simulations have been performed for a dual-phase grain cluster loaded in uniaxial tension. The results of the simulations are presented and discussed in terms of the effective stress–strain response and the overall deformation anisotropy as functions of the penalty energy parameters. In addition, the prediction of the RGC scheme is compared with predictions using other averaging schemes, as well as to the result of direct finite element (FE) simulation. The comparison indicates that the present RGC scheme is able to approximate FE simulation results of relatively fine discretization at about three orders of magnitude lower computational cost
Validating a Written Instrument for Assessing Students' Fractions Schemes and
Wilkins, Jesse L. M.; Norton, Anderson; Boyce, Steven J.
2013-01-01
Previous research has documented schemes and operations that undergird students' understanding of fractions. This prior research was based, in large part, on small-group teaching experiments. However, written assessments are needed in order for teachers and researchers to assess students' ways of operating on a whole-class scale. In this study,…
Enhancing privacy of users in eID schemes
Shrishak, Kris; Erkin, Z.; Schaar, Remco
2016-01-01
In todays world transactions are increasingly being performed over the internetbut require identication of users as in face-to-face transactions. In order to facilitate eGovernance as well as other eCommerce services Electronic Identiation(eID) schemes, which intend to provide unique and reliable
Green frame aggregation scheme for Wi-Fi networks
Alaslani, Maha S.; Showail, Ahmad; Shihada, Basem
2015-01-01
Aggregation (GFA) scheduling scheme that optimizes the aggregate size based on channel quality in order to minimize the consumed energy. GFA selects an optimal sub-frame size that satisfies the loss constraint for real-time applications as well as the energy
Advanced Entry Adult Apprenticeship Training Scheme: A Case Study
Sparks, Alan; Ingram, Hadyn; Phillips, Sunny
2009-01-01
Purpose: The purpose of this paper is to evaluate an innovative way to train adult apprentices for the construction industry. Design/methodology/approach: The paper emphasizes that, in order to address skills shortages for international construction, training methods must be improved. It looks at the example of an adult apprenticeship scheme in…
DEFF Research Database (Denmark)
Christensen, Tove; Pedersen, Anders Branth; Nielsen, Helle Oersted
2011-01-01
Danish farmers have been far less interested in agri-environmental subsidy schemes (AES) than anticipated. In order to examine how to improve the appeal of such schemes, a choice experiment was conducted concerning 444 Danish farmers’ preferences for subsidy schemes for pesticide-free buffer zone...
On Secure NOMA Systems with Transmit Antenna Selection Schemes
Lei, Hongjiang; Zhang, Jianming; Park, Kihong; Xu, Peng; Ansari, Imran Shafique; Pan, Gaofeng; Alomair, Basel; Alouini, Mohamed-Slim
2017-01-01
This paper investigates the secrecy performance of a two-user downlink non-orthogonal multiple access systems. Both single-input and single-output and multiple-input and singleoutput systems with different transmit antenna selection (TAS) strategies are considered. Depending on whether the base station has the global channel state information of both the main and wiretap channels, the exact closed-form expressions for the secrecy outage probability (SOP) with suboptimal antenna selection and optimal antenna selection schemes are obtained and compared with the traditional space-time transmission scheme. To obtain further insights, the asymptotic analysis of the SOP in high average channel power gains regime is presented and it is found that the secrecy diversity order for all the TAS schemes with fixed power allocation is zero. Furthermore, an effective power allocation scheme is proposed to obtain the nonzero diversity order with all the TAS schemes. Monte-Carlo simulations are performed to verify the proposed analytical results.
On Secure NOMA Systems with Transmit Antenna Selection Schemes
Lei, Hongjiang
2017-08-09
This paper investigates the secrecy performance of a two-user downlink non-orthogonal multiple access systems. Both single-input and single-output and multiple-input and singleoutput systems with different transmit antenna selection (TAS) strategies are considered. Depending on whether the base station has the global channel state information of both the main and wiretap channels, the exact closed-form expressions for the secrecy outage probability (SOP) with suboptimal antenna selection and optimal antenna selection schemes are obtained and compared with the traditional space-time transmission scheme. To obtain further insights, the asymptotic analysis of the SOP in high average channel power gains regime is presented and it is found that the secrecy diversity order for all the TAS schemes with fixed power allocation is zero. Furthermore, an effective power allocation scheme is proposed to obtain the nonzero diversity order with all the TAS schemes. Monte-Carlo simulations are performed to verify the proposed analytical results.
Support Schemes and Ownership Structures
DEFF Research Database (Denmark)
Ropenus, Stephanie; Schröder, Sascha Thorsten; Costa, Ana
, Denmark, France and Portugal. Another crucial aspect for the diffusion of the mCHP technology is possible ownership structures. These may range from full consumer ownership to ownership by utilities and energy service companies, which is discussed in Section 6. Finally, a conclusion (Section 7) wraps up......In recent years, fuel cell based micro‐combined heat and power has received increasing attention due to its potential contribution to energy savings, efficiency gains, customer proximity and flexibility in operation and capacity size. The FC4Home project assesses technical and economic aspects...... of support scheme simultaneously affects risk and technological development, which is the focus of Section 4. Subsequent to this conceptual overview, Section 5 takes a glance at the national application of support schemes for mCHP in practice, notably in the three country cases of the FC4Home project...
[PICS: pharmaceutical inspection cooperation scheme].
Morénas, J
2009-01-01
The pharmaceutical inspection cooperation scheme (PICS) is a structure containing 34 participating authorities located worldwide (October 2008). It has been created in 1995 on the basis of the pharmaceutical inspection convention (PIC) settled by the European free trade association (EFTA) in1970. This scheme has different goals as to be an international recognised body in the field of good manufacturing practices (GMP), for training inspectors (by the way of an annual seminar and experts circles related notably to active pharmaceutical ingredients [API], quality risk management, computerized systems, useful for the writing of inspection's aide-memoires). PICS is also leading to high standards for GMP inspectorates (through regular crossed audits) and being a room for exchanges on technical matters between inspectors but also between inspectors and pharmaceutical industry.
Project financing renewable energy schemes
International Nuclear Information System (INIS)
Brandler, A.
1993-01-01
The viability of many Renewable Energy projects is critically dependent upon the ability of these projects to secure the necessary financing on acceptable terms. The principal objective of the study was to provide an overview to project developers of project financing techniques and the conditions under which project finance for Renewable Energy schemes could be raised, focussing on the potential sources of finance, the typical project financing structures that could be utilised for Renewable Energy schemes and the risk/return and security requirements of lenders, investors and other potential sources of financing. A second objective is to describe the appropriate strategy and tactics for developers to adopt in approaching the financing markets for such projects. (author)
Network Regulation and Support Schemes
DEFF Research Database (Denmark)
Ropenus, Stephanie; Schröder, Sascha Thorsten; Jacobsen, Henrik
2009-01-01
-in tariffs to market-based quota systems, and network regulation approaches, comprising rate-of-return and incentive regulation. National regulation and the vertical structure of the electricity sector shape the incentives of market agents, notably of distributed generators and network operators......At present, there exists no explicit European policy framework on distributed generation. Various Directives encompass distributed generation; inherently, their implementation is to the discretion of the Member States. The latter have adopted different kinds of support schemes, ranging from feed....... This article seeks to investigate the interactions between the policy dimensions of support schemes and network regulation and how they affect the deployment of distributed generation. Firstly, a conceptual analysis examines how the incentives of the different market agents are affected. In particular...
Distance labeling schemes for trees
DEFF Research Database (Denmark)
Alstrup, Stephen; Gørtz, Inge Li; Bistrup Halvorsen, Esben
2016-01-01
We consider distance labeling schemes for trees: given a tree with n nodes, label the nodes with binary strings such that, given the labels of any two nodes, one can determine, by looking only at the labels, the distance in the tree between the two nodes. A lower bound by Gavoille et al. [Gavoille...... variants such as, for example, small distances in trees [Alstrup et al., SODA, 2003]. We improve the known upper and lower bounds of exact distance labeling by showing that 1/4 log2(n) bits are needed and that 1/2 log2(n) bits are sufficient. We also give (1 + ε)-stretch labeling schemes using Theta...
Small-scale classification schemes
DEFF Research Database (Denmark)
Hertzum, Morten
2004-01-01
Small-scale classification schemes are used extensively in the coordination of cooperative work. This study investigates the creation and use of a classification scheme for handling the system requirements during the redevelopment of a nation-wide information system. This requirements...... classification inherited a lot of its structure from the existing system and rendered requirements that transcended the framework laid out by the existing system almost invisible. As a result, the requirements classification became a defining element of the requirements-engineering process, though its main...... effects remained largely implicit. The requirements classification contributed to constraining the requirements-engineering process by supporting the software engineers in maintaining some level of control over the process. This way, the requirements classification provided the software engineers...
Studies of the plasma droplet accelerator scheme
International Nuclear Information System (INIS)
Mori, W.B.; Joshi, C.; Dawson, J.M.; Lee, K.; Forslund, D.W.; Kindel, J.M.
1985-01-01
In the plasma droplet accelerator scheme, proposed by R. Palmer, a sequence of liquid micro-spheres generated by a jet printer are ionized by an incoming intense laser. The hope is that the micro-spheres now acting as conducting balls will allow efficient coupling of the incoming laser radiation into an accelerating mode. Motivated by this the authors have carried out 2D, particle simulations in order to answer some of the plasma physics questions hitherto unaddressed. In particular they find that at least for laser intensities exceeding v 0 /c=0.03 (/sup ∼/10 13 w/cm 2 for a CO 2 laser), the incident laser light is rather efficiently absorbed in a hot electron distribution. Up to 70% of the incident energy can be absorbed by these electrons which rapidly expand and fill the vacuum space between the microspheres with a low density plasma. These results indicate that it is advisable to stay clear of plasma formation and thus put on an upper limit on the maximum surface fields that can be tolerated in the droplet-accelerator scheme
Studies of the plasma droplet accelerator scheme
International Nuclear Information System (INIS)
Mori, W.B.; Dawson, J.M.; Forslund, D.W.; Joshi, C.; Kindel, J.M.; Lee, K.
1985-01-01
In the plasma droplet accelerator scheme, proposed by R. Palmer, a sequence of liquid micro-spheres generated by a jet printer are ionized by an incoming intense laser. The hope is that the micro-spheres now acting as conducting balls will allow efficient coupling of the incoming laser radiation into an accelerating mode. Motivated by this we have carried out 2D, particle simulations in order to answer some of the plasma physics questions hitherto unaddressed. In particular we find that at least for laser intensities exceeding v /SUB o/ /c=0.03 ( about10 13 w/cm 2 for a CO 2 laser), the incident laser light is rather efficiently absorbed in a hot electron distribution. Up to 70% of the incident energy can be absorbed by these electrons which rapidly expand and fill the vacuum space between the microspheres with a low density plasma. These results indicate that it is advisable to stay clear of plasma formation and thus put on an upper limit on the maximum surface fields that can be tolerated in the droplet-accelerator scheme
Present and future nuclear power financing schemes
International Nuclear Information System (INIS)
Diel, R.
1977-01-01
The financial requirement for nuclear power plants in the Federal Republic of Germany for the period up until 1985 was estimated to run up to some DM 100 billion already in the Nuclear Energy Study published by the Dresdner Bank in 1974. This figure is not changed in any way by the reduction the nuclear power program has suffered in the meantime, because the lower requirement for investment capital is more than offset by the price increases that have occurred meanwhile. A capital requirement in the order of DM 100 billion raises major problems for the power producing industry and the banks which, however, are not going to hamper the further expansion of nuclear power, because new financing schemes have been specially developed for the nuclear field. They include financing by leasing, the use of funds from real estate credit institutions for long term financing, borrowing of long term funds in the Euro market, and financing through subsidiaries of the utilities. The new financing schemes also apply to the large financial requirement associated with the nuclear fuel cycle, waste management in particular. In this sector the utilities agree to bear the economic risk of the companies implementing the respective projects. Accordingly, financing will not entail any major difficulties. Another area of great importance is export financing. The German-Brazilian nuclear agreement is a model of this instrument. (orig.) [de
Cambridge community Optometry Glaucoma Scheme.
Keenan, Jonathan; Shahid, Humma; Bourne, Rupert R; White, Andrew J; Martin, Keith R
2015-04-01
With a higher life expectancy, there is an increased demand for hospital glaucoma services in the United Kingdom. The Cambridge community Optometry Glaucoma Scheme (COGS) was initiated in 2010, where new referrals for suspected glaucoma are evaluated by community optometrists with a special interest in glaucoma, with virtual electronic review and validation by a consultant ophthalmologist with special interest in glaucoma. 1733 patients were evaluated by this scheme between 2010 and 2013. Clinical assessment is performed by the optometrist at a remote site. Goldmann applanation tonometry, pachymetry, monoscopic colour optic disc photographs and automated Humphrey visual field testing are performed. A clinical decision is made as to whether a patient has glaucoma or is a suspect, and referred on or discharged as a false positive referral. The clinical findings, optic disc photographs and visual field test results are transmitted electronically for virtual review by a consultant ophthalmologist. The number of false positive referrals from initial referral into the scheme. Of the patients, 46.6% were discharged at assessment and a further 5.7% were discharged following virtual review. Of the patients initially discharged, 2.8% were recalled following virtual review. Following assessment at the hospital, a further 10.5% were discharged after a single visit. The COGS community-based glaucoma screening programme is a safe and effective way of evaluating glaucoma referrals in the community and reducing false-positive referrals for glaucoma into the hospital system. © 2014 Royal Australian and New Zealand College of Ophthalmologists.
New schemes for particle accelerators
International Nuclear Information System (INIS)
Nishida, Y.
1985-01-01
In the present paper, the authors propose new schemes for realizing the v/sub p/xB accelerator, by using no plasma system for producing the strong longitudinal waves. The first method is to use a grating for obtaining extended interaction of an electron beam moving along the grating surface with light beam incident also along the surface. Here, the light beam propagates obliquely to the grating grooves for producing strong electric field, and the electron beam propagates in parallel to the light beam. The static magnetic field is applied perpendicularly to the grating surface. In the present system, the beam interacts synchronously with the p-polarized wave which has the electric field be parallel to the grating surface. Another conventional scheme is to use a delay circuit. Here, the light beam propagates obliquely between a pair of array of conductor fins or slots. The phase velocity of the spatial harmonics in the y-direction (right angle to the array of slots) is slower than the speed of light. With the aid of powerful laser light or microwave source, it should be possible to miniaturise linacs by using the v/sub p/xB effect and schemes proposed here
A Memory Efficient Network Encryption Scheme
El-Fotouh, Mohamed Abo; Diepold, Klaus
In this paper, we studied the two widely used encryption schemes in network applications. Shortcomings have been found in both schemes, as these schemes consume either more memory to gain high throughput or low memory with low throughput. The need has aroused for a scheme that has low memory requirements and in the same time possesses high speed, as the number of the internet users increases each day. We used the SSM model [1], to construct an encryption scheme based on the AES. The proposed scheme possesses high throughput together with low memory requirements.
An Arbitrated Quantum Signature Scheme without Entanglement*
International Nuclear Information System (INIS)
Li Hui-Ran; Luo Ming-Xing; Peng Dai-Yuan; Wang Xiao-Jun
2017-01-01
Several quantum signature schemes are recently proposed to realize secure signatures of quantum or classical messages. Arbitrated quantum signature as one nontrivial scheme has attracted great interests because of its usefulness and efficiency. Unfortunately, previous schemes cannot against Trojan horse attack and DoS attack and lack of the unforgeability and the non-repudiation. In this paper, we propose an improved arbitrated quantum signature to address these secure issues with the honesty arbitrator. Our scheme takes use of qubit states not entanglements. More importantly, the qubit scheme can achieve the unforgeability and the non-repudiation. Our scheme is also secure for other known quantum attacks . (paper)
MULTIMEDIA DATA TRANSMISSION THROUGH TCP/IP USING HASH BASED FEC WITH AUTO-XOR SCHEME
R. Shalin; D. Kesavaraja
2012-01-01
The most preferred mode for communication of multimedia data is through the TCP/IP protocol. But on the other hand the TCP/IP protocol produces huge packet loss unavoidable due to network traffic and congestion. In order to provide a efficient communication it is necessary to recover the loss of packets. The proposed scheme implements Hash based FEC with auto XOR scheme for this purpose. The scheme is implemented through Forward error correction, MD5 and XOR for providing efficient transmissi...
SRIM Scheme: An Impression-Management Scheme for Privacy-Aware Photo-Sharing Users
Directory of Open Access Journals (Sweden)
Fenghua Li
2018-02-01
Full Text Available With the development of online social networks (OSNs and modern smartphones, sharing photos with friends has become one of the most popular social activities. Since people usually prefer to give others a positive impression, impression management during photo sharing is becoming increasingly important. However, most of the existing privacy-aware solutions have two main drawbacks: ① Users must decide manually whether to share each photo with others or not, in order to build the desired impression; and ② users run a high risk of leaking sensitive relational information in group photos during photo sharing, such as their position as part of a couple, or their sexual identity. In this paper, we propose a social relation impression-management (SRIM scheme to protect relational privacy and to automatically recommend an appropriate photo-sharing policy to users. To be more specific, we have designed a lightweight face-distance measurement that calculates the distances between users’ faces within group photos by relying on photo metadata and face-detection results. These distances are then transformed into relations using proxemics. Furthermore, we propose a relation impression evaluation algorithm to evaluate and manage relational impressions. We developed a prototype and employed 21 volunteers to verify the functionalities of the SRIM scheme. The evaluation results show the effectiveness and efficiency of our proposed scheme. Keywords: Impression management, Relational privacy, Photo sharing, Policy recommendation, Proxemics
Scheme for teleportation of unknown states of trapped ion
Institute of Scientific and Technical Information of China (English)
Chen Mei-Feng; Ma Song-She
2008-01-01
A scheme is presented for teleporting an unknown state in a trapped ion system.The scheme only requires a single laser beam.It allows the trap to be in any state with a few phonons,e.g.a thermal motion.Furthermore,it works in the regime,where the Rabi frequency of the laser is on the order of the trap frequency.Thus,the teleportation speed is greatly increased,which is important for decreasing the decoherence effect.This idea can also be used to teleport an unknown ionic entangled state.
A joint asymmetric watermarking and image encryption scheme
Boato, G.; Conotter, V.; De Natale, F. G. B.; Fontanari, C.
2008-02-01
Here we introduce a novel watermarking paradigm designed to be both asymmetric, i.e., involving a private key for embedding and a public key for detection, and commutative with a suitable encryption scheme, allowing both to cipher watermarked data and to mark encrypted data without interphering with the detection process. In order to demonstrate the effectiveness of the above principles, we present an explicit example where the watermarking part, based on elementary linear algebra, and the encryption part, exploiting a secret random permutation, are integrated in a commutative scheme.
An efficient training scheme for supermodels
Schevenhoven, Francine J.; Selten, Frank M.
2017-06-01
Weather and climate models have improved steadily over time as witnessed by objective skill scores, although significant model errors remain. Given these imperfect models, predictions might be improved by combining them dynamically into a so-called supermodel. In this paper a new training scheme to construct such a supermodel is explored using a technique called cross pollination in time (CPT). In the CPT approach the models exchange states during the prediction. The number of possible predictions grows quickly with time, and a strategy to retain only a small number of predictions, called pruning, needs to be developed. The method is explored using low-order dynamical systems and applied to a global atmospheric model. The results indicate that the CPT training is efficient and leads to a supermodel with improved forecast quality as compared to the individual models. Due to its computational efficiency, the technique is suited for application to state-of-the art high-dimensional weather and climate models.
