Order and chaos in polarized nonlinear optics
International Nuclear Information System (INIS)
Holm, D.D.
1990-01-01
Methods for investigating temporal complexity in Hamiltonian systems are applied to the dynamics of a polarized optical laser beam propagating as a travelling wave in a medium with cubically nonlinear polarizability (i.e., a Kerr medium). The theory of Hamiltonian systems with symmetry is used to study the geometry of phase space for the optical problem, transforming from C 2 to S 2 x (J,θ), where (J,θ) is a symplectic action-angle pair. The bifurcations of the phase portraits of the Hamiltonian motion on S 2 are classified and shown graphically. These bifurcations create various saddle connections on S 2 as either J (the beam intensity), or the optical parameters of the medium are varied. After this bifurcation analysis, the Melnikov method is used to demonstrate analytically that the saddle connections break and intersect transversely in a Poincare map under spatially periodic perturbations of the optical parameters of the medium. These transverse intersections in the Poincare map imply intermittent polarization switching with extreme sensitivity to initial conditions characterized by a Smale horseshoe construction for the travelling waves of a polarized optical laser pulse. The resulting chaotic behavior in the form of sensitive dependence on initial conditions may have implications for the control and predictability of nonlinear optical polarization switching in birefringent media. 19 refs., 2 figs., 1 tab
Second-order nonlinear optical metamaterials: ABC-type nanolaminates
International Nuclear Information System (INIS)
Alloatti, L.; Kieninger, C.; Lauermann, M.; Köhnle, K.; Froelich, A.; Wegener, M.; Frenzel, T.; Freude, W.; Leuthold, J.; Koos, C.
2015-01-01
We demonstrate a concept for second-order nonlinear metamaterials that can be obtained from non-metallic centrosymmetric constituents with inherently low optical absorption. The concept is based on iterative atomic-layer deposition of three different materials, A = Al 2 O 3 , B = TiO 2 , and C = HfO 2 . The centrosymmetry of the resulting ABC stack is broken since the ABC and the inverted CBA sequences are not equivalent—a necessary condition for non-zero second-order nonlinearity. In our experiments, we find that the bulk second-order nonlinear susceptibility depends on the density of interfaces, leading to a nonlinear susceptibility of 0.26 pm/V at a wavelength of 800 nm. ABC-type nanolaminates can be deposited on virtually any substrate and offer a promising route towards engineering of second-order optical nonlinearities at both infrared and visible wavelengths
Exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres
International Nuclear Information System (INIS)
Liu Chunping
2005-01-01
First, by using the generally projective Riccati equation method, many kinds of exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres are obtained in a unified way. Then, some relations among these solutions are revealed
Higher-order modulation instability in nonlinear fiber optics.
Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry
2011-12-16
We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves. © 2011 American Physical Society
Ablation and optical third-order nonlinearities in Ag nanoparticles
Directory of Open Access Journals (Sweden)
Carlos Torres-Torres
2010-11-01
Full Text Available Carlos Torres-Torres1, Néstor Peréa-López2, Jorge Alejandro Reyes-Esqueda3, Luis Rodríguez-Fernández3, Alejandro Crespo-Sosa3, Juan Carlos Cheang-Wong3, Alicia Oliver31Section of Graduate Studies and Research, School of Mechanical and Electrical Engineering, National Polytechnic Institute, Zacatenco, Distrito Federal, Mexico; 2Laboratory for Nanoscience and Nanotechnology Research and Advanced Materials Department, IPICYT, Camino a la Presa San Jose, San Luis Potosi, Mexico; 3Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000, MéxicoAbstract: The optical damage associated with high intensity laser excitation of silver nanoparticles (NPs was studied. In order to investigate the mechanisms of optical nonlinearity of a nanocomposite and their relation with its ablation threshold, a high-purity silica sample implanted with Ag ions was exposed to different nanosecond and picosecond laser irradiations. The magnitude and sign of picosecond refractive and absorptive nonlinearities were measured near and far from the surface plasmon resonance (SPR of the Ag NPs with a self-diffraction technique. Saturable optical absorption and electronic polarization related to self-focusing were identified. Linear absorption is the main process involved in nanosecond laser ablation, but nonlinearities are important for ultrashort picosecond pulses when the absorptive process become significantly dependent on the irradiance. We estimated that near the resonance, picosecond intraband transitions allow an expanded distribution of energy among the NPs, in comparison to the energy distribution resulting in a case of far from resonance, when the most important absorption takes place in silica. We measured important differences in the ablation threshold and we estimated that the high selectiveness of the SPR of Ag NPs as well as their corresponding optical nonlinearities can be strongly significant for laser
Evaluation of polymer based third order nonlinear integrated optics devices
Driessen, A.; Hoekstra, Hugo; Blom, F.C.; Horst, F.; Horst, F.; Krijnen, Gijsbertus J.M.; van Schoot, J.B.P.; van Schoot, J.B.P.; Lambeck, Paul; Popma, T.J.A.; Diemeer, Mart
Nonlinear polymers are promising materials for high speed active integrated optics devices. In this paper we evaluate the perspectives polymer based nonlinear optical devices can offer. Special attention is directed to the materials aspects. In our experimental work we applied mainly Akzo Nobel DANS
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
Computational studies of third-order nonlinear optical properties of ...
Indian Academy of Sciences (India)
Anuj Kumar
2017-06-20
Jun 20, 2017 ... Department of Physics, Jaypee University of Engineering and Technology, Raghogarh,. Guna 473 226, India. ∗ ... properties and other molecular properties of the organic nonlinear optical crystal 2-aminopyridinium p- toluenesulphonate ... nal processing, optical limiting, optical logic gates, laser radiation ...
Third order nonlinear optical properties of a paratellurite single crystal
Duclère, J.-R.; Hayakawa, T.; Roginskii, E. M.; Smirnov, M. B.; Mirgorodsky, A.; Couderc, V.; Masson, O.; Colas, M.; Noguera, O.; Rodriguez, V.; Thomas, P.
2018-05-01
The (a,b) plane angular dependence of the third-order nonlinear optical susceptibility, χ(3) , of a c-cut paratellurite (α-TeO2) single crystal was quantitatively evaluated here by the Z-scan technique, using a Ti:sapphire femtosecond laser operated at 800 nm. In particular, the mean value Re( ⟨χ(3)⟩a,b )(α-TeO2) of the optical tensor has been extracted from such experiments via a direct comparison with the data collected for a fused silica reference glass plate. A R e (⟨χ(3)⟩(a,b )(α-TeO2)):R e (χ(3))(SiO2 glass) ratio roughly equal to 49.1 is found, and our result compares thus very favourably with the unique experimental value (a ratio of ˜50) reported by Kim et al. [J. Am. Ceram. Soc. 76, 2486 (1993)] for a pure TeO2 glass. In addition, it is shown that the angular dependence of the phase modulation within the (a,b) plane can be fully understood in the light of the strong dextro-rotatory power known for TeO2 materials. Taking into account the optical activity, some analytical model serving to estimate the diagonal and non-diagonal components of the third order nonlinear susceptibility tensor has been thus developed. Finally, Re( χxxxx(3) ) and Re( χxxyy(3) ) values of 95.1 ×10-22 m 2/V2 and 42.0 ×10-22 m2/V2 , respectively, are then deduced for a paratellurite single crystal, considering fused silica as a reference.
Third-order nonlinear optical properties of ADP crystal
Wang, Mengxia; Wang, Zhengping; Chai, Xiangxu; Sun, Yuxiang; Sui, Tingting; Sun, Xun; Xu, Xinguang
2018-05-01
By using the Z-scan method, we investigated the third-order nonlinear optical (NLO) properties of ADP crystal at different wavelengths (355, 532, and 1064 nm) and different orientations ([001], [100], [110], I and II). The experimental data were fitted by NLO theory, to give out the two photon absorption (TPA) coefficient β 2 and the nonlinear refractive index n 2. When the light source changed from a 40 ps, 1064 nm fundamental laser to a 30 ps, 355 nm third-harmonic-generation (THG) laser, the β 2 value increased about 5 times (0.2 × 10‑2 → 1 × 10‑2 cm GW‑1), and the n 2 value increased about 1.5 times (1.5 × 10‑16 → 2.2 × 10‑16 cm2 W‑1). Among all of the orientations, the [110] sample exhibits the smallest β 2, and the second smallest n 2. It indicates that this orientation and its surroundings will be the preferred directions for high-power laser applications of ADP crystal.
Synthesis, characterization and third-order nonlinear optical ...
Indian Academy of Sciences (India)
2016-09-20
Sep 20, 2016 ... the past, several strategies have been evolved to enhance the third-order nonlinear ..... retical fit using the formulation given in ref. [22]. Fit param- ..... Acknowledgement. The corresponding author acknowledges the financial.
Z-scan: A simple technique for determination of third-order optical nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Singh, Vijender, E-mail: chahal-gju@rediffmail.com [Department of Applied Science, N.C. College of Engineering, Israna, Panipat-132107, Haryana (India); Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.co.in [Department of Physics, Chaudhary Devi Lal University, Sirsa-125055, Haryana (India)
2015-08-28
Z-scan is a simple experimental technique to measure intensity dependent nonlinear susceptibilities of third-order nonlinear optical materials. This technique is used to measure the sign and magnitude of both real and imaginary part of the third order nonlinear susceptibility (χ{sup (3)}) of nonlinear optical materials. In this paper, we investigate third-order nonlinear optical properties of Ag-polymer composite film by using single beam z-scan technique with Q-switched, frequency doubled Nd: YAG laser (λ=532 nm) at 5 ns pulse. The values of nonlinear absorption coefficient (β), nonlinear refractive index (n{sub 2}) and third-order nonlinear optical susceptibility (χ{sup (3)}) of permethylazine were found to be 9.64 × 10{sup −7} cm/W, 8.55 × 10{sup −12} cm{sup 2}/W and 5.48 × 10{sup −10} esu, respectively.
Second-order nonlinear optical microscopy of spider silk
Zhao, Yue; Hien, Khuat Thi Thu; Mizutani, Goro; Rutt, Harvey N.
2017-06-01
Asymmetric β-sheet protein structures in spider silk should induce nonlinear optical interaction such as second harmonic generation (SHG) which is experimentally observed for a radial line and dragline spider silk using an imaging femtosecond laser SHG microscope. By comparing different spider silks, we found that the SHG signal correlates with the existence of the protein β-sheets. Measurements of the polarization dependence of SHG from the dragline indicated that the β-sheet has a nonlinear response depending on the direction of the incident electric field. We propose a model of what orientation the β-sheet takes in spider silk.
Second-Order Nonlinear Optical Dendrimers and Dendronized Hyperbranched Polymers.
Tang, Runli; Li, Zhen
2017-01-01
Second-order nonlinear optical (NLO) dendrimers with a special topological structure were regarded as the most promising candidates for practical applications in the field of optoelectronic materials. Dendronized hyperbranched polymers (DHPs), a new type of polymers with dendritic structures, proposed and named by us recently, demonstrated interesting properties and some advantages over other polymers. Some of our work concerning these two types of polymers are presented herein, especially focusing on the design idea and structure-property relationship. To enhance their comprehensive NLO performance, dendrimers were designed and synthesized by adjusting their isolation mode, increasing the number of the dendritic generation, modifying their topological structure, introducing isolation chromophores, and utilizing the Ar-Ar F self-assembly effect. To make full use of the advantages of both the structural integrity of dendrimers and the convenient one-pot synthesis of hyperbranched polymers, DHPs were explored by utilizing low-generation dendrons as big monomers to construct hyperbranched polymers. These selected works could provide valuable information to deeply understand the relationship between the structure and properties of functional polymers with dendritic structures, but not only limited to the NLO ones, and might contribute much to the further development of functional polymers with rational design. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Boyd, R.W.
1992-01-01
Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics
Evaluation of third order nonlinear optical parameters of CdS/PVA nanocomposite
International Nuclear Information System (INIS)
Sharma, Mamta; Tripathi, S. K.
2015-01-01
CdS nanoparticles dispersed in PVA are prepared by Chemical method at room temperature. The nonlinear optical parameters such as nonlinear absorption (β), nonlinear refractive index (n 2 ) and nonlinear susceptibility (χ 3 ) are calculated for this sample by using Z-scan technique. CdS/PVA samples show the two photon absorption mechanism. The third order nonlinear susceptibility is calculated from n 2 and β and is found to be of the order of 10 −7 – 10 −8 m 2 /V 2 . The larger value of third order nonlinear susceptibility is due to dielectric and quantum confinement effect
Second order optical nonlinearity in silicon by symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Cazzanelli, Massimo, E-mail: massimo.cazzanelli@unitn.it [Laboratorio IdEA, Dipartimento di Fisica, Università di Trento, via Sommarive, 14 Povo (Trento) (Italy); Schilling, Joerg, E-mail: joerg.schilling@physik.uni-halle.de [Centre for Innovation Competence SiLi-nano, Martin-Luther-University Halle-Wittenberg, Karl-Freiherr-von-Fritsch Str. 3, 06120 Halle (Germany)
2016-03-15
Although silicon does not possess a dipolar bulk second order nonlinear susceptibility due to its centro-symmetric crystal structure, in recent years several attempts were undertaken to create such a property in silicon. This review presents the different sources of a second order susceptibility (χ{sup (2)}) in silicon and the connected second order nonlinear effects which were investigated up to now. After an introduction, a theoretical overview discusses the second order nonlinearity in general and distinguishes between the dipolar contribution—which is usually dominating in non-centrosymmetric structures—and the quadrupolar contribution, which even exists in centro-symmetric materials. Afterwards, the classic work on second harmonic generation from silicon surfaces in reflection measurements is reviewed. Due to the abrupt symmetry breaking at surfaces and interfaces locally a dipolar second order susceptibility appears, resulting in, e.g., second harmonic generation. Since the bulk contribution is usually small, the study of this second harmonic signal allows a sensitive observation of the surface/interface conditions. The impact of covering films, strain, electric fields, and defect states at the interfaces was already investigated in this way. With the advent of silicon photonics and the search for ever faster electrooptic modulators, the interest turned to the creation of a dipolar bulk χ{sup (2)} in silicon. These efforts have been focussing on several experiments applying an inhomogeneous strain to the silicon lattice to break its centro-symmetry. Recent results suggesting the impact of electric fields which are exerted from fixed charges in adjacent covering layers are also included. After a subsequent summary on “competing” concepts using not Si but Si-related materials, the paper will end with some final conclusions, suggesting possible future research direction in this dynamically developing field.
Directory of Open Access Journals (Sweden)
C. Torres-Torres
2012-01-01
Full Text Available We report the transmittance modulation of optical signals in a nanocomposite integrated by two different silver doped zinc oxide thin solid films. An ultrasonic spray pyrolysis approach was employed for the preparation of the samples. Measurements of the third-order nonlinear optical response at a nonresonant 532 nm wavelength of excitation were performed using a vectorial two-wave mixing. It seems that the separated contribution of the optical nonlinearity associated with each film noticeable differs in the resulting nonlinear effects with respect to the additive response exhibited by the bilayer system. An enhancement of the optical Kerr nonlinearity is predicted for prime number arrays of the studied nanoclusters in a two-wave interaction. We consider that the nanostructured morphology of the thin solid films originates a strong modification of the third-order optical phenomena exhibited by multilayer films based on zinc oxide.
Surface plasmon enhanced third-order optical nonlinearity of Ag nanocomposite film
Energy Technology Data Exchange (ETDEWEB)
Singh, Vijender [Department of Applied Science, N.C. College of Engineering, Israna, Panipat 132107, Haryana (India); Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.in [Department of Physics, Chaudhary Devi Lal University, Sirsa 125055, Haryana (India)
2014-03-17
We obtain a large third-order optical nonlinearity (χ{sup (3)} ≈ 10{sup −10}esu) of silver nanoparticles dispersed in polyvinyl alcohol/tetraethyl orthosilicate matrix using single beam z-scan technique at 532 nm by Q-switched Nd:YAG laser. We have shown that mechanisms responsible for third-order optical nonlinearity of Ag nanocomposite film are reverse saturable absorption (RSA) and self-defocusing in the purlieu of surface plasmon resonance (SPR). Optical band-gap and width of SPR band of Ag nanocomposite film decrease with increasing silver concentration, which leads to enhancement of local electric field and hence third-order optical nonlinearity. Optical limiting, due to RSA has also been demonstrated at 532 nm.
Surface plasmon enhanced third-order optical nonlinearity of Ag nanocomposite film
International Nuclear Information System (INIS)
Singh, Vijender; Aghamkar, Praveen
2014-01-01
We obtain a large third-order optical nonlinearity (χ (3) ≈ 10 −10 esu) of silver nanoparticles dispersed in polyvinyl alcohol/tetraethyl orthosilicate matrix using single beam z-scan technique at 532 nm by Q-switched Nd:YAG laser. We have shown that mechanisms responsible for third-order optical nonlinearity of Ag nanocomposite film are reverse saturable absorption (RSA) and self-defocusing in the purlieu of surface plasmon resonance (SPR). Optical band-gap and width of SPR band of Ag nanocomposite film decrease with increasing silver concentration, which leads to enhancement of local electric field and hence third-order optical nonlinearity. Optical limiting, due to RSA has also been demonstrated at 532 nm
Alkali-Responsive Absorption Spectra and Third-Order Optical Nonlinearities of Imino Squaramides
International Nuclear Information System (INIS)
Li Zhong-Yu; Xu Song; Zhou Xin-Yu; Zhang Fu-Shi
2012-01-01
Third-order optical nonlinearities and dynamic responses of two imino squaramides under neutral and base conditions were studied using the femtosecond degenerate four-wave mixing technique at 800 nm. Ultrafast optical responses have been observed and the magnitude of the second-order hyperpolarizabilities of the squaramides has been measured to be as large as 10 −31 esu. The absorption spectra, color of solution, and third-order optical nonlinearities of two imino squaramides change with the addition of sodium hydroxide. The γ value under the base condition for each dye is approximately 1.25 times larger than that under neutral conditions. (fundamental areas of phenomenology(including applications))
Third-order nonlinear optical studies of anthraquinone dyes using a CW He–Ne laser
International Nuclear Information System (INIS)
Pramodini, S; Poornesh, P
2014-01-01
We present investigations on the third-order optical nonlinearity and optical power limiting of anthraquinone dyes. Z-scan measurements were performed using a continuous wave He–Ne laser at 633 nm wavelength as an excitation source. The nonlinear refraction studies exhibited self-defocusing behavior of the dyes. The nonlinear absorption in the dyes was dominated by a reverse saturable absorption process. Self-diffraction ring patterns were observed due to the change in refractive index and thermal lensing. Increase of the electron donating ability of the substituents resulted in enhanced values of the nonlinear optical parameters, establishing the structure–property relationship. The optical limiting study revealed that the dyes possess a lower limiting threshold and clamping level which is very important for eye and sensor protection. Hence, the dyes investigated here emerge as promising candidates for future opto-electronic and photonic device applications such as optical power limiters. (paper)
Third-order nonlinear optical studies of anthraquinone dyes using a CW He-Ne laser
Pramodini, S.; Poornesh, P.
2014-05-01
We present investigations on the third-order optical nonlinearity and optical power limiting of anthraquinone dyes. Z-scan measurements were performed using a continuous wave He-Ne laser at 633 nm wavelength as an excitation source. The nonlinear refraction studies exhibited self-defocusing behavior of the dyes. The nonlinear absorption in the dyes was dominated by a reverse saturable absorption process. Self-diffraction ring patterns were observed due to the change in refractive index and thermal lensing. Increase of the electron donating ability of the substituents resulted in enhanced values of the nonlinear optical parameters, establishing the structure-property relationship. The optical limiting study revealed that the dyes possess a lower limiting threshold and clamping level which is very important for eye and sensor protection. Hence, the dyes investigated here emerge as promising candidates for future opto-electronic and photonic device applications such as optical power limiters.
An, Honglin; Fleming, Simon
2005-05-02
The spatial distribution of second-order nonlinearity in thermally poled optical fibers was characterized by second-harmonic microscopy. The second-order nonlinearity was found to be confined to a thin layer close to the anode surface and progressed further into the silica as the poling time increased. Position uncertainty of the anode metal wire was observed to have an effect, as the nonlinear layers were found not always symmetrically located around the nearest points between the anode and cathode. Optical microscopy results were obtained on etched poled fiber cross-sections and compared with those from second-harmonic microscopy.
Thangaraj, M.; Vinitha, G.; Sabari Girisun, T. C.; Anandan, P.; Ravi, G.
2015-10-01
Optical nonlinearity of metal complexes of p-nitrophenolate (M=Li, Na and K) in ethanol is studied by using a continuous wave (cw) diode pumped Nd:YAG laser (532 nm, 50 mW). The predominant mechanism of observed nonlinearity is thermal in origin. The nonlinear refractive index and the nonlinear absorption coefficient of the samples were found to be in the order of 10-8 cm2/W and 10-3 cm/W respectively. Magnitude of third-order optical parameters varies according to the choice of alkali metal chosen for metal complex formation of p-nitrophenolate. The third-order nonlinear susceptibility was found to be in the order of 10-6 esu. The observed saturable absorption and the self-defocusing effect were used to demonstrate the optical limiting action at 532 nm by using the same cw laser beam.
Energy Technology Data Exchange (ETDEWEB)
Divya Bharathi, M.; Ahila, G.; Mohana, J. [Department of Physics, Presidency College, Chennai 600005 (India); Chakkaravarthi, G. [Department of Physics, CPCL Polytechnic College, Chennai 600068 (India); Anbalagan, G., E-mail: anbu24663@yahoo.co.in [Department of Nuclear Physics, University of Madras, Chennai 600025 (India)
2017-05-01
A neoteric organic third order nonlinear optical material 8-hydroxyquinolinium 2-chloro-5-nitrobenzoate dihydrate (8HQ2C5N) was grown by slow cooling technique using ethanol: water (1:1) mixed solvent. The calculated low value of average etch pit solidity (4.12 × 10{sup 3} cm{sup −2}) indicated that the title crystal contain less defects. From the single crystal X-ray diffraction data, it was endowed that 8HQ2C5N crystal belongs to the monoclinic system with centrosymmetric space group P2{sub 1}/c and the cell parameters values, a = 9.6546 (4) Ǻ, b = 7.1637(3) Ǻ, c = 24.3606 (12) Ǻ, α = γ = 90°, β = 92.458(2)° and volume = 1683.29(13) Ǻ{sup 3}. The FT-IR and FT-Raman spectrum were used to affirm the functional group of the title compound. The chemical structure of 8HQ2C5N was scrutinized by {sup 13}C and {sup 1}H NMR spectral analysis and thermal stability through the differential scanning calorimetry study. Using optical studies the lower cut-off wavelength and optical band gap of 8HQ2C5N were found to be 364 nm and 3.17 eV respectively. Using the single oscillator model suggested by Wemple – Didomenico, the oscillator energy (E{sub o}), the dispersion energy (E{sub d}) and static dielectric constant (ε{sub o}) were estimated. The third-order susceptibility were determined as Im χ{sup (3)} = 2.51 × 10{sup −5} esu and Re χ{sup (3)} = 4.46 × 10{sup −7} esu. The theoretical third-order nonlinear optical susceptibility χ{sup (3)} was calculated and the results were compared with experimental value. Photoluminescence spectrum of 8HQ2C5N crystal showed the yellow emission. The crystal had the single shot laser damage threshold of 5.562 GW/cm{sup 2}. Microhardness measurement showed that 8HQ2C5N belongs to a soft material category. - Highlights: • A new organic single crystals were grown and the crystal structure was reported. • Crystal possess, good transmittance, thermal and mechanical stability. • Single shot LDT value is found to be
Evaluation of third order nonlinear optical parameters of CdS/PVA nanocomposite
Energy Technology Data Exchange (ETDEWEB)
Sharma, Mamta [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160014 (India); Department of Applied Sciences (Physics), UIET, Panjab University, Chandigarh-160014 (India); Tripathi, S. K., E-mail: surya@pu.ac.in, E-mail: surya-tr@yahoo.com [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160014 (India)
2015-06-24
CdS nanoparticles dispersed in PVA are prepared by Chemical method at room temperature. The nonlinear optical parameters such as nonlinear absorption (β), nonlinear refractive index (n{sub 2}) and nonlinear susceptibility (χ{sup 3}) are calculated for this sample by using Z-scan technique. CdS/PVA samples show the two photon absorption mechanism. The third order nonlinear susceptibility is calculated from n{sub 2} and β and is found to be of the order of 10{sup −7} – 10{sup −8} m{sup 2}/V{sup 2}. The larger value of third order nonlinear susceptibility is due to dielectric and quantum confinement effect.
Third-order optical nonlinearity of N-doped graphene oxide nanocomposites at different GO ratios
Kimiagar, Salimeh; Abrinaei, Fahimeh
2018-05-01
In the present work, the influence of GO ratios on the structural, linear and nonlinear optical properties of nitrogen-doped graphene oxide nanocomposites (N-GO NCs) has been studied. N-GO NCs were synthesized by hydrothermal method. The XRD, FTIR, SEM, and TEM results confirmed the reduction of GO by nitrogen doping. The energy band gaps of N-GO NCs calculated from UV-Vis analyzed by using Tauc plot. To obtain further insight into potential optical changes in the N-GO NCs by increasing GO contents, Z-scan analysis was performed with nanosecond Nd-YAG laser at 532 nm. The nonlinear absorption coefficient, β, and nonlinear refractive index, n2, for N-GO NCs at the laser intensity of 113 MW/cm were measured and an increase was observed in both parameters after addition of nitrogen to GO. The third-order nonlinear optical susceptibilities of N-GO NCs were measured in the order of 10-9 esu. The results showed that N-GO NCs have negative nonlinearity which can be controlled by GO contents to obtain the highest values for nonlinear optical parameters. The nonlinear optical results not only imply that N-GO NCs can serve as an important material in the advancing of optoelectronics but also open new possibilities for the design of new graphene-based materials by variation of N and GO ratios as well as manufacturing conditions.
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
Explicit formulation of second and third order optical nonlinearity in the FDTD framework
Varin, Charles; Emms, Rhys; Bart, Graeme; Fennel, Thomas; Brabec, Thomas
2018-01-01
The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell's equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell's equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often requires major modifications to the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model. A formal derivation of the nonlinear Lorentz dispersion equation is equally provided, starting from the quantum mechanical equations describing nonlinear optics in the two-level approximation. With the proposed approach, numerical integration of optical nonlinearity and dispersion in FDTD is intuitive, transparent, and fully explicit. A strong-field formulation is also proposed, which opens an interesting avenue for FDTD-based modelling of the extreme nonlinear optics phenomena involved in laser filamentation and femtosecond micromachining of dielectrics.
Third-order nonlinear optical response of Ag-CdSe/PVA hybrid nanocomposite
Energy Technology Data Exchange (ETDEWEB)
Tripathi, S.K.; Kaur, Ramneek; Kaur, Jaspreet; Sharma, Mamta [Panjab University, Department of Physics, Center of Advanced Study in Physics, Chandigarh (India)
2015-09-15
Hybrid nanocomposites of II-VI semiconductor nanoparticles are gaining great interest in nonlinear optoelectronic devices. Present work includes the characterization of CdSe polymer nanocomposite prepared by chemical in situ technique. From X-ray diffraction, the hexagonal wurtzite structure of nanoparticles has been confirmed with spherical morphology from transmission electron microscopy. Ag-CdSe hybrid polymer nanocomposite has been prepared chemically at different Ag concentrations. The presence of Ag in hybrid nanocomposite has been confirmed with energy-dispersive X-ray spectroscopy. The effect of varying Ag concentration on the linear and nonlinear optical properties of the nanocomposites has been studied. In linear optical parameters, the linear absorption coefficient, refractive index, extinction coefficient and optical conductivity have been calculated. The third-order nonlinear optical properties have been observed with open- and closed-aperture Z-scan technique. The large nonlinear refractive index ∝10{sup -5} cm{sup 2}/W with self-focusing behaviour is due to the combined effect of quantum confinement and thermo-optical effects. The enhanced nonlinearity with increasing Ag content is due to the surface plasmon resonance, which enhances the local electric field near the nanoparticle surface. Thus, Ag-CdSe hybrid polymer nanocomposite has favourable nonlinear optical properties for various optoelectronic applications. (orig.)
Third-order nonlinear optical response of Ag-CdSe/PVA hybrid nanocomposite
International Nuclear Information System (INIS)
Tripathi, S.K.; Kaur, Ramneek; Kaur, Jaspreet; Sharma, Mamta
2015-01-01
Hybrid nanocomposites of II-VI semiconductor nanoparticles are gaining great interest in nonlinear optoelectronic devices. Present work includes the characterization of CdSe polymer nanocomposite prepared by chemical in situ technique. From X-ray diffraction, the hexagonal wurtzite structure of nanoparticles has been confirmed with spherical morphology from transmission electron microscopy. Ag-CdSe hybrid polymer nanocomposite has been prepared chemically at different Ag concentrations. The presence of Ag in hybrid nanocomposite has been confirmed with energy-dispersive X-ray spectroscopy. The effect of varying Ag concentration on the linear and nonlinear optical properties of the nanocomposites has been studied. In linear optical parameters, the linear absorption coefficient, refractive index, extinction coefficient and optical conductivity have been calculated. The third-order nonlinear optical properties have been observed with open- and closed-aperture Z-scan technique. The large nonlinear refractive index ∝10 -5 cm 2 /W with self-focusing behaviour is due to the combined effect of quantum confinement and thermo-optical effects. The enhanced nonlinearity with increasing Ag content is due to the surface plasmon resonance, which enhances the local electric field near the nanoparticle surface. Thus, Ag-CdSe hybrid polymer nanocomposite has favourable nonlinear optical properties for various optoelectronic applications. (orig.)
Expanded porphyrins as third order non-linear optical materials ...
Indian Academy of Sciences (India)
WINTEC
function correlations ... An understanding of the structure–function corre- lations of these expanded porphyrins is an important first step for ... where χ (2) and χ (3) are the quadratic χ (2) (first- order) and χ (3) cubic (second-order) susceptibilities.
An, Hong-Lin; Arriola, Alexander; Gross, Simon; Fuerbach, Alexander; Withford, Michael J.; Fleming, Simon
2014-01-01
The thermal poling technique was applied to optical waveguides embedded in a commercial boro-aluminosilicate glass, resulting in high levels of induced second-order optical nonlinearity. The waveguides were fabricated using the femtosecond laser direct-write technique, and thermally poled samples were characterized with second harmonic optical microscopy to reveal the distribution profile of the induced nonlinearity. It was found that, in contrast to fused silica, the presence of waveguides in boro-aluminosilicate glass led to an enhancement of the creation of the second-order nonlinearity, which is larger in the laser written waveguiding regions when compared to the un-modified substrate. The magnitude of the nonlinear coefficient d33 achieved in the core of the laser-written waveguides, up to 0.2 pm/V, was comparable to that in thermally poled fused silica, enabling the realization of compact integrated electro-optic devices in boro-aluminosilicate glasses.
Spectral dependence of third-order nonlinear optical properties in InN
International Nuclear Information System (INIS)
Ahn, H.; Lee, M.-T.; Chang, Y.-M.
2014-01-01
We report on the nonlinear optical properties of InN measured in a wide near-infrared spectral range with the femtosecond Z-scan technique. The above-bandgap nonlinear absorption in InN is found to originate from the saturation of absorption by the band-state-filling and its cross-section increases drastically near the bandgap energy. With below-bandgap excitation, the nonlinear absorption undergoes a transition from saturation absorption (SA) to reverse-SA (RSA), attributed to the competition between SA of band-tail states and two-photon-related RSA. The measured large nonlinear refractive index of the order of 10 −10 cm 2 /W indicates InN as a potential material for all-optical switching and related applications
Dynamics of Nonlinear Excitation of the High-Order Mode in a Single-Mode Step-Index Optical Fiber
Burdin, V.; Bourdine, A.
2018-04-01
This work is concerned with approximate model of higher-order mode nonlinear excitation in a singlemode silica optical fiber. We present some results of simulation for step-index optical fiber under femtosecond optical pulse launching, which confirm ability of relatively stable higher-order mode excitation in such singlemode optical fiber over sufficiently narrow range of launched optical power variation.
Ultra-fast dynamics in the nonlinear optical response of silver nanoprism ordered arrays.
Sánchez-Esquivel, Héctor; Raygoza-Sanchez, Karen Y; Rangel-Rojo, Raúl; Kalinic, Boris; Michieli, Niccolò; Cesca, Tiziana; Mattei, Giovanni
2018-03-15
In this work we present the study of the ultra-fast dynamics of the nonlinear optical response of a honeycomb array of silver triangular nanoprisms, performed using a femtosecond pulsed laser tuned with the dipolar surface plasmon resonance of the nanoarray. Nonlinear absorption and refraction, and their time-dependence, were explored using the z-scan and time-resolved excite-probe techniques. Nonlinear absorption is shown to change sign with the input irradiance and the behavior was explained on the basis of a three-level model. The response time was determined to be in the picosecond regime. A technique based on a variable frequency chopper was also used in order to discriminate the thermal and electronic contributions to the nonlinearity, which were found to have opposite signs. All these findings propel the investigated nanoprism arrays as good candidates for applications in advanced ultra-fast nonlinear nanophotonic devices.
International Nuclear Information System (INIS)
Ghosh, Binita; Chakraborty, Purushottam
2011-01-01
Silver ion implantations in fused silica glasses have been made to synthesize silver nanocluster-glass composites and a combination of 'Anti-Resonant Interferometric Nonlinear Spectroscopy (ARINS)' and 'Z-scan' techniques has been employed for the measurement of the third-order optical susceptibility of these nanocomposites. The ARINS technique utilizes the dressing of two unequal-intensity counter-propagating pulsed optical beams with differential nonlinear phases, which occurs upon traversing the sample. This difference in phase manifests itself in the intensity-dependent transmission, measurement of which enables us to extract the values of nonlinear refractive index (η 2 ) and nonlinear absorption coefficient (β), finally yielding the real and imaginary parts of the third-order dielectric susceptibility (χ (3) ). The real and imaginary parts of χ (3) are obtained in the orders of 10 -10 e.s.u for silver nanocluster-glass composites. The present value of χ (3) , to our knowledge, is extremely accurate and much more reliable compared to the values previously obtained by other workers for similar silver-glass nanocomposites using only Z-scan technique. Optical nonlinearity has been explained to be due to two-photon absorption in the present nanocomposite glasses and is essentially of electronic origin.
International Nuclear Information System (INIS)
Tomita, Yasuo; Matsushima, Shun-suke; Yamagami, Ryu-ichi; Jinzenji, Taka-aki; Sakuma, Shohei; Liu, Xiangming; Izuishi, Takuya; Shen, Qing
2017-01-01
We describe the nonlinear optical properties of inorganic-organic nanocomposite films in which semiconductor CdSe quantum dots as high as 6.8 vol.% are dispersed. Open/closed Z-scan measurements, degenerate multi-wave mixing and femtosecond pump-probe/transient grating measurements are conducted. It is shown that the observed fifth-order optical nonlinearity has the cascaded third-order contribution that becomes prominent at high concentrations of CdSe QDs. It is also shown that there are picosecond-scale intensity-dependent and nanosecond-scale intensity-independent decay components in absorptive and refractive nonlinearities. The former is caused by the Auger process, while the latter comes from the electron-hole recombination process. (paper)
The third-order nonlinear optical susceptibility of C{sub 60}-derived nanotubes
Energy Technology Data Exchange (ETDEWEB)
Xiangang, Wan [Nanjing Univ. (China). National Lab. of Solid State Microstructures; [Center for Advanced Studies in Science and Technology of Microstructures, Nanjing (China); Jinming, Dong [Nanjing Univ. (China). National Lab. of Solid State Microstructures; [Center for Advanced Studies in Science and Technology of Microstructures, Nanjing (China); Jie, Jiang [Nanjing Univ., JS (China). Dept. of Physics; Xing, D Y [Nanjing Univ., JS (China). Dept. of Physics
1997-02-01
Using the extended Su-Schrieffer-Heeger (SSH) model and the sum-over-state (SOS) method, we have calculated the third-order nonlinear polarizability {gamma} and its dispersion spectra for C{sub 60}-derived nanotubes, which is one of the narrowest tubes. Our numerical calculations indicate that both symmetry and size of the nanotubes have great effect on the third-order nonlinear polarizability {gamma} spectra. We find that with increasing size, both static {gamma} values and dynamical response peak values increase. When the atom number of the C{sub 60}-derived nanotubes is 140, the static {gamma} value is about 65 times larger than that of C{sub 60}, and the highest peak value of {gamma} (at 3{omega} = 3.52 eV) is about three orders larger than that of C{sub 60}. So, C{sub 60}-derived nanotubes may become a kind of good nonlinear optical materials. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Castro, Hemerson P. S.; Alencar, Márcio A. R. C.; Hickmann, Jandir M. [Optics and Materials Group–OPTMA, Universidade Federal de Alagoas, CAIXA POSTAL 2051, 57061-970 Maceió (Brazil); Wender, Heberton [Brazilian Synchrotron National Laboratory (LNLS), CNPEM, Rua Giuseppe Máximo Scolfaro 10.000, 13083-970 Campinas (Brazil); Department of Physics, Universidade Federal do Mato Grosso do Sul, 79070-900, Campo Grande (Brazil); Teixeira, Sergio R. [Institute of Physics, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil); Dupont, Jairton [Laboratory of Molecular Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil)
2013-11-14
The nonlinear optical responses of gold nanoparticles dispersed in castor oil produced by sputtering deposition were investigated, using the thermally managed Z-scan technique. Particles with spherical shape and 2.6 nm of average diameter were obtained and characterized by transmission electron microscopy and small angle X-ray scattering. This colloid was highly stable, without the presence of chemical impurities, neither stabilizers. It was observed that this system presents a large refractive third-order nonlinear response and a negligible nonlinear absorption. Moreover, the evaluation of the all-optical switching figures of merit demonstrated that the colloidal nanoparticles prepared by sputtering deposition have a good potential for the development of ultrafast photonic devices.
Nonlinear Optics and Applications
Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)
2007-01-01
Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.
Pramodini, S.; Sudhakar, Y. N.; SelvaKumar, M.; Poornesh, P.
2014-04-01
We present the synthesis and characterization of third-order optical nonlinearity and optical limiting of the conducting polymers poly (aniline-co-o-anisidine) and poly (aniline-co-pyrrole). Nonlinear optical studies were carried out by employing the z-scan technique using a He-Ne laser operating in continuous wave mode at 633 nm. The copolymers exhibited a reverse saturable absorption process and self-defocusing properties under the experimental conditions. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm W-1, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. The copolymers possess a lower limiting threshold and clamping level, which is essential to a great extent for power limiting devices. Therefore, copolymers of aniline emerge as a potential candidate for nonlinear optical device applications.
Large optical second-order nonlinearity of poled WO3-TeO2 glass.
Tanaka, K; Narazaki, A; Hirao, K
2000-02-15
Second-harmonic generation, one of the second-order nonlinear optical properties of thermally and electrically poled WO>(3)-TeO>(2) glasses, has been examined. We poled glass samples with two thicknesses (0.60 and 0.86 mm) at various temperatures to explore the effects of external electric field strength and poling temperature on second-order nonlinearity. The dependence of second-harmonic intensity on the poling temperature is maximum at a specific poling temperature. A second-order nonlinear susceptibility of 2.1 pm/V was attained for the 0.60-mm-thick glass poled at 250 degrees C. This value is fairly large compared with those for poled silica and tellurite glasses reported thus far. We speculate that the large third-order nonlinear susceptibility of WO>(3)- TeO>(2) glasses gives rise to the large second-order nonlinearity by means of a X((2)) = 3X((3)) E(dc) process.
International Nuclear Information System (INIS)
Fernández-Hernández, Roberto Carlos; Gleason-Villagran, Roberto; Rodríguez-Fernández, Luis; Crespo-Sosa, Alejandro; Cheang-Wong, Juan Carlos; López-Suárez, Alejandra; Oliver, Alicia; Reyes-Esqueda, Jorge Alejandro; Torres-Torres, Carlos; Rangel-Rojo, Raúl
2012-01-01
Au and Ag isotropic and anisotropic nanocomposites were prepared using the ion implantation technique. Their optical properties were studied at several wavelengths in the optical range 300–800 nm, across their plasmon resonances. The linear regime was characterized by measuring the absorption spectrum and the third-order nonlinear regime by means of the Z-scan technique using a tunable picosecond pulsed laser system (26 ps). Open-aperture Z-scan traces show a superposition of different optical nonlinear absorption (NLA) processes in the whole range studied. We associate these phenomena with the excitation of inter- and intra-band electronic transitions, which contribute with a positive sign to NLA, and to the formation of hot-electrons, which contribute with opposite sign to NLA. Closed-aperture traces for measuring nonlinear refraction (NLR) show different signs for Au and Ag samples, and a change of sign in Au is found when purely inter-band transitions are excited. In this work, for the appropriate wavelength, it is worth remarking on the free-electron response to the exciting light and its strong contribution to the nonlinear optical properties for low (intra-band) and high (hot-electrons) irradiances. (paper)
Zeolite Y Films as Ideal Platform for Evaluation of Third-Order Nonlinear Optical Quantum Dots
Directory of Open Access Journals (Sweden)
Hyun Sung Kim
2016-01-01
Full Text Available Zeolites are ideal host material for generation and stabilization of regular ultrasmall quantum dots (QDs array with the size below 1.5 nm. Quantum dots (QDs with high density and extinction absorption coefficient have been expected to give high level of third-order nonlinear optical (3rd-NLO and to have great potential applications in optoelectronics. In this paper, we carried out a systematic elucidation of the third-order nonlinear optical response of various types of QDs including PbSe, PbS, CdSe, CdS, ZnSe, ZnS, Ag2Se, and Ag2S by manipulation of QDs into zeolites Y pores. In this respect, we could demonstrate that the zeolite offers an ideal platform for capability comparison 3rd-NLO response of various types of QDs with high sensitivities.
International Nuclear Information System (INIS)
Sun, Ru; Lu, Yue-Ting; Yan, Bao-Long; Lu, Jian-Mei; Wu, Xing-Zhi; Song, Ying-Lin; Ge, Jian-Feng
2014-01-01
The third-order nonlinear optical properties of poly(methyl methacrylate) films doped with charge flowable 3,7-di(piperidinyl)phenothiazin-5-ium chloride, which tested by Z-scan method with nanosecond laser beam at 532 nm, are reported. Large third-order nonlinear optical susceptibilities (up to 10 −7 esu) and high second hyperpolarizabilities (up to 10 −27 esu) are found. The third-order nonlinear absorptions change from reverse saturated absorptions to saturated absorptions with different percentage of the phenothiazinium dye in the poly(methyl methacrylate) films, which can be explained by the accumulation phenomenon of the phenothiazinium. The results suggest that the phenothiazinium salt is a promising material for third order non-linear applications. - Highlights: • Phenothiazinium containing optical films • Strong third-order nonlinear optical (NLO) absorption • Large third-order NLO susceptibilities
International Nuclear Information System (INIS)
Shen Yuanrang
2011-01-01
This article presents a brief introduction to the birth and early investigations of nonlinear optics, such as second harmonic generation,sum and difference frequency generation, stimulated Raman scattering,and self-action of light etc. Several important research achievements and applications of nonlinear optics are presented as well, including nonlinear optical spectroscopy, phase conjugation and adaptive optics, coherent nonlinear optics, and high-order harmonic generation. In the end, current and future research topics in nonlinear optics are summarized. (authors)
Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides
DEFF Research Database (Denmark)
Reddy, D. V.; Raymer, M. G.; McKinstrie, C. J.
2013-01-01
in a transparent optical network using temporally orthogonal waveforms to encode different channels. We model the process using coupled-mode equations appropriate for wave mixing in a uniform second-order nonlinear optical medium pumped by a strong laser pulse. We find Green functions describing the process...... in this optimal regime. We also find an operating regime in which high-efficiency frequency conversion without temporal-shape selectivity can be achieved while preserving the shapes of a wide class of input pulses. The results are applicable to both classical and quantum frequency conversion....
Third-order nonlinear optical properties of thin sputtered gold films
Xenogiannopoulou, E.; Aloukos, P.; Couris, S.; Kaminska, E.; Piotrowska, A.; Dynowska, E.
2007-07-01
Au films of thickness ranging between 5 and 52 nm were prepared by sputtering on quartz substrates and their third-order nonlinear optical response was investigated by Optical Kerr effect (OKE) and Z-scan techniques using 532 nm, 35 ps laser pulses. All prepared films were characterized by XRD, AFM and UV-VIS-NIR spectrophotometry while their third-order susceptibility χ(3) was measured and found to be of the order of 10 -9 esu. The real and imaginary parts of the third-order susceptibility were found in very good agreement with experimental results and theoretical predictions reported by Smith et al. [D.D. Smith, Y. Yoon, R.W. Boyd, Y.K. Cambell, L.A. Baker, R.M. Crooks, M. George, J. Appl. Phys. 86 (1999) 6200].
International Nuclear Information System (INIS)
Larciprete, M.C.; Passeri, D.; Michelotti, F.; Paoloni, S.; Sibilia, C.; Bertolotti, M.; Belardini, A.; Sarto, F.; Somma, F.; Lo Mastro, S.
2005-01-01
We investigated second order optical nonlinearity of zinc oxide thin films, grown on glass substrates by the dual ion beam sputtering technique under different deposition conditions. Linear optical characterization of the films was carried out by spectrophotometric optical transmittance and reflectance measurements, giving the complex refractive index dispersion. Resistivity of the films was determined using the four-point probe sheet resistance method. Second harmonic generation measurements were performed by means of the Maker fringes technique where the fundamental beam was originated by nanosecond laser at λ=1064 nm. We found a relatively high nonlinear optical response, and evidence of a dependence of the nonlinear coefficient on the deposition parameters for each sample. Moreover, the crystalline properties of the films were investigated by x-ray diffraction measurements and correlation with second order nonlinearity were analyzed. Finally, we investigated the influence of the oxygen flow rate during the deposition process on both the second order nonlinearity and the structural properties of the samples
International Nuclear Information System (INIS)
Petris, Adrian I.; Vlad, Valentin I.
2010-03-01
We present a theoretical analysis of open aperture reflection Z-scan in nonlinear media with third-, fifth-, and higher-order nonlinearities. A general analytical expression for the normalized reflectance when third-, fifth- and higher-order optical nonlinearities are excited is derived and its consequences on RZ-scan in media with high-order nonlinearities are discussed. We show that by performing RZ-scan experiments at different incident intensities it is possible to put in evidence the excitation of different order nonlinearities in the medium. Their contributions to the overall nonlinear response can be discriminated by using formulas derived by us. A RZ-scan numerical simulation using these formulas and data taken from literature, measured by another method for the third-, fifth-, and seventh-order nonlinear refractive indices of As 2 S 3 chalcogenide glass, is performed. (author)
Nonlinear optics in the LP(02) higher-order mode of a fiber.
Chen, Y; Chen, Z; Wadsworth, W J; Birks, T A
2013-07-29
The distinct disperion properties of higher-order modes in optical fibers permit the nonlinear generation of radiation deeper into the ultraviolet than is possible with the fundamental mode. This is exploited using adiabatic, broadband mode convertors to couple light efficiently from an input fundamental mode and also to return the generated light to an output fundamental mode over a broad spectral range. For example, we generate visible and UV supercontinuum light in the LP(02) mode of a photonic crystal fiber from sub-ns pulses with a wavelength of 532 nm.
Studies of Second Order Optical Nonlinearities of 4-Aminobenzophenone (ABP) Single Crystal Films
Bhowmik, Achintya; Thakur, Mrinal
1998-03-01
Specific organic materials exhibit very high second order optical susceptibilities. Growth of single crystal films of these materials and characterization of nonlinear optical properties are necessary for implementation of device applications. We have grown large-area films ( 1 cm^2 area, 4 μm thick) of ABP by a modification of the shear method. Single crystal nature of the films was confirmed by polarized optical microscopy. X-ray diffraction analysis showed a [100] surface orientation. The absorption spectra revealed transparency from 390 nm to 1940 nm. Significant elements of the second order optical susceptibility tensor were measured by detailed SHG experiments using a Nd:YAG laser (1064 nm, 100 ps, 82 MHz). Second-harmonic power was measured using lock-in detection with carefully selected polarization conditions while the film was rotated about the propagation direction. Using LiNbØas the reference, d-coefficients of ABP were found to be d_23=7.2 pm/V and d_22=0.7 pm/V. Type-I and type-II phase-matching directions were identified on the film by analyzing the optical indicatrix surfaces at fundamental and second-harmonic frequencies.
International Nuclear Information System (INIS)
Li Yong; Lu Jing; Cui Xiaobing; Xu Jiqing; Li Kechang; Sun Huaying; Li Guanghua; Pan Lingyun; Yang Qingxin
2005-01-01
Both the homometal cluster [P(ph 4 )] 2 [Mo 2 O 2 (μ-S) 2 (S 2 ) 2 ] (1) and [Mo 2 O 2 (μ-S) 2 (Et 2 dtc) 2 ] (2) (Et 2 dtc=diethyl-dithiocarbamate) were successfully synthesized by low-temperature solid-state reactions. X-ray single-crystal diffraction studies suggest that compound (1) is a dinuclear anion cluster, and compound (2) is a dinuclear neutral cluster. The two compounds were characterized by elemental analyses, IR spectra and UV-Vis spectra. The third-order non-linear optical (NLO) properties of the clusters were also investigated and all exhibited nice non-linear absorption and self-defocusing performance with moduli of the hyperpolarizabilities 5.145x10 -30 esu for (1) and 5.428x10 -30 esu for (2)
Photo-physics of third-order nonlinear optical processes in organic dyes
International Nuclear Information System (INIS)
Delysse, Stephane
1997-01-01
We study some aspects of the nonlinear picosecond photo-physics in organic dyes using Kerr ellipsometry. The aim is to establish link between the photo-physics and nonlinear optics in these compounds. First, we study coherent processes directly linked to the third-order susceptibility. Thus, we measure two-photon absorption spectra of large internal charge transfer dyes. We take into account all coupling between three electronic states which can interfere to explain the particular response of some stilbene dyes. On the second hand, we expose a more photophysical approach to determine the S 1 → S n transition energies and moments using the measurement of excited state absorption cross sections. These results allow the prediction of the susceptibilities relevant to alternative nonlinear optical methods. Nevertheless, the stationary approach hides the complex relaxation processes which can take place in organic dyes. As an illustration, we study the formation and disappearance of a TICT (Twisted intramolecular charge transfer) in a pyrylium salt in solvents of increasing viscosity. (author) [fr
Karthigha, S.; Krishnamoorthi, C.
2018-03-01
An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.
International Nuclear Information System (INIS)
Pramodini, S; Poornesh, P; Sudhakar, Y N; SelvaKumar, M
2014-01-01
We present the synthesis and characterization of third-order optical nonlinearity and optical limiting of the conducting polymers poly (aniline-co-o-anisidine) and poly (aniline-co-pyrrole). Nonlinear optical studies were carried out by employing the z-scan technique using a He–Ne laser operating in continuous wave mode at 633 nm. The copolymers exhibited a reverse saturable absorption process and self-defocusing properties under the experimental conditions. The estimated values of β eff , n 2 and χ (3) were found to be of the order of 10 −2 cm W −1 , 10 -5 esu and 10 −7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. The copolymers possess a lower limiting threshold and clamping level, which is essential to a great extent for power limiting devices. Therefore, copolymers of aniline emerge as a potential candidate for nonlinear optical device applications. (paper)
International Nuclear Information System (INIS)
Papon, G.; Marquestaut, N.; Royon, A.; Canioni, L.; Petit, Y.; Dussauze, M.; Rodriguez, V.; Cardinal, T.
2014-01-01
We depict a new approach for the localized creation in three dimensions (3D) of a highly demanded nonlinear optical function for integrated optics, namely second harmonic generation. We report on the nonlinear optical characteristics induced by single-beam femtosecond direct laser writing in a tailored silver-containing phosphate glass. The original spatial distribution of the nonlinear pattern, composed of four lines after one single laser writing translation, is observed and modeled with success, demonstrating the electric field induced origin of the second harmonic generation. These efficient second-order nonlinear structures (with χ eff (2) ∼ 0.6 pm V −1 ) with sub-micron scale are impressively stable under thermal constraint up to glass transition temperature, which makes them very promising for new photonic applications, especially when 3D nonlinear architectures are desired
Light-induced second-order nonlinear optical properties of molecular materials
International Nuclear Information System (INIS)
Fiorini, Celine
1995-01-01
We present a theoretical and experimental study of all-optical orientation. The work focusses more particularly on the realization of poled polymers for quadratic nonlinear optics. It is shown that the coherent superposition of two beams at fundamental and second harmonic frequencies results in the breaking of the former centro-symmetry of the material. The source is a Neodymium-YAG laser delivering 25 ps pulses at 1064 nm. The incident second-harmonic beam is obtained by frequency doubling in a KDP crystal. Using a phase conjugation configuration based on six-wave mixing interactions, we have Investigated in detail the mechanism of photo-induced second-harmonic generation in initially centrosymmetric materials. It is shown that the light-induced non-centro-symmetry is due to an orientational hole burning of the molecules. The process involves interference effects between one and two photon absorptions. Experiments are performed in various solutions of an azo-dye molecule (Disperse Red One). The possibility of inducing quasi-permanent second-order susceptibility in a PMMA polymer matrix doped with the azo-dye molecule of Disperse Red One is also demonstrated. The method of all-optical poling consists in a seeding type process with alternate writing and probing phases. Permanent orientation of the molecules can be described in terms of photo-isomerization processes. It leads to a poling of the molecules with a spatial modulation which is phase-matched for frequency doubling. Relevant parameters leading to an efficient polarisation of the sample are identified. A theoretical modelling of the different phenomena observed is proposed. Last part of the study is devoted to an enlarged study of the potentialities offered by this dual-frequency holography technique: orientation of octupolar molecules, polarisation of highly transparent materials. We also show that the new techniques developed during this work can also reveal to be complementary methods for nonlinear
Physical origin of third order non-linear optical response of porphyrin nanorods
International Nuclear Information System (INIS)
Mongwaketsi, N.; Khamlich, S.; Pranaitis, M.; Sahraoui, B.; Khammar, F.; Garab, G.; Sparrow, R.; Maaza, M.
