WorldWideScience

Sample records for orbital period change

  1. Orbital Period Changes in WZ Sagittae

    Science.gov (United States)

    Patterson, Joseph; Stone, Geoffrey; Kemp, Jonathan; Skillman, David R.; de Miguel, Enrique; Potter, Michael; Starkey, Donn; Uthas, Helena; Jones, Jim; Slauson, Douglas; Koff, Robert; Myers, Gordon; Menzies, Kenneth; Campbell, Tut; Roberts, George; Foote, Jerry; Vanmunster, Tonny; Cook, Lewis M.; Krajci, Thomas; Ogmen, Yenal; Sabo, Richard; Seargeant, Jim

    2018-06-01

    We report a long-term (1961–2017) study of the eclipse times in the dwarf nova WZ Sagittae, in an effort to learn its rate of orbital-period change. Some wiggles with a timescale of 20–50 years are apparent, and a connection with the ∼23 year interval between dwarf-nova eruptions is possible. These back-and-forth wiggles dominate the O–C diagram, and prevent a secure measurement of the steady rate of orbital-period change.

  2. Linear and nonlinear stability of periodic orbits in annular billiards

    Science.gov (United States)

    Dettmann, Carl P.; Fain, Vitaly

    2017-04-01

    An annular billiard is a dynamical system in which a particle moves freely in a disk except for elastic collisions with the boundary and also a circular scatterer in the interior of the disk. We investigate the stability properties of some periodic orbits in annular billiards in which the scatterer is touching or close to the boundary. We analytically show that there exist linearly stable periodic orbits of an arbitrary period for scatterers with decreasing radii that are located near the boundary of the disk. As the position of the scatterer moves away from a symmetry line of a periodic orbit, the stability of periodic orbits changes from elliptic to hyperbolic, corresponding to a saddle-center bifurcation. When the scatterer is tangent to the boundary, the periodic orbit is parabolic. We prove that slightly changing the reflection angle of the orbit in the tangential situation leads to the existence of Kolmogorov-Arnold-Moser islands. Thus, we show that there exists a decreasing to zero sequence of open intervals of scatterer radii, along which the billiard table is not ergodic.

  3. Orbital period changes in RW CrA, DX Vel and V0646 Cen

    Science.gov (United States)

    Volkov, I. M.; Chochol, D.; Grygar, J.; Mašek, M.; Juryšek, J.

    2017-06-01

    We aim to determine the absolute parameters of the components of southern Algol-type binaries with deep eclipses RW CrA, DX Vel, V0646 Cen and interpret their orbital period changes. The data analysis is based on a high quality Walraven photoelectric photometry, obtained in the 1960-70s, our recent CCD photometry, ASAS (Pojmanski, 2002), and Hipparcos (Perryman et al., 1997) photometry of the objects. Their light curves were analyzed using the PHOEBE program with fixed effective temperatures of the primary components, found from disentangling the Walraven (B-U) and (V-B) colour indices. We found the absolute parameters of the components of all three objects. All reliable observed times of minimum light were used to construct and analyze the Eclipse Time Variation (ETV) diagrams. We interpreted the ETV diagrams of the detached binary RW CrA and the semi-detached binary DX Vel by a LIght-Time Effect (LITE), estimated parameters of their orbits and masses of their third bodies. We suggest a long term variation of the inclination angle of both eclipsing binaries, caused by a non-coplanar orientation of their third body orbits. We interpreted the detected orbital period increase in the semi-detached binary V0646 Cen by a mass transfer from the less to more massive component with the rate M⊙ = 6.08×10-9 M⊙/yr.

  4. Periodic orbits and recurrences: An introduction and review

    International Nuclear Information System (INIS)

    Delos, J.B.

    1993-01-01

    A pedagogical introduction to and review of essential ideas in modern classical mechanics will be presented, and relationships between classical trajectories and quantum wave functions will be discussed. Much current work is focused on the effects of classical periodic orbits on quantum density of states, absorption spectra, and wave functions. The theory was first developed by Gutzwiller, who showed that each classical periodic orbit produces a sinusoidal fluctuation in the density of states as a function of energy. Short orbits produce large-scale fluctuations, while longer orbits produce small-scale fluctuations. Actually these fluctuations reside in the Green's function of the system, so they manifest themselves in all quantum properties. Two new questions will be addressed. (1) How do we understand periodic orbits from a classical perspective? How are they created and how do they proliferate as order changes to chaos? (2) Is the theory practically limited to calculation of large-scale structures in spectra, or can it be extended to calculate individual eigenfunctions?

  5. Using periodic orbits to compute chaotic transport rates between resonance zones

    Science.gov (United States)

    Sattari, Sulimon; Mitchell, Kevin A.

    2017-11-01

    Transport properties of chaotic systems are computable from data extracted from periodic orbits. Given a sufficient number of periodic orbits, the escape rate can be computed using the spectral determinant, a function that incorporates the eigenvalues and periods of periodic orbits. The escape rate computed from periodic orbits converges to the true value as more and more periodic orbits are included. Escape from a given region of phase space can be computed by considering only periodic orbits that lie within the region. An accurate symbolic dynamics along with a corresponding partitioning of phase space is useful for systematically obtaining all periodic orbits up to a given period, to ensure that no important periodic orbits are missing in the computation. Homotopic lobe dynamics (HLD) is an automated technique for computing accurate partitions and symbolic dynamics for maps using the topological forcing of intersections of stable and unstable manifolds of a few periodic anchor orbits. In this study, we apply the HLD technique to compute symbolic dynamics and periodic orbits, which are then used to find escape rates from different regions of phase space for the Hénon map. We focus on computing escape rates in parameter ranges spanning hyperbolic plateaus, which are parameter intervals where the dynamics is hyperbolic and the symbolic dynamics does not change. After the periodic orbits are computed for a single parameter value within a hyperbolic plateau, periodic orbit continuation is used to compute periodic orbits over an interval that spans the hyperbolic plateau. The escape rates computed from a few thousand periodic orbits agree with escape rates computed from Monte Carlo simulations requiring hundreds of billions of orbits.

  6. Discrete symmetries in periodic-orbit theory

    International Nuclear Information System (INIS)

    Robbins, J.M.

    1989-01-01

    The application of periodic-orbit theory to systems which possess a discrete symmetry is considered. A semiclassical expression for the symmetry-projected Green's function is obtained; it involves a sum over classical periodic orbits on a symmetry-reduced phase space, weighted by characters of the symmetry group. These periodic orbits correspond to trajectories on the full phase space which are not necessarily periodic, but whose end points are related by symmetry. If the symmetry-projected Green's functions are summed, the contributions of the unperiodic orbits cancel, and one recovers the usual periodic-orbit sum for the full Green's function. Several examples are considered, including the stadium billiard, a particle in a periodic potential, the Sinai billiard, the quartic oscillator, and the rotational spectrum of SF 6

  7. Periodic orbits near the particle resonance in galaxies

    CERN Document Server

    Contopoulos, George

    1978-01-01

    Near the particle resonance of a spiral galaxy the almost circular periodic orbits that exist inside the resonance (direct) or outside it (retrograde) are replaced by elongated trapped orbits around the maxima of the potential L/sub 4/ and L/sub 5/. These are the long- period trapped periodic orbits. The long-period orbits shrink to the points L/sub 4/, L/sub 5/ for a critical value of the Hamiltonian h. For still larger h, a family of short-period trapped orbits appears, with continuously growing size. The evolution of the periodic orbits with h is followed, theoretically and numerically, from the untrapped orbits to the long-periodic orbits and then to the short-periodic orbits, mainly in the case of a bar. In a tight spiral case an explanation of the asymmetric periodic and banana orbits is given, and an example of short-period orbits not surrounding L/sub 4/ or L/sub 5/ is provided. Another family of periodic orbits reaching corotation is trapped at the inner Lindblad resonance. (5 refs).

  8. Orbital periods of recurrent novae

    International Nuclear Information System (INIS)

    Schaefer, B.E.

    1990-01-01

    The class of recurrent novae (RN) with thermonuclear runaways contains only three systems (T Pyx, U Sco, and V394 CrA), for which no orbital periods are known. This paper presents a series of photometric observations where the orbital periods for all three systems are discovered. T Pyx is found to have sinusoidal modulation with an amplitude of 0.08 mag and a period of 2.3783 h (with a possible alias of 2.6403 h). U Sco is found to be an eclipsing system with an eclipse amplitude of roughly 1.5 mag and an orbital period of 1.2344 days. V394 CrA is found to have sinusoidal modulation with an amplitude of 0.5 mag and a period of 0.7577 days. Thus two out of three RN with thermonuclear runaways (or five out of six for all RN) have evolved companions. 16 refs

  9. Topological imprint for periodic orbits

    International Nuclear Information System (INIS)

    Martín, Jesús San; Moscoso, Ma José; Gómez, A González

    2012-01-01

    The more self-crossing points an orbit has the more complex it is. We introduce the topological imprint to characterize crossing points and focus on the period-doubling cascade. The period-doubling cascade topological imprint determines the topological imprint for orbits in chaotic bands. In addition, there is a closer link between this concept and the braids studied by Lettelier et al (2000 J. Phys. A: Math. Gen. 33 1809–25). (paper)

  10. Periodic orbits and TDHF phase space structure

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Yukio; Iwasawa, Kazuo [Tsukuba Univ., Ibaraki (Japan). Inst. of Physics; Tsukuma, Hidehiko; Sakata, Fumihiko

    1998-03-01

    The collective motion of atomic nuclei is closely coupled with the motion of nucleons, therefore, it is nonlinear, and the contents of the motion change largely with the increase of its amplitude. As the framework which describes the collective motion accompanied by the change of internal structure, time-dependent Hurtley Fock (TDHF) method is suitable. At present, the authors try to make the method for studying the large region structure in quantum system by utilizing the features of the TDHF phase space. The studies made so far are briefed. In this report, the correspondence of the large region patterns appearing in the band structure chart of three-level model with the periodic orbit group in the TDHF phase space is described. The Husimi function is made, and it possesses the information on the form of respective corresponding intrinsic state. The method of making the band structure chart is explained. There are three kinds of the tendency in the intrinsic state group. The E-T charts are made for the band structure charts to quantitatively express the large region tendency. The E-T chart and the T{sub r}-T chart are drawn for a selected characteristic orbit group. It became to be known that the large region properties of the quantum intrinsic state group of three-level model can be forecast by examining the properties of the periodic orbit group in the TDHF phase space. (K.I.)

  11. Long-term orbital period behaviour of low mass ratio contact binaries GR Vir and FP Boo

    Science.gov (United States)

    Ćetinkaya, Halil; Soydugan, Faruk

    2017-02-01

    In this study, we investigated orbital period variations of two low mass ratio contact binaries GR Vir and FP Boo based on published minima times. From the O-C analysis, it was found that FP Boo indicates orbital period decrease while the period of GR Vir is increasing. Mass transfer process was used to explain increase and decrease in the orbital periods. In the O-C diagrams of both systems periodic variations also exist. Cyclic changes can be explained as being the result of a light-travel time effect via a third component around the eclipsing binaries. In order to interpret of cyclic orbital period changes for GR Vir, which has late-type components, possible magnetic activity cycles of the components have been also considered.

  12. On periodic orbits in discrete-time cascade systems

    Directory of Open Access Journals (Sweden)

    Huimin Li

    2006-01-01

    Full Text Available We present some results on existence, minimum period, number of periodic orbits, and stability of periodic orbits in discrete-time cascade systems. Some examples are presented to illustrate these results.

  13. Periodic orbits around areostationary points in the Martian gravity field

    International Nuclear Information System (INIS)

    Liu Xiaodong; Baoyin Hexi; Ma Xingrui

    2012-01-01

    This study investigates the problem of areostationary orbits around Mars in three-dimensional space. Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of Mars. However, no artificial satellites have been placed in these orbits thus far. The characteristics of the Martian gravity field are presented, and areostationary points and their linear stability are calculated. By taking linearized solutions in the planar case as the initial guesses and utilizing the Levenberg-Marquardt method, families of periodic orbits around areostationary points are shown to exist. Short-period orbits and long-period orbits are found around linearly stable areostationary points, but only short-period orbits are found around unstable areostationary points. Vertical periodic orbits around both linearly stable and unstable areostationary points are also examined. Satellites in these periodic orbits could depart from areostationary points by a few degrees in longitude, which would facilitate observation of the Martian topography. Based on the eigenvalues of the monodromy matrix, the evolution of the stability index of periodic orbits is determined. Finally, heteroclinic orbits connecting the two unstable areostationary points are found, providing the possibility for orbital transfer with minimal energy consumption.

  14. Non-linear vibrational modes in biomolecules: A periodic orbits description

    International Nuclear Information System (INIS)

    Kampanarakis, Alexandros; Farantos, Stavros C.; Daskalakis, Vangelis; Varotsis, Constantinos

    2012-01-01

    Graphical abstract: Vibrational frequency shifts in Fe IV = O species of the active site of cytochrome c oxidase are attributed to changes in the surrounding Coulomb field. Periodic orbits analysis assists to find the most anharmonic modes in model biomolecules. Highlights: ► Periodic orbits are extended to multidimensional potentials of biomolecules. ► Highly anharmonic vibrational modes and center-saddle bifurcations are detected. ► Vibrational frequencies shifts in Oxoferryl species of CcO are observed. - Abstract: The vibrational harmonic normal modes of a molecule, which are valid at energies close to an equilibrium point (a minimum, maximum or saddle of the potential energy surface), are extended by periodic orbits to high energies where anharmonicity and coupling of the degrees of freedom are significant. In this way the assignment of the spectra, and thus the extraction of dynamics in highly excited molecules, can be obtained. New vibrational modes emanating from bifurcations of periodic orbits and long living localized trajectories signal the birth and localization of new quantum states. In this article we review and further study non-linear vibrational modes for model biomolecules such as alanine dipeptide and the active site in the oxoferryl oxidation state of the enzyme cytochrome c oxidase. We locate periodic orbits which exhibit high anhamonicity and lead to center-saddle bifurcations. These modes are associated to an isomerization process in alanine dipeptide and to frequency shifts in the oxoferryl observed by modifying the Coulomb field around the Imidazole–Fe IV = O species.

  15. Changing spin-orbit interaction with increasing exoticism across the periodic table

    International Nuclear Information System (INIS)

    Kshetri, Ritesh; Ray, Indrani; Saha Sarkar, M.; Sarkar, Sukhendusekhar

    2005-01-01

    Recently, experimental information about nuclei away from the valley of stability are being available. Several workers have suggested that shell structures may change away from the line of stability and nuclear spin-orbit interaction weakens as a function of the neutron excess

  16. Periodic orbits and non-integrability of Henon-Heiles systems

    International Nuclear Information System (INIS)

    Llibre, Jaume; Jimenez-Lara, Lidia

    2011-01-01

    We apply the averaging theory of second order to study the periodic orbits for a generalized Henon-Heiles system with two parameters, which contains the classical Henon-Heiles system. Two main results are shown. The first result provides sufficient conditions on the two parameters of these generalized systems, which guarantee that at any positive energy level, the Hamiltonian system has periodic orbits. These periodic orbits form in the whole phase space a continuous family of periodic orbits parameterized by the energy. The second result shows that for the non-integrable Henon-Heiles systems in the sense of Liouville-Arnol'd, which have the periodic orbits analytically found with averaging theory, cannot exist any second first integral of class C 1 . In particular, for any second first integral of class C 1 , we prove that the classical Henon-Heiles system and many generalizations of it are not integrable in the sense of Liouville-Arnol'd. Moreover, the tools we use for studying the periodic orbits and the non-Liouville-Arnol'd integrability can be applied to Hamiltonian systems with an arbitrary number of degrees of freedom.

  17. Origin of very-short orbital-period binary systems

    International Nuclear Information System (INIS)

    Miyaji, S.

    1983-01-01

    Recent observations of four close binaries have established that there is a group of very-short orbital-period (VSOP) binaries whose orbital periods are less than 60 minutes. The VSOP binaries consist of both X-ray close binaries and cataclysmic variables. Their orbital periods are too short to have a main-sequence companion. However, four binaries, none of which belongs to any globular cluster, are too abundant to be explained by the capturing mechanism of a white dwarf. Therefore it seemed to be worthwhile to present an evolutionary scenario from an original binary system which can be applied for all VSOP binaries. (Auth.)

  18. Periodic orbits of the hydrogen molecular ion and their quantization

    International Nuclear Information System (INIS)

    Duan, Y.; Yuan, J.; Bao, C.

    1995-01-01

    In a classical study of the hydrogen molecular ion beyond the Born-Oppenheimer approximation (BOA), we have found that segments of trajectories resemble that of the Born-Oppenheimer approximation periodic orbits. The importance of this fact to the classical understanding of chemical bonding leads us to a systematic study of the periodic orbits of the planar hydrogen molecular ion within the BOA. Besides introducing a classification scheme for periodic orbits, we discuss the convergence properties of families of periodic orbits and their bifurcation patterns according to their types. Semiclassical calculations of the density of states based on these periodic orbits yield results in agreement with the exact quantum eigenvalues of the hydrogen molecular ion system

  19. PERIODIC ORBIT FAMILIES IN THE GRAVITATIONAL FIELD OF IRREGULAR-SHAPED BODIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yu [State Key Laboratory of Astronautic Dynamics, Xi’an Satellite Control Center, Xi’an 710043 (China); Baoyin, Hexi, E-mail: jiangyu_xian_china@163.com [School of Aerospace Engineering, Tsinghua University, Beijing 100084 (China)

    2016-11-01

    The discovery of binary and triple asteroids in addition to the execution of space missions to minor celestial bodies in the past several years have focused increasing attention on periodic orbits around irregular-shaped celestial bodies. In the present work, we adopt a polyhedron shape model for providing an accurate representation of irregular-shaped bodies and employ the model to calculate their corresponding gravitational and effective potentials. We also investigate the characteristics of periodic orbit families and the continuation of periodic orbits. We prove a fact, which provides a conserved quantity that permits restricting the number of periodic orbits in a fixed energy curved surface about an irregular-shaped body. The collisions of Floquet multipliers are maintained during the continuation of periodic orbits around the comet 1P/Halley. Multiple bifurcations in the periodic orbit families about irregular-shaped bodies are also discussed. Three bifurcations in the periodic orbit family have been found around the asteroid 216 Kleopatra, which include two real saddle bifurcations and one period-doubling bifurcation.

  20. PERIODIC ORBIT FAMILIES IN THE GRAVITATIONAL FIELD OF IRREGULAR-SHAPED BODIES

    International Nuclear Information System (INIS)

    Jiang, Yu; Baoyin, Hexi

    2016-01-01

    The discovery of binary and triple asteroids in addition to the execution of space missions to minor celestial bodies in the past several years have focused increasing attention on periodic orbits around irregular-shaped celestial bodies. In the present work, we adopt a polyhedron shape model for providing an accurate representation of irregular-shaped bodies and employ the model to calculate their corresponding gravitational and effective potentials. We also investigate the characteristics of periodic orbit families and the continuation of periodic orbits. We prove a fact, which provides a conserved quantity that permits restricting the number of periodic orbits in a fixed energy curved surface about an irregular-shaped body. The collisions of Floquet multipliers are maintained during the continuation of periodic orbits around the comet 1P/Halley. Multiple bifurcations in the periodic orbit families about irregular-shaped bodies are also discussed. Three bifurcations in the periodic orbit family have been found around the asteroid 216 Kleopatra, which include two real saddle bifurcations and one period-doubling bifurcation.

  1. Closed almost-periodic orbits in semiclassical quantization of generic polygons

    Science.gov (United States)

    Biswas

    2000-05-01

    Periodic orbits are the central ingredients of modern semiclassical theories and corrections to these are generally nonclassical in origin. We show here that, for the class of generic polygonal billiards, the corrections are predominantly classical in origin owing to the contributions from closed almost-periodic (CAP) orbit families. Furthermore, CAP orbit families outnumber periodic families but have comparable weights. They are hence indispensable for semiclassical quantization.

  2. Genesis and bifurcations of unstable periodic orbits in a jet flow

    International Nuclear Information System (INIS)

    Uleysky, M Yu; Budyansky, M V; Prants, S V

    2008-01-01

    We study the origin and bifurcations of typical classes of unstable periodic orbits in a jet flow that was introduced before as a kinematic model of chaotic advection, transport and mixing of passive scalars in meandering oceanic and atmospheric currents. A method to detect and locate the unstable periodic orbits and classify them by the origin and bifurcations is developed. We consider in detail period-1 and period-4 orbits playing an important role in chaotic advection. We introduce five classes of period-4 orbits: western and eastern ballistic ones, whose origin is associated with ballistic resonances of the fourth-order, rotational ones, associated with rotational resonances of the second and fourth orders and rotational-ballistic ones associated with a rotational-ballistic resonance. It is a new kind of unstable periodic orbits that may appear in a chaotic flow with jets and/or circulation cells. Varying the perturbation amplitude, we track out the origin and bifurcations of the orbits for each class

  3. Effects of Colored Noise on Periodic Orbits in a One-Dimensional Map

    Science.gov (United States)

    Li, Feng-Guo; Ai, Bao-Quan

    2011-06-01

    Noise can induce inverse period-doubling transition and chaos. The effects of the colored noise on periodic orbits, of the different periodic sequences in the logistic map, are investigated. It is found that the dynamical behaviors of the orbits, induced by an exponentially correlated colored noise, are different in the mergence of transition, and the effects of the noise intensity on their dynamical behaviors are different from the effects of the correlation time of noise. Remarkably, the noise can induce new periodic orbits, namely, two new orbits emerge in the period-four sequence at the bifurcation parameter value μ = 3.5, four new orbits in the period-eight sequence at μ = 3.55, and three new orbits in the period-six sequence at μ = 3.846, respectively. Moreover, the dynamical behaviors of the new orbits clearly show the resonancelike response to the colored noise.

  4. Effects of Colored Noise on Periodic Orbits in a One-Dimensional Map

    International Nuclear Information System (INIS)

    Li Fengguo; Ai Baoquan

    2011-01-01

    Noise can induce inverse period-doubling transition and chaos. The effects of the colored noise on periodic orbits, of the different periodic sequences in the logistic map, are investigated. It is found that the dynamical behaviors of the orbits, induced by an exponentially correlated colored noise, are different in the mergence of transition, and the effects of the noise intensity on their dynamical behaviors are different from the effects of the correlation time of noise. Remarkably, the noise can induce new periodic orbits, namely, two new orbits emerge in the period-four sequence at the bifurcation parameter value μ = 3.5, four new orbits in the period-eight sequence at μ = 3.55, and three new orbits in the period-six sequence at μ = 3.846, respectively. Moreover, the dynamical behaviors of the new orbits clearly show the resonancelike response to the colored noise. (general)

  5. A 12 MINUTE ORBITAL PERIOD DETACHED WHITE DWARF ECLIPSING BINARY

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kilic, Mukremin; Kenyon, Scott J.; Hermes, J. J.; Winget, D. E.; Prieto, Carlos Allende

    2011-01-01

    We have discovered a detached pair of white dwarfs (WDs) with a 12.75 minute orbital period and a 1315 km s -1 radial velocity amplitude. We measure the full orbital parameters of the system using its light curve, which shows ellipsoidal variations, Doppler boosting, and primary and secondary eclipses. The primary is a 0.25 M sun tidally distorted helium WD, only the second tidally distorted WD known. The unseen secondary is a 0.55 M sun carbon-oxygen WD. The two WDs will come into contact in 0.9 Myr due to loss of energy and angular momentum via gravitational wave radiation. Upon contact the systems may merge (yielding a rapidly spinning massive WD), form a stable interacting binary, or possibly explode as an underluminous Type Ia supernova. The system currently has a gravitational wave strain of 10 -22 , about 10,000 times larger than the Hulse-Taylor pulsar; this system would be detected by the proposed Laser Interferometer Space Antenna gravitational wave mission in the first week of operation. This system's rapid change in orbital period will provide a fundamental test of general relativity.

  6. Stability regions for synchronized τ-periodic orbits of coupled maps with coupling delay τ

    Energy Technology Data Exchange (ETDEWEB)

    Karabacak, Özkan, E-mail: ozkan2917@gmail.com [Department of Electronics and Communication Engineering, Istanbul Technical University, 34469 Istanbul (Turkey); Department of Electronic Systems, Aalborg University, 9220 Aalborg East (Denmark); Alikoç, Baran, E-mail: alikoc@itu.edu.tr [Department of Control and Automation Engineering, Istanbul Technical University, 34469 Istanbul (Turkey); Atay, Fatihcan M., E-mail: atay@member.ams.org [Department of Mathematics, Bilkent University, 06800 Ankara (Turkey)

    2016-09-15

    Motivated by the chaos suppression methods based on stabilizing an unstable periodic orbit, we study the stability of synchronized periodic orbits of coupled map systems when the period of the orbit is the same as the delay in the information transmission between coupled units. We show that the stability region of a synchronized periodic orbit is determined by the Floquet multiplier of the periodic orbit for the uncoupled map, the coupling constant, the smallest and the largest Laplacian eigenvalue of the adjacency matrix. We prove that the stabilization of an unstable τ-periodic orbit via coupling with delay τ is possible only when the Floquet multiplier of the orbit is negative and the connection structure is not bipartite. For a given coupling structure, it is possible to find the values of the coupling strength that stabilizes unstable periodic orbits. The most suitable connection topology for stabilization is found to be the all-to-all coupling. On the other hand, a negative coupling constant may lead to destabilization of τ-periodic orbits that are stable for the uncoupled map. We provide examples of coupled logistic maps demonstrating the stabilization and destabilization of synchronized τ-periodic orbits as well as chaos suppression via stabilization of a synchronized τ-periodic orbit.

  7. The puzzling orbital period evolution of the LMXB AX J1745.6-2901

    Science.gov (United States)

    Ponti, G.; De, K.; Munoz-Darias, T.; Stella, L.; Nandra, K.

    2017-10-01

    The discovery of gravitational waves through mergers of binary black holes raises the question of how such compact systems form, renewing issues related to the orbital evolution of binary systems. Eclipsing X-ray binaries are excellent tools to constrain the orbital period evolution and how the system loses angular momentum. I will present an X-ray eclipse timing analysis (spanning an interval of more than 20 yr) of one of such objects, AX J1745.6-2901. Its orbital period is decreasing at a rate Pdotorb=-4.03+-0.32 e-11 s s-1, at least one order of magnitude larger than expected from conservative mass transfer and angular momentum losses due to gravitational waves and magnetic braking, and it might result from either non-conservative mass transfer or magnetic activity changing the quadrupole moment of the companion star. I will also show that imprinted on the long-term evolution of the orbit, there are highly significant eclipse leads delays of 10-30 s, characterized by a clear state dependence in which, on average, eclipses occur earlier during the hard state. Finally, I will discuss whether accretion disc winds might have an impact onto the orbital evolution.