TE/TM scheme for computation of electromagnetic fields in accelerators
International Nuclear Information System (INIS)
Zagorodnov, Igor; Weiland, Thomas
2005-01-01
We propose a new two-level economical conservative scheme for short-range wake field calculation in three dimensions. The scheme does not have dispersion in the longitudinal direction and is staircase free (second order convergent). Unlike the finite-difference time domain method (FDTD), it is based on a TE/TM like splitting of the field components in time. Additionally, it uses an enhanced alternating direction splitting of the transverse space operator that makes the scheme computationally as effective as the conventional FDTD method. Unlike the FDTD ADI and low-order Strang methods, the splitting error in our scheme is only of fourth order. As numerical examples show, the new scheme is much more accurate on the long-time scale than the conventional FDTD approach
Decoupling schemes for the SSC Collider
International Nuclear Information System (INIS)
Cai, Y.; Bourianoff, G.; Cole, B.; Meinke, R.; Peterson, J.; Pilat, F.; Stampke, S.; Syphers, M.; Talman, R.
1993-05-01
A decoupling system is designed for the SSC Collider. This system can accommodate three decoupling schemes by using 44 skew quadrupoles in the different configurations. Several decoupling schemes are studied and compared in this paper
Renormalization scheme-invariant perturbation theory
International Nuclear Information System (INIS)
Dhar, A.
1983-01-01
A complete solution to the problem of the renormalization scheme dependence of perturbative approximants to physical quantities is presented. An equation is derived which determines any physical quantity implicitly as a function of only scheme independent variables. (orig.)
Wireless Broadband Access and Accounting Schemes
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
In this paper, we propose two wireless broadband access and accounting schemes. In both schemes, the accounting system adopts RADIUS protocol, but the access system adopts SSH and SSL protocols respectively.
Tightly Secure Signatures From Lossy Identification Schemes
Abdalla , Michel; Fouque , Pierre-Alain; Lyubashevsky , Vadim; Tibouchi , Mehdi
2015-01-01
International audience; In this paper, we present three digital signature schemes with tight security reductions in the random oracle model. Our first signature scheme is a particularly efficient version of the short exponent discrete log-based scheme of Girault et al. (J Cryptol 19(4):463–487, 2006). Our scheme has a tight reduction to the decisional short discrete logarithm problem, while still maintaining the non-tight reduction to the computational version of the problem upon which the or...
Second-order nonlinearity induced transparency.
Zhou, Y H; Zhang, S S; Shen, H Z; Yi, X X
2017-04-01
In analogy to electromagnetically induced transparency, optomechanically induced transparency was proposed recently in [Science330, 1520 (2010)SCIEAS0036-807510.1126/science.1195596]. In this Letter, we demonstrate another form of induced transparency enabled by second-order nonlinearity. A practical application of the second-order nonlinearity induced transparency is to measure the second-order nonlinear coefficient. Our scheme might find applications in quantum optics and quantum information processing.
Qaraqe, Marwa; Abdallah, Mohamed M.; Serpedin, Erchin; Alouini, Mohamed-Slim
2014-01-01
the average spectral efficiency by selecting the user that reports the best channel quality. In order to alleviate the relatively high feedback required by the first scheme, a second scheme based on the concept of switched diversity is proposed, where the base
The new electricity of France PWR: calculation scheme of neutron leakages from the reactor cavity
International Nuclear Information System (INIS)
Vergnaud, T.; Bourdet, L.; Nimal, J.C.; Brandicourt, G.; Champion, G.
1987-04-01
A new calculation scheme is adapted to evaluate neutron fluxes in the reactor cavity and the containment of next french PWR. In this scheme a large part is given to Monte Carlo method, coupled with SN-method, in order to take into account multiple neutron diffusions and the complexity of the reactor geometry
International Nuclear Information System (INIS)
Fedon-Magnaud, C.; Hennart, J.P.; Lautard, J.J.
1983-03-01
An unified formulation of non conforming finite elements with quadrature formula and simple nodal scheme is presented. The theoretical convergence is obtained for the previous scheme when the mesh is refined. Numerical tests are provided in order to bear out the theorical results
To d, or not to d. Recent developments and comparisons of regularization schemes
Energy Technology Data Exchange (ETDEWEB)
Gnendiger, C.; Pruna, G.M. [Paul Scherrer Institut, Villigen (Switzerland); Signer, A.; Ulrich, Y.; Visconti, A. [Paul Scherrer Institut, Villigen (Switzerland); Universitaet Zuerich, Physik-Institut, Zuerich (Switzerland); Stoeckinger, D. [Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Broggio, A. [Technische Universitaet Muenchen, Physik Department T31, Garching (Germany); Cherchiglia, A.L. [Centro de Ciencias Naturais e Humanas, UFABC, Santo Andre (Brazil); Driencourt-Mangin, F.; Rodrigo, G. [Universitat de Valencia, Insituto de Fisica Corpuscular, UVEG-CSIC, Paterna (Spain); Fazio, A.R. [Universidad Nacional de Colombia, Departamento de Fisica, Bogota D.C. (Colombia); Hiller, B. [University of Coimbra, CFisUC, Department of Physics, Coimbra (Portugal); Mastrolia, P. [Universita di Padova, Dipartimento di Fisica ed Astronomia, Padua (Italy); INFN, Sezione di Padova, Padua (Italy); Peraro, T. [The University of Edinburgh, Higgs Centre for Theoretical Physics, Edinburgh (United Kingdom); Pittau, R. [Universidad de Granada, Dept. de Fisica Teorica y del Cosmos yd CAFPE, Granada (Spain); Sampaio, M. [ICEX, UFMG, Departamento de Fisica, Belo Horizonte (Brazil); Sborlini, G. [Universitat de Valencia, Insituto de Fisica Corpuscular, UVEG-CSIC, Paterna (Spain); Universita di Milano, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano, Milan (Italy); Bobadilla, W.J.T. [Universitat de Valencia, Insituto de Fisica Corpuscular, UVEG-CSIC, Paterna (Spain); Universita di Padova, Dipartimento di Fisica ed Astronomia, Padua (Italy); INFN, Sezione di Padova, Padua (Italy); Tramontano, F. [Universita di Napoli, Dipartimento di Fisica, Naples (Italy); INFN, Sezione di Napoli, Naples (Italy)
2017-07-15
We give an introduction to several regularization schemes that deal with ultraviolet and infrared singularities appearing in higher-order computations in quantum field theories. Comparing the computation of simple quantities in the various schemes, we point out similarities and differences between them. (orig.)
Central-Upwind Schemes for Two-Layer Shallow Water Equations
Kurganov, Alexander; Petrova, Guergana
2009-01-01
We derive a second-order semidiscrete central-upwind scheme for one- and two-dimensional systems of two-layer shallow water equations. We prove that the presented scheme is well-balanced in the sense that stationary steady-state solutions
Optimal Sales Schemes for Network Goods
DEFF Research Database (Denmark)
Parakhonyak, Alexei; Vikander, Nick
consumers simultaneously, serve them all sequentially, or employ any intermediate scheme. We show that the optimal sales scheme is purely sequential, where each consumer observes all previous sales before choosing whether to buy himself. A sequential scheme maximizes the amount of information available...
THROUGHPUT ANALYSIS OF EXTENDED ARQ SCHEMES
African Journals Online (AJOL)
PUBLICATIONS1
ABSTRACT. Various Automatic Repeat Request (ARQ) schemes have been used to combat errors that befall in- formation transmitted in digital communication systems. Such schemes include simple ARQ, mixed mode ARQ and Hybrid ARQ (HARQ). In this study we introduce extended ARQ schemes and derive.
Arbitrated quantum signature scheme with message recovery
International Nuclear Information System (INIS)
Lee, Hwayean; Hong, Changho; Kim, Hyunsang; Lim, Jongin; Yang, Hyung Jin
2004-01-01
Two quantum signature schemes with message recovery relying on the availability of an arbitrator are proposed. One scheme uses a public board and the other does not. However both schemes provide confidentiality of the message and a higher efficiency in transmission
Parton distributions beyond the leading order
International Nuclear Information System (INIS)
Chyla, J.
1993-01-01
The importance of properly taking into account the factorization scheme dependence of parton distribution functions is emphasized. A serious error in the usual handling of this topic is pointed out and the correct procedure for transforming parton distribution functions from one factorization scheme to another recalled. It is shown that the conventional M bar S and DIS definitions thereof are ill defined due to the lack of distinction between the factorization scheme dependence of parton distribution functions and renormalization scheme dependence of the strong coupling constant α s . A novel definition of parton distribution functions is suggested and its role in the construction of consistent next-to-leading-order event generators briefly outlined
Consistent forcing scheme in the cascaded lattice Boltzmann method
Fei, Linlin; Luo, Kai Hong
2017-11-01
In this paper, we give an alternative derivation for the cascaded lattice Boltzmann method (CLBM) within a general multiple-relaxation-time (MRT) framework by introducing a shift matrix. When the shift matrix is a unit matrix, the CLBM degrades into an MRT LBM. Based on this, a consistent forcing scheme is developed for the CLBM. The consistency of the nonslip rule, the second-order convergence rate in space, and the property of isotropy for the consistent forcing scheme is demonstrated through numerical simulations of several canonical problems. Several existing forcing schemes previously used in the CLBM are also examined. The study clarifies the relation between MRT LBM and CLBM under a general framework.
A lightweight target-tracking scheme using wireless sensor network
International Nuclear Information System (INIS)
Kuang, Xing-hong; Shao, Hui-he; Feng, Rui
2008-01-01
This paper describes a lightweight target-tracking scheme using wireless sensor network, where randomly distributed sensor nodes take responsibility for tracking the moving target based on the acoustic sensing signal. At every localization interval, a backoff timer algorithm is performed to elect the leader node and determine the transmission order of the localization nodes. An adaptive active region size algorithm based on the node density is proposed to select the optimal nodes taking part in localization. An improved particle filter algorithm performed by the leader node estimates the target state based on the selected nodes' acoustic energy measurements. Some refinements such as optimal linear combination algorithm, residual resampling algorithm, Markov chain Monte Carlo method are introduced in the scheme to improve the tracking performance. Simulation results validate the efficiency of the proposed tracking scheme
STUDY ON SAFETY TECHNOLOGY SCHEME OF THE UNMANNED HELICOPTER
Directory of Open Access Journals (Sweden)
Z. Lin
2013-08-01
Full Text Available Nowadays the unmanned helicopter is widely used for its' unique strongpoint, however, the high failure rate of unmanned helicopter seriously limits its further application and development. For solving the above problems, in this paper, the reasons for the high failure rate of unmanned helicopter is analyzed and the corresponding solution schemes are proposed. The main problem of the failure cause of the unmanned helicopter is the aircraft engine fault, and the failure cause of the unmanned helicopter is analyzed particularly. In order to improving the safety performance of unmanned helicopter system, the scheme of adding the safety parachute system to the unmanned helicopter system is proposed and introduced. These schemes provide the safety redundancy of the unmanned helicopter system and lay on basis for the unmanned helicopter applying into residential areas.
Consistent forcing scheme in the cascaded lattice Boltzmann method.
Fei, Linlin; Luo, Kai Hong
2017-11-01
In this paper, we give an alternative derivation for the cascaded lattice Boltzmann method (CLBM) within a general multiple-relaxation-time (MRT) framework by introducing a shift matrix. When the shift matrix is a unit matrix, the CLBM degrades into an MRT LBM. Based on this, a consistent forcing scheme is developed for the CLBM. The consistency of the nonslip rule, the second-order convergence rate in space, and the property of isotropy for the consistent forcing scheme is demonstrated through numerical simulations of several canonical problems. Several existing forcing schemes previously used in the CLBM are also examined. The study clarifies the relation between MRT LBM and CLBM under a general framework.
A General Symbolic PDE Solver Generator: Beyond Explicit Schemes
Directory of Open Access Journals (Sweden)
K. Sheshadri
2003-01-01
Full Text Available This paper presents an extension of our Mathematica- and MathCode-based symbolic-numeric framework for solving a variety of partial differential equation (PDE problems. The main features of our earlier work, which implemented explicit finite-difference schemes, include the ability to handle (1 arbitrary number of dependent variables, (2 arbitrary dimensionality, and (3 arbitrary geometry, as well as (4 developing finite-difference schemes to any desired order of approximation. In the present paper, extensions of this framework to implicit schemes and the method of lines are discussed. While C++ code is generated, using the MathCode system for the implicit method, Modelica code is generated for the method of lines. The latter provides a preliminary PDE support for the Modelica language. Examples illustrating the various aspects of the solver generator are presented.
Discretisation Schemes for Level Sets of Planar Gaussian Fields
Beliaev, D.; Muirhead, S.
2018-01-01
Smooth random Gaussian functions play an important role in mathematical physics, a main example being the random plane wave model conjectured by Berry to give a universal description of high-energy eigenfunctions of the Laplacian on generic compact manifolds. Our work is motivated by questions about the geometry of such random functions, in particular relating to the structure of their nodal and level sets. We study four discretisation schemes that extract information about level sets of planar Gaussian fields. Each scheme recovers information up to a different level of precision, and each requires a maximum mesh-size in order to be valid with high probability. The first two schemes are generalisations and enhancements of similar schemes that have appeared in the literature (Beffara and Gayet in Publ Math IHES, 2017. https://doi.org/10.1007/s10240-017-0093-0; Mischaikow and Wanner in Ann Appl Probab 17:980-1018, 2007); these give complete topological information about the level sets on either a local or global scale. As an application, we improve the results in Beffara and Gayet (2017) on Russo-Seymour-Welsh estimates for the nodal set of positively-correlated planar Gaussian fields. The third and fourth schemes are, to the best of our knowledge, completely new. The third scheme is specific to the nodal set of the random plane wave, and provides global topological information about the nodal set up to `visible ambiguities'. The fourth scheme gives a way to approximate the mean number of excursion domains of planar Gaussian fields.
Impacts of Rotation Schemes on Ground-Dwelling Beneficial Arthropods.
Dunbar, Mike W; Gassmann, Aaron J; O'Neal, Matthew E
2016-10-01
Crop rotation alters agroecosystem diversity temporally, and increasing the number of crops in rotation schemes can increase crop yields and reduce reliance on pesticides. We hypothesized that increasing the number of crops in annual rotation schemes would positively affect ground-dwelling beneficial arthropod communities. During 2012 and 2013, pitfall traps were used to measure activity-density and diversity of ground-dwelling communities within three previously established, long-term crop rotation studies located in Wisconsin and Illinois. Rotation schemes sampled included continuous corn, a 2-yr annual rotation of corn and soybean, and a 3-yr annual rotation of corn, soybean, and wheat. Insects captured were identified to family, and non-insect arthropods were identified to class, order, or family, depending upon the taxa. Beneficial arthropods captured included natural enemies, granivores, and detritivores. The beneficial community from continuous corn plots was significantly more diverse compared with the community in the 2-yr rotation, whereas the community in the 3-yr rotation did not differ from either rotation scheme. The activity-density of the total community and any individual taxa did not differ among rotation schemes in either corn or soybean. Crop species within all three rotation schemes were annual crops, and are associated with agricultural practices that make infield habitat subject to anthropogenic disturbances and temporally unstable. Habitat instability and disturbance can limit the effectiveness and retention of beneficial arthropods, including natural enemies, granivores, and detritivores. Increasing non-crop and perennial species within landscapes in conjunction with more diverse rotation schemes may increase the effect of biological control of pests by natural enemies. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Numerical viscosity of entropy stable schemes for systems of conservation laws. Final Report
International Nuclear Information System (INIS)
Tadmor, E.
1985-11-01
Discrete approximations to hyperbolic systems of conservation laws are studied. The amount of numerical viscosity present in such schemes is quantified and related to their entropy stability by means of comparison. To this end conservative schemes which are also entropy conservative are constructed. These entropy conservative schemes enjoy second-order accuracy; moreover, they admit a particular interpretation within the finite-element frameworks, and hence can be formulated on various mesh configurations. It is then shown that conservative schemes are entropy stable if and only if they contain more viscosity than the mentioned above entropy conservative ones
Performance Analysis of Virtual MIMO Relaying Schemes Based on Detect–Split–Forward
Al-Basit, Suhaib M.; Al-Ghadhban, Samir; Zummo, Salam A.
2014-01-01
© 2014, Springer Science+Business Media New York. Virtual multi-input multi-output (vMIMO) schemes in wireless communication systems improve coverage, throughput, capacity, and quality of service. In this paper, we propose three uplink vMIMO relaying schemes based on detect–split–forward (DSF). In addition, we investigate the effect of several physical parameters such as distance, modulation type and number of relays. Furthermore, an adaptive vMIMO DSF scheme based on VBLAST and STBC is proposed. In order to do that, we provide analytical tools to evaluate the performance of the propose vMIMO relaying scheme.
Performance Analysis of Virtual MIMO Relaying Schemes Based on Detect–Split–Forward
Al-Basit, Suhaib M.
2014-10-29
© 2014, Springer Science+Business Media New York. Virtual multi-input multi-output (vMIMO) schemes in wireless communication systems improve coverage, throughput, capacity, and quality of service. In this paper, we propose three uplink vMIMO relaying schemes based on detect–split–forward (DSF). In addition, we investigate the effect of several physical parameters such as distance, modulation type and number of relays. Furthermore, an adaptive vMIMO DSF scheme based on VBLAST and STBC is proposed. In order to do that, we provide analytical tools to evaluate the performance of the propose vMIMO relaying scheme.
Four-level conservative finite-difference schemes for Boussinesq paradigm equation
Kolkovska, N.
2013-10-01
In this paper a two-parametric family of four level conservative finite difference schemes is constructed for the multidimensional Boussinesq paradigm equation. The schemes are explicit in the sense that no inner iterations are needed for evaluation of the numerical solution. The preservation of the discrete energy with this method is proved. The schemes have been numerically tested on one soliton propagation model and two solitons interaction model. The numerical experiments demonstrate that the proposed family of schemes has second order of convergence in space and time steps in the discrete maximal norm.
MULTIMEDIA DATA TRANSMISSION THROUGH TCP/IP USING HASH BASED FEC WITH AUTO-XOR SCHEME
Directory of Open Access Journals (Sweden)
R. Shalin
2012-09-01
Full Text Available The most preferred mode for communication of multimedia data is through the TCP/IP protocol. But on the other hand the TCP/IP protocol produces huge packet loss unavoidable due to network traffic and congestion. In order to provide a efficient communication it is necessary to recover the loss of packets. The proposed scheme implements Hash based FEC with auto XOR scheme for this purpose. The scheme is implemented through Forward error correction, MD5 and XOR for providing efficient transmission of multimedia data. The proposed scheme provides transmission high accuracy, throughput and low latency and loss.
Complete snake and rotator schemes for spin polarization in proton rings and large electron rings
International Nuclear Information System (INIS)
Steffen, K.
1983-11-01
In order to maintain spin polarization in proton rings and large electron rings, some generalized Siberian Snake scheme may be required to make the spin tune almost independent of energy and thus avoid depolarizing resonances. The practical problem of finding such schemes that, at reasonable technical effort, can be made to work over large energy ranges has been addressed before and is here revisited in a broadened view and with added new suggestions. As a result, possibly optimum schemes for electron rings (LEP) and proton rings are described. In the proposed LEP scheme, spin rotation is devised such that, at the interaction points, the spin direction is longitudinal as required for experiments. (orig.)