2012-01-01
The non-linear optical properties of porphyrin nanorods were studied using Z-scan, Second and Third harmonic generation techniques. We investigated in details the heteroaggregate behaviour formation of [H 4 TPPS 4 ] 2- and [SnTPyP] 2+ mixture by means of the UV-VIS spectroscopy and aggregates structure and morphology by transmission electron microscopy. The porphyrin nanorods under investigation were synthesized by self assembly and molecular recognition method. They have been optimized in view of future application in the construction of the light harvesting system. The focus of this study was geared towards understanding the influence of the type of solvent used on these porphyrins nanorods using spectroscopic and microscopic techniques. Highlights: ► We synthesized porphyrin nanorods by self assembly and molecular recognition method. ► TEM images confirmed solid cylindrical shapes. ► UV-VIS spectroscopy showed the decrease in the absorbance peaks of the precursors. ► The enhanced third-order nonlinearities were observed.
Nonlinear optics at interfaces
International Nuclear Information System (INIS)
Chen, C.K.
1980-12-01
Two aspects of surface nonlinear optics are explored in this thesis. The first part is a theoretical and experimental study of nonlinear intraction of surface plasmons and bulk photons at metal-dielectric interfaces. The second part is a demonstration and study of surface enhanced second harmonic generation at rough metal surfaces. A general formulation for nonlinear interaction of surface plasmons at metal-dielectric interfaces is presented and applied to both second and third order nonlinear processes. Experimental results for coherent second and third harmonic generation by surface plasmons and surface coherent antiStokes Raman spectroscopy (CARS) are shown to be in good agreement with the theory
Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong
2015-01-01
This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.
ONIOM Investigation of the Second-Order Nonlinear Optical Responses of Fluorescent Proteins.
de Wergifosse, Marc; Botek, Edith; De Meulenaere, Evelien; Clays, Koen; Champagne, Benoît
2018-05-17
The first hyperpolarizability (β) of six fluorescent proteins (FPs), namely, enhanced green fluorescent protein, enhanced yellow fluorescent protein, SHardonnay, ZsYellow, DsRed, and mCherry, has been calculated to unravel the structure-property relationships on their second-order nonlinear optical properties, owing to their potential for multidimensional biomedical imaging. The ONIOM scheme has been employed and several of its refinements have been addressed to incorporate efficiently the effects of the microenvironment on the nonlinear optical responses of the FP chromophore that is embedded in a protective β-barrel protein cage. In the ONIOM scheme, the system is decomposed into several layers (here two) treated at different levels of approximation (method1/method2), from the most elaborated method (method1) for its core (called the high layer) to the most approximate one (method2) for the outer surrounding (called the low layer). We observe that a small high layer can already account for the variations of β as a function of the nature of the FP, provided the low layer is treated at an ab initio level to describe properly the effects of key H-bonds. Then, for semiquantitative reproduction of the experimental values obtained from hyper-Rayleigh scattering experiments, it is necessary to incorporate electron correlation as described at the second-order Møller-Plesset perturbation theory (MP2) level as well as implicit solvent effects accounted for using the polarizable continuum model (PCM). This led us to define the MP2/6-31+G(d):HF/6-31+G(d)/IEFPCM scheme as an efficient ONIOM approach and the MP2/6-31+G(d):HF/6-31G(d)/IEFPCM as a better compromise between accuracy and computational needs. Using these methods, we demonstrate that many parameters play a role on the β response of FPs, including the length of the π-conjugated segment, the variation of the bond length alternation, and the presence of π-stacking interactions. Then, noticing the small diversity
Third-order nonlinear optical properties of GeSe2-Ga2Se3-PbI2 glasses
International Nuclear Information System (INIS)
Tang Gao; Liu Cunming; Luo Lan; Chen Wei
2010-01-01
The third-order nonlinear optical (NLO) properties of new selenium-based GeSe 2 -Ga 2 Se 3 -PbI 2 glasses have been measured using the optical Kerr effect (OKE) technique, with picosecond and femtosecond laser pulses. The 0.70GeSe 2 -0.15Ga 2 Se 3 -0.15PbI 2 glass has the largest third-order optical nonlinear susceptibility in GeSe 2 -Ga 2 Se 3 -PbI 2 glass system with χ (3) of 5.28x10 12 esu. In addition, the response time of glasses is sub-picosecond, which is predominantly associated with electron cloud. Local structure of the glasses has been identified by using Raman studies, while the origins of the observed nonlinear optical response are discussed. The [Ge(Ga)Se 4 ] tetrahedral and lone-pair electrons from highly polarizable Pb atom in glasses play an important role in enhanced NLO response. These results as well as their good chemical stability indicate that GeSe 2 -Ga 2 Se 3 -PbI 2 glasses are promising materials for photonic applications of third-order nonlinear optical signal processing.
Almeida, Gustavo F. B.; Almeida, Juliana M. P.; Martins, Renato J.; De Boni, Leonardo; Arnold, Craig B.; Mendonca, Cleber R.
2018-01-01
The development of advanced photonics devices requires materials with large optical nonlinearities, fast response times and high optical transparency, while at the same time allowing for the micro/nano-processing needed for integrated photonics. In this context, glasses have been receiving considerable attention given their relevant optical properties which can be specifically tailored by compositional control. Corning Gorilla® Glass (strengthened alkali aluminosilicate glass) is well-known for its use as a protective screen in mobile devices, and has attracted interest as a potential candidate for optical devices. Therefore, it is crucial not only to expand the knowledge on the fabrication of waveguides in Gorilla Glass under different regimes, but also to determine its nonlinear optical response, both using fs-laser pulses. Thus, this paper reports, for the first time, characterization of the third-order optical nonlinearities of Gorilla Glass, as well as linear and nonlinear characterization of waveguide written with femtosecond pulses under the low repetition rate regime (1 kHz).
Energy Technology Data Exchange (ETDEWEB)
Tan, Min; Liu, Qiming, E-mail: qmliu@whu.edu.cn [Wuhan University, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology (China)
2016-12-15
Taking advantage of the channel confinement of mesoporous films to prevent the agglomeration of Ag nanoparticles to achieve large third-order optical nonlinearity in amorphous materials, Ag-loaded composite mesoporous silica film was prepared by the electrochemical deposition method on ITO substrate. Ag ions were firstly transported into the channels of mesoporous film by the diffusion and binding force of channels, which were reduced to nanoparticles by applying suitable voltage. The existence and uniform distribution of Ag nanoparticles ranging in 1–10 nm in the mesoporous silica thin films were exhibited by UV spectrophotometer, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The third-order optical nonlinearity induced by Ag nanoparticles was studied by the Z-scan technique. Due to the local field surface plasmon resonance, the maximum third-order nonlinear optical susceptibility of Ag-loaded composite mesoporous silica film is 1.53×10{sup −10} esu, which is 1000 times larger than that of the Ag-contained chalcogenide glasses which showed large nonlinearity in amorphous materials.
New organic materials for optics: optical storage and nonlinear optics
International Nuclear Information System (INIS)
Gan, F.
1996-01-01
New organic materials have received considerable attention recently, due to their easy preparation and different variety. The most application fields in optics are optical storage and nonlinear optics. In optical storage the organic dyes have been used for example, in record able and erasable compact disks (CD-R, CD-E) nonlinear optical effects, such as nonlinear optical absorption, second and third order optical absorption, second and third order optical nonlinearities, can be applied for making optical limiters, optical modulators, as well as laser second and third harmonic generations. Due to high value of optical absorption and optical nonlinearity organic materials are always used as thin films in optical integration. In this paper the new experimental results have been presented, and future development has been also discussed. (author)
International Nuclear Information System (INIS)
Xian-Qiong, Zhong; An-Ping, Xiang
2010-01-01
Utilizing the linear-stability analysis, this paper analytically investigates and calculates the condition and gain spectra of cross-phase modulation instability in optical fibres in the case of exponential saturable nonlinearity and high-order dispersion. The results show that, the modulation instability characteristics here are similar to those of conventional saturable nonlinearity and Kerr nonlinearity. That is to say, when the fourth-order dispersion has the same sign as that of the second-order one, a new gain spectral region called the second one which is far away from the zero point may appear. The existence of the exponential saturable nonlinearity will make the spectral width as well as the peak gain of every spectral region increase with the input powers before decrease. Namely, for every spectral regime, this may lead to a unique value of peak gain and spectral width for two different input powers. In comparison with the case of conventional saturable nonlinearity, however, when the other parameters are the same, the variations of the spectral width and the peak gain with the input powers will be faster in case of exponential saturable nonlinearity. (classical areas of phenomenology)
The Effects of Five-Order Nonlinear on the Dynamics of Dark Solitons in Optical Fiber
Directory of Open Access Journals (Sweden)
Feng-Tao He
2013-01-01
Full Text Available We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton’s dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1 if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton’s width increases, while its amplitude and wave velocity reduce. (2 If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton’s width increases, while its amplitude and the wave velocity reduce.
International Nuclear Information System (INIS)
Lorin, E; Bandrauk, A D; Lytova, M; Memarian, A
2015-01-01
This paper is dedicated to the exploration of non-conventional nonlinear optics models for intense and short electromagnetic fields propagating in a gas. When an intense field interacts with a gas, usual nonlinear optics models, such as cubic nonlinear Maxwell, wave and Schrödinger equations, derived by perturbation theory may become inaccurate or even irrelevant. As a consequence, and to include in particular the effect of free electrons generated by laser–molecule interaction, several heuristic models, such as UPPE, HOKE models, etc, coupled with Drude-like models [1, 2], were derived. The goal of this paper is to present alternative approaches based on non-heuristic principles. This work is in particular motivated by the on-going debate in the filamentation community, about the effect of high order nonlinearities versus plasma effects due to free electrons, in pulse defocusing occurring in laser filaments [3–9]. The motivation of our work goes beyond filamentation modeling, and is more generally related to the interaction of any external intense and (short) pulse with a gas. In this paper, two different strategies are developed. The first one is based on the derivation of an evolution equation on the polarization, in order to determine the response of the medium (polarization) subject to a short and intense electromagnetic field. Then, we derive a combined semi-heuristic model, based on Lewenstein’s strong field approximation model and the usual perturbative modeling in nonlinear optics. The proposed model allows for inclusion of high order nonlinearities as well as free electron plasma effects. (paper)
Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen
2018-01-01
In mono-mode optical fibers, the higher order non-linear Schrödinger equation (NLSE) describes the propagation of enormously short light pulses. We constructed optical solitons and, solitary wave solutions of higher order NLSE mono-mode optical fibers via employing modified extended mapping method which has important applications in Mathematics and physics. Furthermore, the formation conditions are also given on parameters in which optical bright and dark solitons can exist for this media. The moment of the obtained solutions are also given graphically, that helps to realize the physical phenomena's of this model. The modulation instability analysis is utilized to discuss the model stability, which verifies that all obtained solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method. The method can also be functional to other sorts of higher order nonlinear problems in contemporary areas of research.
Liu, Ansheng; Chuang, S.-L.; Ning, C. Z.; Woo, Alex (Technical Monitor)
1999-01-01
Second-order nonlinear optical processes including second-harmonic generation, optical rectification, and difference-frequency generation associated with intersubband transitions in wurtzite GaN/AlGaN quantum well (QW) are investigated theoretically. Taking into account the strain-induced piezoelectric (PZ) effects, we solve the electronic structure of the QW from coupled effective-mass Schrodinger equation and Poisson equation including the exchange-correlation effect under the local-density approximation. We show that the large PZ field in the QW breaks the symmetry of the confinement potential profile and leads to large second-order susceptibilities. We also show that the interband optical pump-induced electron-hole plasma results in an enhancement in the maximum value of the nonlinear coefficients and a redshift of the peak position in the nonlinear optical spectrum. By use of the difference-frequency generation, THz radiation can be generated from a GaN/Al(0.75)Ga(0.25)N with a pump laser of 1.55 micron.
Agrawal, Govind
2012-01-01
Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o
International Nuclear Information System (INIS)
Carrillo-Delgado, C; Torres-Torres, C; García-Merino, J A; García-Gil, C I; Khomenko, A V; Trejo-Valdez, M; Martínez-Gutiérrez, H; Torres-Martínez, R
2016-01-01
Measurements of the third-order nonlinear optical properties exhibited by a ZnO thin solid film deposited on a SnO 2 substrate are presented. The samples were prepared by a spray pyrolysis processing route. Scanning electron microscopy analysis and UV–Vis spectroscopy studies were carried out. The picosecond response at 1064 nm was explored by the z-scan technique. A large optical Kerr effect with two-photon absorption was obtained. The inhibition of the nonlinear optical absorption together with a noticeable enhancement in the optical Kerr effect in the sample was achieved by the incorporation of Au nanoparticles into the ZnO film. Additionally, a two-wave mixing configuration at 532 nm was performed and an optical Kerr effect was identified as the main cause of the nanosecond third-order optical nonlinearity. The relaxation time of the photothermal response of the sample was estimated to be about 1 s when the sample was excited by nanosecond single-shots. The rotation of the sample during the nanosecond two-wave mixing experiments was analyzed. It was stated that a non-monotonic relation between rotating frequency and pulse repetition rate governs the thermal contribution to the nonlinear refractive index exhibited by a rotating film. Potential applications for switching photothermal interactions in rotating samples can be contemplated. A rotary logic system dependent on Kerr transmittance in a two-wave mixing experiment was proposed. (paper)
New Chiral Bis-Dipolar 6,6'-Disubstituted-Binaphthol Derivatives for Second-Order Nonlinear Optics
DEFF Research Database (Denmark)
Deussen, Heinz-Josef; Boutton, Carlo; Thorup, Niels
1998-01-01
(S)everal chiral molecules with C-2 symmetry derived from two geometries of the binaphthol (BN) system substituted with different accepters have been synthesized in order to study the possibility of producing noncentrosymmetric crystals formed from these chiral structures. All the molecules possess...... cancel out exactly despite the noncentrosymmetry. The crystal structure of racemic 9,14-dicyanodinaphtho[2,1-d:1',2'-f][1,3]-dioxepin (2b) was found to be centrosymmetric. The new compounds were investigated for second-harmonic generation (including BN derivatives reported earlier) by the Kurtz......-Perry powder test to evaluate the second-order nonlinear optical (NLO) properties of polycrystalline samples. Although chirality ensures noncentrosymmetric crystals, only modest (approximate to 2-methyl-4-nitroaniline) or no nonlinearities were observed in the powder test, For a representative selection...
Hanamura, Eiichi; Yamanaka, Akio
2007-01-01
This graduate-level textbook gives an introductory overview of the fundamentals of quantum nonlinear optics. Based on the quantum theory of radiation, Quantum Nonlinear Optics incorporates the exciting developments in novel nonlinear responses of materials (plus laser oscillation and superradiance) developed over the past decade. It deals with the organization of radiation field, interaction between electronic system and radiation field, statistics of light, mutual manipulation of light and matter, laser oscillation, dynamics of light, nonlinear optical response, and nonlinear spectroscopy, as well as ultrashort and ultrastrong laser pulse. Also considered are Q-switching, mode locking and pulse compression. Experimental and theoretical aspects are intertwined throughout.
Saravanan, M.; Abraham Rajasekar, S.
2016-04-01
The crystals (benzaldehyde 4-nitro phenyl hydrazone (BPH)) appropriate for NLO appliance were grown by the slow cooling method. The solubility and metastable zone width measurement of BPH specimen was studied. The material crystallizes in the monoclinic crystal system with noncentrosymmetric space group of Cc. The optical precision in the whole visible region was found to be excellent for non-linear optical claim. Excellence of the grown crystal is ascertained by the HRXRD and etching studies. Laser Damage Threshold and Photoluminescence studies designate that the grown crystal contains less imperfection. The mechanical behaviour of BPH sample at different temperatures was investigated to determine the hardness stability of the grown specimen. The piezoelectric temperament and the relative Second Harmonic Generation (for diverse particle sizes) of the material were also studied. The dielectric studies were executed at varied temperatures and frequencies to investigate the electrical properties. Photoconductivity measurement enumerates consummate of inducing dipoles due to strong incident radiation and also divulge the nonlinear behaviour of the material. The third order nonlinear optical properties of BPH crystals were deliberate by Z-scan method.
Lugiato, Luigi; Brambilla, Massimo
2015-01-01
Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.
Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen
2017-12-01
In optical fibers, the higher order non-linear Schrödinger equation (NLSE) with cubic quintic nonlinearity describes the propagation of extremely short pulses. We constructed bright and dark solitons, solitary wave and periodic solitary wave solutions of generalized higher order NLSE in cubic quintic non Kerr medium by applying proposed modified extended mapping method. These obtained solutions have key applications in physics and mathematics. Moreover, we have also presented the formation conditions on solitary wave parameters in which dark and bright solitons can exist for this media. We also gave graphically the movement of constructed solitary wave and soliton solutions, that helps to realize the physical phenomena's of this model. The stability of the model in normal dispersion and anomalous regime is discussed by using the modulation instability analysis, which confirms that all constructed solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method.
Maidur, Shivaraj R.; Jahagirdar, Jitendra R.; Patil, Parutagouda Shankaragouda; Chia, Tze Shyang; Quah, Ching Kheng
2018-01-01
We report synthesis, characterizations, structure-property relationships, and third-order nonlinear optical studies for two new chalcone derivatives, (2E)-1-(anthracen-9-yl)-3-(4-bromophenyl)prop-2-en-1-one (Br-ANC) and (2E)-1-(anthracen-9-yl)-3-(4-chlorophenyl)prop-2-en-1-one (Cl-ANC). These derivatives were crystallized in the centrosymmetric monoclinic P21/c crystal structure. The intermolecular interactions of both the crystals were visualized by Hirshfeld surface analyses (HSA). The crystals are thermally stable up to their melting points (180.82 and 191.16 °C for Cl-ANC and Br-ANC, respectively). The geometry optimizations, FT-IR spectra, 1H and 13C NMR spectra, electronic absorption spectra, electronic transitions, and HOMO-LUMO energy gaps were studied by Density Functional Theory (DFT) at B3LYP/6-311+G(d, p) level. The theoretical results provide excellent agreement with experimental findings. The electric dipole moments, static polarizabilities, molecular electrostatic potentials (MEP) and global chemical reactivity descriptors (GCRD) were also theoretically computed. The materials exhibited good nonlinear absorption (NLA), nonlinear refraction (NLR) and optical limiting (OL) behavior under diode-pumped solid-state (DPSS) continuous wave (CW) laser excitation (532 nm and 200 mW). The NLO parameters such as NLA coefficient (β∼10-5 cmW-1), NLR index (n2∼10-10 cm2 W-1) and third-order NLO susceptibilities (χ(3) ∼10-7 esu) were measured. Further, we estimated one-photon and two-photon figures of merit, which satisfy the demands (W > 1 and T < 1) for all-optical switching. Thus, the present chalcone derivatives with anthracene moiety are potential materials for OL and optical switching applications.
Second-order nonlinearity induced transparency.
Zhou, Y H; Zhang, S S; Shen, H Z; Yi, X X
2017-04-01
In analogy to electromagnetically induced transparency, optomechanically induced transparency was proposed recently in [Science330, 1520 (2010)SCIEAS0036-807510.1126/science.1195596]. In this Letter, we demonstrate another form of induced transparency enabled by second-order nonlinearity. A practical application of the second-order nonlinearity induced transparency is to measure the second-order nonlinear coefficient. Our scheme might find applications in quantum optics and quantum information processing.
Nonlinear optics principles and applications
Li, Chunfei
2017-01-01
This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of “slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of the optics, optoelectronics, fiber communication, information tech...
Energy Technology Data Exchange (ETDEWEB)
Sivakumar, B.; Mohan, R. [Preidency College, Bangalore (India); Raj, S. Gokul [RR and Dr. SR Technical Univ., Avadi (India); Kumar, G. Ramesh [Anna Univ., Arni (India)
2012-11-15
Single crystals of lithium potassium phthalate (LiKP) were successfully grown from aqueous solution by solvent evaporation technique. The grown crystals were characterized by single crystal X-ray diffraction. The lithium potassium phthalate C{sub 16} H{sub 12} K Li{sub 3} O{sub 11} belongs to triclinic system with the following unit-cell dimensions at 298(2) K; a = 7.405(5) A; b = 9.878(5) A; c = 13.396(5) A; α = 71.778(5) .deg.; β = 87.300(5) .deg.; γ = 85.405(5) .deg.; having a space group P1. Mass spectrometric analysis provides the molecular weight of the compound and possible ways of fragmentations occurs in the compound. Thermal stability of the crystal was also studied by both simultaneous TGA/DTA analyses. The UV-Vis-NIR spectrum shows a good transparency in the whole of Visible and as well as in the near IR range. Third order nonlinear optical studies have also been studied by Z-scan technique. Nonlinear absorption and nonlinear refractive index were found out and the third order bulk susceptibility of compound was also estimated.
International Nuclear Information System (INIS)
Bahedi, K.; Addou, M.; El Jouad, M.; Sofiani, Z.; Alaoui Lamrani, M.; El Habbani, T.; Fellahi, N.; Bayoud, S.; Dghoughi, L.; Sahraoui, B.; Essaidi, Z.
2009-01-01
Zinc oxide (ZnO) and zirconium doped zinc oxide (ZnO:Zr) thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 500 deg. C using zinc and zirconium chlorides as precursors. Effects of zirconium doping agent and surface roughness on the nonlinear optical properties were investigated in detail using atomic force microscopy (AFM) and third harmonic generation (THG) technique. The best value of nonlinear optical susceptibility χ (3) was obtained from the doped films with less roughness. A strong third order nonlinear optical susceptibility χ (3) = 20.12 x 10 -12 (esu) of the studied films was found for the 3% doped sample.
Green synthesis and third-order nonlinear optical properties of 6-(9H-carbazol-9-yl) hexyl acetate
Chen, Baili; Geng, Feng; Luo, Xuan; Zhong, Quanjie; Zhang, Qingjun; Fang, Yu; Huang, Chuanqun; Yang, Ruizhuang; Shao, Ting; Chen, Shufan
2016-10-01
An extremely simple and green approach for the synthesis of photoelectric material 6-(9H-carbazol-9-yl) hexy-acetate (CHA) has been described in detail. The molecular structure of CHA was identified with Fourier transform infrared (FT-IR) spectra and 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy. The optical absorption of CHA was recorded using ultraviolet-visible (UV-vis) spectrum. Notably, the reaction was accomplished in water medium instead of traditional toxic solvents (e.g., benzene and chloroform). The yield of CHA is up to 99%, which is increased by 13% compared with the traditional method. The approach developed by us makes it possible to achieve commercial production of CHA. Moreover, the thermal stability of CHA was studied with thermogravimetric (TG) and derivative thermogravimetric (DTG) method. The third-order nonlinear optical (NLO) properties of CHAn (obtained by new method) and CHAt (obtained by traditional method) have been studied by a Z-scan technique at 440 nm. The thermal decomposition temperature is above 200 °C. The third-order NLO of CHAn and CHAt are the same. The third-order NLO susceptibility χ (3) and two photon Figures of Merit (FOMs) of CHA are 1.58 × 10-8 (esu) and 4.55, respectively. The results reveal that CHA may be a promising candidate for all-optical switching application.
Nonlinear Optics of Hexaphenyl Nanofibers
DEFF Research Database (Denmark)
Balzer, Frank; Al-Shamery, Katharina; Neuendorf, Rolf
2003-01-01
The nonlinear optical response of films of needle-shaped para-hexaphenyl nanoaggregates on mica surfaces is investigated. Two-photon luminescence as well as optical second harmonic generation (SHG) are observed following excitation with femtosecond pulses at 770 nm. Polarization dependent...... measurements reveal that the nonlinear optical transition dipole moment is oriented with an angle of 75° with respect to the needles long axes. The absolute value of the macroscopic second-order susceptibility, averaged over a size distribution of p-6P nanoaggregates, is estimated to be of the order of 6...
Ganeev, R. A.
2017-08-01
The nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range became a versatile tool for the analysis of the optical, structural and morphological properties of matter. The carbon-contained materials have shown the advanced properties among other studied species, which allowed both the definition of the role of structural properties on the nonlinear optical response and the analysis of the fundamental features of carbon as the attractive material for generation of coherent short-wavelength radiation. We review the studies of the high-order harmonic generation by focusing ultrashort pulses into the plasmas produced during laser ablation of various organic compounds. We discuss the role of ionic transitions of ablated carbon-containing molecules on the harmonic yield. We also show the similarities and distinctions of the harmonic and plasma spectra of organic compounds and graphite. We discuss the studies of the generation of harmonics up to the 27th order (λ = 29.9 nm) of 806 nm radiation in the boron carbide plasma and analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by comparing plasma emission and harmonic spectra from three species. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic.
International Nuclear Information System (INIS)
Tian, Si-Cong; Tong, Cun-Zhu; Zhang, Jin-Long; Shan, Xiao-Nan; Fu, Xi-Hong; Zeng, Yu-Gang; Qin, Li; Ning, Yong-Qiang; Wan, Ren-Gang
2015-01-01
The optical bistability of a triangular quantum dot molecules embedded inside a unidirectional ring cavity is studied. The type, the threshold and the hysteresis loop of the optical bistability curves can be modified by the tunneling parameters, as well as the probe laser field. The linear and nonlinear susceptibilities of the medium are also studied to interpret the corresponding results. The physical interpretation is that the tunneling can induce the quantum interference, which modifies the linear and the nonlinear response of the medium. As a consequence, the characteristics of the optical bistability are changed. The scheme proposed here can be utilized for optimizing and controlling the optical switching process
Directory of Open Access Journals (Sweden)
2008-11-01
Full Text Available A novel poly(urethane-imide (PUI containing dispersed red chromophore was synthesized. The PUI was characterized by FT-IR, UV-Vis, DSC and TGA. The results of DSC and TGA indicated that the PUI exhibited high thermal stability up to its glass-transition temperature (Tg of 196°C and 5% heat weight loss temperature of 229°C. According to UV-Vis spectrum and working curve, the maximum molar absorption coefficient and absorption wavelength were measured. They were used to calculate the third-order nonlinear optical coefficient χ(3. At the same time, the chromophore density of PUI, nonlinear refractive index coefficient and molecular hyperpolarizability of PUI were obtained. The fluorescence spectra of PUI and model compound DR-19 were determined at excitation wavelength 300 nm. The electron donor and acceptor in polymer formed the exciplex through the transfer of the electric charges. The results show that the poly(urethane-imide is a promising candidate for application in optical devices.
Photostable nonlinear optical polycarbonates
Faccini, M.; Balakrishnan, M.; Diemeer, Mart; Torosantucci, Riccardo; Driessen, A.; Reinhoudt, David; Verboom, Willem
2008-01-01
Highly thermal and photostable nonlinear optical polymers were obtained by covalently incorporating the tricyanovinylidenediphenylaminobenzene (TCVDPA) chromophore to a polycarbonate backbone. NLO polycarbonates with different chromophore attachment modes and flexibilities were synthesized. In spite
Nonlinear Optical Terahertz Technology
National Aeronautics and Space Administration — We develop a new approach to generation of THz radiation. Our method relies on mixing two optical frequency beams in a nonlinear crystalline Whispering Gallery Mode...
Institute of Scientific and Technical Information of China (English)
刘孝娟; 封继康; 任爱民
2003-01-01
The equilibrium geometries and UV-visible spectra of a series of donor-C60 molecules were obtained by means of the AM1 and INDO/CI method,on the basis of accurate geometric and electronic structures.The nonlinear second-order optical polarizabilities were calculated using the method INDO/SDCI combined with the Sum-Over-States(SOS) expression.The calculatedβ(λ=1.34μm) values are 28.81,48.56,57.33,66.99,70.85,85.84,and 142.14(×10-30 esu) for the molecules A,B,C,D,E,F and G,respectively.The frontier orbitals were plot for the representative molecules in order to exhibit the intramolecular charge transfer.The results indicate the introduction of thienylethylene can enhance the NLO response and the dimethylaniline-substituted dithienyl-ethylene-C60 (molecule G) possesses the largest NLO second-order optical polarizability.The large β values can be attributed to the charge transfer between the substituents and C60,as well as within the three-dimensional conjugated sphere of C60.
Priyadharshini, A.; Kalainathan, S.
2018-04-01
2-(4-fluorobenzylidene) malononitrile (FBM), an organic third order nonlinear (TONLO) single crystal with the dimensions of 32 × 7 × 11 mm3, has been successfully grown in acetone solution by slow evaporation technique at 35 °C. The crystal system (triclinic), space group (P-1) and crystalline purity of the titular crystal were measured by single crystal and powder X-ray diffraction, respectively. The molecular weight and the multiple functional groups of the FBM material were confirmed through the mass and FT-IR spectral analysis. UV-Vis-NIR spectral study enroles that the FBM crystal exhibits excellent transparency (83%) in the entire visible and near infra-red region with a wide bandgap 2.90 eV. The low dielectric constant (εr) value of FBM crystal is appreciable for microelectronics industry applications. Thermal stability and melting point (130.09 °C) were ascertained by TGA-DSC analysis. The laser-induced surface damage threshold (LDT) value of FBM specimen is found to be 2.14 GW/cm2, it is fairly good compared to other reported NLO crystals. The third - order nonlinear optical character of the FBM crystal was confirmed through the typical single beam Z-scan technique. All these finding authorized that the organic crystal of FBM is favorably suitable for NLO applications.
Fundamentals of nonlinear optical materials
Indian Academy of Sciences (India)
Nonlinear optics; nonlinear polarization; optical fiber communication; optical switch- ing. PACS Nos 42.65Tg; ... The importance of nonlinear optics is to understand the nonlinear behavior in the induced polarization and to ..... but much work in material development and characterization remains to be done. 16. Conclusion.
Near resonant and nonresonant third-order optical nonlinearities of colloidal InP/ZnS quantum dots
Wang, Y.; Yang, X.; He, T. C.; Gao, Y.; Demir, H. V.; Sun, X. W.; Sun, H. D.
2013-01-01
We have investigated the third-order optical nonlinearities of high-quality colloidal InP/ZnS core-shell quantum dots (QDs) using Z-scan technique with femtosecond pulses. The two-photon absorption cross-sections as high as 6.2 × 103 GM are observed at 800 nm (non-resonant regime) in InP/ZnS QDs with diameter of 2.8 nm, which is even larger than those of CdSe, CdS, and CdTe QDs at similar sizes. Furthermore, both of the 2.2 nm and 2.8 nm-sized InP/ZnS QDs exhibit strong saturable absorption in near resonant regime, which is attributed to large exciton Bohr radius in this material. These results strongly suggest the promising potential of InP/ZnS QDs for widespread applications, especially in two-photon excited bio-imaging and saturable absorbing.
Leburn, Christopher; Reid, Derryck
2013-01-01
The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...
Nonlinear optics principles and applications
Rottwitt, Karsten
2014-01-01
IntroductionReview of linear opticsInduced polarizationHarmonic oscillator modelLocal field correctionsEstimated nonlinear responseSummaryTime-domain material responseThe polarization time-response functionThe Born-Oppenheimer approximationRaman scattering response function of silicaSummaryMaterial response in the frequency domain, susceptibility tensorsThe susceptibility tensorThe induced polarization in the frequency domainSum of monochromatic fieldsThe prefactor to the induced polarizationThird-order polarization in the Born-Oppenheimer approximation in the frequency domainKramers-Kronig relationsSummarySymmetries in nonlinear opticsSpatial symmetriesSecond-order materialsThird-order nonlinear materialsCyclic coordinate-systemContracted notation for second-order susceptibility tensorsSummaryThe nonlinear wave equationMono and quasi-monochromatic beamsPlane waves - the transverse problemWaveguidesVectorial approachNonlinear birefringenceSummarySecond-order nonlinear effectsGeneral theoryCoupled wave theoryP...
Multifunctional Bi2ZnOB2O6 single crystals for second and third order nonlinear optical applications
International Nuclear Information System (INIS)
Iliopoulos, K.; Kasprowicz, D.; Majchrowski, A.; Michalski, E.; Gindre, D.; Sahraoui, B.
2013-01-01
Bi 2 ZnOB 2 O 6 nonlinear optical single crystals were grown by means of the Kyropoulos method from stoichiometric melt. The second and third harmonic generation (SHG/THG) of Bi 2 ZnOB 2 O 6 crystals were investigated by the SHG/THG Maker fringes technique. Moreover, SHG microscopy studies were carried out providing two-dimensional SHG images as a function of the incident laser polarization. The high nonlinear optical efficiency combined with the possibility to grow high quality crystals make Bi 2 ZnOB 2 O 6 an excellent candidate for photonic applications
Renugadevi, R.; Kesavasamy, R.
2015-09-01
The growth of organic nonlinear optical (NLO) crystal 2-amino-5-chloropyridinium trichloroacetate (2A5CPTCA) has been synthesized and single crystals have been grown from methanol solvent by slow evaporation technique. The grown crystals were subjected to various characterization analyses in order to find out the suitability for device fabrication. Single crystal X-ray diffraction analysis reveals that 2A5CPTCA crystallizes in monoclinic system with the space group Cc. The grown crystal was further characterized by Fourier transform infrared spectral analysis to find out the functional groups. The nuclear magnetic resonance spectroscopy is a research technique that exploits the magnetic properties of certain atomic nuclei. The optical transparency window in the visible and near-IR (200--1100 nm) regions was found to be good for NLO applications. Thermogravimetric analysis and differential thermal analysis were used to study its thermal properties. The powder second harmonic generation efficiency measurement with Nd:YAG laser (1064 nm) radiation shows that the highest value when compared with the standard potassium dihydrogen phosphate crystal.
Jayaprakash, P.; Sangeetha, P.; Kumari, C. Rathika Thaya; Caroline, M. Lydia
2017-08-01
A nonlinear optical bulk single crystal of L-methionine admixtured D-mandelic acid (LMDMA) has been grown by slow solvent evaporation technique using water as solvent at ambient temperature. The crystallized LMDMA single crystal subjected to single crystal X-ray diffraction study confirmed monoclinic system with the acentric space group P21. The FTIR analysis gives information about the modes of vibration in the various functional groups present in LMDMA. The UV-visible spectral analysis assessed the optical quality and linear optical properties such as extinction coefficient, reflectance, refractive index and from which optical conductivity and electric susceptibility were also evaluated. The frequency doubling efficiency was observed using Kurtz Perry powder technique. A multiple shot laser was utilized to evaluate the laser damage threshold energy of the crystal. Discrete thermodynamic properties were carried out by TG-DTA studies. The hardness, Meyer's index, yield strength, elastic stiffness constant, Knoop hardness, fracture toughness and brittleness index were analyzed using Vickers microhardness tester. Layer growth pattern and the surface defect were examined by chemical etching studies using optical microscope. Fluorescence emission spectrum was recorded and lifetime was also studied. The electric field response of crystal was investigated from the dielectric studies at various temperatures at different frequencies. The third-order nonlinear optical response in LMDMA has been investigated using Z-scan technique with He-Ne laser at 632.8 nm and nonlinear parameters such as refractive index (n2), absorption coefficient (β) and susceptibility (χ3) investigated extensively for they are in optical phase conjucation, high-speed optical switches and optical dielectric devices.
International Nuclear Information System (INIS)
Tian Bo; Gao Yitian; Zhu Hongwu
2007-01-01
Symbolically investigated in this Letter is a variable-coefficient higher-order nonlinear Schroedinger (vcHNLS) model for ultrafast signal-routing, fiber laser systems and optical communication systems with distributed dispersion and nonlinearity management. Of physical and optical interests, with bilinear method extend, the vcHNLS model is transformed into a variable-coefficient bilinear form, and then an auto-Baecklund transformation is constructed. Constraints on coefficient functions are analyzed. Potentially observable with future optical-fiber experiments, variable-coefficient brightons are illustrated. Relevant properties and features are discussed as well. Baecklund transformation and other results of this Letter will be of certain value to the studies on inhomogeneous fiber media, core of dispersion-managed brightons, fiber amplifiers, laser systems and optical communication links with distributed dispersion and nonlinearity management
Nonlinear fibre optics overview
DEFF Research Database (Denmark)
Travers, J. C.; Frosz, Michael Henoch; Dudley, J. M.
2010-01-01
The optical fiber based supercontinuum source has recently become a significant scientific and commercial success, with applications ranging from frequency comb production to advanced medical imaging. This one-of-a-kind book explains the theory of fiber supercontinuum broadening, describes......, provides a background to the associated nonlinear optical processes, treats the generation mechanisms from continuous wave to femtosecond pulse pump regimes and highlights the diverse applications. A full discussion of numerical methods and comprehensive computer code are also provided, enabling readers...
Terahertz semiconductor nonlinear optics
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias
2013-01-01
In this proceedings we describe our recent results on semiconductor nonlinear optics, investigated using single-cycle THz pulses. We demonstrate the nonlinear absorption and self-phase modulation of strong-field THz pulses in doped semiconductors, using n-GaAs as a model system. The THz...... nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...... to a decrease of plasma frequency in semiconductor and produces a substantial modification of THz-range material dielectric function, described by the Drude model. As a result, the nonlinearity of both absorption coefficient and refractive index of the semiconductor is observed. In particular we demonstrate...
Maidur, Shivaraj R.; Patil, Parutagouda Shankaragouda; Rao, S. Venugopal
2018-04-01
In this paper, we present the third-order nonlinear optical (NLO) studies of 1,3-bis(3,4-dimethoxyphenyl)prop-2-en-1-one (abbreviated as VDMC). The chalcone was synthesized by Claisen-Schmidt condensation method. The third-order nonlinear optical properties were evaluated using standard, well-known Z-scan technique under femtosecond laser regime (150 fs, 900 nm) with two different laser repetition rates 500 Hz and 80 MHz. Open aperture studies showed that the molecule possess two photon absorption with the coefficients in the order 10-9 cmW-1. The closed aperture studies have resulted the negative nonlinear refraction with the coefficients in the order 10-14 cm2W-1. The two-photon absorption cross sections were estimated. Optical limiting properties have been studied and the limiting threshold values were found to be in the range 0.86-2.3 mJ/cm2, which suggests that VDMC has better applications in the field of nonlinear optics.
Bharathi, M. Divya; Bhuvaneswari, R.; Srividya, J.; Vinitha, G.; Prithiviraajan, R. N.; Anbalagan, G.
2018-02-01
Single crystals of 8-hydroxyquinolinium 2-carboxy-6-nitrophthalate monohydrate (8HQNP) were obtained from slow evaporation solution growth method using methanol-water (1:1) as a solvent. Powder X-ray diffraction was utilized to compute the unit cell parameters and dislocation density of 8HQNP crystal. The crystalline perfection of the as-grown crystal was investigated by high-resolution X-ray diffraction at room temperature. The molecular structure was analyzed by identifying the functional groups from FT-IR and FT-Raman spectra. The cut-off wavelength and the corresponding optical band gap obtained from an optical spectrum were 376 nm and 3.29 eV respectively. The dispersion nature of refractive index was investigated by the single-oscillator Wemple and Di-Domenico model. Red emission was observed in the photoluminescence spectrum when excited with 376 nm. The low birefringence and high laser damage threshold (8.538 GW/cm2) values dictate the suitability of the crystal for optical devices. Z-scan studies revealed the third order nonlinear absorption coefficient (β) and refractive index (n2) of the 8HQNP crystal. The theoretical value of third order nonlinear susceptibility obtained from density function theory is good accordance with the experimental value. The frontier molecular orbital energy gap decreases with increasing external electric field in different directions which attributed to the enhancement of the second hyperpolarizability. The grown title crystal is thermally stable up to 102 °C which was identified using thermal analysis. Mechanical strength of 8HQNP was estimated by using Vicker's microhardness studies.
Energy Technology Data Exchange (ETDEWEB)
Bahedi, K., E-mail: bahedikhadija@yahoo.com [Laboratoire Optoelectronique et Physico-chimie des Materiaux Universite Ibn Tofail, Faculte des Sciences BP 133 Kenitra 14000, Maroc (Morocco); Addou, M.; El Jouad, M.; Sofiani, Z.; Alaoui Lamrani, M.; El Habbani, T.; Fellahi, N.; Bayoud, S.; Dghoughi, L. [Laboratoire Optoelectronique et Physico-chimie des Materiaux Universite Ibn Tofail, Faculte des Sciences BP 133 Kenitra 14000, Maroc (Morocco); Sahraoui, B.; Essaidi, Z. [Laboratoire POMA, UMR CNRS 6136, Universite d' Angers 2, Bd Lavoisier, 49045 France (France)
2009-02-01
Zinc oxide (ZnO) and zirconium doped zinc oxide (ZnO:Zr) thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 500 deg. C using zinc and zirconium chlorides as precursors. Effects of zirconium doping agent and surface roughness on the nonlinear optical properties were investigated in detail using atomic force microscopy (AFM) and third harmonic generation (THG) technique. The best value of nonlinear optical susceptibility {chi}{sup (3)} was obtained from the doped films with less roughness. A strong third order nonlinear optical susceptibility {chi}{sup (3)} = 20.12 x 10{sup -12} (esu) of the studied films was found for the 3% doped sample.
Saouma, Felix O; Stoumpos, Constantinos C; Kanatzidis, Mercouri G; Kim, Yong Soo; Jang, Joon I
2017-10-05
CsPbBr 3 is a direct-gap semiconductor where optical absorption takes place across the fundamental bandgap, but this all-inorganic halide perovskite typically exhibits above-bandgap emission when excited over an energy level, lying above the conduction-band minimum. We probe this bandgap anomaly using wavelength-dependent multiphoton absorption spectroscopy and find that the fundamental gap is strictly two-photon forbidden, rendering it three-photon absorption (3PA) active. Instead, two-photon absorption (2PA) commences when the two-photon energy is resonant with the optical gap, associated with the level causing the anomaly. We determine absolute nonlinear optical dispersion over this 3PA-2PA region, which can be explained by two-band models in terms of the optical gap. The polarization dependence of 3PA and 2PA is also measured and explained by the relevant selection rules. CsPbBr 3 is highly luminescent under multiphoton absorption at room temperature with marked polarization and wavelength dependence at the 3PA-2PA crossover and therefore has potential for nonlinear optical applications.
Essentials of nonlinear optics
Murti, Y V G S
2014-01-01
Current literature on Nonlinear Optics varies widely in terms of content, style, and coverage of specific topics, relative emphasis of areas and the depth of treatment. While most of these books are excellent resources for the researchers, there is a strong need for books appropriate for presenting the subject at the undergraduate or postgraduate levels in Universities. The need for such a book to serve as a textbook at the level of the bachelors and masters courses was felt by the authors while teaching courses on nonlinear optics to students of both science and engineering during the past two decades. This book has emerged from an attempt to address the requirement of presenting the subject at college level. A one-semester course covering the essentials can effectively be designed based on this.
Nakano, Masayoshi; Kishi, Ryohei; Yoneda, Kyohei; Inoue, Yudai; Inui, Tomoya; Shigeta, Yasuteru; Kubo, Takashi; Champagne, Benoît
2011-08-11
The third-order nonlinear optical (NLO) properties, at the molecular level, the static second hyperpolarizabilities, γ, of supermolecular systems composed of phenalenyl and pyrene rings linked by acetylene units are investigated by employing the long-range corrected spin-unrestricted density functional theory, LC-UBLYP, method. The phenalenyl based superethylene, superallyl, and superbutadiene in their lowest spin states have intermediate diradical characters and exhibit larger γ values than the closed-shell pyrene based superpolyene systems. The introduction of a positive charge into the phenalenyl based superallyl radical changes the sign of γ and enhances its amplitude by a factor of 35. Although such sign inversion is also observed in the allyl radical and cation systems in their ground state equilibrium geometries, the relative amplitude of γ is much different, that is, |γ(regular allyl cation)/γ(regular allyl radical)| = 0.61 versus |γ(phenalenyl based superallyl cation)/γ(phenalenyl based superallyl radical)| = 35. In contrast, the model ethylene, allyl radical/cation, and butadiene systems with stretched carbon-carbon bond lengths (2.0 Å), having intermediate diradical characters, exhibit similar γ features to those of the phenalenyl based superpolyene systems. This exemplifies that the size dependence of γ as well as its sign change by introducing a positive charge on the phenalenyl based superpolyene systems originate from their intermediate diradical characters. In addition, the change from the lowest to the highest π-electron spin states significantly reduces the γ amplitudes of the neutral phenalenyl based superpolyene systems. For phenalenyl based superallyl cation, the sign inversion of γ (from negative to positive) is observed upon switching between the singlet and triplet states, which is predicted to be associated with a modification of the balance between the positive and negative contributions to γ. The present study paves the way
Li, Ming-Zhen; Tian, Bo; Qu, Qi-Xing; Chai, Han-Peng; Liu, Lei; Du, Zhong
2017-12-01
In this paper, under investigation is a coupled variable-coefficient higher-order nonlinear Schrödinger system, which describes the simultaneous propagation of optical pulses in an inhomogeneous optical fiber. Based on the Lax pair and binary Darboux transformation, we present the nondegenerate N-dark-dark soliton solutions. With the graphical simulation, soliton propagation and interaction are discussed with the group velocity dispersion and fourth-order dispersion effects, which affect the velocity but have no effect on the amplitude. Linear, parabolic and periodic one dark-dark solitons are displayed. Interactions between the two solitons are presented as well, which are all elastic.
Gui, Tao; Lu, Chao; Lau, Alan Pak Tao; Wai, P K A
2017-08-21
In this paper, we experimentally investigate high-order modulation over a single discrete eigenvalue under the nonlinear Fourier transform (NFT) framework and exploit all degrees of freedom for encoding information. For a fixed eigenvalue, we compare different 4 bit/symbol modulation formats on the spectral amplitude and show that a 2-ring 16-APSK constellation achieves optimal performance. We then study joint spectral phase, spectral magnitude and eigenvalue modulation and found that while modulation on the real part of the eigenvalue induces pulse timing drift and leads to neighboring pulse interactions and nonlinear inter-symbol interference (ISI), it is more bandwidth efficient than modulation on the imaginary part of the eigenvalue in practical settings. We propose a spectral amplitude scaling method to mitigate such nonlinear ISI and demonstrate a record 4 GBaud 16-APSK on the spectral amplitude plus 2-bit eigenvalue modulation (total 6 bit/symbol at 24 Gb/s) transmission over 1000 km.
Terahertz Nonlinear Optics in Semiconductors
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.
2013-01-01
We demonstrate the nonlinear optical effects – selfphase modulation and saturable absorption of a single-cycle THz pulse in a semiconductor. Resulting from THz-induced modulation of Drude plasma, these nonlinear optical effects, in particular, lead to self-shortening and nonlinear spectral...... breathing of a single-cycle THz pulse in a semiconductor....
Shelkovnikov, Vladimir; Selivanova, Galina; Lyubas, Gleb; Korotaev, Sergey; Shundrina, Inna; Tretyakov, Evgeny; Zueva, Ekaterina; Plekhanov, Alexander; Mikerin, Sergey; Simanchuk, Andrey
2017-07-01
The composite material of new synthesized 4-((4-(N,N-n-dibutylamino) phenyl)diazenyl)-biphenyl-2,3,4-tricarbonitrile (GAS dye) in commercial poly(styrene-co-methyl methacrylate) (PSMMA) was prepared, poled and its nonlinear optical properties compared with DR1 dye were studied. High thermal stability of the composite material was revealed, and the maximal concentration of the chromophore was found to reach ∼20 wt%. The dipole moment, polarizability tensor, and first hyperpolarizability tensor of the investigated dyes were calculated by within the framework of the coupled perturbed density functional theory. A nanosecond second-harmonic generation Maker fringes technique was used which is capable of providing the magnitude of the second-order nonlinearity of optical materials at a wavelength of 1064 nm. For the tested GAS-PSMMA composite material, maximal coefficient d33 was found to be 50 pm/V. The nonlinear optical response, which was achieved here, shows possible usefulness of the GAS dye as a component for molecular design of nonlinear-optical materials with advanced characteristics.
Yumura, Takashi; Yamamoto, Wataru
2017-09-20
We employed density functional theory (DFT) calculations with dispersion corrections to investigate energetically preferred alignments of certain p,p'-dimethylaminonitrostilbene (DANS) molecules inside an armchair (m,m) carbon nanotube (n × DANS@(m,m)), where the number of inner molecules (n) is no greater than 3. Here, three types of alignments of DANS are considered: a linear alignment in a parallel fashion and stacking alignments in parallel and antiparallel fashions. According to DFT calculations, a threshold tube diameter for containing DANS molecules in linear or stacking alignments was found to be approximately 1.0 nm. Nanotubes with diameters smaller than 1.0 nm result in the selective formation of linearly aligned DANS molecules due to strong confinement effects within the nanotubes. By contrast, larger diameter nanotubes allow DANS molecules to align in a stacking and linear fashion. The type of alignment adopted by the DANS molecules inside a nanotube is responsible for their second-order non-linear optical properties represented by their static hyperpolarizability (β 0 values). In fact, we computed β 0 values of DANS assemblies taken from optimized n × DANS@(m,m) structures, and their values were compared with those of a single DANS molecule. DFT calculations showed that β 0 values of DANS molecules depend on their alignment, which decrease in the following order: linear alignment > parallel stacking alignment > antiparallel stacking alignment. In particular, a linear alignment has a β 0 value more significant than that of the same number of isolated molecules. Therefore, the linear alignment of DANS molecules, which is only allowed inside smaller diameter nanotubes, can strongly enhance their second-order non-linear optical properties. Since the nanotube confinement determines the alignment of DANS molecules, a restricted nanospace can be utilized to control their second-order non-linear optical properties. These DFT findings can assist in the
Menezes, Anthoni Praveen; Jayarama, A.; Ng, Seik Weng
2015-05-01
An efficient nonlinear optical material 2E-3-(4-bromophenyl)-1-(pyridin-3-yl) prop-2-en-1-one (BPP) was synthesized and single crystals were grown using slow evaporation solution growth technique at room temperature. Grown crystal had prismatic morphology and its structure was confirmed by various spectroscopic studies, elemental analysis, and single crystal X-ray diffraction (XRD) technique. The single crystal XRD of the crystal showed that BPP crystallizes in monoclinic system with noncentrosymmetric space group P21 and the cell parameters are a = 5.6428(7) Å, b = 3.8637(6) Å, c = 26.411(2) Å, β = 97.568(11) deg and v = 575.82(12) Å3. The UV-Visible spectrum reveals that the crystal is optically transparent and has high optical energy band gap of 3.1 eV. The powder second harmonic generation efficiency (SHG) of BPP is 6.8 times that of KDP. From thermal analysis it is found that the crystal melts at 139 °C and decomposes at 264 °C. High optical transparency down to blue region, higher powder SHG efficiency and better thermal stability than that of urea makes this chalcone derivative a promising candidate for SHG applications. Furthermore, effect of molecular planarity on SHG efficiency and role of pyridine ring adjacent to carbonyl group in forming noncentrosymmetric crystal systems of chalcone family is also discussed.
Peddie, Victoria; Anderson, Jack; Harvey, Joanne E; Smith, Gerald J; Kay, Andrew
2014-11-07
We report details of the synthesis of a series of bi- and trichromophores. These compounds contain mixtures of chromophores that have zwitterionic (ZWI) and neutral ground state (NGS) components covalently attached to each other. The neutral ground state moieties are based on dyes with aniline donors--such as Disperse Red 1--whereas the zwitterionic components are derived from chromophores with pro-aromatic donors such as 1,4-dihydropyridinylidene. By combining both ZWI and NGS components, we aim to develop novel compounds for nonlinear optics in which there is an enhancement of the overall hyperpolarizability coupled with a decrease in the net dipole moment. Thus, this approach should eliminate the electrostatic effects that result when only one type of chromophore is used, and so reduce the likelihood of undesirable aggregation occurring. This, in turn, should enable us to realize organic materials with large macroscopic optical nonlinearities. An analysis of the UV-vis results suggests that there is a strong dependence on solvent polarity that determines whether the embedded constituents should be treated as discrete elements; in low polarity solvents, there appear to be strong intramolecular interactions occurring, particularly when a 1,4-quinolinylidene-based donor is used in the ZWI component.
Second-order optical nonlinearities in dilute melt proton exchange waveguides in z-cut LiNbO3
DEFF Research Database (Denmark)
Veng, Torben Erik; Skettrup, Torben; Pedersen, Kjeld
1996-01-01
Planar optical waveguides with different refractive indices are made in z-cut LiNbO3 with a dilute proton exchange method using a system of glycerol containing KHSO4 and lithium benzoate. The optical second-order susceptibilities of these waveguides are measured by detecting the 266 nm reflected...... second-harmonic signal generated by a 532 nm beam directed onto the waveguide surface. It is found for this kind of waveguides that in the waveguide region all the second-order susceptibilities take values of at least 90% of the original LiNbO; values for refractive index changes less than similar to 0...
Nonlinear compression of optical solitons
Indian Academy of Sciences (India)
linear pulse propagation is the nonlinear Schrödinger (NLS) equation [1]. There are ... Optical pulse compression finds important applications in optical fibres. The pulse com ..... to thank CSIR, New Delhi for financial support in the form of SRF.