  8. Role of short periodic orbits in quantum maps with continuous openings

    Science.gov (United States)

    Prado, Carlos A.; Carlo, Gabriel G.; Benito, R. M.; Borondo, F.

    2018-04-01

    We apply a recently developed semiclassical theory of short periodic orbits to the continuously open quantum tribaker map. In this paradigmatic system the trajectories are partially bounced back according to continuous reflectivity functions. This is relevant in many situations that include optical microresonators and more complicated boundary conditions. In a perturbative regime, the shortest periodic orbits belonging to the classical repeller of the open map—a cantor set given by a region of exactly zero reflectivity—prove to be extremely robust in supporting a set of long-lived resonances of the continuously open quantum maps. Moreover, for steplike functions a significant reduction in the number needed is obtained, similarly to the completely open situation. This happens despite a strong change in the spectral properties when compared to the discontinuous reflectivity case. In order to give a more realistic interpretation of these results we compare with a Fresnel-type reflectivity function.

  9. Genealogy and stability of periodic orbit families around uniformly rotating asteroids

    Science.gov (United States)

    Hou, Xiyun; Xin, Xiaosheng; Feng, Jinglang

    2018-03-01

    Resonance orbits around a uniformly rotating asteroid are studied from the approach of periodic orbits in this work. Three periodic families (denoted as I, II, and III in the paper) are fundamental in organizing the resonance families. For the planar case: (1) Genealogy and stability of Families I, II and the prograde resonance families are studied. For extremely irregular asteroids, family genealogy close to the asteroid is greatly distorted from that of the two body-problem (2BP), indicating that it is inappropriate to treat the orbital motions as perturbed Keplerian orbits. (2) Genealogy and stability of Family III are also studied. Stability of this family may be destroyed by the secular resonance between the orbital ascending node's precession and the asteroid's rotation. For the spatial case: (1) Genealogy of the near circular three-dimensional periodic families are studied. The genealogy may be broken apart by families of eccentric frozen orbits whose argument of perigee is ;frozen; in space. (2) The joint effects between the secular resonance and the orbital resonances may cause instability to three-dimensional orbital motion with orbit inclinations close to the critical values. Applying the general methodology to a case study - the asteroid Eros and also considering higher order non-spherical terms, some extraordinary orbits are found, such as the ones with orbital plane co-rotating with the asteroid, and the stable frozen orbits with argument of perigee librating around values different from 0°, 90°, 180°, 270°.

  10. Existence of Periodic Orbits with Zeno Behavior in Completed Lagrangian Hybrid Systems

    OpenAIRE

    Or, Yizhar; Ames, Aaron D.

    2009-01-01

    In this paper, we consider hybrid models of mechanical systems undergoing impacts, Lagrangian hybrid systems, and study their periodic orbits in the presence of Zeno behavior-an infinite number of impacts occurring in finite time. The main result of this paper is explicit conditions under which the existence of stable periodic orbits for a Lagrangian hybrid system with perfectly plastic impacts implies the existence of periodic orbits in the same system with non-plastic impacts. Such periodic...

  11. Noise destroys the coexistence of periodic orbits of a piecewise linear map

    International Nuclear Information System (INIS)

    Wang Can-Jun; Yang Ke-Li; Qu Shi-Xian

    2013-01-01

    The effects of Gaussian white noise and Gaussian colored noise on the periodic orbits of period-5 (P-5) and period-6 (P-6) in their coexisting domain of a piecewise linear map are investigated numerically. The probability densities of some orbits are calculated. When the noise intensity is D = 0.0001, only the orbits of P-5 exist, and the coexisting phenomenon is destroyed. On the other hand, the self-correlation time τ of the colored noise also affects the coexisting phenomenon. When τ c c , only the orbits of P-5 appear, and the stability of the orbits of P-5 is enhanced. However, when τ > τ' c (τ c and τ c ' are critical values), only the orbits of P-6 exist, and the stability of the P-6 orbits is enhanced greatly. When τ c , the orbits of P-5 and P-6 coexist, but the stability of the P-5 orbits is enhanced and that of P-6 is weakened with τ increasing

  12. New variational principles for locating periodic orbits of differential equations.

    Science.gov (United States)

    Boghosian, Bruce M; Fazendeiro, Luis M; Lätt, Jonas; Tang, Hui; Coveney, Peter V

    2011-06-13

    We present new methods for the determination of periodic orbits of general dynamical systems. Iterative algorithms for finding solutions by these methods, for both the exact continuum case, and for approximate discrete representations suitable for numerical implementation, are discussed. Finally, we describe our approach to the computation of unstable periodic orbits of the driven Navier-Stokes equations, simulated using the lattice Boltzmann equation.

  13. Orbital Elements and Period Variation of the Eclipsing Binary T LMi

    Directory of Open Access Journals (Sweden)

    Kyu-Dong Oh

    1987-12-01

    Full Text Available A photometric solutions of T LMi were derived with derived with the Wilson and Devinney model using the BV photoelectric light curves of Okazaki(1977 and orbital period changes are discussed from the all of the collected times of minima available in the literature. We obtained a variation with a period of 62.y01 and an amplitude of 0.d0425 form the (O-C diagram. According to the physical properties of T LMi on the basis of derived photometric solution, it have a doubt the credibility of the existence of "R CMs type".

  14. Analysis for orbital rendezvous of Chang'E-5 using SBI technique

    Science.gov (United States)

    Huang, Y.; Shan, Q.; Li, P.

    2016-12-01

    Chang'E-5 will be launched in later 2017/early 2018 using a new generation rocket from Wenchang satellite launch center, Hainan, China. It is a lunar sampling return mission, and it is the first time for China to carry out orbital rendezvous and docking in the Moon. How to achieve orbital rendezvous successfully in the Moon is very important in Chang'E-5 mission. Orbital rendezvous will be implemented between an orbiter and an ascender 200 km above the Moon. The ground tracking techniques include range, Doppler and VLBI, and they will be used to track the orbiter and the ascender when the ascender is about 70 km farther away from the orbiter. Later the ascender will approach the orbiter automatically. As a successful example, in Chang'E-3, the differential phase delay (delta delay) data between the rover and the lander are obtained with a random error of about 1 ps, and the relative position of the rover is determined with an accuracy of several meters by using same beam VLBI (SBI) technique. Here the application of the SBI technique for Chang'E-5 orbital rendezvous is discussed. SBI technique can be used to track the orbiter and the ascender simultaneously when they are in the same beam. Delta delay of the two probes can be derived, and the measurement accuracy is much higher than that of the traditional VLBI data because of the cancelation of common errors. Theoretically it can result in a more accurate relative orbit between the two probes. In the simulation, different strategies are discussed to analyze the contribution of SBI data to the orbit accuracy improvement especially relative orbit between the orbiter and ascender. The simulation results show that the relative position accuracy of the orbiter and ascender can reach about 1 m with delta delay data of 10 ps.

  15. About periodic and quasi-periodic orbits of a new type for twist maps of the torus

    Directory of Open Access Journals (Sweden)

    SALVADOR ADDAS-ZANATA

    2002-03-01

    Full Text Available We prove that for a large and important class of C¹ twist maps of the torus periodic and quasi-periodic orbits of a new type exist, provided that there are no rotational invariant circles (R.I.C's. These orbits have a non-zero "vertical rotation number'' (V.R.N., in contrast to what happens to Birkhoff periodic orbits and Aubry-Mather sets. The V.R.N. is rational for a periodic orbit and irrational for a quasi-periodic. We also prove that the existence of an orbit with a V.R.N = a > 0, implies the existence of orbits with V.R.N = b, for all 0 Provamos que para uma relevante classe de aplicações C¹ no toro, que desviam a vertical para a direita, existem órbitas periódicas e quase-periódicas de um novo tipo, se e somente se, não existem círculos rotacionais invariantes. Essas órbitas têm um número de rotação vertical não nulo (N.R.V, em contraste com o que ocorre para órbitas periódicas do tipo Birkhoff e para os conjuntos de Aubry-Mather. O número de rotação vertical é racional para uma órbita periódica e irracional para uma quase-periódica. Também provamos que a existência de uma órbita com N.R.V = a implica a existência de órbitas com N.R.V = b, para todo 0 < b < a. Como consequência destes resultados, obtemos que uma aplicação do toro que desvia a vertical e não possui círculos rotacionais invariates, necessariamente tem entropia topológica positiva, que é um resultado clássico. No fim deste trabalho apresentamos aplicações e exemplos, como o Standard map, dos resultados obtidos.

  16. Periodic orbit-attitude solutions along planar orbits in a perturbed circular restricted three-body problem for the Earth-Moon system

    Science.gov (United States)

    Bucci, Lorenzo; Lavagna, Michèle; Guzzetti, Davide; Howell, Kathleen C.

    2018-06-01

    Interest on Large Space Structures (LSS), orbiting in strategic and possibly long-term stable locations, is nowadays increasing in the space community. LSS can serve as strategic outpost to support a variety of manned and unmanned mission, or may carry scientific payloads for astronomical observations. The paper focuses on analysing LSS in the Earth-Moon system, exploring dynamical structures that are available within a multi-body gravitational environment. Coupling between attitude and orbital dynamics is investigated, with particular interest on the gravity gradient torque exerted by the two massive attractors. First, natural periodic orbit-attitude solutions are obtained; a LSS that exploits such solutions would benefit of a naturally periodic body rotation synchronous with the orbital motion, easing the effort of the attitude control system to satisfy pointing requirements. Then, the solar radiation pressure is introduced into the fully coupled dynamical model and its effects investigated, discovering novel periodic attitude solutions. Benefits of periodic behaviours that incorporate solar radiation pressure are discussed, and analysed via the variation of some parameters (e.g reflection/absorption coefficients, position of the centre of pressure). As a final step to refine the current perturbed orbit-attitude model, a structure flexibility is also superimposed to a reference orbit-attitude rigid body motion via a simple, yet effective model. The coupling of structural vibrations and attitude motion is preliminarily explored, and allows identification of possible challenges, that may be faced to position a LSS in a periodic orbit within the Earth-Moon system.

  17. Families of periodic orbits in Hill's problem with solar radiation pressure: application to Hayabusa 2

    Science.gov (United States)

    Giancotti, Marco; Campagnola, Stefano; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2014-11-01

    This work studies periodic solutions applicable, as an extended phase, to the JAXA asteroid rendezvous mission Hayabusa 2 when it is close to target asteroid 1999 JU3. The motion of a spacecraft close to a small asteroid can be approximated with the equations of Hill's problem modified to account for the strong solar radiation pressure. The identification of families of periodic solutions in such systems is just starting and the field is largely unexplored. We find several periodic orbits using a grid search, then apply numerical continuation and bifurcation theory to a subset of these to explore the changes in the orbit families when the orbital energy is varied. This analysis gives information on their stability and bifurcations. We then compare the various families on the basis of the restrictions and requirements of the specific mission considered, such as the pointing of the solar panels and instruments. We also use information about their resilience against parameter errors and their ground tracks to identify one particularly promising type of solution.

  18. Quantum-classical correspondence in the vicinity of periodic orbits

    Science.gov (United States)

    Kumari, Meenu; Ghose, Shohini

    2018-05-01

    Quantum-classical correspondence in chaotic systems is a long-standing problem. We describe a method to quantify Bohr's correspondence principle and calculate the size of quantum numbers for which we can expect to observe quantum-classical correspondence near periodic orbits of Floquet systems. Our method shows how the stability of classical periodic orbits affects quantum dynamics. We demonstrate our method by analyzing quantum-classical correspondence in the quantum kicked top (QKT), which exhibits both regular and chaotic behavior. We use our correspondence conditions to identify signatures of classical bifurcations even in a deep quantum regime. Our method can be used to explain the breakdown of quantum-classical correspondence in chaotic systems.

  19. Denjoy minimal sets and Birkhoff periodic orbits for non-exact monotone twist maps

    Science.gov (United States)

    Qin, Wen-Xin; Wang, Ya-Nan

    2018-06-01

    A non-exact monotone twist map φbarF is a composition of an exact monotone twist map φ bar with a generating function H and a vertical translation VF with VF ((x , y)) = (x , y - F). We show in this paper that for each ω ∈ R, there exists a critical value Fd (ω) ≥ 0 depending on H and ω such that for 0 ≤ F ≤Fd (ω), the non-exact twist map φbarF has an invariant Denjoy minimal set with irrational rotation number ω lying on a Lipschitz graph, or Birkhoff (p , q)-periodic orbits for rational ω = p / q. Like the Aubry-Mather theory, we also construct heteroclinic orbits connecting Birkhoff periodic orbits, and show that quasi-periodic orbits in these Denjoy minimal sets can be approximated by periodic orbits. In particular, we demonstrate that at the critical value F =Fd (ω), the Denjoy minimal set is not uniformly hyperbolic and can be approximated by smooth curves.

  20. Test of the periodic-orbit approximation in n-disk systems

    International Nuclear Information System (INIS)

    Wirzba, A.

    1993-01-01

    The scattering of a point particle in two dimensions from two (or three) equally-sized (and spaced) circular hard disks is one of the simplest classically hyperbolic scattering problems. Because of this simplicity such systems are well suited for the study of the semiclassical periodic-orbit approximation in the cycle expansion of the dynamical zeta function applied to a quantum-mechanical scattering problem. Especially the predictions of the semiclassical cycle expansion for the quantum-mechanical resonances can be tested in these n-disk systems. Whereas for high wave numbers the cycle expansion gives quite accurate results, there are systematic deviations for low wave numbers from the exact quantum-mechanical values. The low-lying quantum-mechanical resonance poles of the 2- and 3-disk problem are constructed and compared to the cycle-expansion results. The characteristic determinant of the scattering matrix is expanded in terms of simple traces which in turn are related to the classical periodic orbits and possible creeping contributions. It will be shown that for large separations of the disks the correct resonance-pole positions can be extracted just from the knowledge of the lowest traces whose semiclassical limit are the fundamental periodic orbits. Creeping-orbit corrections are shown to be small. (orig.)

  1. Rigorous Numerics for ill-posed PDEs: Periodic Orbits in the Boussinesq Equation

    Science.gov (United States)

    Castelli, Roberto; Gameiro, Marcio; Lessard, Jean-Philippe

    2018-04-01

    In this paper, we develop computer-assisted techniques for the analysis of periodic orbits of ill-posed partial differential equations. As a case study, our proposed method is applied to the Boussinesq equation, which has been investigated extensively because of its role in the theory of shallow water waves. The idea is to use the symmetry of the solutions and a Newton-Kantorovich type argument (the radii polynomial approach) to obtain rigorous proofs of existence of the periodic orbits in a weighted ℓ1 Banach space of space-time Fourier coefficients with exponential decay. We present several computer-assisted proofs of the existence of periodic orbits at different parameter values.

  2. Nontrivial paths and periodic orbits of the T-fractal billiard table

    Science.gov (United States)

    Lapidus, Michel L.; Miller, Robyn L.; Niemeyer, Robert G.

    2016-07-01

    We introduce and prove numerous new results about the orbits of the T-fractal billiard. Specifically, in section 3, we give a variety of sufficient conditions for the existence of a sequence of compatible periodic orbits. In section 4, we examine the limiting behavior of particular sequences of compatible periodic orbits. Additionally, sufficient conditions for the existence of particular nontrivial paths are given in section 4. The proofs of two results of Lapidus and Niemeyer (2013 The current state of fractal billiards Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II: Fractals in Applied Mathematics (Contemporary Mathematics vol 601) ed D Carfi et al (Providence, RI: American Mathematical Society) pp 251-88 (e-print: arXiv:math.DS.1210.0282v2, 2013) appear here for the first time, as well. In section 5, an orbit with an irrational initial direction reaches an elusive point in a way that yields a nontrivial path of finite length, yet, by our convention, constitutes a singular orbit of the fractal billiard table. The existence of such an orbit seems to indicate that the classification of orbits may not be so straightforward. A discussion of our results and directions for future research is then given in section 6.

  3. Period changes of cataclysmic variables below the period gap: V2051 Oph, OY Car and Z Cha

    Science.gov (United States)

    Pilarčík, L.; Wolf, M.; Zasche, P.; Vraštil, J.

    2018-04-01

    We present our results of a long-term monitoring of cataclysmic variable stars (CVs). About 40 new eclipses were measured for the three southern SU UMa-type eclipsing CVs: V2051 Oph, OY Car and Z Cha. Based on the current O - C diagrams we confirmed earlier findings that V2051 Oph and OY Car present cyclic changes of their orbital periods lasting 25 and 29 years, respectively. In case of Z Cha we propose the light-time effect caused probably by a presence of the third component orbiting the eclipsing CV with the period of 43.5 years. The minimal mass of this companion results about 15 MJup.

  4. Periodic orbits of solar sail equipped with reflectance control device in Earth-Moon system

    Science.gov (United States)

    Yuan, Jianping; Gao, Chen; Zhang, Junhua

    2018-02-01

    In this paper, families of Lyapunov and halo orbits are presented with a solar sail equipped with a reflectance control device in the Earth-Moon system. System dynamical model is established considering solar sail acceleration, and four solar sail steering laws and two initial Sun-sail configurations are introduced. The initial natural periodic orbits with suitable periods are firstly identified. Subsequently, families of solar sail Lyapunov and halo orbits around the L1 and L2 points are designed with fixed solar sail characteristic acceleration and varying reflectivity rate and pitching angle by the combination of the modified differential correction method and continuation approach. The linear stabilities of solar sail periodic orbits are investigated, and a nonlinear sliding model controller is designed for station keeping. In addition, orbit transfer between the same family of solar sail orbits is investigated preliminarily to showcase reflectance control device solar sail maneuver capability.

  5. Stabilizing periodic orbits of chaotic systems using fuzzy adaptive sliding mode control

    Energy Technology Data Exchange (ETDEWEB)

    Layeghi, Hamed [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: layeghi@mech.sharif.edu; Arjmand, Mehdi Tabe [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: arjmand@mech.sharif.edu; Salarieh, Hassan [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: aalasti@sharif.edu

    2008-08-15

    In this paper by using a combination of fuzzy identification and the sliding mode control a fuzzy adaptive sliding mode scheme is designed to stabilize the unstable periodic orbits of chaotic systems. The chaotic system is assumed to have an affine form x{sup (n)} = f(X) + g(X)u where f and g are unknown functions. Using only the input-output data obtained from the underlying dynamical system, two fuzzy systems are constructed for identification of f and g. Two distinct methods are utilized for fuzzy modeling, the least squares and the gradient descent techniques. Based on the estimated fuzzy models, an adaptive controller, which works through the sliding mode control, is designed to make the system track the desired unstable periodic orbits. The stability analysis of the overall closed loop system is presented in the paper and the effectiveness of the proposed adaptive scheme is numerically investigated. As a case of study, modified Duffing system is selected for applying the proposed method to stabilize its 2{pi} and 4{pi} periodic orbits. Simulation results show the high performance of the method for stabilizing the unstable periodic orbits of unknown chaotic systems.

  6. Periodic orbits of hybrid systems and parameter estimation via AD

    International Nuclear Information System (INIS)

    Guckenheimer, John; Phipps, Eric Todd; Casey, Richard

    2004-01-01

    Rhythmic, periodic processes are ubiquitous in biological systems; for example, the heart beat, walking, circadian rhythms and the menstrual cycle. Modeling these processes with high fidelity as periodic orbits of dynamical systems is challenging because: (1) (most) nonlinear differential equations can only be solved numerically; (2) accurate computation requires solving boundary value problems; (3) many problems and solutions are only piecewise smooth; (4) many problems require solving differential-algebraic equations; (5) sensitivity information for parameter dependence of solutions requires solving variational equations; and (6) truncation errors in numerical integration degrade performance of optimization methods for parameter estimation. In addition, mathematical models of biological processes frequently contain many poorly-known parameters, and the problems associated with this impedes the construction of detailed, high-fidelity models. Modelers are often faced with the difficult problem of using simulations of a nonlinear model, with complex dynamics and many parameters, to match experimental data. Improved computational tools for exploring parameter space and fitting models to data are clearly needed. This paper describes techniques for computing periodic orbits in systems of hybrid differential-algebraic equations and parameter estimation methods for fitting these orbits to data. These techniques make extensive use of automatic differentiation to accurately and efficiently evaluate derivatives for time integration, parameter sensitivities, root finding and optimization. The boundary value problem representing a periodic orbit in a hybrid system of differential algebraic equations is discretized via multiple-shooting using a high-degree Taylor series integration method (GM00, Phi03). Numerical solutions to the shooting equations are then estimated by a Newton process yielding an approximate periodic orbit. A metric is defined for computing the distance

  7. On the observed excess of retrograde orbits among long-period comets

    International Nuclear Information System (INIS)

    Fernandez, J.A.

    1981-01-01

    The distribution of orbital inclinations of the observed long-period comets is analysed. An excess of retrograde orbits is found which increases with the perihelion distance, except for the range 1.1 10 3 A U) has the same behaviour as the total sample. It is thus suggested that the excess of retrograde orbits among long-period comets is related to an already existent excess among the incoming new comets (i.e. comets driven into the planetary region by stellar perturbations). Using theoretical considerations and a numerical model it is proposed that an important fraction of the so-called new comets are actually repeating passages through the planetary region. Nearly a half of the new comets with q > 2 A U may be repeating passages. An important consequence of the presence of comets repeating passages among the new ones is the production of an excess of retrograde orbits in the whole sample. (author)

  8. Effect of lunar gravity models on Chang'E-2 orbit determination using VLBI tracking data

    Directory of Open Access Journals (Sweden)

    Erhu Wei

    2016-11-01

    Full Text Available The precise orbit determination of Chang'E-2 is the most important issue for successful mission and scientific applications, while the lunar gravity field model with big uncertainties has large effect on Chang'E-2 orbit determination. Recently, several new gravity models have been produced using the latest lunar satellites tracking data, such as LP165P, SGM150J, GL0900D and GRGM900C. In this paper, the four gravity models mentioned above were evaluated through the power spectra analysis, admittance and coherence analysis. Effect of four lunar gravity models on Chang'E-2 orbit determination performance is investigated and assessed using Very Long Baseline Interferometry (VLBI tracking data. The overlap orbit analysis, the posteriori data residual, and the orbit prediction are used to evaluate the orbit precision between successive arcs. The LP165P model has better orbit overlap performance than the SGM150J model for Chang'E-2100 km × 100 km orbit and the SGM150J model performs better for Chang'E-2100 km × 15 km orbit, while GL0900D and GRGM900C have the best orbit overlap results for the two types of Chang'E-2 orbit. For the orbit prediction, GRGM900C has the best orbit prediction performance in the four models.

  9. Targeting Ballistic Lunar Capture Trajectories Using Periodic Orbits in the Sun-Earth CRTBP

    Science.gov (United States)

    Cooley, D.S.; Griesemer, Paul Ricord; Ocampo, Cesar

    2009-01-01

    A particular periodic orbit in the Earth-Sun circular restricted three body problem is shown to have the characteristics needed for a ballistic lunar capture transfer. An injection from a circular parking orbit into the periodic orbit serves as an initial guess for a targeting algorithm. By targeting appropriate parameters incrementally in increasingly complicated force models and using precise derivatives calculated from the state transition matrix, a reliable algorithm is produced. Ballistic lunar capture trajectories in restricted four body systems are shown to be able to be produced in a systematic way.

  10. Accumulation of unstable periodic orbits and the stickiness in the two-dimensional piecewise linear map.

    Science.gov (United States)

    Akaishi, A; Shudo, A

    2009-12-01

    We investigate the stickiness of the two-dimensional piecewise linear map with a family of marginal unstable periodic orbits (FMUPOs), and show that a series of unstable periodic orbits accumulating to FMUPOs plays a significant role to give rise to the power law correlation of trajectories. We can explicitly specify the sticky zone in which unstable periodic orbits whose stability increases algebraically exist, and find that there exists a hierarchy in accumulating periodic orbits. In particular, the periodic orbits with linearly increasing stability play the role of fundamental cycles as in the hyperbolic systems, which allows us to apply the method of cycle expansion. We also study the recurrence time distribution, especially discussing the position and size of the recurrence region. Following the definition adopted in one-dimensional maps, we show that the recurrence time distribution has an exponential part in the short time regime and an asymptotic power law part. The analysis on the crossover time T(c)(*) between these two regimes implies T(c)(*) approximately -log[micro(R)] where micro(R) denotes the area of the recurrence region.

  11. Analysis of Periodic Orbits about the Triangular Solutions of the Restricted Sum-Jupiter and Earth-Moon Problem

    Directory of Open Access Journals (Sweden)

    Sang-Young Park

    1988-12-01

    Full Text Available Using the numerical solution in the plane restricted problem of three bodies, about 490 periodic orbits are computed numerically around the L5 of Sun-Jupiter and about 1600 periodic orbits also be done around the L5 of Earth-Moon system. As period increase, the energy and the shape of periodic orbits increase around the L5 of Sun-Jupiter system. But, in Earth-Moon system, the complex shapes and dents appear around the L5 and periodic orbits intersect one another in the place where dents are shown. And there is a region that three different periodic orbits exist with the same period in this region. The regions can exist around the L5 of Sun-Jupiter system where periodic orbit can be unstable by perturbation of other force besides the gravitational force of Jupiter. These regions which is close to L5 are a ~5.12 AU and a ~5.29 AU. The Trojan asteroids that have a small eccentricity and inclination can not exist in this region.

  12. The shortest-known-period star orbiting our Galaxy's supermassive black hole.

    Science.gov (United States)

    Meyer, L; Ghez, A M; Schödel, R; Yelda, S; Boehle, A; Lu, J R; Do, T; Morris, M R; Becklin, E E; Matthews, K

    2012-10-05

    Stars with short orbital periods at the center of our Galaxy offer a powerful probe of a supermassive black hole. Over the past 17 years, the W. M. Keck Observatory has been used to image the galactic center at the highest angular resolution possible today. By adding to this data set and advancing methodologies, we have detected S0-102, a star orbiting our Galaxy's supermassive black hole with a period of just 11.5 years. S0-102 doubles the number of known stars with full phase coverage and periods of less than 20 years. It thereby provides the opportunity, with future measurements, to resolve degeneracies in the parameters describing the central gravitational potential and to test Einstein's theory of general relativity in an unexplored regime.

  13. Possible Periodic Orbit Control Maneuvers for an eLISA Mission

    Science.gov (United States)

    Bender, Peter L.; Welter, Gary L.