Parsani, Matteo
2013-04-10
Explicit Runge--Kutta schemes with large stable step sizes are developed for integration of high-order spectral difference spatial discretizations on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge--Kutta schemes available in the literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.
A perturbational h4 exponential finite difference scheme for the convective diffusion equation
International Nuclear Information System (INIS)
Chen, G.Q.; Gao, Z.; Yang, Z.F.
1993-01-01
A perturbational h 4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h 2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes. Besides, the h 4 accuracy of the perturbational scheme is verified using double precision arithmetic
A Novel Two-Stage Dynamic Spectrum Sharing Scheme in Cognitive Radio Networks
Institute of Scientific and Technical Information of China (English)
Guodong Zhang; Wei Heng; Tian Liang; Chao Meng; Jinming Hu
2016-01-01
In order to enhance the efficiency of spectrum utilization and reduce communication overhead in spectrum sharing process,we propose a two-stage dynamic spectrum sharing scheme in which cooperative and noncooperative modes are analyzed in both stages.In particular,the existence and the uniqueness of Nash Equilibrium (NE) strategies for noncooperative mode are proved.In addition,a distributed iterative algorithm is proposed to obtain the optimal solutions of the scheme.Simulation studies are carried out to show the performance comparison between two modes as well as the system revenue improvement of the proposed scheme compared with a conventional scheme without a virtual price control factor.
Remote automatic control scheme for plasma arc cutting of contaminated waste
International Nuclear Information System (INIS)
Dudar, A.M.; Ward, C.R.; Kriikku, E.M.
1993-01-01
The Robotics Development Group at the Savannah River Technology Center has developed and implemented a scheme to perform automatic cutting of metallic contaminated waste. The scheme employs a plasma arc cutter in conjunction with a laser ranging sensor attached to a robotic manipulator called the Telerobot. A software algorithm using proportional control is then used to perturb the robot's trajectory in such a way as to regulate the plasma arc standoff and the robot's speed in order to achieve automatic plasma arc cuts. The scheme has been successfully tested on simulated waste materials and the results have been very favorable. This report details the development and testing of the scheme
Quantum Distributed Ballot Scheme Based on Greenberger-Home-Zeilinger State
International Nuclear Information System (INIS)
Shi Ronghua; Wu Ying; Guo Ying; Zeng Guihua
2010-01-01
Motivated by the complementary relations of the Greenherger-Horne-Zeilinger (GHZ) entangled triplet-particle states, a novel way of realizing quantum distributed ballot scheme is proposed. The ballot information is encoded by local operations performed on the particles of entangled GHZ triplet states, which ensures the security of the present scheme. In order to guarantee the security of this scheme, the checking phase is designed in detail on the basis of the entangled GHZ triplet state. The analysis shows the security of the proposed scheme. (general)
Parsani, Matteo; Ketcheson, David I.; Deconinck, W.
2013-01-01
Explicit Runge--Kutta schemes with large stable step sizes are developed for integration of high-order spectral difference spatial discretizations on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge--Kutta schemes available in the literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.
A New time Integration Scheme for Cahn-hilliard Equations
Schaefer, R.
2015-06-01
In this paper we present a new integration scheme that can be applied to solving difficult non-stationary non-linear problems. It is obtained by a successive linearization of the Crank- Nicolson scheme, that is unconditionally stable, but requires solving non-linear equation at each time step. We applied our linearized scheme for the time integration of the challenging Cahn-Hilliard equation, modeling the phase separation in fluids. At each time step the resulting variational equation is solved using higher-order isogeometric finite element method, with B- spline basis functions. The method was implemented in the PETIGA framework interfaced via the PETSc toolkit. The GMRES iterative solver was utilized for the solution of a resulting linear system at every time step. We also apply a simple adaptivity rule, which increases the time step size when the number of GMRES iterations is lower than 30. We compared our method with a non-linear, two stage predictor-multicorrector scheme, utilizing a sophisticated step length adaptivity. We controlled the stability of our simulations by monitoring the Ginzburg-Landau free energy functional. The proposed integration scheme outperforms the two-stage competitor in terms of the execution time, at the same time having a similar evolution of the free energy functional.
Multi-area layered multicast scheme for MPLS networks
Ma, Yajie; Yang, Zongkai; Wang, Yuming; Chen, Jingwen
2005-02-01
Multi-protocol label switching (MPLS) is multiprotocols both at layer 2 and layer 3. It is suggested to overcome the shortcomings of performing complex longest prefix matching in layer 3 routing by using short, fixed length labels. The MPLS community has put more effort into the label switching of unicast IP traffic, but less in the MPLS multicast mechanism. The reasons are the higher label consumption, the dynamical mapping of L3 multicast tree to L2 LSPs and the 20-bit shim header which is much fewer than the IPv4 IP header. On the other hand, heterogeneity of node capability degrades total performance of a multicast group. In order to achieve the scalability as well as the heterogeneity in MPLS networks, a novel scheme of MPLS-based Multi-area Layered Multicast Scheme (MALM) is proposed. Unlike the existing schemes which focus on aggregating the multicast stream, we construct the multicast tree based on the virtual topology aggregation. The MPLS area is divided into different sub-areas to form the hierarchical virtual topology and the multicast group is reconstructed into multiple layers according to the node capability. At the same time, the label stack is used to save the label space. For stability of the MALM protocol, a multi-layer protection scheme is also discussed. The experiment results show that the proposed scheme saves label space and decrease the Multicast Forwarding Table in much degree.
Mammography image assessment; validity and reliability of current scheme
International Nuclear Information System (INIS)
Hill, C.; Robinson, L.
2015-01-01
Mammographers currently score their own images according to criteria set out by Regional Quality Assurance. The criteria used are based on the ‘Perfect, Good, Moderate, Inadequate’ (PGMI) marking criteria established by the National Health Service Breast Screening Programme (NHSBSP) in their Quality Assurance Guidelines of 2006 1 . This document discusses the validity and reliability of the current mammography image assessment scheme. Commencing with a critical review of the literature this document sets out to highlight problems with the national approach to the use of marking schemes. The findings suggest that ‘PGMI’ scheme is flawed in terms of reliability and validity and is not universally applied across the UK. There also appear to be differences in schemes used by trainees and qualified mammographers. Initial recommendations are to be made in collaboration with colleagues within the National Health Service Breast Screening Programme (NHSBSP), Higher Education Centres, College of Radiographers and the Royal College of Radiologists in order to identify a mammography image appraisal scheme that is fit for purpose. - Highlights: • Currently no robust evidence based marking tools in use for the assessment of images in mammography. • Is current system valid, reliable and robust? • How can the current image assessment tool be improved? • Should students and qualified mammographers use the same tool? • What marking criteria are available for image assessment?
A New time Integration Scheme for Cahn-hilliard Equations
Schaefer, R.; Smol-ka, M.; Dalcin, L; Paszyn'ski, M.
2015-01-01
In this paper we present a new integration scheme that can be applied to solving difficult non-stationary non-linear problems. It is obtained by a successive linearization of the Crank- Nicolson scheme, that is unconditionally stable, but requires solving non-linear equation at each time step. We applied our linearized scheme for the time integration of the challenging Cahn-Hilliard equation, modeling the phase separation in fluids. At each time step the resulting variational equation is solved using higher-order isogeometric finite element method, with B- spline basis functions. The method was implemented in the PETIGA framework interfaced via the PETSc toolkit. The GMRES iterative solver was utilized for the solution of a resulting linear system at every time step. We also apply a simple adaptivity rule, which increases the time step size when the number of GMRES iterations is lower than 30. We compared our method with a non-linear, two stage predictor-multicorrector scheme, utilizing a sophisticated step length adaptivity. We controlled the stability of our simulations by monitoring the Ginzburg-Landau free energy functional. The proposed integration scheme outperforms the two-stage competitor in terms of the execution time, at the same time having a similar evolution of the free energy functional.
REMINDER: Saved Leave Scheme (SLS)
2003-01-01
Transfer of leave to saved leave accounts Under the provisions of the voluntary saved leave scheme (SLS), a maximum total of 10 days'* annual and compensatory leave (excluding saved leave accumulated in accordance with the provisions of Administrative Circular No 22B) can be transferred to the saved leave account at the end of the leave year (30 September). We remind you that unused leave of all those taking part in the saved leave scheme at the closure of the leave year accounts is transferred automatically to the saved leave account on that date. Therefore, staff members have no administrative steps to take. In addition, the transfer, which eliminates the risk of omitting to request leave transfers and rules out calculation errors in transfer requests, will be clearly shown in the list of leave transactions that can be consulted in EDH from October 2003 onwards. Furthermore, this automatic leave transfer optimizes staff members' chances of benefiting from a saved leave bonus provided that they ar...
Quantum Secure Communication Scheme with W State
International Nuclear Information System (INIS)
Wang Jian; Zhang Quan; Tang Chaojng
2007-01-01
We present a quantum secure communication scheme using three-qubit W state. It is unnecessary for the present scheme to use alternative measurement or Bell basis measurement. Compared with the quantum secure direct communication scheme proposed by Cao et al. [H.J. Cao and H.S. Song, Chin. Phys. Lett. 23 (2006) 290], in our scheme, the detection probability for an eavesdropper's attack increases from 8.3% to 25%. We also show that our scheme is secure for a noise quantum channel.
Labeling schemes for bounded degree graphs
DEFF Research Database (Denmark)
Adjiashvili, David; Rotbart, Noy Galil
2014-01-01
We investigate adjacency labeling schemes for graphs of bounded degree Δ = O(1). In particular, we present an optimal (up to an additive constant) log n + O(1) adjacency labeling scheme for bounded degree trees. The latter scheme is derived from a labeling scheme for bounded degree outerplanar...... graphs. Our results complement a similar bound recently obtained for bounded depth trees [Fraigniaud and Korman, SODA 2010], and may provide new insights for closing the long standing gap for adjacency in trees [Alstrup and Rauhe, FOCS 2002]. We also provide improved labeling schemes for bounded degree...
Order Reduction in High-Order Runge-Kutta Methods for Initial Boundary Value Problems
Rosales, Rodolfo Ruben; Seibold, Benjamin; Shirokoff, David; Zhou, Dong
2017-01-01
This paper studies the order reduction phenomenon for initial-boundary-value problems that occurs with many Runge-Kutta time-stepping schemes. First, a geometric explanation of the mechanics of the phenomenon is provided: the approximation error develops boundary layers, induced by a mismatch between the approximation error in the interior and at the boundaries. Second, an analysis of the modes of the numerical scheme is conducted, which explains under which circumstances boundary layers pers...
On the integration scheme along a trajectory for the characteristics method
International Nuclear Information System (INIS)
Le Tellier, Romain; Hebert, Alain
2006-01-01
The issue of the integration scheme along a trajectory which appears for all tracking-based transport methods is discussed from the point of view of the method of characteristics. The analogy with the discrete ordinates method in slab geometry is highlighted along with the practical limitation in transposing high-order S N schemes to a trajectory-based method. We derived an example of such a transposition starting from the linear characteristic scheme. This new scheme is compared with the standard flat-source approximation of the step characteristic scheme and with the diamond differencing scheme. The numerical study covers a 1D analytical case, 2D one-group critical and fixed-source benchmarks and finally a realistic multigroup calculation on a BWR-MOX assembly
On usage of CABARET scheme for tracer transport in INM ocean model
International Nuclear Information System (INIS)
Diansky, Nikolay; Kostrykin, Sergey; Gusev, Anatoly; Salnikov, Nikolay
2010-01-01
The contemporary state of ocean numerical modelling sets some requirements for the numerical advection schemes used in ocean general circulation models (OGCMs). The most important requirements are conservation, monotonicity and numerical efficiency including good parallelization properties. Investigation of some advection schemes shows that one of the best schemes satisfying the criteria is CABARET scheme. 3D-modification of the CABARET scheme was used to develop a new transport module (for temperature and salinity) for the Institute of Numerical Mathematics ocean model (INMOM). Testing of this module on some common benchmarks shows a high accuracy in comparison with the second-order advection scheme used in the INMOM. This new module was incorporated in the INMOM and experiments with the modified model showed a better simulation of oceanic circulation than its previous version.
Space-Time Transformation in Flux-form Semi-Lagrangian Schemes
Directory of Open Access Journals (Sweden)
Peter C. Chu Chenwu Fan
2010-01-01
Full Text Available With a finite volume approach, a flux-form semi-Lagrangian (TFSL scheme with space-time transformation was developed to provide stable and accurate algorithm in solving the advection-diffusion equation. Different from the existing flux-form semi-Lagrangian schemes, the temporal integration of the flux from the present to the next time step is transformed into a spatial integration of the flux at the side of a grid cell (space for the present time step using the characteristic-line concept. The TFSL scheme not only keeps the good features of the semi-Lagrangian schemes (no Courant number limitation, but also has higher accuracy (of a second order in both time and space. The capability of the TFSL scheme is demonstrated by the simulation of the equatorial Rossby-soliton propagation. Computational stability and high accuracy makes this scheme useful in ocean modeling, computational fluid dynamics, and numerical weather prediction.
Order Aggressiveness and Order Book Dynamics
Anthony D. Hall; Nikolaus Hautsch
2004-01-01
In this paper, we study the determinants of order aggressiveness and traders' order submission strategy in an open limit order book market. Using order book data from the Australian Stock Exchange, we model traders' aggressiveness in market trading, limit order trading as well as in order cancellations on both sides of the market using a six-dimensional autoregressive intensity model. The information revealed by the open order book plays an important role in explaining the degree of order agg...
Commutators method for boson mapping in the seniority scheme
International Nuclear Information System (INIS)
Bonatsos, D.; Klein, A.; Ching-Teh Li
1984-01-01
A new approximate method for carrying out the boson mapping in the seniority scheme is described, in which the boson expansions of the pair and multipole operators are determined by satisfying the commutation relations for the associated Lie algebra. The method is illustrated for the single-j shell-model algebra SO(2(2j + 1)). The calculation is successively carried out to lowest and to next-higher order, the latter exhibiting the necessity of including g-bosons in the calculation in order to reach algebraic consistency. Agreement with the exact result of Ginocchio for j = 3/2 is established to the order considered. (orig.)
A Secure Trust Establishment Scheme for Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Farruh Ishmanov
2014-01-01
Full Text Available Trust establishment is an important tool to improve cooperation and enhance security in wireless sensor networks. The core of trust establishment is trust estimation. If a trust estimation method is not robust against attack and misbehavior, the trust values produced will be meaningless, and system performance will be degraded. We present a novel trust estimation method that is robust against on-off attacks and persistent malicious behavior. Moreover, in order to aggregate recommendations securely, we propose using a modified one-step M-estimator scheme. The novelty of the proposed scheme arises from combining past misbehavior with current status in a comprehensive way. Specifically, we introduce an aggregated misbehavior component in trust estimation, which assists in detecting an on-off attack and persistent malicious behavior. In order to determine the current status of the node, we employ previous trust values and current measured misbehavior components. These components are combined to obtain a robust trust value. Theoretical analyses and evaluation results show that our scheme performs better than other trust schemes in terms of detecting an on-off attack and persistent misbehavior.
Cryptanalysis of a computer cryptography scheme based on a filter bank
International Nuclear Information System (INIS)
Arroyo, David; Li Chengqing; Li Shujun; Alvarez, Gonzalo
2009-01-01
This paper analyzes the security of a recently-proposed signal encryption scheme based on a filter bank. A very critical weakness of this new signal encryption procedure is exploited in order to successfully recover the associated secret key.
Green Frame Aggregation Scheme for IEEE 802.11n Networks
Alaslani, Maha S.
2015-01-01
In this thesis, a novel Green Frame Aggregation (GFA) scheduling scheme has been proposed and evaluated. GFA optimizes the aggregate size based on channel quality in order to minimize the consumed energy
International Nuclear Information System (INIS)
Shin, J. K.; Choi, Y. D.
1992-01-01
QUICKER scheme has several attractive properties. However, under highly convective conditions, it produces overshoots and possibly some oscillations on each side of steps in the dependent variable when the flow is convected at an angle oblique to the grid line. Fortunately, it is possible to modify the QUICKER scheme using non-linear and linear functional relationship. Details of the development of polynomial upwinding scheme are given in this paper, where it is seen that this non-linear scheme has also third order accuracy. This polynomial upwinding scheme is used as the basis for the SHARPER and SMARTER schemes. Another revised scheme was developed by partial modification of QUICKER scheme using CDS and UPWIND schemes (QUICKUP). These revised schemes are tested at the well known bench mark flows, Two-Dimensional Pure Convection Flows in Oblique-Step, Lid Driven Cavity Flows and Buoyancy Driven Cavity Flows. For remain absolutely monotonic without overshoot and oscillation. QUICKUP scheme is more accurate than any other scheme in their relative accuracy. In high Reynolds number Lid Driven Catity Flow, SMARTER and SHARPER schemes retain lower computational cost than QUICKER and QUICKUP schemes, but computed velocity values in the revised schemes produced less predicted values than QUICKER scheme which is strongly effected by overshoot and undershoot values. Also, in Buoyancy Driven Cavity Flow, SMARTER, SHARPER and QUICKUP schemes give acceptable results. (Author)
Zhou, Ping; Bai, Rongji
2014-01-01
Based on a new stability result of equilibrium point in nonlinear fractional-order systems for fractional-order lying in 1 < q < 2, one adaptive synchronization approach is established. The adaptive synchronization for the fractional-order Lorenz chaotic system with fractional-order 1 < q < 2 is considered. Numerical simulations show the validity and feasibility of the proposed scheme. PMID:25247207
One Adaptive Synchronization Approach for Fractional-Order Chaotic System with Fractional-Order 1
Directory of Open Access Journals (Sweden)
Ping Zhou
2014-01-01
Full Text Available Based on a new stability result of equilibrium point in nonlinear fractional-order systems for fractional-order lying in 1order Lorenz chaotic system with fractional-order 1
scheme.
Electrical injection schemes for nanolasers
DEFF Research Database (Denmark)
Lupi, Alexandra; Chung, Il-Sug; Yvind, Kresten
2013-01-01
The performance of injection schemes among recently demonstrated electrically pumped photonic crystal nanolasers has been investigated numerically. The computation has been carried out at room temperature using a commercial semiconductor simulation software. For the simulations two electrical...... of 3 InGaAsP QWs on an InP substrate has been chosen for the modeling. In the simulations the main focus is on the electrical and optical properties of the nanolasers i.e. electrical resistance, threshold voltage, threshold current and wallplug efficiency. In the current flow evaluation the lowest...... threshold current has been achieved with the lateral electrical injection through the BH; while the lowest resistance has been obtained from the current post structure even though this model shows a higher current threshold because of the lack of carrier confinement. Final scope of the simulations...