International Nuclear Information System (INIS)
Li Juan; Zhang Haiqiang; Xu Tao; Zhang, Ya-Xing; Tian Bo
2007-01-01
For the long-distance communication and manufacturing problems in optical fibers, the propagation of subpicosecond or femtosecond optical pulses can be governed by the variable-coefficient nonlinear Schroedinger equation with higher order effects, such as the third-order dispersion, self-steepening and self-frequency shift. In this paper, we firstly determine the general conditions for this equation to be integrable by employing the Painleve analysis. Based on the obtained 3 x 3 Lax pair, we construct the Darboux transformation for such a model under the corresponding constraints, and then derive the nth-iterated potential transformation formula by the iterative process of Darboux transformation. Through the one- and two-soliton-like solutions, we graphically discuss the features of femtosecond solitons in inhomogeneous optical fibers
Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers
International Nuclear Information System (INIS)
Konorov, S.O.; Akimov, D.A.; Ivanov, A.A.; Petrov, A.N.; Alfimov, M.V.; Yakimanskii, A.V.; Smirnov, N.N.; Ivanova, V.N.; Kudryavtsev, V.V.; Podshivalov, A.A.; Sokolova, I.M.; Zheltikov, A.M.
2005-01-01
The polarization properties of second harmonic and sum-frequency signals generated by femtosecond laser pulses in films of polymers containing covalent groups of an azobenzothiazole chromophore polarized by an external electric field are investigated. It is shown that the methods of polarization nonlinear optics make it possible to determine the structure of oriented molecular dipoles and reveal important properties of the motion of collectivized πelectrons in organic molecules with strong optical nonlinearities. The polarization measurements show that the tensor of quadratic nonlinear optical susceptibility of chromophore fragments oriented by an external field in macromolecules of the noted azopolymers has a degenerate form. This is indicative of a predominantly one-dimensional character of motion of collectivized π electrons along an extended group of atoms in such molecules
Nonlinear optics of liquid crystalline materials
International Nuclear Information System (INIS)
Khoo, Iam Choon
2009-01-01
Liquid crystals occupy an important niche in nonlinear optics as a result of their unique physical and optical properties. Besides their broadband birefringence and transparency, abilities to self-assemble into various crystalline phases and to conform to various flexible forms and shapes, liquid crystals are compatible with almost all other optoelectronic materials and technology platforms. In both isotropic and ordered phases, liquid crystals possess extraordinarily large optical nonlinearities that stretch over multiple time scales. To date, almost all conceivable nonlinear optical phenomena have been observed in a very broad spectrum spanning the entire visible to infrared and beyond. In this review, we present a self-contained complete discussion of the optical nonlinearities of liquid crystals, and a thorough review of a wide range of nonlinear optical processes and phenomena enabled by these unique properties. Starting with a brief historical account of the development of nonlinear optical studies of the mesophases of liquid crystals, we then review various liquid crystalline materials and structures, and their nonlinear optical properties. Emphasis is placed on the nematic phase, which best exemplifies the dual nature of liquid crystals, although frequent references to other phases are also made. We also delve into recent work on novel structures such as photonic crystals, metamaterials and nanostructures and their special characteristics and emergent properties. The mechanisms and complex nonlocal dynamics of optical nonlinearities associated with laser induced director axis reorientation, thermal, density, and order parameter fluctuations, space charge field formation and photorefractivity are critically reviewed as a foundation for the discussions of various nonlinear optical processes detailed in this paper
Chirality in nonlinear optics and optical switching
Meijer, E.W.; Feringa, B.L.
1993-01-01
Chirality in molecular opto-electronics is limited sofar to the use of optically active liquid crystals and a number of optical phenomena are related to the helical macroscopic structure obtained by using one enantiomer, only. In this paper, the use of chirality in nonlinear optics and optical
Applications of nonlinear fiber optics
Agrawal, Govind
2008-01-01
* The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo
Energy Technology Data Exchange (ETDEWEB)
Trejo-Valdez, Martin, E-mail: martin.trejo@laposte.net [ESIQIE, Instituto Politécnico Nacional, México, D.F. 07738, México (Mexico); Sobral, Hugo [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Apartado Postal 70-186, México, D.F. 04510, México (Mexico); Martínez-Gutiérrez, Hugo [Centro de Nanociencias y Micro y Nanotecnologías del Instituto Politécnico Nacional, México, D.F. 07738, México (Mexico); Torres-Torres, Carlos [Sección de Estudios de Posgrado e Investigación, ESIME ZAC, Instituto Politécnico Nacional, México, D.F. 07738, México (Mexico)
2016-04-30
Zinc oxide films doped with platinum and gold nanoparticles were deposited by the spray pyrolysis technique on glass substrates. A titanium dioxide sol–gel solution containing gold and platinum aqueous ions was employed for synthesizing the nanoparticles by ultraviolet-light irradiation. The conductive properties of the samples were characterized by the electrochemical impedance spectroscopy technique. Our results showed that the impedance of zinc oxide films doped with metallic nanoparticles was, by far, lower than typical measurements in zinc oxide films. A strong enhancement in the nanosecond nonlinear optical response was also obtained in the studied metallic doped films. A vectorial two-mixing experiment performed at 532 nm and 4 ns allowed us to evaluate the sample with a third order optical nonlinearity described by approximately | χ{sub 1111}{sup (3)}| = 2.6 × 10{sup −8} esu. - Highlights: • ZnO films doped with Pt and Au nanoparticles were synthetized. • The inclusion of metallic nanoparticles in the film improves optical nonlinearities. • Conductivity of the films was enhanced by the contribution of the nanoparticles.
Optical rogue waves and soliton turbulence in nonlinear fibre optics
DEFF Research Database (Denmark)
Genty, G.; Dudley, J. M.; de Sterke, C. M.
2009-01-01
We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....
Field guide to nonlinear optics
Powers, Peter E
2013-01-01
Optomechanics is a field of mechanics that addresses the specific design challenges associated with optical systems. This [i]Field Guide [/i]describes how to mount optical components, as well as how to analyze a given design. It is intended for practicing optical and mechanical engineers whose work requires knowledge in both optics and mechanics. This Field Guide is designed for those looking for a condensed and concise source of key concepts, equations, and techniques for nonlinear optics. Topics covered include technologically important effects, recent developments in nonlinear optics
Saravanan, R
2018-01-01
Non-linear optical materials have widespread and promising applications, but the efforts to understand the local structure, electron density distribution and bonding is still lacking. The present work explores the structural details, the electron density distribution and the local bond length distribution of some non-linear optical materials. It also gives estimation of the optical band gap, the particle size, crystallite size, and the elemental composition from UV-Visible analysis, SEM, XRD and EDS of some non-linear optical materials respectively.
Kong, Ming; Liu, Yanqiu; Wang, Hui; Luo, Junshan; Li, Dandan; Zhang, Shengyi; Li, Shengli; Wu, Jieying; Tian, Yupeng
2015-01-01
Four novel Zn(II) terpyridine complexes (ZnLCl2, ZnLBr2, ZnLI2, ZnL(SCN)2) based on carbazole derivative group were designed, synthesized and fully characterized. Their photophysical properties including absorption and one-photon excited fluorescence, two-photon absorption (TPA) and optical power limiting (OPL) were further investigated systematically and interpreted on the basis of theoretical calculations (TD-DFT). The influences of different solvents on the absorption and One-Photon Excited Fluorescence (OPEF) spectral behavior, quantum yields and the lifetime of the chromophores have been investigated in detail. The third-order nonlinear optical (NLO) properties were investigated by open/closed aperture Z-scan measurements using femtosecond pulse laser in the range from 680 to 1080 nm. These results revealed that ZnLCl2 and ZnLBr2 exhibited strong two-photon absorption and ZnLCl2 showed superior optical power limiting property.
Devi, S. Reena; Kalaiyarasi, S.; Zahid, I. MD.; Kumar, R. Mohan
2016-11-01
An ionic organic optical crystal of 4-methylpyridinium p-nitrophenolate was grown from methanol by slow evaporation method at ambient temperature. Powder and single crystal X-ray diffraction studies revealed the crystal system and its crystalline perfection. The rocking curve recorded from HRXRD study confirmed the crystal quality. FTIR spectral analysis confirmed the functional groups present in the title compound. UV-visible spectral study revealed the optical window and band gap of grown crystal. The thermal, electrical and surface laser damage threshold properties of harvested crystal were examined by using TGA/DTA, LCR/Impedance Analyzer and Nd:YAG laser system respectively. The third order nonlinear optical property of grown crystal was elucidated by Z-scan technique.
Nonlinear Optics: Principles and Applications
DEFF Research Database (Denmark)
Rottwitt, Karsten; Tidemand-Lichtenberg, Peter
of applications, Nonlinear Optics: Principles and Applications effectively bridges physics and mathematics with relevant applied material for real-world use. The book progresses naturally from fundamental aspects to illustrative examples, and presents a strong theoretical foundation that equips the reader...... and matter, this text focuses on the physical understanding of nonlinear optics, and explores optical material response functions in the time and frequency domain....
Nonlinear optical model for strip plasmonic waveguides
DEFF Research Database (Denmark)
Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei
2016-01-01
This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016...... approaches. (C) 2016 Optical Society of America...
Wang, Wen-Yong; Ma, Na-Na; Sun, Shi-Ling; Qiu, Yong-Qing
2014-03-14
The studies of geometrical structures, thermal stabilities, redox properties, nonlinear responses and optoelectronic properties have been carried out on a series of novel ferrocenyl (Fc) chromophores with the view of assessing their switchable and tailorable second order nonlinear optics (NLO). The use of a constant Fc donor and a 4,4'-bipyridinium acceptor and varied conjugated bridges makes it possible to systematically determine the contribution of organic connectors to chromophore nonlinear optical activities. The structures reveal that both the reduction reactions and organic connectors have a significant influence on 4,4'-bipyridinium. The potential energy surface maps along with plots of reduced density gradient mirror the thermal stabilities of the Fc-based chromophores. The first and second reductions take place preferentially at the 4,4'-bipyridinium moieties. Significantly, the reduction processes result in the molecular switches with large NLO contrast varying from zero or very small to a large value. Moreover, time-dependent density functional theory results indicate that the absorption peaks are mainly attributed to Fc to 4,4'-bipyridinium charge transfer and the mixture of intramolecular charge transfer within the two respective 4,4'-bipyridinium moieties coupled with interlayer charge transfer between the two 4,4'-bipyridinium moieties. This provides us with comprehensive information on the effect of organic connectors on the NLO properties.
Distributed nonlinear optical response
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov
2005-01-01
of bound states of out of phase bright solitons and dark solitons. Also, the newly introduced analogy between the nonlocal cubic nonlinear and the quadratic nonlinear media, presented in paper B and Chapter 3 is discussed. In particular it supplies intuitive physical meaning of the formation of solitons...... in quadratic nonlinear media. In the second part of the report (Chapter 4), the possibility to obtain light with ultrabroad spectrum due to the interplay of many nonlinear effects based on cubic nonlinearity is investigated thoroughly. The contribution of stimulated Raman scattering, a delayed nonlinear...... a modified nonlinear Schroedinger model equation. Chapter 4 and papers D and E are dedicated to this part of the research....
High-order nonlinear susceptibilities of He
International Nuclear Information System (INIS)
Liu, W.C.; Clark, C.W.
1996-01-01
High-order nonlinear optical response of noble gases to intense laser radiation is of considerable experimental interest, but is difficult to measure or calculate accurately. The authors have begun a set of calculations of frequency-dependent nonlinear susceptibilities of He 1s, within the framework of Rayleigh=Schroedinger perturbation theory at lowest applicable order, with the goal of providing critically evaluated atomic data for modelling high harmonic generation processes. The atomic Hamiltonian is decomposed in term of Hylleraas coordinates and spherical harmonics using the formalism of Ponte and Shakeshaft, and the hierarchy of inhomogeneous equations of perturbation theory is solved iteratively. A combination of Hylleraas and Frankowski basis functions is used; the compact Hylleraas basis provides a highly accurate representation of the ground state wavefunction, whereas the diffuse Frankowski basis functions efficiently reproduce the correct asymptotic structure of the perturbed orbitals
Extreme Nonlinear Optics An Introduction
Wegener, Martin
2005-01-01
Following the birth of the laser in 1960, the field of "nonlinear optics" rapidly emerged. Today, laser intensities and pulse durations are readily available, for which the concepts and approximations of traditional nonlinear optics no longer apply. In this regime of "extreme nonlinear optics," a large variety of novel and unusual effects arise, for example frequency doubling in inversion symmetric materials or high-harmonic generation in gases, which can lead to attosecond electromagnetic pulses or pulse trains. Other examples of "extreme nonlinear optics" cover diverse areas such as solid-state physics, atomic physics, relativistic free electrons in a vacuum and even the vacuum itself. This book starts with an introduction to the field based primarily on extensions of two famous textbook examples, namely the Lorentz oscillator model and the Drude model. Here the level of sophistication should be accessible to any undergraduate physics student. Many graphical illustrations and examples are given. The followi...
Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals
Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping
2018-06-01
Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I–III–VI semiconductor nanocrystals (NCs), such as CuInS2 and AgInS2. However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS2 and AgInS2/ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS2 and AgInS2/ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility {χ }(3) of AgInS2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.
Su, Jing-Jing; Gao, Yi-Tian
2018-03-01
Under investigation in this paper is a higher-order nonlinear Schrödinger equation with space-dependent coefficients, related to an optical fiber. Based on the self-similarity transformation and Hirota method, related to the integrability, the N-th-order bright and dark soliton solutions are derived under certain constraints. It is revealed that the velocities and trajectories of the solitons are both affected by the coefficient of the sixth-order dispersion term while the amplitudes of the solitons are determined by the gain function. Amplitudes increase when the gain function is positive and decrease when the gain function is negative. Furthermore, we find that the intensities of dark solitons are presented as a superposition of the solitons and stationary waves.
Sun, Yan; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Yuan, Yu-Qiang
2017-04-01
Under investigation in this paper is a variable-coefficient higher-order nonlinear Schrödinger equation, which has certain applications in the inhomogeneous optical fiber communication. Through the Hirota method, bilinear forms, dark one- and two-soliton solutions for such an equation are obtained. We graphically study the solitons with d1(z), d2(z) and d3(z), which represent the variable coefficients of the group-velocity dispersion, third-order dispersion and fourth-order dispersion, respectively. With the different choices of the variable coefficients, we obtain the parabolic, periodic and V-shaped dark solitons. Head-on and overtaking collisions are depicted via the dark two soliton solutions. Velocities of the dark solitons are linearly related to d1(z), d2(z) and d3(z), respectively, while the amplitudes of the dark solitons are not related to such variable coefficients.
Li, Kang; Tang, Guodong; Kou, ShanShan; Culnane, Lance F; Zhang, Yu; Song, Yinglin; Li, Rongqing; Wei, Changmei
2015-03-15
Three complexes of M(DPIP)2 (M=Cu, Co, Zn as 1, 2, 3) were synthesized and characterized by elemental analysis, IR, UV-Vis, thermogravimetry, and X-ray diffraction. Their nonlinear optical properties were measured by the Z-scan technique and yielded a normalized transmittance of about 70% for complex 1 (45 μJ pulse), and 93% for complex 3 (68 μJ pulse at the focus point). The nonlinear absorption coefficient, β, is 1.4×10(-11) m/W for 1 and 5.6×10(-13) m/W for 3, and the third-order nonlinear refraction index, n2, is 1.0×10(-18) m(2)/W for 3. Complex 1 shows self-defocusing property, while complex 3 exhibits self-focusing property. The thermogravimetric results show that the frame structure of compounds 1-3 begin to collapse at 400, 250 and 280°C, respectively, which suggests that they elicit excellent thermal stability. This research aims to provide better understanding of these compounds, and offer preliminary explanations for the significant differences between compounds 1-3, in order to potentially help in the designing of future novel materials with NLO properties. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Kang; Tang, Guodong; Kou, ShanShan; Culnane, Lance F.; Zhang, Yu; Song, Yinglin; Li, Rongqing; Wei, Changmei
2015-03-01
Three complexes of M(DPIP)2 (M = Cu, Co, Zn as 1, 2, 3) were synthesized and characterized by elemental analysis, IR, UV-Vis, thermogravimetry, and X-ray diffraction. Their nonlinear optical properties were measured by the Z-scan technique and yielded a normalized transmittance of about 70% for complex 1 (45 μJ pulse), and 93% for complex 3 (68 μJ pulse at the focus point). The nonlinear absorption coefficient, β, is 1.4 × 10-11 m/W for 1 and 5.6 × 10-13 m/W for 3, and the third-order nonlinear refraction index, n2, is 1.0 × 10-18 m2/W for 3. Complex 1 shows self-defocusing property, while complex 3 exhibits self-focusing property. The thermogravimetric results show that the frame structure of compounds 1-3 begin to collapse at 400, 250 and 280 °C, respectively, which suggests that they elicit excellent thermal stability. This research aims to provide better understanding of these compounds, and offer preliminary explanations for the significant differences between compounds 1-3, in order to potentially help in the designing of future novel materials with NLO properties.
Gieseking, Rebecca L.
2015-06-22
Organic π-conjugated materials have been widely used for a variety of nonlinear optical (NLO) applications. Molecules with negative real components Re(γ) of the third-order polarizability, which leads to nonlinear refraction in macroscopic systems, have important benefits for several NLO applications. However, few organic systems studied to date have negative Re(γ) in the long wavelength limit, and all inorganic materials show positive nonlinear refraction in this limit. Here, we introduce a new class of molecules of the form X(C6H5)4, where X = B-, C, N+, and P+, that have negative Re(γ). The molecular mechanism for the NLO properties in these systems is very different from those in typical linear conjugated systems: these systems have a band of excited states involving single-electron excitations within the π-system, several of which have significant coupling to the ground state. Thus, Re(γ) cannot be understood in terms of a simplified essential-state model and must be analyzed in the context of the full sum-over-states expression. Although Re(γ) is significantly smaller than that of other commonly-studied NLO chromophores, the introduction of a new molecular architecture offering the potential for a negative Re(γ) introduces new avenues of molecular design for NLO applications.
Gieseking, Rebecca L.; Ensley, Trenton R.; Hu, Honghua; Hagan, David J.; Risko, Chad; Van Stryland, Eric W.; Bredas, Jean-Luc
2015-01-01
Organic π-conjugated materials have been widely used for a variety of nonlinear optical (NLO) applications. Molecules with negative real components Re(γ) of the third-order polarizability, which leads to nonlinear refraction in macroscopic systems, have important benefits for several NLO applications. However, few organic systems studied to date have negative Re(γ) in the long wavelength limit, and all inorganic materials show positive nonlinear refraction in this limit. Here, we introduce a new class of molecules of the form X(C6H5)4, where X = B-, C, N+, and P+, that have negative Re(γ). The molecular mechanism for the NLO properties in these systems is very different from those in typical linear conjugated systems: these systems have a band of excited states involving single-electron excitations within the π-system, several of which have significant coupling to the ground state. Thus, Re(γ) cannot be understood in terms of a simplified essential-state model and must be analyzed in the context of the full sum-over-states expression. Although Re(γ) is significantly smaller than that of other commonly-studied NLO chromophores, the introduction of a new molecular architecture offering the potential for a negative Re(γ) introduces new avenues of molecular design for NLO applications.
International Nuclear Information System (INIS)
Badran, Hussain Ali; Ajeel, Khalid I.; Lazim, Haidar Gazy
2016-01-01
Highlights: • Active layer (P3HT:PCBM) has been deposited on substrate type by spin coating at 1000 rpm. • The device was completed by evaporating a 60 nm thick, circular gold electrodes onto the P3HT:PCBM. • Nonlinear refractive indices of the three particle sizes are found to be of the order of 10"−"7 cm"2/W - Abstract: Organic solar cells are based on (3-hexylthiophene):[6,6]-phenyl C61-butyric acid with methyl ester Bulk Heterojunction. An inverted structure has been fabricated using nano-anatase crystalline titanium dioxide, as the electron transport layer, which was prepared on either the Indium Tin Oxide coated glass (ITO—glass), or Silicon wafer, as well as on glass substrates by the sol–gel method, at different spin speed, using the spin-coating system. The effect of thickness on the surface morphology and on the optical properties of TiO_2 layer, was investigated using the Atomic Force Microscopy (AFM), X-ray diffraction, and UV–visible spectrophotometer. The samples were examined to feature currents and voltages, in the darkness and light extraction efficiency of the solar cell. The highest open-circuit voltage, V_o_c, and power conversion efficiency were 0.66% and 0.39%, fabricated with 90 nm, respectively. The non-linear optical properties of nano-anatase TiO_2 sol–gel, were investigated at different particle sizes, using the z-scan technique.
Xu, Liang; Zhang, Dingfeng; Zhou, Yecheng; Zheng, Yusen; Cao, Liu; Jiang, Xiao-Fang; Lu, Fushen
2017-08-01
In this paper, mono- and di-4-N,N-bis(4-methoxylphenyl)aniline-substituted anthraquinone have been designed and synthesized through Suzuki reaction. For mono-4-N,N-bis(4-methoxylphenyl)aniline-substituted anthraquinone, polymorphous crystal structures have been obtained in different crystallization conditions. Electrochemical characterization combined with theoretical calculation suggests that the addition of a second triphenylamine unit causes a larger band gap with higher lying LUMO (Lowest Unoccupied Molecular Orbital) and HOMO (Highest Occupied Molecular Orbital). The linear optical property shows that the introduction of a second triphenylamine unit bring about a significant hyperchromic effect with the extinction coefficients increasing from 11199 M-1 cm-1 to 22136 M-1 cm-1. The third-order nonlinear optical properties indicate that the introduction of a second triphenylamine unit lead to a much larger nonlinear absorption coefficient and two-photon absorption cross section, with the relevant value increasing from 2.04 × 10-12 cm W-1 to 3.91 × 10-12 cm W-1, and from 148 GM to 286 GM, respectively.
Fourth Order Nonlinear Intensity and the corresponding Refractive ...
African Journals Online (AJOL)
Nonlinear effects occur whenever the optical fields associated with one or more intense light such as from laser beams propagating in a crystal are large enough to produce polarization fields. This paper describes how the fourth order nonlinear intensity and the corresponding effective refractive index that is intensity ...
Nonlinear optics an analytical approach
Mandel, Paul
2010-01-01
Based on the author's extensive teaching experience and lecture notes, this textbook provides a substantially analytical rather than descriptive presentation of nonlinear optics. Divided into five parts, with most chapters corresponding to a two-hour lecture, the book begins with a unique account of the historical development from Kirchhoff's law for the black-body radiation to Planck's quantum hypothesis and Einstein's discovery of spontaneous emission - providing all the explicit proofs. The subsequent sections deal with matter quantization, ultrashort pulse propagation in 2-level media, cavity nonlinear optics, chi(2) and chi(3) media. For graduate and PhD students in nonlinear optics or photonics, while also representing a valuable reference for researchers in these fields.
Gieseking, Rebecca L.; Risko, Chad; Bredas, Jean-Luc
2015-01-01
Understanding the relationships between the molecular nonlinear optical (NLO) properties and the bond-length alternation (BLA) or π-bond-order alternation (BOA) along the molecular backbone of linear π-conjugated systems has proven widely useful in the development of NLO organic chromophores and materials. Here, we examine model polymethines to elucidate the reliability of these relationships. While BLA is solely a measure of molecular geometric structure, BOA includes information pertaining to the electronic structure. As a result, BLA is found to be a good predictor of NLO properties only when optimized geometries are considered, whereas BOA is more broadly applicable. Proper understanding of the distinction between BLA and BOA is critical when designing computational studies of NLO properties, especially for molecules in complex environments or in nonequilibrium geometries. © 2015 American Chemical Society.
Gieseking, Rebecca L.
2015-06-18
Understanding the relationships between the molecular nonlinear optical (NLO) properties and the bond-length alternation (BLA) or π-bond-order alternation (BOA) along the molecular backbone of linear π-conjugated systems has proven widely useful in the development of NLO organic chromophores and materials. Here, we examine model polymethines to elucidate the reliability of these relationships. While BLA is solely a measure of molecular geometric structure, BOA includes information pertaining to the electronic structure. As a result, BLA is found to be a good predictor of NLO properties only when optimized geometries are considered, whereas BOA is more broadly applicable. Proper understanding of the distinction between BLA and BOA is critical when designing computational studies of NLO properties, especially for molecules in complex environments or in nonequilibrium geometries. © 2015 American Chemical Society.
Chong Li; Xiaoyong Hu; Hong Yang; Qihuang Gong
2017-01-01
We propose a scheme of unidirectional transmission in a 1D nonlinear topological photonic crystal based on the topological edge state and three order optical nonlinearity. The 1D photonic crystals consists of a nonlinear photonic crystal L and a linear photonic crystal R. In the backward direction, light is totally reflected for the photons transmission prohibited by the bandgap. While in the forward direction, light interacts with the nonlinear photonic crystal L by optical Kerr effect, brin...
Energy Technology Data Exchange (ETDEWEB)
Badran, Hussain Ali, E-mail: badran_hussein@yahoo.com [Basrah University, Education College for Pure Sciences, Physics Department, Basrah (Iraq); Ajeel, Khalid I. [Basrah University, Education College for Pure Sciences, Physics Department, Basrah (Iraq); Lazim, Haidar Gazy [Misan University, Basic Education College, Science Department, Misan (Iraq)
2016-04-15
Highlights: • Active layer (P3HT:PCBM) has been deposited on substrate type by spin coating at 1000 rpm. • The device was completed by evaporating a 60 nm thick, circular gold electrodes onto the P3HT:PCBM. • Nonlinear refractive indices of the three particle sizes are found to be of the order of 10{sup −7} cm{sup 2}/W - Abstract: Organic solar cells are based on (3-hexylthiophene):[6,6]-phenyl C61-butyric acid with methyl ester Bulk Heterojunction. An inverted structure has been fabricated using nano-anatase crystalline titanium dioxide, as the electron transport layer, which was prepared on either the Indium Tin Oxide coated glass (ITO—glass), or Silicon wafer, as well as on glass substrates by the sol–gel method, at different spin speed, using the spin-coating system. The effect of thickness on the surface morphology and on the optical properties of TiO{sub 2} layer, was investigated using the Atomic Force Microscopy (AFM), X-ray diffraction, and UV–visible spectrophotometer. The samples were examined to feature currents and voltages, in the darkness and light extraction efficiency of the solar cell. The highest open-circuit voltage, V{sub oc}, and power conversion efficiency were 0.66% and 0.39%, fabricated with 90 nm, respectively. The non-linear optical properties of nano-anatase TiO{sub 2} sol–gel, were investigated at different particle sizes, using the z-scan technique.
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
... are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.
Energy Technology Data Exchange (ETDEWEB)
Shkir, Mohd, E-mail: shkirphysics@gmail.com [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of Science, King Khalid University, Abha (Saudi Arabia); Yahia, I.S., E-mail: dr_isyahia@yahoo.com [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of Science, King Khalid University, Abha (Saudi Arabia); Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Al-Qahtani, A.M.A. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of Science, King Khalid University, Abha (Saudi Arabia)
2016-12-01
In the current work, good quality bulk size (∼32 mm × 23 mm × 10 mm) single crystals of HCl added L-alanine with well-defined morphology are successfully grown using slow evaporation technique. Crystal structure and other structural parameters were evaluated from X-ray diffraction data. Vibrational assessment of the grown crystal was done by FT-Raman analysis. The presence of chlorine and good quality of the grown crystal was confirmed by SEM/EDX analysis. Solid state UV–Vis–NIR diffused reflectance was measured and direct and indirect optical band gap was calculated using Kubelka-Munk relation and found to be 5.64 and 5 eV respectively. Dielectric measurement was carried out in high frequency range. Third order nonlinear optical susceptibility value was found to be enhanced from 1.91 × 10{sup −6} (pure) to 8.6 × 10{sup −6} esu (LAHCl). Good thermal stability of grown crystals was confirmed from DSC analysis. The enhancement in mechanical strength and crystalline perfection was also observed. - Highlights: • Bulk size (32 mm × 23 mm × 10 mm), good crystalline perfection HCl added L-alanine monocrystal is grown. • The shift in X-ray diffraction and vibrational peaks confirms the interaction of HCl. • The high optical transparency and band gap confirms its application in optoelectronic devices. • Third order NLO properties are found to be enhanced in HCl added L-alanine crystals. • The mechanical strength of the grown crystals is found to be enhanced due HCl addition.
Rigorous theory of molecular orientational nonlinear optics
International Nuclear Information System (INIS)
Kwak, Chong Hoon; Kim, Gun Yeup
2015-01-01
Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented
Nonlinear optical properties of silicon waveguides
International Nuclear Information System (INIS)
Tsang, H K; Liu, Y
2008-01-01
Recent work on two-photon absorption (TPA), stimulated Raman scattering (SRS) and optical Kerr effect in silicon-on-insulator (SOI) waveguides is reviewed and some potential applications of these optical nonlinearities, including silicon-based autocorrelation detectors, optical amplifiers, high speed optical switches, optical wavelength converters and self-phase modulation (SPM), are highlighted. The importance of free carriers generated by TPA in nonlinear devices is discussed, and a generalized definition of the nonlinear effective length to cater for nonlinear losses is proposed. How carrier lifetime engineering, and in particular the use of helium ion implantation, can enhance the nonlinear effective length for nonlinear devices is also discussed
Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities
DEFF Research Database (Denmark)
Khare, A.; Rasmussen, Kim Ø; Salerno, M.
2006-01-01
-Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated.......A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz...
Nonlinear fiber optics formerly quantum electronics
Agrawal, Govind
1995-01-01
The field of nonlinear fiber optics has grown substantially since the First Edition of Nonlinear Fiber Optics, published in 1989. Like the First Edition, this Second Edition is a comprehensive, tutorial, and up-to-date account of nonlinear optical phenomena in fiber optics. It synthesizes widely scattered research material and presents it in an accessible manner for students and researchers already engaged in or wishing to enter the field of nonlinear fiber optics. Particular attention is paid to the importance of nonlinear effects in the design of optical fiber communication systems. This is
Minamida, Yuka; Kishi, Ryohei; Fukuda, Kotaro; Matsui, Hiroshi; Takamuku, Shota; Yamane, Masaki; Tonami, Takayoshi; Nakano, Masayoshi
2018-02-06
Tunability of the open-shell character, charge asymmetry, and third-order nonlinear optical (NLO) properties of covalently linked (hetero)phenalenyl dimers are investigated by using the density functional theory method. By changing the molecular species X and substitution position (i, j) for the linker part, a variety of intermonomer distances R and relative alignments between the phenalenyl dimers can be realized from the geometry optimizations, resulting in a wide-range tuning of diradical character y and charge asymmetry. It is found that the static second hyperpolarizabilities along the stacking direction, γ yyyy , are one-order enhanced for phenalenyl dimer systems exhibiting intermediate y, a feature that is in good agreement with the "y-γ correlation". By replacing the central carbon atoms of the phenalenyl rings with a boron or a nitrogen, we have also designed covalently linked heterophenalenyl dimers. The introduction of such a charge asymmetry to the open-shell systems, which leads to closed-shell ionic ground states, is found to further enhance the γ yyyy values of the systems having longer intermonomer distance R with intermediate ionic character, that is, charge asymmetry. The present results demonstrate a promising potential of covalently linked NLO dimers with intermediate open-shell/ionic characters as a new building block of highly efficient NLO systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy Technology Data Exchange (ETDEWEB)
Yin, Congfei; Liang, Xiaojuan, E-mail: lxj6126@126.com; Hu, Guangcai; Hu, Xie; Chen, Xipeng; Li, Pengzhi; Xiang, Weidong, E-mail: xiangweidong001@126.com
2017-04-15
The titanate, is a material of interest for various energy applications, including photovoltaics, catalysts, and high-rate energy storage devices. Herein, its related materials, CuO/CaTi{sub 4}O{sub 9} [CCTO] thin films, were successfully fabricated on SrTiO{sub 3} (100) substrates by RF magnetron sputtering assisted with subsequent oxygen annealing. This obtained CCTO thin films were then systemically studied by X-ray powder diffraction (XRD), atomic force microscopy (AFM), scan electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). It was found that CuO and CaTi{sub 4}O{sub 9} (001) particles were closely accumulated together on the surface of the substrate in the annealing process after comparing with that of the as-prepared thin film, which was verified by SEM and AFM results. Furthermore, we investigated the third-order nonlinear optical (NLO) properties of the as-prepared and annealed CCTO thin film by means of the Z-scan technique using 650 nm femtosecond laser pulse. Post-deposition oxygen annealing was found to modify the morphological characteristics of the films, resulting in enhancing their NLO properties. The observation of NLO performance of annealed CCTO thin film indicates that RF magnetron sputtering is a feasible method for the fabrication of optical thin films, which can be expanded to fabricate other NLO materials from the corresponding dispersions. Naturally, we concluded that the CCTO thin film occupy a better NLO property, and thus enlarge its application in nonlinear optics. - Highlights: • The CCTO thin film was prepared using the RF magnetron sputtering and oxygen annealing. • The film was prepared on the SrTiO{sub 3}(100) substrates with a Ca{sub 2}CuO{sub 3} target. • The oxygen annealing was found can effectively enhance the film quality and NLO property. • The film was characterized using XPS, SEM, AFM, TEM, XRD and Z-scan techniques.
Nonlinear spectroscopic studies of interfacial molecular ordering
International Nuclear Information System (INIS)
Superfine, R.
1991-07-01
The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful new probes of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the nonlinear susceptibility. In particular, infrared-visible sum frequency generation (SFG) can obtain the vibrational spectrum of sub-monolayer coverages of molecules. In this thesis, we explore the unique information that can be obtained from SFG. We take advantage of the sensitivity of SFG to the conformation of alkane chains to study the interaction between adsorbed liquid crystal molecules and surfactant treated surfaces. The sign of the SFG susceptibility depends on the sign of the molecular polarizability and the orientation, up or down, of the molecule. We experimentally determine the sign of the susceptibility and use it to determine the absolute orientation to obtain the sign of the molecular polarizability and show that this quantity contains important information about the dynamics of molecular charge distributions. Finally, we study the vibrational spectra and the molecular orientation at the pure liquid/vapor interface of methanol and water and present the most detailed evidence yet obtained for the structure of the pure water surface. 32 refs., 4 figs., 2 tabs
Quantum Information Processing using Nonlinear Optical Effects
DEFF Research Database (Denmark)
Andersen, Lasse Mejling
This PhD thesis treats applications of nonlinear optical effects for quantum information processing. The two main applications are four-wave mixing in the form of Bragg scattering (BS) for quantum-state-preserving frequency conversion, and sum-frequency generation (SFG) in second-order nonlinear......-chirping the pumps. In the high-conversion regime without the effects of NPM, exact Green functions for BS are derived. In this limit, separability is possible for conversion efficiencies up to 60 %. However, the system still allows for selective frequency conversion as well as re-shaping of the output. One way...
de la Garza-Rubí, R. M. A.; Güizado-Rodríguez, M.; Mayorga-Cruz, D.; Basurto-Pensado, M. A.; Guerrero-Álvarez, J. A.; Ramos-Ortiz, G.; Rodríguez, M.; Maldonado, J. L.
2015-08-01
A copolymer of 3-hexylthiophene and thiophene functionalized with disperse red 1, poly(3-HT-co-TDR1), was synthesized. Chemical structure, molecular weight distribution, optical and thermal properties of this copolymer were characterized by NMR, FT-IR, UV-vis, GPC and DSC-TGA. An optical nonlinear analysis by Z-scan method was also performed for both continuous wave (CW) and pulsed laser pumping. In the CW regime the nonlinearities were evaluated in solid films, and a negative nonlinear refractive index in the range 2.7-4.1 × 10-4 cm2/W was obtained. These values are notoriously high and allowed to observe self-defocusing effects at very low laser intensities: below 1 mW. Further, nonlinear self-phase modulation patterns, during laser irradiation, were also observed. In the pulsed excitation the nonlinear response was evaluated in solution resulting in large two-photon absorption cross section of 5725 GM for the whole copolymer chain and with a value of 232 GM per repeated monomeric unit.
Energy Technology Data Exchange (ETDEWEB)
Divya, S.; Nampoori, V.P.N.; Radhakrishnan, P.; Mujeeb, A. [Cochin University of Science and Technology, International School of Photonics, Cochin, Kerala (India)
2014-02-15
We report on the linear and nonlinear optical studies of TiO{sub 2}-CeO{sub 2} nanocomposites. It was found that the band gap of the nanocomposite can be tuned by varying Ce/Ti content. Nonlinear absorption characteristics of these samples were studied by employing open aperture Z-scan technique using an Nd:YAG laser (532 nm, 7 ns, 10 Hz). It has been observed that as the CeO{sub 2} amount increases, band gap of the nanocomposites decreases and the reason proposed for the change in band gap is the smudging of localised states of Ce{sup 3+} into the forbidden energy gap, thus acting as the intermediate state. Fluorescence studies confirmed the above argument. Nonlinear investigation revealed that with increase in the CeO{sub 2} amount, the two-photon absorption coefficient increased due to the modification of TiO{sub 2} dipole symmetry. Suitable candidature of the nanocomposites for the fabrication of nonlinear optical devices was proved by determining the optical limiting threshold. (orig.)
Nonlinear optical interactions in silicon waveguides
Directory of Open Access Journals (Sweden)
Kuyken B.
2017-03-01
Full Text Available The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.
Nonlinear optical studies of organic monolayers
International Nuclear Information System (INIS)
Shen, Y.R.
1988-02-01
Second-order nonlinear optical effects are forbidden in a medium with inversion symmetry, but are necessarily allowed at a surface where the inversion summary is broken. They are often sufficiently strong so that a submonolayer perturbation of the surface can be readily detected. They can therefore be used as effective tools to study monolayers adsorbed at various interfaces. We discuss here a number of recent experiments in which optical second harmonic generation (SHG) and sum-frequency generation (SFG) are employed to probe and characterize organic monolayers. 15 refs., 5 figs
On nonlinear reduced order modeling
International Nuclear Information System (INIS)
Abdel-Khalik, Hany S.
2011-01-01
When applied to a model that receives n input parameters and predicts m output responses, a reduced order model estimates the variations in the m outputs of the original model resulting from variations in its n inputs. While direct execution of the forward model could provide these variations, reduced order modeling plays an indispensable role for most real-world complex models. This follows because the solutions of complex models are expensive in terms of required computational overhead, thus rendering their repeated execution computationally infeasible. To overcome this problem, reduced order modeling determines a relationship (often referred to as a surrogate model) between the input and output variations that is much cheaper to evaluate than the original model. While it is desirable to seek highly accurate surrogates, the computational overhead becomes quickly intractable especially for high dimensional model, n ≫ 10. In this manuscript, we demonstrate a novel reduced order modeling method for building a surrogate model that employs only 'local first-order' derivatives and a new tensor-free expansion to efficiently identify all the important features of the original model to reach a predetermined level of accuracy. This is achieved via a hybrid approach in which local first-order derivatives (i.e., gradient) of a pseudo response (a pseudo response represents a random linear combination of original model’s responses) are randomly sampled utilizing a tensor-free expansion around some reference point, with the resulting gradient information aggregated in a subspace (denoted by the active subspace) of dimension much less than the dimension of the input parameters space. The active subspace is then sampled employing the state-of-the-art techniques for global sampling methods. The proposed method hybridizes the use of global sampling methods for uncertainty quantification and local variational methods for sensitivity analysis. In a similar manner to
Nonlinear optical crystals a complete survey
Nikogosyan, David N
2005-01-01
Nonlinear optical crystals are widely used in modern optical science and technology for frequency conversion of laser light, i.e. to generate laser radiation at any specific wavelength in visible, UV or IR spectral regions. This unrivalled reference book contains the most complete and up-to-date information on properties of nonlinear optical crystals. It includes: * Database of 63 common and novel nonlinear optical crystals * Periodically-poled and self-frequency-doubling materials * Full description of linear and nonlinear optical properties * Significant amount of crystallophysical, thermophysical, spectroscopic, electro-optic and magneto-optic information * 7 mini-reviews on novel applications, such as deep-UV light generation, terahertz-wave generation, ultrashort laser pulse compression, photonic band-gap crystals, x3 nonlinearity, etc. * More than 1500 different references with full titles It is a vital source of information for scientists and engineers dealing with modern applications of nonlinear opti...
Nonlinear optical studies of surfaces
International Nuclear Information System (INIS)
Shen, Y.R.
1994-07-01
The possibly of using nonlinear optical processes for surface studies has attracted increasing attention in recent years. Optical second harmonic generation (SHG) and sum frequency generation (SFG), in particular, have been well accepted as viable surface probes. They have many advantages over the conventional techniques. By nature, they are highly surface-specific and has a submonolayer sensitivity. As coherent optical processes, they are capable of in-situ probing of surfaces in hostile environment as well as applicable to all interfaces accessible by light. With ultrafast pump laser pulses, they can be employed to study surface dynamic processes with a subpicosecond time resolution. These advantages have opened the door to many exciting research opportunities in surface science and technology. This paper gives a brief overview of this fast-growing new area of research. Optical SHG from a surface was first studied theoretically and experimentally in the sixties. Even the submonolayer surface sensitivity of the process was noticed fairly early. The success was, however, limited because of difficulties in controlling the experimental conditions. It was not until the early 1980's that the potential of the process for surface analysis was duly recognized. The first surface study by SHG was actually motivated by the then active search for an understanding of the intriguing surface enhanced Raman scattering (SERS). It had been suspected that the enhancement in SERS mainly came from the local-field enhancement due to local plasmon resonances and pointing rod effect on rough metal surfaces. In our view, Raman scattering is a two-photon process and is therefore a nonlinear optical effect
Nonlinear dynamics of fractional order Duffing system
International Nuclear Information System (INIS)
Li, Zengshan; Chen, Diyi; Zhu, Jianwei; Liu, Yongjian
2015-01-01
In this paper, we analyze the nonlinear dynamics of fractional order Duffing system. First, we present the fractional order Duffing system and the numerical algorithm. Second, nonlinear dynamic behaviors of Duffing system with a fixed fractional order is studied by using bifurcation diagrams, phase portraits, Poincare maps and time domain waveforms. The fractional order Duffing system shows some interesting dynamical behaviors. Third, a series of Duffing systems with different fractional orders are analyzed by using bifurcation diagrams. The impacts of fractional orders on the tendency of dynamical motion, the periodic windows in chaos, the bifurcation points and the distance between the first and the last bifurcation points are respectively studied, in which some basic laws are discovered and summarized. This paper reflects that the integer order system and the fractional order one have close relationship and an integer order system is a special case of fractional order ones.
Nonlinear Optical Fiber Arrays for Limiting Application
National Research Council Canada - National Science Library
Khoo, Iam-Choon
2006-01-01
.... Measurements show that they possess desirable nonlinear optical such as low-freezing pint, non-volatile, transparent for low light level and possess large effective nonlinear absorption coefficients...
Janjua, Muhammad Ramzan Saeed Ashraf
2012-11-05
This work was inspired by a previous report (Janjua et al. J. Phys. Chem. A 2009, 113, 3576-3587) in which the nonlinear-optical (NLO) response strikingly improved with an increase in the conjugation path of the ligand and the nature of hexamolybdates (polyoxometalates, POMs) was changed into a donor by altering the direction of charge transfer with a second aromatic ring. Herein, the first theoretical framework of POM-based heteroaromatic rings is found to be another class of excellent NLO materials having double heteroaromatic rings. First hyperpolarizabilities of a large number of push-pull-substituted conjugated systems with heteroaromatic rings have been calculated. The β components were computed at the density functional theory (DFT) level (BP86 geometry optimizations and LB94 time-dependent DFT). The largest β values are obtained with a donor (hexamolybdates) on the benzene ring and an acceptor (-NO(2)) on pyrrole, thiophene, and furan rings. The pyrrole imido-substituted hexamolybdate (system 1c) has a considerably large first hyperpolarizability, 339.00 × 10(-30) esu, and it is larger than that of (arylimido)hexamolybdate, calculated as 0.302 × 10(-30) esu (reference system 1), because of the double aromatic rings in the heteroaromatic imido-substituted hexamolybdates. The heteroaromatic rings act as a conjugation bridge between the electron acceptor (-NO(2)) and donor (polyanion). The introduction of an electron donor into heteroaromatic rings significantly enhances the first hyperpolarizabilities because the electron-donating ability is substantially enhanced when the electron donor is attached to the heterocyclic aromatic rings. Interposing five-membered auxiliary fragments between strong donor (polyanion) or acceptor (-NO(2)) groups results in a large computed second-order NLO response. The present investigation provides important insight into the NLO properties of (heteroaromatic) imido-substituted hexamolybdate derivatives because these compounds
Nanoplasmonic solution for nonlinear optics
DEFF Research Database (Denmark)
Bache, Morten; Lavrinenko, Andrei; Lysenko, Oleg
2014-01-01
for the silicon dioxide cladding. The blue, cyan and magenta curves correspond to the transmission spectra for the gold waveguides with the width of 10 μm and length of 2, 3, and 4 mm.The polarization of laser beam was tuned to match the transverse magnetic mode of surface plasmonpolaritons in the gold waveguides...... and is being under investigation in recent years [3].The purpose of our research is to study nonlinear optical properties of gold waveguides embedded intodielectric medium (silicon dioxide) using picosecond laser spectroscopy. The work includes modeling ofoptical properties of gold waveguides, fabrication...... of prototype samples, and optical characterization ofsamples using a picosecond laser source.The prototype samples of gold waveguides embedded into silicon dioxide were fabricated at DTUDanchip. A silicon wafer with pre-made 6.5 μm layer of silicon dioxide was used as a substrate and goldwaveguides (films...
Peng, Wei-Qi; Tian, Shou-Fu; Zou, Li; Zhang, Tian-Tian
2018-01-01
In this paper, the extended nonlinear Schrödinger equation with higher-order odd (third order) and even (fourth order) terms is investigated, whose particular cases are the Hirota equation, the Sasa-Satsuma equation and Lakshmanan-Porsezian-Daniel equation by selecting some specific values on the parameters of higher-order terms. We first study the stability analysis of the equation. Then, using the ansatz method, we derive its bright, dark solitons and some constraint conditions which can guarantee the existence of solitons. Moreover, the Ricatti equation extension method is employed to derive some exact singular solutions. The outstanding characteristics of these solitons are analyzed via several diverting graphics.
Nonlinear Photonics and Novel Optical Phenomena
Morandotti, Roberto
2012-01-01
Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.
Biological applications of novel nonlinear optical microscopy
International Nuclear Information System (INIS)
Kajiyama, Shin'ichiro; Ozeki, Yasuyuki; Itoh, Kazuyoshi; Fukui, Kiichi
2010-01-01
Two types of newly developed nonlinear optical microscopes namely stimulated parametric emission (SPE) microscope and stimulated Raman scattering (SRS) microscope were presented together with their biological applications.
Cavity nonlinear optics with layered materials
Directory of Open Access Journals (Sweden)
Fryett Taylor
2017-12-01
Full Text Available Unprecedented material compatibility and ease of integration, in addition to the unique and diverse optoelectronic properties of layered materials, have generated significant interest in their utilization in nanophotonic devices. While initial nanophotonic experiments with layered materials primarily focused on light sources, modulators, and detectors, recent efforts have included nonlinear optical devices. In this paper, we review the current state of cavity-enhanced nonlinear optics with layered materials. Along with conventional nonlinear optics related to harmonic generation, we report on emerging directions of nonlinear optics, where layered materials can potentially play a significant role.
International Nuclear Information System (INIS)
Biswas, Kaushik; Sontakke, Atul D.; Annapurna, K.
2010-01-01
A series of calcium lanthanum metaborate glasses in the composition (wt%) of 23.88CaO-28.33La 2 O 3 -47.79B 2 O 3 modified with TiO 2 up to 20 wt% are prepared by a melt quenching technique to study the influence of TiO 2 on their thermal, structural, linear and nonlinear optical properties. The differential thermal analysis (DTA) studies have demonstrated significant effects due to the presence of TiO 2 on the glass forming ability and crystallization situations. The glass with 15 wt% TiO 2 has achieved a eutectic composition and also exhibited a better glass forming ability among the glasses studied. The FT-IR spectra of these glasses show mainly vibration modes corresponding to stretching of BO 3 trigonal, BO 4 tetrahedral units and of B-O-B bending bonds. At higher concentrations of TiO 2 , development of vibration band around 400 cm -1 has indicated the formation of TiO 6 structural units in the glass network. The red shift of optical absorption edge (UV cutoff) shows a monotonous decrease in direct and indirect optical band gap energies (E opt ) with an increase of TiO 2 content in the glasses based on their absorption spectra. The optical transparency of these glasses is found to be varied from 64 to 87% within the wavelength range 450-1100 nm depending on the TiO 2 content. Besides these studies, linear refractive indices, the nonlinear optical properties of these glasses have also been evaluated.
Nonlinear optical studies of curcumin metal derivatives with cw laser
Energy Technology Data Exchange (ETDEWEB)
Henari, F. Z., E-mail: fzhenari@rcsi-mub.com; Cassidy, S. [Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain (Bahrain)
2015-03-30
We report on measurements of the nonlinear refractive index and nonlinear absorption coefficients for curcumin and curcumin metal complexes of boron, copper, and iron at different wavelengths using the Z-scan technique. These materials are found to be novel nonlinear media. It was found that the addition of metals slightly influences its nonlinearity. These materials show a large negative nonlinear refractive index of the order of 10{sup −7} cm{sup 2}/W and negative nonlinear absorption of the order of 10{sup −6} cm/W. The origin of the nonlinearity was investigated by comparison of the formalism that is known as the Gaussian decomposition model with the thermal lens model. The optical limiting behavior based on the nonlinear refractive index was also investigated.
Nonlinear optical studies of curcumin metal derivatives with cw laser
International Nuclear Information System (INIS)
Henari, F. Z.; Cassidy, S.
2015-01-01
We report on measurements of the nonlinear refractive index and nonlinear absorption coefficients for curcumin and curcumin metal complexes of boron, copper, and iron at different wavelengths using the Z-scan technique. These materials are found to be novel nonlinear media. It was found that the addition of metals slightly influences its nonlinearity. These materials show a large negative nonlinear refractive index of the order of 10 −7 cm 2 /W and negative nonlinear absorption of the order of 10 −6 cm/W. The origin of the nonlinearity was investigated by comparison of the formalism that is known as the Gaussian decomposition model with the thermal lens model. The optical limiting behavior based on the nonlinear refractive index was also investigated
Krishnakumar, M.; Karthick, S.; Thirupugalmani, K.; Babu, B.; Vinitha, G.
2018-05-01
In present investigation, single crystals of organic charge transfer complex, 2-amino-4-methyl pyridinium-4-methoxy benzoate (2A4MP4MB) was grown by controlled slow evaporation solution growth technique using methanol as a solvent at room temperature. Single crystal XRD analysis confirmed the crystal system and lattice parameters of 2A4MP4MB. The crystalline nature, presence of various vibrational modes and other chemical bonds in the compound have been recognized and confirmed by powder X-ray diffraction, FT-IR and FT-Raman spectroscopic techniques respectively. The presence of various proton and carbon positions in title compound was confirmed using 1H NMR and 13C NMR spectral studies. The wide optical operating window and cut-off wavelength were identified and band gap value of the title compound was calculated using UV-vis-NIR study. The specific heat capacity (cp) values of the title compound, 1.712 J g-1·K-1 at 300 K and 13.6 J g-1 K-1 at 433 K (melting point) were measured using Modulated Differential Scanning Calorimetric studies (MDSC). From Z-scan study, nonlinear refractive index (n2), nonlinear absorption (β) and third order nonlinear susceptibility (χ(3)) values were determined. The self-defocusing effect and saturable absorption behavior of the material were utilized to exhibit the optical limiting action at λ = 532 nm by employing the same continuous wave (cw) Nd: YAG laser source. The laser damage threshold (LDT) study of title compound was carried out using Nd: YAG laser of 532 nm wavelength. The Vickers' micro hardness test was carried out at room temperature and obtained results were investigated using classical Meyer's law. In addition, DFT calculations were carried out for the first time for this compound. These characterization studies performed on the title compound planned to probe the valuable and safe region of optical, thermal and mechanical properties to improve efficacy of 2A4MP4MB single crystals in optoelectronic device
Nonlinear optics quantum computing with circuit QED.
Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M
2013-02-08
One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.
Nonlinear and quantum optics near nanoparticles
Dhayal, Suman
We study the behavior of electric fields in and around dielectric and metal nanoparticles, and prepare the ground for their applications to a variety of systems viz. photovoltaics, imaging and detection techniques, and molecular spectroscopy. We exploit the property of nanoparticles being able to focus the radiation field into small regions and study some of the interesting nonlinear, and quantum coherence and interference phenomena near them. The traditional approach to study the nonlinear light-matter interactions involves the use of the slowly varying amplitude approximation (SVAA) as it simplifies the theoretical analysis. However, SVVA cannot be used for systems which are of the order of the wavelength of the light. We use the exact solutions of the Maxwell's equations to obtain the fields created due to metal and dielectric nanoparticles, and study nonlinear and quantum optical phenomena near these nanoparticles. We begin with the theoretical description of the electromagnetic fields created due to the nonlinear wavemixing process, namely, second-order nonlinearity in an nonlinear sphere. The phase-matching condition has been revisited in such particles and we found that it is not satisfied in the sphere. We have suggested a way to obtain optimal conditions for any type and size of material medium. We have also studied the modifications of the electromagnetic fields in a collection of nanoparticles due to strong near field nonlinear interactions using the generalized Mie theory for the case of many particles applicable in photovoltaics (PV). We also consider quantum coherence phenomena such as modification of dark states, stimulated Raman adiabatic passage (STIRAP), optical pumping in 4-level atoms near nanoparticles by using rotating wave approximation to describe the Hamiltonian of the atomic system. We also considered the behavior of atomic and the averaged atomic polarization in 7-level atoms near nanoparticles. This could be used as a prototype to study
Nonlinear elliptic equations of the second order
Han, Qing
2016-01-01
Nonlinear elliptic differential equations are a diverse subject with important applications to the physical and social sciences and engineering. They also arise naturally in geometry. In particular, much of the progress in the area in the twentieth century was driven by geometric applications, from the Bernstein problem to the existence of Kähler-Einstein metrics. This book, designed as a textbook, provides a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order with an emphasis on mean curvature equations and on Monge-Ampère equations. It gives a user-friendly introduction to the theory of nonlinear elliptic equations with special attention given to basic results and the most important techniques. Rather than presenting the topics in their full generality, the book aims at providing self-contained, clear, and "elementary" proofs for results in important special cases. This book will serve as a valuable resource for graduate stu...