    2012-01-01

    This paper investigates the possible application of periodic orbit control maneuvers for so-called evolved-LISA (eLISA) missions, i.e., missions for which the constellation arm lengths and mean distance from the Earth are substantially reduced. We find that for missions with arm lengths of 106 km and Earth-trailing distance ranging from approx. 12deg to 20deg over the science lifetime, the occasional use of the spacecraft micro-Newton thrusters for constellation configuration maintenance should be able to essentially eliminate constellation distortion caused by Earth-induced tidal forces at a cost to science time of only a few percent. With interior angle variation kept to approx. +/-0:1deg, the required changes in the angles between the laser beam pointing directions for the two arms from any spacecraft could be kept quite small. This would considerably simplify the apparatus necessary for changing the transmitted beam directions.

  14. An existence proof of a symmetric periodic orbit in the octahedral six-body problem

    OpenAIRE

    Cavalcanti, Anete Soares

    2016-01-01

    We present a proof of the existence of a periodic orbit for the Newtonian six-body problem with equal masses. This orbit has three double collisions each period and no multiple collisions. Our proof is based on the minimization of the Lagrangian action functional on a well chosen class of symmetric loops.

  15. Quantum mechanical analysis of fractal conductance fluctuations: a picture using self-similar periodic orbits

    International Nuclear Information System (INIS)

    Ogura, Tatsuo; Miyamoto, Masanori; Budiyono, Agung; Nakamura, Katsuhiro

    2007-01-01

    Fractal magnetoconductance fluctuations are often observed in experiments on ballistic quantum dots. Although the analysis of the exact self-affine fractal has been given by the semiclassical theory using self-similar periodic orbits in systems with a soft-walled potential with a saddle, there has been no corresponding quantum mechanical investigation. We numerically calculate the quantum conductance with use of the recursive Green's function method applied to open cavities characterized by a Henon-Heiles type potential. The conductance fluctuations show exact self-affinity just as in some of the experimental observations. The enlargement factor for the horizontal axis can be explained by the scaling factor of the area of self-similar periodic orbits, and therefore be attributed to the curvature of the saddle in the cavity potential. The fractal dimension obtained through the box counting method agrees with those evaluated with use of the Hurst exponent, and coincides with the semiclassical prediction. We further investigate the variation of the fractal dimension by changing the control parameters between the classical and quantum domains. (fast track communication)

  16. A Simple Time Domain Collocation Method to Precisely Search for the Periodic Orbits of Satellite Relative Motion

    Directory of Open Access Journals (Sweden)

    Xiaokui Yue

    2014-01-01

    Full Text Available A numerical approach for obtaining periodic orbits of satellite relative motion is proposed, based on using the time domain collocation (TDC method to search for the periodic solutions of an exact J2 nonlinear relative model. The initial conditions for periodic relative orbits of the Clohessy-Wiltshire (C-W equations or Tschauner-Hempel (T-H equations can be refined with this approach to generate nearly bounded orbits. With these orbits, a method based on the least-squares principle is then proposed to generate projected closed orbit (PCO, which is a reference for the relative motion control. Numerical simulations reveal that the presented TDC searching scheme is effective and simple, and the projected closed orbit is very fuel saving.

  17. Orbital stability of periodic traveling-wave solutions for the log-KdV equation

    Science.gov (United States)

    Natali, Fábio; Pastor, Ademir; Cristófani, Fabrício

    2017-09-01

    In this paper we establish the orbital stability of periodic waves related to the logarithmic Korteweg-de Vries equation. Our motivation is inspired in the recent work [3], in which the authors established the well-posedness and the linear stability of Gaussian solitary waves. By using the approach put forward recently in [20] to construct a smooth branch of periodic waves as well as to get the spectral properties of the associated linearized operator, we apply the abstract theories in [13] and [25] to deduce the orbital stability of the periodic traveling waves in the energy space.

  18. The first photometric investigation and orbital period variation analysis of the W UMa type binary IK Bootis

    Science.gov (United States)

    Kriwattanawong, Wichean; Sanguansak, Nuanwan; Maungkorn, Sakdawoot

    2017-08-01

    With new CCD observations of the W UMa type binary IK Boo, we present the first investigation of photometric parameters and orbital period change. The BVRc light curve fit shows that IK Boo is a W-type contact system with a mass ratio of q = 1.146 and a shallow contact with a fill-out factor of f = 2.22%. The orbital period decrease was found to be a rate of -3.28 × 10-7 d yr-1, corresponding to a mass transfer from the more massive to the less massive component with a rate of -2.83 × 10-6 M⊙ yr-1. The inner and outer critical Roche lobes will contract and cause the contact degree to increase. Therefore, IK Boo may evolve into a deeper contact system. Furthermore, a possible cyclic variation was found with a period of 9.74 yr, which could be explained by the light-travel time effect due to the existence of a third companion in the system.

  19. An exact solution for orbit view-periods from a station on a tri-axial ellipsoidal planet

    Science.gov (United States)

    Tang, C. C. H.

    1986-01-01

    This paper presents the concise exact solution for predicting view-periods to be observed from a masked or unmasked tracking station on a tri-axial ellipsoidal surface. The new exact approach expresses the azimuth and elevation angles of a spacecraft in terms of the station-centered geodetic topocentric coordinates in an elegantly concise manner. A simple and efficient algorithm is developed to avoid costly repetitive computations in searching for neighborhoods near the rise and set times of each satellite orbit for each station. Only one search for each orbit is necessary for each station. Sample results indicate that the use of an assumed spherical earth instead of an 'actual' tri-axial ellipsoidal earth could introduce an error up to a few minutes in a view-period prediction for circular orbits of low or medium altitude. For an elliptical orbit of high eccentricity and long period, the maximum error could be even larger. The analytic treatment and the efficient algorithm are designed for geocentric orbits, but they should be applicable to interplanetary trajectories by an appropriate coordinates transformation at each view-period calculation. This analysis can be accomplished only by not using the classical orbital elements.

  20. An exact solution for orbit view-periods from a station on a tri-axial ellipsoidal planet

    Science.gov (United States)

    Tang, C. C. H.

    1986-08-01

    This paper presents the concise exact solution for predicting view-periods to be observed from a masked or unmasked tracking station on a tri-axial ellipsoidal surface. The new exact approach expresses the azimuth and elevation angles of a spacecraft in terms of the station-centered geodetic topocentric coordinates in an elegantly concise manner. A simple and efficient algorithm is developed to avoid costly repetitive computations in searching for neighborhoods near the rise and set times of each satellite orbit for each station. Only one search for each orbit is necessary for each station. Sample results indicate that the use of an assumed spherical earth instead of an 'actual' tri-axial ellipsoidal earth could introduce an error up to a few minutes in a view-period prediction for circular orbits of low or medium altitude. For an elliptical orbit of high eccentricity and long period, the maximum error could be even larger. The analytic treatment and the efficient algorithm are designed for geocentric orbits, but they should be applicable to interplanetary trajectories by an appropriate coordinates transformation at each view-period calculation. This analysis can be accomplished only by not using the classical orbital elements.

  1. Climatic changes on orbital and sub-orbital time scale recorded by the Guliya ice core in Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    姚檀栋; 徐柏青; 蒲健辰

    2001-01-01

    Based on ice core records in the Tibetan Plateau and Greenland, the features and possible causes of climatic changes on orbital and sub-orbital time scale were discussed. Orbital time scale climatic change recorded in ice core from the Tibetan Plateau is typically ahead of that from polar regions, which indicates that climatic change in the Tibetan Plateau might be earlier than polar regions. The solar radiation change is a major factor that dominates the climatic change on orbital time scale. However, climatic events on sub-orbital time scale occurred later in the Tibetan Plateau than in the Arctic Region, indicating a different mechanism. For example, the Younger Dryas and Heinrich events took place earlier in Greenland ice core record than in Guliya ice core record. It is reasonable to propose the hypothesis that these climatic events were affected possibly by the Laurentide Ice Sheet. Therefore, ice sheet is critically important to climatic change on sub-orbital time scale in some ice ages.

  2. Detecting a Subsurface Ocean From Periodic Orbits at Enceladus

    Science.gov (United States)

    Casotto, S.; Padovan, S.; Russell, R. P.; Lara, M.

    2008-12-01

    from the tiger- stripes. Near-circular, low altitude highly inclined orbits with arbitrary initial conditions will impact Enceladus if uncontrolled in about 1 to 2 days. To reduce risk and station-keeping requirements we choose periodic orbits in the Hill's plus non-spherical Enceladus model. Despite the instability, the repeat ground track solutions represent equilibria in the dominant terms of the dynamics and therefore extend the uncontrolled lifetimes to ~7 to ~10 days. Round-trip transfers between the two orbital phases is expected to conservatively cost between ~50 and ~100 m/s. We use orbits of different altitudes and inclinations to simulate Earth-based ranging to the orbiter and altimeter measurements to the surface of Enceladus. The simulations are made assuming different tidal responses by adopting different values of the Love numbers. The synthetic measurements are then inverted and the tidal parameters h2 and k2 estimated. Results will be presented in terms of sensitivity of detection of Love numbers to the different orbital geometries. Indications will thus be provided for optimized orbit planning of future exploration missions aimed at investigating the internal structure of the satellite and the detection of its putative subcrustal ocean.

  3. Periodicity in changes of Jupiter's hemispheres activity factor is continues to recover in 2018

    Science.gov (United States)

    Vidmachenko, A. P.

    2018-05-01

    From the mid-1990s to 2013 that there was a maximum mismatch between the time of Jupiter's passage at orbit at perihelion and aphelion, and the moments of minima and maxima of Solar activity. In 1963-1995 the correlation between the changes in factor AJ, Solar activity and the moments of passage of perihelion and aphelion of the orbit - was high, and the nature of the changes was synchronized. After 1995, inconsistency in the supply of Solar energy to northern and southern hemispheres of Jupiter and its movement in orbit - has become significant. But after 2014, the periodicity in the change of photometric characteristics of the northern and southern hemispheres of Jupiter, again becomes coordinated. And the data for 2017 and 2018 confirm the improvement of the matching of the course of the Aj(T) dependence, SA index and the regime irradiation by the Sun of Jupiter at it moves along the orbit.

  4. The first orbital parameters and period variation of the short-period eclipsing binary AQ Boo

    Science.gov (United States)

    Wang, Shuai; Zhang, Liyun; Pi, Qingfeng; Han, Xianming L.; Zhang, Xiliang; Lu, Hongpeng; Wang, Daimei; Li, TongAn

    2016-10-01

    We obtained the first VRI CCD light curves of the short-period contact eclipsing binary AQ Boo, which was observed on March 22 and April 19 in 2014 at Xinglong station of National Astronomical Observatories, and on January 20, 21 and February 28 in 2015 at Kunming station of Yunnan Observatories of Chinese Academy of Sciences, China. Using our six newly obtained minima and the minima that other authors obtained previously, we revised the ephemeris of AQ Boo. By fitting the O-C (observed minus calculated) values of the minima, the orbital period of AQ Boo shows a decreasing tendency P˙ = - 1.47(0.17) ×10-7 days/year. We interpret the phenomenon by mass transfer from the secondary (more massive) component to the primary (less massive) one. By using the updated Wilson & Devinney program, we also derived the photometric orbital parameters of AQ Boo for the first time. We conclude that AQ Boo is a near contact binary with a low contact factor of 14.43%, and will become an over-contact system as the mass transfer continues.

  5. Achieving Climate Change Absolute Accuracy in Orbit

    Science.gov (United States)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  6. The Effect of Seasonal and Long-Period Geopotential Variations on the GPS Orbits

    Science.gov (United States)

    Melachroinos, Stavros A.; Lemoine, Frank G.; Chinn, Douglas S.; Zelensky, Nikita P.; Nicholas, Joseph B.; Beckley, Brian D.

    2013-01-01

    We examine the impact of using seasonal and long-period time-variable gravity field (TVG) models on GPS orbit determination, through simulations from 1994 to 2012. The models of time-variable gravity that we test include the GRGS release RL02 GRACE-derived 10-day gravity field models up to degree and order 20 (grgs20x20), a 4 x 4 series of weekly coefficients using GGM03S as a base derived from SLR and DORIS tracking to 11 satellites (tvg4x4), and a harmonic fit to the above 4 x 4 SLR-DORIS time series (goco2s_fit2). These detailed models are compared to GPS orbit simulations using a reference model (stdtvg) based on the International Earth Rotation Service (IERS) and International GNSS Service (IGS) repro1 standards. We find that the new TVG modeling produces significant along, cross-track orbit differences as well as annual, semi-annual, draconitic and long-period effects in the Helmert translation parameters (Tx, Ty, Tz) of the GPS orbits with magnitudes of several mm. We show that the simplistic TVG modeling approach used by all of the IGS Analysis Centers, which is based on the models provided by the IERS standards, becomes progressively less adequate following 2006 when compared to the seasonal and long-period TVG models.

  7. Localization of periodic orbits of polynomial vector fields of even degree by linear functions

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, Konstantin E. [CITEDI-IPN, Av. del Parque 1310, Mesa de Otay, Tijuana, BC (Mexico)] e-mail: konst@citedi.mx

    2005-08-01

    This paper is concerned with the localization problem of periodic orbits of polynomial vector fields of even degree by using linear functions. Conditions of the localization of all periodic orbits in sets of a simple structure are obtained. Our results are based on the solution of the conditional extremum problem and the application of homogeneous polynomial forms of even degrees. As examples, the Lanford system, the jerky system with one quadratic monomial and a quartically perturbed harmonic oscillator are considered.

  8. Localization of periodic orbits of polynomial vector fields of even degree by linear functions

    International Nuclear Information System (INIS)

    Starkov, Konstantin E.

    2005-01-01

    This paper is concerned with the localization problem of periodic orbits of polynomial vector fields of even degree by using linear functions. Conditions of the localization of all periodic orbits in sets of a simple structure are obtained. Our results are based on the solution of the conditional extremum problem and the application of homogeneous polynomial forms of even degrees. As examples, the Lanford system, the jerky system with one quadratic monomial and a quartically perturbed harmonic oscillator are considered

  9. Building CX peanut-shaped disk galaxy profiles. The relative importance of the 3D families of periodic orbits bifurcating at the vertical 2:1 resonance

    Science.gov (United States)

    Patsis, P. A.; Harsoula, M.

    2018-05-01

    Context. We present and discuss the orbital content of a rather unusual rotating barred galaxy model, in which the three-dimensional (3D) family, bifurcating from x1 at the 2:1 vertical resonance with the known "frown-smile" side-on morphology, is unstable. Aims: Our goal is to study the differences that occur in the phase space structure at the vertical 2:1 resonance region in this case, with respect to the known, well studied, standard case, in which the families with the frown-smile profiles are stable and support an X-shaped morphology. Methods: The potential used in the study originates in a frozen snapshot of an N-body simulation in which a fast bar has evolved. We follow the evolution of the vertical stability of the central family of periodic orbits as a function of the energy (Jacobi constant) and we investigate the phase space content by means of spaces of section. Results: The two bifurcating families at the vertical 2:1 resonance region of the new model change their stability with respect to that of most studied analytic potentials. The structure in the side-on view that is directly supported by the trapping of quasi-periodic orbits around 3D stable periodic orbits has now an infinity symbol (i.e. ∞-type) profile. However, the available sticky orbits can reinforce other types of side-on morphologies as well. Conclusions: In the new model, the dynamical mechanism of trapping quasi-periodic orbits around the 3D stable periodic orbits that build the peanut, supports the ∞-type profile. The same mechanism in the standard case supports the X shape with the frown-smile orbits. Nevertheless, in both cases (i.e. in the new and in the standard model) a combination of 3D quasi-periodic orbits around the stable x1 family with sticky orbits can support a profile reminiscent of the shape of the orbits of the 3D unstable family existing in each model.

  10. Localization of periodic orbits of the Roessler system under variation of its parameters

    International Nuclear Information System (INIS)

    Starkov, Konstantin E.; Starkov, Konstantin K.

    2007-01-01

    The localization problem of compact invariant sets of the Roessler system is considered in this paper. The main interest is attracted to a localization of periodic orbits. We establish a number of algebraic conditions imposed on parameters under which the Roessler system has no compact invariant sets contained in half-spaces z > 0; z < 0 and in some others. We prove that if parameters (a, b, c) of the Roessler system are such that this system has no equilibrium points then it has no periodic orbits as well. In addition, we give localization conditions of compact invariant sets by using linear functions and one quadratic function

  11. Localization of periodic orbits of the Roessler system under variation of its parameters

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, Konstantin E. [CITEDI-IPN, Av. del Parque 1310, Mesa de Otay, Tijuana, BC (Mexico)]. E-mail: konst@citedi.mx; Starkov, Konstantin K. [UABC - Campus Tijuana, Facultad de Ciencias Quimicas e Ingenieria, Calzada Tecnologico, Mesa de Otay, Tijuana, BC (Mexico)

    2007-08-15

    The localization problem of compact invariant sets of the Roessler system is considered in this paper. The main interest is attracted to a localization of periodic orbits. We establish a number of algebraic conditions imposed on parameters under which the Roessler system has no compact invariant sets contained in half-spaces z > 0; z < 0 and in some others. We prove that if parameters (a, b, c) of the Roessler system are such that this system has no equilibrium points then it has no periodic orbits as well. In addition, we give localization conditions of compact invariant sets by using linear functions and one quadratic function.

  12. Modeling and analysis of periodic orbits around a contact binary asteroid

    NARCIS (Netherlands)

    Feng, J.; Noomen, R.; Visser, P.N.A.M.; Yuan, J.

    2015-01-01

    The existence and characteristics of periodic orbits (POs) in the vicinity of a contact binary asteroid are investigated with an averaged spherical harmonics model. A contact binary asteroid consists of two components connected to each other, resulting in a highly bifurcated shape. Here, it is

  13. A simulation of the Four-way lunar Lander-Orbiter tracking mode for the Chang'E-5 mission

    Science.gov (United States)

    Li, Fei; Ye, Mao; Yan, Jianguo; Hao, Weifeng; Barriot, Jean-Pierre

    2016-06-01

    The Chang'E-5 mission is the third phase of the Chinese Lunar Exploration Program and will collect and return lunar samples. After sampling, the Orbiter and the ascent vehicle will rendezvous and dock, and both spacecraft will require high precision orbit navigation. In this paper, we present a novel tracking mode-Four-way lunar Lander-Orbiter tracking that possibly can be employed during the Chang'E-5 mission. The mathematical formulas for the Four-way lunar Lander-Orbiter tracking mode are given and implemented in our newly-designed lunar spacecraft orbit determination and gravity field recovery software, the LUnar Gravity REcovery and Analysis Software/System (LUGREAS). The simulated observables permit analysis of the potential contribution Four-way lunar Lander-Orbiter tracking could make to precision orbit determination for the Orbiter. Our results show that the Four-way lunar Lander-Orbiter Range Rate has better geometric constraint on the orbit, and is more sensitive than the traditional two-way range rate that only tracks data between the Earth station and lunar Orbiter. After combining the Four-way lunar Lander-Orbiter Range Rate data with the traditional two-way range rate data and considering the Lander position error and lunar gravity field error, the accuracy of precision orbit determination for the Orbiter in the simulation was improved significantly, with the biggest improvement being one order of magnitude, and the Lander position could be constrained to sub-meter level. This new tracking mode could provide a reference for the Chang'E-5 mission and have enormous potential for the positioning of future lunar farside Lander due to its relay characteristic.

  14. The orbital period in the supergiant fast X-ray transient IGR J16465--4507

    OpenAIRE

    Clark, D. J.; Sguera, V.; Bird, A. J; McBride, V. A.; Hill, A. B.; Scaringi, S.; Drave, S.; Bazzano, A.; Dean, A. J

    2010-01-01

    Timing analysis of the INTEGRAL-IBIS and Swift-BAT light curves of the Supergiant Fast X-ray Transient (SFXT) IGR J16465-4507 has identified a period of 30.32+/-0.02 days which we interpret as the orbital period of the binary system. In addition 11 outbursts (9 of which are previously unpublished) have been found between MJD 52652 to MJD 54764, all of which occur close to the region of the orbit we regard as periastron. From the reported flux outbursts, we found a dynamical range in the inter...

  15. Localization of periodic orbits of polynomial systems by ellipsoidal estimates

    International Nuclear Information System (INIS)

    Starkov, Konstantin E.; Krishchenko, Alexander P.

    2005-01-01

    In this paper we study the localization problem of periodic orbits of multidimensional continuous-time systems in the global setting. Our results are based on the solution of the conditional extremum problem and using sign-definite quadratic and quartic forms. As examples, the Rikitake system and the Lamb's equations for a three-mode operating cavity in a laser are considered

  16. Localization of periodic orbits of polynomial systems by ellipsoidal estimates

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, Konstantin E. [CITEDI-IPN, Avenue del Parque 1310, Mesa de Otay, Tijuana, BC (Mexico)]. E-mail: konst@citedi.mx; Krishchenko, Alexander P. [Bauman Moscow State Technical University, 2nd Baumanskaya Street, 5, Moscow 105005 (Russian Federation)]. E-mail: apkri@999.ru

    2005-02-01

    In this paper we study the localization problem of periodic orbits of multidimensional continuous-time systems in the global setting. Our results are based on the solution of the conditional extremum problem and using sign-definite quadratic and quartic forms. As examples, the Rikitake system and the Lamb's equations for a three-mode operating cavity in a laser are considered.

  17. Harmonically excited orbital variations

    International Nuclear Information System (INIS)

    Morgan, T.

    1985-01-01

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs

  18. Characteristics of persistent spin current components in a quasi-periodic Fibonacci ring with spin–orbit interactions: Prediction of spin–orbit coupling and on-site energy

    International Nuclear Information System (INIS)

    Patra, Moumita; Maiti, Santanu K.

    2016-01-01

    In the present work we investigate the behavior of all three components of persistent spin current in a quasi-periodic Fibonacci ring subjected to Rashba and Dresselhaus spin–orbit interactions. Analogous to persistent charge current in a conducting ring where electrons gain a Berry phase in presence of magnetic flux, spin Berry phase is associated during the motion of electrons in presence of a spin–orbit field which is responsible for the generation of spin current. The interplay between two spin–orbit fields along with quasi-periodic Fibonacci sequence on persistent spin current is described elaborately, and from our analysis, we can estimate the strength of any one of two spin–orbit couplings together with on-site energy, provided the other is known. - Highlights: • Determination of Rashba and Dresselhaus spin–orbit fields is discussed. • Characteristics of all three components of spin current are explored. • Possibility of estimating on-site energy is given. • Results can be generalized to any lattice models.

  19. Characteristics of persistent spin current components in a quasi-periodic Fibonacci ring with spin–orbit interactions: Prediction of spin–orbit coupling and on-site energy

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Moumita; Maiti, Santanu K., E-mail: santanu.maiti@isical.ac.in

    2016-12-15

    In the present work we investigate the behavior of all three components of persistent spin current in a quasi-periodic Fibonacci ring subjected to Rashba and Dresselhaus spin–orbit interactions. Analogous to persistent charge current in a conducting ring where electrons gain a Berry phase in presence of magnetic flux, spin Berry phase is associated during the motion of electrons in presence of a spin–orbit field which is responsible for the generation of spin current. The interplay between two spin–orbit fields along with quasi-periodic Fibonacci sequence on persistent spin current is described elaborately, and from our analysis, we can estimate the strength of any one of two spin–orbit couplings together with on-site energy, provided the other is known. - Highlights: • Determination of Rashba and Dresselhaus spin–orbit fields is discussed. • Characteristics of all three components of spin current are explored. • Possibility of estimating on-site energy is given. • Results can be generalized to any lattice models.

  20. Supporting a Deep Space Gateway with Free-Return Earth-Moon Periodic Orbits

    Science.gov (United States)

    Genova, A. L.; Dunham, D. W.; Hardgrove, C.

    2018-02-01

    Earth-Moon periodic orbits travel between the Earth and Moon via free-return circumlunar segments and can host a station that can provide architecture support to other nodes near the Moon and Mars while enabling science return from cislunar space.

  1. TRANSITING PLANETS WITH LSST. II. PERIOD DETECTION OF PLANETS ORBITING 1 M{sub ⊙} HOSTS

    Energy Technology Data Exchange (ETDEWEB)

    Jacklin, Savannah [Department of Astrophysics and Planetary Science, Villanova University, Villanova, PA 19085 (United States); Lund, Michael B.; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Pepper, Joshua [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States)

    2015-07-15

    The Large Synoptic Survey Telescope (LSST) will photometrically monitor ∼10{sup 9} stars for 10 years. The resulting light curves can be used to detect transiting exoplanets. In particular, as demonstrated by Lund et al., LSST will probe stellar populations currently undersampled in most exoplanet transit surveys, including out to extragalactic distances. In this paper we test the efficiency of the box-fitting least-squares (BLS) algorithm for accurately recovering the periods of transiting exoplanets using simulated LSST data. We model planets with a range of radii orbiting a solar-mass star at a distance of 7 kpc, with orbital periods ranging from 0.5 to 20 days. We find that standard-cadence LSST observations will be able to reliably recover the periods of Hot Jupiters with periods shorter than ∼3 days; however, it will remain a challenge to confidently distinguish these transiting planets from false positives. At the same time, we find that the LSST deep-drilling cadence is extremely powerful: the BLS algorithm successfully recovers at least 30% of sub-Saturn-size exoplanets with orbital periods as long as 20 days, and a simple BLS power criterion robustly distinguishes ∼98% of these from photometric (i.e., statistical) false positives.

  2. The ω-limit sets of a flow and periodic orbits

    International Nuclear Information System (INIS)

    Wang Xiaoxia; Blackmore, Denis; Wang Chengwen

    2009-01-01

    In this paper we discuss the ω-limit sets of a flow using the Conley theory, chain recurrence and Morse decompositions. Our results generalize and improve the related result in [Schropp J. A reduction principle for ω-limit sets. Z Angew Math Meth 1996;76(6):349-56], and we also show how they can be used as a basis for some new criteria for the existence of periodic orbits.

  3. Mean Orbital Elements for Geosynchronous Orbit - II - Orbital inclination, longitude of ascending node, mean longitude

    Directory of Open Access Journals (Sweden)

    Kyu-Hong Choi

    1990-06-01

    Full Text Available The osculating orbital elements include the mean, secular, long period, and short period terms. The iterative algorithm used for conversion of osculating orbital elements to mean orbital elements is described. The mean orbital elements of Wc, Ws, and L are obtained.