Scheme of thinking quantum systems
International Nuclear Information System (INIS)
Yukalov, V I; Sornette, D
2009-01-01
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field
International Nuclear Information System (INIS)
Morch, Stein
2004-01-01
The article asserts that there could be an investment boom for wind, hydro and bio power in a common Norwegian-Swedish market scheme for green certificates. The Swedish authorities are ready, and the Norwegian government is preparing a report to the Norwegian Parliament. What are the ambitions of Norway, and will hydro power be included? A green certificate market common to more countries have never before been established and requires the solution of many challenging problems. In Sweden, certificate support is expected to promote primarily bioenergy, wind power and small-scale hydro power. In Norway there is an evident potential for wind power, and more hydro power can be developed if desired
Pomeranchuk conjecture and symmetry schemes
Energy Technology Data Exchange (ETDEWEB)
Galindo, A.; Morales, A.; Ruegg, H. [Junta de Energia Nuclear, Madrid (Spain); European Organization for Nuclear Research, Geneva (Switzerland); University of Geneva, Geneva (Switzerland)
1963-01-15
Pomeranchuk has conjectured that the cross-sections for charge-exchange processes vanish asymptotically as the energy tends to infinity. (By ''charge'' it is meant any internal quantum number, like electric charge, hypercharge, .. . ). It has been stated by several people that this conjecture implies equalities among the total cross-sections whenever any symmetry scheme is invoked for the strong interactions. But to our knowledge no explicit general proof of this statement has been given so far. We want to give this proof for any compact Lie group. We also prove, under certain assumptions, that the equality of the total cross-sections implies that s{sup -l} times the charge-exchange forward scattering absorptive amplitudes tend to zero as s -> ∞.
Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation
International Nuclear Information System (INIS)
Sha, Wei; Huang, Zhixiang; Wu, Xianliang; Chen, Mingsheng
2007-01-01
An explicit fourth-order finite-difference time-domain (FDTD) scheme using the symplectic integrator is applied to electromagnetic simulation. A feasible numerical implementation of the symplectic FDTD (SFDTD) scheme is specified. In particular, new strategies for the air-dielectric interface treatment and the near-to-far-field (NFF) transformation are presented. By using the SFDTD scheme, both the radiation and the scattering of three-dimensional objects are computed. Furthermore, the energy-conserving characteristic hold for the SFDTD scheme is verified under long-term simulation. Numerical results suggest that the SFDTD scheme is more efficient than the traditional FDTD method and other high-order methods, and can save computational resources
Das, Ashok Kumar
2015-03-01
An integrated EPR (Electronic Patient Record) information system of all the patients provides the medical institutions and the academia with most of the patients' information in details for them to make corrective decisions and clinical decisions in order to maintain and analyze patients' health. In such system, the illegal access must be restricted and the information from theft during transmission over the insecure Internet must be prevented. Lee et al. proposed an efficient password-based remote user authentication scheme using smart card for the integrated EPR information system. Their scheme is very efficient due to usage of one-way hash function and bitwise exclusive-or (XOR) operations. However, in this paper, we show that though their scheme is very efficient, their scheme has three security weaknesses such as (1) it has design flaws in password change phase, (2) it fails to protect privileged insider attack and (3) it lacks the formal security verification. We also find that another recently proposed Wen's scheme has the same security drawbacks as in Lee at al.'s scheme. In order to remedy these security weaknesses found in Lee et al.'s scheme and Wen's scheme, we propose a secure and efficient password-based remote user authentication scheme using smart cards for the integrated EPR information system. We show that our scheme is also efficient as compared to Lee et al.'s scheme and Wen's scheme as our scheme only uses one-way hash function and bitwise exclusive-or (XOR) operations. Through the security analysis, we show that our scheme is secure against possible known attacks. Furthermore, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool and show that our scheme is secure against passive and active attacks.
Matroids and quantum-secret-sharing schemes
International Nuclear Information System (INIS)
Sarvepalli, Pradeep; Raussendorf, Robert
2010-01-01
A secret-sharing scheme is a cryptographic protocol to distribute a secret state in an encoded form among a group of players such that only authorized subsets of the players can reconstruct the secret. Classically, efficient secret-sharing schemes have been shown to be induced by matroids. Furthermore, access structures of such schemes can be characterized by an excluded minor relation. No such relations are known for quantum secret-sharing schemes. In this paper we take the first steps toward a matroidal characterization of quantum-secret-sharing schemes. In addition to providing a new perspective on quantum-secret-sharing schemes, this characterization has important benefits. While previous work has shown how to construct quantum-secret-sharing schemes for general access structures, these schemes are not claimed to be efficient. In this context the present results prove to be useful; they enable us to construct efficient quantum-secret-sharing schemes for many general access structures. More precisely, we show that an identically self-dual matroid that is representable over a finite field induces a pure-state quantum-secret-sharing scheme with information rate 1.
Upwind differencing scheme for the equations of ideal magnetohydrodynamics
International Nuclear Information System (INIS)
Brio, M.; Wu, C.C.
1988-01-01
Recently, upwind differencing schemes have become very popular for solving hyperbolic partial differential equations, especially when discontinuities exist in the solutions. Among many upwind schemes successfully applied to the problems in gas dynamics, Roe's method stands out for its relative simplicity and clarity of the underlying physical model. In this paper, an upwind differencing scheme of Roe-type for the MHD equations is constructed. In each computational cell, the problem is first linearized around some averaged state which preserves the flux differences. Then the solution is advanced in time by computing the wave contributions to the flux at the cell interfaces. One crucial task of the linearization procedure is the construction of a Roe matrix. For the special case γ = 2, a Roe matrix in the form of a mean value Jacobian is found, and for the general case, a simple averaging procedure is introduced. All other necessary ingredients of the construction, which include eigenvalues, and a complete set of right eigenvectors of the Roe matrix and decomposition coefficients are presented. As a numerical example, we chose a coplanar MHD Riemann problem. The problem is solved by the newly constructed second-order upwind scheme as well as by the Lax-Friedrichs, the Lax-Wendroff, and the flux-corrected transport schemes. The results demonstrate several advantages of the upwind scheme. In this paper, we also show that the MHD equations are nonconvex. This is a contrast to the general belief that the fast and slow waves are like sound waves in the Euler equations. As a consequence, the wave structure becomes more complicated; for example, compound waves consisting of a shock and attached to it a rarefaction wave of the same family can exist in MHD. copyright 1988 Academic Press, Inc
How can conceptual schemes change teaching?
Wickman, Per-Olof
2012-03-01
Lundqvist, Almqvist and Östman describe a teacher's manner of teaching and the possible consequences it may have for students' meaning making. In doing this the article examines a teacher's classroom practice by systematizing the teacher's transactions with the students in terms of certain conceptual schemes, namely the epistemological moves, educational philosophies and the selective traditions of this practice. In connection to their study one may ask how conceptual schemes could change teaching. This article examines how the relationship of the conceptual schemes produced by educational researchers to educational praxis has developed from the middle of the last century to today. The relationship is described as having been transformed in three steps: (1) teacher deficit and social engineering, where conceptual schemes are little acknowledged, (2) reflecting practitioners, where conceptual schemes are mangled through teacher practice to aid the choices of already knowledgeable teachers, and (3) the mangling of the conceptual schemes by researchers through practice with the purpose of revising theory.
Splitting Schemes & Segregation In Reaction-(Cross-)Diffusion Systems
Carrillo, José A.; Fagioli, Simone; Santambrogio, Filippo; Schmidtchen, Markus
2017-01-01
One of the most fascinating phenomena observed in reaction-diffusion systems is the emergence of segregated solutions, i.e. population densities with disjoint supports. We analyse such a reaction cross-diffusion system. In order to prove existence of weak solutions for a wide class of initial data without restriction about their supports or their positivity, we propose a variational splitting scheme combining ODEs with methods from optimal transport. In addition, this approach allows us to pr...
Objective judgement by Kalman filtering in the generalized Landsbergian scheme
International Nuclear Information System (INIS)
Lukacs, B.; Racz, A.
1992-08-01
A method is suggested to check if a non-equilibrium thermodynamic description of a system is complete. Exploring Landsberg's idea of the role of third person, a scheme is proposed for treating non-equilibrium systems as well. In order to suppress irrelevant information carried by measurement noise or for very fast phenomena, Kalman filter can act as the objective spectator. The idea is illustrated via a thermodynamic model of non-relativistic heavy ion collisions. (author) 12 refs.; 3 figs
Resonance ionization scheme development for europium
Energy Technology Data Exchange (ETDEWEB)
Chrysalidis, K., E-mail: katerina.chrysalidis@cern.ch; Goodacre, T. Day; Fedosseev, V. N.; Marsh, B. A. [CERN (Switzerland); Naubereit, P. [Johannes Gutenberg-Universität, Institiut für Physik (Germany); Rothe, S.; Seiffert, C. [CERN (Switzerland); Kron, T.; Wendt, K. [Johannes Gutenberg-Universität, Institiut für Physik (Germany)
2017-11-15
Odd-parity autoionizing states of europium have been investigated by resonance ionization spectroscopy via two-step, two-resonance excitations. The aim of this work was to establish ionization schemes specifically suited for europium ion beam production using the ISOLDE Resonance Ionization Laser Ion Source (RILIS). 13 new RILIS-compatible ionization schemes are proposed. The scheme development was the first application of the Photo Ionization Spectroscopy Apparatus (PISA) which has recently been integrated into the RILIS setup.
Secure RAID Schemes for Distributed Storage
Huang, Wentao; Bruck, Jehoshua
2016-01-01
We propose secure RAID, i.e., low-complexity schemes to store information in a distributed manner that is resilient to node failures and resistant to node eavesdropping. We generalize the concept of systematic encoding to secure RAID and show that systematic schemes have significant advantages in the efficiencies of encoding, decoding and random access. For the practical high rate regime, we construct three XOR-based systematic secure RAID schemes with optimal or almost optimal encoding and ...
Auzinger, Winfried; Hofstä tter, Harald; Ketcheson, David I.; Koch, Othmar
2016-01-01
We present a number of new contributions to the topic of constructing efficient higher-order splitting methods for the numerical integration of evolution equations. Particular schemes are constructed via setup and solution of polynomial systems for the splitting coefficients. To this end we use and modify a recent approach for generating these systems for a large class of splittings. In particular, various types of pairs of schemes intended for use in adaptive integrators are constructed.
Auzinger, Winfried
2016-07-28
We present a number of new contributions to the topic of constructing efficient higher-order splitting methods for the numerical integration of evolution equations. Particular schemes are constructed via setup and solution of polynomial systems for the splitting coefficients. To this end we use and modify a recent approach for generating these systems for a large class of splittings. In particular, various types of pairs of schemes intended for use in adaptive integrators are constructed.
Adaptive control and synchronization of a fractional-order chaotic ...
Indian Academy of Sciences (India)
Fractional order; adaptive scheme; control; synchronization. ... College of Physics and Electronics, Hunan Institute of Science and Technology, ... of Information and Communication Engineering, Hunan Institute of Science and Technology, ...
Selecting registration schemes in case of interstitial lung disease follow-up in CT
International Nuclear Information System (INIS)
Vlachopoulos, Georgios; Korfiatis, Panayiotis; Skiadopoulos, Spyros; Kazantzi, Alexandra; Kalogeropoulou, Christina; Pratikakis, Ioannis; Costaridou, Lena
2015-01-01
Purpose: Primary goal of this study is to select optimal registration schemes in the framework of interstitial lung disease (ILD) follow-up analysis in CT. Methods: A set of 128 multiresolution schemes composed of multiresolution nonrigid and combinations of rigid and nonrigid registration schemes are evaluated, utilizing ten artificially warped ILD follow-up volumes, originating from ten clinical volumetric CT scans of ILD affected patients, to select candidate optimal schemes. Specifically, all combinations of four transformation models (three rigid: rigid, similarity, affine and one nonrigid: third order B-spline), four cost functions (sum-of-square distances, normalized correlation coefficient, mutual information, and normalized mutual information), four gradient descent optimizers (standard, regular step, adaptive stochastic, and finite difference), and two types of pyramids (recursive and Gaussian-smoothing) were considered. The selection process involves two stages. The first stage involves identification of schemes with deformation field singularities, according to the determinant of the Jacobian matrix. In the second stage, evaluation methodology is based on distance between corresponding landmark points in both normal lung parenchyma (NLP) and ILD affected regions. Statistical analysis was performed in order to select near optimal registration schemes per evaluation metric. Performance of the candidate registration schemes was verified on a case sample of ten clinical follow-up CT scans to obtain the selected registration schemes. Results: By considering near optimal schemes common to all ranking lists, 16 out of 128 registration schemes were initially selected. These schemes obtained submillimeter registration accuracies in terms of average distance errors 0.18 ± 0.01 mm for NLP and 0.20 ± 0.01 mm for ILD, in case of artificially generated follow-up data. Registration accuracy in terms of average distance error in clinical follow-up data was in the
Selecting registration schemes in case of interstitial lung disease follow-up in CT
Energy Technology Data Exchange (ETDEWEB)
Vlachopoulos, Georgios; Korfiatis, Panayiotis; Skiadopoulos, Spyros; Kazantzi, Alexandra [Department of Medical Physics, School of Medicine,University of Patras, Patras 26504 (Greece); Kalogeropoulou, Christina [Department of Radiology, School of Medicine, University of Patras, Patras 26504 (Greece); Pratikakis, Ioannis [Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi 67100 (Greece); Costaridou, Lena, E-mail: costarid@upatras.gr [Department of Medical Physics, School of Medicine, University of Patras, Patras 26504 (Greece)
2015-08-15
Purpose: Primary goal of this study is to select optimal registration schemes in the framework of interstitial lung disease (ILD) follow-up analysis in CT. Methods: A set of 128 multiresolution schemes composed of multiresolution nonrigid and combinations of rigid and nonrigid registration schemes are evaluated, utilizing ten artificially warped ILD follow-up volumes, originating from ten clinical volumetric CT scans of ILD affected patients, to select candidate optimal schemes. Specifically, all combinations of four transformation models (three rigid: rigid, similarity, affine and one nonrigid: third order B-spline), four cost functions (sum-of-square distances, normalized correlation coefficient, mutual information, and normalized mutual information), four gradient descent optimizers (standard, regular step, adaptive stochastic, and finite difference), and two types of pyramids (recursive and Gaussian-smoothing) were considered. The selection process involves two stages. The first stage involves identification of schemes with deformation field singularities, according to the determinant of the Jacobian matrix. In the second stage, evaluation methodology is based on distance between corresponding landmark points in both normal lung parenchyma (NLP) and ILD affected regions. Statistical analysis was performed in order to select near optimal registration schemes per evaluation metric. Performance of the candidate registration schemes was verified on a case sample of ten clinical follow-up CT scans to obtain the selected registration schemes. Results: By considering near optimal schemes common to all ranking lists, 16 out of 128 registration schemes were initially selected. These schemes obtained submillimeter registration accuracies in terms of average distance errors 0.18 ± 0.01 mm for NLP and 0.20 ± 0.01 mm for ILD, in case of artificially generated follow-up data. Registration accuracy in terms of average distance error in clinical follow-up data was in the
A new access scheme in OFDMA systems
Institute of Scientific and Technical Information of China (English)
GU Xue-lin; YAN Wei; TIAN Hui; ZHANG Ping
2006-01-01
This article presents a dynamic random access scheme for orthogonal frequency division multiple access (OFDMA) systems. The key features of the proposed scheme are:it is a combination of both the distributed and the centralized schemes, it can accommodate several delay sensitivity classes,and it can adjust the number of random access channels in a media access control (MAC) frame and the access probability according to the outcome of Mobile Terminals access attempts in previous MAC frames. For floating populated packet-based networks, the proposed scheme possibly leads to high average user satisfaction.
Quantum signature scheme for known quantum messages
International Nuclear Information System (INIS)
Kim, Taewan; Lee, Hyang-Sook
2015-01-01
When we want to sign a quantum message that we create, we can use arbitrated quantum signature schemes which are possible to sign for not only known quantum messages but also unknown quantum messages. However, since the arbitrated quantum signature schemes need the help of a trusted arbitrator in each verification of the signature, it is known that the schemes are not convenient in practical use. If we consider only known quantum messages such as the above situation, there can exist a quantum signature scheme with more efficient structure. In this paper, we present a new quantum signature scheme for known quantum messages without the help of an arbitrator. Differing from arbitrated quantum signature schemes based on the quantum one-time pad with the symmetric key, since our scheme is based on quantum public-key cryptosystems, the validity of the signature can be verified by a receiver without the help of an arbitrator. Moreover, we show that our scheme provides the functions of quantum message integrity, user authentication and non-repudiation of the origin as in digital signature schemes. (paper)
Generating unstable resonances for extraction schemes based on transverse splitting
Directory of Open Access Journals (Sweden)
M. Giovannozzi
2009-02-01
Full Text Available A few years ago, a novel multiturn extraction scheme was proposed, based on particle trapping inside stable resonances. Numerical simulations and experimental tests have confirmed the feasibility of such a scheme for low order resonances. While the third-order resonance is generically unstable and those higher than fourth order are generically stable, the fourth-order resonance can be either stable or unstable depending on the specifics of the system under consideration. By means of the normal form, a general approach to control the stability of the fourth-order resonance has been derived. This approach is based on the control of the amplitude detuning and the general form for a lattice with an arbitrary number of sextupole and octupole families is derived in this paper. Numerical simulations have confirmed the analytical results and have shown that, when crossing the unstable fourth-order resonance, the region around the center of the phase space is depleted and particles are trapped in only the four stable islands. A four-turn extraction could be designed using this technique.
Generating Unstable Resonances for Extraction Schemes Based on Transverse Splitting
Giovannozzi, M; Turchetti, G
2009-01-01
A few years ago, a novel multi-turn extraction scheme was proposed, based on particle trapping inside stable resonances. Numerical simulations and experimental tests have confirmed the feasibility of such a scheme for low order resonances. While the third-order resonance is generically unstable and those higher than fourth-order are generically stable, the fourth-order resonance can be either stable or unstable depending on the specifics of the system under consideration. By means of the Normal Form a general approach to control the stability of the fourth-order resonance has been derived. This approach is based on the control of the amplitude detuning and the general form for a lattice with an arbitrary number of sextupole and octupole families is derived in this paper. Numerical simulations have confirmed the analytical results and have shown that, when crossing the unstable fourth-order resonance, the region around the centre of the phase space is depleted and particles are trapped in only the four stable ...
Lu, Yanrong; Li, Lixiang; Peng, Haipeng; Yang, Yixian
2015-03-01
The telecare medical information systems (TMISs) enable patients to conveniently enjoy telecare services at home. The protection of patient's privacy is a key issue due to the openness of communication environment. Authentication as a typical approach is adopted to guarantee confidential and authorized interaction between the patient and remote server. In order to achieve the goals, numerous remote authentication schemes based on cryptography have been presented. Recently, Arshad et al. (J Med Syst 38(12): 2014) presented a secure and efficient three-factor authenticated key exchange scheme to remedy the weaknesses of Tan et al.'s scheme (J Med Syst 38(3): 2014). In this paper, we found that once a successful off-line password attack that results in an adversary could impersonate any user of the system in Arshad et al.'s scheme. In order to thwart these security attacks, an enhanced biometric and smart card based remote authentication scheme for TMISs is proposed. In addition, the BAN logic is applied to demonstrate the completeness of the enhanced scheme. Security and performance analyses show that our enhanced scheme satisfies more security properties and less computational cost compared with previously proposed schemes.
Balanced Central Schemes for the Shallow Water Equations on Unstructured Grids
Bryson, Steve; Levy, Doron
2004-01-01
We present a two-dimensional, well-balanced, central-upwind scheme for approximating solutions of the shallow water equations in the presence of a stationary bottom topography on triangular meshes. Our starting point is the recent central scheme of Kurganov and Petrova (KP) for approximating solutions of conservation laws on triangular meshes. In order to extend this scheme from systems of conservation laws to systems of balance laws one has to find an appropriate discretization of the source terms. We first show that for general triangulations there is no discretization of the source terms that corresponds to a well-balanced form of the KP scheme. We then derive a new variant of a central scheme that can be balanced on triangular meshes. We note in passing that it is straightforward to extend the KP scheme to general unstructured conformal meshes. This extension allows us to recover our previous well-balanced scheme on Cartesian grids. We conclude with several simulations, verifying the second-order accuracy of our scheme as well as its well-balanced properties.