Nonlinear Optics: Materials, Fundamentals, and Applications. Postdeadline papers
1992-08-01
The Nonlinear Optics: Materials, Fundamentals, and Applications conference was held on 17-21 Aug. 1992. The following topics were addressed: subpicosecond time resolved four-wave mixing spectroscopy in heteroepitaxial ZnSe thin layers; anisotropic two-photon transition in GaAs/AlGaAs multiple quantum well waveguides; two picosecond, narrow-band, tunable, optical parametric systems using BBO and LBO; second generation in an optically active liquid: experimental observation of a fourth-order optical nonlinearity due to molecular chirality; optical image recognition system implemented with a 3-D memory disk; phase-matched second-harmonic generation in waveguides of polymeric Langmuir-Blodgett films; fluence dependent dynamics observed in the resonant third-order optical response of C60 and C70 films; temporal modulation of spatial optical solitons: a variational approach; measurements of light-scattering noise during two-wave mixing in a Kerr medium; excess noise introduced by beam propagation through an atomic vapor; an approach to all-optical switching based on second-order nonlinearities; multilayer, nonlinear ARROW waveguides for surface emitted sum-frequency mixing; energy scaling of SBS phase conjugate mirrors to 4J; vector versus scalar theory for the double phase conjugate mirror; cross-talk and error probability in counter-beam lambda-multiplexed digital holograms; and modal growth of SHG in doped silica thin film waveguides.
Cascaded nonlinearities for ultrafast nonlinear optical science and applications
DEFF Research Database (Denmark)
Bache, Morten
the cascading nonlinearity is investigated in detail, especially with focus on femtosecond energetic laser pulses being subjected to this nonlinear response. Analytical, numerical and experimental results are used to understand the cascading interaction and applications are demonstrated. The defocusing soliton...... observations with analogies in fiber optics are observed numerically and experimentally, including soliton self-compression, soliton-induced resonant radiation, supercontinuum generation, optical wavebreaking and shock-front formation. All this happens despite no waveguide being present, thanks...... is of particular interest here, since it is quite unique and provides the solution to a number of standing challenges in the ultrafast nonlinear optics community. It solves the problem of catastrophic focusing and formation of a filaments in bulk glasses, which even under controlled circumstances is limited...
Nonlinear soliton matching between optical fibers
DEFF Research Database (Denmark)
Agger, Christian; Sørensen, Simon Toft; Thomsen, Carsten L.
2011-01-01
In this Letter, we propose a generic nonlinear coupling coefficient, η2 NL ¼ ηjγ=β2jfiber2=jγ=β2jfiber1, which gives a quantitative measure for the efficiency of nonlinear matching of optical fibers by describing how a fundamental soliton couples from one fiber into another. Specifically, we use η...
Nuclear matter as a nonlinear optical medium
International Nuclear Information System (INIS)
Hefter, E.F.; Papini, G.
1986-01-01
This paper is concerned with the question whether nuclear matter should be considered as a nonlinear optical medium. Taking, in a pragmatic way, quality and quantity of the results of well-established linear and nonlinear approaches as the main criterion, an affirmative answer is seen to be consistent with long-standing practices adhered to in nuclear physics
Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation.
Neufeld, Ofer; Cohen, Oren
2018-03-30
Optical chirality (OC)-one of the fundamental quantities of electromagnetic fields-corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.
Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation
Neufeld, Ofer; Cohen, Oren
2018-03-01
Optical chirality (OC)—one of the fundamental quantities of electromagnetic fields—corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.
Custodio, J. M. F.; Santos, F. G.; Vaz, W. F.; Cunha, C. E. P.; Silveira, R. G.; Anjos, M. M.; Campos, C. E. M.; Oliveira, G. R.; Martins, F. T.; da Silva, C. C.; Valverde, C.; Baseia, B.; Napolitano, H. B.
2018-04-01
A comprehensive structural study of the compound (2E)-1-((E)-4-(4-methoxybenzylideneamino)phenyl)-3-(4-methoxyphenyl)prop-2-en-1-one was carried out in this work. Single crystal X-ray diffraction (SCXRD), X-ray powder diffraction (XRPD), NMR, Raman and Infrared spectroscopies, and DFT calculations were performed for characterization of this iminochalcone hybrid. Intermolecular interactions were described by Hirshfeld surface analysis derived from crystal structure. Reactivity and intramolecular charge transfer were investigated using the frontier molecular orbitals and molecular electrostatic potential. In addition, we have calculated the Nonlinear Optical Properties at the CAM-B3LYP/6-311+g(d) level of theory in the presence of different solvents (gas-phase, acetone, chloroform, dichloromethane, dimethyl sulfoxide, ethanol, methanol, and water), being found meaningful NLO parameters for our compound. At last, there is a good agreement between calculated and experimental IR spectrum, allowing the assignment of some of normal vibrational modes of the iminochalcone hybrid.
Patel, Dhananjay; Singh, Vinay Kumar; Dalal, U. D.
2017-01-01
Single mode fibers (SMF) are typically used in Wide Area Networks (WAN), Metropolitan Area Networks (MAN) and also find applications in Radio over Fiber (RoF) architectures supporting data transmission in Fiber to the Home (FTTH), Remote Antenna Units (RAUs), in-building networks etc. Multi-mode fibers (MMFs) with low cost, ease of installation and low maintenance are predominantly (85-90%) deployed in-building networks providing data access in local area networks (LANs). The transmission of millimeter wave signals through the SMF in WAN and MAN, along with the reuse of MMF in-building networks will not levy fiber reinstallation cost. The transmission of the millimeter waves experiences signal impairments due to the transmitter non-linearity and modal dispersion of the MMF. The MMF exhibiting large modal dispersion limits the bandwidth-length product of the fiber. The second and higher-order harmonics present in the optical signal fall within the system bandwidth. This causes degradation in the received signal and an unwanted radiation of power at the RAU. The power of these harmonics is proportional to the non-linearity of the transmitter and the modal dispersion of the MMF and should be maintained below the standard values as per the international norms. In this paper, a mathematical model is developed for Second-order Harmonic Distortion (HD2) generated due to non-linearity of the transmitter and chromatic-modal dispersion of the SMF-MMF optic link. This is also verified using a software simulation. The model consists of a Mach Zehnder Modulator (MZM) that generates two m-QAM OFDM Single Sideband (SSB) signals based on phase shift of the hybrid coupler (90° and 120°). Our results show that the SSB signal with 120° hybrid coupler has suppresses the higher-order harmonics and makes the system more robust against the HD2 in the SMF-MMF optic link.
Yuvaraj, S.; Manikandan, N.; Vinitha, G.
2017-11-01
Mn0.55Cu0.45Fe2O4 nanoparticles were synthesized by wet chemical co-precipitation method. The obtained samples were annealed at different temperatures (500 °C to 1250 °C). All annealed samples were characterized for their structural, magnetic, linear and non-linear optical properties. XRD results confirm single phase cubic spinel structure only for samples annealed at 800 °C and 1250 °C. The average crystallite sizes of the samples are in the range of 11-37 nm. HR-SEM image of the sample annealed at 800 °C exposed spherical morphology. The quantitative analysis of EDX results is close to the expected values. Bandgaps were evaluated from UV-DRS. The FTIR spectrum showing the essential peaks around 452.1 and 567.2 cm-1 prove the formation of spinel nanoparticles. In PL spectrum, a broad emission peak is attained in visible region at 485 nm. The saturation magnetization (M s), coercivity (H c) and remanence magnetization (M r) are obtained from the hysteresis curve. Nonlinear absorption coefficients (10-4 cm W-1), nonlinear indices of refraction (10-8 cm2 W-1) and the third order nonlinear susceptibilities (10-6 esu) are determined using Z-scan experiment. CW laser beam is utilized to study the optical limiting characteristics and the results prove these materials to be a potential candidate for device applications like optical switches and power limiters.
Microresonators for Nonlinear Quantum Optics
Vernon, Zachary
In this thesis I study in detail the quantum dynamics of several nonlinear optical processes in microresonator systems. A Heisenberg-picture input-output formalism is developed from first principles that includes the effects of scattering losses and independent quality factors and coupling ratios for different resonances. The task of calculating the device output is then reduced to solving a set of driven, damped, ordinary differential equations for the resonator mode operators alone. This theoretical framework is used to study photon pair generation via spontaneous four-wave mixing in the weakly pumped regime, on which the effects of scattering losses are appraised. A more strongly driven regime is studied for continuous wave pumps, demonstrating when self- and cross-phase modulation and multi-photon pair generation become important, and their effects on the spectral and power scaling properties of the system are examined; A detuning strategy is presented that compensates for some of these effects. The results of the weak-pump regime are applied to study microresonator-based heralded single photon sources. The impact of scattering losses is studied, revealing that typical systems suffer from low heralding efficiency due to these losses. A technique to improve heralding efficiency is presented through over-coupling the resonator-channel system, and a resultant trade-off between heralding rate and heralding efficiency is uncovered. Limitations to the spectral purity of the heralded single photon output for conventional microresonator systems are also analysed, and a more sophisticated coupling scheme presented to overcome the upper bound for spectral purity of 93% that exists in typical systems, permitting the generation of single photons with spectral purity arbitrarily close to 100% without spectral filtering or sophisticated phase-matching techniques. The theory of quantum frequency conversion in microresonators using four-wave mixing is then developed in detail
Progress in linear optics, non-linear optics and surface alignment of liquid crystals
Ong, H. L.; Meyer, R. B.; Hurd, A. J.; Karn, A. J.; Arakelian, S. M.; Shen, Y. R.; Sanda, P. N.; Dove, D. B.; Jansen, S. A.; Hoffmann, R.
We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition.
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
The study of solitons in those physical systems reveals some exciting .... With the following power series expansions for g(z,t) and f(z,t): g(z,t) = εg1(z,t) + ... If nonlinearity γ (z) is also taken as a function in figure 1b, the periodic and oscillation.
Nonlinear optical techniques for surface studies
International Nuclear Information System (INIS)
Shen, Y.R.
1981-09-01
Recent effort in developing nonlinear optical techniques for surface studies is reviewed. Emphasis is on monolayer detection of adsorbed molecules on surfaces. It is shown that surface coherent antiStokes Raman scattering (CARS) with picosecond pulses has the sensitivity of detecting submonolayer of molecules. On the other hand, second harmonic or sum-frequency generation is also sensitive enough to detect molecular monolayers. Surface-enhanced nonlinear optical effects on some rough metal surfaces have been observed. This facilitates the detection of molecular monolayers on such surfaces, and makes the study of molecular adsorption at a liquid-metal interface feasible. Advantages and disadvantages of the nonlinear optical techniques for surface studies are discussed
Nonlinear Optics with 2D Layered Materials.
Autere, Anton; Jussila, Henri; Dai, Yunyun; Wang, Yadong; Lipsanen, Harri; Sun, Zhipei
2018-03-25
2D layered materials (2DLMs) are a subject of intense research for a wide variety of applications (e.g., electronics, photonics, and optoelectronics) due to their unique physical properties. Most recently, increasing research efforts on 2DLMs are projected toward the nonlinear optical properties of 2DLMs, which are not only fascinating from the fundamental science point of view but also intriguing for various potential applications. Here, the current state of the art in the field of nonlinear optics based on 2DLMs and their hybrid structures (e.g., mixed-dimensional heterostructures, plasmonic structures, and silicon/fiber integrated structures) is reviewed. Several potential perspectives and possible future research directions of these promising nanomaterials for nonlinear optics are also presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Extra phase noise from thermal fluctuations in nonlinear optical crystals
DEFF Research Database (Denmark)
César, J. E. S.; Coelho, A.S.; Cassemiro, K.N.
2009-01-01
We show theoretically and experimentally that scattered light by thermal phonons inside a second-order nonlinear crystal is the source of additional phase noise observed in optical parametric oscillators. This additional phase noise reduces the quantum correlations and has hitherto hindered the d...
Instrumentation for Linear and Nonlinear Optical Device Characterization
2018-01-31
distribution is Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Pl has acquired six pieces of equipment to extend capabilities for linear and nonlinear...optical spectral analysis • Frequency comb generation in mid-infrared Accomplishments Six major pieces of equipment have been ordered and received
Wu, Xingzhi; Xiao, Jinchong; Sun, Ru; Jia, Jidong; Yang, Junyi; Ao, Guanghong; Shi, Guang; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin
2018-06-01
Spindle-type molecules containing twisted acenes (PyBTA-1 &PyBTA-2) are designed, synthesized characterized. Picosecond Z-scan experiments under 532 nm show reverse saturable absorption and negative nonlinear refraction, indicating large third-order optical nonlinearity in PyBTA-1. The mechanism of the optical nonlinearity is investigated and the results show that the nonlinear absorption and refraction in PyBTA-1 originates from a charge transfer (CT) state. Furthermore, relatively long lifetime and absorptive cross section of the CT state are measured. Based on the excited state absorption in PyBTA-1, strong optical limiting with ∼0.3 J/cm2 thresholds are obtained when excited by picoseconds and nanoseconds pulses. The findings on nonlinear optics suggest PyBTA-1 a promising material of all optical modulation and laser protection, which enrich the potential applications of these spindle-type molecules. Comparing to the previously reported spindle-type molecules with analogous structures, the introduction of ICT in PyBTA-1 &PyBTA-2 dramatically decreases the two-photon absorption while enhances the nonlinear refraction. The results could be used to selectively tailor the optical nonlinearity in such kind of compounds.
Directory of Open Access Journals (Sweden)
Chong Li
2017-02-01
Full Text Available We propose a scheme of unidirectional transmission in a 1D nonlinear topological photonic crystal based on the topological edge state and three order optical nonlinearity. The 1D photonic crystals consists of a nonlinear photonic crystal L and a linear photonic crystal R. In the backward direction, light is totally reflected for the photons transmission prohibited by the bandgap. While in the forward direction, light interacts with the nonlinear photonic crystal L by optical Kerr effect, bringing a topological phase reversal and results the topological edge mode arising at the interface which could transmit photons through the bandgaps both of the photonic crystal L and R. When the signal power intensity larger than a moderate low threshold value of 10.0 MW/cm2, the transmission contrast ratio could remain at 30 steadily.
Nonlinear optical response of some Graphene oxide and Graphene fluoride derivatives
Liaros Nikolaos; Orfanos Ioannis; Papadakis Ioannis; Couris Stelios
2016-01-01
The nonlinear optical properties of two graphene derivatives, graphene oxide and graphene fluoride, are investigated by means of the Z-scan technique employing 35 ps and 4 ns, visible (532 nm) laser excitation. Both derivatives were found to exhibit significant third-order nonlinear optical response at both excitation regimes, with the nonlinear absorption being relatively stronger and concealing the presence of nonlinear refraction under ns excitation, while ps excita...
Measurement-induced nonlinearity in linear optics
International Nuclear Information System (INIS)
Scheel, Stefan; Knight, Peter L.; Nemoto, Kae; Munro, William J.
2003-01-01
We investigate the generation of nonlinear operators with single-photon sources, linear optical elements, and appropriate measurements of auxiliary modes. We provide a framework for the construction of useful single-mode and two-mode quantum gates necessary for all-optical quantum information processing. We focus our attention generally on using minimal physical resources while providing a transparent and algorithmic way of constructing these operators
Nonlinear microstructured polymer optical fibres
DEFF Research Database (Denmark)
Frosz, Michael Henoch
is potentially the case for microstructured polymer optical fibres (mPOFs). Another advantage is that polymer materials have a higher biocompatibility than silica, meaning that it is easier to bond certain types of biosensor materials to a polymer surface than to silica. As with silica PCFs, it is difficult...
Anisotropic and nonlinear optical waveguides
Someda, CG
1992-01-01
Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an
Nonlinear optical properties of ultrathin metal layers
DEFF Research Database (Denmark)
Lysenko, Oleg
2016-01-01
This thesis presents experimental and theoretical studies of nonlinear propagation of ultrashort long-range surface plasmon polaritons in gold strip waveguides. The strip plasmonic waveguides are fabricated in house, and contain a gold layer, adhesion layers, and silicon dioxide cladding. The opt......This thesis presents experimental and theoretical studies of nonlinear propagation of ultrashort long-range surface plasmon polaritons in gold strip waveguides. The strip plasmonic waveguides are fabricated in house, and contain a gold layer, adhesion layers, and silicon dioxide cladding......-order nonlinear susceptibility of the plasmonic mode in the gold strip waveguides significantly depends on the metal layer thickness and laser pulse duration. This dependence is explained in detail in terms of the free-electron temporal dynamics in gold. The third-order nonlinear susceptibility of the gold layer...
Laser beam propagation in nonlinear optical media
Guha, Shekhar
2013-01-01
""This is very unique and promises to be an extremely useful guide to a host of workers in the field. They have given a generalized presentation likely to cover most if not all situations to be encountered in the laboratory, yet also highlight several specific examples that clearly illustrate the methods. They have provided an admirable contribution to the community. If someone makes their living by designing lasers, optical parametric oscillators or other devices employing nonlinear crystals, or designing experiments incorporating laser beam propagation through linear or nonlinear media, then
Energy Technology Data Exchange (ETDEWEB)
Nivetha, K. [Centre for Crystal Growth, School of Advanced Sciences, VIT University, Vellore 632 014 (India); Kalainathan, S., E-mail: kalainathan@yahoo.com [Centre for Crystal Growth, School of Advanced Sciences, VIT University, Vellore 632 014 (India); Yamada, M. [Research Center for Engineering Science, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502 (Japan); Kondo, Y. [Department of Life Science, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502 (Japan); Hamada, F. [Department of Applied Chemistry, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502 (Japan)
2017-02-15
A new organic stilbazolium derivative, 1-Ethyl-2-(2-p-tolyl-vinyl)-pyridinium iodide (TASI), was grown from methanol:acetonitrile (1:3) mixed solvent by slow evaporation technique. Single crystal X-ray diffraction analysis revealed that TASI crystallizes in triclinic system with a centrosymmetric space group P-1. The molecular structure and the presence of expected functional groups of TASI were confirmed by {sup 1}H NMR and FT-IR spectroscopic studies. The HOMO and LUMO energies influence the charge transfer takes place within the molecule. The grown crystal was thermally stable up to 210 °C as determined by TG/DTA analysis. UV-Vis-NIR spectral study showed that the grown crystal was transparent in the wavelength range of 438–1100 nm. Mechanical behaviour and surface laser damage threshold were studied to find the suitability of the grown crystal for device fabrication. Studies of its third-order nonlinear optical properties using a Z-scan technique demonstrates that TASI crystal is capable of exhibiting reverse saturable absorption and self-focusing performance with the second-order molecular hyperpolarizability (γ) 4.983 × 10{sup −34} esu. The third-order nonlinear susceptibility of TASI was found to be 8.931 × 10{sup −6} esu, which is higher than a few other stilbazolium derivative crystals. - Highlights: • TASI is a new organic stilbazolium derivative and was grown by slow evaporation technique. • HOMO-LUMO analysis helps to explain charge transfer interaction within the molecule. • The grown crystal has 80% transmittance in the visible and near-IR spectral range. • Thermally, electrically and mechanically efficient for NLO applications. • Z-scan measurements reveal the aptness of the grown crystal for third order NLO applications.
Nonlinear singular perturbation problems of arbitrary real orders
International Nuclear Information System (INIS)
Bijura, Angelina M.
2003-10-01
Higher order asymptotic solutions of singularly perturbed nonlinear fractional integral and derivatives of order 1/2 are investigated. It is particularly shown that whilst certain asymptotic expansions are applied successfully to linear equations and particular nonlinear problems, the standard formal asymptotic expansion is appropriate for the general class of nonlinear equations. This theory is then generalised to the general equation (of order β, 0 < β < 1). (author)
Retrieval of high-order susceptibilities of nonlinear metamaterials
International Nuclear Information System (INIS)
Wang Zhi-Yu; Qiu Jin-Peng; Chen Hua; Mo Jiong-Jiong; Yu Fa-Xin
2017-01-01
Active metamaterials embedded with nonlinear elements are able to exhibit strong nonlinearity in microwave regime. However, existing S -parameter based parameter retrieval approaches developed for linear metamaterials do not apply in nonlinear cases. In this paper, a retrieval algorithm of high-order susceptibilities for nonlinear metamaterials is derived. Experimental demonstration shows that, by measuring the power level of each harmonic while sweeping the incident power, high-order susceptibilities of a thin-layer nonlinear metamaterial can be effectively retrieved. The proposedapproach can be widely used in the research of active metamaterials. (paper)
International Nuclear Information System (INIS)
Meng, Chang-Yu; Geng, Lei; Chen, Wen-Ting; Wei, Ming-Fang; Dai, Kai; Lu, Hong-Yan; Cheng, Wen-Dan
2015-01-01
Highlights: • The new polar compound Pb 2 (SeO 3 )(NO 3 ) 2 was synthesized by the conventional hydrothermal method. • The compound was characterized structurally and optically, showing SHG efficiency about 2 times that of KDP. • The electronic band structures and density of states are investigated theoretically. - Abstract: A new polar compound Pb 2 (SeO 3 )(NO 3 ) 2 was synthesized by the conventional facile hydrothermal method at middle temperature 200 °C and characterized by X-ray single crystal diffraction, powder diffraction, UV–vis−NIR optical absorption spectrum and infrared spectrum. It crystallizes in the orthorhombic system, space group Pmn2 1 with a = 5.4669(3) Å, b = 10.3277(6) Å, c = 7.2610(4) Å, V = 409.96(4) Å 3 . The compound features a 2D [Pb 2 (SeO 3 )] 2 ∞ architectures composed of SeO 3 and PbO 2 /PbO 3 units. Two unequivalent N(1)O 3 and N(2)O 3 units is inserted between adjacent [Pb 2 (SeO 3 )] 2 ∞ layers to stabilize the whole crystal structure. Second-harmonic generation (SHG) efficiency has been evaluated for powder Pb 2 (SeO 3 )(NO 3 ) 2 samples, showing about 2 times that of KDP reference. Moreover, the compound can achieve I-type phase-matching according to measurements by the Kurtz–Perry method. Theoretical investigations based on the first-principle DFT method were also performed to gain further insights into the crystal structure and optical properties relationship. The calculated band gap value of 3.38 eV is consistent with the optical reflectance measurements value of 3.76 eV
Cross-Kerr nonlinearities in an optically dressed periodic medium
Energy Technology Data Exchange (ETDEWEB)
Slowik, K; Raczynski, A; Zaremba, J [Instytut Fizyki, Uniwersytet Mikolaja Kopernika, ulica Grudziadzka 5, 87-100 Torun (Poland); Zielinska-Kaniasty, S [Instytut Matematyki i Fizyki, Uniwersytet Technologiczno-Przyrodniczy, Aleja Prof. S Kaliskiego 7, 85-789 Bydgoszcz (Poland); Artoni, M [Department of Physics and Chemistry of Materials, CNR-INFM Sensor Lab, Brescia University and European Laboratory for Nonlinear Spectroscopy, Firenze (Italy); La Rocca, G C, E-mail: karolina@fizyka.umk.pl [Scuola Normale Superiore and CNISM, Pisa (Italy)
2011-02-15
Cross-Kerr nonlinearities are analyzed for two light beams propagating in an atomic medium in the tripod configuration, dressed by a strong standing-wave laser field that induces periodic optical properties. The reflection and transmission spectra as well as the phases of both the reflected and transmitted components of the two beams are analyzed theoretically with nonlinearities up to third order being taken into account. Ranges of parameters are sought in which the cross-Kerr effect can be used as the basis of the phase gate.
Nontrivial Periodic Solutions for Nonlinear Second-Order Difference Equations
Directory of Open Access Journals (Sweden)
Tieshan He
2011-01-01
Full Text Available This paper is concerned with the existence of nontrivial periodic solutions and positive periodic solutions to a nonlinear second-order difference equation. Under some conditions concerning the first positive eigenvalue of the linear equation corresponding to the nonlinear second-order equation, we establish the existence results by using the topological degree and fixed point index theories.
Exact solutions to two higher order nonlinear Schroedinger equations
International Nuclear Information System (INIS)
Xu Liping; Zhang Jinliang
2007-01-01
Using the homogeneous balance principle and F-expansion method, the exact solutions to two higher order nonlinear Schroedinger equations which describe the propagation of femtosecond pulses in nonlinear fibres are obtained with the aid of a set of subsidiary higher order ordinary differential equations (sub-equations for short)
Nonclassical properties of a contradirectional nonlinear optical coupler
Energy Technology Data Exchange (ETDEWEB)
Thapliyal, Kishore [Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India); Pathak, Anirban, E-mail: anirban.pathak@gmail.com [Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India); RCPTM, Joint Laboratory of Optics of Palacky University and Institute of Physics of Academy of Science of the Czech Republic, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Sen, Biswajit [Department of Physics, Vidyasagar Teachers' Training College, Midnapore 721101 (India); Perřina, Jan [RCPTM, Joint Laboratory of Optics of Palacky University and Institute of Physics of Academy of Science of the Czech Republic, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Department of Optics, Palacky University, 17. listopadu 12, 771 46 Olomouc (Czech Republic)
2014-10-24
We investigate the nonclassical properties of output fields propagated through a contradirectional asymmetric nonlinear optical coupler consisting of a linear waveguide and a nonlinear (quadratic) waveguide operated by second harmonic generation. In contrast to the earlier results, all the initial fields are considered weak and a completely quantum-mechanical model is used here to describe the system. Perturbative solutions of Heisenberg's equations of motion for various field modes are obtained using Sen–Mandal technique. Obtained solutions are subsequently used to show the existence of single-mode and intermodal squeezing, single-mode and intermodal antibunching, two-mode and multi-mode entanglement in the output of contradirectional asymmetric nonlinear optical coupler. Further, existence of higher order nonclassicality is also established by showing the existence of higher order antibunching, higher order squeezing and higher order entanglement. Variation of observed nonclassical characters with different coupling constants and phase mismatch is discussed. - Highlights: • Nonclassicalities in fields propagating through a directional coupler is studied. • Completely quantum-mechanical description of the coupler is provided. • Analytic solutions of Heisenberg equations of motion for various modes are obtained. • Existence of lower order and higher order entanglement is shown. • Variation of nonclassicalities with phase-mismatch and coupling constants is studied.
Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet
2017-11-01
In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.
Femtosecond nonlinear fiber optics in the ionization regime.
Hölzer, P; Chang, W; Travers, J C; Nazarkin, A; Nold, J; Joly, N Y; Saleh, M F; Biancalana, F; Russell, P St J
2011-11-11
By using a gas-filled kagome-style photonic crystal fiber, nonlinear fiber optics is studied in the regime of optically induced ionization. The fiber offers low anomalous dispersion over a broad bandwidth and low loss. Sequences of blueshifted pulses are emitted when 65 fs, few-microjoule pulses, corresponding to high-order solitons, are launched into the fiber and undergo self-compression. The experimental results are confirmed by numerical simulations which suggest that free-electron densities of ∼10(17) cm(-3) are achieved at peak intensities of 10(14) W/cm(2) over length scales of several centimeters.
Nonlinear partial differential equations of second order
Dong, Guangchang
1991-01-01
This book addresses a class of equations central to many areas of mathematics and its applications. Although there is no routine way of solving nonlinear partial differential equations, effective approaches that apply to a wide variety of problems are available. This book addresses a general approach that consists of the following: Choose an appropriate function space, define a family of mappings, prove this family has a fixed point, and study various properties of the solution. The author emphasizes the derivation of various estimates, including a priori estimates. By focusing on a particular approach that has proven useful in solving a broad range of equations, this book makes a useful contribution to the literature.
Advanced in Nonlinear Optics and Laser Research and Development
International Nuclear Information System (INIS)
Jackel, S.; Kotler, Z; Lavi, R.; Sternklar, S.
1996-01-01
The Nonlinear Optics Group (NLOG) at Soreq NRC is engaged in the development of fundamental and applied technology in the related fields of nonlinear optics and laser development. Our work in nonlinear optics started with the goal of improving laser performance. These efforts were successful and opened the way for R and D in nonlinear optics for other applications. Today we use nonlinear optics to enable continuous tunability of lasers, control the path of light beams, modulate a light signal rapidly, provide optical data storage, and supply new means of microscopically probing biological and inorganic samples. Technology maturation and interaction with users will show which aspects of nonlinear optics will make the most impact
Progress in nonlinear nano-optics
Lienau, Christoph; Grunwald, Rüdiger
2015-01-01
This book presents the state of the art in nonlinear nanostructures for ultrafast laser applications. Most recent results in two emerging fields are presented: (i) generation of laser-induced nanostructures in materials like metals, metal oxides and semiconductors, and (ii) ultrafast excitation and energy transfer in nanoscale physical, chemical and hybrid systems. Particular emphasis is laid on the up-to-date controversially discussed mechanisms of sub-wavelength ripple formation including models of self-organized material transport and multiphoton excitation channels, nonlinear optics of plasmonic structures (nanotips, nanowires, 3D-metamaterials), and energy localization and transport on ultrafast time scale and spatial nanoscale. High-resolution spectroscopy, simulation and characterization techniques are reported. New applications of ultrashort-pulsed lasers for materials processing and the use of nanostructured materials for characterizing laser fields and laser-matter-interactions are discussed.
Optical rogue waves generation in a nonlinear metamaterial
Onana Essama, Bedel Giscard; Atangana, Jacques; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Kofane, Timoleon Crepin
2014-11-01
We investigate the behavior of electromagnetic wave which propagates in a metamaterial for negative index regime. The optical pulse propagation is described by the nonlinear Schrödinger equation with cubic-quintic nonlinearities, second- and third-order dispersion effects. The behavior obtained for negative index regime is compared to that observed for positive index regime. The characterization of electromagnetic wave uses some pulse parameters obtained analytically and called collective coordinates such as amplitude, temporal position, width, chirp, frequency shift and phase. Six frequency ranges have been pointed out where a numerical evolution of collective coordinates and their stability are studied under a typical example to verify our analysis. It appears that a robust soliton due to a perfect compensation process between second-order dispersion and cubic-nonlinearity is presented at each frequency range for both negative and positive index regimes. Thereafter, the stability of the soliton pulse and physical conditions leading to optical rogue waves generation are discussed at each frequency range for both regimes, when third-order dispersion and quintic-nonlinearity come into play. We have demonstrated that collective coordinates give much useful information on external and internal behavior of rogue events. Firstly, we determine at what distance begins the internal excitation leading to rogue waves. Secondly, what kind of internal modification and how it modifies the system in order to build-up rogue events. These results lead to a best comprehension of the mechanism of rogue waves generation. So, it clearly appears that the rogue wave behavior strongly depends on nonlinearity strength of distortion, frequency and regime considered.
Discrete second order trajectory generator with nonlinear constraints
Morselli, R.; Zanasi, R.; Stramigioli, Stefano
2005-01-01
A discrete second order trajectory generator for motion control systems is presented. The considered generator is a nonlinear system which receives as input a raw reference signal and provides as output a smooth reference signal satisfying nonlinear constraints on the output derivatives as UM-(x) ≤
Solution of continuous nonlinear PDEs through order completion
Oberguggenberger, MB
1994-01-01
This work inaugurates a new and general solution method for arbitrary continuous nonlinear PDEs. The solution method is based on Dedekind order completion of usual spaces of smooth functions defined on domains in Euclidean spaces. However, the nonlinear PDEs dealt with need not satisfy any kind of monotonicity properties. Moreover, the solution method is completely type independent. In other words, it does not assume anything about the nonlinear PDEs, except for the continuity of their left hand term, which includes the unkown function. Furthermore the right hand term of such nonlinear PDEs can in fact be given any discontinuous and measurable function.
Baev, Alexander; Autschbach, Jochen; Boyd, Robert W; Prasad, Paras N
2010-04-12
Herein, we develop a phenomenological model for microscopic cascading and substantiate it with ab initio calculations. It is shown that the concept of local microscopic cascading of a second-order nonlinearity can lead to a third-order nonlinearity, without introducing any new loss mechanisms that could limit the usefulness of our approach. This approach provides a new molecular design protocol, in which the current great successes achieved in producing molecules with extremely large second-order nonlinearity can be used in a supra molecular organization in a preferred orientation to generate very large third-order response magnitudes. The results of density functional calculations for a well-known second-order molecule, (para)nitroaniline, show that a head-to-tail dimer configuration exhibits enhanced third-order nonlinearity, in agreement with the phenomenological model which suggests that such an arrangement will produce cascading due to local field effects.
Nonlinear optics of fibre event horizons.
Webb, Karen E; Erkintalo, Miro; Xu, Yiqing; Broderick, Neil G R; Dudley, John M; Genty, Goëry; Murdoch, Stuart G
2014-09-17
The nonlinear interaction of light in an optical fibre can mimic the physics at an event horizon. This analogue arises when a weak probe wave is unable to pass through an intense soliton, despite propagating at a different velocity. To date, these dynamics have been described in the time domain in terms of a soliton-induced refractive index barrier that modifies the velocity of the probe. Here we complete the physical description of fibre-optic event horizons by presenting a full frequency-domain description in terms of cascaded four-wave mixing between discrete single-frequency fields, and experimentally demonstrate signature frequency shifts using continuous wave lasers. Our description is confirmed by the remarkable agreement with experiments performed in the continuum limit, reached using ultrafast lasers. We anticipate that clarifying the description of fibre event horizons will significantly impact on the description of horizon dynamics and soliton interactions in photonics and other systems.
Exact Solutions to Nonlinear Schroedinger Equation and Higher-Order Nonlinear Schroedinger Equation
International Nuclear Information System (INIS)
Ren Ji; Ruan Hangyu
2008-01-01
We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Schroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new dependent variable, the NLSE and HONLSE can be changed into one equation. Using the generalized Lie group reduction method (GLGRM), the abundant solutions of NLSE and HONLSE are obtained
Oscillation criteria for fourth-order nonlinear delay dynamic equations
Directory of Open Access Journals (Sweden)
Yunsong Qi
2013-03-01
Full Text Available We obtain criteria for the oscillation of all solutions to a fourth-order nonlinear delay dynamic equation on a time scale that is unbounded from above. The results obtained are illustrated with examples
Oscillation criteria for third order delay nonlinear differential equations
Directory of Open Access Journals (Sweden)
E. M. Elabbasy
2012-01-01
via comparison with some first differential equations whose oscillatory characters are known. Our results generalize and improve some known results for oscillation of third order nonlinear differential equations. Some examples are given to illustrate the main results.
Higher-order techniques for some problems of nonlinear control
Directory of Open Access Journals (Sweden)
Sarychev Andrey V.
2002-01-01
Full Text Available A natural first step when dealing with a nonlinear problem is an application of some version of linearization principle. This includes the well known linearization principles for controllability, observability and stability and also first-order optimality conditions such as Lagrange multipliers rule or Pontryagin's maximum principle. In many interesting and important problems of nonlinear control the linearization principle fails to provide a solution. In the present paper we provide some examples of how higher-order methods of differential geometric control theory can be used for the study nonlinear control systems in such cases. The presentation includes: nonlinear systems with impulsive and distribution-like inputs; second-order optimality conditions for bang–bang extremals of optimal control problems; methods of high-order averaging for studying stability and stabilization of time-variant control systems.
The Quest for the Ultimate Nonlinear Optical Material
Dagenais, M.
1990-10-01
The following sections are included: * Introduction * From Infancy to the Real World * Highly Efficient Nonlinear Optical Materials for Switching and Processing * The Era of Pragmatism * Conclusion * References
Nonlinear optical effects in pure and N-doped semiconductors
International Nuclear Information System (INIS)
Donlagic, N.S.
2000-01-01
Over the last decades, the nonlinear optical properties of condensed matter systems have been an attractive and fruitful field of research. While the linear response functions of solids provide information about the elementary excitations of the systems, nonlinear optical experiments give insight into the dynamics of the fundamental many-body processes which are initiated by the external excitations. Stimulated by the experimental results, new theoretical concepts and methods have been developed in order to relate the observed phenomena to the microscopic properties of the investigated materials. The present work deals with the study of the nonlinear dynamics of the optical interband polarization in pure and n-doped semiconductors.In the first part of the thesis, the relaxation behavior of optically excited electron-hole pairs in a one-dimensional semiconductor, which are coupled to longitudinal optical phonons with an initial lattice temperature T>0, is studied with the help of quantum kinetic equations. Apart from Hartree-Fock-like Coulomb contributions, these equations contain additional Coulomb terms, the so-called vertex corrections, by which the influence of the electron-electron interaction on the electron-phonon scattering processes is taken into account. The numerical studies indicate that the vertex corrections are essential for a correct description of the excitonic dynamics.In the second part of the thesis, the attention is shifted to the characteristics of the optical response of a one-dimensional n-doped two-band semiconductor whose conduction band has been linearized with respect to the two Fermi points. Due to the linearization it is possible to calculate the linear and nonlinear response functions of the interacting electron system exactly. These response functions are then used in order to determine the linear absorption spectrum and the time-integrated signal of a degenerated four-wave-mixing experiment. It is shown that the well-known features
NONLINEAR OPTICAL MOLECULAR CRYSTAL BASED ON 2,6-DIAMINOPYRIDINE: SYNTHESIS AND CHARACTERIZATION
Directory of Open Access Journals (Sweden)
I. M. Pavlovetc
2014-05-01
Full Text Available The paper deals with investigation of a new nonlinear optical material based on nonlinear optical chromophore (4-Nitrophenol and aminopyridine (2,6-Diaminopyridine. Calculation results are presented for molecular packing in the crystalline compound, based on the given components. According to these results the finite material must have a noncentrosymmetric lattice, which determines the presence of the second order nonlinear optical response. Investigations carried out in this work confirm these calculations. Results of experiments are given describing the co-crystallization of these components and the following re-crystallization of the obtained material. In order to get a monocrystal form, the optimal conditions for the synthesis of molecular crystals based on these components are determined. Sufficiently large homogeneous crystals are obtained, that gave the possibility to record their spectra in the visible and near infrared parts of the spectrum, to determine their nonlinear optical properties and the level of homogeneity. Their optical (optical transmission and optical laser damage threshold and nonlinear optical properties are presented. For observation and measurement of the nonlinear optical properties an installation was built which implements the comparative method for measurements of nonlinear optical properties. A potassium titanyl oxide phosphate crystal was used as a sample for comparison. Results are given for the conversion efficiency of the primary laser radiation in the second optical harmonic relative to the signal obtained on the potassium titanyl oxide phosphate crystal. Obtained results show that the molecular co-crystal based on 2,6-Diaminopyridine is a promising nonlinear optical material for generating the second optical harmonic on the Nd: YAG laser (532 nm.
Linear and nonlinear optical properties of borate crystals as ...
Indian Academy of Sciences (India)
Unknown
crystal series, with an accuracy acceptable for materials development/design, and answer the questions often ... Optical property; nonlinear optical crystals; first principles calculation. 1. ..... system, and is not in concept suitable to excitation pro-.
Non-linear optical imaging – Introduction and pharmaceutical applications
Fussell, A.L.; Isomaki, Antti; Strachan, Clare J.
2013-01-01
Nonlinear optical imaging is an emerging technology with much potential in pharmaceutical analysis. The technique encompasses a range of optical phenomena, including coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), and twophoton excited fluorescence (TPEF). The
Stability Analysis of Fractional-Order Nonlinear Systems with Delay
Directory of Open Access Journals (Sweden)
Yu Wang
2014-01-01
Full Text Available Stability analysis of fractional-order nonlinear systems with delay is studied. We propose the definition of Mittag-Leffler stability of time-delay system and introduce the fractional Lyapunov direct method by using properties of Mittag-Leffler function and Laplace transform. Then some new sufficient conditions ensuring asymptotical stability of fractional-order nonlinear system with delay are proposed firstly. And the application of Riemann-Liouville fractional-order systems is extended by the fractional comparison principle and the Caputo fractional-order systems. Numerical simulations of an example demonstrate the universality and the effectiveness of the proposed method.
Introduction to first order optics
International Nuclear Information System (INIS)
Davies, W.G.
1983-05-01
The fundamentals of ion optics are presented, beginning with the basic non-relativistic equations of motion, and the conditions under which the paraxial equations hold. The relativistically correct equations are then presented. The basic focussing properties of dipoles and quadrupoles are described as well as the operation of the quadrupole doublet and triplet. The matrix formulation of optics is developed and used to derive a number of basic results such as imaging relations, principal planes, dispersion and achromatism. The concepts of emittance, acceptance, brightness and phase space are introduced and illustrated by examples. A waist in phase space is defined, and its relationship to a focus is discussed. Both the 'Sigma matrix and Twiss formulations' for phase-space transformations are presented and their inter-relationship shown. Liouville's Theorem is also discussed along with conditions for its validity. Examples of the action of a lens and a drift space on the beam phase space are given to illustrate the power of these concepts and develop some familiarity with them on the part of the reader
Polycarbonate-Based Blends for Optical Non-linear Applications
Stanculescu, F.; Stanculescu, A.
2016-02-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Nonlinear optical characteristics of monolayer MoSe{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Le, Chinh Tam; Ullah, Farman; Senthilkumar, Velusamy; Kim, Yong Soo [Department of Physics and Energy Harvest Storage Research Center, University of Ulsan (Korea, Republic of); Clark, Daniel J.; Jang, Joon I. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY (United States); Sim, Yumin; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Seoul (Korea, Republic of); Chung, Koo-Hyun [School of Mechanical Engineering, University of Ulsan (Korea, Republic of); Park, Hyoyeol [Electronics, Communication and Semiconductor Applications Department, Ulsan College (Korea, Republic of)
2016-08-15
In this study, we utilized picosecond pulses from an Nd:YAG laser to investigate the nonlinear optical characteristics of monolayer MoSe{sub 2}. Two-step growth involving the selenization of pulsed-laser-deposited MoO{sub 3} film was employed to yield the MoSe{sub 2} monolayer on a SiO{sub 2}/Si substrate. Raman scattering, photoluminescence (PL) spectroscopy, and atomic force microscopy verified the high optical quality of the monolayer. The second-order susceptibility χ{sup (2)} was calculated to be ∝50 pm V{sup -1} at the second harmonic wavelength λ{sub SHG} ∝810 nm, which is near the optical gap of the monolayer. Interestingly, our wavelength-dependent second harmonic scan can identify the bound excitonic states including negatively charged excitons much more efficiently, compared with the PL method at room temperature. Additionally, the MoSe{sub 2} monolayer exhibits a strong laser-induced damage threshold ∝16 GW cm{sup -2} under picosecond-pulse excitation{sub .} Our findings suggest that monolayer MoSe{sub 2} can be considered as a promising candidate for high-power, thin-film-based nonlinear optical devices and applications. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Design considerations for multi component molecular-polymeric nonlinear optical materials
Energy Technology Data Exchange (ETDEWEB)
Singer, K.D. (Case Western Reserve Univ., Cleveland, OH (USA). Dept. of Physics); Kuzyk, M.G. (Washington State Univ., Pullman, WA (USA). Dept. of Physics); Fang, T.; Holland, W.R. (AT and T Bell Labs., Princeton, NJ (USA)); Cahill, P.A. (Sandia National Labs., Albuquerque, NM (USA))
1990-01-01
We review our work on multi component polymeric nonlinear optical materials. These materials consist of nonlinear optical molecules incorporated in a polymeric host. A cross-linked triazine polymer incorporating a dicyanovinyl terminated azo dye was found to be relatively stable at 85{degree} and posses an electro-optic coefficient of 11pm/V. We have also observed the zero dispersion condition in a new anomalous dispersion dye for phase matched second harmonic generation, and expect efficient conversion to the blue. A squarylium dye, ISQ, has been found to posses a large third order nonlinearity, and may display two-level behavior. 24 refs., 11 figs.
Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab.
Bovino, F A; Larciprete, M C; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V
2009-10-26
We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme.
Nonlinear and quantum optics with liquid crystals
International Nuclear Information System (INIS)
Lukishova, Svetlana G
2014-01-01
Thermotropic liquid crystals' usual application is display technology. This paper describes experiments on light interaction with pure and doped liquid crystals under for these materials unconventional incident light powers: (1) under high-power laser irradiation, and (2) at the single-photon level. In (1), I will outline several nonlinear optical effects under high-power, nanosecond laser irradiation which should be taken into account in the design of lasers with liquid crystal components and in fabrication of optical power limiters based on liquid crystals: (1.1) athermal helical pitch dilation and unwinding of cholesteric mirrors (both in free space and inside laser resonators); (1.2) some pitfalls in measurements of refractive nonlinearity using z-scan technique under two-photon or linear absorption of liquids; (1.3) the first observation of thermal lens effects in liquid crystals under several-nanosecond, low-pulse-repetition rate (2-10 Hz) laser irradiation in the presence of two-photon absorption; (1.4) feedback-free kaleidoscope of patterns (hexagons, stripes, etc.) in dye-doped liquid crystals. In (2), at the single-photon level, it will be shown that with a proper selection of liquid crystals and a single-emitter dopant spectral range, liquid crystal structures can be used to control emitted single photons (both polarization and count rate). The application of the latter research is absolutely secure quantum communication with polarization coding of information. In particular, in (2.1), definite handedness, circular polarized cholesteric microcavity resonance in quantum dot fluorescence is reported. In (2.2), definite linear polarization of single (antibunched) photons from single-dye-molecules in planar-aligned nematic host is discussed. In (2.3), some results on photon antibunching from NV-color center in nanodiamond in liquid crystal host and circularly polarized fluorescence of definite handedness from nanocrystals doped with trivalent ions of
Fractals: Giant impurity nonlinearities in optics of fractal clusters
International Nuclear Information System (INIS)
Butenko, A.V.; Shalaev, V.M.; Stockman, M.I.
1988-01-01
A theory of nonlinear optical properties of fractals is developed. Giant enhancement of optical susceptibilities is predicted for impurities bound to a fractal. This enhancement occurs if the exciting radiation frequency lies within the absorption band of the fractal. The giant optical nonlinearities are due to existence of high local electric fields in the sites of impurity locations. Such fields are due to the inhomogeneously broadened character of a fractal spectrum, i.e. partial conservation of individuality of fractal-forming particles (monomers). The field enhancement is proportional to the Q-factor of the resonance of a monomer. The effects of coherent anti-Stokes Raman scattering (CARS) and phase conjugation (PC) of light waves are enhanced to a much greater degree than generation of higher harmonics. In a general case the susceptibility of a higher-order is enhanced in the maximum way if the process includes ''subtraction'' of photons (at least one of the strong field frequencies enters the susceptibility with the minus sign). Alternatively, enhancement for the highest-order harmonic generation (when all the photons are ''accumulated'') is minimal. The predicted phenomena bear information on spectral properties of both impurity molecules and a fractal. In particular, in the CARS spectra a narrow (with the natural width) resonant structure, which is proper to an isolated monomer of a fractal, is predicted to be observed. (orig.)
A Photonic Basis for Deriving Nonlinear Optical Response
Andrews, David L.; Bradshaw, David S.
2009-01-01
Nonlinear optics is generally first presented as an extension of conventional optics. Typically the subject is introduced with reference to a classical oscillatory electric polarization, accommodating correction terms that become significant at high intensities. The material parameters that quantify the extent of the nonlinear response are cast as…
Semiclassical Path Integral Calculation of Nonlinear Optical Spectroscopy.
Provazza, Justin; Segatta, Francesco; Garavelli, Marco; Coker, David F
2018-02-13
Computation of nonlinear optical response functions allows for an in-depth connection between theory and experiment. Experimentally recorded spectra provide a high density of information, but to objectively disentangle overlapping signals and to reach a detailed and reliable understanding of the system dynamics, measurements must be integrated with theoretical approaches. Here, we present a new, highly accurate and efficient trajectory-based semiclassical path integral method for computing higher order nonlinear optical response functions for non-Markovian open quantum systems. The approach is, in principle, applicable to general Hamiltonians and does not require any restrictions on the form of the intrasystem or system-bath couplings. This method is systematically improvable and is shown to be valid in parameter regimes where perturbation theory-based methods qualitatively breakdown. As a test of the methodology presented here, we study a system-bath model for a coupled dimer for which we compare against numerically exact results and standard approximate perturbation theory-based calculations. Additionally, we study a monomer with discrete vibronic states that serves as the starting point for future investigation of vibronic signatures in nonlinear electronic spectroscopy.
Materials for Nonlinear Optics Chemical Perspectives
1991-01-01
potassium iodide for 15 h at reflux. The benzaldehyde product was then allowed to react with diethyl(4-nitrobenzyl)phosphonate in the presence of ...photocrosslinking of NLO-inactive polyacrylate monomers. Recent advances in optical technology have created great interest in the construction of second-order...might be potassium niobate.) Because of this, the value of finding an "improved" material can be accurately gauged in a relative sense, and compared to
Investigation of odd-order nonlinear susceptibilities in atomic vapors
Energy Technology Data Exchange (ETDEWEB)
Yan, Yaqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Teaching and Research Section of Maths and Physics, Guangzhou Commanding Academy of Chinese People’s Armed Police Force, Guangzhou, 510440 (China); Wu, Zhenkun; Si, Jinhai; Yan, Lihe; Zhang, Yiqi; Yuan, Chenzhi; Sun, Jia [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)
2013-06-15
We theoretically deduce the macroscopic symmetry constraints for arbitrary odd-order nonlinear susceptibilities in homogeneous media including atomic vapors for the first time. After theoretically calculating the expressions using a semiclassical method, we demonstrate that the expressions for third- and fifth-order nonlinear susceptibilities for undressed and dressed four- and six-wave mixing (FWM and SWM) in atomic vapors satisfy the macroscopic symmetry constraints. We experimentally demonstrate consistence between the macroscopic symmetry constraints and the semiclassical expressions for atomic vapors by observing polarization control of FWM and SWM processes. The experimental results are in reasonable agreement with our theoretical calculations. -- Highlights: •The macroscopic symmetry constraints are deduced for homogeneous media including atomic vapors. •We demonstrate that odd-order nonlinear susceptibilities satisfy the constraints. •We experimentally demonstrate the deduction in part.
Optical nonlinearities of excitonic states in atomically thin 2D transition metal dichalcogenides
Energy Technology Data Exchange (ETDEWEB)
Soh, Daniel Beom Soo [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Proliferation Signatures Discovery and Exploitation Department
2017-08-01
We calculated the optical nonlinearities of the atomically thin monolayer transition metal dichalcogenide material (particularly MoS_{2}), particularly for those linear and nonlinear transition processes that utilize the bound exciton states. We adopted the bound and the unbound exciton states as the basis for the Hilbert space, and derived all the dynamical density matrices that provides the induced current density, from which the nonlinear susceptibilities can be drawn order-by-order via perturbative calculations. We provide the nonlinear susceptibilities for the linear, the second-harmonic, the third-harmonic, and the kerr-type two-photon processes.
Nonlinear super-resolution nano-optics and applications
Wei, Jingsong
2015-01-01
This book covers many advances in the subjects of nano-optics and nano photonics. The author describes the principle and technical schematics of common methods for breaking through the optical diffraction limit and focuses on realizing optical super-resolution with nonlinear effects of thin film materials. The applications of nonlinear optical super-resolution effects in nano-data storage, nanolithography, and nano-imaging are also presented. This book is useful to graduate students majoring in optics and nano science and also serves as a reference book for academic researchers, engineers, technical professionals in the fields of super-resolution optics and laser techniques, nano-optics and nano photonics, nano-data storage, nano imaging, micro/nanofabrication and nanolithography and nonlinear optics.
Ultrafast Relaxation Dynamics of the Optical Nonlinearity in Nanometric Gold Particles
International Nuclear Information System (INIS)
Puech, K.; Blau, W.J.
2001-01-01
Measurements of the resonantly enhanced, third-order nonlinear optical properties of gold nanostructures exhibiting reduced charge-carrier mobility in three dimensions were performed with a number of ultrafast nonlinear optical techniques. The size of the particles investigated was varied between 5 and 40 nm. The magnitude of the nonlinear susceptibility is of the order of 5.10 -16 m 2 V -2 at resonance and an order of magnitude lower off-resonance. The response time of the nonlinearity is found to be extremely fast and could not be resolved in the experiments undertaken here. The only statement that can be made in this regard is that the phase relaxation time is of the order of or less than 20 fs while the energy relaxation time is of the order of or less than 75 fs
International Nuclear Information System (INIS)
Jia Li-Xin; Dai Hao; Hui Meng
2010-01-01
This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method
Directory of Open Access Journals (Sweden)
Virginijus Barzda
2013-09-01
Full Text Available Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red, which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.
Determination of optical constants and nonlinear optical coefficients ...
Indian Academy of Sciences (India)
of single crystals of organic molecules [12,13], organic molecules in a liquid solution. [14,15] and organic ... valence band 'tail states' might have a strong effect on the optical absorption resulting in ..... cm/W). The negative sign of the third-order.