  4. More than six hundred new families of Newtonian periodic planar collisionless three-body orbits

    Science.gov (United States)

    Li, XiaoMing; Liao, ShiJun

    2017-12-01

    The famous three-body problem can be traced back to Isaac Newton in the 1680s. In the 300 years since this "three-body problem" was first recognized, only three families of periodic solutions had been found, until 2013 when Šuvakov and Dmitrašinović [Phys. Rev. Lett. 110, 114301 (2013)] made a breakthrough to numerically find 13 new distinct periodic orbits, which belong to 11 new families of Newtonian planar three-body problem with equal mass and zero angular momentum. In this paper, we numerically obtain 695 families of Newtonian periodic planar collisionless orbits of three-body system with equal mass and zero angular momentum in case of initial conditions with isosceles collinear configuration, including the well-known figure-eight family found by Moore in 1993, the 11 families found by Šuvakov and Dmitrašinović in 2013, and more than 600 new families that have never been reported, to the best of our knowledge. With the definition of the average period T = T/L f, where L f is the length of the so-called "free group element", these 695 families suggest that there should exist the quasi Kepler's third law T* ≈ 2:433 ± 0:075 for the considered case, where T ≈ = T | E|3/2 is the scale-invariant average period and E is its total kinetic and potential energy, respectively. The movies of these 695 periodic orbits in the real space and the corresponding close curves on the "shape sphere" can be found via the website: http://numericaltank.sjtu.edu.cn/three-body/three-body.htm.

  5. Periodic-orbit theory of the number variance Σ2(L) of strongly chaotic systems

    International Nuclear Information System (INIS)

    Aurich, R.; Steiner, F.

    1994-03-01

    We discuss the number variance Σ 2 (L) and the spectral form factor F(τ) of the energy levels of bound quantum systems whose classical counterparts are strongly chaotic. Exact periodic-orbit representations of Σ 2 (L) and F(τ) are derived which explain the breakdown of universality, i.e., the deviations from the predictions of random-matrix theory. The relation of the exact spectral form factor F(τ) to the commonly used approximation K(τ) is clarified. As an illustration the periodic-orbit representations are tested in the case of a strongly chaotic system at low and high energies including very long-range correlations up to L=700. Good agreement between 'experimental' data and theory is obtained. (orig.)

  6. TRMM On-Orbit Performance Re-Accessed After Control Change

    Science.gov (United States)

    Bilanow, Steve

    2006-01-01

    . After the orbit boost, the attitude errors shown by the PR roll have a smooth sine-wave type signal because of the way that attitude errors propagate with the use of gyro data. Yaw errors couple at orbit period to roll with '/4 orbit lag. By tracking the amplitude, phase, and bias of the sinusoidal PR roll error signal, it was shown that the average pitch rotation axis tends to be offset from orbit normal in a direction perpendicular to the Sun direction, as shown in Figure 2 for a 200 day period following the orbit boost. This is a result of the higher accuracy and stability of the Sun sensor measurements relative to the magnetometer measurements used in the Kalman filter. In November, 2001 a magnetometer calibration adjustment was uploaded which improved the pointing performance, keeping the roll and yaw amplitudes within about 0.1 degrees. After the boost, onboard ephemeris errors had a direct effect on the pitch pointing, being used to compute the Earth pointing reference frame. Improvements after the orbit boost have kept the the onboard ephemeris errors generally below 20 kilometers. Ephemeris errors have secondary effects on roll and yaw, especially during high beta angle when pitch effects can couple into roll and yaw. This is illustrated in figure 3. The onboard roll bias trends as measured by PR data show correlations with the Kalman filter's gyro bias error. This particularly shows up after yaw turns (every 2 to 4 weeks) as shown in Figure 3, when a slight roll bias is observed while the onboard computed gyro biases settle to new values. As for longer term trends, the PR data shows that the roll bias was influenced by Earth horizon radiance effects prior to the boost, changing values at yaw turns, and indicated a long term drift as shown in Figure 4. After the boost, the bias variations were smaller and showed some possible correlation with solar beta angle, probably due to sun sensor misalignment effects.

  7. Modeling low-thrust transfers between periodic orbits about five libration points: Manifolds and hierarchical design

    Science.gov (United States)

    Zeng, Hao; Zhang, Jingrui

    2018-04-01

    The low-thrust version of the fuel-optimal transfers between periodic orbits with different energies in the vicinity of five libration points is exploited deeply in the Circular Restricted Three-Body Problem. Indirect optimization technique incorporated with constraint gradients is employed to further improve the computational efficiency and accuracy of the algorithm. The required optimal thrust magnitude and direction can be determined to create the bridging trajectory that connects the invariant manifolds. A hierarchical design strategy dividing the constraint set is proposed to seek the optimal solution when the problem cannot be solved directly. Meanwhile, the solution procedure and the value ranges of used variables are summarized. To highlight the effectivity of the transfer scheme and aim at different types of libration point orbits, transfer trajectories between some sample orbits, including Lyapunov orbits, planar orbits, halo orbits, axial orbits, vertical orbits and butterfly orbits for collinear and triangular libration points, are investigated with various time of flight. Numerical results show that the fuel consumption varies from a few kilograms to tens of kilograms, related to the locations and the types of mission orbits as well as the corresponding invariant manifold structures, and indicates that the low-thrust transfers may be a beneficial option for the extended science missions around different libration points.

  8. Orbital structure in oscillating galactic potentials

    Science.gov (United States)

    Terzić, Balša; Kandrup, Henry E.

    2004-01-01

    Subjecting a galactic potential to (possibly damped) nearly periodic, time-dependent variations can lead to large numbers of chaotic orbits experiencing systematic changes in energy, and the resulting chaotic phase mixing could play an important role in explaining such phenomena as violent relaxation. This paper focuses on the simplest case of spherically symmetric potentials subjected to strictly periodic driving with the aim of understanding precisely why orbits become chaotic and under what circumstances they will exhibit systematic changes in energy. Four unperturbed potentials V0(r) were considered, each subjected to a time dependence of the form V(r, t) =V0(r)(1 +m0 sinωt). In each case, the orbits divide clearly into regular and chaotic, distinctions which appear absolute. In particular, transitions from regularity to chaos are seemingly impossible. Over finite time intervals, chaotic orbits subdivide into what can be termed `sticky' chaotic orbits, which exhibit no large-scale secular changes in energy and remain trapped in the phase-space region where they started; and `wildly' chaotic orbits, which do exhibit systematic drifts in energy as the orbits diffuse to different phase-space regions. This latter distinction is not absolute, transitions corresponding apparently to orbits penetrating a `leaky' phase-space barrier. The three different orbit types can be identified simply in terms of the frequencies for which their Fourier spectra have the most power. An examination of the statistical properties of orbit ensembles as a function of driving frequency ω allows us to identify the specific resonances that determine orbital structure. Attention focuses also on how, for fixed amplitude m0, such quantities as the mean energy shift, the relative measure of chaotic orbits and the mean value of the largest Lyapunov exponent vary with driving frequency ω and how, for fixed ω, the same quantities depend on m0.

  9. Discrete restricted four-body problem: Existence of proof of equilibria and reproducibility of periodic orbits

    Energy Technology Data Exchange (ETDEWEB)

    Minesaki, Yukitaka [Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514 (Japan)

    2015-01-01

    We propose the discrete-time restricted four-body problem (d-R4BP), which approximates the orbits of the restricted four-body problem (R4BP). The d-R4BP is given as a special case of the discrete-time chain regularization of the general N-body problem published in Minesaki. Moreover, we analytically prove that the d-R4BP yields the correct orbits corresponding to the elliptic relative equilibrium solutions of the R4BP when the three primaries form an equilateral triangle at any time. Such orbits include the orbit of a relative equilibrium solution already discovered by Baltagiannis and Papadakis. Until the proof in this work, there has been no discrete analog that preserves the orbits of elliptic relative equilibrium solutions in the R4BP. For a long time interval, the d-R4BP can precisely compute some stable periodic orbits in the Sun–Jupiter–Trojan asteroid–spacecraft system that cannot necessarily be reproduced by other generic integrators.

  10. Interaction between subdaily Earth rotation parameters and GPS orbits

    Science.gov (United States)

    Panafidina, Natalia; Seitz, Manuela; Hugentobler, Urs

    2013-04-01

    In processing GPS observations the geodetic parameters like station coordinates and ERPs (Earth rotation parameters) are estimated w.r.t. the celestial reference system realized by the satellite orbits. The interactions/correlations between estimated GPS orbis and other parameters may lead to numerical problems with the solution and introduce systematic errors in the computed values: the well known correlations comprise 1) the correlation between the orbital parameters determining the orientation of the orbital plane in inertial space and the nutation and 2) in the case of estimating ERPs with subdaily resolution the correlation between retrograde diurnal polar motion and nutation (and so the respective orbital elements). In this contribution we study the interaction between the GPS orbits and subdaily model for the ERPs. Existing subdaily ERP model recommended by the IERS comprises ~100 terms in polar motion and ~70 terms in Universal Time at diurnal and semidiurnal tidal periods. We use a long time series of daily normal equation systems (NEQ) obtaine from GPS observations from 1994 till 2007 where the ERPs with 1-hour resolution are transformed into tidal terms and the influence of the tidal terms with different frequencies on the estimated orbital parameters is considered. We found that although there is no algebraic correlation in the NEQ between the individual orbital parameters and the tidal terms, the changes in the amplitudes of tidal terms with periods close to 24 hours can be better accmodated by systematic changes in the orbital parameters than for tidal terms with other periods. Since the variation in Earth rotation with the period of siderial day (23.93h, tide K1) in terrestrial frame has in inertial space the same period as the period of revolution of GPS satellites, the K1 tidal term in polar motion is seen by the satellites as a permanent shift. The tidal terms with close periods (from ~24.13h to ~23.80h) are seen as a slow rotation of the

  11. TRMM On-Orbit Performance Reassessed After Control Change

    Science.gov (United States)

    Bilanow, Stephen

    2006-01-01

    data. After the orbit boost, the attitude errors shown by the PR roll have a smooth sine-wave type signal because of the way that attitude errors propagate with the use of gyro data. Yaw errors couple at orbit period to roll with 1/4 orbit lag. By tracking the amplitude, phase, and bias of the sinusoidal PR roll error signal, it was shown that the average pitch rotation axis tends to be offset from orbit normal in a direction perpendicular to the Sun direction, as shown in Figure 2 for a 200 day period following the orbit boost. This is a result of the higher accuracy and stability of the Sun sensor measurements relative to the magnetometer measurements used in the Kalman filter. In November, 2001 a magnetometer calibration adjustment was uploaded which improved the pointing performance, keeping the roll and yaw amplitudes within about 0.1 degrees.

  12. PHOTOMETRIC, SPECTROSCOPIC, AND ORBITAL PERIOD STUDY OF THREE EARLY-TYPE SEMI-DETACHED SYSTEMS: XZ AQL, UX HER, AND AT PEG

    Energy Technology Data Exchange (ETDEWEB)

    Zola, S. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, PL-30-244 Krakow (Poland); Baştürk, Ö.; Şenavcı, H. V.; Özavcı, İ.; Yılmaz, M. [Ankara University, Faculty of Science, Department of Astronomy and Space Sciences, Tandoğan, TR-06100, Ankara (Turkey); Liakos, A. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Penteli, Athens (Greece); Gazeas, K. [Department of Astrophysics, Astronomy and Mechanics, National and Kapodistrian University of Athens, Zografos, Athens (Greece); Nelson, R. H. [1393 Garvin Street, Prince George, BC V2M 3Z1 (Canada); Zakrzewski, B., E-mail: szola@oa.uj.edu.pl [Mt Suhora Observatory, Pedagogical University, ul. Podchorazych 2, PL-30-084 Krakow (Poland)

    2016-08-01

    In this paper, we present a combined photometric, spectroscopic, and orbital period study of three early-type eclipsing binary systems: XZ Aql, UX Her, and AT Peg. As a result, we have derived the absolute parameters of their components and, on that basis, we discuss their evolutionary states. Furthermore, we compare their parameters with those of other binary systems and with theoretical models. An analysis of all available up-to-date times of minima indicated that all three systems studied here show cyclic orbital changes; their origin is discussed in detail. Finally, we performed a frequency analysis for possible pulsational behavior, and as a result we suggest that XZ Aql hosts a δ Scuti component.

  13. Burn Delay Analysis of the Lunar Orbit Insertion for Korea Pathfinder Lunar Orbiter

    Science.gov (United States)

    Bae, Jonghee; Song, Young-Joo; Kim, Young-Rok; Kim, Bangyeop

    2017-12-01

    The first Korea lunar orbiter, Korea Pathfinder Lunar Orbiter (KPLO), has been in development since 2016. After launch, the KPLO will execute several maneuvers to enter into the lunar mission orbit, and will then perform lunar science missions for one year. Among these maneuvers, the lunar orbit insertion (LOI) is the most critical maneuver because the KPLO will experience an extreme velocity change in the presence of the Moon’s gravitational pull. However, the lunar orbiter may have a delayed LOI burn during operation due to hardware limitations and telemetry delays. This delayed burn could occur in different captured lunar orbits; in the worst case, the KPLO could fly away from the Moon. Therefore, in this study, the burn delay for the first LOI maneuver is analyzed to successfully enter the desired lunar orbit. Numerical simulations are performed to evaluate the difference between the desired and delayed lunar orbits due to a burn delay in the LOI maneuver. Based on this analysis, critical factors in the LOI maneuver, the periselene altitude and orbit period, are significantly changed and an additional delta-V in the second LOI maneuver is required as the delay burn interval increases to 10 min from the planned maneuver epoch.

  14. Semiclassical quantization of nonadiabatic systems with hopping periodic orbits

    International Nuclear Information System (INIS)

    Fujii, Mikiya; Yamashita, Koichi

    2015-01-01

    We present a semiclassical quantization condition, i.e., quantum–classical correspondence, for steady states of nonadiabatic systems consisting of fast and slow degrees of freedom (DOFs) by extending Gutzwiller’s trace formula to a nonadiabatic form. The quantum–classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow DOF, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels. In addition to the semiclassical quantization condition, we also discuss chaotic dynamics involved in the classical limit of nonadiabatic dynamics

  15. Changes of Space Debris Orbits After LDR Operation

    Science.gov (United States)

    Wnuk, E.; Golebiewska, J.; Jacquelard, C.; Haag, H.

    2013-09-01

    A lot of technical studies are currently developing concepts of active removal of space debris to protect space assets from on orbit collision. For small objects, such concepts include the use of ground-based lasers to remove or reduce the momentum of the objects thereby lowering their orbit in order to facilitate their decay by re-entry into the Earth's atmosphere. The concept of the Laser Debris Removal (LDR) system is the main subject of the CLEANSPACE project. One of the CLEANSPACE objectives is to define a global architecture (including surveillance, identification and tracking) for an innovative ground-based laser solution, which can remove hazardous medium debris around selected space assets. The CLEANSPACE project is realized by a European consortium in the frame of the European Commission Seventh Framework Programme (FP7), Space topic. The use of sequence of laser operations to remove space debris, needs very precise predictions of future space debris orbital positions, on a level even better than 1 meter. Orbit determination, tracking (radar, optical and laser) and orbit prediction have to be performed with accuracy much better than so far. For that, the applied prediction tools have to take into account all perturbation factors that influence object orbit. The expected object's trajectory after the LDR operation is a lowering of its perigee. To prevent the debris with this new trajectory to collide with another object, a precise trajectory prediction after the LDR sequence is therefore the main task allowing also to estimate re-entry parameters. The LDR laser pulses change the debris object velocity v. The future orbit and re-entry parameters of the space debris after the LDR engagement can be calculated if the resulting ?v vector is known with the sufficient accuracy. The value of the ?v may be estimated from the parameters of the LDR station and from the characteristics of the orbital debris. However, usually due to the poor knowledge of the debris

  16. Existence of periodic orbits in nonlinear oscillators of Emden–Fowler form

    Energy Technology Data Exchange (ETDEWEB)

    Mancas, Stefan C., E-mail: mancass@erau.edu [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, SLP (Mexico)

    2016-01-28

    The nonlinear pseudo-oscillator recently tackled by Gadella and Lara is mapped to an Emden–Fowler (EF) equation that is written as an autonomous two-dimensional ODE system for which we provide the phase-space analysis and the parametric solution. Through an invariant transformation we find periodic solutions to a certain class of EF equations that pass an integrability condition. We show that this condition is necessary to have periodic solutions and via the ODE analysis we also find the sufficient condition for periodic orbits. EF equations that do not pass integrability conditions can be made integrable via an invariant transformation which also allows us to construct periodic solutions to them. Two other nonlinear equations, a zero-frequency Ermakov equation and a positive power Emden–Fowler equation, are discussed in the same context. - Highlights: • An invariant transformation is used to find periodic solution of EF equations. • Phase plane study of the EF autonomous two-dimensional ODE system is performed. • Three examples are presented from the standpoint of the phase plane analysis.

  17. SPECTROSCOPIC ORBITAL PERIODS FOR 29 CATACLYSMIC VARIABLES FROM THE SLOAN DIGITAL SKY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Thorstensen, John R.; Taylor, Cynthia J.; Peters, Christopher S.; Skinner, Julie N. [Department of Physics and Astronomy 6127 Wilder Laboratory, Dartmouth College Hanover, NH 03755-3528 (United States); Southworth, John [Astrophysics Group Keele University Staffordshire ST5 5BG (United Kingdom); Gänsicke, Boris T. [Department of Physics University of Warwick Coventry CV4 7AL (United Kingdom)

    2015-04-15

    We report follow-up spectroscopy of 29 cataclysmic variables from the Sloan Digital Sky Survey (SDSS), 22 of which were discovered by SDSS and seven of which are previously known systems that were recovered in SDSS. The periods for 16 of these objects were included in the tabulation by Gänsicke et al. While most of the systems have periods less than 2 hr, only one has a period in the 80–86 minutes “spike” found by Gänsicke et al., and 11 have periods longer than 3 hr, indicating that the present sample is skewed toward longer-period, higher-luminosity objects. Seven of the objects have spectra resembling dwarf novae, but have apparently never been observed in outburst, suggesting that many cataclysmics with relatively low variability amplitude remain to be discovered. Some of the objects are notable. SDSS J07568+0858 and SDSS J08129+1911 were previously known to have deep eclipses; in addition to spectroscopy, we use archival data from the Catalina Real Time Transient Survey to refine their periods. We give a parallax-based distance of 195 (+54, −39) pc for LV Cnc (SDSS J09197+0857), which at P{sub orb} = 81 m has the shortest orbital period in our sample. SDSS J08091+3814 shows both the spectroscopic phase offset and phase-dependent absorption found in SW Sextantis stars. The average spectra of SDSS J08055+0720 and SDSS J16191+1351 show contributions from K-type secondaries, and SDSS J080440+0239 shows a contribution from an early M star. We use these to constrain the distances. SDSS J09459+2922 has characteristics typical of a magnetic system. SDSS11324+6249 may be a novalike variable, and if so, its orbital period (99 minutes) is unusually short for that subclass.

  18. Periodicity and chaos in strongly perturbed classical orbitals for Coulomb interactions

    Energy Technology Data Exchange (ETDEWEB)

    Klar, H

    1986-01-01

    Within the framework of classical mechanics two prototypes of strongly perturbed orbitals, the diamagnetism in hydrogen and electronic double excitation, are analyzed near critical phase space points (fixed points). The motion of the hydrogen electron under the joint influence of the Coulomb field and the magnetic field is periodic for any field strengths. For a two-electron atom however the author finds a chaotic time evolution of the electron pair correlation, causing presumably irregular spectral patterns. (Auth.).

  19. Mitigating Climate Change with Earth Orbital Sunshades

    Science.gov (United States)

    Coverstone, Victoria; Johnson, Les

    2015-01-01

    An array of rotating sunshades based on emerging solar sail technology will be deployed in a novel Earth orbit to provide near-continuous partial shading of the Earth, reducing the heat input to the atmosphere by blocking a small percentage of the incoming sunlight, and mitigating local weather effects of anticipated climate change over the next century. The technology will provide local cooling relief during extreme heat events (and heating relief during extreme cold events) thereby saving human lives, agriculture, livestock, water and energy needs. A synthesis of the solar sail design, the sails' operational modes, and the selected orbit combine to provide local weather modification.

  20. Periodic local MP2 method employing orbital specific virtuals

    International Nuclear Information System (INIS)

    Usvyat, Denis; Schütz, Martin; Maschio, Lorenzo

    2015-01-01

    We introduce orbital specific virtuals (OSVs) to represent the truncated pair-specific virtual space in periodic local Møller-Plesset perturbation theory of second order (LMP2). The OSVs are constructed by diagonalization of the LMP2 amplitude matrices which correspond to diagonal Wannier-function (WF) pairs. Only a subset of these OSVs is adopted for the subsequent OSV-LMP2 calculation, namely, those with largest contribution to the diagonal pair correlation energy and with the accumulated value of these contributions reaching a certain accuracy. The virtual space for a general (non diagonal) pair is spanned by the union of the two OSV sets related to the individual WFs of the pair. In the periodic LMP2 method, the diagonal LMP2 amplitude matrices needed for the construction of the OSVs are calculated in the basis of projected atomic orbitals (PAOs), employing very large PAO domains. It turns out that the OSVs are excellent to describe short range correlation, yet less appropriate for long range van der Waals correlation. In order to compensate for this bias towards short range correlation, we augment the virtual space spanned by the OSVs by the most diffuse PAOs of the corresponding minimal PAO domain. The Fock and overlap matrices in OSV basis are constructed in the reciprocal space. The 4-index electron repulsion integrals are calculated by local density fitting and, for distant pairs, via multipole approximation. New procedures for determining the fit-domains and the distant-pair lists, leading to higher efficiency in the 4-index integral evaluation, have been implemented. Generally, and in contrast to our previous PAO based periodic LMP2 method, the OSV-LMP2 method does not require anymore great care in the specification of the individual domains (to get a balanced description when calculating energy differences) and is in that sense a black box procedure. Discontinuities in potential energy surfaces, which may occur for PAO-based calculations if one is not

  1. Periodic local MP2 method employing orbital specific virtuals

    Energy Technology Data Exchange (ETDEWEB)

    Usvyat, Denis, E-mail: denis.usvyat@chemie.uni-regensburg.de; Schütz, Martin, E-mail: martin.schuetz@chemie.uni-regensburg.de [Institute for Physical and Theoretical Chemistry, Universität Regensburg, Universitätsstraße 31, D-93040 Regensburg (Germany); Maschio, Lorenzo, E-mail: lorenzo.maschio@unito.it [Dipartimento di Chimica, and Centre of Excellence NIS (Nanostructured Interfaces and Surfaces), Università di Torino, via Giuria 5, I-10125 Torino (Italy)

    2015-09-14

    We introduce orbital specific virtuals (OSVs) to represent the truncated pair-specific virtual space in periodic local Møller-Plesset perturbation theory of second order (LMP2). The OSVs are constructed by diagonalization of the LMP2 amplitude matrices which correspond to diagonal Wannier-function (WF) pairs. Only a subset of these OSVs is adopted for the subsequent OSV-LMP2 calculation, namely, those with largest contribution to the diagonal pair correlation energy and with the accumulated value of these contributions reaching a certain accuracy. The virtual space for a general (non diagonal) pair is spanned by the union of the two OSV sets related to the individual WFs of the pair. In the periodic LMP2 method, the diagonal LMP2 amplitude matrices needed for the construction of the OSVs are calculated in the basis of projected atomic orbitals (PAOs), employing very large PAO domains. It turns out that the OSVs are excellent to describe short range correlation, yet less appropriate for long range van der Waals correlation. In order to compensate for this bias towards short range correlation, we augment the virtual space spanned by the OSVs by the most diffuse PAOs of the corresponding minimal PAO domain. The Fock and overlap matrices in OSV basis are constructed in the reciprocal space. The 4-index electron repulsion integrals are calculated by local density fitting and, for distant pairs, via multipole approximation. New procedures for determining the fit-domains and the distant-pair lists, leading to higher efficiency in the 4-index integral evaluation, have been implemented. Generally, and in contrast to our previous PAO based periodic LMP2 method, the OSV-LMP2 method does not require anymore great care in the specification of the individual domains (to get a balanced description when calculating energy differences) and is in that sense a black box procedure. Discontinuities in potential energy surfaces, which may occur for PAO-based calculations if one is not

  2. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Diogo Ricardo da, E-mail: diogo_cost@hotmail.com [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Hansen, Matheus [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Instituto de Física, Univ. São Paulo, Rua do Matão, Cidade Universitária, 05314-970, São Paulo – SP (Brazil); Guarise, Gustavo [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Medrano-T, Rene O. [Departamento de Ciências Exatas e da Terra, UNIFESP – Universidade Federal de São Paulo, Rua São Nicolau, 210, Centro, 09913-030, Diadema, SP (Brazil); Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom); Leonel, Edson D. [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste (Italy)

    2016-04-22

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems. - Highlights: • Extreme orbits and the organization of periodic regions in parameter space. • One-dimensional dissipative mappings. • The circle map and also a time perturbed logistic map were studied.

  3. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    International Nuclear Information System (INIS)

    Costa, Diogo Ricardo da; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.

    2016-01-01

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems. - Highlights: • Extreme orbits and the organization of periodic regions in parameter space. • One-dimensional dissipative mappings. • The circle map and also a time perturbed logistic map were studied.

  4. CYCLIC VARIATIONS OF ORBITAL PERIOD AND LONG-TERM LUMINOSITY IN CLOSE BINARY RT ANDROMEDAE

    International Nuclear Information System (INIS)

    Manzoori, Davood

    2009-01-01

    Solutions of standard VR light curves for the eclipsing binary RT And were obtained using the PHOEBE program (ver. 0.3a). Absolute parameters of the stellar components were then determined, enabling them to be positioned on the mass-luminosity diagram. Times of minima data ( O - C curve ) were analyzed using the method of Kalimeris et al. A cyclic variation in the orbital period and brightness, with timescales of about 11.89 and 12.50 yr were found, respectively. This is associated with a magnetic activity cycle modulating the orbital period of RT And via the Applegate mechanism. To check the consistency of the Applegate model, we have estimated some related parameters of the RT And system. The calculated parameters were in accordance with those estimated by Applegate for other similar systems, except B, the subsurface magnetic field of which shows a rather high value for RT And.

  5. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DEFF Research Database (Denmark)

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina

    2017-01-01

    We probe the dynamics of valence electrons in photoexcited [Fe(terpy)2]2+ in solution to gain deeper insight into the Fe ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making...... valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitals directly involved in the light-driven dynamics; a change in the metal ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations...... and more subtle features at the highest energies reflect changes in the frontier orbital populations....

  6. On the lunar node resonance of the orbital plane evolution of the Earth's satellite orbits

    Science.gov (United States)

    Zhu, Ting-Lei

    2018-06-01

    This paper aims to investigate the effects of lunar node resonance on the circular medium Earth orbits (MEO). The dynamical model is established in classical Hamiltonian systems with the application of Lie transform to remove the non-resonant terms. Resonant condition, stability and phase structures are studied. The lunar node resonance occurs when the secular changing rates of the orbital node (with respect to the equator) and the lunar node (with respect to the ecliptic) form a simple integer ratio. The resonant conditions are satisfied for both inclined and equatorial orbits. The orbital plane would have long period (with typical timescales of several centuries) fluctuation due to the resonance.