Experimental Study on Intelligent Control Scheme for Fan Coil Air-Conditioning System
Directory of Open Access Journals (Sweden)
Yanfeng Li
2013-01-01
Full Text Available An intelligent control scheme for fan coil air-conditioning systems has been put forward in order to overcome the shortcomings of the traditional proportion-integral-derivative (PID control scheme. These shortcomings include the inability of anti-interference and large inertia. An intelligent control test rig of fan coil air-conditioning system has been built, and MATLAB/Simulink dynamics simulation software has been adopted to implement the intelligent control scheme. A software for data exchange has been developed to combine the intelligence control system and the building automation (BA system. Experimental tests have been conducted to investigate the effectiveness of different control schemes including the traditional PID control, fuzzy control, and fuzzy-PID control for fan coil air-conditioning system. The effects of control schemes have been compared and analyzed in robustness, static and dynamic character, and economy. The results have shown that the developed data exchange interface software can induce the intelligent control scheme of the BA system more effectively. Among the proposed control strategies, fuzzy-PID control scheme which has the advantages of both traditional PID and fuzzy schemes is the optimal control scheme for the fan coil air-conditioning system.
A multihop key agreement scheme for wireless ad hoc networks based on channel characteristics.
Hao, Zhuo; Zhong, Sheng; Yu, Nenghai
2013-01-01
A number of key agreement schemes based on wireless channel characteristics have been proposed recently. However, previous key agreement schemes require that two nodes which need to agree on a key are within the communication range of each other. Hence, they are not suitable for multihop wireless networks, in which nodes do not always have direct connections with each other. In this paper, we first propose a basic multihop key agreement scheme for wireless ad hoc networks. The proposed basic scheme is resistant to external eavesdroppers. Nevertheless, this basic scheme is not secure when there exist internal eavesdroppers or Man-in-the-Middle (MITM) adversaries. In order to cope with these adversaries, we propose an improved multihop key agreement scheme. We show that the improved scheme is secure against internal eavesdroppers and MITM adversaries in a single path. Both performance analysis and simulation results demonstrate that the improved scheme is efficient. Consequently, the improved key agreement scheme is suitable for multihop wireless ad hoc networks.
The new Exponential Directional Iterative (EDI) 3-D Sn scheme for parallel adaptive differencing
International Nuclear Information System (INIS)
Sjoden, G.E.
2005-01-01
The new Exponential Directional Iterative (EDI) discrete ordinates (Sn) scheme for 3-D Cartesian Coordinates is presented. The EDI scheme is a logical extension of the positive, efficient Exponential Directional Weighted (EDW) Sn scheme currently used as the third level of the adaptive spatial differencing algorithm in the PENTRAN parallel discrete ordinates solver. Here, the derivation and advantages of the EDI scheme are presented; EDI uses EDW-rendered exponential coefficients as initial starting values to begin a fixed point iteration of the exponential coefficients. One issue that required evaluation was an iterative cutoff criterion to prevent the application of an unstable fixed point iteration; although this was needed in some cases, it was readily treated with a default to EDW. Iterative refinement of the exponential coefficients in EDI typically converged in fewer than four fixed point iterations. Moreover, EDI yielded more accurate angular fluxes compared to the other schemes tested, particularly in streaming conditions. Overall, it was found that the EDI scheme was up to an order of magnitude more accurate than the EDW scheme on a given mesh interval in streaming cases, and is potentially a good candidate as a fourth-level differencing scheme in the PENTRAN adaptive differencing sequence. The 3-D Cartesian computational cost of EDI was only about 20% more than the EDW scheme, and about 40% more than Diamond Zero (DZ). More evaluation and testing are required to determine suitable upgrade metrics for EDI to be fully integrated into the current adaptive spatial differencing sequence in PENTRAN. (author)
Sensor Data Security Level Estimation Scheme for Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Alex Ramos
2015-01-01
Full Text Available Due to their increasing dissemination, wireless sensor networks (WSNs have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE, a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates.
Sensor Data Security Level Estimation Scheme for Wireless Sensor Networks
Ramos, Alex; Filho, Raimir Holanda
2015-01-01
Due to their increasing dissemination, wireless sensor networks (WSNs) have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL) that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE), a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates. PMID:25608215
Global mechanisms for sustaining and enhancing PES schemes
International Nuclear Information System (INIS)
Farley, Josh; Moulaert, Azur; Lee, Dan; Krause, Abby; Aquino, Andre; Daniels, Amy
2010-01-01
An international payment for ecosystem service (IPES) schemes may be one of the only mechanisms available to stimulate the provision of vital non-marketed ecosystem services at the global level, as those nations that benefit from global ecosystem services (GES) cannot readily force other sovereign nations to provide them. Currently, international trade offers trillions of dollars in incentives for countries to convert natural capital into marketable goods and services, and few payments to entice countries to conserve natural capital in order to sustain critical non-marketed ecosystem services. We examine the biophysical characteristics of climate change and biodiversity to understand the obstacles to developing effective IPES schemes. We find that none of the existing schemes for providing GES are adequate, given the scale of the problem. A cap and auction scheme for CO 2 emissions among wealthy nations could fund IPES and simultaneously deter carbon emissions. To disburse funds, we should adapt Brazil's ICMS ecologico, and apportion available funds to targeted countries in proportion to how well they meet specific criteria designed to measure the provision of GES. Individual countries can then develop their own policies for increasing provision of these services, ensured of compensation if they do so. Indirect IPES should include funding for freely available technologies that protect or provide GES, such as the low carbon energy alternatives that will be essential for curbing climate change. Markets rely on the price mechanism to generate profits, which rations technology to those who can afford it, reducing adoption rates, innovation and total value. (author)
Static and dynamic efficiency of white certificate schemes
International Nuclear Information System (INIS)
Giraudet, L.G.; Finon, D.
2011-01-01
White Certificate Schemes mandate energy companies to promote energy efficiency through flexibility mechanisms, including the trading of energy savings. They can be characterized as a quantity-based, baseline-and-credit system for the diffusion of energy efficient technologies. This paper compares experiences with White Certificate Schemes in Great Britain, Italy and France, in order to identify the basic drivers of each, and ultimately offer an original interpretation as an adaptive instrument, in the sense that it can take different forms in response to specific institutional contexts. A first analysis shows that Schemes perform well in terms of static efficiency, i.e. they are cost-effective and generate net social benefits over the period considered, though with large discrepancies rooted in different technological potentials. Regarding dynamic efficiency, i.e. the ability to induce and sustain technological change over the long haul, market transformation occurred in Great Britain, but was poorly incentivized in Italy and France by inadequate compliance cost recovery rules. Substantial organizational change has occurred in every country, mainly by strengthening vertical relationships between obliged parties and upstream businesses. Overall, the obligation (rather than the market component) drives the early phases of the Schemes. (authors)
An adjoint-based scheme for eigenvalue error improvement
International Nuclear Information System (INIS)
Merton, S.R.; Smedley-Stevenson, R.P.; Pain, C.C.; El-Sheikh, A.H.; Buchan, A.G.
2011-01-01
A scheme for improving the accuracy and reducing the error in eigenvalue calculations is presented. Using a rst order Taylor series expansion of both the eigenvalue solution and the residual of the governing equation, an approximation to the error in the eigenvalue is derived. This is done using a convolution of the equation residual and adjoint solution, which is calculated in-line with the primal solution. A defect correction on the solution is then performed in which the approximation to the error is used to apply a correction to the eigenvalue. The method is shown to dramatically improve convergence of the eigenvalue. The equation for the eigenvalue is shown to simplify when certain normalizations are applied to the eigenvector. Two such normalizations are considered; the rst of these is a fission-source type of normalisation and the second is an eigenvector normalisation. Results are demonstrated on a number of demanding elliptic problems using continuous Galerkin weighted nite elements. Moreover, the correction scheme may also be applied to hyperbolic problems and arbitrary discretization. This is not limited to spatial corrections and may be used throughout the phase space of the discrete equation. The applied correction not only improves fidelity of the calculation, it allows assessment of the reliability of numerical schemes to be made and could be used to guide mesh adaption algorithms or to automate mesh generation schemes. (author)
Charge-conserving FEM-PIC schemes on general grids
International Nuclear Information System (INIS)
Campos Pinto, M.; Jund, S.; Salmon, S.; Sonnendruecker, E.
2014-01-01
Particle-In-Cell (PIC) solvers are a major tool for the understanding of the complex behavior of a plasma or a particle beam in many situations. An important issue for electromagnetic PIC solvers, where the fields are computed using Maxwell's equations, is the problem of discrete charge conservation. In this article, we aim at proposing a general mathematical formulation for charge-conserving finite-element Maxwell solvers coupled with particle schemes. In particular, we identify the finite-element continuity equations that must be satisfied by the discrete current sources for several classes of time-domain Vlasov-Maxwell simulations to preserve the Gauss law at each time step, and propose a generic algorithm for computing such consistent sources. Since our results cover a wide range of schemes (namely curl-conforming finite element methods of arbitrary degree, general meshes in two or three dimensions, several classes of time discretization schemes, particles with arbitrary shape factors and piecewise polynomial trajectories of arbitrary degree), we believe that they provide a useful roadmap in the design of high-order charge-conserving FEM-PIC numerical schemes. (authors)
Matching the quasiparton distribution in a momentum subtraction scheme
Stewart, Iain W.; Zhao, Yong
2018-03-01
The quasiparton distribution is a spatial correlation of quarks or gluons along the z direction in a moving nucleon which enables direct lattice calculations of parton distribution functions. It can be defined with a nonperturbative renormalization in a regularization independent momentum subtraction scheme (RI/MOM), which can then be perturbatively related to the collinear parton distribution in the MS ¯ scheme. Here we carry out a direct matching from the RI/MOM scheme for the quasi-PDF to the MS ¯ PDF, determining the non-singlet quark matching coefficient at next-to-leading order in perturbation theory. We find that the RI/MOM matching coefficient is insensitive to the ultraviolet region of convolution integral, exhibits improved perturbative convergence when converting between the quasi-PDF and PDF, and is consistent with a quasi-PDF that vanishes in the unphysical region as the proton momentum Pz→∞ , unlike other schemes. This direct approach therefore has the potential to improve the accuracy for converting quasidistribution lattice calculations to collinear distributions.
Sensor data security level estimation scheme for wireless sensor networks.
Ramos, Alex; Filho, Raimir Holanda
2015-01-19
Due to their increasing dissemination, wireless sensor networks (WSNs) have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL) that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE), a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates.
Rural health prepayment schemes in China: towards a more active role for government.
Bloom, G; Shenglan, T
1999-04-01
A large majority of China's rural population were members of health prepayment schemes in the 1970's. Most of these schemes collapsed during the transition to a market economy. Some localities subsequently reestablished schemes. In early 1997 a new government policy identified health prepayment as a major potential source of rural health finance. This paper draws on the experience of existing schemes to explore how government can support implementation of this policy. The decision to support the establishment of health prepayment schemes is part of the government's effort to establish new sources of finance for social services. It believes that individuals are more likely to accept voluntary contributions to a prepayment scheme than tax increases. The voluntary nature of the contributions limits the possibilities for risk-sharing and redistribution between rich and poor. This underlines the need for the government to fund a substantial share of health expenditure out of general revenues, particularly in poor localities. The paper notes that many successful prepayment schemes depend on close supervision by local political leaders. It argues that the national programme will have to translate these measures into a regulatory system which defines the responsibilities of scheme management bodies and local governments. A number of prepayment schemes have collapsed because members did not feel they got value for money. Local health bureaux will have to cooperate with prepayment schemes to ensure that health facilities provide good quality services at a reasonable cost. Users' representatives can also monitor performance. The paper concludes that government needs to clarify the relationship between health prepayment schemes and other actors in rural localities in order to increase the chance that schemes will become a major source rural health finance.
Innovative ICF scheme-impact fast ignition
International Nuclear Information System (INIS)
Murakami, M.; Nagatomo, H.; Sakaiya, T.; Karasik, M.; Gardner, J.; Bates, J.
2007-01-01
A totally new ignition scheme for ICF, impact fast ignition (IFI), is proposed [1], in which the compressed DT main fuel is to be ignited by impact collision of another fraction of separately imploded DT fuel, which is accelerated in the hollow conical target. Two-dimensional hydrodynamic simulation results in full geometry are presented, in which some key physical parameters for the impact shell dynamics such as 10 8 cm/s of the implosion velocity, 200- 300 g/cm 3 of the compressed density, and the converted temperature beyond 5 keV are demonstrated. As the first step toward the proof-of-principle of IFI, we have conducted preliminary experiments under the operation of GEKKO XII/HYPER laser system to achieve a hyper-velocity of the order of 108 cm/s. As a result we have observed a highest velocity, 6.5 x 10 7 cm/s, ever achieved. Furthermore, we have also done the first integrated experiments using the target and observed substantial amount of neutron yields. Reference: [1] M. Murakami and Nagatomo, Nucl. Instrum. Meth. Phys. Res. A 544(2005) 67
Date Attachable Offline Electronic Cash Scheme
Directory of Open Access Journals (Sweden)
Chun-I Fan
2014-01-01
Full Text Available Electronic cash (e-cash is definitely one of the most popular research topics in the e-commerce field. It is very important that e-cash be able to hold the anonymity and accuracy in order to preserve the privacy and rights of customers. There are two types of e-cash in general, which are online e-cash and offline e-cash. Both systems have their own pros and cons and they can be used to construct various applications. In this paper, we pioneer to propose a provably secure and efficient offline e-cash scheme with date attachability based on the blind signature technique, where expiration date and deposit date can be embedded in an e-cash simultaneously. With the help of expiration date, the bank can manage the huge database much more easily against unlimited growth, and the deposit date cannot be forged so that users are able to calculate the amount of interests they can receive in the future correctly. Furthermore, we offer security analysis and formal proofs for all essential properties of offline e-cash, which are anonymity control, unforgeability, conditional-traceability, and no-swindling.
Date attachable offline electronic cash scheme.
Fan, Chun-I; Sun, Wei-Zhe; Hau, Hoi-Tung
2014-01-01
Electronic cash (e-cash) is definitely one of the most popular research topics in the e-commerce field. It is very important that e-cash be able to hold the anonymity and accuracy in order to preserve the privacy and rights of customers. There are two types of e-cash in general, which are online e-cash and offline e-cash. Both systems have their own pros and cons and they can be used to construct various applications. In this paper, we pioneer to propose a provably secure and efficient offline e-cash scheme with date attachability based on the blind signature technique, where expiration date and deposit date can be embedded in an e-cash simultaneously. With the help of expiration date, the bank can manage the huge database much more easily against unlimited growth, and the deposit date cannot be forged so that users are able to calculate the amount of interests they can receive in the future correctly. Furthermore, we offer security analysis and formal proofs for all essential properties of offline e-cash, which are anonymity control, unforgeability, conditional-traceability, and no-swindling.
Date Attachable Offline Electronic Cash Scheme
Sun, Wei-Zhe; Hau, Hoi-Tung
2014-01-01
Electronic cash (e-cash) is definitely one of the most popular research topics in the e-commerce field. It is very important that e-cash be able to hold the anonymity and accuracy in order to preserve the privacy and rights of customers. There are two types of e-cash in general, which are online e-cash and offline e-cash. Both systems have their own pros and cons and they can be used to construct various applications. In this paper, we pioneer to propose a provably secure and efficient offline e-cash scheme with date attachability based on the blind signature technique, where expiration date and deposit date can be embedded in an e-cash simultaneously. With the help of expiration date, the bank can manage the huge database much more easily against unlimited growth, and the deposit date cannot be forged so that users are able to calculate the amount of interests they can receive in the future correctly. Furthermore, we offer security analysis and formal proofs for all essential properties of offline e-cash, which are anonymity control, unforgeability, conditional-traceability, and no-swindling. PMID:24982931
[Occlusal schemes of complete dentures--a review of the literature].
Tarazi, E; Ticotsky-Zadok, N
2007-01-01
Occlusal scheme is defined as the form and the arrangement of the occlusal contacts in natural and artificial dentition. The choice of an occlusal scheme will determine the pattern of occlusal contacts between opposing teeth during centric relation and functional movement of the mandible. With dentures, the quantity and the intensity of these contacts determine the amount and the direction of the forces that are transmitted through the bases of the denture to the residual ridges. That is why the occlusal scheme is an important factor in the design of complete dentures. Three occlusal schemes are viewed in this review: bilateral balanced occlusion, monplane occlusion, and linear occlusion scheme. Each scheme represents a different concept of occlusion. Comparisons between these schemes are also reviewed and analyzed. The reasoning underlying the bilateral balanced occlusion scheme is that stability of the dentures is attained when bilateral contacts exist throughout all dynamic and static states of the denture during function. Anatomic teeth are used: the upper anterior teeth are set to satisfy aesthetics, and the posterior teeth are arranged in a compensatory curve and a medial curve. This scheme is adequate for well developed residual ridges, with skeletal class I relation. With highly resorbed residual ridges, the vectors of force that are transmitted through anatomic cusps will dislodge the lower denture and thus impair the comfort and efficiency of mastication experienced by the patient. In order to accommodate to the special needs posed by highly resorbed residual ridges and skeletal relations that are not class I, the monoplane scheme of occlusion was designed. This scheme consists of non anatomic (cuspless) teeth, which are set so that the anterior teeth provide the aesthetics, the premolars and the first molars are used for chewing, and the second molars do not occlude (although sometimes they are specifically used to establish bilateral contacts in lateral
Anonymous Credential Schemes with Encrypted Attributes
Guajardo Merchan, J.; Mennink, B.; Schoenmakers, B.
2011-01-01
In anonymous credential schemes, users obtain credentials on certain attributes from an issuer, and later show these credentials to a relying party anonymously and without fully disclosing the attributes. In this paper, we introduce the notion of (anonymous) credential schemes with encrypted
Community healthcare financing scheme: findings among residents ...
African Journals Online (AJOL)
... none were active participants as 2(0.6%) were indifferent. There was a statistically significant relationship, Fischers <0.0001 between sex and the scheme's knowledge. Conclusion: Knowledge of the scheme was poor among majority of the respondents and none were active participants. Bribery and corruption was the ...
Improved Load Shedding Scheme considering Distributed Generation
DEFF Research Database (Denmark)
Das, Kaushik; Nitsas, Antonios; Altin, Müfit
2017-01-01
With high penetration of distributed generation (DG), the conventional under-frequency load shedding (UFLS) face many challenges and may not perform as expected. This article proposes new UFLS schemes, which are designed to overcome the shortcomings of traditional load shedding scheme...
A generalized scheme for designing multistable continuous ...
Indian Academy of Sciences (India)
In this paper, a generalized scheme is proposed for designing multistable continuous dynamical systems. The scheme is based on the concept of partial synchronization of states and the concept of constants of motion. The most important observation is that by coupling two mdimensional dynamical systems, multistable ...
Consolidation of the health insurance scheme
Association du personnel
2009-01-01
In the last issue of Echo, we highlighted CERN’s obligation to guarantee a social security scheme for all employees, pensioners and their families. In that issue we talked about the first component: pensions. This time we shall discuss the other component: the CERN Health Insurance Scheme (CHIS).