Nonlinear optical spectroscopy of isotropic and anisotropic metallic nanocomposites
Energy Technology Data Exchange (ETDEWEB)
Fernandez-Hernandez, R C; Gleason-Villagran, R; Cheang-Wong, J C; Crespo-Sosa, A; Rodriguez-Fernandez, L; Lopez-Suarez, A; Oliver, A; Reyes-Esqueda, J A [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, D. F. 04510 (Mexico); Torres-Torres, C [Seccion de Estudios de Posgrado e Investigacion, ESIME-Zacatenco, Instituto Politecnico Nacional, Mexico, D. F. 07338 (Mexico); Rangel-Rojo, R, E-mail: reyes@fisica.unam.mx [CICESE/Depto. de Optica, A.P. 360, Ensenada, B. C. 22860 (Mexico)
2011-01-01
In this work, we studied the nonlinear absorption and refraction of isotropic and anisotropic metallic nanocomposites, which consist of Au and Ag nanoparticles (NPs) embedded in matrices of SiO{sub 2}. We performed this study at different wavelengths using the Z-scan technique in the picosecond regime. The wavelengths were selected accordingly to the absorption spectra of the nanocomposites, choosing wavelengths into the inter- and intra-band transitions regions, including the surface plasmon (SP) resonance, as well as in the transparent region. For the anisotropic nanocomposites, the polarization and the incident angle were varied in order to evaluate the different components of the third order susceptibility tensor, {chi}{sup (3)}. We observed dramatic changes of sign for both, nonlinear refraction and absorption, when passing from Au to Ag and/or varying the wave length. The results accentuate the importance of the hot-electrons contribution to the nonlinear optical response at this temporal regime, when compared to inter-band and intra-band transitions contributions.
Nonlinear optical spectroscopy of isotropic and anisotropic metallic nanocomposites
International Nuclear Information System (INIS)
Fernandez-Hernandez, R C; Gleason-Villagran, R; Cheang-Wong, J C; Crespo-Sosa, A; Rodriguez-Fernandez, L; Lopez-Suarez, A; Oliver, A; Reyes-Esqueda, J A; Torres-Torres, C; Rangel-Rojo, R
2011-01-01
In this work, we studied the nonlinear absorption and refraction of isotropic and anisotropic metallic nanocomposites, which consist of Au and Ag nanoparticles (NPs) embedded in matrices of SiO 2 . We performed this study at different wavelengths using the Z-scan technique in the picosecond regime. The wavelengths were selected accordingly to the absorption spectra of the nanocomposites, choosing wavelengths into the inter- and intra-band transitions regions, including the surface plasmon (SP) resonance, as well as in the transparent region. For the anisotropic nanocomposites, the polarization and the incident angle were varied in order to evaluate the different components of the third order susceptibility tensor, χ (3) . We observed dramatic changes of sign for both, nonlinear refraction and absorption, when passing from Au to Ag and/or varying the wave length. The results accentuate the importance of the hot-electrons contribution to the nonlinear optical response at this temporal regime, when compared to inter-band and intra-band transitions contributions.
Coherent Femtosecond Spectroscopy and Nonlinear Optical Imaging on the Nanoscale
Kravtsov, Vasily
Optical properties of many materials and macroscopic systems are defined by ultrafast dynamics of electronic, vibrational, and spin excitations localized on the nanoscale. Harnessing these excitations for material engineering, optical computing, and control of chemical reactions has been a long-standing goal in science and technology. However, it is challenging due to the lack of spectroscopic techniques that can resolve processes simultaneously on the nanometer spatial and femtosecond temporal scales. This thesis describes the fundamental principles, implementation, and experimental demonstration of a novel type of ultrafast microscopy based on the concept of adiabatic plasmonic nanofocusing. Simultaneous spatio-temporal resolution on a nanometer-femtosecond scale is achieved by using a near-field nonlinear optical response induced by ultrafast surface plasmon polaritons nanofocused on a metal tip. First, we study the surface plasmon response in metallic structures and evaluate its prospects and limitations for ultrafast near-field microscopy. Through plasmon emission-based spectroscopy, we investigate dephasing times and interplay between radiative and non-radiative decay rates of localized plasmons and their modification due to coupling. We identify a new regime of quantum plasmonic coupling, which limits the achievable spatial resolution to several angstroms but at the same time provides a potential channel for generating ultrafast electron currents at optical frequencies. Next, we study propagation of femtosecond wavepackets of surface plasmon polaritons on a metal tip. In time-domain interferometric measurements we detect group delays that correspond to slowing of the plasmon polaritons down to 20% of the speed of light at the tip apex. This provides direct experimental verification of the plasmonic nanofocusing mechanism and suggests enhanced nonlinear optical interactions at the tip apex. We then measure a plasmon-generated third-order nonlinear optical
Riccati-parameter solutions of nonlinear second-order ODEs
International Nuclear Information System (INIS)
Reyes, M A; Rosu, H C
2008-01-01
It has been proven by Rosu and Cornejo-Perez (Rosu and Cornejo-Perez 2005 Phys. Rev. E 71 046607, Cornejo-Perez and Rosu 2005 Prog. Theor. Phys. 114 533) that for some nonlinear second-order ODEs it is a very simple task to find one particular solution once the nonlinear equation is factorized with the use of two first-order differential operators. Here, it is shown that an interesting class of parametric solutions is easy to obtain if the proposed factorization has a particular form, which happily turns out to be the case in many problems of physical interest. The method that we exemplify with a few explicitly solved cases consists in using the general solution of the Riccati equation, which contributes with one parameter to this class of parametric solutions. For these nonlinear cases, the Riccati parameter serves as a 'growth' parameter from the trivial null solution up to the particular solution found through the factorization procedure
Nonlinear noninteger order circuits and systems an introduction
Arena, P; Fortuna, L; Porto, D
2001-01-01
In this book, the reader will find a theoretical introduction to noninteger order systems, as well as several applications showing their features and peculiarities. The main definitions and results of research on noninteger order systems and modelling of physical noninteger phenomena are reported together with problems of their approximation. Control applications, noninteger order CNNs and circuit realizations of noninteger order systems are also presented.The book is intended for students and researchers involved in the simulation and control of nonlinear noninteger order systems, with partic
Fabrication of Metallic Quantum Dot Arrays For Nanoscale Nonlinear Optics
McMahon, M. D.; Hmelo, A. B.; Lopez Magruder, R., III; Weller Haglund, R. A., Jr.; Feldman, L. C.
2003-03-01
Ordered arrays of metal nanocrystals embedded in or sequestered on dielectric hosts have potential applications as elements of nonlinear or near-field optical circuits, as sensitizers for fluorescence emitters and photo detectors, and as anchor points for arrays of biological molecules. Metal nanocrystals are strongly confined electronic systems with size-, shape and spatial orientation-dependent optical responses. At the smallest scales (below about 15 nm diameter), their band structure is drastically altered by the small size of the system, and the reduced population of conduction-band electrons. Here we report on the fabrication of two-dimensional ordered metallic nanocrystal arrays, and one-dimensional nanocrystal-loaded waveguides for optical investigations. We have employed strategies for synthesizing metal nanocrystal composites that capitalize on the best features of focused ion beam (FIB) machining and pulsed laser deposition (PLD). The FIB generates arrays of specialized sites; PLD vapor deposition results in the directed self-assembly of Ag nanoparticles nucleated at the FIB generated sites on silicon substrates. We present results based on the SEM, AFM and optical characterization of prototype composites. This research has been supported by the U.S. Department of Energy under grant DE-FG02-01ER45916.
PREFACE: Ultrafast and nonlinear optics in carbon nanomaterials
Kono, Junichiro
2013-02-01
Carbon-based nanomaterials—single-wall carbon nanotubes (SWCNTs) and graphene, in particular—have emerged in the last decade as novel low-dimensional systems with extraordinary properties. Because they are direct-bandgap systems, SWCNTs are one of the leading candidates to unify electronic and optical functions in nanoscale circuitry; their diameter-dependent bandgaps can be utilized for multi-wavelength devices. Graphene's ultrahigh carrier mobilities are promising for high-frequency electronic devices, while, at the same time, it is predicted to have ideal properties for terahertz generation and detection due to its unique zero-gap, zero-mass band structure. There have been a large number of basic optical studies on these materials, but most of them were performed in the weak-excitation, quasi-equilibrium regime. In order to probe and assess their performance characteristics as optoelectronic materials under device-operating conditions, it is crucial to strongly drive them and examine their optical properties in highly non-equilibrium situations and with ultrashot time resolution. In this section, the reader will find the latest results in this rapidly growing field of research. We have assembled contributions from some of the leading experts in ultrafast and nonlinear optical spectroscopy of carbon-based nanomaterials. Specific topics featured include: thermalization, cooling, and recombination dynamics of photo-generated carriers; stimulated emission, gain, and amplification; ultrafast photoluminescence; coherent phonon dynamics; exciton-phonon and exciton-plasmon interactions; exciton-exciton annihilation and Auger processes; spontaneous and stimulated emission of terahertz radiation; four-wave mixing and harmonic generation; ultrafast photocurrents; the AC Stark and Franz-Keldysh effects; and non-perturbative light-mater coupling. We would like to express our sincere thanks to those who contributed their latest results to this special section, and the
International Nuclear Information System (INIS)
Xiao Li; Zhang Wei; Huang Yidong; Peng Jiangde
2008-01-01
High nonlinear microstructure fibre (HNMF) is preferred in nonlinear fibre optics, especially in the applications of optical parametric effects, due to its high optical nonlinear coefficient. However, polarization dependent dispersion will impact the nonlinear optical parametric process in HNMFs. In this paper, modulation instability (MI) method is used to measure the polarization dependent dispersion of a piece of commercial HNMF, including the group velocity dispersion, the dispersion slope, the fourth-order dispersion and group birefringence. It also experimentally demonstrates the impact of the polarization dependent dispersion on the continuous wave supercontinuum (SC) generation. On one axis MI sidebands with symmetric frequency detunings are generated, while on the other axis with larger MI frequency detuning, SC is generated by soliton self-frequency shift
Nonlinear second order evolution inclusions with noncoercive viscosity term
Papageorgiou, Nikolaos S.; Rădulescu, Vicenţiu D.; Repovš, Dušan D.
2018-04-01
In this paper we deal with a second order nonlinear evolution inclusion, with a nonmonotone, noncoercive viscosity term. Using a parabolic regularization (approximation) of the problem and a priori bounds that permit passing to the limit, we prove that the problem has a solution.
Oscillation criteria for first-order forced nonlinear difference equations
Grace Said R; Agarwal Ravi P; Smith Tim
2006-01-01
Some new criteria for the oscillation of first-order forced nonlinear difference equations of the form Δx(n)+q1(n)xμ(n+1) = q2(n)xλ(n+1)+e(n), where λ, μ are the ratios of positive odd integers 0 <μ < 1 and λ > 1, are established.
New Efficient Fourth Order Method for Solving Nonlinear Equations
Directory of Open Access Journals (Sweden)
Farooq Ahmad
2013-12-01
Full Text Available In a paper [Appl. Math. Comput., 188 (2 (2007 1587--1591], authors have suggested and analyzed a method for solving nonlinear equations. In the present work, we modified this method by using the finite difference scheme, which has a quintic convergence. We have compared this modified Halley method with some other iterative of fifth-orders convergence methods, which shows that this new method having convergence of fourth order, is efficient.
Nonlinear optical properties of TeO$_2$ crystalline phases from first principles
Berkaine, Nabil; Orhan, Emmanuelle; Masson, Olivier; Thomas, Philippe; Junquera, Javier
2010-01-01
We have computed second and third nonlinear optical susceptibilities of two crystalline bulk tellurium oxide polymorphs: $\\alpha$-TeO$_{2}$ (the most stable crystalline bulk phase) and $\\gamma$-TeO$_{2}$ (the crystalline phase that ressembles the more to the glass phase. Third order nonlinear susceptibilities of the crystalline phases are two orders of magnitude larger than $\\alpha$-SiO$_{2}$ cristoballite, thus extending the experimental observations on glasses to the case of crystalline com...
Topology optimization of nonlinear optical devices
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
2011-01-01
This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation and an incremen......This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation...... limiter. Here, air, a linear and a nonlinear material are distributed so that the wave transmission displays a strong sensitivity to the amplitude of the incoming wave....
Nonlinear Optical Properties of Aluminum Doped Zinc Oxide
Otieno, Calford O.
Nonlinear optical (NLO) materials are crucial to future progress in industrial and technological applications that involve intense light-matter interaction. While ZnO-related materials are known to possess good NLO properties, existing results on ZnO and AZO (Al-doped ZnO) are mostly available at a single wavelength or limited ranges. Therefore, NLO dispersions (wavelength dependences) are not entirely studied, especially at longer wavelengths far below the bandgap. It is important to explore wavelength dependences since doping can induce a drastic change in the NLO responses at varied spectral ranges via doping-induced subgap-state contributions. We present results of our studies on nonlinear harmonic generation from our samples, which include 1) second harmonic generation and 2) third harmonic generation precisely characterized by Maker fringes as a function of both Al doping and wavelength. We exhaustively discuss the possible cause for the modified optical nonlinearities observed in our AZO thin films and give detailed comparisons of our observations with the previous studies. We also present the results of open- and close-aperture Z-scans to characterize the two-photon absorption coefficient (TPA) and the nonlinear refractive index (NLR), respectively, of the AZO films. There was no clearcut evidence of monotonic dependence of TPA and NLR on doping. This presumably indicates that the overall effect is nontrivial and should be understood in terms of combined effects of bandgap shift and crystallinity upon varying the doping level. Most intriguingly, we found that NLR values from the closed-aperture Z-scan are very large by orders of magnitude when compared with the bulk counterparts. Similar observation was made for TPA values from the open-aperture Z-scan. To countercheck very large NLO absorption, we conducted simple intensity scan by varying the incident photon number on each sample but fixing the beam area to eliminate any possible errors related to optical
International Nuclear Information System (INIS)
Torres-Torres, C.; García-Cruz, M.L.; Castañeda, L.; Rangel Rojo, R.; Tamayo-Rivera, L.; Maldonado, A.; Avendaño-Alejo, M.
2012-01-01
Chromium doped zinc oxide thin solid films were deposited on soda–lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol–gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices. - Highlights: ► Enhancement in photoluminescence for chromium doped zinc oxide films is presented. ► A strong and ultrafast optical Kerr effect seems to result from quantum confinement. ► Photoconductive properties for optical and optoelectronic functions were observed.
Energy Technology Data Exchange (ETDEWEB)
Torres-Torres, C., E-mail: crstorres@yahoo.com.mx [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, Mexico, DF 07738 (Mexico); Garcia-Cruz, M.L. [Centro de Investigacion en Dispositivos Semiconductores, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Castaneda, L., E-mail: luisca@sirio.ifuap.buap.mx [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Rangel Rojo, R. [CICESE/Depto. de Optica, A. P. 360, Ensenada, BC 22860 (Mexico); Tamayo-Rivera, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, DF 01000 (Mexico); Maldonado, A. [Depto. de Ing. Electrica, CINVESTAV IPN-SEES, A. P. 14740, Mexico DF 07000 (Mexico); Avendano-Alejo, M., E-mail: imax_aa@yahoo.com.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, A. P. 70-186, 04510, DF (Mexico); and others
2012-04-15
Chromium doped zinc oxide thin solid films were deposited on soda-lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol-gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices. - Highlights: Black-Right-Pointing-Pointer Enhancement in photoluminescence for chromium doped zinc oxide films is presented. Black-Right-Pointing-Pointer A strong and ultrafast optical Kerr effect seems to result from quantum confinement. Black-Right-Pointing-Pointer Photoconductive properties for optical and optoelectronic functions were observed.
Higher-Order Spectrum in Understanding Nonlinearity in EEG Rhythms
Directory of Open Access Journals (Sweden)
Cauchy Pradhan
2012-01-01
Full Text Available The fundamental nature of the brain's electrical activities recorded as electroencephalogram (EEG remains unknown. Linear stochastic models and spectral estimates are the most common methods for the analysis of EEG because of their robustness, simplicity of interpretation, and apparent association with rhythmic behavioral patterns in nature. In this paper, we extend the use of higher-order spectrum in order to indicate the hidden characteristics of EEG signals that simply do not arise from random processes. The higher-order spectrum is an extension Fourier spectrum that uses higher moments for spectral estimates. This essentially nullifies all Gaussian random effects, therefore, can reveal non-Gaussian and nonlinear characteristics in the complex patterns of EEG time series. The paper demonstrates the distinguishing features of bispectral analysis for chaotic systems, filtered noises, and normal background EEG activity. The bispectrum analysis detects nonlinear interactions; however, it does not quantify the coupling strength. The squared bicoherence in the nonredundant region has been estimated to demonstrate nonlinear coupling. The bicoherence values are minimal for white Gaussian noises (WGNs and filtered noises. Higher bicoherence values in chaotic time series and normal background EEG activities are indicative of nonlinear coupling in these systems. The paper shows utility of bispectral methods as an analytical tool in understanding neural process underlying human EEG patterns.
Nonlinear optical measurements of conducting copolymers of aniline under CW laser excitation
Pramodini, S.; Poornesh, P.
2015-08-01
Synthesis and measurements of third-order optical nonlinearity and optical limiting of conducting copolymers of aniline are presented. Single beam z-scan technique was employed for the nonlinear optical studies. Continuous wave He-Ne laser operating at 633 nm was used as the source of excitation. Copolymer samples exhibited reverse saturable absorption (RSA) process. The nonlinear refraction studies depict that the copolymers exhibit self-defocusing property. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm/W, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. A good optical limiting and clamping of power of ∼0.9 mW and ∼0.05 mW was observed. Therefore, copolymers of aniline emerge as a potential candidate for photonic device applications.
Optoelectronic and nonlinear optical processes in low dimensional ...
Indian Academy of Sciences (India)
Optoelectronic process; nonlinear optical process; semiconductor. Quest for ever faster and intelligent information processing technologies has sparked ..... Schematic energy level diagram for the proposed 4-level model. States other than the.
Squeezing in multi-mode nonlinear optical state truncation
International Nuclear Information System (INIS)
Said, R.S.; Wahiddin, M.R.B.; Umarov, B.A.
2007-01-01
In this Letter, we show that multi-mode qubit states produced via nonlinear optical state truncation driven by classical external pumpings exhibit squeezing condition. We restrict our discussions to the two- and three-mode cases
Field-enhanced nonlinear optical properties of organic nanofibers
DEFF Research Database (Denmark)
Kostiučenko, Oksana; Fiutowski, Jacek; Brewer, Jonathan R.
2014-01-01
Second harmonic generation in nonlinearly optically active organic nanofibers, generated via self-assembled surface growth from nonsymmetrically functionalized para-quarterphenylene (CNHP4) molecules, has been investigated. After the growth on mica templates, nanofibers have been transferred onto...
Nonlinear optical beam manipulation, beam combining, and atmospheric propagation
International Nuclear Information System (INIS)
Fischer, R.A.
1988-01-01
These proceedings collect papers on optics: Topics include: diffraction properties of laser speckle, coherent beam combination by plasma modes, nonlinear responses, deformable mirrors, imaging radiometers, electron beam propagation in inhomogeneous media, and stability of laser beams in a structured environment
Edison, D. Joseph; Nirmala, W.; Kumar, K. Deva Arun; Valanarasu, S.; Ganesh, V.; Shkir, Mohd.; AlFaify, S.
2017-10-01
Aluminium doped (i.e. 3 at%) zinc oxide (AZO) thin films were prepared by simple successive ionic layer adsorption and reaction (SILAR) method with different dipping cycles. The structural and surface morphology of AZO thin films were studied by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The optical parameters such as, transmittance, band gap, refractive index, extinction coefficient, dielectric constant and nonlinear optical properties of AZO films were investigated. XRD pattern revealed the formation of hexagonal phase ZnO and the intensity of the film was found to increase with increasing dipping cycle. The crystallite size was found to be in the range of 29-37 nm. Scanning Electron Microscope (SEM) images show the presence of small sized grains, revealing that the smoothest surface was obtained at all the films. The EDAX spectrum of AZO conforms the presence of Zn, O and Al. The optical transmittance in the visible region is high 87% and the band gap value is 3.23 eV. The optical transmittance is decreased with respect to dipping cycles. The room temperature PL studies revealed that the AZO films prepared at (30 cycles) has good film quality with lesser defect density. The third order nonlinear optical parameters were also studied using Z-scan technique to know the applications of deposited films in nonlinear devices. The third order nonlinear susceptibility value is found to be 1.69 × 10-7, 3.34 × 10-8, 1.33 × 10-7and 2.52 × 10-7 for AZO films deposited after 15, 20, 25 and 30 dipping cycles.
The chemistry and physics of nonlinear optical materials
International Nuclear Information System (INIS)
Velsko, S.P.; Eimerl, D.
1989-01-01
Recent efforts to engineer new nonlinear optical materials with specific desired characteristics has engendered a need for a theoretical description of optical properties which is readily accessible to chemists, yet correctly treats the essential physics of dielectric response. This paper describes a simple empirical molecular orbital model which gives useful insights into the relationship between chemical composition, crystalline structure, and optical susceptibilities. The authors compare the probabilities of finding new harmonic generators in various chemical classes. Rigorous bounds on the magnitudes of linear and nonlinear optical coefficients and their anisotropies are also discussed
Ultra-Fast Optical Signal Processing in Nonlinear Silicon Waveguides
DEFF Research Database (Denmark)
Oxenløwe, Leif Katsuo; Galili, Michael; Pu, Minhao
2011-01-01
We describe recent demonstrations of exploiting highly nonlinear silicon nanowires for processing Tbit/s optical data signals. We perform demultiplexing and optical waveform sampling of 1.28 Tbit/s and wavelength conversion of 640 Gbit/s data signals.......We describe recent demonstrations of exploiting highly nonlinear silicon nanowires for processing Tbit/s optical data signals. We perform demultiplexing and optical waveform sampling of 1.28 Tbit/s and wavelength conversion of 640 Gbit/s data signals....
Ripple distribution for nonlinear fiber-optic channels.
Sorokina, Mariia; Sygletos, Stylianos; Turitsyn, Sergei
2017-02-06
We demonstrate data rates above the threshold imposed by nonlinearity on conventional optical signals by applying novel probability distribution, which we call ripple distribution, adapted to the properties of the fiber channel. Our results offer a new direction for signal coding, modulation and practical nonlinear distortions compensation algorithms.
Enhancement of nonlinear optical properties of compounds of silica
Indian Academy of Sciences (India)
The aim of this paper is to introduce a method for enhancing the nonlinear optical properties in silica glass by using metallic nanoparticles. First, the T-matrix method is developed to calculate the effective dielectric constant for the compound of silica glass and metallic nanoparticles, both of which possess nonlinear dielectric ...
Nonlinear Fourier transform for dual-polarization optical communication system
DEFF Research Database (Denmark)
Gaiarin, Simone
communication is considered an emerging paradigm in fiber-optic communications that could potentially overcome these limitations. It relies on a mathematical technique called “inverse scattering transform” or “nonlinear Fourier transform (NFT)” to exploit the “hidden” linearity of the nonlinear Schrödinger...
Linear and nonlinear optical properties of Sb-doped GeSe2 thin films
Zhang, Zhen-Ying; Chen, Fen; Lu, Shun-Bin; Wang, Yong-Hui; Shen, Xiang; Dai, Shi-Xun; Nie, Qiu-Hua
2015-06-01
Sb-doped GeSe2 chalcogenide thin films are prepared by the magnetron co-sputtering method. The linear optical properties of as-deposited films are derived by analyzing transmission spectra. The refractive index rises and the optical band gap decreases from 2.08 eV to 1.41 eV with increasing the Sb content. X-ray photoelectron spectra further confirm the formation of a covalent Sb-Se bond. The third-order nonlinear optical properties of thin films are investigated under femtosecond laser excitation at 800 nm. The results show that the third-order nonlinear optical properties are enhanced with increasing the concentration of Sb. The nonlinear refraction indices of these thin films are measured to be on the order of 10-18 m2/W with a positive sign and the nonlinear absorption coefficients are obtained to be on the order of 10-10 m/W. These excellent properties indicate that Sb-doped Ge-Se films have a good prospect in the applications of nonlinear optical devices. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB722703), the National Natural Science Foundation of China (Grant No. 61377061), the Young Leaders of Academic Climbing Project of the Education Department of Zhejiang Province, China (Grant No. pd2013092), the Program for Innovative Research Team of Ningbo City, China (Grant No. 2009B217), and the K. C. Wong Magna Fund in Ningbo University, China.
Optical Asymmetry and Nonlinear Light Scattering from Colloidal Gold Nanorods.
Lien, Miao-Bin; Kim, Ji-Young; Han, Myung-Geun; Chang, You-Chia; Chang, Yu-Chung; Ferguson, Heather J; Zhu, Yimei; Herzing, Andrew A; Schotland, John C; Kotov, Nicholas A; Norris, Theodore B
2017-06-27
A systematic study is presented of the intensity-dependent nonlinear light scattering spectra of gold nanorods under resonant excitation of the longitudinal surface plasmon resonance (SPR). The spectra exhibit features due to coherent second and third harmonic generation as well as a broadband feature that has been previously attributed to multiphoton photoluminescence arising primarily from interband optical transitions in the gold. A detailed study of the spectral dependence of the scaling of the scattered light with excitation intensity shows unexpected scaling behavior of the coherent signals, which is quantitatively accounted for by optically induced damping of the SPR mode through a Fermi liquid model of the electronic scattering. The broadband feature is shown to arise not from luminescence, but from scattering of the second-order longitudinal SPR mode with the electron gas, where efficient excitation of the second order mode arises from an optical asymmetry of the nanorod. The electronic-temperature-dependent plasmon damping and the Fermi-Dirac distribution together determine the intensity dependence of the broadband emission, and the structure-dependent absorption spectrum determines the spectral shape through the fluctuation-dissipation theorem. Hence a complete self-consistent picture of both coherent and incoherent light scattering is obtained with a single set of physical parameters.
Embedded solitons in the third-order nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Pal, Debabrata; Ali, Sk Golam; Talukdar, B
2008-01-01
We work with a sech trial function with space-dependent soliton parameters and envisage a variational study for the nonlinear Schoedinger (NLS) equation in the presence of third-order dispersion. We demonstrate that the variational equations for pulse evolution in this NLS equation provide a natural basis to derive a potential model which can account for the existence of a continuous family of embedded solitons supported by the third-order NLS equation. Each member of the family is parameterized by the propagation velocity and co-efficient of the third-order dispersion
Comparison Criteria for Nonlinear Functional Dynamic Equations of Higher Order
Directory of Open Access Journals (Sweden)
Taher S. Hassan
2016-01-01
Full Text Available We will consider the higher order functional dynamic equations with mixed nonlinearities of the form xnt+∑j=0Npjtϕγjxφjt=0, on an above-unbounded time scale T, where n≥2, xi(t≔ri(tϕαixi-1Δ(t, i=1,…,n-1, with x0=x, ϕβ(u≔uβsgnu, and α[i,j]≔αi⋯αj. The function φi:T→T is a rd-continuous function such that limt→∞φi(t=∞ for j=0,1,…,N. The results extend and improve some known results in the literature on higher order nonlinear dynamic equations.
Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs
Energy Technology Data Exchange (ETDEWEB)
Jayabalan, J; Singh, Asha; Chari, Rama; Oak, Shrikant M [Ultrafast Studies Section, Laser Physics Application Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India)
2007-08-08
We have measured and compared the absolute values of nonlinear susceptibility of colloidal solutions containing silver nanospheres and nanodiscs at their respective plasmon peaks using a femtosecond laser. The nonlinear process responsible for the laser-induced grating formation in the sample is determined to be of third order. The ratio between the third-order susceptibility (|{chi}{sup (3)}|) and the linear absorption coefficient ({alpha}) of the nanodiscs at 590 nm is three times than that of the similar ratio for nanospheres at 398 nm. Using a randomly oriented ellipsoidal model, we have shown that the increase in |{chi}{sup (3)}|/{alpha} for a nanodisc at 590 nm can be attributed to the change in the field enhancement factor with shape.
Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs
International Nuclear Information System (INIS)
Jayabalan, J; Singh, Asha; Chari, Rama; Oak, Shrikant M
2007-01-01
We have measured and compared the absolute values of nonlinear susceptibility of colloidal solutions containing silver nanospheres and nanodiscs at their respective plasmon peaks using a femtosecond laser. The nonlinear process responsible for the laser-induced grating formation in the sample is determined to be of third order. The ratio between the third-order susceptibility (|χ (3) |) and the linear absorption coefficient (α) of the nanodiscs at 590 nm is three times than that of the similar ratio for nanospheres at 398 nm. Using a randomly oriented ellipsoidal model, we have shown that the increase in |χ (3) |/α for a nanodisc at 590 nm can be attributed to the change in the field enhancement factor with shape
Fractional-order adaptive fault estimation for a class of nonlinear fractional-order systems
N'Doye, Ibrahima; Laleg-Kirati, Taous-Meriem
2015-01-01
This paper studies the problem of fractional-order adaptive fault estimation for a class of fractional-order Lipschitz nonlinear systems using fractional-order adaptive fault observer. Sufficient conditions for the asymptotical convergence of the fractional-order state estimation error, the conventional integer-order and the fractional-order faults estimation error are derived in terms of linear matrix inequalities (LMIs) formulation by introducing a continuous frequency distributed equivalent model and using an indirect Lyapunov approach where the fractional-order α belongs to 0 < α < 1. A numerical example is given to demonstrate the validity of the proposed approach.
Fractional-order adaptive fault estimation for a class of nonlinear fractional-order systems
N'Doye, Ibrahima
2015-07-01
This paper studies the problem of fractional-order adaptive fault estimation for a class of fractional-order Lipschitz nonlinear systems using fractional-order adaptive fault observer. Sufficient conditions for the asymptotical convergence of the fractional-order state estimation error, the conventional integer-order and the fractional-order faults estimation error are derived in terms of linear matrix inequalities (LMIs) formulation by introducing a continuous frequency distributed equivalent model and using an indirect Lyapunov approach where the fractional-order α belongs to 0 < α < 1. A numerical example is given to demonstrate the validity of the proposed approach.
Effective-medium theory for nonlinear magneto-optics in magnetic granular alloys: cubic nonlinearity
International Nuclear Information System (INIS)
Granovsky, Alexander B.; Kuzmichov, Michail V.; Clerc, J.-P.; Inoue, Mitsuteru
2003-01-01
We propose a simple effective-medium approach for calculating the effective dielectric function of a magnetic metal-insulator granular alloy in which there is a weakly nonlinear relation between electric displacement D and electric field E for both constituent materials of the form D i =ε i (0) E i +χ i (3) |E i | 2 E i . We assume that linear ε i (0) and cubic nonlinear χ i (3) dielectric functions are diagonal and linear with magnetization non-diagonal components. For such metal-insulator composite magneto-optical effects depend on a light intensity and the effective cubic dielectric function χ eff (3) can be significantly greater (up to 10 3 times) than that for constituent materials. The calculation scheme is based on the Bergman and Stroud-Hui theory of nonlinear optical properties of granular matter. The giant cubic magneto-optical nonlinearity is found for composites with metallic volume fraction close to the percolation threshold and at a resonance of optical conductivity. It is shown that a composite may exhibit nonlinear magneto-optics even when both constituent materials have no cubic magneto-optical nonlinearity
Effective-medium theory for nonlinear magneto-optics in magnetic granular alloys: cubic nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Granovsky, Alexander B. E-mail: granov@magn.ru; Kuzmichov, Michail V.; Clerc, J.-P.; Inoue, Mitsuteru
2003-03-01
We propose a simple effective-medium approach for calculating the effective dielectric function of a magnetic metal-insulator granular alloy in which there is a weakly nonlinear relation between electric displacement D and electric field E for both constituent materials of the form D{sub i}={epsilon}{sub i}{sup (0)}E{sub i} +{chi}{sub i}{sup (3)}|E{sub i}|{sup 2}E{sub i}. We assume that linear {epsilon}{sub i}{sup (0)} and cubic nonlinear {chi}{sub i}{sup (3)} dielectric functions are diagonal and linear with magnetization non-diagonal components. For such metal-insulator composite magneto-optical effects depend on a light intensity and the effective cubic dielectric function {chi}{sub eff}{sup (3)} can be significantly greater (up to 10{sup 3} times) than that for constituent materials. The calculation scheme is based on the Bergman and Stroud-Hui theory of nonlinear optical properties of granular matter. The giant cubic magneto-optical nonlinearity is found for composites with metallic volume fraction close to the percolation threshold and at a resonance of optical conductivity. It is shown that a composite may exhibit nonlinear magneto-optics even when both constituent materials have no cubic magneto-optical nonlinearity.
Shocks, singularities and oscillations in nonlinear optics and fluid mechanics
Santo, Daniele; Lannes, David
2017-01-01
The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields. .
Renormgroup symmetries in problems of nonlinear geometrical optics
International Nuclear Information System (INIS)
Kovalev, V.F.
1996-01-01
Utilization and further development of the previously announced approach [1,2] enables one to construct renormgroup symmetries for a boundary value problem for the system of equations which describes propagation of a powerful radiation in a nonlinear medium in geometrical optics approximation. With the help of renormgroup symmetries new rigorous and approximate analytical solutions of nonlinear geometrical optics equations are obtained. Explicit analytical expressions are presented that characterize spatial evolution of laser beam which has an arbitrary intensity dependence at the boundary of the nonlinear medium. (author)
Theoretical investigation of intensity-dependent optical nonlinearity in graphene-aided D-microfiber
Shah, Manoj Kumar; Lu, Rongguo; Zhang, Yali; Ye, Shengwei; Zhang, Shangjian; Liu, Yong
2018-01-01
We theoretically investigate the intensity-dependent optical nonlinearity in graphene-aided D-microfiber, by tuning the chemical potential of graphene and varying radial distance and radii of the D-microfiber. Utilizing an interplay between graphene and the enhanced evanescent field of a guided mode in the waveguide of interest, the net utility of nonlinear coefficient is harnessed up to a very high value of 106 W-1m-1. Importantly, which is ∼ two orders of magnitude larger than in PMMA-graphene-PMMA waveguide. The highly dispersive nature of the waveguide, D ∼ 103 ps/nm-km, and large nonlinear figure-of-merit, FOMNL ∼ 1.29, have raised the possibilities of utilizing slow light structures to operate devices at few watts power level with microscale length. These studies have opened one window towards the next-generation all fiber-optic graphene nonlinear optical devices.
Pigeon, J. J.; Tochitsky, S. Ya.; Welch, E. C.; Joshi, C.
2018-04-01
We present measurements of the third-order optical nonlinearity of Kr, Xe, N2, O2, and air at a wavelength near 10 µm by using four-wave mixing of ˜15 -GW /c m2 , 200-ps (full width at half maximum) C O2 laser pulses. Measurements in molecular gases resulted in an asymmetric four-wave mixing spectrum indicating that the nonlinear response is strongly affected by the delayed, rotational contribution to the effective nonlinear refractive index. Within the uncertainty of our measurements, we have found that the long-wavelength nonlinear refractive indices of these gases are consistent with measurements performed in the near IR.
Linear and non-linear optics of condensed matter
International Nuclear Information System (INIS)
McLean, T.P.
1977-01-01
Part I - Linear optics: 1. General introduction. 2. Frequency dependence of epsilon(ω, k vector). 3. Wave-vector dependence of epsilon(ω, k vector). 4. Tensor character of epsilon(ω, k vector). Part II - Non-linear optics: 5. Introduction. 6. A classical theory of non-linear response in one dimension. 7. The generalization to three dimensions. 8. General properties of the polarizability tensors. 9. The phase-matching condition. 10. Propagation in a non-linear dielectric. 11. Second harmonic generation. 12. Coupling of three waves. 13. Materials and their non-linearities. 14. Processes involving energy exchange with the medium. 15. Two-photon absorption. 16. Stimulated Raman effect. 17. Electro-optic effects. 18. Limitations of the approach presented here. (author)
Ageing of the nonlinear optical susceptibility in soft matter
International Nuclear Information System (INIS)
Ghofraniha, N; Conti, C; Leonardo, R Di; Ruzicka, B; Ruocco, G
2007-01-01
We investigate the nonlinear optics response of a colloidal dispersion undergoing dynamics slowing down with age, by using Z-scan and dynamic light scattering measurements. We study the high optical nonlinearity of an organic dye (rhodamine B) dispersed in a water-clay (laponite) suspension. We consider different clay concentrations (2.0-2.6 wt%) experiencing dynamics arrest. We find that (i) the concentration dependent exponential growth of both mean relaxation time and nonlinear absorption coefficient can be individually scaled to a master curve and (ii) the scaling times are the same for the two physical quantities. These findings indicate that the optical nonlinear susceptibility exhibits the same ageing universal scaling behaviour, typical of disordered out of equilibrium systems
Fractional-Order Nonlinear Systems Modeling, Analysis and Simulation
Petráš, Ivo
2011-01-01
"Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation" presents a study of fractional-order chaotic systems accompanied by Matlab programs for simulating their state space trajectories, which are shown in the illustrations in the book. Description of the chaotic systems is clearly presented and their analysis and numerical solution are done in an easy-to-follow manner. Simulink models for the selected fractional-order systems are also presented. The readers will understand the fundamentals of the fractional calculus, how real dynamical systems can be described using fractional derivatives and fractional differential equations, how such equations can be solved, and how to simulate and explore chaotic systems of fractional order. The book addresses to mathematicians, physicists, engineers, and other scientists interested in chaos phenomena or in fractional-order systems. It can be used in courses on dynamical systems, control theory, and applied mathematics at graduate or postgraduate level. ...
A variational approach to nonlinear evolution equations in optics
Indian Academy of Sciences (India)
optics. D ANDERSON, M LISAK and A BERNTSON£. Department of Electromagnetics, Chalmers University of Technology, SE-41296 Göteborg, Sweden. £Ericsson Telcom ... Many works in nonlinear optics have made efficient ...... focusing dynamics of a laser beam (or a Bose–Einstein condensate) in a parabolic external.
Black phosphorus: broadband nonlinear optical absorption and application
Li, Ying; He, Yanliang; Cai, Yao; Chen, Shuqing; Liu, Jun; Chen, Yu; Yuanjiang, Xiang
2018-02-01
Black phosphorus (BP), 2D layered material with layered dependent direct bandgap (0.3 eV (bulk), 2.0 eV (single layer)) that has gained renewed attention, has been demonstrated as an extremely appropriate optical material for broadband optical applications from infrared to mid-infrared wavebands. Herein, by coupling multi-layer BP films with microfiber, we fabricated a nonlinear optical device with long light-matter interaction distance and enhanced damage threshold. Through taking full advantage of its fine nonlinear optical absorption property, we obtained stable mode-locking (51 ps) and Q-switched mode-locking states in Yb-doped or Er-doped (403.7 fs) all-fiber lasers and the single-longitudinal-mode operation (53 kHz) in an Er-doped fiber laser with enhanced power tolerance, using the same nonlinear optical device. Our results showed that BP could be a favorable nonlinear optical material for developing BP-enabled wave-guiding photonic devices, and revealed new insight into BP for high optical power unexplored optical devices.
Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber
DEFF Research Database (Denmark)
Gu, Bobo; Yuan, Scott Wu; Frosz, Michael H.
2012-01-01
We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber a...
Higher order modes of coupled optical fibres
International Nuclear Information System (INIS)
Alexeyev, C N; Yavorsky, M A; Boklag, N A
2010-01-01
The structure of hybrid higher order modes of two coupled weakly guiding identical optical fibres is studied. On the basis of perturbation theory with degeneracy for the vector wave equation expressions for modes with azimuthal angular number l ≥ 1 are obtained that allow for the spin–orbit interaction. The spectra of polarization corrections to the scalar propagation constants are calculated in a wide range of distances between the fibres. The limiting cases of widely and closely spaced fibres are studied. The obtained results can be used for studying the tunnelling of optical vortices in directional couplers and in matters concerned with information security
Nonboson treatment of excitonic nonlinearity in optically excited media
International Nuclear Information System (INIS)
Nguyen Ba An.
1990-11-01
The present article shortly reviews some recent results in the study of excitonic nonlinearity in optically excited media using a nonboson treatment for many-exciton systems. After a brief discussion of the exciton nonbosonity the closed commutation relations are given for exciton operators which hold for any exciton density and type. The nonboson treatment is then applied to the problems of intrinsic optical bistability and nonlinear polariton yielding quite interesting and new effects, e.g. new shapes of hysteresis loops of intrinsic optical bistability or anomalies of polariton dispersion. (author). 71 refs, 4 figs
FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides.
Dissanayake, Chethiya M; Premaratne, Malin; Rukhlenko, Ivan D; Agrawal, Govind P
2010-09-27
A deep insight into the inherent anisotropic optical properties of silicon is required to improve the performance of silicon-waveguide-based photonic devices. It may also lead to novel device concepts and substantially extend the capabilities of silicon photonics in the future. In this paper, for the first time to the best of our knowledge, we present a three-dimensional finite-difference time-domain (FDTD) method for modeling optical phenomena in silicon waveguides, which takes into account fully the anisotropy of the third-order electronic and Raman susceptibilities. We show that, under certain realistic conditions that prevent generation of the longitudinal optical field inside the waveguide, this model is considerably simplified and can be represented by a computationally efficient algorithm, suitable for numerical analysis of complex polarization effects. To demonstrate the versatility of our model, we study polarization dependence for several nonlinear effects, including self-phase modulation, cross-phase modulation, and stimulated Raman scattering. Our FDTD model provides a basis for a full-blown numerical simulator that is restricted neither by the single-mode assumption nor by the slowly varying envelope approximation.
A nonlinear plasmonic resonator for three-state all-optical switching
Amin, Muhammad
2014-01-01
A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator\\'s metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.
Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films
Zhao, Yong-chuang; Nie, Zhong-quan; Zhai, Ai-ping; Tian, Yan-ting; Liu, Chao; Shi, Chang-kun; Jia, Bao-hua
2018-01-01
In this work, we focus on the optical super-resolution effect induced by strong nonlinear saturation absorption (NSA) of graphene oxide (GO) membranes. The third-order optical nonlinearities are characterized by the canonical Z-scan technique under femtosecond laser (wavelength: 800 nm, pulse width: 100 fs) excitation. Through controlling the applied femtosecond laser energy, NSA of the GO films can be tuned continuously. The GO film is placed at the focal plane as a unique amplitude filter to improve the resolution of the focused field. A multi-layer system model is proposed to present the generation of a deep sub-wavelength spot associated with the nonlinearity of GO films. Moreover, the parameter conditions to achieve the best resolution (˜λ/6) are determined entirely. The demonstrated results here are useful for high density optical recoding and storage, nanolithography, and super-resolution optical imaging.
A nonlinear plasmonic resonator for three-state all-optical switching
Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan
2014-01-01
A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator's metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.
Effects of high light intensities on the optical Kerr nonlinearity of semiconducting polymers
International Nuclear Information System (INIS)
Charra, Fabrice
1990-01-01
Experimental investigations, in the picosecond time scale, of the Kerr type optical nonlinearity (or pump and probe) are presented. The nonlinear molecules semiconducting polymers of the type poly-diacetylene. The degenerate case (pump and probe at the same frequency) has been studied by four wave mixing at 1064 nm, in the configuration of phase conjugation. It is shown that the response is dominated by high orders of nonlinearity. The results are analysed in terms of two photon resonance. The non-degenerate case is studied by two wave mixing or in the optical Kerr gate experiment. The optical Stark effect and the differential spectra of photoinduced species are analysed. Two photon excitations at 1064 nm and one photon excitations at 532 nm are compared. A consequence of the mechanism of the nonlinearity is the possibility of generating phase conjugate waves at double frequency. The theoretical analysis and the experimental demonstration of this process are presented. The experiment is only sensitive to nonlinearities of the fifth order or more and thus allows to clarify its origins and dynamics. Finally, quantum modelling and calculations of the nonlinear optical responses, developed for the interpretations of the above experiments, are presented. (author) [fr
Rani, Sunita; Mohan, Devendra; Kumar, Manish; Sanjay
2018-05-01
Third order nonlinear susceptibility of (GeSe3.5)100-xBix (x = 0, 10, 14) and ZnxSySe100-x-y (x = 2, y = 28; x = 4, y = 20; x = 6, y = 12; x = 8, y = 4) amorphous chalcogenide thin films prepared using thermal evaporation technique is estimated. The dielectric constant at incident and third harmonic wavelength is calculated using "PARAV" computer program. 1064 nm wavelength of Nd: YAG laser is incident on thin film and third harmonic signal at 355 nm wavelength alongwith fundamental light is obtained in reflection that is separated from 1064 nm using suitable optical filter. Reflected third harmonic signal is measured to trace the influence of Bi and Zn on third order nonlinear susceptibility and is found to increase with increase in Bi and Zn content in (GeSe3.5)100-xBix, and ZnxSySe100-x-y chalcogenide thin films respectively. The excellent optical nonlinear property shows the use of chalcogenide thin films in photonics for wavelength conversion and optical data processing.
Measurements of nonlinear optical properties of PVDF/ZnO using Z-scan technique
Energy Technology Data Exchange (ETDEWEB)
Shanshool, Haider Mohammed, E-mail: haidshan62@gmail.com [Ministry of Science and Technology, Baghdad (Iraq); Yahaya, Muhammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia); Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, University Putra Malaysia, Serdang (Malaysia); Abdullah, Ibtisam Yahya [Department of Physics, College of Science, University of Mosul, Mosul (Iraq)
2015-10-15
The nonlinear optical properties of ZnO nanoparticles dispersed in poly (vinylidene fluoride) (PVDF) polymer are investigated. PVDF/ZnO nanocomposites were prepared by mixing different concentrations of ZnO nanoparticles, as the filler, with PVDF, as the polymer matrix, using casting method. Acetone was used as a solvent for the polymer. FTIR spectra of the samples were analyzed thus confirming the formation of α and β phases. The absorbance spectra of the samples were obtained, thereby showing high absorption in the UV region. The linear absorption coefficient was calculated. The single-beam Z-scan technique was used to measure the nonlinear refractive index and the nonlinear absorption coefficient of the PVDF/ZnO nanocomposite samples. We observed that the nonlinear refractive index is in the order of 10{sup -13} cm{sup 2}/W with the negative sign, whereas the nonlinear absorption coefficient is in the order of 10{sup -8} cm/W. (author)
Hofstadter butterflies in nonlinear Harper lattices, and their optical realizations
International Nuclear Information System (INIS)
Manela, Ofer; Segev, Mordechai; Christodoulides, Demetrios N; Kip, Detlef
2010-01-01
The ubiquitous Hofstadter butterfly describes a variety of systems characterized by incommensurable periodicities, ranging from Bloch electrons in magnetic fields and the quantum Hall effect to cold atoms in optical lattices and more. Here, we introduce nonlinearity into the underlying (Harper) model and study the nonlinear spectra and the corresponding extended eigenmodes of nonlinear quasiperiodic systems. We show that the spectra of the nonlinear eigenmodes form deformed versions of the Hofstadter butterfly and demonstrate that the modes can be classified into two families: nonlinear modes that are a 'continuation' of the linear modes of the system and new nonlinear modes that have no counterparts in the linear spectrum. Finally, we propose an optical realization of the linear and nonlinear Harper models in transversely modulated waveguide arrays, where these Hofstadter butterflies can be observed. This work is relevant to a variety of other branches of physics beyond optics, such as disorder-induced localization in ultracold bosonic gases, localization transition processes in disordered lattices, and more.
Hofstadter butterflies in nonlinear Harper lattices, and their optical realizations
Energy Technology Data Exchange (ETDEWEB)
Manela, Ofer; Segev, Mordechai [Department of Physics and Solid State Institute, Technion, Haifa 32000 (Israel); Christodoulides, Demetrios N [College of Optics/CREOL, University of Central Florida, FL 32816-2700 (United States); Kip, Detlef, E-mail: msegev@tx.technion.ac.i [Department of Electrical Engineering, Helmut Schmidt University, 22043 Hamburg (Germany)
2010-05-15
The ubiquitous Hofstadter butterfly describes a variety of systems characterized by incommensurable periodicities, ranging from Bloch electrons in magnetic fields and the quantum Hall effect to cold atoms in optical lattices and more. Here, we introduce nonlinearity into the underlying (Harper) model and study the nonlinear spectra and the corresponding extended eigenmodes of nonlinear quasiperiodic systems. We show that the spectra of the nonlinear eigenmodes form deformed versions of the Hofstadter butterfly and demonstrate that the modes can be classified into two families: nonlinear modes that are a 'continuation' of the linear modes of the system and new nonlinear modes that have no counterparts in the linear spectrum. Finally, we propose an optical realization of the linear and nonlinear Harper models in transversely modulated waveguide arrays, where these Hofstadter butterflies can be observed. This work is relevant to a variety of other branches of physics beyond optics, such as disorder-induced localization in ultracold bosonic gases, localization transition processes in disordered lattices, and more.
Azarnavid, Babak; Parand, Kourosh; Abbasbandy, Saeid
2018-06-01
This article discusses an iterative reproducing kernel method with respect to its effectiveness and capability of solving a fourth-order boundary value problem with nonlinear boundary conditions modeling beams on elastic foundations. Since there is no method of obtaining reproducing kernel which satisfies nonlinear boundary conditions, the standard reproducing kernel methods cannot be used directly to solve boundary value problems with nonlinear boundary conditions as there is no knowledge about the existence and uniqueness of the solution. The aim of this paper is, therefore, to construct an iterative method by the use of a combination of reproducing kernel Hilbert space method and a shooting-like technique to solve the mentioned problems. Error estimation for reproducing kernel Hilbert space methods for nonlinear boundary value problems have yet to be discussed in the literature. In this paper, we present error estimation for the reproducing kernel method to solve nonlinear boundary value problems probably for the first time. Some numerical results are given out to demonstrate the applicability of the method.
DEFF Research Database (Denmark)
Peucheret, Christophe; Da Ros, Francesco; Vukovic, Dragana
Parametric processes in materials presenting a second- or third-order nonlinearity have been widely used to demonstrate a wide range of all-optical signal processing functionalities, including amplication, wavelength conversion, regeneration, sampling, switching, modulation format conver- sion, o...
High-order beam optics - an overview
International Nuclear Information System (INIS)
Heighway, E.A.
1989-01-01
Beam-transport codes have been around for as long as thirty years and high order codes, second-order at least, for close to twenty years. Before this period of design-code development, there was considerable high-order treatment, but it was almost entirely analytical. History has a way of repeating itself, and the current excitement in the field of high-order optics is based on the application of Lie algebra and the so-called differential algebra to beam-transport codes, both of which are highly analytical in foundation. The author will describe some of the main design tools available today, giving a little of their history, and will conclude by trying to convey some of the excitement in the field through a brief description of Lie and differential algebra. 30 refs., 7 figs., 1 tab
A nonlinear plasmonic waveguide based all-optical bidirectional switching
Bana, Xiaoqiang; Pang, Xingxing; Li, Xiaohui; Hu, Bin; Guo, Yixuan; Zheng, Hairong
2018-01-01
In this paper, an all-optical switching with a nanometer coupled ring resonator is demonstrated based on the nonlinear material. By adjusting the light intensity, we implement the resonance wavelength from 880 nm to 940 nm in the nonlinear material structure monocyclic. In the bidirectional switch structure, the center wavelength (i.e. 880 nm) is fixed. By changing the light intensity from I = 0 to I = 53 . 1 MW /cm2, the function of optical switching can be obtained. The results demonstrate that both the single-ring cavity and the T-shaped double-ring structure can realize the optical switching effect. This work takes advantage of the simple structure. The single-ring cavity plasmonic switches have many advantages, such as nanoscale size, low pumping light intensity, ultrafast response time (femtosecond level), etc. It is expected that the proposed all-optical integrated devices can be potentially applied in optical communication, signal processing, and signal sensing, etc.
Dynamical Properties in a Fourth-Order Nonlinear Difference Equation
Xianyi Li; Yunxin Chen
2010-01-01
The rule of trajectory structure for fourth-order nonlinear difference equation xn+1=(xan−2+xn−3)/(xan−2xn−3+1), n=0,1,2,…, where a∈[0,1) and the initial values x−3,x−2,x−1,x0∈[0,∞), is described clearly out in this paper. Mainly, the lengths of positive and negative semicycles of its nontrivial solutions are found to occur periodically with prime period 15. The rule is 4+,3−,1+,2−,2+,1−,1+, 1&#x...
Nonlinear optical studies of single gold nanoparticles
Dijk, Meindert Alexander van
2007-01-01
Gold nanoparticles are spherical clusters of gold atoms, with diameters typically between 1 and 100 nanometers. The applications of these particles are rather diverse, from optical labels for biological experiments to data carrier for optical data storage. The goal of my project was to develop new
The AOLI Non-Linear Curvature Wavefront Sensor: High sensitivity reconstruction for low-order AO
Crass, Jonathan; King, David; Mackay, Craig
2013-12-01
Many adaptive optics (AO) systems in use today require bright reference objects to determine the effects of atmospheric distortions on incoming wavefronts. This requirement is because Shack Hartmann wavefront sensors (SHWFS) distribute incoming light from reference objects into a large number of sub-apertures. Bright natural reference objects occur infrequently across the sky leading to the use of laser guide stars which add complexity to wavefront measurement systems. The non-linear curvature wavefront sensor as described by Guyon et al. has been shown to offer a significant increase in sensitivity when compared to a SHWFS. This facilitates much greater sky coverage using natural guide stars alone. This paper describes the current status of the non-linear curvature wavefront sensor being developed as part of an adaptive optics system for the Adaptive Optics Lucky Imager (AOLI) project. The sensor comprises two photon-counting EMCCD detectors from E2V Technologies, recording intensity at four near-pupil planes. These images are used with a reconstruction algorithm to determine the phase correction to be applied by an ALPAO 241-element deformable mirror. The overall system is intended to provide low-order correction for a Lucky Imaging based multi CCD imaging camera. We present the current optical design of the instrument including methods to minimise inherent optical effects, principally chromaticity. Wavefront reconstruction methods are discussed and strategies for their optimisation to run at the required real-time speeds are introduced. Finally, we discuss laboratory work with a demonstrator setup of the system.