  7. Chang?E-5T Orbit Determination Using Onboard GPS Observations

    OpenAIRE

    Su, Xing; Geng, Tao; Li, Wenwen; Zhao, Qile; Xie, Xin

    2017-01-01

    In recent years, Global Navigation Satellite System (GNSS) has played an important role in Space Service Volume, the region enclosing the altitudes above 3000 km up to 36,000 km. As an in-flight test for the feasibility as well as for the performance of GNSS-based satellite orbit determination (OD), the Chinese experimental lunar mission Chang?E-5T had been equipped with an onboard high-sensitivity GNSS receiver with GPS and GLONASS tracking capability. In this contribution, the 2-h onboard G...

  8. Reliability of unstable periodic orbit based control strategies in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Nagender; Singh, Harinder P. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Hasse, Maria [Institut für Höchstleistungsrechnen, Universität Stuttgart, D-70569 Stuttgart (Germany); Biswal, B. [Cluster Innovation Center, University of Delhi, Delhi 110007 (India); Sri Venkateswara College, University of Delhi, Delhi 110021 (India)

    2015-04-15

    Presence of recurrent and statistically significant unstable periodic orbits (UPOs) in time series obtained from biological systems is now routinely used as evidence for low dimensional chaos. Extracting accurate dynamical information from the detected UPO trajectories is vital for successful control strategies that either aim to stabilize the system near the fixed point or steer the system away from the periodic orbits. A hybrid UPO detection method from return maps that combines topological recurrence criterion, matrix fit algorithm, and stringent criterion for fixed point location gives accurate and statistically significant UPOs even in the presence of significant noise. Geometry of the return map, frequency of UPOs visiting the same trajectory, length of the data set, strength of the noise, and degree of nonstationarity affect the efficacy of the proposed method. Results suggest that establishing determinism from unambiguous UPO detection is often possible in short data sets with significant noise, but derived dynamical properties are rarely accurate and adequate for controlling the dynamics around these UPOs. A repeat chaos control experiment on epileptic hippocampal slices through more stringent control strategy and adaptive UPO tracking is reinterpreted in this context through simulation of similar control experiments on an analogous but stochastic computer model of epileptic brain slices. Reproduction of equivalent results suggests that far more stringent criteria are needed for linking apparent success of control in such experiments with possible determinism in the underlying dynamics.

  9. Reliability of unstable periodic orbit based control strategies in biological systems

    International Nuclear Information System (INIS)

    Mishra, Nagender; Singh, Harinder P.; Hasse, Maria; Biswal, B.

    2015-01-01

    Presence of recurrent and statistically significant unstable periodic orbits (UPOs) in time series obtained from biological systems is now routinely used as evidence for low dimensional chaos. Extracting accurate dynamical information from the detected UPO trajectories is vital for successful control strategies that either aim to stabilize the system near the fixed point or steer the system away from the periodic orbits. A hybrid UPO detection method from return maps that combines topological recurrence criterion, matrix fit algorithm, and stringent criterion for fixed point location gives accurate and statistically significant UPOs even in the presence of significant noise. Geometry of the return map, frequency of UPOs visiting the same trajectory, length of the data set, strength of the noise, and degree of nonstationarity affect the efficacy of the proposed method. Results suggest that establishing determinism from unambiguous UPO detection is often possible in short data sets with significant noise, but derived dynamical properties are rarely accurate and adequate for controlling the dynamics around these UPOs. A repeat chaos control experiment on epileptic hippocampal slices through more stringent control strategy and adaptive UPO tracking is reinterpreted in this context through simulation of similar control experiments on an analogous but stochastic computer model of epileptic brain slices. Reproduction of equivalent results suggests that far more stringent criteria are needed for linking apparent success of control in such experiments with possible determinism in the underlying dynamics

  10. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Chenxi, E-mail: cxshao@ustc.edu.cn; Xue, Yong; Fang, Fang; Bai, Fangzhou [Department of Computer Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Yin, Peifeng [Department of Computer Science and Engineering, Pennsylvania State University, State College, Pennsylvania 16801 (United States); Wang, Binghong [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2015-07-15

    The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedback control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.

  11. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point.

    Science.gov (United States)

    Shao, Chenxi; Xue, Yong; Fang, Fang; Bai, Fangzhou; Yin, Peifeng; Wang, Binghong

    2015-07-01

    The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedback control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.

  12. Unstable Periodic Orbit Analysis of Histograms of Chaotic Time Series

    International Nuclear Information System (INIS)

    Zoldi, S.M.

    1998-01-01

    Using the Lorenz equations, we have investigated whether unstable periodic orbits (UPOs) associated with a strange attractor may predict the occurrence of the robust sharp peaks in histograms of some experimental chaotic time series. Histograms with sharp peaks occur for the Lorenz parameter value r=60.0 but not for r=28.0 , and the sharp peaks for r=60.0 do not correspond to a histogram derived from any single UPO. However, we show that histograms derived from the time series of a non-Axiom-A chaotic system can be accurately predicted by an escape-time weighting of UPO histograms. copyright 1998 The American Physical Society

  13. Glacial cycles: exogenous orbital changes vs. endogenous climate dynamics

    Science.gov (United States)

    Kaufmann, R. K.; Juselius, K.

    2010-04-01

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed to simulate glacial cycles accurately. Also, results suggest that non-linear dynamics, threshold effects, and/or free oscillations may not play an overriding role in glacial cycles.

  14. Modeling and analysis of periodic orbits around a contact binary asteroid

    Science.gov (United States)

    Feng, Jinglang; Noomen, Ron; Visser, Pieter N. A. M.; Yuan, Jianping

    2015-06-01

    The existence and characteristics of periodic orbits (POs) in the vicinity of a contact binary asteroid are investigated with an averaged spherical harmonics model. A contact binary asteroid consists of two components connected to each other, resulting in a highly bifurcated shape. Here, it is represented by a combination of an ellipsoid and a sphere. The gravitational field of this configuration is for the first time expanded into a spherical harmonics model up to degree and order 8. Compared with the exact potential, the truncation at degree and order 4 is found to introduce an error of less than 10 % at the circumscribing sphere and less than 1 % at a distance of the double of the reference radius. The Hamiltonian taking into account harmonics up to degree and order 4 is developed. After double averaging of this Hamiltonian, the model is reduced to include zonal harmonics only and frozen orbits are obtained. The tesseral terms are found to introduce significant variations on the frozen orbits and distort the frozen situation. Applying the method of Poincaré sections, phase space structures of the single-averaged model are generated for different energy levels and rotation rates of the asteroid, from which the dynamics driven by the 4×4 harmonics model is identified and POs are found. It is found that the disturbing effect of the highly irregular gravitational field on orbital motion is weakened around the polar region, and also for an asteroid with a fast rotation rate. Starting with initial conditions from this averaged model, families of exact POs in the original non-averaged system are obtained employing a numerical search method and a continuation technique. Some of these POs are stable and are candidates for future missions.

  15. INFRARED SPECTROSCOPY OF SYMBIOTIC STARS. VII. BINARY ORBIT AND LONG SECONDARY PERIOD VARIABILITY OF CH CYGNI

    International Nuclear Information System (INIS)

    Hinkle, Kenneth H.; Joyce, Richard R.; Fekel, Francis C.

    2009-01-01

    High-dispersion spectroscopic observations are used to refine orbital elements for the symbiotic binary CH Cyg. The current radial velocities, added to a previously published 13 year time series of infrared velocities for the M giant in the CH Cyg symbiotic system, more than double the length of the time series to 29 years. The two previously identified velocity periods are confirmed. The long period, revised to 15.6 ± 0.1 yr, is shown to result from a binary orbit with a 0.7 M sun white dwarf and 2 M sun M giant. Mass transfer to the white dwarf is responsible for the symbiotic classification. CH Cyg is the longest period S-type symbiotic known. Similarities with the longer period D-type systems are noted. The 2.1 year period is shown to be on Wood's sequence D, which contains stars identified as having long secondary periods (LSP). The cause of the LSP variation in CH Cyg and other stars is unknown. From our review of possible causes, we identify g-mode nonradial pulsation as the leading mechanism for LSP variation in CH Cyg. If g-mode pulsation is the cause of the LSPs, a radiative region is required near the photosphere of pulsating asymptotic giant branch stars.

  16. Improved orbits of two periodic comets: Tsuchinshan 1 and Tsuchinshan 2

    International Nuclear Information System (INIS)

    Szutowicz, S.

    1986-01-01

    The observations made during four apparitions of two comets were collected and the orbits of the comets were improved; 86 observations of Comet Tsuchinshan 1 and 50 observations of Comet Tsuchinshan 2 made in the period 1965-1985 were used. The orbit of Comet Tsuchinshan 1 was improved taking into account nongravitational effects in its motion as well as a displacement of the photometric center from the center of mass. The following values of nongravitational parameters and of observational parameter D were obtained: A 1 = 0.75953 x 10 -8 , A 2 0.00375 x 10 -8 , D = 0.34698 x 10 -3 . To link all observations of Comet Tsuchinshan 2 by one system of elements it was sufficient to add observational effects as a displacement of the photometric center from the center of mass. The following value of parameter D was obtained: D = 1.00200 x 10 -3 . The equations of motion of both comets were integrated backwards and forwards till 1992. Ephemerides for their next returns were computed. 6 refs., 5 tabs. (author)

  17. Planetary period oscillations in Saturn's magnetosphere: New results from the F-ring and proximal orbits

    Science.gov (United States)

    Provan, G.; Cowley, S. W. H.; Bunce, E. J.; Hunt, G. J.; Dougherty, M. K.

    2017-12-01

    We investigate planetary period oscillations (PPOs) in Saturn's magnetosphere using Cassini magnetic field data during the high cadence ( 7 days) F-ring and proximal orbits. Previous results have shown that there are two PPO systems, one in each hemisphere. Both PPO periods show seasonal dependence, and since mid-2014 the Northern PPO period has been 10.8 h and the Southern PPO period 10.7 h. The beat period of the two oscillations is 45 days. Previous results demonstrated that in the Northern (Southern) polar region only pure Northern (Southern) oscillations can be observed, whilst in the equatorial region both oscillations are present and constructively and destructively interfere over the beat-cycle of the two oscillations. The PPOs are believed to be driven by twin-cell convection patterns in the polar ionosphere/thermosphere regions, with two systems of field-aligned currents transmitting the PPO flows to the magnetospheric plasma.The F-ring and proximal orbits uniquely observe the PPOs over 6 orbits during each PPO beat cycle. This high-cadence data demonstrates that over a beat cycle both the periods and amplitudes of the PPO observed within the each polar region are modulated by the PPO system from the opposite hemisphere. When the two oscillations are in phase (anti-phase) the `drag' of one system on the other acts to decrease (increase) the amplitude of the oscillations and the two PPO periods diverge (converge). We present a theoretical model showing that this coupling is due to the PPO flows from one hemisphere not just being communicated to the magnetosphere as previously assumed, but also to the opposite hemisphere. The result is inter-hemispheric coupling of the PPO flow systems within the ionosphere/thermosphere system, so that the northern PPO system drives a northern twin-cell convection pattern in the southern hemisphere, and vice versa, thus leading to the observed polar modulations of the PPOs.We will also present PPO phase models determined

  18. Do slow orbital periodicities appear in the record of earth's magnetic reversals?

    Science.gov (United States)

    Stothers, Richard B.

    1987-01-01

    Time-series spectral analysis has been performed on the dates of geomagnetic reversals of the last 20 Myr BP and earlier. Possible evidence is found from the presence of high spectral peaks for two very long periodicities, 0.4 Myr and 1.3 Myr, that may be associated with slow variations of the earth's orbital eccentricity as predicted by Berger. However, statistical significance tests and a number of other arguments do not confirm the two detections.

  19. The Eccentric Behavior of Nearly Frozen Orbits

    Science.gov (United States)

    Sweetser, Theodore H.; Vincent, Mark A.

    2013-01-01

    Frozen orbits are orbits which have only short-period changes in their mean eccentricity and argument of periapse, so that they basically keep a fixed orientation within their plane of motion. Nearly frozen orbits are those whose eccentricity and argument of periapse have values close to those of a frozen orbit. We call them "nearly" frozen because their eccentricity vector (a vector whose polar coordinates are eccentricity and argument of periapse) will stay within a bounded distance from the frozen orbit eccentricity vector, circulating around it over time. For highly inclined orbits around the Earth, this distance is effectively constant over time. Furthermore, frozen orbit eccentricity values are low enough that these orbits are essentially eccentric (i.e., off center) circles, so that nearly frozen orbits around Earth are bounded above and below by frozen orbits.

  20. Synchronizing movements with the metronome: nonlinear error correction and unstable periodic orbits.

    Science.gov (United States)

    Engbert, Ralf; Krampe, Ralf Th; Kurths, Jürgen; Kliegl, Reinhold

    2002-02-01

    The control of human hand movements is investigated in a simple synchronization task. We propose and analyze a stochastic model based on nonlinear error correction; a mechanism which implies the existence of unstable periodic orbits. This prediction is tested in an experiment with human subjects. We find that our experimental data are in good agreement with numerical simulations of our theoretical model. These results suggest that feedback control of the human motor systems shows nonlinear behavior. Copyright 2001 Elsevier Science (USA).

  1. Analytical and numerical construction of vertical periodic orbits about triangular libration points based on polynomial expansion relations among directions

    Science.gov (United States)

    Qian, Ying-Jing; Yang, Xiao-Dong; Zhai, Guan-Qiao; Zhang, Wei

    2017-08-01

    Innovated by the nonlinear modes concept in the vibrational dynamics, the vertical periodic orbits around the triangular libration points are revisited for the Circular Restricted Three-body Problem. The ζ -component motion is treated as the dominant motion and the ξ and η -component motions are treated as the slave motions. The slave motions are in nature related to the dominant motion through the approximate nonlinear polynomial expansions with respect to the ζ -position and ζ -velocity during the one of the periodic orbital motions. By employing the relations among the three directions, the three-dimensional system can be transferred into one-dimensional problem. Then the approximate three-dimensional vertical periodic solution can be analytically obtained by solving the dominant motion only on ζ -direction. To demonstrate the effectiveness of the proposed method, an accuracy study was carried out to validate the polynomial expansion (PE) method. As one of the applications, the invariant nonlinear relations in polynomial expansion form are used as constraints to obtain numerical solutions by differential correction. The nonlinear relations among the directions provide an alternative point of view to explore the overall dynamics of periodic orbits around libration points with general rules.

  2. THE PHASES DIFFERENTIAL ASTROMETRY DATA ARCHIVE. II. UPDATED BINARY STAR ORBITS AND A LONG PERIOD ECLIPSING BINARY

    International Nuclear Information System (INIS)

    Muterspaugh, Matthew W.; O'Connell, J.; Hartkopf, William I.; Lane, Benjamin F.; Williamson, M.; Kulkarni, S. R.; Konacki, Maciej; Burke, Bernard F.; Colavita, M. M.; Shao, M.; Wiktorowicz, Sloane J.

    2010-01-01

    Differential astrometry measurements from the Palomar High-precision Astrometric Search for Exoplanet Systems have been combined with lower precision single-aperture measurements covering a much longer timespan (from eyepiece measurements, speckle interferometry, and adaptive optics) to determine improved visual orbits for 20 binary stars. In some cases, radial velocity observations exist to constrain the full three-dimensional orbit and determine component masses. The visual orbit of one of these binaries-α Com (HD 114378)-shows that the system is likely to have eclipses, despite its very long period of 26 years. The next eclipse is predicted to be within a week of 2015 January 24.

  3. Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH.

    Science.gov (United States)

    Usvyat, Denis; Civalleri, Bartolomeo; Maschio, Lorenzo; Dovesi, Roberto; Pisani, Cesare; Schütz, Martin

    2011-06-07

    The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order Møller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids. © 2011 American Institute of Physics

  4. Numerical continuation of families of heteroclinic connections between periodic orbits in a Hamiltonian system

    Science.gov (United States)

    Barrabés, E.; Mondelo, J. M.; Ollé, M.

    2013-10-01

    This paper is devoted to the numerical computation and continuation of families of heteroclinic connections between hyperbolic periodic orbits (POs) of a Hamiltonian system. We describe a method that requires the numerical continuation of a nonlinear system that involves the initial conditions of the two POs, the linear approximations of the corresponding manifolds and a point in a given Poincaré section where the unstable and stable manifolds match. The method is applied to compute families of heteroclinic orbits between planar Lyapunov POs around the collinear equilibrium points of the restricted three-body problem in different scenarios. In one of them, for the Sun-Jupiter mass parameter, we provide energy ranges for which the transition between different resonances is possible.

  5. Modification of an impulse-factoring orbital transfer technique to account for orbit determination and maneuver execution errors

    Science.gov (United States)

    Kibler, J. F.; Green, R. N.; Young, G. R.; Kelly, M. G.

    1974-01-01

    A method has previously been developed to satisfy terminal rendezvous and intermediate timing constraints for planetary missions involving orbital operations. The method uses impulse factoring in which a two-impulse transfer is divided into three or four impulses which add one or two intermediate orbits. The periods of the intermediate orbits and the number of revolutions in each orbit are varied to satisfy timing constraints. Techniques are developed to retarget the orbital transfer in the presence of orbit-determination and maneuver-execution errors. Sample results indicate that the nominal transfer can be retargeted with little change in either the magnitude (Delta V) or location of the individual impulses. Additonally, the total Delta V required for the retargeted transfer is little different from that required for the nominal transfer. A digital computer program developed to implement the techniques is described.

  6. Orbital period variations of two W UMa-type binaries: UY UMa and EF Boo

    Science.gov (United States)

    Yu, Yun-Xia; Zhang, Xu-Dong; Hu, Ke; Xiang, Fu-Yuan

    2017-08-01

    The orbital period variations of two W UMa-type contact binaries, UY UMa and EF Boo, are analyzed by using all available times of light minimum. It is detected that the general trends of their (O - C) curves show an upward parabolic variation, which reveals their continuous period increases at the rates of dP / dt = 2.545 ×10-7 days yr-1 and dP / dt = 2.623 ×10-7 days yr-1 , respectively. Meanwhile, UY UMa also shows a cyclic period variation with a small amplitude of A = 0.0026 days superposed on the long-term increase. Due to their contact configurations, the secular period increases are interpreted as a result of mass transfer from the less massive component to the more massive one. The cyclic period variation of UY UMa may be interpreted in terms of either the magnetic activity or the light time effect.

  7. Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation

    Energy Technology Data Exchange (ETDEWEB)

    Saiki, Yoshitaka, E-mail: yoshi.saiki@r.hit-u.ac.jp [Graduate School of Commerce and Management, Hitotsubashi University, Tokyo 186-8601 (Japan); Yamada, Michio [Research Institute for Mathematical Sciences (RIMS), Kyoto University, Kyoto 606-8502 (Japan); Chian, Abraham C.-L. [Paris Observatory, LESIA, CNRS, 92195 Meudon (France); National Institute for Space Research (INPE), P.O. Box 515, São José dos Campos, São Paulo 12227-010 (Brazil); Institute of Aeronautical Technology (ITA) and World Institute for Space Environment Research (WISER), São José dos Campos, São Paulo 12228-900 (Brazil); School of Mathematical Sciences, University of Adelaide, Adelaide SA 5005 (Australia); Department of Biomedical Engineering, George Washington University, Washington, DC 20052 (United States); Miranda, Rodrigo A. [Faculty UnB-Gama, and Plasma Physics Laboratory, Institute of Physics, University of Brasília (UnB), Brasília DF 70910-900 (Brazil); Rempel, Erico L. [Institute of Aeronautical Technology (ITA) and World Institute for Space Environment Research (WISER), São José dos Campos, São Paulo 12228-900 (Brazil)

    2015-10-15

    The unstable periodic orbits (UPOs) embedded in a chaotic attractor after an attractor merging crisis (MC) are classified into three subsets, and employed to reconstruct chaotic saddles in the Kuramoto-Sivashinsky equation. It is shown that in the post-MC regime, the two chaotic saddles evolved from the two coexisting chaotic attractors before crisis can be reconstructed from the UPOs embedded in the pre-MC chaotic attractors. The reconstruction also involves the detection of the mediating UPO responsible for the crisis, and the UPOs created after crisis that fill the gap regions of the chaotic saddles. We show that the gap UPOs originate from saddle-node, period-doubling, and pitchfork bifurcations inside the periodic windows in the post-MC chaotic region of the bifurcation diagram. The chaotic attractor in the post-MC regime is found to be the closure of gap UPOs.

  8. Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation

    International Nuclear Information System (INIS)

    Saiki, Yoshitaka; Yamada, Michio; Chian, Abraham C.-L.; Miranda, Rodrigo A.; Rempel, Erico L.

    2015-01-01

    The unstable periodic orbits (UPOs) embedded in a chaotic attractor after an attractor merging crisis (MC) are classified into three subsets, and employed to reconstruct chaotic saddles in the Kuramoto-Sivashinsky equation. It is shown that in the post-MC regime, the two chaotic saddles evolved from the two coexisting chaotic attractors before crisis can be reconstructed from the UPOs embedded in the pre-MC chaotic attractors. The reconstruction also involves the detection of the mediating UPO responsible for the crisis, and the UPOs created after crisis that fill the gap regions of the chaotic saddles. We show that the gap UPOs originate from saddle-node, period-doubling, and pitchfork bifurcations inside the periodic windows in the post-MC chaotic region of the bifurcation diagram. The chaotic attractor in the post-MC regime is found to be the closure of gap UPOs

  9. Numerical determination of families of three-dimensional double-symmetric periodic orbits in the restricted three-body problem. Pt. 1

    International Nuclear Information System (INIS)

    Kazantzis, P.G.

    1979-01-01

    New families of three-dimensional double-symmetric periodic orbits are determined numerically in the Sun-Jupiter case of the restricted three-body problem. These families bifurcate from the 'vertical-critical' orbits (αsub(ν) = -1, csub(ν) = 0) of the 'basic' plane families i. g 1 g 2 h, a, m and I. Further the numerical procedure employed in the determination of these families has been described and interesting results have been pointed out. Also, computer plots of the orbits of these families have been shown in conical projections. (orig.)

  10. The shortage of long-period comets in elliptical orbits

    International Nuclear Information System (INIS)

    Everhart, E.

    1979-01-01

    Based on the number of 'new' comets seen on near-parabolic orbits, one can predict the number of comets that should be found on definitely elliptical orbits on their subsequent returns. The author shows that about three out of four of these returning comets are not observed. (Auth.)

  11. Numerical detection of unstable periodic orbits in continuous-time dynamical systems with chaotic behaviors

    Directory of Open Access Journals (Sweden)

    Y. Saiki

    2007-09-01

    Full Text Available An infinite number of unstable periodic orbits (UPOs are embedded in a chaotic system which models some complex phenomenon. Several algorithms which extract UPOs numerically from continuous-time chaotic systems have been proposed. In this article the damped Newton-Raphson-Mees algorithm is reviewed, and some important techniques and remarks concerning the practical numerical computations are exemplified by employing the Lorenz system.

  12. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    Science.gov (United States)

    da Costa, Diogo Ricardo; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.

    2016-04-01

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems.

  13. Equilibrium points and associated periodic orbits in the gravity of binary asteroid systems: (66391) 1999 KW4 as an example

    Science.gov (United States)

    Shi, Yu; Wang, Yue; Xu, Shijie

    2018-04-01

    The motion of a massless particle in the gravity of a binary asteroid system, referred as the restricted full three-body problem (RF3BP), is fundamental, not only for the evolution of the binary system, but also for the design of relevant space missions. In this paper, equilibrium points and associated periodic orbit families in the gravity of a binary system are investigated, with the binary (66391) 1999 KW4 as an example. The polyhedron shape model is used to describe irregular shapes and corresponding gravity fields of the primary and secondary of (66391) 1999 KW4, which is more accurate than the ellipsoid shape model in previous studies and provides a high-fidelity representation of the gravitational environment. Both of the synchronous and non-synchronous states of the binary system are considered. For the synchronous binary system, the equilibrium points and their stability are determined, and periodic orbit families emanating from each equilibrium point are generated by using the shooting (multiple shooting) method and the homotopy method, where the homotopy function connects the circular restricted three-body problem and RF3BP. In the non-synchronous binary system, trajectories of equivalent equilibrium points are calculated, and the associated periodic orbits are obtained by using the homotopy method, where the homotopy function connects the synchronous and non-synchronous systems. Although only the binary (66391) 1999 KW4 is considered, our methods will also be well applicable to other binary systems with polyhedron shape data. Our results on equilibrium points and associated periodic orbits provide general insights into the dynamical environment and orbital behaviors in proximity of small binary asteroids and enable the trajectory design and mission operations in future binary system explorations.

  14. Theory of orbital magnetoelectric response

    International Nuclear Information System (INIS)

    Malashevich, Andrei; Souza, Ivo; Coh, Sinisa; Vanderbilt, David

    2010-01-01

    We extend the recently developed theory of bulk orbital magnetization to finite electric fields, and use it to calculate the orbital magnetoelectric (ME) response of periodic insulators. Working in the independent-particle framework, we find that the finite-field orbital magnetization can be written as a sum of three gauge-invariant contributions, one of which has no counterpart at zero field. The extra contribution is collinear with and explicitly dependent on the electric field. The expression for the orbital magnetization is suitable for first-principles implementations, allowing one to calculate the ME response coefficients by numerical differentiation. Alternatively, perturbation-theory techniques may be used, and for that purpose we derive an expression directly for the linear ME tensor by taking the first field-derivative analytically. Two types of terms are obtained. One, the 'Chern-Simons' term, depends only on the unperturbed occupied orbitals and is purely isotropic. The other, 'Kubo' terms, involve the first-order change in the orbitals and give isotropic as well as anisotropic contributions to the response. In ordinary ME insulators all terms are generally present, while in strong Z 2 topological insulators only the Chern-Simons term is allowed, and is quantized. In order to validate the theory, we have calculated under periodic boundary conditions the linear ME susceptibility for a 3D tight-binding model of an ordinary ME insulator, using both the finite-field and perturbation-theory expressions. The results are in excellent agreement with calculations on bounded samples.

  15. Orbits in weak and strong bars

    CERN Document Server

    Contopoulos, George

    1980-01-01

    The authors study the plane orbits in simple bar models embedded in an axisymmetric background when the bar density is about 1% (weak), 10% (intermediate) or 100% (strong bar) of the axisymmetric density. Most orbits follow the stable periodic orbits. The basic families of periodic orbits are described. In weak bars with two Inner Lindblad Resonances there is a family of stable orbits extending from the center up to the Outer Lindblad Resonance. This family contains the long period orbits near corotation. Other stable families appear between the Inner Lindblad Resonances, outside the Outer Lindblad Resonance, around corotation (short period orbits) and around the center (retrograde). Some families become unstable or disappear in strong bars. A comparison is made with cases having one or no Inner Lindblad Resonance. (12 refs).