A hierarchical classification scheme of psoriasis images
DEFF Research Database (Denmark)
Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær
2003-01-01
A two-stage hierarchical classification scheme of psoriasis lesion images is proposed. These images are basically composed of three classes: normal skin, lesion and background. The scheme combines conventional tools to separate the skin from the background in the first stage, and the lesion from...
Privacy Preserving Mapping Schemes Supporting Comparison
Tang, Qiang
2010-01-01
To cater to the privacy requirements in cloud computing, we introduce a new primitive, namely Privacy Preserving Mapping (PPM) schemes supporting comparison. An PPM scheme enables a user to map data items into images in such a way that, with a set of images, any entity can determine the <, =, >
Mixed ultrasoft/norm-conserved pseudopotential scheme
DEFF Research Database (Denmark)
Stokbro, Kurt
1996-01-01
A variant of the Vanderbilt ultrasoft pseudopotential scheme, where the norm conservation is released for only one or a few angular channels, is presented. Within this scheme some difficulties of the truly ultrasoft pseudopotentials are overcome without sacrificing the pseudopotential softness. (...
Arshad, Hamed; Teymoori, Vahid; Nikooghadam, Morteza; Abbassi, Hassan
2015-08-01
Telecare medicine information systems (TMISs) aim to deliver appropriate healthcare services in an efficient and secure manner to patients. A secure mechanism for authentication and key agreement is required to provide proper security in these systems. Recently, Bin Muhaya demonstrated some security weaknesses of Zhu's authentication and key agreement scheme and proposed a security enhanced authentication and key agreement scheme for TMISs. However, we show that Bin Muhaya's scheme is vulnerable to off-line password guessing attacks and does not provide perfect forward secrecy. Furthermore, in order to overcome the mentioned weaknesses, we propose a new two-factor anonymous authentication and key agreement scheme using the elliptic curve cryptosystem. Security and performance analyses demonstrate that the proposed scheme not only overcomes the weaknesses of Bin Muhaya's scheme, but also is about 2.73 times faster than Bin Muhaya's scheme.
Labelling schemes: From a consumer perspective
DEFF Research Database (Denmark)
Juhl, Hans Jørn; Stacey, Julia
2000-01-01
Labelling of food products attracts a lot of political attention these days. As a result of a number of food scandals, most European countries have acknowledged the need for more information and better protection of consumers. Labelling schemes are one way of informing and guiding consumers....... However, initiatives in relation to labelling schemes seldom take their point of departure in consumers' needs and expectations; and in many cases, the schemes are defined by the institutions guaranteeing the label. It is therefore interesting to study how consumers actually value labelling schemes....... A recent MAPP study has investigated the value consumers attach the Government-controlled labels 'Ø-mærket' and 'Den Blå Lup' and the private supermarket label 'Mesterhakket' when they purchase minced meat. The results reveal four consumer segments that use labelling schemes for food products very...
Birkhoffian Symplectic Scheme for a Quantum System
International Nuclear Information System (INIS)
Su Hongling
2010-01-01
In this paper, a classical system of ordinary differential equations is built to describe a kind of n-dimensional quantum systems. The absorption spectrum and the density of the states for the system are defined from the points of quantum view and classical view. From the Birkhoffian form of the equations, a Birkhoffian symplectic scheme is derived for solving n-dimensional equations by using the generating function method. Besides the Birkhoffian structure-preserving, the new scheme is proven to preserve the discrete local energy conservation law of the system with zero vector f. Some numerical experiments for a 3-dimensional example show that the new scheme can simulate the general Birkhoffian system better than the implicit midpoint scheme, which is well known to be symplectic scheme for Hamiltonian system. (general)
Autonomous droop scheme with reduced generation cost
DEFF Research Database (Denmark)
Nutkani, Inam Ullah; Loh, Poh Chiang; Blaabjerg, Frede
2013-01-01
Droop scheme has been widely applied to the control of Distributed Generators (DGs) in microgrids for proportional power sharing based on their ratings. For standalone microgrid, where centralized management system is not viable, the proportional power sharing based droop might not suit well since...... DGs are usually of different types unlike synchronous generators. This paper presents an autonomous droop scheme that takes into consideration the operating cost, efficiency and emission penalty of each DG since all these factors directly or indirectly contributes to the Total Generation Cost (TGC......) of the overall microgrid. Comparing it with the traditional scheme, the proposed scheme has retained its simplicity, which certainly is a feature preferred by the industry. The overall performance of the proposed scheme has been verified through simulation and experiment....
International Nuclear Information System (INIS)
Bhunia, C.T.
2007-07-01
Packet combining scheme is a well defined simple error correction scheme for the detection and correction of errors at the receiver. Although it permits a higher throughput when compared to other basic ARQ protocols, packet combining (PC) scheme fails to correct errors when errors occur in the same bit locations of copies. In a previous work, a scheme known as Packet Reversed Packet Combining (PRPC) Scheme that will correct errors which occur at the same bit location of erroneous copies, was studied however PRPC does not handle a situation where a packet has more than 1 error bit. The Modified Packet Combining (MPC) Scheme that can correct double or higher bit errors was studied elsewhere. Both PRPC and MPC schemes are believed to offer higher throughput in previous studies, however neither adequate investigation nor exact analysis was done to substantiate this claim of higher throughput. In this work, an exact analysis of both PRPC and MPC is carried out and the results reported. A combined protocol (PRPC and MPC) is proposed and the analysis shows that it is capable of offering even higher throughput and better error correction capability at high bit error rate (BER) and larger packet size. (author)
Arshad, Hamed; Nikooghadam, Morteza
2014-12-01
Nowadays, with comprehensive employment of the internet, healthcare delivery services is provided remotely by telecare medicine information systems (TMISs). A secure mechanism for authentication and key agreement is one of the most important security requirements for TMISs. Recently, Tan proposed a user anonymity preserving three-factor authentication scheme for TMIS. The present paper shows that Tan's scheme is vulnerable to replay attacks and Denial-of-Service attacks. In order to overcome these security flaws, a new and efficient three-factor anonymous authentication and key agreement scheme for TMIS is proposed. Security and performance analysis shows superiority of the proposed scheme in comparison with previously proposed schemes that are related to security of TMISs.
Directory of Open Access Journals (Sweden)
Anescu George
2016-12-01
Full Text Available The paper presents the experimental results of some tests conducted with the purpose to gradually and cumulatively improve the classical DE scheme in both efficiency and success rate. The modifications consisted in the randomization of the scaling factor (a simple jitter scheme, a more efficient Random Greedy Selection scheme, an adaptive scheme for the crossover probability and a resetting mechanism for the agents. After each modification step, experiments have been conducted on a set of 11 scalable, multimodal, continuous optimization functions in order to analyze the improvements and decide the new improvement direction. Finally, only the initial classical scheme and the constructed Fast Self-Adaptive DE (FSA-DE variant were compared with the purpose of testing their performance degradation with the increase of the search space dimension. The experimental results demonstrated the superiority of the proposed FSA-DE variant.
El-Amin, Mohamed
2012-01-01
The problem of coupled structural deformation with two-phase flow in porous media is solved numerically using cellcentered finite difference (CCFD) method. In order to solve the system of governed partial differential equations, the implicit pressure explicit saturation (IMPES) scheme that governs flow equations is combined with the the implicit displacement scheme. The combined scheme may be called IMplicit Pressure-Displacement Explicit Saturation (IMPDES). The pressure distribution for each cell along the entire domain is given by the implicit difference equation. Also, the deformation equations are discretized implicitly. Using the obtained pressure, velocity is evaluated explicitly, while, using the upwind scheme, the saturation is obtained explicitly. Moreover, the stability analysis of the present scheme has been introduced and the stability condition is determined.
Reassessment of MLST schemes for Leptospira spp. typing worldwide.
Varni, Vanina; Ruybal, Paula; Lauthier, Juan José; Tomasini, Nicolás; Brihuega, Bibiana; Koval, Ariel; Caimi, Karina
2014-03-01
Leptospirosis is a neglected zoonosis of global importance. Several multilocus sequence typing (MLST) methods have been developed for Leptospira spp., the causative agent of leptospirosis. In this study we reassessed the most commonly used MLST schemes in a set of worldwide isolates, in order to select the loci that achieve the maximum power of discrimination for typing Leptospira spp. Global eBURST algorithm was used to detect clonal complexes among STs and phylogenetic relationships among concatenated and individual sequences were inferred through maximum likelihood (ML) analysis. The evaluation of 12 loci combined to type a subset of strains rendered 57 different STs. Seven of these loci were selected into a final scheme upon studying the number of alleles and polymorphisms, the typing efficiency, the discriminatory power and the ratio dN/dS per nucleotide site for each locus. This new 7-locus scheme was applied to a wider collection of worldwide strains. The ML tree constructed from concatenated sequences of the 7 loci identified 6 major clusters corresponding to 6 Leptospira species. Global eBURST established 8 CCs, which showed that genotypes were clearly related by geographic origin and host. ST52 and ST47, represented mostly by Argentinian isolates, grouped the higher number of isolates. These isolates were serotyped as serogroups Pomona and Icterohaemorrhagiae, showing a unidirectional correlation in which the isolates with the same ST belong to the same serogroup. In summary, this scheme combines the best loci from the most widely used MLST schemes for Leptospira spp. and supports worldwide strains classification. The Argentinian isolates exhibited congruence between allelic profile and serogroup, providing an alternative to serological methods. Published by Elsevier B.V.
Multiobjective hyper heuristic scheme for system design and optimization
Rafique, Amer Farhan
2012-11-01
As system design is becoming more and more multifaceted, integrated, and complex, the traditional single objective optimization trends of optimal design are becoming less and less efficient and effective. Single objective optimization methods present a unique optimal solution whereas multiobjective methods present pareto front. The foremost intent is to predict a reasonable distributed pareto-optimal solution set independent of the problem instance through multiobjective scheme. Other objective of application of intended approach is to improve the worthiness of outputs of the complex engineering system design process at the conceptual design phase. The process is automated in order to provide the system designer with the leverage of the possibility of studying and analyzing a large multiple of possible solutions in a short time. This article presents Multiobjective Hyper Heuristic Optimization Scheme based on low level meta-heuristics developed for the application in engineering system design. Herein, we present a stochastic function to manage meta-heuristics (low-level) to augment surety of global optimum solution. Generic Algorithm, Simulated Annealing and Swarm Intelligence are used as low-level meta-heuristics in this study. Performance of the proposed scheme is investigated through a comprehensive empirical analysis yielding acceptable results. One of the primary motives for performing multiobjective optimization is that the current engineering systems require simultaneous optimization of conflicting and multiple. Random decision making makes the implementation of this scheme attractive and easy. Injecting feasible solutions significantly alters the search direction and also adds diversity of population resulting in accomplishment of pre-defined goals set in the proposed scheme.
Scheme-scale ambiguity in analysis of QCD observable
International Nuclear Information System (INIS)
Mirjalili, A.; Kniehl, B.A.
2010-01-01
The scheme-scale ambiguity that has plagued perturbative analysis in QCD remains on obstacle to making precise tests of the theory. Many attempts have been done to resolve the scale ambiguity. In this regard the BLM, EC, PMS and CORGI approaches are more distinct. We try to employ these methods to fix the scale ambiguity at NLO, NNLO and even in more higher order approximations. By optimizing the renormalization scale, there will be a possibility to predicate higher order terms. We present general results for predicted terms at any order, using different optimization methods. Some observable as specific examples will be used to indicate the validity of scale fixing to predicate the higher order terms. (authors)
International Nuclear Information System (INIS)
Shi Run-Hua; Huang Liu-Sheng; Yang Wei; Zhong Hong
2011-01-01
We present a novel quantum secret sharing scheme of secure direct communication and analyze its security. This scheme takes Einstein—Podolsky—Rosen (EPR) pairs in Bell states as quantum resources. In order to obtain the direct communication message, all agents only need to perform Bell measurements, not to perform any local unitary operation. The total efficiency in this scheme approaches 100% as the classical information exchanged is unnecessary except for the eavesdropping checks. (general)
Havasi, Ágnes; Kazemi, Ehsan
2018-04-01
In the modeling of wave propagation phenomena it is necessary to use time integration methods which are not only sufficiently accurate, but also properly describe the amplitude and phase of the propagating waves. It is not clear if amending the developed schemes by extrapolation methods to obtain a high order of accuracy preserves the qualitative properties of these schemes in the perspective of dissipation, dispersion and stability analysis. It is illustrated that the combination of various optimized schemes with Richardson extrapolation is not optimal for minimal dissipation and dispersion errors. Optimized third-order and fourth-order methods are obtained, and it is shown that the proposed methods combined with Richardson extrapolation result in fourth and fifth orders of accuracy correspondingly, while preserving optimality and stability. The numerical applications include the linear wave equation, a stiff system of reaction-diffusion equations and the nonlinear Euler equations with oscillatory initial conditions. It is demonstrated that the extrapolated third-order scheme outperforms the recently developed fourth-order diagonally implicit Runge-Kutta scheme in terms of accuracy and stability.
Analog implementation of an integral resonant control scheme
International Nuclear Information System (INIS)
Pereira, E; Moheimani, S O R; Aphale, S S
2008-01-01
Integral resonant control (IRC) has been introduced as a high performance controller design methodology for flexible structures with collocated actuator–sensor pairs. IRC has a simple structure and is capable of achieving significant damping, over several modes, while guaranteeing closed-loop stability of the system in the presence of unmodeled out-of-bandwidth dynamics. IRC can be an ideal controller for various industrial damping applications, if packaged in a simple easy-to-implement electronic module. This work proposes an analog implementation of the IRC scheme using a single Op-Amp circuit. The objective is to show that with simple analog realization of the modified IRC scheme, it is possible to damp a large number of vibration modes. A brief discussion about the modeling, circuit considerations, implementation and experimental results is presented in order to validate the usefulness and practicality of the proposed analog IRC implementation. (technical note)
Green frame aggregation scheme for Wi-Fi networks
Alaslani, Maha S.
2015-07-01
Frame aggregation is a major enhancement in the IEEE 802.11 family to boost the network performance. The increasing awareness about energy efficiency motivates the re-think of frame aggregation design. In this paper, we propose a novel Green Frame Aggregation (GFA) scheduling scheme that optimizes the aggregate size based on channel quality in order to minimize the consumed energy. GFA selects an optimal sub-frame size that satisfies the loss constraint for real-time applications as well as the energy budget of the ideal channel. This scheme is implemented and evaluated using a testbed deployment. The experimental analysis shows that GFA outperforms the conventional frame aggregation methodology in terms of energy efficiency by about 6x in the presence of severe interference conditions. Moreover, GFA outperforms the static frame sizing method in terms of network goodput while maintaining the same end-to-end latency.
Semantic HyperMultimedia Adaptation Schemes and Applications
Bieliková, Mária; Mylonas, Phivos; Tsapatsoulis, Nicolas
2013-01-01
Nowadays, more and more users are witnessing the impact of Hypermedia/Multimedia as well as the penetration of social applications in their life. Parallel to the evolution of the Internet and Web, several Hypermedia/Multimedia schemes and technologies bring semantic-based intelligent, personalized and adaptive services to the end users. More and more techniques are applied in media systems in order to be user/group-centric, adapting to different content and context features of a single or a community user. In respect to all the above, researchers need to explore and study the plethora of challenges that emergent personalisation and adaptation technologies bring to the new era. This edited volume aims to increase the awareness of researchers in this area. All contributions provide an in-depth investigation on research and deployment issues, regarding already introduced schemes and applications in Semantic Hyper/Multimedia and Social Media Adaptation. Moreover, the authors provide survey-based articles, so as p...
Taylor-Lagrange regularization scheme and light-front dynamics
International Nuclear Information System (INIS)
Grange, P.; Mathiot, J.-F.; Mutet, B.; Werner, E.
2010-01-01
The recently proposed renormalization scheme based on the definition of field operators as operator valued distributions acting on specific test functions is shown to be very convenient in explicit calculations of physical observables within the framework of light-front dynamics. We first recall the main properties of this procedure based on identities relating the test functions to their Taylor remainder of any order expressed in terms of Lagrange's formulae, hence the name given to this scheme. We thus show how it naturally applies to the calculation of state vectors of physical systems in the covariant formulation of light-front dynamics. As an example, we consider the case of the Yukawa model in the simple two-body Fock state truncation.
Development of knowledgebase system for assisting signal validation scheme design
International Nuclear Information System (INIS)
Kitamura, M.; Baba, T.; Washio, T.; Sugiyama, K.
1987-01-01
The purpose of this study is to develop a knowledgebase system to be used as a tool for designing signal validation schemes. The outputs from the signal validation scheme can be used as; (1) auxiliary signals for detecting sensor failures, (2) inputs to advanced instrumentation such as disturbance analysis and diagnosis system or safety parameter display system, and (3) inputs to digital control systems. Conventional signal validation techniques such as comparison of redundant sensors, limit checking, and calibration tests have been employed in nuclear power plants. However, these techniques have serious drawbacks, e.g. needs for extra sensors, vulnerability to common mode failures, limited applicability to continuous monitoring, etc. To alleviate these difficulties, a new signal validation technique has been developed by using the methods called analytic redundancy and parity space. Although the new technique has been proved feasible as far as preliminary tests are concerned, further developments should be made in order to enhance its practical applicability
Adaptive nonseparable vector lifting scheme for digital holographic data compression.
Xing, Yafei; Kaaniche, Mounir; Pesquet-Popescu, Béatrice; Dufaux, Frédéric
2015-01-01
Holographic data play a crucial role in recent three-dimensional imaging as well as microscopic applications. As a result, huge amounts of storage capacity will be involved for this kind of data. Therefore, it becomes necessary to develop efficient hologram compression schemes for storage and transmission purposes. In this paper, we focus on the shifted distance information, obtained by the phase-shifting algorithm, where two sets of difference data need to be encoded. More precisely, a nonseparable vector lifting scheme is investigated in order to exploit the two-dimensional characteristics of the holographic contents. Simulations performed on different digital holograms have shown the effectiveness of the proposed method in terms of bitrate saving and quality of object reconstruction.
A Transactional Asynchronous Replication Scheme for Mobile Database Systems
Institute of Scientific and Technical Information of China (English)
丁治明; 孟小峰; 王珊
2002-01-01
In mobile database systems, mobility of users has a significant impact on data replication. As a result, the various replica control protocols that exist today in traditional distributed and multidatabase environments are no longer suitable. To solve this problem, a new mobile database replication scheme, the Transaction-Level Result-Set Propagation (TLRSP)model, is put forward in this paper. The conflict detection and resolution strategy based on TLRSP is discussed in detail, and the implementation algorithm is proposed. In order to compare the performance of the TLRSP model with that of other mobile replication schemes, we have developed a detailed simulation model. Experimental results show that the TLRSP model provides an efficient support for replicated mobile database systems by reducing reprocessing overhead and maintaining database consistency.
A fast and accurate dihedral interpolation loop subdivision scheme
Shi, Zhuo; An, Yalei; Wang, Zhongshuai; Yu, Ke; Zhong, Si; Lan, Rushi; Luo, Xiaonan
2018-04-01
In this paper, we propose a fast and accurate dihedral interpolation Loop subdivision scheme for subdivision surfaces based on triangular meshes. In order to solve the problem of surface shrinkage, we keep the limit condition unchanged, which is important. Extraordinary vertices are handled using modified Butterfly rules. Subdivision schemes are computationally costly as the number of faces grows exponentially at higher levels of subdivision. To address this problem, our approach is to use local surface information to adaptively refine the model. This is achieved simply by changing the threshold value of the dihedral angle parameter, i.e., the angle between the normals of a triangular face and its adjacent faces. We then demonstrate the effectiveness of the proposed method for various 3D graphic triangular meshes, and extensive experimental results show that it can match or exceed the expected results at lower computational cost.