Kuang-Leman; Wu Yong Shi
2003-01-01
We study linear and nonlinear optical properties of an electromagnetically induced transparency (EIT) medium interacting with two quantized laser fields in the adiabatic EIT case. We show that the EIT medium exhibits normal dispersion. Kerr and higher-order nonlinear refractive index coefficients are also calculated in a completely analytical form. It is indicated that the EIT medium exhibits giant resonantly enhanced nonlinearities. We discuss the response of the EIT medium to nonclassical light fields and find that the polarization vanishes when the probe laser is initially in a nonclassical state of no single-photon coherence.
Kohlgraf-Owens, Dana C; Kik, Pieter G
2009-08-17
The linear and nonlinear optical properties of a composite containing interacting spherical silver nanoparticles embedded in a dielectric host are studied as a function of interparticle separation using three dimensional frequency domain simulations. It is shown that for a fixed amount of metal, the effective third-order nonlinear susceptibility of the composite chi((3))(omega) can be significantly enhanced with respect to the linear optical properties, due to a combination of resonant surface plasmon excitation and local field redistribution. It is shown that this geometry-dependent susceptibility enhancement can lead to an improved figure of merit for nonlinear absorption. Enhancement factors for the nonlinear susceptibility of the composite are calculated, and the complex nature of the enhancement factors is discussed.
Liu, Lei; Tian, Bo; Wu, Xiao-Yu; Sun, Yan
2018-02-01
Under investigation in this paper is the higher-order rogue wave-like solutions for a nonautonomous nonlinear Schrödinger equation with external potentials which can be applied in the nonlinear optics, hydrodynamics, plasma physics and Bose-Einstein condensation. Based on the Kadomtsev-Petviashvili hierarchy reduction, we construct the Nth order rogue wave-like solutions in terms of the Gramian under the integrable constraint. With the help of the analytic and graphic analysis, we exhibit the first-, second- and third-order rogue wave-like solutions through the different dispersion, nonlinearity and linear potential coefficients. We find that only if the dispersion and nonlinearity coefficients are proportional to each other, heights of the background of those rogue waves maintain unchanged with time increasing. Due to the existence of complex parameters, such nonautonomous rogue waves in the higher-order cases have more complex features than those in the lower.
Label-free and selective nonlinear fiber-optical biosensing
DEFF Research Database (Denmark)
Ott, Johan Raunkjær; Heuck, Mikkel; Agger, Christian
2008-01-01
We demonstrate that the inherent nonlinearity of a microstructured optical fiber (MOF) may be used to achieve label-free selective biosensing, thereby eliminating the need for post-processing of the fiber. This first nonlinear biosensor utilizes a change in the modulational instability (MI) gain...... for optimizing the sensitivity. The nonlinear sensor shows a sensitivity of around 10.4nm/nm, defined as the shift in resonance wavelength per nm biolayer, which is a factor of 7.5 higher than the hitherto only demonstrated label-free MOF biosensor....
Third-order nonlinearity of Er3+-doped lead phosphate glass
Energy Technology Data Exchange (ETDEWEB)
Santos, C. C. [Universidade Federal do Ceara, Ceara, Brazil; Guedes Da Silva, Ilde [ORNL; Siqueira, J. P. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Misoguti, L. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Zilio, S. C. [Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; Boatner, Lynn A [ORNL
2010-01-01
The third-order optical susceptibility and dispersion of the linear refractive index of Er3+-doped lead phosphate glass were measured in the wavelength range between 400 and 1940 nm by using the spectrally resolved femtosecond Maker fringes technique. The nonlinear refractive index obtained from the third-order susceptibility was found to be five times higher than that of silica, indicating that Er3+-doped lead phosphate glass is a potential candidate to be used as the base component for the fabrication of photonic devices. For comparison purposes, the Z-scan technique was also employed to obtain the values of the nonlinear refractive index of E-doped lead phosphate glass at several wavelengths, and the values obtained using the two techniques agree to within 15%.
Optical tsunamis: shoaling of shallow water rogue waves in nonlinear fibers with normal dispersion
International Nuclear Information System (INIS)
Wabnitz, Stefan
2013-01-01
In analogy with ocean waves running up towards the beach, shoaling of pre-chirped optical pulses may occur in the normal group-velocity dispersion regime of optical fibers. We present exact Riemann wave solutions of the optical shallow water equations and show that they agree remarkably well with the numerical solutions of the nonlinear Schrödinger equation, at least up to the point where a vertical pulse front develops. We also reveal that extreme wave events or optical tsunamis may be generated in dispersion tapered fibers in the presence of higher-order dispersion. (paper)
Picosecond optical nonlinearities in symmetrical and unsymmetrical ...
Indian Academy of Sciences (India)
It is evident that the saturable absorption (SA) behaviour changed to reverse sat- urable absorption (RSA) and the nonlinear coefficients were obtained using the equation α = α0I/[1 + (I/Is)]. The open-aperture scans were fitted by solving the propagation equation for homogeneous medium dI/dz = {−α0I/[1+(I/Is)]}−βI2.
Optical computation based on nonlinear total reflectional optical ...
Indian Academy of Sciences (India)
Optical computing; beam splitter; optical switch; polarized beams. ... main research direction called quantum information and quantum computation is .... above has several advantages: Firstly, it is easy to be integrated with appropriate.
Rapid assessment of nonlinear optical propagation effects in dielectrics
Hoyo, J. Del; de La Cruz, A. Ruiz; Grace, E.; Ferrer, A.; Siegel, J.; Pasquazi, A.; Assanto, G.; Solis, J.
2015-01-01
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process.
Nonlinear light-matter interactions in engineered optical media
Litchinitser, Natalia
In this talk, we consider fundamental optical phenomena at the interface of nonlinear and singular optics in artificial media, including theoretical and experimental studies of linear and nonlinear light-matter interactions of vector and singular optical beams in metamaterials. We show that unique optical properties of metamaterials open unlimited prospects to ``engineer'' light itself. Thanks to their ability to manipulate both electric and magnetic field components, metamaterials open new degrees of freedom for tailoring complex polarization states and orbital angular momentum (OAM) of light. We will discuss several approaches to structured light manipulation on the nanoscale using metal-dielectric, all-dielectric and hyperbolic metamaterials. These new functionalities, including polarization and OAM conversion, beam magnification and de-magnification, and sub-wavelength imaging using novel non-resonant hyperlens are likely to enable a new generation of on-chip or all-fiber structured light applications. The emergence of metamaterials also has a strong potential to enable a plethora of novel nonlinear light-matter interactions and even new nonlinear materials. In particular, nonlinear focusing and defocusing effects are of paramount importance for manipulation of the minimum focusing spot size of structured light beams necessary for nanoscale trapping, manipulation, and fundamental spectroscopic studies. Colloidal suspensions offer as a promising platform for engineering polarizibilities and realization of large and tunable nonlinearities. We will present our recent studies of the phenomenon of spatial modulational instability leading to laser beam filamentation in an engineered soft-matter nonlinear medium. Finally, we introduce so-called virtual hyperbolic metamaterials formed by an array of plasma channels in air as a result of self-focusing of an intense laser pulse, and show that such structure can be used to manipulate microwave beams in a free space. This
Transverse effects in nonlinear optics: Toward the photon superfluid
McCormick, Colin Fraser
Nonlinear optics displays a wealth of transverse effects. These effects are particularly rich in the presence of an optical cavity. Many considerations suggest that in a Kerr nonlinear cavity a new state of light known as a "photon superfluid" can form, with strong analogies to atomic superfluids. The conditions for the formation of the photon superfluid include requirements on the cavity, input light fields and the nonlinear medium as well as various timescales. The most favorable candidate nonlinear medium for observing the photon super-fluid is an atomic vapor. With a strong and fast Kerr effect, atomic vapors also have the advantage of a Kerr coefficient that is tunable in both magnitude and sign. A series of z-scan experiments in far-detuned atomic rubidium vapor is reported, measuring the Kerr coefficient and determining its functional dependence on detuning to be that of a Doppler-broadened two-level model with adiabatic following of the electric field by the atom pseudomoment. Saturation effects are found to be important. Z-scan measurements for detunings within the Doppler profile are shown to agree well with numerical simulations based on the Doppler-broadened model. Agreement between absorptive and refractive non-linear coefficients is evidence of the Kramers-Kronig relations at work, even in this nonlinear system. The formation of the photon superfluid is discussed and the calculation of a new process, nearly collinear four-wave mixing, is presented. This process is essentially an inverse beam filamentation that is likely to be the underlying physical mechanism for transverse cooling and condensation of photons in a nonlinear optical cavity. Nearly collinear four-wave mixing may also be related to phenomena in general nonlinear physics, including modulation instability and Fermi-Pasta-Ulam recurrence.
Theory of plasmonic effects in nonlinear optics: the case of graphene
Rostami, Habib; Katsnelson, Mikhail I.; Polini, Marco; Mikhail I. Katsnelson Collaboration; Habib Rostami; Marco Polini Collaboration
The nonlinear optical properties of two-dimensional electronic systems are beginning to attract considerable interest both in the theoretical and experimental sectors. Recent experiments on the nonlinear optical properties of graphene reveal considerably strong third harmonic generation and four-wave mixing of this single-atomic-layer electronic system. We develop a large-N theory of electron-electron interaction corrections to multi-legged Feynman diagrams describing second- and third-order nonlinear response functions. Our theory is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order nonlinear response functions of an interacting two-dimensional gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved. This work was supported by Fondazione Istituto Italiano di Tecnologia, the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore, and the ERC Advanced Grant 338957 FEMTO/NANO (M.I.K.).
Directory of Open Access Journals (Sweden)
Imran Talib
2015-12-01
Full Text Available In this article, study the existence of solutions for the second-order nonlinear coupled system of ordinary differential equations $$\\displaylines{ u''(t=f(t,v(t,\\quad t\\in [0,1],\\cr v''(t=g(t,u(t,\\quad t\\in [0,1], }$$ with nonlinear coupled boundary conditions $$\\displaylines{ \\phi(u(0,v(0,u(1,v(1,u'(0,v'(0=(0,0, \\cr \\psi(u(0,v(0,u(1,v(1,u'(1,v'(1=(0,0, }$$ where $f,g:[0,1]\\times \\mathbb{R}\\to \\mathbb{R}$ and $\\phi,\\psi:\\mathbb{R}^6\\to \\mathbb{R}^2$ are continuous functions. Our main tools are coupled lower and upper solutions, Arzela-Ascoli theorem, and Schauder's fixed point theorem.
Nonlinear Fourier transform for dual-polarization optical communication system
Gaiarin, Simone
2018-01-01
New services and applications are causing an exponential increase in the internet traffic. In a few years, the current fiber-optic communication system infrastructure will not be able to meet this demand because fiber nonlinearity dramatically limits the information transmission rate. Eigenvalue communication is considered an emerging paradigm in fiber-optic communications that could potentially overcome these limitations. It relies on a mathematical technique called “inverse scattering trans...
Nonlinear optical properties of poly(methyl methacrylate) thin films doped with Bixa Orellana dye
Energy Technology Data Exchange (ETDEWEB)
Zongo, S., E-mail: sidiki@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, POBox 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); Kerasidou, A.P. [LUNAM Université, Université d’Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 Bd Lavoisier, 49045 Angers Cedex (France); Sone, B.T.; Diallo, A. [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, POBox 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); Mthunzi, P. [Council for Scientific and Industrial Research, P O Box 395, Pretoria 0001 (South Africa); Iliopoulos, K. [LUNAM Université, Université d’Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 Bd Lavoisier, 49045 Angers Cedex (France); Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras (Greece); Nkosi, M. [Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); and others
2015-06-15
Highlights: • We studied the linear and nonlinear optical properties of hybrid Bixa Orellana dye doped PMMA thin film. • We investigated the linear optical properties by means of UV/Vis, FTIR and Fluorescence. • We used Tauc - Lorentz model to evaluate linear optical parameters (n &k) with relative maximum of 1.456 at 508.5, 523.79 and 511.9 nm for n is observed while the maximum of k varies from 0.070 to 0.080. • We evaluated nonlinear third order susceptibility which was found to be 1.00 × 10{sup −21} m{sup 2} V{sup −2} or 0.72 × 10{sup −13} esu. - Abstract: Natural dyes with highly delocalized π-electron systems are considered as promising organic materials for nonlinear optical applications. Among these dyes, Bixa Orellana dye with extended π-electron delocalization is one of the most attractive dyes. Bixa Orellana dye-doped Poly(methyl methacrylate) (PMMA) thin films were prepared through spin coating process for linear and nonlinear optical properties investigation. Atomic force microscopy (AFM) was used to evaluate the roughness of the thin films. The optical constants n and k were evaluated by ellipsometric spectroscopy. The refractive index had a maximum of about 1.456 at 508.5, 523.79 and 511.9 nm, while the maximum of k varies from 0.070 to 0.080 with the thickness. The third order nonlinear optical properties of the hybrid Bixa Orellana dye-PMMA polymer were investigated under 30 ps laser irradiation at 1064 nm with a repetition rate of 10 Hz. In particular the third-order nonlinear susceptibility has been determined by means of the Maker Fringes technique. The nonlinear third order susceptibility was found to be 1.00 × 10{sup −21} m{sup 2} V{sup −2} or 0.72 × 10{sup −13} esu. Our studies provide concrete evidence that the hybrid-PMMA composites of Bixa dye are prospective candidates for nonlinear material applications.
Nonlinear optical microscopy for histology of fresh normal and cancerous pancreatic tissues.
Directory of Open Access Journals (Sweden)
Wenyan Hu
Full Text Available BACKGROUND: Pancreatic cancer is a lethal disease with a 5-year survival rate of only 1-5%. The acceleration of intraoperative histological examination would be beneficial for better management of pancreatic cancer, suggesting an improved survival. Nonlinear optical methods based on two-photon excited fluorescence (TPEF and second harmonic generation (SHG of intrinsic optical biomarkers show the ability to visualize the morphology of fresh tissues associated with histology, which is promising for real-time intraoperative evaluation of pancreatic cancer. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate whether the nonlinear optical imaging methods have the ability to characterize pancreatic histology at cellular resolution, we studied different types of pancreatic tissues by using label-free TPEF and SHG. Compared with other routine methods for the preparation of specimens, fresh tissues without processing were found to be most suitable for nonlinear optical imaging of pancreatic tissues. The detailed morphology of the normal rat pancreas was observed and related with the standard histological images. Comparatively speaking, the preliminary images of a small number of chemical-induced pancreatic cancer tissues showed visible neoplastic differences in the morphology of cells and extracellular matrix. The subcutaneous pancreatic tumor xenografts were further observed using the nonlinear optical microscopy, showing that most cells are leucocytes at 5 days after implantation, the tumor cells begin to proliferate at 10 days after implantation, and the extracellular collagen fibers become disordered as the xenografts grow. CONCLUSIONS/SIGNIFICANCE: In this study, nonlinear optical imaging was used to characterize the morphological details of fresh pancreatic tissues for the first time. We demonstrate that it is possible to provide real-time histological evaluation of pancreatic cancer by the nonlinear optical methods, which present an
Nonlinear optical properties of Nd3+-Li+ co-doped ZnS-PVP thin films
Talwatkar, S. S.; Sunatkari, A. L.; Tamgadge, Y. S.; Muley, G. G.
2018-04-01
The nonlinear optical properties of Nd3+-Li+ co-doped ZnS-PVP nanocomposite were studied using a continuous wave (CW) He-Ne laser (λ = 632.8 nm)by z-scan technique. The nonlinear refractive index (n2), absorption coefficient (β) and third order nonlinear susceptibility (χ(3)) of PVP thin films embedded with Nd3+-Li+ co-doped ZnS NPs was found in the order of 10-7 cm2/W, 10-6 cm/W and 10-7 esu respectively. The nonlinearity found increasing with Nd3+-Li+ co-dopant concentration. Based on the results, it is proposed that this material is a new class of luminescent material suitable in optoelectronics devices application, especially in light-emitting devices, electroluminescent devices, display devices, etc.
Optical Beams in Nonlocal Nonlinear Media
DEFF Research Database (Denmark)
Królikowski, W.; Bang, Ole; Wyller, J.
2003-01-01
We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....
Nonlinear optical studies in semiconductor-doped glasses under ...
Indian Academy of Sciences (India)
Abstract. Nonlinear optical studies in semiconductor-doped glasses (SDGs) are per- formed under femtosecond laser pulse excitation. Z-scan experiments with 800 nm wave- length pulses are used to excite SDG samples in the resonance and non-resonance regimes. Schott colour glass filter OG 515 shows stronger ...
Nonlinear Optics Approaches Towards Subdiffraction Resolution in CARS Imaging
Boller, Klaus J.; Beeker, W.P.; Cleff, C.; Kruse, K.; Lee, Christopher James; Gross, P.; Offerhaus, Herman L.; Fallnich, Carsten; Herek, Jennifer Lynn; Fornasiero, E.F.; Rizzoli, S.O.
2014-01-01
In theoretical investigations, we review several nonlinear optical approaches towards subdiffraction-limited resolution in label-free imaging via coherent anti-Stokes Raman scattering (CARS). Using a density matrix model and numerical integration, we investigate various level schemes and
Enhancement of nonlinear optical properties of compounds of silica ...
Indian Academy of Sciences (India)
Enhancement of nonlinear optical properties of compounds of silica glass and metallic nanoparticle. A GHARAATI1,∗ and A KAMALDAR1,2. 1Department of Physics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran. 2Department of Education 1, Shiraz, Iran. ∗. Corresponding author. E-mail: agharaati@pnu.ac.
Printed organic smart devices characterized by nonlinear optical
DEFF Research Database (Denmark)
Pastorelli, Francesco; Accanto, Nicolo; Jørgensen, Mikkel
2017-01-01
In this study, we demonstrate that nonlinear optical microscopy is a promising technique to characterize organic printed electronics. Using ultrashort laser pulses we stimulate two-photon absorption in a roll coated polymer semiconductor and map the resulting two-photon induced photoluminescence...
Optical activity via Kerr nonlinearity in a spinning chiral medium
Energy Technology Data Exchange (ETDEWEB)
Khan, Anwar Ali, E-mail: anwarali@uom.edu.pk [Department of Physics, University of Malakand at Chakdara Dir(L) (Pakistan); Bacha, Bakht Amin, E-mail: aminoptics@gmail.com [Department of Physics, University of Malakand at Chakdara Dir(L) (Pakistan); Khan, Rahmat Ali, E-mail: rahmat_alipk@yahoo.com [Department of Mathematics, University of Malakand (Pakistan)
2016-11-11
Optical activity is investigated in a chiral medium by employing the four level cascade atomic model, in which the optical responses of the atomic medium are studied with Kerr nonlinearity. Light entering into a chiral medium splits into circular birefringent beams. The angle of divergence between the circular birefringent beams and the polarization states of the two light beams is manipulated with Kerr nonlinearity. In the stationary chiral medium the angle of divergence between the circular birefringent beams is calculated to be 1.3 radian. Furthermore, circular birefringence is optically controlled in a spinning chiral medium, where the maximum rotary photon drag angle for left (right) circularly polarized beam is ±1.1 (±1.5) microradian. The change in the angle of divergence between circular birefringent beams by rotary photon drag is calculated to be 0.4 microradian. The numerical results may help to understand image designing, image coding, discovery of photonic crystals and optical sensing technology. - Highlights: • Coherent control of a circular birefringence in a chiral medium is studied. • Angle of divergence between birefringent beams is modified with Kerr nonlinearity. • Rotary photon drag is controlled for birefringent beams and enhanced with Kerr nonlinearity in a spinning medium. • Rotation of the angle of divergence is observed with mechanical rotation of the medium about an axis and modified with Kerr effect. • A change in the angle of divergence is calculated by about a microradian with rotary photon drag.
Generalized dispersive wave emission in nonlinear fiber optics.
Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G
2013-01-15
We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.
Lossy effects in a nonlinear nematic optical fiber
Rodríguez, R. F.; Reyes, J. A.
2001-09-01
We use the multiple scales method to derive a generalized nonlinear Schrödinger equation that takes into account the dissipative effects in the reorientation of a nematic confined in a cylindrical waveguide. This equation has soliton-like solutions and predicts a decrease in the penetration length of the optical solitons for each propagating mode with respect to the dissipationless case.
Linear and nonlinear optical spectroscopy: Spectral, temporal and spatial resolution
DEFF Research Database (Denmark)
Hvam, Jørn Marcher
1997-01-01
Selected linear and nonlinear optical spectroscopies are being described with special emphasis on the possibility of obtaining simultaneous spectral, temporal and spatial resolution. The potential of various experimental techniques is being demonstrated by specific examples mostly taken from inve...... investigations of the electronic, and opto-electronic, properties of semiconductor nanostructures....
Applied nonlinear optics in the journal 'Quantum Electronics'
International Nuclear Information System (INIS)
Grechin, Sergei G; Dmitriev, Valentin G; Chirkin, Anatolii S
2011-01-01
A brief historical review of the experimental and theoretical works on nonlinear optical frequency conversion (generation of harmonics, up- and down-conversion, parametric oscillation), which have been published in the journal 'Quantum Electronics' for the last 40 years, is presented.
Bijeesh, M. M.; Shakhi, P. K.; Varier, Geetha K.; Nandakumar, P.
2018-06-01
We report on the nonlinear optical absorption coefficient of Au/BaTiO3 nanocomposite films and its dependence on gold nanoparticle concentration. Au/BaTiO3 nanocomposite films with different molar ratio of Au/Ba are prepared by sol-gel technique and characterized by X-ray diffraction, UV Visible absorption spectroscopy and high resolution transmission electron microscopy. An open aperture Z-scan technique is employed to study the third order nonlinear optical properties of Au/BaTiO3 thin films. An Nd:YAG laser operating at 532 nm wavelength having a pulse width of 5 ns is used for the measurements. The two-photon absorption coefficient of the films increases linearly with gold nanoparticle concentration and significant enhancement of nonlinear optical absorption is observed. This ability to fine tune the nonlinear optical coefficients of Au/BaTiO3 films would be handy in optical device applications.
International Nuclear Information System (INIS)
Liu Chunliang; Xie Xi; Chen Yinbao
1991-01-01
The universal nonlinear dynamic system equation is equivalent to its nonlinear Volterra's integral equation, and any order approximate analytical solution of the nonlinear Volterra's integral equation is obtained by exact analytical method, thus giving another derivation procedure as well as another computation algorithm for the solution of the universal nonlinear dynamic system equation
Tangled nonlinear driven chain reactions of all optical singularities
Vasil'ev, V. I.; Soskin, M. S.
2012-03-01
Dynamics of polarization optical singularities chain reactions in generic elliptically polarized speckle fields created in photorefractive crystal LiNbO3 was investigated in details Induced speckle field develops in the tens of minutes scale due to photorefractive 'optical damage effect' induced by incident beam of He-Ne laser. It was shown that polarization singularities develop through topological chain reactions of developing speckle fields driven by photorefractive nonlinearities induced by incident laser beam. All optical singularities (C points, optical vortices, optical diabolos,) are defined by instantaneous topological structure of the output wavefront and are tangled by singular optics lows. Therefore, they have develop in tangled way by six topological chain reactions driven by nonlinear processes in used nonlinear medium (photorefractive LiNbO3:Fe in our case): C-points and optical diabolos for right (left) polarized components domains with orthogonally left (right) polarized optical vortices underlying them. All elements of chain reactions consist from loop and chain links when nucleated singularities annihilated directly or with alien singularities in 1:9 ratio. The topological reason of statistics was established by low probability of far enough separation of born singularities pair from existing neighbor singularities during loop trajectories. Topology of developing speckle field was measured and analyzed by dynamic stokes polarimetry with few seconds' resolution. The hierarchy of singularities govern scenario of tangled chain reactions was defined. The useful space-time data about peculiarities of optical damage evolution were obtained from existence and parameters of 'islands of stability' in developing speckle fields.
Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya
2011-10-10
We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.
International Nuclear Information System (INIS)
Xiao Yafeng; Xue Haili; Zhang Hongqing
2011-01-01
Based on Jacobi elliptic function and the Lame equation, the perturbation method is applied to get the multi-order envelope periodic solutions of the nonlinear Schrodinger equation and cubic nonlinear Schrodinger equation. These multi-order envelope periodic solutions can degenerate into the different envelope solitary solutions. (authors)
Pan, Shoukui; Okano, Y.; Tsunekawa, S.; Fukuda, T.
1993-03-01
The Kyropoulus method was used to grow nonlinear optical organic crystals ABP (4-aminobenzophenone). The crystals were characterized by nonlinear optical measurements and had a large effect of frequency doubling.
Nonlinear Quantum Optical Springs and Their Nonclassical Properties
International Nuclear Information System (INIS)
Faghihi, M.J.; Tavassoly, M.K.
2011-01-01
The original idea of quantum optical spring arises from the requirement of quantization of the frequency of oscillations in the Hamiltonian of harmonic oscillator. This purpose is achieved by considering a spring whose constant (and so its frequency) depends on the quantum states of another system. Recently, it is realized that by the assumption of frequency modulation of ω to ω√1+μa † a the mentioned idea can be established. In the present paper, we generalize the approach of quantum optical spring with particular attention to the dependence of frequency to the intensity of radiation field that naturally observes in the nonlinear coherent states, from which we arrive at a physical system has been called by us as nonlinear quantum optical spring. Then, after the introduction of the generalized Hamiltonian of nonlinear quantum optical spring and it's solution, we will investigate the nonclassical properties of the obtained states. Specially, typical collapse and revival in the distribution functions and squeezing parameters, as particular quantum features, will be revealed. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Optical nonlinear absorption characteristics of Sb2Se3 nanoparticles
Muralikrishna, Molli; Kiran, Aditha Sai; Ravikanth, B.; Sowmendran, P.; Muthukumar, V. Sai; Venkataramaniah, Kamisetti
2014-04-01
In this work, we report for the first time, the nonlinear optical absorption properties of antimony selenide (Sb2Se3) nanoparticles synthesized through solvothermal route. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies revealed that the nanoparticles are in the range of 10 - 40 nm. Elemental analysis was performed using EDAX. By employing open aperture z-scan technique, we have evaluated the effective two-photon absorption coefficient of Sb2Se3 nanoparticles to be 5e-10 m/W at 532 nm. These nanoparticles exhibit strong intensity dependent nonlinear optical absorption and hence could be considered to have optical power limiting applications in the visible range.
Nonlinear Silicon Photonic Signal Processing Devices for Future Optical Networks
Directory of Open Access Journals (Sweden)
Cosimo Lacava
2017-01-01
Full Text Available In this paper, we present a review on silicon-based nonlinear devices for all optical nonlinear processing of complex telecommunication signals. We discuss some recent developments achieved by our research group, through extensive collaborations with academic partners across Europe, on optical signal processing using silicon-germanium and amorphous silicon based waveguides as well as novel materials such as silicon rich silicon nitride and tantalum pentoxide. We review the performance of four wave mixing wavelength conversion applied on complex signals such as Differential Phase Shift Keying (DPSK, Quadrature Phase Shift Keying (QPSK, 16-Quadrature Amplitude Modulation (QAM and 64-QAM that dramatically enhance the telecom signal spectral efficiency, paving the way to next generation terabit all-optical networks.
Nonlinear ultrafast optical response in organic molecular crystals
Rahman, Talat S.; Turkowski, Volodymyr; Leuenberger, Michael N.
2012-02-01
We analyze possible nonlinear excitonic effects in the organic molecule crystals by using a combined time-dependent DFT and many-body approach. In particular, we analyze possible effects of the time-dependent (retarded)interaction between different types of excitations, Frenkel excitons, charge transfer excitons and excimers, on the electric and the optical response of the system. We pay special attention to the case of constant electric field and ultrafast pulses, including that of four-wave mixing experiments. As a specific application we examine the optical excitations of pentacene nanocrystals and compare the results with available experimental data.[1] Our results demostrate that the nonlinear effects can play an important role in the optical response of these systems. [1] A. Kabakchiev, ``Scanning Tunneling Luminescence of Pentacene Nanocrystals'', PhD Thesis (EPFL, Lausanne, 2010).
Engineering high-order nonlinear dissipation for quantum superconducting circuits
Mundhada, S. O.; Grimm, A.; Touzard, S.; Shankar, S.; Minev, Z. K.; Vool, U.; Mirrahimi, M.; Devoret, M. H.
Engineering nonlinear driven-dissipative processes is essential for quantum control. In the case of a harmonic oscillator, nonlinear dissipation can stabilize a decoherence-free manifold, leading to protected quantum information encoding. One possible approach to implement such nonlinear interactions is to combine the nonlinearities provided by Josephson circuits with parametric pump drives. However, it is usually hard to achieve strong nonlinearities while avoiding undesired couplings. Here we propose a scheme to engineer a four-photon drive and dissipation in a harmonic oscillator by cascading experimentally demonstrated two-photon processes. We also report experimental progress towards realization of such a scheme. Work supported by: ARO, ONR, AFOSR and YINQE.
Nonlinear optical effects from Au nanoparticles prepared by laser plasmas in water
Energy Technology Data Exchange (ETDEWEB)
Fazio, E., E-mail: enfazio@unime.it [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Universitá di Messina, V.le F. Stagno d’Alcontres 31, I-98166, Messina (Italy); Neri, F. [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Universitá di Messina, V.le F. Stagno d’Alcontres 31, I-98166, Messina (Italy)
2013-05-01
The optical limiting properties of Au nanoparticles prepared by laser generated plasmas in water were investigated. The ablation processes were carried out irradiating an Au target with the second harmonic (532 nm) output of a Nd:YAG laser, changing the water level above the target, the lens position and the laser pulse energy. Different surface morphologies, from isolated nearly spherical nanoparticles to elongated structures, were observed by TEM imaging. A significant nonlinear optical response was probed by the Z-scan technique. The efficiency and the nature of the nonlinear response are found to be strongly dependent on the morphological properties of the nanostructures. The third order optical susceptibility χ{sup (3)} assumes the values of 1.83 × 10{sup −6} esu and 6.34 × 10{sup −6} esu for the smaller nanoparticles size obtained at the lower ablation energies (10–20 mJ), 8.25 × 10{sup −6} esu and 2.13 × 10{sup −5} esu for the particles agglomerations obtained at the higher ablation energies (50–100 mJ). The high value of χ{sup (3)} and the possibility to tailor the nonlinear optical response by changing the morphological properties of the Au nanostructures make them interesting materials for potential applications in the nonlinear optics field.
Macroscopic quantum effects in nonlinear optical patterns
International Nuclear Information System (INIS)
Gatti, A.; Lugiato, L.A.; Oppo, G.L.; Barnett, S.M.; Marzoli, I.
1998-01-01
We display the results of the numerical simulations of a set of Langevin equations, which describe the dynamics of a degenerate optical parametric oscillator in the Wigner representation. The scan of the threshold region shows the gradual transformation of a quantum image into a classical roll pattern. Thus the quantum image behaves as a precursor of the roll pattern which appear above threshold. In the fax field, suitable spatial correlation functions of intensity and field quadratures show unambiguously the quantum nature of fluctuations that generate the image, leading to effects of quantum noise reduction below the shot noise level and to the formulation of an EPR paradox. (author)
Optical computation based on nonlinear total reflectional optical ...
Indian Academy of Sciences (India)
2School of Education Science, South China Normal University, Guangzhou, 510631, China. *Corresponding ... Before the computation, all the inputs are prepared in the polarization state. The key .... The all-optical computing system described.
Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots
International Nuclear Information System (INIS)
Vahdani, M.R.K.; Rezaei, G.
2009-01-01
Optical transitions in a Lens-Shaped Quantum Dot (LSD) are investigated in the presence of a hydrogenic impurity. The electronic wave functions are obtained analytically and the energy eigenvalues are calculated numerically. The density matrix formulation with the intersubband relaxation are used to evaluate the (linear and third order nonlinear) absorption coefficient (AC) and the change in the refractive indices (RI) analytically. The effect of the size of the LSD and optical intensity on the AC and RI are investigated. It is found that AC and RI are strongly affected by the optical intensity and the size of the LSD.
Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots
Energy Technology Data Exchange (ETDEWEB)
Vahdani, M.R.K. [Department of Physics, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Rezaei, G., E-mail: grezaei@mail.yu.ac.i [Department of Physics, College of Sciences, Yasouj University, Yasouj 75914 (Iran, Islamic Republic of)
2009-08-17
Optical transitions in a Lens-Shaped Quantum Dot (LSD) are investigated in the presence of a hydrogenic impurity. The electronic wave functions are obtained analytically and the energy eigenvalues are calculated numerically. The density matrix formulation with the intersubband relaxation are used to evaluate the (linear and third order nonlinear) absorption coefficient (AC) and the change in the refractive indices (RI) analytically. The effect of the size of the LSD and optical intensity on the AC and RI are investigated. It is found that AC and RI are strongly affected by the optical intensity and the size of the LSD.
Automated seeding-based nuclei segmentation in nonlinear optical microscopy.
Medyukhina, Anna; Meyer, Tobias; Heuke, Sandro; Vogler, Nadine; Dietzek, Benjamin; Popp, Jürgen
2013-10-01
Nonlinear optical (NLO) microscopy based, e.g., on coherent anti-Stokes Raman scattering (CARS) or two-photon-excited fluorescence (TPEF) is a fast label-free imaging technique, with a great potential for biomedical applications. However, NLO microscopy as a diagnostic tool is still in its infancy; there is a lack of robust and durable nuclei segmentation methods capable of accurate image processing in cases of variable image contrast, nuclear density, and type of investigated tissue. Nonetheless, such algorithms specifically adapted to NLO microscopy present one prerequisite for the technology to be routinely used, e.g., in pathology or intraoperatively for surgical guidance. In this paper, we compare the applicability of different seeding and boundary detection methods to NLO microscopic images in order to develop an optimal seeding-based approach capable of accurate segmentation of both TPEF and CARS images. Among different methods, the Laplacian of Gaussian filter showed the best accuracy for the seeding of the image, while a modified seeded watershed segmentation was the most accurate in the task of boundary detection. The resulting combination of these methods followed by the verification of the detected nuclei performs high average sensitivity and specificity when applied to various types of NLO microscopy images.
Nonlinear optical properties of Sn+ ion-implanted silica glass
International Nuclear Information System (INIS)
Takeda, Y.; Hioki, T.; Motohiro, T.; Noda, S.; Kurauchi, T.
1994-01-01
The absolute value of the third-order nonlinear optical susceptibility, vertical stroke χ (3) vertical stroke , of Sn + ion-implanted silica glass was found to be similar 10 -6 esu. This value is as large as those reported for semiconductor-doped glasses. Silica glass substrates were implanted with Sn + ions at an acceleration energy of 400 keV to a dose of 2x10 17 ions/cm 2 at room temperature. Metallic Sn microcrystallites of 4-20 nm in diameter were found to be embedded in the silica glass matrix. The average volume fraction of the Sn microcrystallites was evaluated to be 28%. vertical stroke χ (3) vertical stroke and the imaginary part of the dielectric function, Im ε, had peaks at the same wavelength of 500 nm owing to surface plasmon resonance. The peak width of vertical stroke χ (3) vertical stroke was nearly half of that of Im ε, which can be explained by an effective medium theory. ((orig.))
Analysis of nonlinear optical properties in donor–acceptor materials
Energy Technology Data Exchange (ETDEWEB)
Day, Paul N. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); General Dynamics Information Technology, Inc., Dayton, Ohio 45431 (United States); Pachter, Ruth [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); Nguyen, Kiet A. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); UES, Inc., Dayton, Ohio 45432 (United States)
2014-05-14
Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au{sub 2}S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude.
Institute of Scientific and Technical Information of China (English)
Jing Lv; Rui-yang Yuan; Hui Yan
2014-01-01
For multi-photon processed with the linear dispersion in the high-intensity terahertz(THz) field,we have systematically investigated the temperature-dependent nonlinear optical response of graphene-based systems, including single layer graphene, graphene superlattice and gapped graphene. In the intrinsic single layer graphene system, it demonstrates that, at low temperature, nonlinear optical conductivities of the thirdand fifth-order are respectively five and ten orders of magnitude larger than the universal conductivity with high-intensity and low frequency THz wave.In the graphene superlattice and gapped graphene systems, the optical responses enhanced because of the anisotropic massless and massive Dirac fermions.
Institute of Scientific and Technical Information of China (English)
Jing Lv; Rui-yang Yuan; Hui Yan
2014-01-01
For multi-photon processed with the linear dispersion in the high-intensity terahertz (THz) field, we have systematically investigated the temperature-dependent nonlinear optical response of graphene-based systems, including single layer graphene, graphene superlattice and gapped graphene. In the intrinsic single layer graphene system, it demonstrates that, at low temperature, nonlinear optical conductivities of the third-and fifth-order are respectively five and ten orders of magnitude larger than the universal conductivity with high-intensity and low frequency THz wave.In the graphene superlattice and gapped graphene systems, the optical responses enhanced because of the anisotropic massless and massive Dirac fermions.
Nonlinear optics with coherent free electron lasers
Bencivenga, F.; Capotondi, F.; Mincigrucci, R.; Cucini, R.; Manfredda, M.; Pedersoli, E.; Principi, E.; Simoncig, A.; Masciovecchio, C.
2016-12-01
We interpreted the recent construction of free electron laser (FELs) facilities worldwide as an unprecedented opportunity to bring concepts and methods from the scientific community working with optical lasers into the domain of x-ray science. This motivated our efforts towards the realization of FEL-based wave-mixing applications. In this article we present new extreme ultraviolet transient grating (X-TG) data from vitreous SiO2, collected using two crossed FEL pulses (photon frequency 38 eV) to generate the X-TG and a phase matched optical probing pulse (photon frequency 3.1 eV). This experiment extends our previous investigation, which was carried out on a nominally identical sample using a different FEL photon frequency (45 eV) to excite the X-TG. The present data are featured by a peak intensity of the X-TG signal substantially larger than that previously reported and by slower modulations of the X-TG signal at positive delays. These differences could be ascribed to the different FEL photon energy used in the two experiments or to differences in the sample properties. A systematic X-TG study on the same sample as a function of the FEL wavelength is needed to draw a consistent conclusion. We also discuss how the advances in the performance of the FELs, in terms of generation of fully coherent photon pulses and multi-color FEL emission, may push the development of original experimental strategies to study matter at the femtosecond-nanometer time-length scales, with the unique option of element and chemical state specificity. This would allow the development of advanced experimental tools based on wave-mixing processes, which may have a tremendous impact in the study of a large array of phenomena, ranging from nano-dynamics in complex materials to charge and energy transfer processes.
Report of workshop on X-ray and nonlinear optics
Energy Technology Data Exchange (ETDEWEB)
Nasu, Keiichiro; Namikawa, Kazumichi [eds.
1994-07-01
As synchrotron radiation has advanced to high luminance, the possibility of realizing coherent light has heightened, and the nonlinear optical phenomena in soft and hard X-ray regions have become the object of the concern of X-ray researchers, and also the researchers in the fields of quantum electronics and optical properties. This workshop was held on September 21 and 22, 1993 at National Laboratory for High energy Physics. Lectures were given on the generation of second harmonic of X-ray by utilizing dynamic diffraction, X-ray parametric scattering induced by strong laser beam, the resonance enhancement of X-ray inelastic scattering induced by strong visible light, Raman scattering in soft X-ray region, the control of nonlinear optical processes by strong external field; the experiments, though they are fundamental, they have not been carried out; undulator radiation X-ray and X-ray free electron laser, the improvement of the coherence of X-ray laser, superradiance of Frenkel excitor system and the measurement of superhigh speed pulses in X-ray region. The comment from the standpoint of the research on nonlinear optics was given. In this document, the gists of these lectures are collected. (K.I.).
Report of workshop on X-ray and nonlinear optics
International Nuclear Information System (INIS)
Nasu, Keiichiro; Namikawa, Kazumichi
1994-07-01
As synchrotron radiation has advanced to high luminance, the possibility of realizing coherent light has heightened, and the nonlinear optical phenomena in soft and hard X-ray regions have become the object of the concern of X-ray researchers, and also the researchers in the fields of quantum electronics and optical properties. This workshop was held on September 21 and 22, 1993 at National Laboratory for High energy Physics. Lectures were given on the generation of second harmonic of X-ray by utilizing dynamic diffraction, X-ray parametric scattering induced by strong laser beam, the resonance enhancement of X-ray inelastic scattering induced by strong visible light, Raman scattering in soft X-ray region, the control of nonlinear optical processes by strong external field; the experiments, though they are fundamental, they have not been carried out; undulator radiation X-ray and X-ray free electron laser, the improvement of the coherence of X-ray laser, superradiance of Frenkel excitor system and the measurement of superhigh speed pulses in X-ray region. The comment from the standpoint of the research on nonlinear optics was given. In this document, the gists of these lectures are collected. (K.I.)
Spin and diamagnetism in linear and nonlinear optics
International Nuclear Information System (INIS)
Andersen, Torsten; Keller, Ole; Huebner, Wolfgang; Johansson, Boerje
2004-01-01
We present a local-field theory for spin and diamagnetism in linear and nonlinear optics. We examine all the processes contained in the Pauli Hamiltonian and its corresponding microscopic current density, including the terms depending on the electron spin. The resulting general real-space conductivities are presented and discussed. To quantify the implications of including the spin, we study the linear and nonlinear optical properties of free-electron metals, represented by the screened homogeneous electron gas. The real-space formalism is transformed into Fourier space, and the symmetries of the linear and nonlinear optical conductivities in a homogeneous electron gas are discussed. Numerical results are presented for the homogeneous electron gas, in which we treat ω and q as independent variables, thereby opening the theory to near-field optics and the study of evanescent waves. We show that in regions of the ω-q spectrum, the presence of diamagnetism and spin dynamics significantly alters the response in comparison to considering only the paramagnetic response. Additionally, we discuss the effects of screening, and we finish our treatment by a discussion of how to connect the present theory to existing methods in ab initio solid-state physics
Dynamic Flight Simulation Utilizing High Fidelity CFD-Based Nonlinear Reduced Order Model, Phase I
National Aeronautics and Space Administration — The overall technical objective of the Phase I effort is to develop a nonlinear aeroelastic solver utilizing the FUN3D generated nonlinear aerodynamic Reduced Order...
Forward-backward equations for nonlinear propagation in axially invariant optical systems
International Nuclear Information System (INIS)
Ferrando, Albert; Zacares, Mario; Fernandez de Cordoba, Pedro; Binosi, Daniele; Montero, Alvaro
2005-01-01
We present a general framework to deal with forward and backward components of the electromagnetic field in axially invariant nonlinear optical systems, which include those having any type of linear or nonlinear transverse inhomogeneities. With a minimum amount of approximations, we obtain a system of two first-order equations for forward and backward components, explicitly showing the nonlinear couplings among them. The modal approach used allows for an effective reduction of the dimensionality of the original problem from 3+1 (three spatial dimensions plus one time dimension) to 1+1 (one spatial dimension plus one frequency dimension). The new equations can be written in a spinor Dirac-like form, out of which conserved quantities can be calculated in an elegant manner. Finally, these equations inherently incorporate spatiotemporal couplings, so that they can be easily particularized to deal with purely temporal or purely spatial effects. Nonlinear forward pulse propagation and nonparaxial evolution of spatial structures are analyzed as examples
Multi-order nonlinear diffraction in second harmonic generation
DEFF Research Database (Denmark)
Saltiel, S. M.; Neshev, D.; Krolikowski, Wieslaw
We analyze the emission patterns in the process of second harmonic (SH) generation in χ(2) nonlinear gratings and identify for the first time, to the best of our knowledge, the evidence of Raman-Nath type nonlinear diffraction in frequency doubling processes.......We analyze the emission patterns in the process of second harmonic (SH) generation in χ(2) nonlinear gratings and identify for the first time, to the best of our knowledge, the evidence of Raman-Nath type nonlinear diffraction in frequency doubling processes....
A nanohole in a thin metal film as an efficient nonlinear optical element
Energy Technology Data Exchange (ETDEWEB)
Konstantinova, T. V.; Melent' ev, P. N.; Afanas' ev, A. E. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation); Kuzin, A. A.; Starikov, P. A.; Baturin, A. S. [Moscow Institute of Physics and Technology (Russian Federation); Tausenev, A. V.; Konyashchenko, A. V. [OOO Avesta-proekt (Russian Federation); Balykin, V. I., E-mail: balykin@isan.tyroitsk.ru [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation)
2013-07-15
The nonlinear optical properties of single nanoholes and nanoslits fabricated in gold and aluminum nanofilms are studied by third harmonic generation (THG). It is shown that the extremely high third-order optical susceptibility of aluminum and the presence of strong plasmon resonance of a single nanohole in an aluminum film make possible an efficient nanolocalized radiation source at the third harmonic frequency. The THG efficiency for a single nanohole in a thin metal film can be close to unity for an exciting laser radiation intensity on the order of 10{sup 13} W/cm{sup 2}.
A nanohole in a thin metal film as an efficient nonlinear optical element
International Nuclear Information System (INIS)
Konstantinova, T. V.; Melent’ev, P. N.; Afanas’ev, A. E.; Kuzin, A. A.; Starikov, P. A.; Baturin, A. S.; Tausenev, A. V.; Konyashchenko, A. V.; Balykin, V. I.
2013-01-01
The nonlinear optical properties of single nanoholes and nanoslits fabricated in gold and aluminum nanofilms are studied by third harmonic generation (THG). It is shown that the extremely high third-order optical susceptibility of aluminum and the presence of strong plasmon resonance of a single nanohole in an aluminum film make possible an efficient nanolocalized radiation source at the third harmonic frequency. The THG efficiency for a single nanohole in a thin metal film can be close to unity for an exciting laser radiation intensity on the order of 10 13 W/cm 2
Optical switching in nonlinear photonic crystals lightly doped with nanostructures
Energy Technology Data Exchange (ETDEWEB)
Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Lipson, R H [Department of Chemistry, University of Western Ontario, London, ON N6A 5B7 (Canada)
2008-01-14
A possible switching mechanism has been investigated for nonlinear photonic crystals doped with an ensemble of non-interacting three-level nanoparticles. In this scheme, an intense pump laser field is used to change the refractive index of the nonlinear photonic crystal while a weaker probe field monitors an absorption transition in the nanoparticles. In the absence of the strong laser field the system transmits the probe field when the resonance energy of the nanoparticles lies near the edge of the photonic band gap due to strong coupling between the photonic crystal and the nanoparticles. However, upon application of an intense pump laser field the system becomes absorbing due to a band edge frequency shift that arises due to a nonlinear Kerr effect which changes the refractive index of the crystal. It is anticipated that the optical switching mechanism described in this work can be used to make new types of photonic devices.
Pressure tunable cascaded third order nonlinearity and temporal pulse switching
DEFF Research Database (Denmark)
Eilenberger, Falk; Bache, Morten; Minardi, Stefano
2013-01-01
Effects based on the χ(3)-nonlinearity are arguably the most commonly discussed nonlinear interactions in photonics. In the description of pulse propagation, however, the generation of the third harmonic (TH) is commonly neglected, because it is strongly phase mismatched in most materials...
ZnS/PVA nanocomposites for nonlinear optical applications
Ozga, K.; Michel, J.; Nechyporuk, B. D.; Ebothé, J.; Kityk, I. V.; Albassam, A. A.; El-Naggar, A. M.; Fedorchuk, A. O.
2016-07-01
We have found a correlation between ZnS nanocomposite nonlinear optical features and technological processing using electrolytic method. In the earlier researches this factor was neglected. However, it may open a new stage for operation by photovoltaic features of the well known semiconductors within a wide range of magnitudes. The titled nanostructured zinc sulfide (ZnS) was synthesized by electrolytic method. The obtained ZnS nano-crystallites possessed nano-particles sizes varying within 1.6 nm…1.8 nm. The titled samples were analyzed by XRD, HR-TEM, STEM, and nonlinear optical methods such as photo-induced two-photon absorption (TPA) and second harmonic generation (SHG). For this reason the nano-powders were embedded into the photopolymer poly(vinyl) alcohol (PVA) matrices. Role of aggregation in the mentioned properties is discussed. Possible origin of the such correlations are discussed.
Nonlinear optical polarization analysis in chemistry and biology
Simpson, Garth J
2017-01-01
This rigorous yet accessible guide presents a molecular-based description of nonlinear optical polarization analysis of chemical and biological assemblies. It includes discussion of the most common nonlinear optical microscopy and interfacial measurements used for quantitative analysis, specifically second harmonic generation (SHG), two-photon excited fluorescence (2PEF), vibrational sum frequency generation (SFG), and coherent anti-Stokes Raman spectroscopy/stimulated Raman spectroscopy (CARS/SRS). A linear algebra mathematical framework is developed, allowing step-wise systematic connections to be made between the observable measurements and the molecular response. Effects considered include local field corrections, the molecular orientation distribution, rotations between the molecular frame, the local frame and the laboratory frame, and simplifications from molecular and macromolecular symmetry. Specific examples are provided throughout the book, working from the common and relatively simple case studies ...
Nonlinear optical localization in embedded chalcogenide waveguide arrays
International Nuclear Information System (INIS)
Li, Mingshan; Huang, Sheng; Wang, Qingqing; Chen, Kevin P.; Petek, Hrvoje
2014-01-01
We report the nonlinear optical localization in an embedded waveguide array fabricated in chalcogenide glass. The array, which consists of seven waveguides with circularly symmetric cross sections, is realized by ultrafast laser writing. Light propagation in the chalcogenide waveguide array is studied with near infrared laser pulses centered at 1040 nm. The peak intensity required for nonlinear localization for the 1-cm long waveguide array was 35.1 GW/cm 2 , using 10-nJ pulses with 300-fs pulse width, which is 70 times lower than that reported in fused silica waveguide arrays and with over 7 times shorter interaction distance. Results reported in this paper demonstrated that ultrafast laser writing is a viable tool to produce 3D all-optical switching waveguide circuits in chalcogenide glass
Dynamic nonlinear thermal optical effects in coupled ring resonators
Directory of Open Access Journals (Sweden)
Chenguang Huang
2012-09-01
Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.
All-optical signal processing in quadratic nonlinear materials
DEFF Research Database (Denmark)
Johansen, Steffen Kjær
2002-01-01
of materials with a second order nonlinearity, the so-called X(2) materials, is faster and stronger than that of more conventional materials with a cubic nonlinearity. The X(2) materials support spatial solitons consisting of two coupled components, the fundamental wave (FW) and its second harmonic (SH......). During this project the interaction between such spatial solitons has been investigated theoretically through perturbation theory and experimentally via numerical simulations. The outcome of this research isnew theoretical tools for quantitatively predicting the escape angle, i.e. the angle of incidence...... are dedicated to this part of the research. In chapter 4 the generality of the theoretical approach is emphasised with the derivation and verification of equivalent tools for media with a saturable nonlinearity. The strength of the X(2) nonlinearity strongly depends on the phase mismatch between the FW...
Time-Frequency (Wigner Analysis of Linear and Nonlinear Pulse Propagation in Optical Fibers
Directory of Open Access Journals (Sweden)
José Azaña
2005-06-01
Full Text Available Time-frequency analysis, and, in particular, Wigner analysis, is applied to the study of picosecond pulse propagation through optical fibers in both the linear and nonlinear regimes. The effects of first- and second-order group velocity dispersion (GVD and self-phase modulation (SPM are first analyzed separately. The phenomena resulting from the interplay between GVD and SPM in fibers (e.g., soliton formation or optical wave breaking are also investigated in detail. Wigner analysis is demonstrated to be an extremely powerful tool for investigating pulse propagation dynamics in nonlinear dispersive systems (e.g., optical fibers, providing a clearer and deeper insight into the physical phenomena that determine the behavior of these systems.
Signaling on the continuous spectrum of nonlinear optical fiber.
Tavakkolnia, Iman; Safari, Majid
2017-08-07
This paper studies different signaling techniques on the continuous spectrum (CS) of nonlinear optical fiber defined by nonlinear Fourier transform. Three different signaling techniques are proposed and analyzed based on the statistics of the noise added to CS after propagation along the nonlinear optical fiber. The proposed methods are compared in terms of error performance, distance reach, and complexity. Furthermore, the effect of chromatic dispersion on the data rate and noise in nonlinear spectral domain is investigated. It is demonstrated that, for a given sequence of CS symbols, an optimal bandwidth (or symbol rate) can be determined so that the temporal duration of the propagated signal at the end of the fiber is minimized. In effect, the required guard interval between the subsequently transmitted data packets in time is minimized and the effective data rate is significantly enhanced. Moreover, by selecting the proper signaling method and design criteria a distance reach of 7100 km is reported by only singling on CS at a rate of 9.6 Gbps.
Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities
Directory of Open Access Journals (Sweden)
Yang Xiaoyu
2016-09-01
Full Text Available In this study, nanoscale integrated all-optical XNOR, XOR, and NAND logic gates were realized based on all-optical tunable on-chip plasmon-induced transparency in plasmonic circuits. A large nonlinear enhancement was achieved with an organic composite cover layer based on the resonant excitation-enhancing nonlinearity effect, slow light effect, and field confinement effect provided by the plasmonic nanocavity mode, which ensured a low excitation power of 200 μW that is three orders of magnitude lower than the values in previous reports. A feature size below 600 nm was achieved, which is a one order of magnitude lower compared to previous reports. The contrast ratio between the output logic states “1” and “0” reached 29 dB, which is among the highest values reported to date. Our results not only provide an on-chip platform for the study of nonlinear and quantum optics but also open up the possibility for the realization of nanophotonic processing chips based on nonlinear plasmonics.