  16. On the Post-Keplerian Corrections to the Orbital Periods of a Two-body System and Their Application to the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Iorio, Lorenzo [Ministero dell’Istruzione, dell’Università e della Ricerca (M.I.U.R.)-Istruzione (Italy); Zhang, Fupeng, E-mail: lorenzo.iorio@libero.it, E-mail: zhangfp7@mail.sysu.edu.cn [School of Physics and Astronomy, Sun Yat-Sen University, Guangzhou 510275 (China)

    2017-04-10

    We perform detailed numerical analyses of the orbital motion of a test particle around a spinning primary, with the aim of investigating the possibility of using the post-Keplerian (pK) corrections to the orbiter’s periods (draconitic, anomalistic, and sidereal) as a further opportunity to perform new tests of post-Newtonian gravity. As a specific scenario, the S-stars orbiting the massive black hole (MBH) supposedly lurking in Sgr A* at the center of the Galaxy are adopted. We first study the effects of the pK Schwarzchild, Lense–Thirring, and quadrupole moment accelerations experienced by a target star for various possible initial orbital configurations. It turns out that the results of the numerical simulations are consistent with the analytical ones in the small eccentricity approximation for which almost all the latter ones were derived. For highly elliptical orbits, the sizes of the three pK corrections considered turn out to increase remarkably. The periods of the observed S2 and S0-102 stars as functions of the MBH’s spin axis orientation are considered as well. The pK accelerations lead to corrections of the orbital periods of the order of 1–100 days (Schwarzschild), 0.1–10 hr (Lense–Thirring), and 1–10{sup 3} s (quadrupole) for a target star with a = 300–800 au and e ≈ 0.8, which could be measurable with future facilities.

  17. Short periodic oscillations of the dwarf nova VW Hydri

    International Nuclear Information System (INIS)

    Haefner, R.; Schoembs, R.

    1977-01-01

    A coherent oscillation of approximately 88 s period and 0.m005 amplitude was detected during the decline stage at the end of the long eruption of VW Hyi in December 1975. The period changed erratically between 86 and 90 s during eight nights. There are indications that the amplitude depends on the phase of the orbital revolution. The new period favours models in which such oscillations are caused by the orbital motion of inhomogeneities in the disc. (orig.) [de

  18. Absence of periodic orbits in digital memcomputing machines with solutions

    Science.gov (United States)

    Di Ventra, Massimiliano; Traversa, Fabio L.

    2017-10-01

    In Traversa and Di Ventra [Chaos 27, 023107 (2017)] we argued, without proof, that if the non-linear dynamical systems with memory describing the class of digital memcomputing machines (DMMs) have equilibrium points, then no periodic orbits can emerge. In fact, the proof of such a statement is a simple corollary of a theorem already demonstrated in Traversa and Di Ventra [Chaos 27, 023107 (2017)]. Here, we point out how to derive such a conclusion. Incidentally, the same demonstration implies absence of chaos, a result we have already demonstrated in Di Ventra and Traversa [Phys. Lett. A 381, 3255 (2017)] using topology. These results, together with those in Traversa and Di Ventra [Chaos 27, 023107 (2017)], guarantee that if the Boolean problem the DMMs are designed to solve has a solution, the system will always find it, irrespective of the initial conditions.

  19. Analysis of the SPS Long Term Orbit Drifts

    Energy Technology Data Exchange (ETDEWEB)

    Velotti, Francesco [CERN; Bracco, Chiara [CERN; Cornelis, Karel [CERN; Drøsdal, Lene [CERN; Fraser, Matthew [CERN; Gianfelice-Wendt, Eliana [Fermilab; Goddard, Brennan [CERN; Kain, Verena [CERN; Meddahi, Malika [CERN

    2016-06-01

    The Super Proton Synchrotron (SPS) is the last accelerator in the Large Hadron Collider (LHC) injector chain, and has to deliver the two high-intensity 450 GeV proton beams to the LHC. The transport from SPS to LHC is done through the two Transfer Lines (TL), TI2 and TI8, for Beam 1 (B1) and Beam 2 (B2) respectively. During the first LHC operation period Run 1, a long term drift of the SPS orbit was observed, causing changes in the LHC injection due to the resulting changes in the TL trajectories. This translated into longer LHC turnaround because of the necessity to periodically correct the TL trajectories in order to preserve the beam quality at injection into the LHC. Different sources for the SPS orbit drifts have been investigated: each of them can account only partially for the total orbit drift observed. In this paper, the possible sources of such drift are described, together with the simulated and measured effect they cause. Possible solutions and countermeasures are also discussed.

  20. Tandem Swift and INTEGRAL Data to Revisit the Orbital and Superorbital Periods of 1E 1740.7–2942

    Energy Technology Data Exchange (ETDEWEB)

    Stecchini, Paulo Eduardo; Castro, Manuel; Jablonski, Francisco; D’Amico, Flavio; Braga, João [Instituto Nacional de Pesquisas Espaciais—INPE, Av. dos Astronautas 1758, 12227-010, S.J.Campos-SP (Brazil)

    2017-07-01

    The black hole candidate 1E 1740.7−2942 is one of the strongest hard X-ray sources in the Galactic Center region. No counterparts in longer wavelengths have been identified for this object yet. The presence of characteristic timing signatures in the flux history of X-ray sources has been shown to be an important diagnostic tool for the properties of these systems. Using simultaneous data from NASA’s Swift and ESA’s INTEGRAL missions, we have found two periodic signatures at 12.61 ± 0.06 days and 171.1 ± 3.0 days in long-term hard X-ray light curves of 1E 1740.7−2942. We interpret those as the orbital and superorbital periods of the object, respectively. The reported orbital period is in good agreement with previous studies of 1E 1740.7−2942 using NASA’s RXTE data. We present here the first firm evidence of a superorbital period for 1E 1740.7−2942, which has important implications for the nature of the binary system.

  1. Local orbit feedback

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Critically aligned experiments are sensitive to small changes in the electron beam orbit. At the NSLS storage rings, the electron beam and photon beam motions have been monitored over the past several years. In the survey conducted in 1986 by the NSLS Users Executive Committee, experimenters requested the vertical beam position variation and the vertical angle variation, within a given fill, remain within 10 μm and 10 μr, respectively. This requires improvement in the beam stability by about one order of magnitude. At the NSLS and SSRL storage rings, the beam that is originally centered on the position monitor by a dc orbit correction is observed to have two kinds of motion: a dc drift over a storage period of several hours and a beam bounce about its nominal position. These motions are a result of the equilibrium orbit not being held perfectly stable due to time-varying errors introduced into the magnetic guide field by power supplies, mechanical vibration of the magnets, cooling water temperature variations, etc. The approach to orbit stabilization includes (1) identifying and suppressing as many noise sources on the machine as possible, (2) correcting the beam position globally (see Section 6) by controlling a number of correctors around the circumference of the machine, and (3) correcting the beam position and angle at a given source location by position feedback using local detectors and local orbit bumps. The third approach, called Local Orbit Feedback will be discussed in this section

  2. Fuel-optimal trajectories of aeroassisted orbital transfer with plane change

    Science.gov (United States)

    Naidu, Desineni Subbaramaiah; Hibey, Joseph L.

    1989-06-01

    The problem of minimization of fuel consumption during the atmospheric portion of an aeroassisted, orbital transfer with plane change is addressed. The complete mission has required three characteristic velocities, a deorbit impulse at high earth orbit (HEO), a boost impulse at the atmospheric exit, and a reorbit impulse at low earth orbit (LEO). A performance index has been formulated as the sum of these three impulses. Application of optimal control principles has led to a nonlinear, two-point, boundary value problem which was solved by using a multiple shooting algorithm. The strategy for the atmospheric portion of the minimum-fuel transfer is to start initially with the maximum positive lift in order to recover from the downward plunge, and then to fly with a gradually decreasing lift such that the vehicle skips out of the atmosphere with a flight path angle near zero degrees.

  3. Effects of solar radiation on the orbits of small particles

    Science.gov (United States)

    Lyttleton, R. A.

    1976-01-01

    A modification of the Robertson (1937) equations of particle motion in the presence of solar radiation is developed which allows for partial reflection of sunlight as a result of rapid and varying particle rotations caused by interaction with the solar wind. The coefficients and forces in earlier forms of the equations are compared with those in the present equations, and secular rates of change of particle orbital elements are determined. Orbital dimensions are calculated in terms of time, probable sizes and densities of meteoric and cometary particles are estimated, and times of infall to the sun are computed for a particle moving in an almost circular orbit and a particle moving in an elliptical orbit of high eccentricity. Changes in orbital elements are also determined for particles from a long-period sun-grazing comet. The results show that the time of infall to the sun from a highly eccentric orbit is substantially shorter than from a circular orbit with a radius equal to the mean distance in the eccentric orbit. The possibility is considered that the free orbital kinetic energy of particles drawn into the sun may be the energy source for the solar corona.

  4. SWIFT-BAT HARD X-RAY SKY MONITORING UNVEILS THE ORBITAL PERIOD OF THE HMXB IGR J18219–1347

    International Nuclear Information System (INIS)

    La Parola, V.; Cusumano, G.; Segreto, A.; D'Aì, A.; Masetti, N.; D'Elia, V.

    2013-01-01

    IGR J18219–1347 is a hard X-ray source discovered by INTEGRAL in 2010. We have analyzed the X-ray emission of this source exploiting the Burst Alert Telescope (BAT) survey data up to 2012 March and the X-Ray Telescope (XRT) data that include also an observing campaign performed in early 2012. The source is detected at a significance level of ∼13 standard deviations in the 88 month BAT survey data, and shows a strong variability along the survey monitoring, going from high intensity to quiescent states. A timing analysis on the BAT data revealed an intensity modulation with a period of P 0 = 72.44 ± 0.3 days. The significance of this modulation is about seven standard deviations in Gaussian statistics. We interpret it as the orbital period of the binary system. The light curve folded at P 0 shows a sharp peak covering ∼30% of the period, superimposed to a flat level roughly consistent with zero. In the soft X-rays the source is detected only in 5 out of 12 XRT observations, with the highest recorded count rate corresponding to a phase close to the BAT folded light-curve peak. The long orbital period and the evidence that the source emits only during a small fraction of the orbit suggests that the IGR J18219–1347 binary system hosts a Be star. The broadband XRT+BAT spectrum is well modeled with a flat absorbed power law with a high-energy exponential cutoff at ∼11 keV

  5. Relativistic Spin-Orbit Heavy Atom on the Light Atom NMR Chemical Shifts: General Trends Across the Periodic Table Explained.

    Science.gov (United States)

    Vícha, Jan; Komorovsky, Stanislav; Repisky, Michal; Marek, Radek; Straka, Michal

    2018-05-10

    The importance of relativistic effects on the NMR parameters in heavy-atom (HA) compounds, particularly the SO-HALA (Spin-Orbit Heavy Atom on the Light Atom) effect on NMR chemical shifts, has been known for about 40 years. Yet, a general correlation between the electronic structure and SO-HALA effect has been missing. By analyzing 1 H NMR chemical shifts of the sixth-period hydrides (Cs-At), we discovered general electronic-structure principles and mechanisms that dictate the size and sign of the SO-HALA NMR chemical shifts. In brief, partially occupied HA valence shells induce relativistic shielding at the light atom (LA) nuclei, while empty HA valence shells induce relativistic deshielding. In particular, the LA nucleus is relativistically shielded in 5d 2 -5d 8 and 6p 4 HA hydrides and deshielded in 4f 0 , 5d 0 , 6s 0 , and 6p 0 HA hydrides. This general and intuitive concept explains periodic trends in the 1 H NMR chemical shifts along the sixth-period hydrides (Cs-At) studied in this work. We present substantial evidence that the introduced principles have a general validity across the periodic table and can be extended to nonhydride LAs. The decades-old question of why compounds with occupied frontier π molecular orbitals (MOs) cause SO-HALA shielding at the LA nuclei, while the frontier σ MOs cause deshielding is answered. We further derive connection between the SO-HALA NMR chemical shifts and Spin-Orbit-induced Electron Deformation Density (SO-EDD), a property that can be obtained easily from differential electron densities and can be represented graphically. SO-EDD provides an intuitive understanding of the SO-HALA effect in terms of the depletion/concentration of the electron density at LA nuclei caused by spin-orbit coupling due to HA in the presence of a magnetic field. Using an analogy between the SO-EDD concept and arguments from classic NMR theory, the complex question of the SO-HALA NMR chemical shifts becomes easily understandable for a wide

  6. Periodic orbits and 10 cases of unbounded dynamics for one Hamiltonian system defined by the conformally coupled field

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, Konstantin E., E-mail: kstarkov@ipn.mx

    2015-07-03

    In this paper we study invariant domains with unbounded dynamics for one cosmological Hamiltonian system which is formed by the conformally coupled field; this system was introduced by Maciejewski et al. (2007). We find a few groups of conditions imposed on parameters of this system for which all trajectories are unbounded in both of time directions. Further, we present a few groups of other conditions imposed on system parameters under which we localize the invariant domain with unbounded dynamics; this domain is defined with help of bounds for values of the Hamiltonian level surface parameter. We describe one group of conditions when our system possesses two periodic orbits found explicitly. In some of rest cases we get localization bounds for compact invariant sets. - Highlights: • Equations for periodic orbits are got for many level sets. • Domains with unbounded dynamics are localized. • Localizations for compact invariant sets are obtained.

  7. Chebyshev-Taylor Parameterization of Stable/Unstable Manifolds for Periodic Orbits: Implementation and Applications

    Science.gov (United States)

    Mireles James, J. D.; Murray, Maxime

    2017-12-01

    This paper develops a Chebyshev-Taylor spectral method for studying stable/unstable manifolds attached to periodic solutions of differential equations. The work exploits the parameterization method — a general functional analytic framework for studying invariant manifolds. Useful features of the parameterization method include the fact that it can follow folds in the embedding, recovers the dynamics on the manifold through a simple conjugacy, and admits a natural notion of a posteriori error analysis. Our approach begins by deriving a recursive system of linear differential equations describing the Taylor coefficients of the invariant manifold. We represent periodic solutions of these equations as solutions of coupled systems of boundary value problems. We discuss the implementation and performance of the method for the Lorenz system, and for the planar circular restricted three- and four-body problems. We also illustrate the use of the method as a tool for computing cycle-to-cycle connecting orbits.

  8. ExoMars Trace Gas Orbiter provides atmospheric data during Aerobraking into its final orbit

    Science.gov (United States)

    Svedhem, Hakan; Vago, Jorge L.; Bruinsma, Sean; Müller-Wodarg, Ingo; ExoMars 2016 Team

    2017-10-01

    After the arrival of the Trace Gas Orbiter (TGO) at Mars on 19 October 2016 a number of initial orbit change manoeuvres were executed and the spacecraft was put in an orbit with a 24 hour period and 74 degrees inclination. The spacecraft and its four instruments were thoroughly checked out after arrival and a few measurements and images were taken in November 2016 and in Feb-March 2017. The solar occultation observations have however not yet been possible due to lack of the proper geometry.On 15 March a long period of aerobraking to reach the final 400km semi-circular frozen orbit (370x430km, with a fixed pericentre latitude). This orbit is optimised for the payload observations and for the communication relay with the ExoMars Rover, due to arrive in 2021.The aerobraking is proceeding well and the final orbit is expected to be reached in April 2018. A large data set is being acquired for the upper atmosphere of Mars, from the limit of the sensitivity of the accelerometer, down to lowest altitude of the aerobraking at about 105km. Initial analysis has shown a highly variable atmosphere with a slightly lower density then predicted by existing models. Until the time of the abstract writing no dust storms have been observed.The ExoMars programme is a joint activity by the European Space Agency(ESA) and ROSCOSMOS, Russia. ESA is providing the TGO spacecraft and Schiaparelli (EDM) and two of the TGO instruments and ROSCOSMOS is providing the Proton launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission, consisting of a Rover and a Surface platform also launched by a Proton rocket, the TGO will handle the communication between the Earth and the Rover and Surface Platform through its (NASA provided) UHF communication system.

  9. Period Changes of 23 Field RR Lyrae Stars

    Directory of Open Access Journals (Sweden)

    Soo-Chang Rey

    1994-12-01

    Full Text Available The secular period behavior of 23 field RR Lyrae stars is studied in order to determine if the observed period changes could be attributed, at least in the mean, to stellar evolution. The sample of stars is subdivided into two Oosterhoff groups based on the metallicity and period-shift. Despite the small sample size, we found a distinct bias toward positive period changes in the group variables. The period changes of the group variables in globular clusters. This provides yet another support for the Lee, Demarque, and Zinn(1990 evolutionary models of RR Lyrae stars and their explanation of the Sandage period-shift effect.

  10. Enumeration and stability analysis of simple periodic orbits in β-Fermi Pasta Ulam lattice

    International Nuclear Information System (INIS)

    Sonone, Rupali L.; Jain, Sudhir R.

    2014-01-01

    We study the well-known one-dimensional problem of N particles with a nonlinear interaction. The special case of quadratic and quartic interaction potential among nearest neighbours is the β-Fermi-Pasta-Ulam model. We enumerate and classify the simple periodic orbits for this system and find the stability zones, employing Floquet theory. Such stability analysis is crucial to understand the transition of FPU lattice from recurrences to globally chaotic behavior, energy transport in lower dimensional system, dynamics of optical lattices and also its impact on shape parameter of bio-polymers such as DNA and RNA

  11. Enumeration and stability analysis of simple periodic orbits in β-Fermi Pasta Ulam lattice

    Energy Technology Data Exchange (ETDEWEB)

    Sonone, Rupali L., E-mail: vaidehisonone@gmail.com; Jain, Sudhir R., E-mail: vaidehisonone@gmail.com [Department of Physics, University of Pune, Pune-411007, India and Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085 (India)

    2014-04-24

    We study the well-known one-dimensional problem of N particles with a nonlinear interaction. The special case of quadratic and quartic interaction potential among nearest neighbours is the β-Fermi-Pasta-Ulam model. We enumerate and classify the simple periodic orbits for this system and find the stability zones, employing Floquet theory. Such stability analysis is crucial to understand the transition of FPU lattice from recurrences to globally chaotic behavior, energy transport in lower dimensional system, dynamics of optical lattices and also its impact on shape parameter of bio-polymers such as DNA and RNA.

  12. Light equation in eclipsing binary CV Boo: third body candidate in elliptical orbit

    Science.gov (United States)

    Bogomazov, A. I.; Kozyreva, V. S.; Satovskii, B. L.; Krushevska, V. N.; Kuznyetsova, Y. G.; Ehgamberdiev, S. A.; Karimov, R. G.; Khalikova, A. V.; Ibrahimov, M. A.; Irsmambetova, T. R.; Tutukov, A. V.

    2016-12-01

    A short period eclipsing binary star CV Boo is tested for the possible existence of additional bodies in the system with a help of the light equation method. We use data on the moments of minima from the literature as well as from our observations during 2014 May-July. A variation of the CV Boo's orbital period is found with a period of {≈}75 d. This variation can be explained by the influence of a third star with a mass of {≈}0.4 M_{⊙} in an eccentric orbit with e≈0.9. A possibility that the orbital period changes on long time scales is discussed. The suggested tertiary companion is near the chaotic zone around the central binary, so CV Boo represents an interesting example to test its dynamical evolution. A list of 14 minima moments of the binary obtained from our observations is presented.

  13. Further Evidence of a Brown Dwarf Orbiting the Post-Common Envelope Eclipsing Binary V470 Cam (HS 0705+6700

    Directory of Open Access Journals (Sweden)

    Bogensberger David

    2017-12-01

    Full Text Available Several post-common envelope binaries have slightly increasing, decreasing or oscillating orbital periods. One of several possible explanations is light travel-time changes, caused by the binary centre-of-mass being perturbed by the gravitational pull of a third body. Further studies are necessary because it is not clear how a third body could have survived subdwarf progenitor mass-loss at the tip of the Red Giant Branch, or formed subsequently. Thirty-nine primary eclipse times for V470 Cam were secured with the Philip Wetton Telescope during the period 2016 November 25th to 2017 January 27th. Available eclipse timings suggest a brown dwarf tertiary having a mass of at least 0.0236(40 M⊙, an elliptical orbit with an eccentricity of 0.376(98 and an orbital period of 11.77(67 years about the binary centreof- mass. The mass and orbit suggest a hybrid formation, in which some ejected material from the subdwarf progenitor was accreted on to a precursor tertiary component, although additional observations would be needed to confirm this interpretation and investigate other possible origins for the binary orbital period change.

  14. Orbital-scale denitrification changes in the Eastern Arabian Sea during the last 800 kyrs.

    Science.gov (United States)

    Kim, Ji-Eun; Khim, Boo-Keun; Ikehara, Minoru; Lee, Jongmin

    2018-05-04

    Denitrification in the Arabian Sea is closely related to the monsoon-induced upwelling and subsequent phytoplankton production in the surface water. The δ 15 N values of bulk sediments collected at Site U1456 of the International Ocean Discovery Program (IODP) Expedition 355 reveal the orbital-scale denitrification history in response to the Indian Monsoon. Age reconstruction based on the correlation of planktonic foraminifera (Globigerinoides ruber) δ 18 O values with the LR04 stack together with the shipboard biostratigraphic and paleomagnetic data assigns the study interval to be 1.2 Ma. Comparison of δ 15 N values during the last 800 kyrs between Site U1456 (Eastern Arabian Sea) and Site 722B (Western Arabian Sea) showed that δ 15 N values were high during interglacial periods, indicating intensified denitrification, while the opposite was observed during glacial periods. Taking 6‰ as the empirical threshold of denitrification, the Eastern Arabian Sea has experienced a persistent oxygen minimum zone (OMZ) to maintain strong denitrification whereas the Western Arabian Sea has undergone OMZ breakdown during some glacial periods. The results of this study also suggests that five principal oceanographic conditions were changed in response to the Indian Monsoon following the interglacial and glacial cycles, which controls the degree of denitrification in the Arabian Sea.

  15. Space station orbit maintenance

    Science.gov (United States)

    Kaplan, D. I.; Jones, R. M.

    1983-01-01

    The orbit maintenance problem is examined for two low-earth-orbiting space station concepts - the large, manned Space Operations Center (SOC) and the smaller, unmanned Science and Applications Space Platform (SASP). Atmospheric drag forces are calculated, and circular orbit altitudes are selected to assure a 90 day decay period in the event of catastrophic propulsion system failure. Several thrusting strategies for orbit maintenance are discussed. Various chemical and electric propulsion systems for orbit maintenance are compared on the basis of propellant resupply requirements, power requirements, Shuttle launch costs, and technology readiness.

  16. On the periodic orbits of the Third-order differential equation x ' ' '- x ' ' x'- x= F(x,x',x ' ')

    OpenAIRE

    Llibre, Jaume

    2013-01-01

    Agraïments: The second author is partially supported by CAPES/MECD-DGU 222/2010 Brazil and Spain In this paper we study the periodic orbits of the third-order differential equation x''' − µx'' + x' − µx = εF(x, x', x''), where ε is a small parameter and the function F is of class C2.

  17. The orbital record in stratigraphy

    Science.gov (United States)

    Fischer, Alfred G.

    1992-01-01

    Orbital signals are being discovered in pre-Pleistocene sediments. Due to their hierarchical nature these cycle patterns are complex, and the imprecision of geochronology generally makes the assignment of stratigraphic cycles to specific orbital cycles uncertain, but in sequences such as the limnic Newark Group under study by Olsen and pelagic Cretaceous sequence worked on by our Italo-American group the relative frequencies yield a definitive match to the Milankovitch hierarchy. Due to the multiple ways in which climate impinges on depositional systems, the orbital signals are recorded in a multiplicity of parameters, and affect different sedimentary facies in different ways. In platform carbonates, for example, the chief effect is via sea-level variations (possibly tied to fluctuating ice volume), resulting in cycles of emergence and submergence. In limnic systems it finds its most dramatic expression in alternations of lake and playa conditions. Biogenic pelagic oozes such as chalks and the limestones derived from them display variations in the carbonate supplied by planktonic organisms such as coccolithophores and foraminifera, and also record variations in the aeration of bottom waters. Whereas early studies of stratigraphic cyclicity relied mainly on bedding variations visible in the field, present studies are supplementing these with instrumental scans of geochemical, paleontological, and geophysical parameters which yield quantitative curves amenable to time-series analysis; such analysis is, however, limited by problems of distorted time-scales. My own work has been largely concentrated on pelagic systems. In these, the sensitivity of pelagic organisms to climatic-oceanic changes, combined with the sensitivity of botton life to changes in oxygen availability (commonly much more restricted in the Past than now) has left cyclic patterns related to orbital forcing. These systems are further attractive because (1) they tend to offer depositional continuity

  18. Periodic and secular changes in SS 433

    International Nuclear Information System (INIS)

    Collins, G.W.; Newsom, G.H.

    1983-01-01

    The recent history of SS 433 is reviewed with particular attention being given to the discovery of the periodic phenomena displayed by this object. Several periods ranging from days to months are established as being present in the spectrum of the ''moving'' lines as well as in other aspects of the emission from the object. In addition evidence for secular change in some of the defining parameters of the system is presented. Although these secular changes may eventually prove to be periodic on a rather long time scale, some interpretation of both the periodic and secular phenomena is possible. It is shown that it is possible to interpret all the known periodic phenomena in terms of a processing object responding to the time-varying torques that one would expect in a binary system

  19. Plasma balance equations based on orbit theory

    International Nuclear Information System (INIS)

    Lehnert, B.

    1982-01-01

    A set of plasma balance equations is proposed which is based on orbit theory and the particle distribution function, to provide means for theoretical analysis of a number of finite Larmor radius (FLR) phenomena without use of the Vlasov equation. Several important FLR effects originate from the inhomogeneity of an electric field in the plasma. The exact solution of a simple case shows that this inhomogeneity introduces fundamental changes in the physics of the particle motion. Thus, the periodic Larmor motion (gyration) is shifted in frequency and becomes elliptically polarized. Further, the non-periodic guiding-centre drift obtains additional components, part of which are accelerated such as to make the drift orbits intersect the equipotential surfaces of a static electric field. An attempt is finally made to classify the FLR effects, also with the purpose of identifying phenomena which have so far not been investigated. (author)

  20. A NEW TeV BINARY: THE DISCOVERY OF AN ORBITAL PERIOD IN HESS J0632+057

    International Nuclear Information System (INIS)

    Bongiorno, S. D.; Falcone, A. D.; Stroh, M.; Holder, J.; Skilton, J. L.; Hinton, J. A.; Gehrels, N.; Grube, J.