Zwanenburg, Philip; Nadarajah, Siva
2016-02-01
The aim of this paper is to demonstrate the equivalence between filtered Discontinuous Galerkin (DG) schemes and the Energy Stable Flux Reconstruction (ESFR) schemes, expanding on previous demonstrations in 1D [1] and for straight-sided elements in 3D [2]. We first derive the DG and ESFR schemes in strong form and compare the respective flux penalization terms while highlighting the implications of the fundamental assumptions for stability in the ESFR formulations, notably that all ESFR scheme correction fields can be interpreted as modally filtered DG correction fields. We present the result in the general context of all higher dimensional curvilinear element formulations. Through a demonstration that there exists a weak form of the ESFR schemes which is both discretely and analytically equivalent to the strong form, we then extend the results obtained for the strong formulations to demonstrate that ESFR schemes can be interpreted as a DG scheme in weak form where discontinuous edge flux is substituted for numerical edge flux correction. Theoretical derivations are then verified with numerical results obtained from a 2D Euler testcase with curved boundaries. Given the current choice of high-order DG-type schemes and the question as to which might be best to use for a specific application, the main significance of this work is the bridge that it provides between them. Clearly outlining the similarities between the schemes results in the important conclusion that it is always less efficient to use ESFR schemes, as opposed to the weak DG scheme, when solving problems implicitly.
Symmetric weak ternary quantum homomorphic encryption schemes
Wang, Yuqi; She, Kun; Luo, Qingbin; Yang, Fan; Zhao, Chao
2016-03-01
Based on a ternary quantum logic circuit, four symmetric weak ternary quantum homomorphic encryption (QHE) schemes were proposed. First, for a one-qutrit rotation gate, a QHE scheme was constructed. Second, in view of the synthesis of a general 3 × 3 unitary transformation, another one-qutrit QHE scheme was proposed. Third, according to the one-qutrit scheme, the two-qutrit QHE scheme about generalized controlled X (GCX(m,n)) gate was constructed and further generalized to the n-qutrit unitary matrix case. Finally, the security of these schemes was analyzed in two respects. It can be concluded that the attacker can correctly guess the encryption key with a maximum probability pk = 1/33n, thus it can better protect the privacy of users’ data. Moreover, these schemes can be well integrated into the future quantum remote server architecture, and thus the computational security of the users’ private quantum information can be well protected in a distributed computing environment.
Ponzi scheme diffusion in complex networks
Zhu, Anding; Fu, Peihua; Zhang, Qinghe; Chen, Zhenyue
2017-08-01
Ponzi schemes taking the form of Internet-based financial schemes have been negatively affecting China's economy for the last two years. Because there is currently a lack of modeling research on Ponzi scheme diffusion within social networks yet, we develop a potential-investor-divestor (PID) model to investigate the diffusion dynamics of Ponzi scheme in both homogeneous and inhomogeneous networks. Our simulation study of artificial and real Facebook social networks shows that the structure of investor networks does indeed affect the characteristics of dynamics. Both the average degree of distribution and the power-law degree of distribution will reduce the spreading critical threshold and will speed up the rate of diffusion. A high speed of diffusion is the key to alleviating the interest burden and improving the financial outcomes for the Ponzi scheme operator. The zero-crossing point of fund flux function we introduce proves to be a feasible index for reflecting the fast-worsening situation of fiscal instability and predicting the forthcoming collapse. The faster the scheme diffuses, the higher a peak it will reach and the sooner it will collapse. We should keep a vigilant eye on the harm of Ponzi scheme diffusion through modern social networks.
Optimal Face-Iris Multimodal Fusion Scheme
Directory of Open Access Journals (Sweden)
Omid Sharifi
2016-06-01
Full Text Available Multimodal biometric systems are considered a way to minimize the limitations raised by single traits. This paper proposes new schemes based on score level, feature level and decision level fusion to efficiently fuse face and iris modalities. Log-Gabor transformation is applied as the feature extraction method on face and iris modalities. At each level of fusion, different schemes are proposed to improve the recognition performance and, finally, a combination of schemes at different fusion levels constructs an optimized and robust scheme. In this study, CASIA Iris Distance database is used to examine the robustness of all unimodal and multimodal schemes. In addition, Backtracking Search Algorithm (BSA, a novel population-based iterative evolutionary algorithm, is applied to improve the recognition accuracy of schemes by reducing the number of features and selecting the optimized weights for feature level and score level fusion, respectively. Experimental results on verification rates demonstrate a significant improvement of proposed fusion schemes over unimodal and multimodal fusion methods.
The generalized scheme-independent Crewther relation in QCD
Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; Brodsky, Stanley J.
2017-07-01
The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton-nucleon scattering times the Adler function, defined from the cross section for electron-positron annihilation into hadrons, has no pQCD radiative corrections. The ;Generalized Crewther Relation; relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (Dns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (CBjp) at leading twist. A scheme-dependent ΔCSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both Dns and the inverse coefficient CBjp-1 have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, αˆd (Q) =∑i≥1 αˆg1 i (Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Similar
An assessment of unstructured grid finite volume schemes for cold gas hypersonic flow calculations
Directory of Open Access Journals (Sweden)
João Luiz F. Azevedo
2009-06-01
Full Text Available A comparison of five different spatial discretization schemes is performed considering a typical high speed flow application. Flowfields are simulated using the 2-D Euler equations, discretized in a cell-centered finite volume procedure on unstructured triangular meshes. The algorithms studied include a central difference-type scheme, and 1st- and 2nd-order van Leer and Liou flux-vector splitting schemes. These methods are implemented in an efficient, edge-based, unstructured grid procedure which allows for adaptive mesh refinement based on flow property gradients. Details of the unstructured grid implementation of the methods are presented together with a discussion of the data structure and of the adaptive refinement strategy. The application of interest is the cold gas flow through a typical hypersonic inlet. Results for different entrance Mach numbers and mesh topologies are discussed in order to assess the comparative performance of the various spatial discretization schemes.
Chertock, Alina; Cui, Shumo; Kurganov, Alexander; Özcan, Şeyma Nur; Tadmor, Eitan
2018-04-01
We develop a second-order well-balanced central-upwind scheme for the compressible Euler equations with gravitational source term. Here, we advocate a new paradigm based on a purely conservative reformulation of the equations using global fluxes. The proposed scheme is capable of exactly preserving steady-state solutions expressed in terms of a nonlocal equilibrium variable. A crucial step in the construction of the second-order scheme is a well-balanced piecewise linear reconstruction of equilibrium variables combined with a well-balanced central-upwind evolution in time, which is adapted to reduce the amount of numerical viscosity when the flow is at (near) steady-state regime. We show the performance of our newly developed central-upwind scheme and demonstrate importance of perfect balance between the fluxes and gravitational forces in a series of one- and two-dimensional examples.
Assimilation scheme of the Mediterranean Forecasting System: operational implementation
Directory of Open Access Journals (Sweden)
E. Demirov
Full Text Available This paper describes the operational implementation of the data assimilation scheme for the Mediterranean Forecasting System Pilot Project (MFSPP. The assimilation scheme, System for Ocean Forecast and Analysis (SOFA, is a reduced order Optimal Interpolation (OI scheme. The order reduction is achieved by projection of the state vector into vertical Empirical Orthogonal Functions (EOF. The data assimilated are Sea Level Anomaly (SLA and temperature profiles from Expandable Bathy Termographs (XBT. The data collection, quality control, assimilation and forecast procedures are all done in Near Real Time (NRT. The OI is used intermittently with an assimilation cycle of one week so that an analysis is produced once a week. The forecast is then done for ten days following the analysis day. The root mean square (RMS between the model forecast and the analysis (the forecast RMS is below 0.7°C in the surface layers and below 0.2°C in the layers deeper than 200 m for all the ten forecast days. The RMS between forecast and initial condition (persistence RMS is higher than forecast RMS after the first day. This means that the model improves forecast with respect to persistence. The calculation of the misfit between the forecast and the satellite data suggests that the model solution represents well the main space and time variability of the SLA except for a relatively short period of three – four weeks during the summer when the data show a fast transition between the cyclonic winter and anti-cyclonic summer regimes. This occurs in the surface layers that are not corrected by our assimilation scheme hypothesis. On the basis of the forecast skill scores analysis, conclusions are drawn about future improvements.
Key words. Oceanography; general (marginal and semi-enclosed seas; numerical modeling; ocean prediction
Assimilation scheme of the Mediterranean Forecasting System: operational implementation
Directory of Open Access Journals (Sweden)
E. Demirov
2003-01-01
Full Text Available This paper describes the operational implementation of the data assimilation scheme for the Mediterranean Forecasting System Pilot Project (MFSPP. The assimilation scheme, System for Ocean Forecast and Analysis (SOFA, is a reduced order Optimal Interpolation (OI scheme. The order reduction is achieved by projection of the state vector into vertical Empirical Orthogonal Functions (EOF. The data assimilated are Sea Level Anomaly (SLA and temperature profiles from Expandable Bathy Termographs (XBT. The data collection, quality control, assimilation and forecast procedures are all done in Near Real Time (NRT. The OI is used intermittently with an assimilation cycle of one week so that an analysis is produced once a week. The forecast is then done for ten days following the analysis day. The root mean square (RMS between the model forecast and the analysis (the forecast RMS is below 0.7°C in the surface layers and below 0.2°C in the layers deeper than 200 m for all the ten forecast days. The RMS between forecast and initial condition (persistence RMS is higher than forecast RMS after the first day. This means that the model improves forecast with respect to persistence. The calculation of the misfit between the forecast and the satellite data suggests that the model solution represents well the main space and time variability of the SLA except for a relatively short period of three – four weeks during the summer when the data show a fast transition between the cyclonic winter and anti-cyclonic summer regimes. This occurs in the surface layers that are not corrected by our assimilation scheme hypothesis. On the basis of the forecast skill scores analysis, conclusions are drawn about future improvements. Key words. Oceanography; general (marginal and semi-enclosed seas; numerical modeling; ocean prediction
Energy Technology Data Exchange (ETDEWEB)
Rodriguez, A. [Electrical Engineering Doctoral Program, Mechanical and Electrical Engineering Faculty, Autonomous University of Nuevo Leon, 66450 San Nicolas de los Garza, N.L. (Mexico)], E-mail: angelrdz@gmail.com; De Leon, J. [Electrical Engineering Doctoral Program, Mechanical and Electrical Engineering Faculty, Autonomous University of Nuevo Leon, 66450 San Nicolas de los Garza, N.L. (Mexico)], E-mail: drjleon@gmail.com; Fridman, L. [Department of Control, Division of Electrical Engineering, Engineering Faculty, National Autonomous University of Mexico, 04510 Mexico City (Mexico)], E-mail: lfridman@servidor.unam.mx
2009-12-15
The reduced-order synchronization problem of two chaotic systems (master-slave) with different dimension and relative degree is considered. A control scheme based on a high-order sliding-mode observer-identifier and a feedback state controller is proposed, where the trajectories of slave can be synchronized with a canonical projection of the master. Thus, the reduced-order synchronization is achieved in spite of master/slave mismatches. Simulation results are provided in order to illustrate the performance of the proposed synchronization scheme.
International Nuclear Information System (INIS)
Rodriguez, A.; De Leon, J.; Fridman, L.
2009-01-01
The reduced-order synchronization problem of two chaotic systems (master-slave) with different dimension and relative degree is considered. A control scheme based on a high-order sliding-mode observer-identifier and a feedback state controller is proposed, where the trajectories of slave can be synchronized with a canonical projection of the master. Thus, the reduced-order synchronization is achieved in spite of master/slave mismatches. Simulation results are provided in order to illustrate the performance of the proposed synchronization scheme.
DEFF Research Database (Denmark)
Laitinen, Tommi; Nielsen, Jeppe Majlund; Pivnenko, Sergiy
2004-01-01
An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe.......An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe....
Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results
International Nuclear Information System (INIS)
Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young
2007-12-01
A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor
Ahmed, Rounaq; Srinivasa Pai, P.; Sriram, N. S.; Bhat, Vasudeva
2018-02-01
Vibration Analysis has been extensively used in recent past for gear fault diagnosis. The vibration signals extracted is usually contaminated with noise and may lead to wrong interpretation of results. The denoising of extracted vibration signals helps the fault diagnosis by giving meaningful results. Wavelet Transform (WT) increases signal to noise ratio (SNR), reduces root mean square error (RMSE) and is effective to denoise the gear vibration signals. The extracted signals have to be denoised by selecting a proper denoising scheme in order to prevent the loss of signal information along with noise. An approach has been made in this work to show the effectiveness of Principal Component Analysis (PCA) to denoise gear vibration signal. In this regard three selected wavelet based denoising schemes namely PCA, Empirical Mode Decomposition (EMD), Neighcoeff Coefficient (NC), has been compared with Adaptive Threshold (AT) an extensively used wavelet based denoising scheme for gear vibration signal. The vibration signals acquired from a customized gear test rig were denoised by above mentioned four denoising schemes. The fault identification capability as well as SNR, Kurtosis and RMSE for the four denoising schemes have been compared. Features extracted from the denoised signals have been used to train and test artificial neural network (ANN) models. The performances of the four denoising schemes have been evaluated based on the performance of the ANN models. The best denoising scheme has been identified, based on the classification accuracy results. PCA is effective in all the regards as a best denoising scheme.
Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results
Energy Technology Data Exchange (ETDEWEB)
Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young
2007-12-15
A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor.
Building fast well-balanced two-stage numerical schemes for a model of two-phase flows
Thanh, Mai Duc
2014-06-01
We present a set of well-balanced two-stage schemes for an isentropic model of two-phase flows arisen from the modeling of deflagration-to-detonation transition in granular materials. The first stage is to absorb the source term in nonconservative form into equilibria. Then in the second stage, these equilibria will be composed into a numerical flux formed by using a convex combination of the numerical flux of a stable Lax-Friedrichs-type scheme and the one of a higher-order Richtmyer-type scheme. Numerical schemes constructed in such a way are expected to get the interesting property: they are fast and stable. Tests show that the method works out until the parameter takes on the value CFL, and so any value of the parameter between zero and this value is expected to work as well. All the schemes in this family are shown to capture stationary waves and preserves the positivity of the volume fractions. The special values of the parameter 0,1/2,1/(1+CFL), and CFL in this family define the Lax-Friedrichs-type, FAST1, FAST2, and FAST3 schemes, respectively. These schemes are shown to give a desirable accuracy. The errors and the CPU time of these schemes and the Roe-type scheme are calculated and compared. The constructed schemes are shown to be well-balanced and faster than the Roe-type scheme.
Multidimensional flux-limited advection schemes
International Nuclear Information System (INIS)
Thuburn, J.
1996-01-01
A general method for building multidimensional shape preserving advection schemes using flux limiters is presented. The method works for advected passive scalars in either compressible or incompressible flow and on arbitrary grids. With a minor modification it can be applied to the equation for fluid density. Schemes using the simplest form of the flux limiter can cause distortion of the advected profile, particularly sideways spreading, depending on the orientation of the flow relative to the grid. This is partly because the simple limiter is too restrictive. However, some straightforward refinements lead to a shape-preserving scheme that gives satisfactory results, with negligible grid-flow angle-dependent distortion
Finite-volume scheme for anisotropic diffusion
Energy Technology Data Exchange (ETDEWEB)
Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)
2016-02-01
In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.
The new WAGR data acquisition scheme
International Nuclear Information System (INIS)
Ellis, W.E.; Leng, J.H.; Smith, I.C.; Smith, M.R.
1976-06-01
The existing WAGR data acquisition equipment was inadequate to meet the requirements introduced by the installation of two additional experimental loops and was in any case due for replacement. A completely new scheme was planned and implemented based on mini-computers, which while preserving all the useful features of the old scheme provided additional flexibility and improved data display. Both the initial objectives of the design and the final implementation are discussed without introducing detailed descriptions of hardware or the programming techniques employed. Although the scheme solves a specific problem the general principles are more widely applicable and could readily be adapted to other data checking and display problems. (author)
Kinematic reversal schemes for the geomagnetic dipole.
Levy, E. H.
1972-01-01
Fluctuations in the distribution of cyclonic convective cells, in the earth's core, can reverse the sign of the geomagnetic field. Two kinematic reversal schemes are discussed. In the first scheme, a field maintained by cyclones concentrated at low latitude is reversed by a burst of cyclones at high latitude. Conversely, in the second scheme, a field maintained predominantly by cyclones in high latitudes is reversed by a fluctuation consisting of a burst of cyclonic convection at low latitude. The precise fluid motions which produce the geomagnetic field are not known. However, it appears that, whatever the details are, a fluctuation in the distribution of cyclonic cells over latitude can cause a geomagnetic reversal.
Autonomous Droop Scheme With Reduced Generation Cost
DEFF Research Database (Denmark)
Nutkani, Inam Ullah; Loh, Poh Chiang; Wang, Peng
2014-01-01
) of the microgrid. To reduce this TGC without relying on fast communication links, an autonomous droop scheme is proposed here, whose resulting power sharing is decided by the individual DG generation costs. Comparing it with the traditional scheme, the proposed scheme retains its simplicity and it is hence more....... This objective might, however, not suit microgrids well since DGs are usually of different types, unlike synchronous generators. Other factors like cost, efficiency, and emission penalty of each DG at different loading must be considered since they contribute directly to the total generation cost (TGC...
Cognitive radio networks dynamic resource allocation schemes
Wang, Shaowei
2014-01-01
This SpringerBrief presents a survey of dynamic resource allocation schemes in Cognitive Radio (CR) Systems, focusing on the spectral-efficiency and energy-efficiency in wireless networks. It also introduces a variety of dynamic resource allocation schemes for CR networks and provides a concise introduction of the landscape of CR technology. The author covers in detail the dynamic resource allocation problem for the motivations and challenges in CR systems. The Spectral- and Energy-Efficient resource allocation schemes are comprehensively investigated, including new insights into the trade-off
Algebraic K-theory of generalized schemes
DEFF Research Database (Denmark)
Anevski, Stella Victoria Desiree
and geometry over the field with one element. It also permits the construction of important Arakelov theoretical objects, such as the completion \\Spec Z of Spec Z. In this thesis, we prove a projective bundle theorem for the eld with one element and compute the Chow rings of the generalized schemes Sp\\ec ZN......Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry......, appearing in the construction of \\Spec Z....
Shishkin, G. I.
2015-11-01
An initial-boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation with a perturbation parameter ɛ (ɛ ∈ (0, 1]) multiplying the highest order derivative. The stability of a standard difference scheme based on monotone approximations of the problem on a uniform mesh is analyzed, and the behavior of discrete solutions in the presence of perturbations is examined. The scheme does not converge ɛ-uniformly in the maximum norm as the number of its grid nodes is increased. When the solution of the difference scheme converges, which occurs if N -1 ≪ ɛ and N -1 0 ≪ 1, where N and N 0 are the numbers of grid intervals in x and t, respectively, the scheme is not ɛ-uniformly well conditioned or stable to data perturbations in the grid problem and to computer perturbations. For the standard difference scheme in the presence of data perturbations in the grid problem and/or computer perturbations, conditions on the "parameters" of the difference scheme and of the computer (namely, on ɛ, N, N 0, admissible data perturbations in the grid problem, and admissible computer perturbations) are obtained that ensure the convergence of the perturbed solutions. Additionally, the conditions are obtained under which the perturbed numerical solution has the same order of convergence as the solution of the unperturbed standard difference scheme.