Photoluminescence and nonlinear optical phenomena in plasmonic random media—A review of recent works
International Nuclear Information System (INIS)
Araújo, Cid B. de; Kassab, Luciana R.P.; Tolentino Dominguez, C.; Ribeiro, Sidney J.L.; Gomes, Anderson S.L.; Reyna, Albert S.
2016-01-01
Photoluminescence properties and nonlinear optical response of metal–dielectric nanocomposites (MDNCs)—germanate glasses, bio-cellulose membranes and colloids containing either silver (Ag) or gold (Au) nanoparticles (NPs)—are reviewed. The phenomena discussed are: i. the photoluminescence enhancement observed from rare-earth doped PbO–GeO 2 glass containing Ag NPs; ii. optical amplification at 1530 nm in RIB waveguides made with PbO–GeO 2 thin films covered with Au NPs; iii. Random Laser emission from a bio-cellulose membrane infiltrated with Rhodamine 6G and containing Ag NPs; iv. the nonlinearity management of high-order processes in colloids containing Ag NPs suspended in acetone. In all discussed cases the influence of the metallic NPs is clearly demonstrated and a procedure to control the nonlinear propagation of light beams in heterogeneous media is presented. - Highlights: • Large photoluminescence enhancement observed from rare-earth doped PbO–GeO 2 glass containing Ag NPs. • Optical amplification at 1530 nm in RIB waveguides made with PbO–GeO 2 thin films covered with Au NPs. • Random Laser emission from a bio-cellulose membrane infiltrated with Rhodamine 6G and containing Ag NPs. • The nonlinearity management of high-order processes in liquid colloids containing Ag NPs.
Photoluminescence and nonlinear optical phenomena in plasmonic random media—A review of recent works
Energy Technology Data Exchange (ETDEWEB)
Araújo, Cid B. de, E-mail: cid@df.ufpe.br [Departamento de Física , Universidade Federal de Pernambuco, 50670-901 Recife , PE (Brazil); Kassab, Luciana R.P. [Faculdade de Tecnologia de São Paulo (FATEC-SP , CEETEPS), 01124-060 São Paulo , SP (Brazil); Tolentino Dominguez, C. [Laboratório de Óptica Biomédica e Imagem , Universidade Federal de Pernambuco , Recife 50740-530, PE (Brazil); Ribeiro, Sidney J.L. [Institute of Chemistry , São Paulo State University (UNESP), 14801-970 Araraquara , SP (Brazil); Gomes, Anderson S.L.; Reyna, Albert S. [Departamento de Física , Universidade Federal de Pernambuco, 50670-901 Recife , PE (Brazil)
2016-01-15
Photoluminescence properties and nonlinear optical response of metal–dielectric nanocomposites (MDNCs)—germanate glasses, bio-cellulose membranes and colloids containing either silver (Ag) or gold (Au) nanoparticles (NPs)—are reviewed. The phenomena discussed are: i. the photoluminescence enhancement observed from rare-earth doped PbO–GeO{sub 2} glass containing Ag NPs; ii. optical amplification at 1530 nm in RIB waveguides made with PbO–GeO{sub 2} thin films covered with Au NPs; iii. Random Laser emission from a bio-cellulose membrane infiltrated with Rhodamine 6G and containing Ag NPs; iv. the nonlinearity management of high-order processes in colloids containing Ag NPs suspended in acetone. In all discussed cases the influence of the metallic NPs is clearly demonstrated and a procedure to control the nonlinear propagation of light beams in heterogeneous media is presented. - Highlights: • Large photoluminescence enhancement observed from rare-earth doped PbO–GeO{sub 2} glass containing Ag NPs. • Optical amplification at 1530 nm in RIB waveguides made with PbO–GeO{sub 2} thin films covered with Au NPs. • Random Laser emission from a bio-cellulose membrane infiltrated with Rhodamine 6G and containing Ag NPs. • The nonlinearity management of high-order processes in liquid colloids containing Ag NPs.
Structure, Electronic and Nonlinear Optical Properties of Furyloxazoles and Thienyloxazoles
International Nuclear Information System (INIS)
Dagli, Ozlem; Gok, Rabia; Bahat, Mehmet; Ozbay, Akif
2016-01-01
Geometry optimization, electronic and nonlinear optical properties of isomers of furyloxazole and thienyloxazole molecules are carried out at the B3LYP/6-311++G(2d,p) level. The conformational analysis of 12 compounds have been studied as a function of torsional angle between rings. Electronic and NLO properties such as dipole moment, energy gap, polarizability and first hyperpolarizability were also calculated. (paper)
Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Quantum Dots
Energy Technology Data Exchange (ETDEWEB)
Klimov, V.; McBranch, D.; Schwarz, C.
1998-08-10
Low-dimensional semiconductors have attracted great interest due to the potential for tailoring their linear and nonlinear optical properties over a wide-range. Semiconductor nanocrystals (NC's) represent a class of quasi-zero-dimensional objects or quantum dots. Due to quantum cordhement and a large surface-to-volume ratio, the linear and nonlinear optical properties, and the carrier dynamics in NC's are significantly different horn those in bulk materials. napping at surface states can lead to a fast depopulation of quantized states, accompanied by charge separation and generation of local fields which significantly modifies the nonlinear optical response in NC's. 3D carrier confinement also has a drastic effect on the energy relaxation dynamics. In strongly confined NC's, the energy-level spacing can greatly exceed typical phonon energies. This has been expected to significantly inhibit phonon-related mechanisms for energy losses, an effect referred to as a phonon bottleneck. It has been suggested recently that the phonon bottleneck in 3D-confined systems can be removed due to enhanced role of Auger-type interactions. In this paper we report femtosecond (fs) studies of ultrafast optical nonlinearities, and energy relaxation and trap ping dynamics in three types of quantum-dot systems: semiconductor NC/glass composites made by high temperature precipitation, ion-implanted NC's, and colloidal NC'S. Comparison of ultrafast data for different samples allows us to separate effects being intrinsic to quantum dots from those related to lattice imperfections and interface properties.
Optically nonlinear energy transfer in light-harvesting dendrimers
Andrews, David; Bradshaw, DS
2004-01-01
Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems,organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Sta...
Nonlinear optical effects of opening a gap in graphene
Carvalho, David N.; Biancalana, Fabio; Marini, Andrea
2018-05-01
Graphene possesses remarkable electronic, optical, and mechanical properties that have taken the research of two-dimensional relativistic condensed matter systems to prolific levels. However, the understanding of how its nonlinear optical properties are affected by relativisticlike effects has been broadly uncharted. It has been recently shown that highly nontrivial currents can be generated in free-standing samples, notably leading to the generation of even harmonics. Since graphene monolayers are centrosymmetric media, for which such harmonic generation at normal incidence is deemed inaccessible, this light-driven phenomenon is both startling and promising. More realistically, graphene samples are often deposited on a dielectric substrate, leading to additional intricate interactions. Here, we present a treatment to study this instance by gapping the spectrum and we show this leads to the appearance of a Berry phase in the carrier dynamics. We analyze the role of such a phase in the generated nonlinear current and conclude that it suppresses odd-harmonic generation. The pump energy can be tuned to the energy gap to yield interference among odd harmonics mediated by interband transitions, allowing even harmonics to be generated. Our results and general methodology pave the way for understanding the role of gap opening in the nonlinear optics of two-dimensional lattices.
Energy Technology Data Exchange (ETDEWEB)
Nageshwari, M.; Jayaprakash, P.; Kumari, C. Rathika Thaya [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India); Vinitha, G. [Department of Physics, School of Advanced Sciences, VIT Chennai, 600127 Tamil Nadu (India); Caroline, M. Lydia, E-mail: lydiacaroline2006@yahoo.co.in [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India)
2017-04-15
An efficient nonlinear optical semiorganic material L-valinium L-valine chloride (LVVCl) was synthesized and grown-up by means of slow evaporation process. Single crystal XRD evince that LVVCl corresponds to monoclinic system having acentric space group P2{sub 1}. The diverse functional groups existing in LVVCl were discovered with FTIR spectral investigation. The UV-Visible and photoluminescence spectrum discloses the optical and electronic properties respectively for the grown crystal. Several optical properties specifically extinction coefficient, reflectance, linear refractive index, electrical and optical conductivity were also determined. The SEM analysis was also carried out and it portrayed the surface morphology of LVVCl. The calculated value of laser damage threshold was 2.59 GW/cm{sup 2}. The mechanical and dielectric property of LVVCl was investigated employing microhardness and dielectric studies. The second and third order nonlinear optical characteristics of LVVCl was characterized utilizing Kurtz Perry and Z scan technique respectively clearly suggest its suitability in the domain of optics and photonics. - Graphical abstract: Good quality transparent single crystals of L-valinium L-valine chloride single crystal was grown by slow evaporation technique. The grown crystals were analyzed using different instrumentation methods to check its usefulness for the device fabrication. The determination of nonlinear refractive index (n{sub 2}), absorption coefficient (β) and third order nonlinear susceptibility was determined by Z scan technique, highlighted that LVVCl can serve as a promising candidate for opto electronic and nonlinear optical applications.
International Nuclear Information System (INIS)
Karimi, M.J.; Rezaei, G.; Nazari, M.
2014-01-01
Based on the effective mass and parabolic one band approximations, simultaneous effects of the geometrical size, hydrogenic impurity, hydrostatic pressure, and temperature on the intersubband optical absorption coefficients and refractive index changes in multilayered spherical quantum dots are studied. Energy eigenvalues and eigenvectors are calculated using the fourth-order Runge–Kutta method and optical properties are obtained using the compact density matrix approach. The results indicate that the hydrogenic impurity, hydrostatic pressure, temperature and geometrical parameters such as the well and barrier widths have a great influence on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes. -- Highlights: • Hydrogenic impurity effects on the optical properties of a MSQD are investigated. • Hydrostatic pressure and temperature effects are also studied. • Hydrogenic impurity has a great influence on the linear and nonlinear ACs and RICs. • Hydrostatic pressure and temperature change the linear and nonlinear ACs and RICs
Vibrational spectroscopic and non-linear optical activity studies on nicotinanilide : A DFT approach
Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin
2015-06-01
The molecular structure of nicotinanilide was optimized by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The first order hyperpolarizability of the molecule was calculated, which exhibits the higher nonlinear optical activity. The natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction, which leads to the higher nonlinear optical activity of the molecule. The Frontier molecular orbitals analysis of the molecule shows that the delocalization of electron density occurs within the molecule. The lower energy gap indicates that the hydrogen bond formation between the charged species. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program and the corresponding vibrational spectra were simulated. Hence, the nicotinanilide molecule can be a good candidate for second-order NLO material.
Self-imaging in first-order optical systems
Alieva, T.; Bastiaans, M.J.; Nijhawan, O.P.; Guota, A.K.; Musla, A.K.; Singh, Kehar
1998-01-01
The structure and main properties of coherent and partially coherent optical fields that are self-reproducible under propagation through a first-order optical system are investigated. A phase space description of self-imaging in first-order optical systems is presented. The Wigner distribution
Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics.
Kieu, K; Schneebeli, L; Norwood, R A; Peyghambarian, N
2012-03-26
We have developed a novel integrated platform for liquid photonics based on liquid core optical fiber (LCOF). The platform is created by fusion splicing liquid core optical fiber to standard single-mode optical fiber making it fully integrated and practical - a major challenge that has greatly hindered progress in liquid-photonic applications. As an example, we report here the realization of ultralow threshold Raman generation using an integrated CS₂ filled LCOF pumped with sub-nanosecond pulses at 532 nm and 1064 nm. The measured energy threshold for the Stokes generation is 1nJ, about three orders of magnitude lower than previously reported values in the literature for hydrogen gas, a popular Raman medium. The integrated LCOF platform opens up new possibilities for ultralow power nonlinear optics such as efficient white light generation for displays, mid-IR generation, slow light generation, parametric amplification, all-optical switching and wavelength conversion using liquids that have orders of magnitude larger optical nonlinearities compared with silica glass.
Designing Hybrids of Graphene Oxide and Gold Nanoparticles for Nonlinear Optical Response
Yadav, Rajesh Kumar; Aneesh, J.; Sharma, Rituraj; Abhiramnath, P.; Maji, Tuhin Kumar; Omar, Ganesh Ji; Mishra, A. K.; Karmakar, Debjani; Adarsh, K. V.
2018-04-01
Nonlinear optical absorption of light by materials is weak due to its perturbative nature, although a strong nonlinear response is of crucial importance to applications in optical limiting and switching. Here we demonstrate experimentally and theoretically an extremely efficient scheme of excited-state absorption by charge transfer between donor and acceptor materials as a method to enhance the nonlinear absorption by orders of magnitude. With this idea, we demonstrate a strong excited-state absorption (ESA) in reduced graphene oxide that otherwise shows an increased transparency at high fluence and enhancement of ESA by one order of magnitude in graphene oxide by attaching gold nanoparticles (Au NP) in the tandem configuration that acts as an efficient charge-transfer pair when excited at the plasmonic wavelength. To explain the unprecedented enhancement, we develop a five-level rate-equation model based on the charge transfer between the two materials and numerically simulate the results. To understand the correlation of interfacial charge transfer with the concentration and type of the functional ligands attached to the graphene oxide sheet, we investigate the Au-NP—graphene oxide interface with various possible ligand configurations from first-principles calculations. By using the strong ESA of our hybrid materials, we fabricate liquid cell-based high-performance optical limiters with important device parameters better than that of the benchmark optical limiters.
International Nuclear Information System (INIS)
Bouard, Anne de; Debussche, Arnaud
2006-01-01
In this article we analyze the error of a semidiscrete scheme for the stochastic nonlinear Schrodinger equation with power nonlinearity. We consider supercritical or subcritical nonlinearity and the equation can be either focusing or defocusing. Allowing sufficient spatial regularity we prove that the numerical scheme has strong order 1/2 in general and order 1 if the noise is additive. Furthermore, we also prove that the weak order is always 1
Gallium nitride on gallium oxide substrate for integrated nonlinear optics
Awan, Kashif M.; Dolgaleva, Ksenia; Mumthaz Muhammed, Mufasila; Roqan, Iman S.
2017-01-01
Gallium Nitride (GaN), being a direct bandgap semiconductor with a wide bandgap and high thermal stability, is attractive for optoelectronic and electronic applications. Furthermore, due to its high optical nonlinearity — the characteristic of all 111-V semiconductors — GaN is also expected to be a suitable candidate for integrated nonlinear photonic circuits for a plethora of apphcations, ranging from on-chip wavelength conversion to quantum computing. Although GaN devices are in commercial production, it still suffers from lack of a suitable substrate material to reduce structural defects like high densities of threading dislocations (TDs), stacking faults, and grain boundaries. These defects significandy deteriorate the optical quality of the epi-grown GaN layer, since they act as non-radiative recombination centers. Recent studies have shown that GaN grown on (−201) β-Gallium Oxide (Ga
Gallium nitride on gallium oxide substrate for integrated nonlinear optics
Awan, Kashif M.
2017-11-22
Gallium Nitride (GaN), being a direct bandgap semiconductor with a wide bandgap and high thermal stability, is attractive for optoelectronic and electronic applications. Furthermore, due to its high optical nonlinearity — the characteristic of all 111-V semiconductors — GaN is also expected to be a suitable candidate for integrated nonlinear photonic circuits for a plethora of apphcations, ranging from on-chip wavelength conversion to quantum computing. Although GaN devices are in commercial production, it still suffers from lack of a suitable substrate material to reduce structural defects like high densities of threading dislocations (TDs), stacking faults, and grain boundaries. These defects significandy deteriorate the optical quality of the epi-grown GaN layer, since they act as non-radiative recombination centers. Recent studies have shown that GaN grown on (−201) β-Gallium Oxide (Ga
Operator ordering in quantum optics theory and the development of Dirac's symbolic method
International Nuclear Information System (INIS)
Fan Hongyi
2003-01-01
We present a general unified approach for arranging quantum operators of optical fields into ordered products (normal ordering, antinormal ordering, Weyl ordering (or symmetric ordering)) by fashioning Dirac's symbolic method and representation theory. We propose the technique of integration within an ordered product (IWOP) of operators to realize our goal. The IWOP makes Dirac's representation theory and the symbolic method more transparent and consequently more easily understood. The beauty of Dirac's symbolic method is further revealed. Various applications of the IWOP technique, such as in developing the entangled state representation theory, nonlinear coherent state theory, Wigner function theory, etc, are presented. (review article)
The third order nonlinear susceptibility of InAs at infrared region
International Nuclear Information System (INIS)
Musayev, M.A.
2008-01-01
Nonlinear susceptibilities of the third order and coefficient of nonlinear absorption in InAs n-type with a different degree of a doping have been measured. The values of the third order nonlinear susceptibilities have derived from these measurements essentially exceed the values calculated on the basis of model featuring nonlinear susceptibility of electrons, being in conduction-band nonparabolicity. It has been shown that the observable discrepancy has been eliminated, if in calculation a dissipation of energy of electrons has been considered. Growth of efficiency at four-wave mixingin narrow-gap semiconductors has been restricted to nonlinear absorption of interacting waves
Nonlinear optical activity in Bridgman growth layered compounds
Energy Technology Data Exchange (ETDEWEB)
Miah, M.I., E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)
2010-02-15
Layered semiconductor compound CdI{sub 2} has been grown with the Bridgman technique and studied by nonlinear transmittance spectroscopy. The optical absorption in CdI{sub 2} shows a nonlinear transmission of the incident laser power (P{sub 0}) within a lower power limit. The transmission, however, is found to saturate at high powers, giving a clamped output. The value of the incident power (P{sub 0C}) at which clamping starts is also found to depend on the crystal temperature (T{sub L}). The values of P{sub OC} ranges from 55 to 65 MW cm{sup -2} for T{sub L} = 4.2-180 K. The dynamic range (D{sub R}) as a function of T{sub L} is calculated and the values are found to range from D{sub R} = 2 to 1.6. The optical limiting mechanisms are discussed. The two-photon absorption (TPA) coefficient ({beta}) of the optical nonlinear process in CdI{sub 2} is estimated. The values are found to be within a range from {beta} = 47 to 25 cm GW{sup -1} and be decreasing with increasing T{sub L}. As expected for the TPA process, the experimental data within a certain range follows the linear relation: log (P{sub 0}/P{sub T}) = A{sub G} + {Omega}(P{sub 0} - P{sub T}), where P{sub T} is the transmitted power, A{sub G} is the absorbance of the ground state and {Omega} is a constant depending on the absorption cross-section and the relaxation time. The values of A{sub G} and {Omega} estimated from the fits to the measured data vary with T{sub L}. The findings resulting from this investigation might have potential applications in optical sensors protection.
Time-resolved analysis of nonlinear optical limiting for laser synthesized carbon nanoparticles
Chen, G. X.; Hong, M. H.
2010-11-01
Nonlinear optical limiting materials have attracted much research interest in recent years. Carbon nanoparticles suspended in liquids show a strong nonlinear optical limiting function. It is important to investigate the nonlinear optical limiting process of carbon nanoparticles for further improving their nonlinear optical limiting performance. In this study, carbon nanoparticles were prepared by laser ablation of a carbon target in tetrahydrofuran (THF). Optical limiting properties of the samples were studied with 532-nm laser light, which is in the most sensitive wavelength band for human eyes. The shape of the laser pulse plays an important role for initializing the nonlinear optical limiting effect. Time-resolved analysis of laser pulses discovered 3 fluence stages of optical limiting. Theoretical simulation indicates that the optical limiting is initialized by a near-field optical enhancement effect.
Dye-Induced Enhancement of Optical Nonlinearity in Liquids and Liquid Crystals
International Nuclear Information System (INIS)
Muenster, R.; Jarasch, M.; Zhuang, X.; Shen, Y.
1997-01-01
Optical nonlinearity of liquid crystals (LC) in the isotropic phase can be enhanced by 1 order of magnitude by dissolving 0.1% of anthraquinone dye in the LC. The enhancement decreases by ∼30% when the LC transforms into the nematic phase. The same guest-host effect also exists in non-LC liquids. It can be explained by a model based on the change of guest-host interaction induced by optical excitations of the dye. copyright 1996 The American Physical Society
Investigation on the structural and nonlinear optical properties of Pt doped TiO2 nanoparticles
International Nuclear Information System (INIS)
Rahulan, K. Mani; Padmanathan, N.; Vinitha, G.; Kanakam, Charles Christopher
2013-01-01
Graphical abstract: The open aperture Z-scan traces of Pt doped TiO 2 nanoparticles at different Pt concentrations were carried out at an irradiation wavelength of 532 nm. It was numerically found that, two photon absorption (TPA) type process gives the best fit to the obtained open aperture Z-scan data. The nonlinear transmission was found to be of third order as it fits to a two-photon absorption. The optical limiting performances of nanoparticles were greatly enhanced with increased volume ratio of Pt. Increasing particle size reduced the limiting threshold and enhanced the optical limiting performance. - Highlights: • Pt doped TiO 2 nanoparticles with different concentrations of Pt have been synthesized by sol–gel method. • The average fluorescence lifetime decreases as the volume fraction of Pt dopant increases. • The effects of Pt content on the optical limiting property were investigated by open aperture Z-scan measurements done at 532 nm using 5 ns laser pulses. • The values of the third-order nonlinearities of nanoparticles are interesting from the application point of view which could be used as a potential candidate for the application of nonlinear optical device. - Abstract: Pt doped TiO 2 nanoparticles with different concentrations of Pt were prepared by sol–gel method. X-ray diffraction (XRD) study reveals that the samples have a homogeneous anatase phase tetragonal system and the lattice parameter analysis indicates that Pt ions substitute into the lattice of TiO 2 . The addition of dopant increases the growth of TiO 2 grains, agglomerates them and shifts the absorption band of TiO 2 from ultraviolet to visible region. The incorporation of Pt in TiO 2 is also confirmed by fluorescence quenching and the fluorescence lifetime decreases as the volume fraction of Pt dopant increases. Open aperture Z-scan measurements done at 532 nm using 7 ns laser pulses show nonlinear absorption which arises from an effective two photon absorption process
Progress Toward Single-Photon-Level Nonlinear Optics in Crystalline Microcavities
Kowligy, Abijith S.
Over the last two decades, the emergence of quantum information science has uncovered many practical applications in areas such as communications, imaging, and sensing where harnessing quantum features of Nature provides tremendous benefits over existing methods exploiting classical physical phenomena. In this effort, one of the frontiers of research has been to identify and utilize quantum phenomena that are not susceptible to environmental and parasitic noise processes. Quantum photonics has been at the forefront of these studies because it allows room-temperature access to its inherently quantum-mechanical features, and allows leveraging the mature telecommunication industry. Accompanying the weak environmental influence, however, are also weak optical nonlinearities. Efficient nonlinear optical interactions are indispensible for many of the existing protocols for quantum optical computation and communication, e.g. high-fidelity entangling quantum logic gates rely on large nonlinear responses at the one- or few-photon-level. While this has been addressed to a great extent by interfacing photons with single quantum emitters and cold atomic gases, scalability has remained elusive. In this work, we identify the macroscopic second-order nonlinear polarization as a robust platform to address this challenge, and utilize the recent advances in the burgeoning field of optical microcavities to enhance this nonlinear response. In particular, we show theoretically that by using the quantum Zeno effect, low-noise, single-photon-level optical nonlinearities can be realized in lithium niobate whispering-gallery-mode microcavities, and present experimental progress toward this goal. Using the measured strength of the second-order nonlinear response in lithium niobate, we modeled the nonlinear system in the strong coupling regime using the Schrodinger picture framework and theoretically demonstrated that the single-photon-level operation can be observed for cavity lifetimes in
Nonlinear optical properties of colloidal silver nanoparticles produced by laser ablation in liquids
International Nuclear Information System (INIS)
Karavanskii, V A; Krasovskii, V I; Ivanchenko, P V; Simakin, Aleksandr V
2004-01-01
The optical and nonlinear optical properties of colloidal solutions of silver obtained by laser ablation in water and ethanol are studied. It is shown that freshly prepared colloids experience a full or partial sedimentation by changing their nonlinear optical properties. Aqueous colloids undergo a partial sedimentation and their nonlinear optical absorption changes to nonlinear optical transmission. The obtained results are interpreted using the Drude model for metal particles taking the particle size into account and can be explained by the sedimentation of larger silver particles accompanied by the formation of a stable colloid containing silver nanoparticles with a tentatively silver oxide shell. The characteristic size of particles forming such a stable colloid is determined and its optical nonlinearity is estimated. (nonlinear optical phenomena)
Assessment of fibrotic liver disease with multimodal nonlinear optical microscopy
Lu, Fake; Zheng, Wei; Tai, Dean C. S.; Lin, Jian; Yu, Hanry; Huang, Zhiwei
2010-02-01
Liver fibrosis is the excessive accumulation of extracellular matrix proteins such as collagens, which may result in cirrhosis, liver failure, and portal hypertension. In this study, we apply a multimodal nonlinear optical microscopy platform developed to investigate the fibrotic liver diseases in rat models established by performing bile duct ligation (BDL) surgery. The three nonlinear microscopy imaging modalities are implemented on the same sectioned tissues of diseased model sequentially: i.e., second harmonic generation (SHG) imaging quantifies the contents of the collagens, the two-photon excitation fluorescence (TPEF) imaging reveals the morphology of hepatic cells, while coherent anti-Stokes Raman scattering (CARS) imaging maps the distributions of fats or lipids quantitatively across the tissue. Our imaging results show that during the development of liver fibrosis (collagens) in BDL model, fatty liver disease also occurs. The aggregated concentrations of collagen and fat constituents in liver fibrosis model show a certain correlationship between each other.
Ultracompact all-optical full-adder and half-adder based on nonlinear plasmonic nanocavities
Directory of Open Access Journals (Sweden)
Xie Jingya
2017-06-01
Full Text Available Ultracompact chip-integrated all-optical half- and full-adders are realized based on signal-light induced plasmonic-nanocavity-modes shift in a planar plasmonic microstructure covered with a nonlinear nanocomposite layer, which can be directly integrated into plasmonic circuits. Tremendous nonlinear enhancement is obtained for the nanocomposite cover layer, attributed to resonant excitation, slow light effect, as well as field enhancement effect provided by the plasmonic nanocavity. The feature size of the device is <15 μm, which is reduced by three orders of magnitude compared with previous reports. The operating threshold power is determined to be 300 μW (corresponding to a threshold intensity of 7.8 MW/cm2, which is reduced by two orders of magnitude compared with previous reports. The intensity contrast ratio between two output logic states, “1” and “0,” is larger than 27 dB, which is among the highest values reported to date. Our work is the first to experimentally realize on-chip half- and full-adders based on nonlinear plasmonic nanocavities having an ultrasmall feature size, ultralow threshold power, and high intensity contrast ratio simultaneously. This work not only provides a platform for the study of nonlinear optics, but also paves a way to realize ultrahigh-speed signal computing chips.
International Nuclear Information System (INIS)
Pradeep, R Gladwin; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M
2011-01-01
In this paper, we devise a systematic procedure to obtain nonlocal symmetries of a class of scalar nonlinear ordinary differential equations (ODEs) of arbitrary order related to linear ODEs through nonlocal relations. The procedure makes use of the Lie point symmetries of the linear ODEs and the nonlocal connection to deduce the nonlocal symmetries of the corresponding nonlinear ODEs. Using these nonlocal symmetries, we obtain reduction transformations and reduced equations to specific examples. We find that the reduced equations can be explicitly integrated to deduce the general solutions for these cases. We also extend this procedure to coupled higher order nonlinear ODEs with specific reference to second-order nonlinear ODEs. (paper)
Optical nonlinearity enhancement with graphene-decorated silicon waveguides
Ishizawa, Atsushi; Kou, Rai; Goto, Takahiro; Tsuchizawa, Tai; Matsuda, Nobuyuki; Hitachi, Kenichi; Nishikawa, Tadashi; Yamada, Koji; Sogawa, Tetsuomi; Gotoh, Hideki
2017-04-01
Broadband on-chip optical frequency combs (OFCs) are important for expanding the functionality of photonic integrated circuits. Here, we demonstrate a huge local optical nonlinearity enhancement using graphene. A waveguide is decorated with graphene by precisely manipulating graphene’s area and position. Our approach simultaneously achieves both an extremely efficient supercontinuum and ultra-short pulse generation. With our graphene-decorated silicon waveguide (G-SWG), we have achieved enhanced spectral broadening of femtosecond pump pulses, along with an eightfold increase in the output optical intensity at a wavelength approximately 200 nm shorter than that of the pump pulses. We also found that this huge nonlinearity works as a compressor that effectively compresses pulse width from 80 to 15.7 fs. Our results clearly show the potential for our G-SWG to greatly boost the speed and capacity of future communications with lower power consumption, and our method will further decrease the required pump laser power because it can be applied to decorate various kinds of waveguides with various two-dimensional materials.
On Madelung systems in nonlinear optics: A reciprocal invariance
Rogers, Colin; Malomed, Boris
2018-05-01
The role of the de Broglie-Bohm potential, originally established as central to Bohmian quantum mechanics, is examined for two canonical Madelung systems in nonlinear optics. In a seminal case, a Madelung system derived by Wagner et al. via the paraxial approximation and in which the de Broglie-Bohm potential is present is shown to admit a multi-parameter class of what are here introduced as "q-gaussons." In the limit, as the Tsallis parameter q → 1, the q-gaussons are shown to lead to standard gausson solitons, as admitted by the logarithmic nonlinear Schrödinger equation encapsulating the Madelung system. The q-gaussons are obtained for optical media with dual power-law refractive index. In the second case, a Madelung system originally derived via an eikonal approximation in the context of laser beam propagation and in which the de Broglie Bohm term is neglected is shown to admit invariance under a novel class of two-parameter class of reciprocal transformations. Model optical laws analogous to the celebrated Kármán-Tsien law of classical gas dynamics are introduced.
Intensity-dependent nonlinear optical properties in a modulation-doped single quantum well
International Nuclear Information System (INIS)
Ungan, F.
2011-01-01
In the present work, the changes in the intersubband optical absorption coefficients and the refractive index in a modulation-doped quantum well have been investigated theoretically. Within the envelope function approach and the effective mass approximation, the electronic structure of the quantum well is calculated from the self-consistent numerical solution of the coupled Schroedinger-Poisson equations. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The numerical results GaAs/Al x Ga 1-x As are presented for typical modulation-doped quantum well system. The linear, third-order nonlinear and total absorption and refractive index changes depending on the doping concentration are investigated as a function of the incident optical intensity and structure parameters, such as quantum well width and stoichiometric ratio. The results show that the doping concentration, the structure parameters and the incident optical intensity have a great effect on the optical characteristics of these structures. - Highlights: → The doping concentration has a great effect on the optical characteristics of these structures. → The structure parameters have a great effect on the optical properties of these structures. → The total absorption coefficients reduced as the incident optical intensity increases. → The RICs reduced as the incident optical intensity increases.
Measurement and control of optical nonlinearities of importance to glass laser fusion systems
International Nuclear Information System (INIS)
Kurnit, N.A.; Shimada, T.; Sorem, M.S.; Taylor, A.J.; Rodriguez, G.; Clement, T.S.; James, D.F.V.; Milonni, P.W.
1996-01-01
Results of a number of studies carried out at Los Alamos, both experimental and theoretical, of nonlinear optical phenomena important to the design of the National Ignition Facility are summarized. These include measurements of nonlinear index coefficients, Raman scattering in atmospheric oxygen, and theoretical studies of harmonic conversion. The measurements were made by two different techniques in order to increase confidence in the results. One method was an application of a recently-developed technique for measuring the amplitude and phase of an ultrashort pulse by Frequency-Resolved Optical Gating (FROG). The other utilized a modified version of the Z-scan technique that measures beam distortion introduced by scanning a sample through the focus of a beam. The measurements by both techniques for fused silica were consistent with the lower range of previously measured values, indicating that it should not be necessary to further expand the beam size in the NIF to stay below the self-focusing threshold
Higher order mode optical fiber Raman amplifiers
DEFF Research Database (Denmark)
Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.
2016-01-01
We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....
ON THE INSTABILITY OF SOLUTIONS TO A NONLINEAR VECTOR DIFFERENTIAL EQUATION OF FOURTH ORDER
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
This paper presents a new result related to the instability of the zero solution to a nonlinear vector differential equation of fourth order.Our result includes and improves an instability result in the previous literature,which is related to the instability of the zero solution to a nonlinear scalar differential equation of fourth order.
Nonlinear polarization effects in a birefringent single mode optical fiber
International Nuclear Information System (INIS)
Ishiekwene, G.C.; Mensah, S.Y.; Brown, C.S.
2001-04-01
The nonlinear polarization effects in a birefringent single mode optical fiber is studied using Jacobi elliptic functions. We find that the polarization state of the propagating beam depends on the initial polarization as well as the intensity of the input light in a complicated way. The Stokes polarization parameters are either periodic or aperiodic depending on the value of the Jacobian modulus. Our calculations suggest that the effective beat length of the fiber can become infinite at a higher critical value of the input power when polarization dependent losses are considered. (author)
Structure/property relationships in non-linear optical materials
Energy Technology Data Exchange (ETDEWEB)
Cole, J M [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); [Durham Univ. (United Kingdom); Howard, J A.K. [Durham Univ. (United Kingdom); McIntyre, G J [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.
Dispersive shock waves in nonlinear and atomic optics
Directory of Open Access Journals (Sweden)
Kamchatnov Anatoly
2017-01-01
Full Text Available A brief review is given of dispersive shock waves observed in nonlinear optics and dynamics of Bose-Einstein condensates. The theory of dispersive shock waves is developed on the basis of Whitham modulation theory for various situations taking place in these two fields. In particular, the full classification is established for types of wave structures evolving from initial discontinuities for propagation of long light pulses in fibers with account of steepening effect and for dynamics of the polarization mode in two-component Bose-Einstein condensates.
Superradiance Effects in the Linear and Nonlinear Optical Response of Quantum Dot Molecules
Sitek, A.; Machnikowski, P.
2008-11-01
We calculate the linear optical response from a single quantum dot molecule and the nonlinear, four-wave-mixing response from an inhomogeneously broadened ensemble of such molecules. We show that both optical signals are affected by the coupling-dependent superradiance effect and by optical interference between the two polarizations. As a result, the linear and nonlinear responses are not identical.
Kuindersma, P.I.; Leijtens, X.J.M.; Zantvoort, van J.H.C.; Waardt, de H.
2012-01-01
We characterize integrated InP circuits for high speed ‘all-optical’ signal processing. Single chip circuits act as optical transistors. Transmodulation is performed by non-linear gain sections. Integrated tunable filters give signal equalization in time domain.
International Nuclear Information System (INIS)
Gomez, S.L.; Lenart, V.M.; Bechtold, I.H.; Figueiredo Neto, A.M.
2012-01-01
We present an experimental study of the nonlinear optical absorption of the eutectic mixture E7 at the nematic-isotropic phase transition by the Z-scan technique, under continuous-wave excitation at 532 nm. In the nematic region, the effective nonlinear optical coefficient P, which vanishes in the isotropic phase, is negative for the extraordinary beam and positive for an ordinary beam. The parameter SNL, whose definition in terms of the nonlinear absorption coefficient follows the definition of the optical-order parameter in terms of the linear dichroic ratio, behaves like an order parameter with critical exponent 0.22 ± 0.05, in good agreement with the tricritical hypothesis for the nematic isotropic transition. (author)
Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3
International Nuclear Information System (INIS)
Sarkisov, S.S.; Curley, M.J.; Williams, E.K.; Ila, D.; Svetchnikov, V.L.; Zandbergen, H.W.; Zykov, G.A.; Banks, C.; Wang, J.-C.; Poker, D.B.; Hensley, D.K.
2000-01-01
We analyze microstructure, linear and nonlinear optical properties of planar waveguides produced by implantation of MeV Ag ions into LiNbO 3 . Linear optical properties are described by the parameters of waveguide propagation modes and optical absorption spectra. Nonlinear properties are described by the nonlinear refractive index. Operation of the implanted crystal as an optical waveguide is due to modification of the linear refractive index of the implanted region. The samples as implanted do not show any light-guiding. The implanted region has amorphous and porous microstructure with the refractive index lower than the substrate. Heat treatment of the implanted samples produces planar light-guiding layer near the implanted surface. High-resolution electron microscopy reveals re-crystallization of the host between the surface and the nuclear stopping region in the form of randomly oriented crystalline grains. They make up a light-guiding layer isolated from the bulk crystal by the nuclear stopping layer with low refractive index. Optical absorption of the sample as implanted has a peak at 430 nm. This peak is due to the surface plasmon resonance in nano-clusters of metallic silver. Heat treatment of the samples shifts the absorption peak to 545 nm. This is more likely due to the increase of the refractive index back to the value for the crystalline LiNbO 3 . The nonlinear refractive index of the samples at 532 nm (of the order of 10 -10 cm 2 W -1 ) was measured with the Z-scan technique using a picosecond laser source. Possible applications of the waveguides include ultra-fast photonic switches and modulators
A novel organic nonlinear optical crystal: Creatininium succinate
Energy Technology Data Exchange (ETDEWEB)
Thirumurugan, R.; Anitha, K., E-mail: singlecerystalxrd@gmail.ciom [School of Physics, Madurai Kamraj University, Madurai 625021 (India)
2015-06-24
A novel organic material complex of creatininium succinate (CS) has been synthesized and single crystals were grown by the reaction of creatinine and succinic acid from aqueous solution by employing the technique of slow evaporation at room temperature. The structure of the grown crystal has been elucidated using single crystal X-ray diffraction analysis and the structure was refined by least-squares method to R = 0.027 for 1840 reflections. FT-IR spectral investigation has been carried out to identify the various functional groups in the title compound. UV–Vis transmission was carried out which shows the crystal has a good optical transmittance in the visible region with lower cutoff wavelength around 220 nm. Nonlinear optical property of the crystal was confirmed by Kurtz-Perry powder technique.
1994-01-01
HOSOTTE: Alignement and Orientation of Chromophores by Optical Pumping 327 CELINE FIORINI, FABRICE CHARRA, JEAN-MICHEL NUNZI and PAUL RAIMOND...Normandin, R. L. Williams and M. Dion , Electron. Lett., 28, 1540 (1992). 6. D. Vakhshoori and S. Wang, Appl. Phys. Lett., 53, 347 (1988). 7. D. Vakhshoori, J
Nonlinear optical characterization of phosphate glasses based on ZnO using the Z-scan technique
International Nuclear Information System (INIS)
Mojdehi Masoumeh Shokati; Yunus Wan Mahmood Mat; Talib Zainal Abidin; Tamchek, N.; Fhan Khor Shing
2013-01-01
The nonlinear optical properties of a phosphate vitreous system [(ZnO) x − (MgO) 30−x − (P 2 O 5 ) 70 ], where x = 8, 10, 15, 18, and 20 mol% synthesized through the melt-quenching technique have been investigated by using the Z-scan technique. In the experiment, a continuous-wave laser with a wavelength of 405 nm was utilized to determine the sign and value of the nonlinear refractive (NLR) index and the absorption coefficient with closed and opened apertures of the Z-scan setup. The NLR index was found to increase with the ZnO concentration in the glass samples by an order of 10 −10 cm 2 ·W −1 . The real and imaginary parts of the third-order nonlinear susceptibility were calculated by referring to the NLR index (n 2 ) and absorption coefficient (β) of the samples. The value of the third-order nonlinear susceptibility was presented by nonlinear refractive or absorptive behavior of phosphate glasses for proper utilization in nonlinear optical devices. Based on the measurement, the positive sign of the NLR index shows a self-focusing phenomenon. The figures of merit for each sample were calculated to judge the potential of phosphate glasses for application in optical switching
Molecular studies and plastic optical fiber device structures for nonlinear optical applications
Dirk, Carl W.; Nagarur, Aruna R.; Lu, Jin J.; Zhang, Lixia; Kalamegham, Priya; Fonseca, Joe; Gopalan, Saytha; Townsend, Scott; Gonzalez, Gabriel; Craig, Patrick; Rosales, Monica; Green, Leslie; Chan, Karen; Twieg, Robert J.; Ermer, Susan P.; Leung, Doris S.; Lovejoy, Steven M.; Lacroix, Suzanne; Godbout, Nicolas; Monette, Etienne
1995-10-01
Summarized are two project areas: First, the development of a quantitative structure property relationship for analyzing thermal decomposition differential scanning calorimetry data of electro-optic dyes is presented. The QSPR relationship suggest that thermal decomposition can be effectively correlated with structure by considering the kinds of atoms, their hybridization, and their nearest neighbor bonded atoms. Second, the simple preparation of clad plastic optical fibers (POF) is discussed with the intention of use for nonlinear optical applications. We discuss preparation techniques for single core and multiple core POF, and present some recent data on index profiles and the optimization of thermal stability in acrylate-based POF structures.
Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators.
Sun, Xuan; Liang, Hanxiao; Luo, Rui; Jiang, Wei C; Zhang, Xi-Cheng; Lin, Qiang
2017-06-12
Recent advance of lithium niobate microphotonic devices enables the exploration of intriguing nonlinear optical effects. We show complex nonlinear oscillation dynamics in high-Q lithium niobate microresonators that results from unique competition between the thermo-optic nonlinearity and the photorefractive effect, distinctive to other device systems and mechanisms ever reported. The observed phenomena are well described by our theory. This exploration helps understand the nonlinear optical behavior of high-Q lithium niobate microphotonic devices which would be crucial for future application of on-chip nonlinear lithium niobate photonics.
Ultrafast nonlinear optical processes in metal-dielectric nanocomposites and nanostructures
Energy Technology Data Exchange (ETDEWEB)
Kim, Kwang-Hyon
2012-04-13
This work reports results of a theoretical study of nonlinear optical processes in metal-dielectric nanocomposites used for the increase of the nonlinear coefficients and for plasmonic field enhancement. The main results include the study of the transient saturable nonlinearity in dielectric composites doped with metal nanoparticles, its physical mechanism as well its applications in nonlinear optics. For the study of the transient response, a time-depending equation for the dielectric function of the nanocomposite using the semi-classical two-temperature model is derived. By using this approach, we study the transient nonlinear characteristics of these materials in comparison with preceding experimental measurements. The results show that these materials behave as efficient saturable absorbers for passive mode-locking of lasers in the spectral range from the visible to near IR. We present results for the modelocked dynamics in short-wavelength solid-state and semiconductor disk lasers; in this spectral range other efficient saturable absorbers do not exist. We suggest a new mechanism for the realization of slow light phenomenon by using glasses doped with metal nanoparticles in a pump-probe regime near the plasmonic resonance. Furthermore, we study femtosecond plasmon generation by mode-locked surface plasmon polariton lasers with Bragg reflectors and metal-gain-absorber layered structures. In the final part of the thesis, we present results for high-order harmonic generation near a metallic fractal rough surface. The results show a possible reduction of the pump intensities by three orders of magnitudes and two orders of magnitudes higher efficiency compared with preceding experimental results by using bow-tie nanostructures.
An efficient flexible-order model for 3D nonlinear water waves
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Bingham, Harry B.; Lindberg, Ole
2009-01-01
The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal......, robustness and energy conservation are presented together with demonstrations of grid independent iteration count and optimal scaling of the solution effort. Calculations are made for 3D nonlinear wave problems for steep nonlinear waves and a shoaling problem which show good agreement with experimental...
Characterizing the Statistics of a Bunch of Optical Pulses Using a Nonlinear Optical Loop Mirror
Directory of Open Access Journals (Sweden)
Olivier Pottiez
2015-01-01
Full Text Available We propose in this work a technique for determining the amplitude distribution of a wave packet containing a large number of short optical pulses with different amplitudes. The technique takes advantage of the fast response of the optical Kerr effect in a fiber nonlinear optical loop mirror (NOLM. Under some assumptions, the statistics of the pulses can be determined from the energy transfer characteristic of the packet through the NOLM, which can be measured with a low-frequency detection setup. The statistical distribution is retrieved numerically by approximating the solution of a system of nonlinear algebraic equations using the least squares method. The technique is demonstrated numerically in the case of a packet of solitons.
Chiral Topological Orders in an Optical Raman Lattice (Open Source)
2016-03-01
PAPER • OPEN ACCESS Chiral topological orders in an optical Raman lattice To cite this article: Xiong-Jun Liu et al 2016 New J. Phys. 18...... chiral spin liquid Abstract Wefind an optical Raman lattice without spin-orbit coupling showing chiral topological orders for cold atoms. Two
Gottlieb, Sigal
2015-04-10
High order spatial discretizations with monotonicity properties are often desirable for the solution of hyperbolic PDEs. These methods can advantageously be coupled with high order strong stability preserving time discretizations. The search for high order strong stability time-stepping methods with large allowable strong stability coefficient has been an active area of research over the last two decades. This research has shown that explicit SSP Runge-Kutta methods exist only up to fourth order. However, if we restrict ourselves to solving only linear autonomous problems, the order conditions simplify and this order barrier is lifted: explicit SSP Runge-Kutta methods of any linear order exist. These methods reduce to second order when applied to nonlinear problems. In the current work we aim to find explicit SSP Runge-Kutta methods with large allowable time-step, that feature high linear order and simultaneously have the optimal fourth order nonlinear order. These methods have strong stability coefficients that approach those of the linear methods as the number of stages and the linear order is increased. This work shows that when a high linear order method is desired, it may still be worthwhile to use methods with higher nonlinear order.
Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials
Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)
1996-01-01
There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.
Mechanism of large optical nonlinearity in gold nanoparticle films.
Mirza, I; McCloskey, D; Blau, W J; Lunney, J G
2018-04-01
The Z-scan technique, using femtosecond (fs) laser pulses at 1480 nm laser pulses, was used to measure the nonlinear optical properties of gold (Au) nanoparticle (NP) films made by both nanosecond (ns) and fs pulsed laser deposition (PLD) in vacuum. At irradiance levels of 1×10 12 Wm -2 , the ns-PLD films displayed induced absorption with β=4×10 -5 mW -1 , and a negative lensing effect with n 2 =-4.7×10 -11 m 2 W -1 with somewhat smaller values for the fs-PLD films. These values of n 2 imply an unphysically large change in the real part of the refractive index, demonstrating the need to take account of nonlinear changes of the Fresnel coefficients and multiple beam interference in Z-scan measurements on nanoscale films. Following this approach, the Z-scan observations were analyzed to determine the effective complex refractive index of the NP film at high irradiance. It appears that at high irradiance the NP film behaves as a metal, while at low irradiance it behaves as a low-loss dielectric. Thus, it is conjectured that, for high irradiance near the waist of the Z-scan laser beam, laser driven electron tunneling between NPs gives rise to metal-like optical behavior.
Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.
2010-02-01
Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.
Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk.
Liu, Shijie; Zheng, Yuanlin; Chen, Xianfeng
2017-09-15
Whispering-gallery-mode (WGM) microcavities are very important in both fundamental science and practical applications, among which on-chip second-order nonlinear microresonators play an important role in integrated photonic functionalities. Here we demonstrate resonant second-harmonic generation (SHG) and cascaded third-harmonic generation (THG) in a lithium niobate-on-insulator (LNOI) microdisk resonator. Efficient SHG in the visible range was obtained with only several mW input powers at telecom wavelengths. THG was also observed through a cascading process, which reveals simultaneous phase matching and strong mode coupling in the resonator. Cascading of second-order nonlinear processes gives rise to an effectively large third-order nonlinearity, which makes on-chip second-order nonlinear microresonators a promising frequency converter for integrated nonlinear photonics.
Bahrami, Afarin; Talib, Zainal Abidin; Shahriari, Esmaeil; Yunus, Wan Mahmood Mat; Kasim, Anuar; Behzad, Kasra
2012-01-01
The effects of multi-walled carbon nanotube (MWNT) concentration on the structural, optical and electrical properties of conjugated polymer-carbon nanotube composite are discussed. Multi-walled carbon nanotube-polypyrrole nanocomposites were synthesized by electrochemical polymerization of monomers in the presence of different amounts of MWNTs using sodium dodecylbenzensulfonate (SDBS) as surfactant at room temperature and normal pressure. Field emission scanning electron microscopy (FESEM) indicates that the polymer is wrapped around the nanotubes. Measurement of the nonlinear refractive indices (n(2)) and the nonlinear absorption (β) of the samples with different MWNT concentrations measurements were performed by a single Z-scan method using continuous wave (CW) laser beam excitation wavelength of λ = 532 nm. The results show that both nonlinear optical parameters increased with increasing the concentration of MWNTs. The third order nonlinear susceptibilities were also calculated and found to follow the same trend as n(2) and β. In addition, the conductivity of the composite film was found to increase rapidly with the increase in the MWNT concentration.
How nonlinear optics can merge interferometry for high resolution imaging
Ceus, D.; Reynaud, F.; Tonello, A.; Delage, L.; Grossard, L.
2017-11-01
High resolution stellar interferometers are very powerful efficient instruments to get a better knowledge of our Universe through the spatial coherence analysis of the light. For this purpose, the optical fields collected by each telescope Ti are mixed together. From the interferometric pattern, two expected information called the contrast Cij and the phase information φij are extracted. These information lead to the Vij, called the complex visibility, with Vij=Cijexp(jφij). For each telescope doublet TiTj, it is possible to get a complex visibility Vij. The Zernike Van Cittert theorem gives a relationship between the intensity distribution of the object observed and the complex visibility. The combination of the acquired complex visibilities and a reconstruction algorithm allows imaging reconstruction. To avoid lots of technical difficulties related to infrared optics (components transmission, thermal noises, thermal cooling…), our team proposes to explore the possibility of using nonlinear optical techniques. This is a promising alternative detection technique for detecting infrared optical signals. This way, we experimentally demonstrate that frequency conversion does not result in additional bias on the interferometric data supplied by a stellar interferometer. In this presentation, we report on wavelength conversion of the light collected by each telescope from the infrared domain to the visible. The interferometric pattern is observed in the visible domain with our, so called, upconversion interferometer. Thereby, one can benefit from mature optical components mainly used in optical telecommunications (waveguide, coupler, multiplexer…) and efficient low-noise detection schemes up to the single-photon counting level.
Lesina, Antonino Cala'; Berini, Pierre; Ramunno, Lora
2017-02-06
We report on a chiral gap-nanostructure, which we term a "butterfly nanoantenna," that offers full vectorial control over nonlinear emission. The field enhancement in its gap occurs for only one circular polarization but for every incident linear polarization. As the polarization, phase and amplitude of the linear field in the gap are highly controlled, the linear field can drive nonlinear emitters within the gap, which behave as an idealized Huygens source. A general framework is thereby proposed wherein the butterfly nanoantennas can be arranged in a metasurface, and the nonlinear Huygens sources exploited to produce a highly structured far-field optical beam. Nonlinearity allows us to shape the light at shorter wavelengths, not accessible by linear plasmonics, and resulting in high purity beams. The chirality of the butterfly allows us to create orbital angular momentum states using a linearly polarized excitation. A third harmonic Laguerre-Gauss beam carrying an optical orbital angular momentum of 41 is demonstrated as an example, through large-scale simulations on a high-performance computing platform of the full plasmonic metasurface with an area large enough to contain up to 3600 nanoantennas.
The nonlinear Schrödinger equation singular solutions and optical collapse
Fibich, Gadi
2015-01-01
This book is an interdisciplinary introduction to optical collapse of laser beams, which is modelled by singular (blow-up) solutions of the nonlinear Schrödinger equation. With great care and detail, it develops the subject including the mathematical and physical background and the history of the subject. It combines rigorous analysis, asymptotic analysis, informal arguments, numerical simulations, physical modelling, and physical experiments. It repeatedly emphasizes the relations between these approaches, and the intuition behind the results. The Nonlinear Schrödinger Equation will be useful to graduate students and researchers in applied mathematics who are interested in singular solutions of partial differential equations, nonlinear optics and nonlinear waves, and to graduate students and researchers in physics and engineering who are interested in nonlinear optics and Bose-Einstein condensates. It can be used for courses on partial differential equations, nonlinear waves, and nonlinear optics. Gadi Fib...
The second-order decomposition model of nonlinear irregular waves
DEFF Research Database (Denmark)
Yang, Zhi Wen; Bingham, Harry B.; Li, Jin Xuan
2013-01-01
into the first- and the second-order super-harmonic as well as the second-order sub-harmonic components by transferring them into an identical Fourier frequency-space and using a Newton-Raphson iteration method. In order to evaluate the present model, a variety of monochromatic waves and the second...
Yang, Lin; Guo, Peng; Yang, Aiying; Qiao, Yaojun
2018-02-01
In this paper, we propose a blind third-order dispersion estimation method based on fractional Fourier transformation (FrFT) in optical fiber communication system. By measuring the chromatic dispersion (CD) at different wavelengths, this method can estimation dispersion slope and further calculate the third-order dispersion. The simulation results demonstrate that the estimation error is less than 2 % in 28GBaud dual polarization quadrature phase-shift keying (DP-QPSK) and 28GBaud dual polarization 16 quadrature amplitude modulation (DP-16QAM) system. Through simulations, the proposed third-order dispersion estimation method is shown to be robust against nonlinear and amplified spontaneous emission (ASE) noise. In addition, to reduce the computational complexity, searching step with coarse and fine granularity is chosen to search optimal order of FrFT. The third-order dispersion estimation method based on FrFT can be used to monitor the third-order dispersion in optical fiber system.
Theras, J. Elberin Mary; Kalaivani, D.; Jayaraman, D.; Joseph, V.