    2011-01-01

    HESS J0632+057 is a variable, point-like source of very high energy (>100 GeV) gamma rays located in the Galactic plane. It is positionally coincident with a Be star, it is a variable radio and X-ray source, has a hard X-ray spectrum, and has low radio flux. These properties suggest that the object may be a member of the rare class of TeV/X-ray binary systems. The definitive confirmation of this would be the detection of a periodic orbital modulation of the flux at any wavelength. We have obtained Swift X-Ray Telescope observations of the source from MJD 54857 to 55647 (2009 January-2011 March) to test the hypothesis that HESS J0632+057 is an X-ray/TeV binary. We show that these data exhibit flux modulation with a period of 321 ± 5 days and we evaluate the significance of this period by calculating the null hypothesis probability, allowing for stochastic flaring. This periodicity establishes the binary nature of HESS J0632+057.

  1. Photometry of the long period dwarf nova GY Hya

    Science.gov (United States)

    Bruch, Albert; Monard, Berto

    2017-08-01

    Although comparatively bright, the cataclysmic variable GY Hya has not attracted much attention in the past. As part of a project to better characterize such systems photometrically, we observed light curves in white light, each spanning several hours, at Bronberg Observatory, South Africa, in 2004 and 2005, and at the Observatório do Pico dos Dias, Brazil, in 2014 and 2016. These data permit to study orbital modulations and their variations from season to season. The orbital period, already known from spectroscopic observations of Peters and Thorstensen (2005), is confirmed through strong ellipsoidal variations of the mass donor star in the system and the presence of eclipses of both components. A refined period of 0.34723972 (6) days and revised ephemeries are derived. Seasonal changes in the average orbital light curve can qualitatively be explained by variations of the contribution of a hot spot to the system light together with changes of the disk radius. The amplitude of the ellipsoidal variations and the eclipse contact phases permit to put some constraints on the mass ratio, orbital inclination and the relative brightness of the primary and secondary components. There are some indications that the disk radius during quiescence, expressed in units of the component separation, is smaller than in other dwarf novae.

  2. Proper Motion and Secular Variations of Keplerian Orbital Elements

    Directory of Open Access Journals (Sweden)

    Alexey G. Butkevich

    2018-05-01

    Full Text Available High-precision observations require accurate modeling of secular changes in the orbital elements in order to extrapolate measurements over long time intervals, and to detect deviation from pure Keplerian motion caused, for example, by other bodies or relativistic effects. We consider the evolution of the Keplerian elements resulting from the gradual change of the apparent orbit orientation due to proper motion. We present rigorous formulae for the transformation of the orbit inclination, longitude of the ascending node and argument of the pericenter from one epoch to another, assuming uniform stellar motion and taking radial velocity into account. An approximate treatment, accurate to the second-order terms in time, is also given. The proper motion effects may be significant for long-period transiting planets. These theoretical results are applicable to the modeling of planetary transits and precise Doppler measurements as well as analysis of pulsar and eclipsing binary timing observations.

  3. The role of radial nodes of atomic orbitals for chemical bonding and the periodic table.

    Science.gov (United States)

    Kaupp, Martin

    2007-01-15

    The role of radial nodes, or of their absence, in valence orbitals for chemical bonding and periodic trends is discussed from a unified viewpoint. In particular, we emphasize the special role of the absence of a radial node whenever a shell with angular quantum number l is occupied for the first time (lack of "primogenic repulsion"), as with the 1s, 2p, 3d, and 4f shells. Although the consequences of the very compact 2p shell (e.g. good isovalent hybridization, multiple bonding, high electronegativity, lone-pair repulsion, octet rule) are relatively well known, it seems that some of the aspects of the very compact 3d shell in transition-metal chemistry are less well appreciated, e.g., the often weakened and stretched bonds at equilibrium structure, the frequently colored complexes, and the importance of nondynamical electron-correlation effects in bonding. Copyright (c) 2006 Wiley Periodicals, Inc.

  4. Orbital Period Variations in the NY Vir System, Revisited in the Light of New Data

    Directory of Open Access Journals (Sweden)

    Baştürk Özgür

    2018-02-01

    Full Text Available NY Virginis is an eclipsing binary system with a subdwarf B primary and an M type dwarf secondary. Recent studies (Qian et al. 2012; Lee et al. 2014 suggested the presence of two circumbinary planets with a few Jovian masses within the system. Lee et al. (2014 examined the orbital stabilities of the suggested planets, using the best-fit parameters derived from their eclipse timing variation analysis. They found that the outer companion should be ejected from the system in about 800 000 years. An observational report from Pulley et al. (2016 pointed out that the recent mideclipse times of the binary deviate significantly from the models suggested by Lee et al. (2014. In fact, variations in the orbital period of the system had already been recognized by many authors, but the parameters of these variations vary significantly as new data accumulate. Here, we analyze the eclipse timing variations of the NY Vir system, using new mid-eclipse times that we have obtained together with earlier published measurements in order to understand the nature of the system and constrain its parameters.

  5. What's New for the Orbiting Carbon Observatory-2? A Summary of Changes between the Original and Re-flight Missions

    Science.gov (United States)

    Boland, S. W.; Kahn, P. B.

    2012-12-01

    The original Orbiting Carbon Observatory mission was lost in 2009 when the spacecraft failed to achieve orbit due to a launch vehicle failure. In 2010, NASA authorized a re-flight mission, known as the Orbiting Carbon Observatory-2 (OCO-2) mission, with direction to re-use the original hardware, designs, drawings, documents, and procedures wherever possible in order to minimize cost, schedule, and performance risk. During implementation, it was realized that some changes were required due to parts obsolescence, incorporation of lessons learned from the original OCO mission, and to provide optimal science return. In response to the OCO and Glory launch vehicle failures, a change in launch vehicle was also recently announced. A summary of changes, including those to hardware, orbit, and launch vehicle is provided, along with rationale, implementation approach, and impact (if any) on mission science.

  6. Unstable periodic orbits and chaotic economic growth

    International Nuclear Information System (INIS)

    Ishiyama, K.; Saiki, Y.

    2005-01-01

    We numerically find many unstable periodic solutions embedded in a chaotic attractor in a macroeconomic growth cycle model of two countries with different fiscal policies, and we focus on a special type of the unstable periodic solutions. It is confirmed that chaotic behavior represented by the model is qualitatively and quantitatively related to the unstable periodic solutions. We point out that the structure of a chaotic solution is dissolved into a class of finite unstable periodic solutions picked out among a large number of periodic solutions. In this context it is essential for the unstable periodic solutions to be embedded in the chaotic attractor

  7. A Typical Presentation of Orbital Pseudotumor Mimicking Orbital Cellulitis

    Directory of Open Access Journals (Sweden)

    J. Ayatollahi

    2013-10-01

    Full Text Available Introduction: Orbital pseudotumor, also known as idiopathic orbital inflammatory syndrome (IOIS, is a benign, non- infective inflammatory condition of the orbit without identifiable local or systemic causes. The disease may mimics a variety of pathologic conditions. We pre-sent a case of pseudotumor observed in a patient admitted under the name of orbital celluli-ties. Case Report: A 26-year-old woman reffered to our hospital with the history of left ocular pain and headache 2 days before her visit.. Ophthalmological examination of the patient was normal except for the redness and lid edema, mild chemosis and conjunctival injection. Gen-eral assessment was normal but a low grade fever was observed. She was hospitalized as an orbital cellulitis patient. She was treated with intravenous antibiotics. On the third day , sud-denly diplopia, proptosis in her left eye and ocular pain in her right side appeared. MRI re-vealed bilateral enlargement of extraocular muscles. Diagnosis of orbital pseudotumor was made and the patient was treated with oral steroid.She responded promptly to the treatment. Antibiotics were discontinued and steroid was tapered in one month period under close fol-low up. Conclusion: The clinical features of orbital pseudotumor vary widely . Orbital pseudotumor and orbital cellulitis can occasionally demonstrate overlapping features.. Despite complete physical examination and appropriate imaging, sometimes correct diagnosis of the disease would be difficult (Sci J Hamadan Univ Med Sci 2013; 20 (3:256-259

  8. Electronic orbital response of regular extended and infinite periodic systems to magnetic fields. I. Theoretical foundations for static case

    Science.gov (United States)

    Springborg, Michael; Molayem, Mohammad; Kirtman, Bernard

    2017-09-01

    A theoretical treatment for the orbital response of an infinite, periodic system to a static, homogeneous, magnetic field is presented. It is assumed that the system of interest has an energy gap separating occupied and unoccupied orbitals and a zero Chern number. In contrast to earlier studies, we do not utilize a perturbation expansion, although we do assume the field is sufficiently weak that the occurrence of Landau levels can be ignored. The theory is developed by analyzing results for large, finite systems and also by comparing with the analogous treatment of an electrostatic field. The resulting many-electron Hamilton operator is forced to be hermitian, but hermiticity is not preserved, in general, for the subsequently derived single-particle operators that determine the electronic orbitals. However, we demonstrate that when focusing on the canonical solutions to the single-particle equations, hermiticity is preserved. The issue of gauge-origin dependence of approximate solutions is addressed. Our approach is compared with several previously proposed treatments, whereby limitations in some of the latter are identified.

  9. THREE PLANETS ORBITING WOLF 1061

    Energy Technology Data Exchange (ETDEWEB)

    Wright, D. J.; Wittenmyer, R. A.; Tinney, C. G.; Bentley, J. S.; Zhao, Jinglin, E-mail: duncan.wright@unsw.edu.au [Department of Astronomy and Australian Centre for Astrobiology, School of Physics, University of New South Wales, NSW 2052 (Australia)

    2016-02-01

    We use archival HARPS spectra to detect three planets orbiting the M3 dwarf Wolf 1061 (GJ 628). We detect a 1.36 M{sub ⊕} minimum-mass planet with an orbital period P = 4.888 days (Wolf 1061b), a 4.25 M{sub ⊕} minimum-mass planet with orbital period P = 17.867 days (Wolf 1061c), and a likely 5.21 M{sub ⊕} minimum-mass planet with orbital period P = 67.274 days (Wolf 1061d). All of the planets are of sufficiently low mass that they may be rocky in nature. The 17.867 day planet falls within the habitable zone for Wolf 1061 and the 67.274 day planet falls just outside the outer boundary of the habitable zone. There are no signs of activity observed in the bisector spans, cross-correlation FWHMs, calcium H and K indices, NaD indices, or Hα indices near the planetary periods. We use custom methods to generate a cross-correlation template tailored to the star. The resulting velocities do not suffer the strong annual variation observed in the HARPS DRS velocities. This differential technique should deliver better exploitation of the archival HARPS data for the detection of planets at extremely low amplitudes.

  10. Statistical U-Th dating results of speleothem from south Europe and the orbital-scale implication

    Science.gov (United States)

    Hu, H. M.

    2016-12-01

    Reconstructing of hydroclimate in the Mediterranean on an orbital time scale helps improve our understanding of interaction between orbital forcing and north hemisphere climate. We collected 180 speleothem subsamples from Observatoire Cave (Monaco), Prince Cave (south France), Chateaueuf Cave (South France), Arago Cave (South France), and Basura Cave (North Italy) during 2013 to 2015 C.E. Uranium-thorium dating were conducted in the High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), National Taiwan University. The results show that most of the speleothem formed during interglacial periods, particularly in marine isotope stage (MIS) 1, 5, and 11. However, only a few speleothem were dated between 180 to 250 thousand years ago (ka). The interval is approximately equivalent to MIS 7, which is a period with contrasting orbital parameters compared to MIS1, 5, and 11. Our statistical dating result implies that the orbital-scale humid/dry condition in southern Europe could be dominantly controlled by orbital forcing.

  11. Replicate periodic windows in the parameter space of driven oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, E.S., E-mail: esm@if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil); Souza, S.L.T. de [Universidade Federal de Sao Joao del-Rei, Campus Alto Paraopeba, Minas Gerais (Brazil); Medrano-T, R.O. [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Diadema, Sao Paulo (Brazil); Caldas, I.L. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2011-11-15

    Highlights: > We apply a weak harmonic perturbation to control chaos in two driven oscillators. > We find replicate periodic windows in the driven oscillator parameter space. > We find that the periodic window replication is associated with the chaos control. - Abstract: In the bi-dimensional parameter space of driven oscillators, shrimp-shaped periodic windows are immersed in chaotic regions. For two of these oscillators, namely, Duffing and Josephson junction, we show that a weak harmonic perturbation replicates these periodic windows giving rise to parameter regions correspondent to periodic orbits. The new windows are composed of parameters whose periodic orbits have the same periodicity and pattern of stable and unstable periodic orbits already existent for the unperturbed oscillator. Moreover, these unstable periodic orbits are embedded in chaotic attractors in phase space regions where the new stable orbits are identified. Thus, the observed periodic window replication is an effective oscillator control process, once chaotic orbits are replaced by regular ones.

  12. Indian monsoon variability on millennial-orbital timescales.

    Science.gov (United States)

    Kathayat, Gayatri; Cheng, Hai; Sinha, Ashish; Spötl, Christoph; Edwards, R Lawrence; Zhang, Haiwei; Li, Xianglei; Yi, Liang; Ning, Youfeng; Cai, Yanjun; Lui, Weiguo Lui; Breitenbach, Sebastian F M

    2016-04-13

    The Indian summer monsoon (ISM) monsoon is critical to billions of people living in the region. Yet, significant debates remain on primary ISM drivers on millennial-orbital timescales. Here, we use speleothem oxygen isotope (δ(18)O) data from Bittoo cave, Northern India to reconstruct ISM variability over the past 280,000 years. We find strong coherence between North Indian and Chinese speleothem δ(18)O records from the East Asian monsoon domain, suggesting that both Asian monsoon subsystems exhibit a coupled response to changes in Northern Hemisphere summer insolation (NHSI) without significant temporal lags, supporting the view that the tropical-subtropical monsoon variability is driven directly by precession-induced changes in NHSI. Comparisons of the North Indian record with both Antarctic ice core and sea-surface temperature records from the southern Indian Ocean over the last glacial period do not suggest a dominant role of Southern Hemisphere climate processes in regulating the ISM variability on millennial-orbital timescales.

  13. An efficient algorithm for global periodic orbits generation near irregular-shaped asteroids

    Science.gov (United States)

    Shang, Haibin; Wu, Xiaoyu; Ren, Yuan; Shan, Jinjun

    2017-07-01

    Periodic orbits (POs) play an important role in understanding dynamical behaviors around natural celestial bodies. In this study, an efficient algorithm was presented to generate the global POs around irregular-shaped uniformly rotating asteroids. The algorithm was performed in three steps, namely global search, local refinement, and model continuation. First, a mascon model with a low number of particles and optimized mass distribution was constructed to remodel the exterior gravitational potential of the asteroid. Using this model, a multi-start differential evolution enhanced with a deflection strategy with strong global exploration and bypassing abilities was adopted. This algorithm can be regarded as a search engine to find multiple globally optimal regions in which potential POs were located. This was followed by applying a differential correction to locally refine global search solutions and generate the accurate POs in the mascon model in which an analytical Jacobian matrix was derived to improve convergence. Finally, the concept of numerical model continuation was introduced and used to convert the POs from the mascon model into a high-fidelity polyhedron model by sequentially correcting the initial states. The efficiency of the proposed algorithm was substantiated by computing the global POs around an elongated shoe-shaped asteroid 433 Eros. Various global POs with different topological structures in the configuration space were successfully located. Specifically, the proposed algorithm was generic and could be conveniently extended to explore periodic motions in other gravitational systems.

  14. Five years in the life of an inertial system operating in orbit

    Science.gov (United States)

    Harris, R. A.; Denhard, W. G.

    1978-01-01

    The paper describes the in-orbit performance of the gyroscopes and strapdown attitude reference system for the OAO-C (Copernicus) satellite, launched on Aug. 21, 1972. In order to fulfill NASA requirements, the inertial system had to: (1) operate for at least one year in orbit without failure, (2) maintain an inertial reference with an uncertainty of 50 microradians or less for at least one hour, and (3) control attitude changes with an accuracy of at least 30 parts per million. During the orbit period, the inertial system has demonstrated a capability for maintaining an inertial reference that is significantly better than these performance goals.

  15. A Spectroscopic Orbit for the Late-type Be Star β CMi

    Energy Technology Data Exchange (ETDEWEB)

    Dulaney, Nicholas A.; Richardson, Noel D.; Gerhartz, Cody J.; Bjorkman, J. E.; Bjorkman, K. S.; Morrison, Nancy D.; Bratcher, Allison D.; Greco, Jennifer J.; Hardegree-Ullman, Kevin K.; Lembryk, Ludwik; Oswald, Wayne L.; Trucks, Jesica L. [Ritter Observatory, Department of Physics and Astronomy, The University of Toledo, Toledo, OH 43606-3390 (United States); Carciofi, Alex C. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, SP 05508-900 (Brazil); Klement, Robert [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago (Chile); Wang, Luqian, E-mail: noel.richardson@UToledo.edu [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States)

    2017-02-10

    The late-type Be star β CMi is remarkably stable compared to other Be stars that have been studied. This has led to a realistic model of the outflowing Be disk by Klement et al. These results showed that the disk is likely truncated at a finite radius from the star, which Klement et al. suggest is evidence for an unseen binary companion in orbit. Here we report on an analysis of the Ritter Observatory spectroscopic archive of β CMi to search for evidence of the elusive companion. We detect periodic Doppler shifts in the wings of the H α line with a period of 170 days and an amplitude of 2.25 km s{sup −1}, consistent with a low-mass binary companion ( M ≈ 0.42 M {sub ⊙}). We then compared small changes in the violet-to-red peak height changes ( V / R ) with the orbital motion. We find weak evidence that it does follow the orbital motion, as suggested by recent Be binary models by Panoglou et al. Our results, which are similar to those for several other Be stars, suggest that β CMi may be a product of binary evolution where Roche lobe overflow has spun up the current Be star, likely leaving a hot subdwarf or white dwarf in orbit around the star. Unfortunately, no direct sign of this companion star is found in the very limited archive of International Ultraviolet Explorer spectra.

  16. On the trajectories of CRL...LR...R orbits, their period-doubling cascades and saddle-node bifurcation cascades

    International Nuclear Information System (INIS)

    Cerrada, Lucia; San Martin, Jesus

    2011-01-01

    In this Letter, it is shown that from a two region partition of the phase space of a one-dimensional dynamical system, a p-region partition can be obtained for the CRL...LR...R orbits. That is, permutations associated with symbolic sequences are obtained. As a consequence, the trajectory in phase space is directly deduced from permutation. From this permutation other permutations associated with period-doubling and saddle-node bifurcation cascades are derived, as well as other composite permutations. - Research highlights: → Symbolic sequences are the usual topological approach to dynamical systems. → Permutations bear more physical information than symbolic sequences. → Period-doubling cascade permutations associated with original sequences are obtained. → Saddle-node cascade permutations associated with original sequences are obtained. → Composite permutations are derived.

  17. Discovery of a 115 Day Orbital Period in the Ultraluminous X-ray Source NGC 5408 X-1

    Science.gov (United States)

    Strohmayer, Tod E.

    2009-01-01

    We report the detection of a 115 day periodicity in SWIFT/XRT monitoring data from the ultraluminous X-ray source (ULX) NGC 5408 X-1. Our o ngoing campaign samples its X-ray flux approximately twice weekly and has now achieved a temporal baseline of ti 485 days. Periodogram ana lysis reveals a significant periodicity with a period of 115.5 +/- 4 days. The modulation is detected with a significance of 3.2 x 10(exp -4) . The fractional modulation amplitude decreases with increasing e nergy, ranging from 0.13 +/- 0.02 above 1 keV to 0.24 +/- 0.02 below 1 keV. The shape of the profile evolves as well, becoming less sharply peaked at higher energies. The periodogram analysis is consistent wi th a periodic process, however, continued monitoring is required to c onfirm the coherent nature of the modulation. Spectral analysis indic ates that NGC 5408 X-1 can reach 0.3 - 10 keV luminosities of approxi mately 2 x 10 40 ergs/s . We suggest that, like the 62 day period of the ULX in M82 (X41.4-1-60), the periodicity detected in NGC 5408 X-1 represents the orbital period of the black hole binary containing the ULX. If this is true then the secondary can only be a giant or super giant star.

  18. Continuation of Sets of Constrained Orbit Segments

    DEFF Research Database (Denmark)

    Schilder, Frank; Brøns, Morten; Chamoun, George Chaouki

    Sets of constrained orbit segments of time continuous flows are collections of trajectories that represent a whole or parts of an invariant set. A non-trivial but simple example is a homoclinic orbit. A typical representation of this set consists of an equilibrium point of the flow and a trajectory...... that starts close and returns close to this fixed point within finite time. More complicated examples are hybrid periodic orbits of piecewise smooth systems or quasi-periodic invariant tori. Even though it is possible to define generalised two-point boundary value problems for computing sets of constrained...... orbit segments, this is very disadvantageous in practice. In this talk we will present an algorithm that allows the efficient continuation of sets of constrained orbit segments together with the solution of the full variational problem....

  19. Planetary perturbations and the origins of short-period comets

    International Nuclear Information System (INIS)

    Quinn, T.; Tremaine, S.; Duncan, M.

    1990-01-01

    To investigate the dynamical plausibility of possible sources for the short-period comets, a representative sample of comet orbits in the field of the sun and the giant planets was integrated, with the aim to determine whether the distribution of orbits from a proposed source that reach observable perihelia (q less than 2.5 AU) matches the observed distribution of short-period orbits. It is found that the majority of the short-period comets, those with orbital period P less than 20 yr (the Jupiter family), cannot arise from isotropic orbits with perihelia near Jupiter's orbit, because the resulting observable comet orbits have the wrong distribution in period, inclination, and argument of perihelion. The simulations also show that Jupiter-family comets cannot arise from isotropic orbits with perihelia in the Uranus-Neptune region. On the other hand, a source of low-inclination Neptune-crossing orbits yields a distribution of observable Jupiter-family comets that is consistent with the data in all respects. These results imply that the Jupiter-family comets arise from a disk source in the outer solar system rather than from the Oort comet cloud. 30 refs

  20. Dynamics of Orbits near 3:1 Resonance in the Earth-Moon System

    Science.gov (United States)

    Dichmann, Donald J.; Lebois, Ryan; Carrico, John P., Jr.

    2013-01-01

    The Interstellar Boundary Explorer (IBEX) spacecraft is currently in a highly elliptical orbit around Earth with a period near 3:1 resonance with the Moon. Its orbit is oriented so that apogee does not approach the Moon. Simulations show this orbit to be remarkably stable over the next twenty years. This article examines the dynamics of such orbits in the Circular Restricted 3-Body Problem (CR3BP). We look at three types of periodic orbits, each exhibiting a type of symmetry of the CR3BP. For each of the orbit types, we assess the local stability using Floquet analysis. Although not all of the periodic solutions are stable in the mathematical sense, any divergence is so slow as to produce practical stability over several decades. We use Poincare maps with twenty-year propagations to assess the nonlinear stability of the orbits, where the perturbation magnitudes are related to the orbit uncertainty for the IBEX mission. Finally we show that these orbits belong to a family of orbits connected in a bifurcation diagram that exhibits exchange of stability. The analysis of these families of period orbits provides a valuable starting point for a mission orbit trade study.

  1. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  2. PERIODIC SIGNALS IN BINARY MICROLENSING EVENTS

    International Nuclear Information System (INIS)

    Guo, Xinyi; Stefano, Rosanne Di; Esin, Ann; Taylor, Jeffrey

    2015-01-01

    Gravitational microlensing events are powerful tools for the study of stellar populations. In particular, they can be used to discover and study a variety of binary systems. A large number of binary lenses have already been found through microlensing surveys and a few of these systems show strong evidence of orbital motion on the timescale of the lensing event. We expect that more binary lenses of this kind will be detected in the future. For binaries whose orbital period is comparable to the event duration, the orbital motion can cause the lensing signal to deviate drastically from that of a static binary lens. The most striking property of such light curves is the presence of quasi-periodic features, which are produced as the source traverses the same regions in the rotating lens plane. These repeating features contain information about the orbital period of the lens. If this period can be extracted, then much can be learned about the lensing system even without performing time-consuming, detailed light-curve modeling. However, the relative transverse motion between the source and the lens significantly complicates the problem of period extraction. To resolve this difficulty, we present a modification of the standard Lomb–Scargle periodogram analysis. We test our method for four representative binary lens systems and demonstrate its efficiency in correctly extracting binary orbital periods

  3. Antenatal sonographic appearance of a large orbital encephalocele: a case report and differential diagnosis of orbital cystic mass.

    Science.gov (United States)

    Ahmed, Ahmed; Noureldin, Rehab; Gendy, Mohamed; Sakr, Sharif; Abdel Naby, Mahmoud

    2013-06-01

    Orbital meningoceles and encephaloceles are rare extracranial extensions of the brain and meninges with or without direct communication between the central nervous system and the abnormal mass. We reported a rare case of large fetal orbital encephalocele; the diagnosis was suspected initially by prenatal ultrasound and confirmed by postnatal MRI and CT scans. The differential diagnosis of an intrauterine fetal cystic orbital mass includes orbital teratoma, epidermoid inclusion cysts, hemangioma or lymphangioma, congenital cystic eye, dacryocystocele, and orbital cephalocele. Copyright © 2012 Wiley Periodicals, Inc.

  4. Energy level diagrams for black hole orbits

    Science.gov (United States)

    Levin, Janna

    2009-12-01

    A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.

  5. Energy level diagrams for black hole orbits

    International Nuclear Information System (INIS)

    Levin, Janna

    2009-01-01

    A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.

  6. Application of Semi-analytical Satellite Theory orbit propagator to orbit determination for space object catalog maintenance

    Science.gov (United States)

    Setty, Srinivas J.; Cefola, Paul J.; Montenbruck, Oliver; Fiedler, Hauke

    2016-05-01

    Catalog maintenance for Space Situational Awareness (SSA) demands an accurate and computationally lean orbit propagation and orbit determination technique to cope with the ever increasing number of observed space objects. As an alternative to established numerical and analytical methods, we investigate the accuracy and computational load of the Draper Semi-analytical Satellite Theory (DSST). The standalone version of the DSST was enhanced with additional perturbation models to improve its recovery of short periodic motion. The accuracy of DSST is, for the first time, compared to a numerical propagator with fidelity force models for a comprehensive grid of low, medium, and high altitude orbits with varying eccentricity and different inclinations. Furthermore, the run-time of both propagators is compared as a function of propagation arc, output step size and gravity field order to assess its performance for a full range of relevant use cases. For use in orbit determination, a robust performance of DSST is demonstrated even in the case of sparse observations, which is most sensitive to mismodeled short periodic perturbations. Overall, DSST is shown to exhibit adequate accuracy at favorable computational speed for the full set of orbits that need to be considered in space surveillance. Along with the inherent benefits of a semi-analytical orbit representation, DSST provides an attractive alternative to the more common numerical orbit propagation techniques.