A multigrid algorithm for the cell-centered finite difference scheme
Ewing, Richard E.; Shen, Jian
1993-01-01
In this article, we discuss a non-variational V-cycle multigrid algorithm based on the cell-centered finite difference scheme for solving a second-order elliptic problem with discontinuous coefficients. Due to the poor approximation property of piecewise constant spaces and the non-variational nature of our scheme, one step of symmetric linear smoothing in our V-cycle multigrid scheme may fail to be a contraction. Again, because of the simple structure of the piecewise constant spaces, prolongation and restriction are trivial; we save significant computation time with very promising computational results.
A fully distributed geo-routing scheme for wireless sensor networks
Bader, Ahmed
2013-12-01
When marrying randomized distributed space-time coding (RDSTC) to beaconless geo-routing, new performance horizons can be created. In order to reach those horizons, however, beaconless geo-routing protocols must evolve to operate in a fully distributed fashion. In this letter, we expose a technique to construct a fully distributed geo-routing scheme in conjunction with RDSTC. We then demonstrate the performance gains of this novel scheme by comparing it to one of the prominent classical schemes. © 2013 IEEE.
A well-balanced scheme for Ten-Moment Gaussian closure equations with source term
Meena, Asha Kumari; Kumar, Harish
2018-02-01
In this article, we consider the Ten-Moment equations with source term, which occurs in many applications related to plasma flows. We present a well-balanced second-order finite volume scheme. The scheme is well-balanced for general equation of state, provided we can write the hydrostatic solution as a function of the space variables. This is achieved by combining hydrostatic reconstruction with contact preserving, consistent numerical flux, and appropriate source discretization. Several numerical experiments are presented to demonstrate the well-balanced property and resulting accuracy of the proposed scheme.
The same number of optimized parameters scheme for determining intermolecular interaction energies
DEFF Research Database (Denmark)
Kristensen, Kasper; Ettenhuber, Patrick; Eriksen, Janus Juul
2015-01-01
We propose the Same Number Of Optimized Parameters (SNOOP) scheme as an alternative to the counterpoise method for treating basis set superposition errors in calculations of intermolecular interaction energies. The key point of the SNOOP scheme is to enforce that the number of optimized wave...... as numerically. Numerical results for second-order Møller-Plesset perturbation theory (MP2) and coupled-cluster with single, double, and approximate triple excitations (CCSD(T)) show that the SNOOP scheme in general outperforms the uncorrected and counterpoise approaches. Furthermore, we show that SNOOP...
International Nuclear Information System (INIS)
Silva, Filipe da; Pinto, Martin Campos; Després, Bruno; Heuraux, Stéphane
2015-01-01
This work analyzes the stability of the Yee scheme for non-stationary Maxwell's equations coupled with a linear current model with density fluctuations. We show that the usual procedure may yield unstable scheme for physical situations that correspond to strongly magnetized plasmas in X-mode (TE) polarization. We propose to use first order clustered discretization of the vectorial product that gives back a stable coupling. We validate the schemes on some test cases representative of direct numerical simulations of X-mode in a magnetic fusion plasma including turbulence
Designing carbon taxation schemes for automobiles: A simulation exercise for Germany
Adamou, Adamos; Clerides, Sofronis; Zachariadis, Theodoros
2011-01-01
Vehicle taxation based on CO2 emissions is increasingly being adopted worldwide in order to shift consumer purchases to low-carbon cars, yet little is known about the effectiveness and overall economic impact of these schemes. We focus on feebate schemes, which impose a fee on high-carbon vehicles and give a rebate to purchasers of low-carbon automobiles. We estimate a discrete choice model of demand for automobiles in Germany and simulate the impact of alternative feebate schemes on emission...
A fully distributed geo-routing scheme for wireless sensor networks
Bader, Ahmed; Abed-Meraim, Karim; Alouini, Mohamed-Slim
2013-01-01
When marrying randomized distributed space-time coding (RDSTC) to beaconless geo-routing, new performance horizons can be created. In order to reach those horizons, however, beaconless geo-routing protocols must evolve to operate in a fully distributed fashion. In this letter, we expose a technique to construct a fully distributed geo-routing scheme in conjunction with RDSTC. We then demonstrate the performance gains of this novel scheme by comparing it to one of the prominent classical schemes. © 2013 IEEE.
Development of Fault Detection and Diagnosis Schemes for Industrial Refrigeration Systems
DEFF Research Database (Denmark)
Thybo, C.; Izadi-Zamanabadi, Roozbeh
2004-01-01
The success of a fault detection and diagnosis (FDD) scheme depends not alone on developing an advanced detection scheme. To enable successful deployment in industrial applications, an economically optimal development of FDD schemes are required. This paper reviews and discusses the gained...... experiences achieved by employing a combination of various techniques, methods, and algorithms, which are proposed by academia, on an industrial application. The main focus is on sharing the "lessons learned" from developing and employing Faulttolerant functionalities to a controlled process in order to meet...... the industrial needs while satisfying economically motivated constraints....
A Positivity-Preserving Numerical Scheme for Nonlinear Option Pricing Models
Directory of Open Access Journals (Sweden)
Shengwu Zhou
2012-01-01
Full Text Available A positivity-preserving numerical method for nonlinear Black-Scholes models is developed in this paper. The numerical method is based on a nonstandard approximation of the second partial derivative. The scheme is not only unconditionally stable and positive, but also allows us to solve the discrete equation explicitly. Monotone properties are studied in order to avoid unwanted oscillations of the numerical solution. The numerical results for European put option and European butterfly spread are compared to the standard finite difference scheme. It turns out that the proposed scheme is efficient and reliable.
Maximum principle and convergence of central schemes based on slope limiters
Mehmetoglu, Orhan; Popov, Bojan
2012-01-01
A maximum principle and convergence of second order central schemes is proven for scalar conservation laws in dimension one. It is well known that to establish a maximum principle a nonlinear piecewise linear reconstruction is needed and a typical choice is the minmod limiter. Unfortunately, this implies that the scheme uses a first order reconstruction at local extrema. The novelty here is that we allow local nonlinear reconstructions which do not reduce to first order at local extrema and still prove maximum principle and convergence. © 2011 American Mathematical Society.
Emissions Trading Schemes under IFRS - Towards a “true and fair view”
Haupt, Madlen; Ismer, Roland
2011-01-01
This research paper seeks to contribute to the latest discussions on the financial reporting for emissions trading schemes. It starts out by giving an overview of the International Financial Reporting Standards (IFRS) accounting policies, which are currently applied by the majority of participants in the EU Emissions Trading Scheme. It then argues that in order to fulfil the aims of financial reporting under IFRS, namely to provide a true and fair view, accounting must depict CO2 as a cost of...
Efficacy of various schemes of therapy of patients with radiation limb edema
International Nuclear Information System (INIS)
Kuz'mina, E.G.; Degtyareva, A.A.; Zubova, N.D.; Guseva, L.I.; Klimanov, M.E.
1987-01-01
The efficacy of various therapeutic schemes: medicinal (basic therapy - BT), acupuncture (AP) and laser therapy (LT) against a background of basic therapy - was assessed and compared in 36 patients with radiation limb edema. It was established that a degree of a decrease in edemas, the improvement of indices of rheovasography grew in the following order: BT → AP → LT. The recovery of the lymph flow and immunological indices were the same in all therapeutic schemes
Arbitrary Dimension Convection-Diffusion Schemes for Space-Time Discretizations
Energy Technology Data Exchange (ETDEWEB)
Bank, Randolph E. [Univ. of California, San Diego, CA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zikatanov, Ludmil T. [Bulgarian Academy of Sciences, Sofia (Bulgaria)
2016-01-20
This note proposes embedding a time dependent PDE into a convection-diffusion type PDE (in one space dimension higher) with singularity, for which two discretization schemes, the classical streamline-diffusion and the EAFE (edge average finite element) one, are investigated in terms of stability and error analysis. The EAFE scheme, in particular, is extended to be arbitrary order which is of interest on its own. Numerical results, in combined space-time domain demonstrate the feasibility of the proposed approach.
A survey of Strong Convergent Schemes for the Simulation of ...
African Journals Online (AJOL)
We considered strong convergent stochastic schemes for the simulation of stochastic differential equations. The stochastic Taylor's expansion, which is the main tool used for the derivation of strong convergent schemes; the Euler Maruyama, Milstein scheme, stochastic multistep schemes, Implicit and Explicit schemes were ...
Setting aside transactions from pyramid schemes as impeachable ...
African Journals Online (AJOL)
These schemes, which are often referred to as pyramid or Ponzi schemes, are unsustainable operations and give rise to problems in the law of insolvency. Investors in these schemes are often left empty-handed upon the scheme's eventual collapse and insolvency. Investors who received pay-outs from the scheme find ...
Normal scheme for solving the transport equation independently of spatial discretization
International Nuclear Information System (INIS)
Zamonsky, O.M.
1993-01-01
To solve the discrete ordinates neutron transport equation, a general order nodal scheme is used, where nodes are allowed to have different orders of approximation and the whole system reaches a final order distribution. Independence in the election of system discretization and order of approximation is obtained without loss of accuracy. The final equations and the iterative method to reach a converged order solution were implemented in a two-dimensional computer code to solve monoenergetic, isotropic scattering, external source problems. Two benchmark problems were solved using different automatic selection order methods. Results show accurate solutions without spatial discretization, regardless of the initial selection of distribution order. (author)
A Directed Signature Scheme and its Applications
Lal, Sunder; Kumar, Manoj
2004-01-01
This paper presents a directed signature scheme with the property that the signature can be verified only with the help of signer or signature receiver. We also propose its applications to share verification of signatures and to threshold cryptosystems.
ONU Power Saving Scheme for EPON System
Mukai, Hiroaki; Tano, Fumihiko; Tanaka, Masaki; Kozaki, Seiji; Yamanaka, Hideaki
PON (Passive Optical Network) achieves FTTH (Fiber To The Home) economically, by sharing an optical fiber among plural subscribers. Recently, global climate change has been recognized as a serious near term problem. Power saving techniques for electronic devices are important. In PON system, the ONU (Optical Network Unit) power saving scheme has been studied and defined in XG-PON. In this paper, we propose an ONU power saving scheme for EPON. Then, we present an analysis of the power reduction effect and the data transmission delay caused by the ONU power saving scheme. According to the analysis, we propose an efficient provisioning method for the ONU power saving scheme which is applicable to both of XG-PON and EPON.
Nigeria's first national social protection scheme | IDRC ...
International Development Research Centre (IDRC) Digital Library (Canada)
2017-06-14
Jun 14, 2017 ... Women and children at an IDP Camp in DRC ... The cash transfer was provided through the Nigerian Ekiti State Social Security Scheme, ... national policy conference to discuss the findings with media and policy stakeholders.
Verifiable Secret Redistribution for Threshold Sharing Schemes
National Research Council Canada - National Science Library
Wong, Theodore M; Wang, Chenxi; Wing, Jeannette M
2002-01-01
.... Our protocol guards against dynamic adversaries. We observe that existing protocols either cannot be readily extended to allow redistribution between different threshold schemes, or have vulnerabilities that allow faulty old shareholders...
Boson expansion theory in the seniority scheme
International Nuclear Information System (INIS)
Tamura, T.; Li, C.; Pedrocchi, V.G.
1985-01-01
A boson expansion formalism in the seniority scheme is presented and its relation with number-conserving quasiparticle calculations is elucidated. Accuracy and convergence are demonstrated numerically. A comparative discussion with other related approaches is given
Designing optimal sampling schemes for field visits
CSIR Research Space (South Africa)
Debba, Pravesh
2008-10-01
Full Text Available This is a presentation of a statistical method for deriving optimal spatial sampling schemes. The research focuses on ground verification of minerals derived from hyperspectral data. Spectral angle mapper (SAM) and spectral feature fitting (SFF...
Sixth- and eighth-order Hermite integrator for N-body simulations
Nitadori, Keigo; Makino, Junichiro
2008-10-01
We present sixth- and eighth-order Hermite integrators for astrophysical N-body simulations, which use the derivatives of accelerations up to second-order ( snap) and third-order ( crackle). These schemes do not require previous values for the corrector, and require only one previous value to construct the predictor. Thus, they are fairly easy to implement. The additional cost of the calculation of the higher-order derivatives is not very high. Even for the eighth-order scheme, the number of floating-point operations for force calculation is only about two times larger than that for traditional fourth-order Hermite scheme. The sixth-order scheme is better than the traditional fourth-order scheme for most cases. When the required accuracy is very high, the eighth-order one is the best. These high-order schemes have several practical advantages. For example, they allow a larger number of particles to be integrated in parallel than the fourth-order scheme does, resulting in higher execution efficiency in both general-purpose parallel computers and GRAPE systems.
White, Jeffrey A.; Baurle, Robert A.; Fisher, Travis C.; Quinlan, Jesse R.; Black, William S.
2012-01-01
The 2nd-order upwind inviscid flux scheme implemented in the multi-block, structured grid, cell centered, finite volume, high-speed reacting flow code VULCAN has been modified to reduce numerical dissipation. This modification was motivated by the desire to improve the codes ability to perform large eddy simulations. The reduction in dissipation was accomplished through a hybridization of non-dissipative and dissipative discontinuity-capturing advection schemes that reduces numerical dissipation while maintaining the ability to capture shocks. A methodology for constructing hybrid-advection schemes that blends nondissipative fluxes consisting of linear combinations of divergence and product rule forms discretized using 4th-order symmetric operators, with dissipative, 3rd or 4th-order reconstruction based upwind flux schemes was developed and implemented. A series of benchmark problems with increasing spatial and fluid dynamical complexity were utilized to examine the ability of the candidate schemes to resolve and propagate structures typical of turbulent flow, their discontinuity capturing capability and their robustness. A realistic geometry typical of a high-speed propulsion system flowpath was computed using the most promising of the examined schemes and was compared with available experimental data to demonstrate simulation fidelity.
On the modelling of compressible inviscid flow problems using AUSM schemes
Directory of Open Access Journals (Sweden)
Hajžman M.
2007-11-01
Full Text Available During last decades, upwind schemes have become a popular method in the field of computational fluid dynamics. Although they are only first order accurate, AUSM (Advection Upstream Splitting Method schemes proved to be well suited for modelling of compressible flows due to their robustness and ability of capturing shock discontinuities. In this paper, we review the composition of the AUSM flux-vector splitting scheme and its improved version noted AUSM+, proposed by Liou, for the solution of the Euler equations. Mach number splitting functions operating with values from adjacent cells are used to determine numerical convective fluxes and pressure splitting is used for the evaluation of numerical pressure fluxes. Both versions of the AUSM scheme are applied for solving some test problems such as one-dimensional shock tube problem and three dimensional GAMM channel. Features of the schemes are discussed in comparison with some explicit central schemes of the first order accuracy (Lax-Friedrichs and of the second order accuracy (MacCormack.
Secret Sharing Schemes and Advanced Encryption Standard
2015-09-01
25 4.7 Computational Example . . . . . . . . . . . . . . . . . . . . . 26 5 Side-Channel Effect on Advanced Encryption Standard ( AES ) 31...improvements, and to build upon them to discuss the side-channel effects on the Advanced Encryption Standard ( AES ). The following questions are asked...secret sharing scheme? • Can the improvements to the current secret sharing scheme prove to be beneficial in strengthening/weakening AES encryption
Cost Comparison Among Provable Data Possession Schemes
2016-03-01
of Acronyms and Abbreviations AE authenticated encryption AWS Amazon Web Services CIO Chief Information Officer DISA Defense Information Systems Agency...the number of possible challenges, H be a cryptographic hash function, AE be an authenticated encryption scheme, f be a keyed pseudo-random function...key kenc R←− Kenc for symmetric encryption scheme Enc, and a random HMAC key kmac R←− Kmac. The secret key is sk = 〈kenc, kmac〉 and public key is pk
A Classification Scheme for Production System Processes
DEFF Research Database (Denmark)
Sørensen, Daniel Grud Hellerup; Brunø, Thomas Ditlev; Nielsen, Kjeld
2018-01-01
Manufacturing companies often have difficulties developing production platforms, partly due to the complexity of many production systems and difficulty determining which processes constitute a platform. Understanding production processes is an important step to identifying candidate processes...... for a production platform based on existing production systems. Reviewing a number of existing classifications and taxonomies, a consolidated classification scheme for processes in production of discrete products has been outlined. The classification scheme helps ensure consistency during mapping of existing...
A scheme for the hadron spectrum
International Nuclear Information System (INIS)
Hoyer, P.
1978-03-01
A theoretically self-consistent dual scheme is proposed for the hadron spectrum, which follows naturally from basic requirements and phenomenology. All resonance properties and couplings are calculable in terms of a limited number of input parameters. A first application to ππ→ππ explains the linear trajectory and small daughter couplings. The Zweig rule and the decoupling of baryonium from mesons are expected to be consequences of the scheme. (Auth.)
A Practical Voter-Verifiable Election Scheme.
Chaum, D; Ryan, PYA; Schneider, SA
2005-01-01
We present an election scheme designed to allow voters to verify that their vote is accurately included in the count. The scheme provides a high degree of transparency whilst ensuring the secrecy of votes. Assurance is derived from close auditing of all the steps of the vote recording and counting process with minimal dependence on the system components. Thus, assurance arises from verification of the election rather than having to place trust in the correct behaviour of components of the vot...
Sellafield site (including Drigg) emergency scheme manual
International Nuclear Information System (INIS)
1987-02-01
This Emergency Scheme defines the organisation and procedures available should there be an accident at the Sellafield Site which results in, or may result in, the release of radioactive material, or the generation of a high radiation field, which might present a hazard to employees and/or the general public. This manual covers the general principles of the total emergency scheme and those detailed procedures which are not specific to any single department. (U.K.)
Signature scheme based on bilinear pairs
Tong, Rui Y.; Geng, Yong J.
2013-03-01
An identity-based signature scheme is proposed by using bilinear pairs technology. The scheme uses user's identity information as public key such as email address, IP address, telephone number so that it erases the cost of forming and managing public key infrastructure and avoids the problem of user private generating center generating forgery signature by using CL-PKC framework to generate user's private key.
An Optimization Scheme for ProdMod
International Nuclear Information System (INIS)
Gregory, M.V.
1999-01-01
A general purpose dynamic optimization scheme has been devised in conjunction with the ProdMod simulator. The optimization scheme is suitable for the Savannah River Site (SRS) High Level Waste (HLW) complex operations, and able to handle different types of optimizations such as linear, nonlinear, etc. The optimization is performed in the stand-alone FORTRAN based optimization deliver, while the optimizer is interfaced with the ProdMod simulator for flow of information between the two
Employee-referral schemes and discrimination law
Connolly, M.
2015-01-01
Employee-referral schemes (‘introduce a friend’) are in common usage in recruitment. They carry a potential to discriminate by perpetuating an already unbalanced workforce (say, by gender and ethnicity). With this, or course, comes the risk of litigation and bad publicity as well as any inherent inefficiencies associated with discrimination. This article is threefold. First, it examines the present state of the law. Second, it is based on a survey of employers who use these schemes. Third, it...