2015-10-01
L-threonine phthalate (LTP) single crystal has been grown using a solution growth technique at room temperature. Single crystal X-ray diffraction analysis reveals that LTP crystallizes in monoclinic crystal system with space group C2/c. The optical absorption studies show that the crystal is transparent in the entire visible region with a cut-off wavelength 309 nm. The optical band gap is found to be 4.05 eV. The functional groups of the synthesized compound have been identified by FTIR spectral analysis. The functional groups present in the material were also confirmed by FT-RAMAN spectroscopy. Surface morphology and the presence of various elements were studied by SEM-EDAX analysis. The thermal stability of LTP single crystal has been analyzed by TGA/DTA studies. The thermodynamic parameters such as activation energy, entropy, enthalpy and Gibbs free energy were determined for the grown material using TG data and Coats-Redfern relation. Since the grown crystal is centrosymmetric, Z-Scan studies were carried out for analyzing the third order nonlinear optical property. The nonlinear absorption coefficient, nonlinear refractive index and susceptibility have been measured using Z-Scan technique.
Non-linear optical properties of SiO2 with synthesized by implantation copper nanoparticles
International Nuclear Information System (INIS)
Stepanov, A.L.; Olivares, J.; Requejo-Isidro, J.; Del Coso, R.; De Nalda, R.; Solis, J.; Afonso, C.N.; Hole, D.; Townsend, P.D.; Naudon, A.
2001-01-01
In recent years there has been a growing interest in composite dielectrics containing metal nanoparticles for their potential application in wave-guide integrated all-optical non-linear switching devices. In present work, low energy high current ion implantation (50 keV) in silica at a well controlled substrate temperature (20 0 C) at a dose of 8·10 16 ion/cm 2 has been used to produce novel composites containing a large concentration of spherical Cu clusters with an average diameter of 4 nm and a very narrow size distribution. A very large value for the third order optical susceptibility, χ (3) = 10 -7 esu, has been measured in the vicinity of the surface plasmon resonance by degenerate four wave mixing at 585 nm. This value is among the largest values ever reported for Cu nano composites. Additionally, the response time of the non-linearity has been found to be shorter than 2 ps. The superior non-linear optical response of these implants is discussed in terms of the implantation conditions
Nonlinear magnetohydrodynamics simulation using high-order finite elements
International Nuclear Information System (INIS)
Plimpton, Steven James; Schnack, D.D.; Tarditi, A.; Chu, M.S.; Gianakon, T.A.; Kruger, S.E.; Nebel, R.A.; Barnes, D.C.; Sovinec, C.R.; Glasser, A.H.
2005-01-01
A conforming representation composed of 2D finite elements and finite Fourier series is applied to 3D nonlinear non-ideal magnetohydrodynamics using a semi-implicit time-advance. The self-adjoint semi-implicit operator and variational approach to spatial discretization are synergistic and enable simulation in the extremely stiff conditions found in high temperature plasmas without sacrificing the geometric flexibility needed for modeling laboratory experiments. Growth rates for resistive tearing modes with experimentally relevant Lundquist number are computed accurately with time-steps that are large with respect to the global Alfven time and moderate spatial resolution when the finite elements have basis functions of polynomial degree (p) two or larger. An error diffusion method controls the generation of magnetic divergence error. Convergence studies show that this approach is effective for continuous basis functions with p (ge) 2, where the number of test functions for the divergence control terms is less than the number of degrees of freedom in the expansion for vector fields. Anisotropic thermal conduction at realistic ratios of parallel to perpendicular conductivity (x(parallel)/x(perpendicular)) is computed accurately with p (ge) 3 without mesh alignment. A simulation of tearing-mode evolution for a shaped toroidal tokamak equilibrium demonstrates the effectiveness of the algorithm in nonlinear conditions, and its results are used to verify the accuracy of the numerical anisotropic thermal conduction in 3D magnetic topologies.
On nonlinear differential equation with exact solutions having various pole orders
International Nuclear Information System (INIS)
Kudryashov, N.A.
2015-01-01
We consider a nonlinear ordinary differential equation having solutions with various movable pole order on the complex plane. We show that the pole order of exact solution is determined by values of parameters of the equation. Exact solutions in the form of the solitary waves for the second order nonlinear differential equation are found taking into account the method of the logistic function. Exact solutions of differential equations are discussed and analyzed
Design and optimization of carbon-nanotube-material/dielectric hybrid nonlinear optical waveguides
International Nuclear Information System (INIS)
Zhao, Xin; Zheng, Zheng; Lu, Zhiting; Zhu, Jinsong; Zhou, Tao
2011-01-01
The nonlinear optical characteristics of highly nonlinear waveguides utilizing carbon nanotube composite materials are investigated theoretically. The extremely high nonlinearity and relatively high loss of the carbon nanotube materials are shown to greatly affect the performance of such waveguides for nonlinear optical applications, in contrast to waveguides using conventional nonlinear materials. Different configurations based on applying the carbon nanotube materials to the popular ridge and buried waveguides are thoroughly studied, and the optimal geometries are derived through simulations. It is shown that, though the nonlinear coefficient is often huge for these waveguides, the loss characteristics can significantly limit the maximum achievable accumulated nonlinearity, e.g. the maximum nonlinear phase shift. Our results suggest that SOI-based high-index-contrast, carbon nanotube cladding waveguides, rather than the currently demonstrated low-contrast waveguides, could hold the promise of achieving significantly higher accumulated nonlinearity
Markey, Karen; Krüger, Martin; Seidler, Tomasz; Reinsch, Helge; Verbiest, Thierry; De Vos, Dirk E.; Champagne, Benoît; Stock, Norbert; van der Veen, M.A.
2017-01-01
p-Nitroaniline presents the typical motif of a second-order nonlinear optically (NLO) active molecule. However, because of its crystallization in an antiparallel and hence centrosymmetric structure, the NLO activity is lost. In this contribution, the p-nitroaniline motif was built successfully
Directory of Open Access Journals (Sweden)
S.M. El-Bashir
Full Text Available Rose Bengal (RB is a new organic semiconductor with the highly stable layer, was deposited on highly cleaned conductive glass substrate known as (FTO glass with different thickness in the range from 80 to 292 nm. XRD showed an entirely amorphous structure of the studied film thicknesses. The observed peaks are the indexed peaks for FTO layer. Spectrophotometric data as transmittance, reflectance, and absorbance were used for the analysis the optical constant of RB/FTO optical thin film system. Refractive index was calculated using Fresnel’s equation with the aid of reflectance and absorption index. The dielectric constant, dielectric loss and dissipation factor were discussed and analyzed according to the applied optical theories. Nonlinear parameters such as third order nonlinear optical susceptibility and the nonlinear refractive index were calculated based on the linear refractive index of the applications of this material in nonlinear media. The results showed that Rose Bengal is a proving material for wide scale optoelectronic applications such as infrared blocking windows. Keywords: Rose Bengal, Dielectric parameters, Linear/nonlinear optics, Dye/FTO, IR blocking windows
Optimizing optical nonlinearities in GaInAs/AlInAs quantum cascade lasers
Directory of Open Access Journals (Sweden)
Gajić Aleksandra D.
2014-01-01
Full Text Available Regardless of the huge advances made in the design and fabrication of mid-infrared and terahertz quantum cascade lasers, success in accessing the ~3-4 mm region of the electromagnetic spectrum has remained limited. This fact has brought about the need to exploit resonant intersubband transitions as powerful nonlinear oscillators, consequently enabling the occurrence of large nonlinear optical susceptibilities as a means of reaching desired wavelengths. In this work, we present a computational model developed for the optimization of second-order optical nonlinearities in In0.53Ga0.47As/Al0.48In0.52As quantum cascade laser structures based on the implementation of the Genetic algorithm. The carrier transport and the power output of the structure were calculated by self-consistent solutions to the system of rate equations for carriers and photons. Both stimulated and simultaneous double-photon absorption processes occurring between the second harmonic generation-relevant levels are incorporated into rate equations and the material-dependent effective mass and band non-parabolicity are taken into account, as well. The developed method is quite general and can be applied to any higher order effect which requires the inclusion of the photon density equation. [Projekat Ministarstva nauke Republike Srbije, br. III 45010
Silicon Photonics: All-Optical Devices for Linear and Nonlinear Applications
Driscoll, Jeffrey B.
are shown to contribute no time-averaged momentum. Furthermore, the vectoral modal components, in conjunction with the tensoral nature of the third-order susceptibility of Si, lead to nonlinear properties which are dependent on waveguide orientation with respect to the Si parent crystal and the construction of the modal electric field components. This consideration is used to maximize effective nonlinearity and realize nonlinear Kerr gratings along specific waveguide trajectories. Tight optical confinement leads to a natural enhancement of the intrinsically large effective nonlinearty of Si waveguides, and in fact, the effective nonlinearty can be made to be almost 106 times greater in Si waveguides than that of standard single-mode fiber. Such a large nonlinearity motivates chip-scale all-optical signal processing techniques. Wavelength conversion by both four-wave-mixing (FWM) and cross-phase-modulation (XPM) will be discussed, including a technique that allows for enhanced broadband discrete FWM over arbitrary spectral spans by modulating both the linear and nonlinear waveguide properties through periodic changes in waveguide geometry. This quasi-phase-matching approach has very real applications towards connecting mature telecom sources detectors and components to other spectral regimes, including the mid-IR. Other signal processing techniques such as all-optical modulation format conversion via XPM will also be discussed. This thesis will conclude by looking at ways to extend the bandwidth capacity of Si waveguide interconnects on chip. As the number of processing cores continues to scale as a means for computational performance gains, on-chip link capacity will become an increasingly important issue. Metallic traces have severe limitations and are envisioned to eventually bow to integrated photonic links. The aggregate bandwidth supported by a single waveguide link will therefore become a crucial consideration as integrated photonics approaches the CPU. One way
Giant fifth-order nonlinearity via tunneling induced quantum interference in triple quantum dots
Directory of Open Access Journals (Sweden)
Si-Cong Tian
2015-02-01
Full Text Available Schemes for giant fifth-order nonlinearity via tunneling in both linear and triangular triple quantum dots are proposed. In both configurations, the real part of the fifth-order nonlinearity can be greatly enhanced, and simultaneously the absorption is suppressed. The analytical expression and the dressed states of the system show that the two tunnelings between the neighboring quantum dots can induce quantum interference, resulting in the giant higher-order nonlinearity. The scheme proposed here may have important applications in quantum information processing at low light level.
Stabilization of solutions to higher-order nonlinear Schrodinger equation with localized damping
Directory of Open Access Journals (Sweden)
Eleni Bisognin
2007-01-01
Full Text Available We study the stabilization of solutions to higher-order nonlinear Schrodinger equations in a bounded interval under the effect of a localized damping mechanism. We use multiplier techniques to obtain exponential decay in time of the solutions of the linear and nonlinear equations.
Directory of Open Access Journals (Sweden)
Arnaud Mussot
2014-03-01
Full Text Available The discovery of the Fermi-Pasta-Ulam (FPU recurrence phenomenon in the 1950 s was a major step in science that later led to the discovery of solitons in nonlinear physics. More recently, it was shown that optical fibers can serve as a medium for observing the FPU phenomenon. In the present work, we have found experimentally and numerically that in the low-dispersion region of an optical fiber, the recurrence is strongly influenced by the third-order-dispersion (TOD term. Namely, the presence of TOD leads to several disappearances and recoveries of the FPU recurrence when the central frequency of the pump wave is varied. The effect is highly nontrivial and can be explained in terms of reversible and irreversible losses caused by Cherenkov radiations interacting with a multiplicity of modes sharing the optical energy in the process of its partition.
Energy Technology Data Exchange (ETDEWEB)
Chin, Siu A., E-mail: chin@physics.tamu.edu [Department of Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Ashour, Omar A. [Department of Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Nikolić, Stanko N. [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Belić, Milivoj R. [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar)
2016-10-23
It is well known that Akhmediev breathers of the nonlinear cubic Schrödinger equation can be superposed nonlinearly via the Darboux transformation to yield breathers of higher order. Surprisingly, we find that the peak height of each Akhmediev breather only adds linearly to form the peak height of the final breather. Using this peak-height formula, we show that at any given periodicity, there exists a unique high-order breather of maximal intensity. Moreover, these high-order breathers form a continuous hierarchy, growing in intensity with increasing periodicity. For any such higher-order breather, a simple initial wave function can be extracted from the Darboux transformation to dynamically generate that breather from the nonlinear Schrödinger equation. - Highlights: • Proved an analytical formula for the peak-height of an nth-order Akhmediev breather. • Constructed nth-order Akhmediev breathers of maximal peak intensity. • Extracted initial wave functions that can be used experimentally to produce these maximal breathers in optical fibers.
Analytical Solutions to Nonlinear Conservative Oscillator with Fifth-Order Nonlinearity
DEFF Research Database (Denmark)
Sfahania, M. G.; Ganji, S. S.; Barari, Amin
2010-01-01
This paper describes analytical and numerical methods to analyze the steady state periodic response of an oscillator with symmetric elastic and inertia nonlinearity. A new implementation of the homotopy perturbation method (HPM) and an ancient Chinese method called the max-min approach are presen...
Sinefeld, David; Paudel, Hari P.; Wang, Tianyu; Wang, Mengran; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris
2017-02-01
Multiphoton fluorescence microscopy is a well-established technique for deep-tissue imaging with subcellular resolution. Three-photon microscopy (3PM) when combined with long wavelength excitation was shown to allow deeper imaging than two-photon microscopy (2PM) in biological tissues, such as mouse brain, because out-of-focus background light can be further reduced due to the higher order nonlinear excitation. As was demonstrated in 2PM systems, imaging depth and resolution can be improved by aberration correction using adaptive optics (AO) techniques which are based on shaping the scanning beam using a spatial light modulator (SLM). In this way, it is possible to compensate for tissue low order aberration and to some extent, to compensate for tissue scattering. Here, we present a 3PM AO microscopy system for brain imaging. Soliton self-frequency shift is used to create a femtosecond source at 1675 nm and a microelectromechanical (MEMS) SLM serves as the wavefront shaping device. We perturb the 1020 segment SLM using a modified nonlinear version of three-point phase shifting interferometry. The nonlinearity of the fluorescence signal used for feedback ensures that the signal is increasing when the spot size decreases, allowing compensation of phase errors in an iterative optimization process without direct phase measurement. We compare the performance for different orders of nonlinear feedback, showing an exponential growth in signal improvement as the nonlinear order increases. We demonstrate the impact of the method by applying the 3PM AO system for in-vivo mouse brain imaging, showing improvement in signal at 1-mm depth inside the brain.
Nonlinear absorption and receptivity of the third order in InAs infrared region
International Nuclear Information System (INIS)
Musayev, M.A.
2005-01-01
Nonlinear absorption and receptivity of the third order and coefficient nonlinear absorption in InAs n-type with different degree of alloying was measured. Obtained score considerably exceed sense, calculated on the basis of the models describing nonlinear receptivity of electrons, situated in the nonparabolic area of conductivity. It was shown that, observable deviations withdraw; if in the calculation apply energy dissipation of electrons. Growth of the efficiency under four-wave interaction in low-energy-gap semiconductors confines nonlinear absorption of interacting waves
On nonlinear control design for autonomous chaotic systems of integer and fractional orders
International Nuclear Information System (INIS)
Ahmad, Wajdi M.; Harb, Ahmad M.
2003-01-01
In this paper, we address the problem of chaos control for autonomous nonlinear chaotic systems. We use the recursive 'backstepping' method of nonlinear control design to derive the nonlinear controllers. The controller effect is to stabilize the output chaotic trajectory by driving it to the nearest equilibrium point in the basin of attraction. We study two nonlinear chaotic systems: an electronic chaotic oscillator model, and a mechanical chaotic 'jerk' model. We demonstrate the robustness of the derived controllers against system order reduction arising from the use of fractional integrators in the system models. Our results are validated via numerical simulations
Shah, A A; Xing, W W; Triantafyllidis, V
2017-04-01
In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.
Marudhu, G.; Krishnan, S.; Palanichamy, M.
2016-03-01
A novel nonlinear optical crystal of 4-Aminopyridinium monophthalate (4-APMP) was grown by slow evaporation technique using methanol as solvent. Single crystal X-ray diffraction analysis confirms that the grown crystal belongs to orthorhombic system. The presence of functional groups was qualitatively determined by FTIR analysis. The optical absorption studies reveal very low absorption in the entire visible region. The fluorescence emission spectrum shows the emission is in blue region. The thermal stability of the grown crystal is found to be around 197.2 °C. The SHG efficiency of the grown crystal is found to be 1.1 times than that of KDP crystals.
An integrated nonlinear optical loop mirror in silicon photonics for all-optical signal processing
Directory of Open Access Journals (Sweden)
Zifei Wang
2018-02-01
Full Text Available The nonlinear optical loop mirror (NOLM has been studied for several decades and has attracted considerable attention for applications in high data rate optical communications and all-optical signal processing. The majority of NOLM research has focused on silica fiber-based implementations. While various fiber designs have been considered to increase the nonlinearity and manage dispersion, several meters to hundreds of meters of fiber are still required. On the other hand, there is increasing interest in developing photonic integrated circuits for realizing signal processing functions. In this paper, we realize the first-ever passive integrated NOLM in silicon photonics and demonstrate its application for all-optical signal processing. In particular, we show wavelength conversion of 10 Gb/s return-to-zero on-off keying (RZ-OOK signals over a wavelength range of 30 nm with error-free operation and a power penalty of less than 2.5 dB, we achieve error-free nonreturn to zero (NRZ-to-RZ modulation format conversion at 10 Gb/s also with a power penalty of less than 2.8 dB, and we obtain error-free all-optical time-division demultiplexing of a 40 Gb/s RZ-OOK data signal into its 10 Gb/s tributary channels with a maximum power penalty of 3.5 dB.
Superior optical nonlinearity of an exceptional fluorescent stilbene dye
Energy Technology Data Exchange (ETDEWEB)
He, Tingchao [College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China); Division of Physics and Applied Physics, Centre for Disruptive Photonic Technologies (CDPT), School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Sreejith, Sivaramapanicker; Zhao, Yanli [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Gao, Yang; Grimsdale, Andrew C. [School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore 639798 (Singapore); Lin, Xiaodong, E-mail: linxd@szu.edu.cn, E-mail: hdsun@ntu.edu.sg [College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China); Sun, Handong, E-mail: linxd@szu.edu.cn, E-mail: hdsun@ntu.edu.sg [Division of Physics and Applied Physics, Centre for Disruptive Photonic Technologies (CDPT), School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)
2015-03-16
Strong multiphoton absorption and harmonic generation in organic fluorescent chromophores are, respectively, significant in many fields of research. However, most of fluorescent chromophores fall short of the full potential due to the absence of the combination of such different nonlinear upconversion behaviors. Here, we demonstrate that an exceptional fluorescent stilbene dye could exhibit efficient two- and three-photon absorption under the excitation of femtosecond pulses in solution phase. Benefiting from its biocompatibility and strong excited state absorption behavior, in vitro two-photon bioimaging and superior optical limiting have been exploited, respectively. Simultaneously, the chromophore could generate efficient three-photon excited fluorescence and third-harmonic generation (THG) when dispersed into PMMA film, circumventing the limitations of classical fluorescent chromophores. Such chromophore may find application in the production of coherent light sources of higher photon energy. Moreover, the combination of three-photon excited fluorescence and THG can be used in tandem to provide complementary information in biomedical studies.
Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics.
Kwon, Yeong-Dae; Armen, Michael A; Mabuchi, Hideo
2013-11-15
We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics.
Navarrete-Benlloch, Carlos; Roldán, Eugenio; Chang, Yue; Shi, Tao
2014-10-06
Nonlinear optical cavities are crucial both in classical and quantum optics; in particular, nowadays optical parametric oscillators are one of the most versatile and tunable sources of coherent light, as well as the sources of the highest quality quantum-correlated light in the continuous variable regime. Being nonlinear systems, they can be driven through critical points in which a solution ceases to exist in favour of a new one, and it is close to these points where quantum correlations are the strongest. The simplest description of such systems consists in writing the quantum fields as the classical part plus some quantum fluctuations, linearizing then the dynamical equations with respect to the latter; however, such an approach breaks down close to critical points, where it provides unphysical predictions such as infinite photon numbers. On the other hand, techniques going beyond the simple linear description become too complicated especially regarding the evaluation of two-time correlators, which are of major importance to compute observables outside the cavity. In this article we provide a regularized linear description of nonlinear cavities, that is, a linearization procedure yielding physical results, taking the degenerate optical parametric oscillator as the guiding example. The method, which we call self-consistent linearization, is shown to be equivalent to a general Gaussian ansatz for the state of the system, and we compare its predictions with those obtained with available exact (or quasi-exact) methods. Apart from its operational value, we believe that our work is valuable also from a fundamental point of view, especially in connection to the question of how far linearized or Gaussian theories can be pushed to describe nonlinear dissipative systems which have access to non-Gaussian states.
Nonlinear optical properties of systems based on ruthenium(II) tetra-15-crown-5-phthalocyaninate
International Nuclear Information System (INIS)
Grishina, A.D.; Gorbunova, Yu.G.; Enakieva, Yu.Yu.; Krivenko, T.V.; Savel'ev, V.V.; Vannikov, A.V.; Tsivadze, A.Yu.
2008-01-01
The third-order nonlinear optical properties of the ruthenium (II) complex with tetra-15-crown-5-phthalocyanine and axially coordinated triethylenediamine molecules (R 4 Pc)Ru(TED) 2 were analyzed by means of the z-scanning technique. A solution of (R 4 Pc)Ru(TED) 2 in tetrachloroethane was exposed to nanosecond laser pulses at a wavelength of 1064 nm. It was found that the third-order molecular polarizability of the Ru(II) complex is 4.5 x 10 -32 cm 4 /C (esu). The polarizability per molecule increases by a factor of 3.6 when the single molecule occurs in a supramolecular assembly of (R 4 Pc)Ru(TED) 2 complexes. The photoelectric and photorefractive properties at 1064 nm of polymer composites, determined by the supramolecular assemblies that exhibits optical absorption and photoelectric sensitivity in the near IR region, are reported [ru
All-optical image processing with nonlinear liquid crystals
Hong, Kuan-Lun
Liquid crystals are fascinating materials because of several advantages such as large optical birefringence, dielectric anisotropic, and easily compatible to most kinds of materials. Compared to the electro-optical properties of liquid crystals widely applied in displays and switching application, transparency through most parts of wavelengths also makes liquid crystals a better candidate for all-optical processing. The fast response time of liquid crystals resulting from multiple nonlinear effects, such as thermal and density effect can even make real-time processing realized. In addition, blue phase liquid crystals with spontaneously self-assembled three dimensional cubic structures attracted academic attention. In my dissertation, I will divide the whole contents into six parts. In Chapter 1, a brief introduction of liquid crystals is presented, including the current progress and the classification of liquid crystals. Anisotropy and laser induced director axis reorientation is presented in Chapter 2. In Chapter 3, I will solve the electrostrictive coupled equation and analyze the laser induced thermal and density effect in both static and dynamic ways. Furthermore, a dynamic simulation of laser induced density fluctuation is proposed by applying finite element method. In Chapter 4, two image processing setups are presented. One is the intensity inversion experiment in which intensity dependent phase modulation is the mechanism. The other is the wavelength conversion experiment in which I can read the invisible image with a visible probe beam. Both experiments are accompanied with simulations to realize the matching between the theories and practical experiment results. In Chapter 5, optical properties of blue phase liquid crystals will be introduced and discussed. The results of grating diffractions and thermal refractive index gradient are presented in this chapter. In addition, fiber arrays imaging and switching with BPLCs will be included in this chapter
Nonlinear optical control of Josephson coupling in cuprates
Energy Technology Data Exchange (ETDEWEB)
Casandruc, Eliza
2017-03-15
In High-T{sub C} cuprates superconducting Cu-O planes alternate with insulating layers along the crystallographic c-axis, making the materials equivalent to Josephson junctions connected in series. The most intriguing consequence is that the out-of-plane superconducting transport occurs via Cooper pairs tunneling across the insulating layers and can be predicted by the Josephson tunneling equations. Nonlinear interaction between light fields and the superconducting carriers serves as a powerful dynamical probe of cuprates, while offering opportunities for controlling them in an analogous fashion to other stimuli such as pressure and magnetic fields. The main goal of this thesis work is to use intense transient light fields to control the interlayer superconducting transport on ultrafast time scales. This was achieved by tuning the wavelength of such light pulses to completely different ranges, in order to either directly excite Josephson Plasma Waves in the nonlinear regime, or efficiently melt the competing charge and spin order phase, which in certain cuprates quenches the Josephson tunneling at equilibrium. In a first study, I have utilized strong field terahertz transients with frequencies tuned to the Josephson plasma resonance (JPR) to coherently control the c-axis superconducting transport. The Josephson relations have a cubic nonlinearity which is exploited to achieve two related, albeit slightly different, phenomena. Depending on the driving pulse, solitonic breathers were excited with narrow-band multi-cycle pulses in La{sub 1.84}Sr{sub 0.16}CuO{sub 4} while broad-band half-cycle pulses were employed to achieve a parametric amplification of Josephson Plasma Waves in La{sub 1.905}Ba{sub 0.095}CuO{sub 4}. These experiments are supported by extensive modeling, showing exceptional agreement. A comprehensive study illustrates the strong enhancement of the nonlinear effects near the JPR frequency. Then, I turned to investigate the competition between
Optically nonlinear energy transfer in light-harvesting dendrimers
Andrews, David L.; Bradshaw, David S.
2004-08-01
Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems, organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Starting from a thorough treatment of the underlying theory based on the principles of molecular quantum electrodynamics, it is possible to identify and characterize several optically nonlinear mechanisms for directed energy transfer and energy pooling in multichromophore dendrimers. Such mechanisms fall into two classes: first, those where two-photon absorption by individual donors is followed by transfer of the net energy to an acceptor; second, those where the excitation of two electronically distinct but neighboring donor groups is followed by a collective migration of their energy to a suitable acceptor. Each transfer process is subject to minor dissipative losses. In this paper we describe in detail the balance of factors and the constraints that determines the favored mechanism, which include the excitation statistics, structure of the energy levels, laser coherence factors, chromophore selection rules and architecture, possibilities for the formation of delocalized excitons, spectral overlap, and the overall distribution of donors and acceptors. Furthermore, it transpires that quantum interference between different mechanisms can play an important role. Thus, as the relative importance of each mechanism determines the relevant nanophotonic characteristics, the results reported here afford the means for optimizing highly efficient light-harvesting dendrimer devices.
Nonlinear Optical Magnetism Revealed by Second-Harmonic Generation in Nanoantennas.
Kruk, Sergey S; Camacho-Morales, Rocio; Xu, Lei; Rahmani, Mohsen; Smirnova, Daria A; Wang, Lei; Tan, Hark Hoe; Jagadish, Chennupati; Neshev, Dragomir N; Kivshar, Yuri S
2017-06-14
Nonlinear effects at the nanoscale are usually associated with the enhancement of electric fields in plasmonic structures. Recently emerged new platform for nanophotonics based on high-index dielectric nanoparticles utilizes optically induced magnetic response via multipolar Mie resonances and provides novel opportunities for nanoscale nonlinear optics. Here, we observe strong second-harmonic generation from AlGaAs nanoantennas driven by both electric and magnetic resonances. We distinguish experimentally the contribution of electric and magnetic nonlinear response by analyzing the structure of polarization states of vector beams in the second-harmonic radiation. We control continuously the transition between electric and magnetic nonlinearities by tuning polarization of the optical pump. Our results provide a direct observation of nonlinear optical magnetism through selective excitation of multipolar nonlinear modes in nanoantennas.
International Nuclear Information System (INIS)
Yelin, S.F.; Hemmer, P.R.
2002-01-01
A novel class of coherent nonlinear optical phenomena, involving induced transparency in semiconductor quantum wells, is considered in the context of a particular application to sensitive long-wavelength infrared detection. It is shown that the strongest decoherence mechanisms can be suppressed or mitigated, resulting in substantial enhancement of nonlinear optical effects in semiconductor quantum wells
Performance emulation and parameter estimation for nonlinear fibre-optic links
DEFF Research Database (Denmark)
Piels, Molly; Porto da Silva, Edson; Zibar, Darko
2016-01-01
Fibre-optic communication systems, especially when operating in the nonlinear regime, generally do not perform exactly as theory would predict. A number of methods for data-based evaluation of nonlinear fibre-optic link parameters, both for accurate performance emulation and optimization...
EXISTENCE OF SOLUTION TO NONLINEAR SECOND ORDER NEUTRAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH DELAY
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
This paper is concerned with nonlinear second order neutral stochastic differential equations with delay in a Hilbert space. Sufficient conditions for the existence of solution to the system are obtained by Picard iterations.
ON THE BOUNDEDNESS AND THE STABILITY OF SOLUTION TO THIRD ORDER NON-LINEAR DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In this paper we investigate the global asymptotic stability,boundedness as well as the ultimate boundedness of solutions to a general third order nonlinear differential equation,using complete Lyapunov function.
Stability and square integrability of solutions of nonlinear fourth order differential equations
Directory of Open Access Journals (Sweden)
Moussadek Remili
2016-05-01
Full Text Available The aim of the present paper is to establish a new result, which guarantees the asymptotic stability of zero solution and square integrability of solutions and their derivatives to nonlinear differential equations of fourth order.
Further results on global state feedback stabilization of nonlinear high-order feedforward systems.
Xie, Xue-Jun; Zhang, Xing-Hui
2014-03-01
In this paper, by introducing a combined method of sign function, homogeneous domination and adding a power integrator, and overcoming several troublesome obstacles in the design and analysis, the problem of state feedback control for a class of nonlinear high-order feedforward systems with the nonlinearity's order being relaxed to an interval rather than a fixed point is solved. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
State-Feedback Control for Fractional-Order Nonlinear Systems Subject to Input Saturation
Directory of Open Access Journals (Sweden)
Junhai Luo
2014-01-01
Full Text Available We give a state-feedback control method for fractional-order nonlinear systems subject to input saturation. First, a sufficient condition is derived for the asymptotical stability of a class of fractional-order nonlinear systems. Then based on Gronwall-Bellman lemma and a sector bounded condition of the saturation function, a linear state-feed back controller is designed. Finally, two simulation examples are presented to show the validity of the proposed method.
Nonlinear optical and microscopic analysis of Cu2+ doped zinc thiourea chloride (ZTC) monocrystal
Ramteke, S. P.; Anis, Mohd; Pandian, M. S.; Kalainathan, S.; Baig, M. I.; Ramasamy, P.; Muley, G. G.
2018-02-01
Organometallic crystals offer considerable nonlinear response therefore, present article focuses on bulk growth and investigation of Cu2+ ion doped zinc thiourea chloride (ZTC) crystal to explore its technological impetus for laser assisted nonlinear optical (NLO) device applications. The Cu2+ ion doped ZTC bulk single crystal of dimension 03 × 2.4 × 0.4 cm3 has been grown from pH controlled aqueous solution by employing slow solvent evaporation technique. The structural analysis has been performed by means of single crystal X-ray diffraction technique. The doping of Cu2+ ion in ZTC crystal matrix has been confirmed by means of energy dispersive spectroscopic (EDS) technique. The origin of nonlinear optical properties in Cu2+ ion doped ZTC crystal has been studied by employing the Kurtz-Perry test and Z-scan analysis. The remarkable enhancement in second harmonic generation (SHG) efficiency of Cu2+ ion doped ZTC crystal with reference to ZTC crystal has been determined. The He-Ne laser assisted Z-scan analysis has been performed to determine the third order nonlinear optical (TONLO) nature of grown crystal. The TONLO parameters such as susceptibility, absorption coefficient, refractive index and figure of merit of Cu-ZTC crystal have been evaluated using the Z-scan transmittance data. The laser damage threshold of grown crystal to high intensity of Nd:YAG laser is found to be 706.2 MW/cm2. The hardness number, work hardening index, yield strength and elastic stiffness coefficient of grown crystal has been investigated under microhardness study. The etching study has been carried out to determine the growth likelihood, nature of etch pits and surface quality of grown crystal.
Exploring lipids with nonlinear optical microscopy in multiple biological systems
Alfonso-Garcia, Alba
Lipids are crucial biomolecules for the well being of humans. Altered lipid metabolism may give rise to a variety of diseases that affect organs from the cardiovascular to the central nervous system. A deeper understanding of lipid metabolic processes would spur medical research towards developing precise diagnostic tools, treatment methods, and preventive strategies for reducing the impact of lipid diseases. Lipid visualization remains a complex task because of the perturbative effect exerted by traditional biochemical assays and most fluorescence markers. Coherent Raman scattering (CRS) microscopy enables interrogation of biological samples with minimum disturbance, and is particularly well suited for label-free visualization of lipids, providing chemical specificity without compromising on spatial resolution. Hyperspectral imaging yields large datasets that benefit from tailored multivariate analysis. In this thesis, CRS microscopy was combined with Raman spectroscopy and other label-free nonlinear optical techniques to analyze lipid metabolism in multiple biological systems. We used nonlinear Raman techniques to characterize Meibum secretions in the progression of dry eye disease, where the lipid and protein contributions change in ratio and phase segregation. We employed similar tools to examine lipid droplets in mice livers aboard a spaceflight mission, which lose their retinol content contributing to the onset of nonalcoholic fatty-liver disease. We also focused on atherosclerosis, a disease that revolves around lipid-rich plaques in arterial walls. We examined the lipid content of macrophages, whose variable phenotype gives rise to contrasting healing and inflammatory activities. We also proposed new label-free markers, based on lifetime imaging, for macrophage phenotype, and to detect products of lipid oxidation. Cholesterol was also detected in hepatitis C virus infected cells, and in specific strains of age-related macular degeneration diseased cells by
Cea, T.; Castellani, C.; Benfatto, L.
2016-05-01
The recent observation of a transmitted THz pulse oscillating at three times the frequency of the incident light paves the way to a powerful protocol to access resonant excitations in a superconductor. Here we show that this nonlinear optical process is dominated by light-induced excitation of Cooper pairs, while the collective amplitude (Higgs) fluctuations of the superconducting order parameter give in general a negligible contribution. We also predict a nontrivial dependence of the signal on the direction of the light polarization with respect to the lattice symmetry, which can be tested in systems such as, e.g., cuprate superconductors.
Energy Technology Data Exchange (ETDEWEB)
Mancas, Stefan C. [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICYT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosí, SLP (Mexico)
2013-09-02
We emphasize two connections, one well known and another less known, between the dissipative nonlinear second order differential equations and the Abel equations which in their first-kind form have only cubic and quadratic terms. Then, employing an old integrability criterion due to Chiellini, we introduce the corresponding integrable dissipative equations. For illustration, we present the cases of some integrable dissipative Fisher, nonlinear pendulum, and Burgers–Huxley type equations which are obtained in this way and can be of interest in applications. We also show how to obtain Abel solutions directly from the factorization of second order nonlinear equations.
Synthesis, characterization and third-order nonlinear optical ...
Indian Academy of Sciences (India)
On the other hand, our investigation reveals that the spectral dispersion characteristic of γ for silver nanoparticles-coated PDA nanovesicles is qualitatively similar to that observed for the uncoated PDA nanovesicles but bears no resemblance to that observed in silver nanoparticles. The presence of silver nanoparticles ...
Systematic Optimization of Second-Order Nonlinear Optical Materials
National Research Council Canada - National Science Library
Marder, Seth R
2000-01-01
... of the electromagnetic spectrum. In the field of organic light emitting diodes several new barrelene molecules have been made, including some which are water soluble and can be used in schemes for self-assembling light emitting diodes...
Baraskar, Priyanka; Chouhan, Romita; Agrawal, Arpana; Choudhary, R. J.; Sen, Pranay K.; Sen, Pratima
2018-03-01
We report the magnetic field effect on the linear and nonlinear optical properties of pulse laser ablated Ti-incorporated Cr2O3 nanostructured thin film. Optical properties have been experimentally analyzed under Voigt geometry by performing ultraviolet-visible spectroscopy and closed aperture Z-scan technique using a continuous wave He-Ne laser source. Nonlinear optical response reveals a single peak-valley feature in the far field diffraction pattern in absence of magnetic field (B = 0) confirming self-defocussing effect. This feature switches to a valley-peak configuration for B = 5000G, suggesting self-focusing effect. For B ≤ 750G, oscillations were observed revealing the occurrence of higher order nonlinearity. Origin of nonlinearity is attributed to the near resonant d-d transitions observed from the broad peak occurring around 2 eV. These transitions are of magnetic origin and get modified under the application of external magnetic field. Our results suggest that magnetic field can be used as an effective tool to monitor the sign of optical nonlinearity and hence the thermal expansion in Ti-incorporated Cr2O3 nanostructured thin film.
Third-order nonlinear differential operators preserving invariant subspaces of maximal dimension
International Nuclear Information System (INIS)
Qu Gai-Zhu; Zhang Shun-Li; Li Yao-Long
2014-01-01
In this paper, third-order nonlinear differential operators are studied. It is shown that they are quadratic forms when they preserve invariant subspaces of maximal dimension. A complete description of third-order quadratic operators with constant coefficients is obtained. One example is given to derive special solutions for evolution equations with third-order quadratic operators. (general)
Energy Technology Data Exchange (ETDEWEB)
Chen, Hua-Jun; Zhu, Ka-Di [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 DongChuan Road, Shanghai 2 00240 (China)
2013-12-07
Nanomechanical resonator makes itself as an ideal system for ultrasensitive mass sensing due to its ultralow mass and high vibrational frequency. The mass sensing principle is due to the linear relationship of the frequency-shift and mass-variation. In this work, we will propose a nonlinear optical mass sensor based on a doubly clamped suspended carbon nanotube resonator in all-optical domain. The masses of external particles (such as nitric oxide molecules) landing onto the surface of carbon nanotube can be determined directly and accurately via using the nonlinear optical spectroscopy. This mass sensing proposed here may provide a nonlinear optical measurement technique in quantum measurements and environmental science.
Optical nonlinearities in Ag/BaTiO{sub 3} multi-layer nanocomposite films
Energy Technology Data Exchange (ETDEWEB)
Yang Guang [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)], E-mail: gyang@hust.edu.cn; Zhou Youhua [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Physics and Information Engineering, Jianghan University, Wuhan 430056 (China); Long Hua; Li Yuhua; Yang Yifa [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)
2007-07-31
The multi-layer structure of barium titanate composite thin films containing Ag nanoparticles were grown on MgO (100) substrates using pulsed laser deposition technique under the nitrogen pressure of 7.4 Pa. The X-ray photoelectron spectroscopy analysis indicated that the samples were composed of metal Ag embedded in the BaTiO{sub 3} matrices. The optical absorption properties were measured from 300 nm to 800 nm, and the absorption peaks due to the surface plasmon resonance of Ag particles were observed. With the increasing of Ag concentration in composite films, the peak absorption increased and shifted to longer wavelength (red-shift). Furthermore, the third-order optical nonlinearities of the films were determined by z-scan method and the nonlinear refractive index, n{sub 2}, and nonlinear absorption coefficient, {beta}, were determined to be about - 1.91 x 10{sup -13} m{sup 2}/W and - 5.80 x 10{sup -7} m/W, respectively.
Optical fibers with low nonlinearity and low polarization-mode dispersion for terabit communications
Baghdadi, J. A.; Safaai-Jazi, A.; Hattori, H. T.
2001-07-01
Refractive-index nonlinearities have negligible effect on the performance of short-haul fiber-optic communication links utilizing electronic repeaters. However, in long links, nonlinearities can cause severe signal degradations. To mitigate nonlinear effects, a new generation of fibers, referred to as large effective-area fibers, have been introduced in recent years. This paper reviews the latest research and development work on these fibers conducted by several research groups around the world. Attention is focused on a class of large effective-area fibers that are based on a depressed-core multiple-cladding design. Another important issue in long-haul and high capacity fiber optic systems is the polarization-mode dispersion (PMD) which has been recognized as a serious limiting factor. In this paper, an improved fiber design is proposed which, in addition to providing large effective-area and low bending loss, eliminates PMD due to elliptical deformation in the single-mode wavelength region. Furthermore, this design is allowed to provide a small chromatic dispersion about few ps/ nm km , in order to overcome four-wave mixing effects.
Directory of Open Access Journals (Sweden)
El-Sayed A. El-Badawy
2008-02-01
Full Text Available Although research into the use of optics in computers has increased in the last and current decades, the fact remains that electronics is still superior to optics in almost every way. Research into the use of optics at this stage mirrors the research into electronics after the 2nd World War. The advantages of using fiber optics over wiring are the same as the argument for using optics over electronics in computers. Even through totally optical computers are now a reality, computers that combine both electronics and optics, electro-optic hybrids, have been in use for some time. In the present paper, architecture of optical interconnect is built up on the bases of four Vertical-Cavity Surface- Emitting Laser Diodes (VCSELD and two optical links where thermal effects of both the diodes and the links are included. Nonlinear relations are correlated to investigate the power-current and the voltage-current dependences of the four devices. The good performance (high speed of the interconnect is deeply and parametrically investigated under wide ranges of the affecting parameters. The high speed performance is processed through three different effects, namely the device 3-dB bandwidth, the link dispersion characteristics, and the transmitted bit rate (soliton. Eight combinations are investigated; each possesses its own characteristics. The best architecture is the one composed of VCSELD that operates at 850 nm and the silica fiber whatever the operating set of causes. This combination possesses the largest device 3-dB bandwidth, the largest link bandwidth and the largest soliton transmitted bit rate. The increase of the ambient temperature reduces the high-speed performance of the interconnect
Denz, Cornelia; Simoni, Francesco
2009-03-01
Nonlinearities are becoming more and more important for a variety of applications in nanosciences, bio-medical sciences, information processing and photonics. For applications at the crossings of these fields, especially microscopic and nanoscopic imaging and manipulation, nonlinearities play a key role. They may range from simple nonlinear parameter changes up to applications in manipulating, controlling and structuring material by light, or the manipulation of light by light itself. It is this area between basic nonlinear optics and photonic applications that includes `hot' topics such as ultra-resolution optical microscopy, micro- and nanomanipulation and -structuring, or nanophotonics. This special issue contains contributions in this field, many of them from the International Conference on Nonlinear Microscopy and Optical Control held in conjunction with a network meeting of the ESF COST action MP0604 `Optical Micromanipulation by Nonlinear Nanophotonics', 19-22 February 2008, Münster, Germany. Throughout this special issue, basic investigations of material structuring by nonlinear light--matter interaction, light-induced control of nanoparticles, and novel nonlinear material investigation techniques, are presented, covering the basic field of optical manipulation and control. These papers are followed by impressive developments of optical tweezers. Nowadays, optical phase contrast tweezers, twin and especially multiple beam traps, develop particle control in a new dimension: particles can be arranged, sorted and identified with high throughput. One of the most prominent forthcoming applications of optical tweezers is in the field of microfluidics. The action of light on fluids will open new horizons in microfluidic manipulation and control. The field of optical manipulation and control is a very broad field that has developed in an impressive way, in a short time, in Europe with the installation of the MP0604 network. Top researchers from 19 countries are
Traveling wave solutions for two nonlinear evolution equations with nonlinear terms of any order
International Nuclear Information System (INIS)
Feng Qing-Hua; Zhang Yao-Ming; Meng Fan-Wei
2011-01-01
In this paper, based on the known first integral method and the Riccati sub-ordinary differential equation (ODE) method, we try to seek the exact solutions of the general Gardner equation and the general Benjamin—Bona—Mahoney equation. As a result, some traveling wave solutions for the two nonlinear equations are established successfully. Also we make a comparison between the two methods. It turns out that the Riccati sub-ODE method is more effective than the first integral method in handling the proposed problems, and more general solutions are constructed by the Riccati sub-ODE method. (general)
Nonlinear atom optics and bright-gap-soliton generation in finite optical lattices
International Nuclear Information System (INIS)
Carusotto, Iacopo; Embriaco, Davide; La Rocca, Giuseppe C.
2002-01-01
We theoretically investigate the transmission dynamics of coherent matter wave pulses across finite optical lattices in both the linear and the nonlinear regimes. The shape and the intensity of the transmitted pulse are found to strongly depend on the parameters of the incident pulse, in particular its velocity and density: a clear physical picture of the main features observed in the numerical simulations is given in terms of the atomic band dispersion in the periodic potential of the optical lattice. Signatures of nonlinear effects due to the atom-atom interaction are discussed in detail, such as atom-optical limiting and atom-optical bistability. For positive scattering lengths, matter waves propagating close to the top of the valence band are shown to be subject to modulational instability. A scheme for the experimental generation of narrow bright gap solitons from a wide Bose-Einstein condensate is proposed: the modulational instability is seeded starting from the strongly modulated density profile of a standing matter wave and the solitonic nature of the generated pulses is checked from their shape and their collisional properties
Engineered Quasi-Phase Matching for Nonlinear Quantum Optics in Waveguides
Van Camp, Mackenzie A.
Entanglement is the hallmark of quantum mechanics. Quantum entanglement--putting two or more identical particles into a non-factorable state--has been leveraged for applications ranging from quantum computation and encryption to high-precision metrology. Entanglement is a practical engineering resource and a tool for sidestepping certain limitations of classical measurement and communication. Engineered nonlinear optical waveguides are an enabling technology for generating entangled photon pairs and manipulating the state of single photons. This dissertation reports on: i) frequency conversion of single photons from the mid-infrared to 843nm as a tool for incorporating quantum memories in quantum networks, ii) the design, fabrication, and test of a prototype broadband source of polarization and frequency entangled photons; and iii) a roadmap for further investigations of this source, including applications in quantum interferometry and high-precision optical metrology. The devices presented herein are quasi-phase-matched lithium niobate waveguides. Lithium niobate is a second-order nonlinear optical material and can mediate optical energy conversion to different wavelengths. This nonlinear effect is the basis of both quantum frequency conversion and entangled photon generation, and is enhanced by i) confining light in waveguides to increase conversion efficiency, and ii) quasi-phase matching, a technique for engineering the second-order nonlinear response by locally altering the direction of a material's polarization vector. Waveguides are formed by diffusing titanium into a lithium niobate wafer. Quasi-phase matching is achieved by electric field poling, with multiple stages of process development and optimization to fabricate the delicate structures necessary for broadband entangled photon generation. The results presented herein update and optimize past fabrication techniques, demonstrate novel optical devices, and propose future avenues for device development
Impurity-defect induced noncentrosymmetricity in nonlinear optical processes
International Nuclear Information System (INIS)
Miah, M. Idrish
2009-01-01
Noncentrosymmetric nanosize-material processes in cadmium iodide are formed by doping it with the impurity copper. The noncentrosymmetricity in the processes are probed by the observation of the second-order optical susceptibility χ ijk (2) . The value of χ ijk (2) is found to depend fashionably on the impurity content of the nanomaterials. The results also show that a significant enhancement in the noncentrosymmetric response is achieved in nanomaterials with reduced sizes and at low temperatures.
International Nuclear Information System (INIS)
Arie, A.
1999-01-01
Nonlinear frequency mixing processes, e.g. second harmonic generation, sum and difference frequency generation, etc., require matching of the phases of the interacting waves. The traditional method to achieve it is by selecting a specific angle of propagation in a birefringent nonlinear crystal. The main limitation of the birefringent phase matching method stems from the fact that for many interesting interactions, the phase matching condition cannot be satisfied in a specific crystal. This obstacle can be removed by the technique of quasi-phase-matching (QPM), where the nonlinear coefficient of the material is modulated at a fixed spatial frequency that equals the wave-vector phase mismatch between the interacting waves. An important development in recent years is the ability to periodically reverse the sign of the nonlinear coefficient in ferroelectric crystals by applying a high electric field through a periodic electrode. Some recent QPM interactions in periodically-poled KTP that were recently achieved at Tel-Aviv University include continuous-wave optical parametric oscillations, as well as generation of tunable mid-infrared radiation by difference frequency generation. Periodic patterning of the nonlinear coefficient enables to phase match only a single interaction. It would be advantageous to further extend the applications of this technique in order to simultaneously satisfy several interactions on a single crystal. This cannot be usually achieved in a periodic pattern, however more sophisticated quasi-periodic structures can be designed in this case. An interesting analogy can be drawn between artificially-made quasi-periodically-patterned nonlinear crystals and quasi-crystals found in nature, in rapidly-cooled metallic alloys
Studies on nonlocal optical nonlinearity of Sr–CuO–polyvinyl alcohol nanocomposite thin films
International Nuclear Information System (INIS)
Tamgadge, Y.S.; Talwatkar, S.S.; Sunatkari, A.L.; Pahurkar, V.G.; Muley, G.G.
2015-01-01
Thermally induced nonlocal nonlinear optical properties of strontium (Sr) doped CuO-polyvinyl alcohol (PVA) nanocomposite thin films under continuous wave Helium–Neon laser illumination are investigated by single beam Z-scan method. Undoped and Sr doped CuO nanoparticles (NPs) using L-arginine as surface modifying agent have been synthesized by wet chemical method and their thin films with PVA as host matrix have been obtained by spin coating technique. Structure, morphology and purity of prepared CuO NPs and thin films have been studied by X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscopy and energy dispersive X-ray absorption spectroscopy. Fourier transform infra-red spectrum attests the role of L-arginine as surface modifier and ultraviolet–visible absorption studies reveal that the excitonic absorption wavelengths are blue shifted for strontium doped CuO NPs. Sr doped CuO NPs with average particle size of 7 nm and calculated optical band gap up to 2.54 eV have been reported. All Sr doped CuO–PVA nanocomposite thin films show enhanced nonlinear refraction and absorption best suited for optical limiting applications. Observed effects have been attributed to thermal lensing effect. - Highlights: • Pure and strontium doped CuO–polyvinyl alcohol nanocomposite thin films are prepared. • Z-scan studies of thin films are performed under continuous wave helium–neon laser. • Enhanced values of third order nonlinear optical coefficients are obtained for all films. • Thermally induced self-defocusing and reverse saturable absorption have been discussed.
Studies on nonlocal optical nonlinearity of Sr–CuO–polyvinyl alcohol nanocomposite thin films
Energy Technology Data Exchange (ETDEWEB)
Tamgadge, Y.S. [Department of Physics, Mahatma Fule Arts, Commerce and S C Science Mahavidyalaya, Warud, Dist. Amravati (MS), 444906 (India); Talwatkar, S.S. [Department of Physics, D K Marathe and N G Acharya College, Chembur, Mumbai (MS) 440071 (India); Sunatkari, A.L. [Department of Physics, Siddharth College of Arts, Science and Commerce, Fort, Mumbai (MS) 440001 (India); Pahurkar, V.G. [Department of Physics, Sant Gadge Baba Amravati University, Amravati (MS), 444602 (India); Muley, G.G., E-mail: gajananggm@yahoo.co.in [Department of Physics, Sant Gadge Baba Amravati University, Amravati (MS), 444602 (India)
2015-11-30
Thermally induced nonlocal nonlinear optical properties of strontium (Sr) doped CuO-polyvinyl alcohol (PVA) nanocomposite thin films under continuous wave Helium–Neon laser illumination are investigated by single beam Z-scan method. Undoped and Sr doped CuO nanoparticles (NPs) using L-arginine as surface modifying agent have been synthesized by wet chemical method and their thin films with PVA as host matrix have been obtained by spin coating technique. Structure, morphology and purity of prepared CuO NPs and thin films have been studied by X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscopy and energy dispersive X-ray absorption spectroscopy. Fourier transform infra-red spectrum attests the role of L-arginine as surface modifier and ultraviolet–visible absorption studies reveal that the excitonic absorption wavelengths are blue shifted for strontium doped CuO NPs. Sr doped CuO NPs with average particle size of 7 nm and calculated optical band gap up to 2.54 eV have been reported. All Sr doped CuO–PVA nanocomposite thin films show enhanced nonlinear refraction and absorption best suited for optical limiting applications. Observed effects have been attributed to thermal lensing effect. - Highlights: • Pure and strontium doped CuO–polyvinyl alcohol nanocomposite thin films are prepared. • Z-scan studies of thin films are performed under continuous wave helium–neon laser. • Enhanced values of third order nonlinear optical coefficients are obtained for all films. • Thermally induced self-defocusing and reverse saturable absorption have been discussed.
Brain plasticity and functionality explored by nonlinear optical microscopy
Sacconi, L.; Allegra, L.; Buffelli, M.; Cesare, P.; D'Angelo, E.; Gandolfi, D.; Grasselli, G.; Lotti, J.; Mapelli, J.; Strata, P.; Pavone, F. S.
2010-02-01
In combination with fluorescent protein (XFP) expression techniques, two-photon microscopy has become an indispensable tool to image cortical plasticity in living mice. In parallel to its application in imaging, multi-photon absorption has also been used as a tool for the dissection of single neurites with submicrometric precision without causing any visible collateral damage to the surrounding neuronal structures. In this work, multi-photon nanosurgery is applied to dissect single climbing fibers expressing GFP in the cerebellar cortex. The morphological consequences are then characterized with time lapse 3-dimensional two-photon imaging over a period of minutes to days after the procedure. Preliminary investigations show that the laser induced fiber dissection recalls a regenerative process in the fiber itself over a period of days. These results show the possibility of this innovative technique to investigate regenerative processes in adult brain. In parallel with imaging and manipulation technique, non-linear microscopy offers the opportunity to optically record electrical activity in intact neuronal networks. In this work, we combined the advantages of second-harmonic generation (SHG) with a random access (RA) excitation scheme to realize a new microscope (RASH) capable of optically recording fast membrane potential events occurring in a wide-field of view. The RASH microscope, in combination with bulk loading of tissue with FM4-64 dye, was used to simultaneously record electrical activity from clusters of Purkinje cells in acute cerebellar slices. Complex spikes, both synchronous and asynchronous, were optically recorded simultaneously across a given population of neurons. Spontaneous electrical activity was also monitored simultaneously in pairs of neurons, where action potentials were recorded without averaging across trials. These results show the strength of this technique in describing the temporal dynamics of neuronal assemblies, opening promising