  7. Optimisation of the Future Routine Orbit for Mars Express

    Science.gov (United States)

    Carranza, Manuel; Companys, Vincente

    2007-01-01

    pericentre would cause in the following years a drift of the pericentre towards night-side observation conditions, hence uninteresting for the optical instruments. In order to prevent this an optimisation process for the future routine orbit has taken place. The share between day-side and night-side observations can be controlled by adjusting the drift of argument of pericentre and ascending node. This can in particular be achieved by changing the semimajor axis, eccentricity and/or inclination. A change of inclination is inefficient compared to a change in semimajor axis and eccentricity, and has therefore been discarded. An in-plane maneuvre can be performed to change both semi-major axis and eccentricity, and thus the period of the orbit. Although an apocentre manoeuvre is cheaper in terms of deltaV, it would result in raising the pericentre height, which is unfavourable for close observations. Hence a pericentre manoeuvre is proposed, which will increase the apocentre height. A repeat cycle is still required to allow mapping areas with adjacent ground tracks, so the change of semimajor axis must result in a new resonance. Resonances 18:5, 25:7 and 7:2 have been considered as potential candidates. The resulting long term evolution of the observation conditions has been analysed. Finally it has been decided to perform a change of orbit to reach the 18:5. Another aspect of the optimisation process is the control of the ground track. The previous MEX reference trajectory included regular maneuvres at every apocentre in order to adjust the orbital period, such that the separation of the ground tracks would be optimal, regardless of the latitude of pericentre. The implementation of the actual delatVs on-board was done partly by optimizing the attitude of reaction-wheel desaturation activities. Despite of it, this strategy has a significant propellant cost, because it prevents to optimize reaction wheel de-saturation activities to minimize propellant consumption. Therore, with

  8. A0535+26: Refined position measurement and new pulse period data

    International Nuclear Information System (INIS)

    Li, F.; Rappaport, S.; Clark, G.W.; Jernigan, J.G.

    1979-01-01

    The hard, pulsing, transient X-ray source A0535+26 has been observed with SAS 3 on three occasions during 1977--1978. These observations have yielded a precise position measurement (20'' error radius) which renders the identification of A0535+26 with the Be star HDE 245770 virtually certain. The pulse phase was tracked for approx.9 days in 1978 April and clearly showed both first and second derivatives in the pulse period. An analysis of these new timing data, combined with data from previous observations, leads to the following conclusions: (1) a significant fraction of the observed changes in pulse period is probably intrinsic to the compact X-ray stae (e.g., accretion torques on a neutron star), and (2) conservative limits on binary orbital parameters tend to further confirm a long orbital period

  9. LONG-ORBITAL-PERIOD PREPOLARS CONTAINING EARLY K-TYPE DONOR STARS. BOTTLENECK ACCRETION MECHANISM IN ACTION

    International Nuclear Information System (INIS)

    Tovmassian, G.; González–Buitrago, D.; Zharikov, S.; Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P.; Miroshnichenko, A. S.

    2016-01-01

    We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems

  10. LONG-ORBITAL-PERIOD PREPOLARS CONTAINING EARLY K-TYPE DONOR STARS. BOTTLENECK ACCRETION MECHANISM IN ACTION

    Energy Technology Data Exchange (ETDEWEB)

    Tovmassian, G.; González–Buitrago, D.; Zharikov, S. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 877, Ensenada, Baja California, 22800 México (Mexico); Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Campus Box 3255, Chapel Hill, NC 27599 (United States); Miroshnichenko, A. S., E-mail: gag@astro.unam.mx, E-mail: dgonzalez@astro.unam.mx, E-mail: zhar@astro.unam.mx [Department of Physics and Astronomy, University of North Carolina at Greensboro, Greensboro, NC 27402-6170 (United States)

    2016-03-01

    We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems.

  11. Early Paleogene Orbital Variations in Atmospheric CO2 and New Astronomical Solutions

    Science.gov (United States)

    Zeebe, R. E.

    2017-12-01

    Geologic records across the globe show prominent variations on orbital time scales during numerous epochs going back hundreds of millions of years. The origin of the Milankovic cycles are variations in orbital parameters of the bodies of the Solar System. On long time scales, the orbital variations can not be computed analytically because of the chaotic nature of the Solar System. Thus, numerical solutions are used to estimate changes in, e.g., Earth's orbital parameters in the past. The orbital solutions represent the backbone of cyclostratigraphy and astrochronology, now widely used in geology and paleoclimatology. Hitherto only two solutions for Earth's eccentricity appear to be used in paleoclimate studies, provided by two different groups that integrated the full Solar System equations over the past >100 Myr. In this presentation, I will touch on the basic physics behind, and present new results of, accurate Solar System integrations for Earth's eccentricity over the past hundred million years. I will discuss various limitations within the framework of the present simulations and compare the results to existing solutions. Furthermore, I will present new results from practical applications of such orbital solutions, including effects of orbital forcing on coupled climate- and carbon cycle variations. For instance, we have recently revealed a mechanism for a large lag between changes in carbon isotope ratios and eccentricity at the 400-kyr period, which has been observed in Paleocene, Oligocene, and Miocene sections. Finally, I will present the first estimates of orbital-scale variations in atmospheric CO2 during the early Paleogene.

  12. Gravitational waves from periodic three-body systems.

    Science.gov (United States)

    Dmitrašinović, V; Suvakov, Milovan; Hudomal, Ana

    2014-09-05

    Three bodies moving in a periodic orbit under the influence of Newtonian gravity ought to emit gravitational waves. We have calculated the gravitational radiation quadrupolar waveforms and the corresponding luminosities for the 13+11 recently discovered three-body periodic orbits in Newtonian gravity. These waves clearly allow one to distinguish between their sources: all 13+11 orbits have different waveforms and their luminosities (evaluated at the same orbit energy and body mass) vary by up to 13 orders of magnitude in the mean, and up to 20 orders of magnitude for the peak values.

  13. Pumped double quantum dot with spin-orbit coupling

    Directory of Open Access Journals (Sweden)

    Sherman Eugene

    2011-01-01

    Full Text Available Abstract We study driven by an external electric field quantum orbital and spin dynamics of electron in a one-dimensional double quantum dot with spin-orbit coupling. Two types of external perturbation are considered: a periodic field at the Zeeman frequency and a single half-period pulse. Spin-orbit coupling leads to a nontrivial evolution in the spin and orbital channels and to a strongly spin- dependent probability density distribution. Both the interdot tunneling and the driven motion contribute into the spin evolution. These results can be important for the design of the spin manipulation schemes in semiconductor nanostructures. PACS numbers: 73.63.Kv,72.25.Dc,72.25.Pn

  14. New binary pulsar in a highy eccentric orbit

    International Nuclear Information System (INIS)

    Stokes, G.H.; Taylor, J.H.; Dewey, R.J.

    1985-01-01

    We report the discovery of PSR 2303+46, the fifth radio pulsar known to be in a gravitationally bound orbit around another star. The pulsar period (1.066 s) and the orbital eccentricity (0.658) are the largest amount the five binary systems, while the orbital period (12./sup d/34) lies near the middle of the range. Evolutionary considerations suggest strongly that the companion is another neutron star. The general relativistic precession of periastron should be observable within 1 or 2 yr and, when measured, will specify the total mass of the two stars

  15. Robustness analysis method for orbit control

    Science.gov (United States)

    Zhang, Jingrui; Yang, Keying; Qi, Rui; Zhao, Shuge; Li, Yanyan

    2017-08-01

    Satellite orbits require periodical maintenance due to the presence of perturbations. However, random errors caused by inaccurate orbit determination and thrust implementation may lead to failure of the orbit control strategy. Therefore, it is necessary to analyze the robustness of the orbit control methods. Feasible strategies which are tolerant to errors of a certain magnitude can be developed to perform reliable orbit control for the satellite. In this paper, first, the orbital dynamic model is formulated by Gauss' form of the planetary equation using the mean orbit elements; the atmospheric drag and the Earth's non-spherical perturbations are taken into consideration in this model. Second, an impulsive control strategy employing the differential correction algorithm is developed to maintain the satellite trajectory parameters in given ranges. Finally, the robustness of the impulsive control method is analyzed through Monte Carlo simulations while taking orbit determination error and thrust error into account.

  16. The effects of Dresselhaus and Rashba spin-orbit interactions on the electron tunneling in a non-magnetic heterostructure

    International Nuclear Information System (INIS)

    Lu Jianduo; Li Jianwen

    2010-01-01

    We theoretically investigate the electron transport properties in a non-magnetic heterostructure with both Dresselhaus and Rashba spin-orbit interactions. The detailed-numerical results show that (1) the large spin polarization can be achieved due to Dresselhaus and Rashba spin-orbit couplings induced splitting of the resonant level, although the magnetic field is zero in such a structure, (2) the Rashba spin-orbit coupling plays a greater role on the spin polarization than the Dresselhaus spin-orbit interaction does, and (3) the transmission probability and the spin polarization both periodically change with the increase of the well width.

  17. An Orbit Propagation Software for Mars Orbiting Spacecraft

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2004-12-01

    Full Text Available An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods, the results show about maximum ±5 meter errors, in every position state components(radial, cross-track and along-track, when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.

  18. Orbital Forcing driving climate variability on Tropical South Atlantic

    Science.gov (United States)

    Oliveira, A. S.; Baker, P. A.; Silva, C. G.; Dwyer, G. S.; Chiessi, C. M.; Rigsby, C. A.; Ferreira, F.

    2017-12-01

    Past research on climate response to orbital forcing in tropical South America has emphasized on high precession cycles influencing low latitude hydrologic cycles, and driving the meridional migration of Intertropical Convergence Zone (ITCZ).However, marine proxy records from the tropical Pacific Ocean showed a strong 41-ka periodicities in Pleistocene seawater temperature and productivity related to fluctuations in Earth's obliquity. It Indicates that the western Pacific ITCZ migration was influenced by combined precession and obliquity changes. To reconstruct different climate regimes over the continent and understand the orbital cycle forcing over Tropical South America climate, hydrological reconstruction have been undertaken on sediment cores located on the Brazilian continental slope, representing the past 1.6 million years. Core CDH 79 site is located on a 2345 m deep seamount on the northern Brazilian continental slope (00° 39.6853' N, 44° 20.7723' W), 320 km from modern coastline of the Maranhão Gulf. High-resolution XRF analyses of Fe, Ti, K and Ca are used to define the changes in precipitation and sedimentary input history of Tropical South America. The response of the hydrology cycle to orbital forcing was studied using spectral analysis.The 1600 ka records of dry/wet conditions presented here indicates that orbital time-scale climate change has been a dominant feature of tropical climate. We conclude that the observed oscillation reflects variability in the ITCZ activity associated with the Earth's tilt. The prevalence of the eccentricity and obliquity signals in continental hydrology proxies (Ti/Ca and Fe/K) as implicated in our precipitation records, highlights that these orbital forcings play an important role in tropics hydrologic cycles. Throughout the Quaternary abrupt shifts of tropical variability are temporally correlated with abrupt climate changes and atmospheric reorganization during Mid-Pleistocene Transition and Mid-Brunhes Events

  19. Changes in peripapillary blood vessel density in Graves' orbitopathy after orbital decompression surgery as measured by optical coherence tomography angiography.

    Science.gov (United States)

    Lewis, Kyle T; Bullock, John R; Drumright, Ryan T; Olsen, Matthew J; Penman, Alan D

    2018-03-08

    The purpose is to evaluate the utility of optical coherence tomography (OCT) angiography in the evaluation of Graves' orbitopathy (GO) and response to orbital decompression in patients with and without dysthyroid optic neuropathy (DON). This was a single-center, prospective case series in a cohort of 12 patients (24 orbits) with GO and ±DON, (6 orbits) who underwent bilateral orbital decompression. All patients underwent pre- and postoperative OCT angiography of the peripapillary area. Vessel density indices were calculated in a 4.5 mm × 4.5 mm ellipsoid centered on the optic disk using split-spectrum amplitude decorrelation angiography algorithm, producing the vessel density measurements. Mean change in vessel density indices was compared between pre- and postoperative sessions and between patients with and without DON. Patient 1, a 34-year-old male with GO and unilateral DON OD, showed a significant reduction in blood vessel density indices oculus dexter (OD) (DON eye) after decompression while a more modest reduction was found oculus sinister (OS) with the greatest change noted intrapapillary. Patient 2, a 50-year-old male with DON OU, showed worsening neuropathy following decompression OD that was confirmed by angiographic density indices. Patient 3, a 55-year-female with DON, showed a reduction in blood vessel density OD and increased density OS. Patients without DON showed overall less impressive changes in indices as compared to those with DON. Using OCT angiography, response to surgical treatment in GO orbits, more so in orbits with DON, can be demonstrated and quantified using vessel density indices with reproducibility.

  20. Decentralized Feedback Controllers for Exponential Stabilization of Hybrid Periodic Orbits: Application to Robotic Walking*

    Science.gov (United States)

    Hamed, Kaveh Akbari; Gregg, Robert D.

    2016-01-01

    This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:27990059

  1. ASSESSING THE INFLUENCE OF THE SOLAR ORBIT ON TERRESTRIAL BIODIVERSITY

    International Nuclear Information System (INIS)

    Feng, F.; Bailer-Jones, C. A. L.

    2013-01-01

    The terrestrial record shows a significant variation in the extinction and origination rates of species during the past half-billion years. Numerous studies have claimed an association between this variation and the motion of the Sun around the Galaxy, invoking the modulation of cosmic rays, gamma rays, and comet impact frequency as a cause of this biodiversity variation. However, some of these studies exhibit methodological problems, or were based on coarse assumptions (such as a strict periodicity of the solar orbit). Here we investigate this link in more detail, using a model of the Galaxy to reconstruct the solar orbit and thus a predictive model of the temporal variation of the extinction rate due to astronomical mechanisms. We compare these predictions as well as those of various reference models with paleontological data. Our approach involves Bayesian model comparison, which takes into account the uncertainties in the paleontological data as well as the distribution of solar orbits consistent with the uncertainties in the astronomical data. We find that various versions of the orbital model are not favored beyond simpler reference models. In particular, the distribution of mass extinction events can be explained just as well by a uniform random distribution as by any other model tested. Although our negative results on the orbital model are robust to changes in the Galaxy model, the Sun's coordinates, and the errors in the data, we also find that it would be very difficult to positively identify the orbital model even if it were the true one. (In contrast, we do find evidence against simpler periodic models.) Thus, while we cannot rule out there being some connection between solar motion and biodiversity variations on the Earth, we conclude that it is difficult to give convincing positive conclusions of such a connection using current data.

  2. Sticky orbits in a kicked-oscillator model

    CERN Document Server

    Lowenstein, J H; Vivaldi, F

    2005-01-01

    We study a 4-fold symmetric kicked-oscillator map with sawtooth kick function. For the values of the kick amplitude $\\lambda=2\\cos(2\\pi p/q)$ with rational $p/q$, the dynamics is known to be pseudochaotic, with no stochastic web of non-zero Lebesgue measure. We show that this system can be represented as a piecewise affine map of the unit square ---the so-called local map--- driving a lattice map. We develop a framework for the study of long-time behaviour of the orbits, in the case in which the local map features exact scaling. We apply this method to several quadratic irrational values of $\\lambda$, for which the local map possesses a full Legesgue measure of periodic orbits; these are promoted to either periodic orbits or accelerator modes of the kicked-oscillator map. By constrast, the aperiodic orbits of the local map can generate various asymptotic behaviours. For some parameter values the orbits remain bounded, while others have excursions which grow logarithmically or as a power of the time. In the po...

  3. QATAR-2: A K DWARF ORBITED BY A TRANSITING HOT JUPITER AND A MORE MASSIVE COMPANION IN AN OUTER ORBIT

    International Nuclear Information System (INIS)

    Bryan, Marta L.; Alsubai, Khalid A.; Latham, David W.; Quinn, Samuel N.; Carter, Joshua A.; Berlind, Perry; Brown, Warren R.; Calkins, Michael L.; Esquerdo, Gilbert A.; Fűrész, Gábor; Stefanik, Robert P.; Torres, Guillermo; Parley, Neil R.; Collier Cameron, Andrew; Horne, Keith D.; Fulton, Benjamin J.; Street, Rachel A.; Buchhave, Lars A.; Jørgensen, Uffe Gråe; West, Richard G.

    2012-01-01

    We report the discovery and initial characterization of Qatar-2b, a hot Jupiter transiting a V = 13.3 mag K dwarf in a circular orbit with a short period, P b = 1.34 days. The mass and radius of Qatar-2b are M P = 2.49 M J and R P = 1.14 R J , respectively. Radial-velocity monitoring of Qatar-2 over a span of 153 days revealed the presence of a second companion in an outer orbit. The Systemic Console yielded plausible orbits for the outer companion, with periods on the order of a year and a companion mass of at least several M J . Thus, Qatar-2 joins the short but growing list of systems with a transiting hot Jupiter and an outer companion with a much longer period. This system architecture is in sharp contrast to that found by Kepler for multi-transiting systems, which are dominated by objects smaller than Neptune, usually with tightly spaced orbits that must be nearly coplanar.

  4. Methods of orbit correction system optimization

    International Nuclear Information System (INIS)

    Chao, Yu-Chiu.

    1997-01-01

    Extracting optimal performance out of an orbit correction system is an important component of accelerator design and evaluation. The question of effectiveness vs. economy, however, is not always easily tractable. This is especially true in cases where betatron function magnitude and phase advance do not have smooth or periodic dependencies on the physical distance. In this report a program is presented using linear algebraic techniques to address this problem. A systematic recipe is given, supported with quantitative criteria, for arriving at an orbit correction system design with the optimal balance between performance and economy. The orbit referred to in this context can be generalized to include angle, path length, orbit effects on the optical transfer matrix, and simultaneous effects on multiple pass orbits

  5. Long-Term Prediction of Satellite Orbit Using Analytical Method

    Directory of Open Access Journals (Sweden)

    Jae-Cheol Yoon

    1997-12-01

    Full Text Available A long-term prediction algorithm of geostationary orbit was developed using the analytical method. The perturbation force models include geopotential upto fifth order and degree and luni-solar gravitation, and solar radiation pressure. All of the perturbation effects were analyzed by secular variations, short-period variations, and long-period variations for equinoctial elements such as the semi-major axis, eccentricity vector, inclination vector, and mean longitude of the satellite. Result of the analytical orbit propagator was compared with that of the cowell orbit propagator for the KOREASAT. The comparison indicated that the analytical solution could predict the semi-major axis with an accuarcy of better than ~35meters over a period of 3 month.

  6. Giant resonances in the transition regions of the periodic table

    International Nuclear Information System (INIS)

    Clark, C.W.; Lucatorto, T.B.

    1987-01-01

    In the transition regions of the periodic table of the elements, atomic d or f orbitals undergo a fairly sudden change from hydrogenic to fully collapsed form. This transition involves a large reduction in the mean orbital radius - by about 95% for the 4f orbital - and results in corresponding qualitative changes in physical processes sensitive to orbital size (e.g. excitation cross sections, bonding character). It is caused by a shift, as the nuclear charge Z increases, in the close balance between repulsive centrifugal and attractive atomic forces on the electron. The balance can also be tilted within a given element in the transition region, for instance by a change in the occupancy of its core or valence orbitals, or by the formation of a molecular bond. Transition region elements are thus characterized by an unusual sensitivity of gross orbital properties to external perturbations; and, from the standpoint of theoretical representation, to the effects of electron correlation, LS term dependence, and special relativity. This paper reports some experimental and theoretical work directed towards exploring this sensitivity. The approach of tracing physical processes along isoelectronic, isonuclear, and isoionic sequences which span particular transition regions is taken. The experimental work described here consists of soft x-ray photoabsorption studies of alkaline earth atoms and ions in the gas phase. It is based upon techniques of time-resolved sequential laser and soft x-ray excitation, which enable them to obtain the subvalence photoabsorption spectra of ground and excited states of an atom and its ions. The theoretical work is based primarily upon single- and multiconfiguration Hartree-Fock calculations, with particular attention to effects of orbital term dependence. 40 references, 7 figures, 3 tables

  7. Attempt to compare two arc orbit correction schemes analytically

    International Nuclear Information System (INIS)

    Chao, A.; Weng, W.

    1983-01-01

    Consider a transport line that consists of periodic cells. Let the beam position monitors and the orbit correctors be located with the same period as the cells and let the BPM's and the corrector distributions interlace each other. The arrangement does not always provide a stable orbit correction. The criterion for stability has been derived by Joe Murray and is reproduced. We calculate the rms orbit, the effect of BPM errors and the rms corrector strength in such correction schemes, yielding analytic formulae for these quantities. We then apply these formulae to the SLC arcs

  8. Automatic Detection of Changes on Mars Surface from High-Resolution Orbital Images

    Science.gov (United States)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2017-04-01

    Over the last 40 years Mars has been extensively mapped by several NASA and ESA orbital missions, generating a large image dataset comprised of approximately 500,000 high-resolution images (of citizen science can be employed for training and verification it is unsuitable for planetwide systematic change detection. In this work, we introduce a novel approach in planetary image change detection, which involves a batch-mode automatic change detection pipeline that identifies regions that have changed. This is tested in anger, on tens of thousands of high-resolution images over the MC11 quadrangle [5], acquired by CTX, HRSC, THEMIS-VIS and MOC-NA instruments [1]. We will present results which indicate a substantial level of activity in this region of Mars, including instances of dynamic natural phenomena that haven't been cataloged in the planetary science literature before. We will demonstrate the potential and usefulness of such an automatic approach in planetary science change detection. Acknowledgments: The research leading to these results has received funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n° 607379. References: [1] P. Sidiropoulos and J. - P. Muller (2015) On the status of orbital high-resolution repeat imaging of Mars for the observation of dynamic surface processes. Planetary and Space Science, 117: 207-222. [2] O. Aharonson, et al. (2003) Slope streak formation and dust deposition rates on Mars. Journal of Geophysical Research: Planets, 108(E12):5138 [3] A. McEwen, et al. (2011) Seasonal flows on warm martian slopes. Science, 333 (6043): 740-743. [4] S. Byrne, et al. (2009) Distribution of mid-latitude ground ice on mars from new impact craters. Science, 325(5948):1674-1676. [5] K. Gwinner, et al (2016) The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and

  9. Microscopic Stern-Gerlach effect and spin-orbit pendulum

    International Nuclear Information System (INIS)

    Rozmej, P.; Arvieu, R.

    1996-01-01

    The motion of a particle with spin in spherical harmonic oscillator potential with spin-orbit interaction is discussed. The attention is focused on the spatial motion of wave packets. The particular case of wave packets moving along the circular orbits for which the most transparent and pedagogical description is possible is considered. The splitting of the wave packets into two components moving differently along classical orbits reflects a strong analogy with the Stern-Gerlach experiment. The periodic transfer of average angular momentum between spin and orbital subspaces accompanying this time evolution is called the spin-orbit pendulum. (author). 6 refs, 3 figs

  10. Quantitative evaluation of orbital hybridization in carbon nanotubes under radial deformation using π-orbital axis vector

    Directory of Open Access Journals (Sweden)

    Masato Ohnishi

    2015-04-01

    Full Text Available When a radial strain is applied to a carbon nanotube (CNT, the increase in local curvature induces orbital hybridization. The effect of the curvature-induced orbital hybridization on the electronic properties of CNTs, however, has not been evaluated quantitatively. In this study, the strength of orbital hybridization in CNTs under homogeneous radial strain was evaluated quantitatively. Our analyses revealed the detailed procedure of the change in electronic structure of CNTs. In addition, the dihedral angle, the angle between π-orbital axis vectors of adjacent atoms, was found to effectively predict the strength of local orbital hybridization in deformed CNTs.

  11. Bi-periodicity evoked by periodic external inputs in delayed Cohen-Grossberg-type bidirectional associative memory networks

    Science.gov (United States)

    Cao, Jinde; Wang, Yanyan

    2010-05-01

    In this paper, the bi-periodicity issue is discussed for Cohen-Grossberg-type (CG-type) bidirectional associative memory (BAM) neural networks (NNs) with time-varying delays and standard activation functions. It is shown that the model considered in this paper has two periodic orbits located in saturation regions and they are locally exponentially stable. Meanwhile, some conditions are derived to ensure that, in any designated region, the model has a locally exponentially stable or globally exponentially attractive periodic orbit located in it. As a special case of bi-periodicity, some results are also presented for the system with constant external inputs. Finally, four examples are given to illustrate the effectiveness of the obtained results.

  12. Bi-periodicity evoked by periodic external inputs in delayed Cohen-Grossberg-type bidirectional associative memory networks

    International Nuclear Information System (INIS)

    Cao Jinde; Wang Yanyan

    2010-01-01

    In this paper, the bi-periodicity issue is discussed for Cohen-Grossberg-type (CG-type) bidirectional associative memory (BAM) neural networks (NNs) with time-varying delays and standard activation functions. It is shown that the model considered in this paper has two periodic orbits located in saturation regions and they are locally exponentially stable. Meanwhile, some conditions are derived to ensure that, in any designated region, the model has a locally exponentially stable or globally exponentially attractive periodic orbit located in it. As a special case of bi-periodicity, some results are also presented for the system with constant external inputs. Finally, four examples are given to illustrate the effectiveness of the obtained results.

  13. Quantum mechanical analysis of the equilateral triangle billiard: Periodic orbit theory and wave packet revivals

    International Nuclear Information System (INIS)

    Doncheski, M.A.; Robinett, R.W.

    2002-01-01

    Using the fact that the energy eigenstates of the equilateral triangle infinite well (or billiard) are available in closed form, we examine the connections between the energy eigenvalue spectrum and the classical closed paths in this geometry, using both periodic orbit theory and the short-term semi-classical behavior of wave packets. We also discuss wave packet revivals and show that there are exact revivals, for all wave packets, at times given by T rev =9μa 2 /4(h/2π) where a and μ are the length of one side and the mass of the point particle, respectively. We find additional cases of exact revivals with shorter revival times for zero-momentum wave packets initially located at special symmetry points inside the billiard. Finally, we discuss simple variations on the equilateral (60 deg. -60 deg. -60 deg. ) triangle, such as the half equilateral (30 deg. -60 deg. -90 deg.) triangle and other 'foldings', which have related energy spectra and revival structures

  14. CERES Top-of-Atmosphere Earth Radiation Budget Climate Data Record: Accounting for in-Orbit Changes in Instrument Calibration

    Directory of Open Access Journals (Sweden)

    Norman G. Loeb

    2016-02-01

    Full Text Available The Clouds and the Earth’s Radiant Energy System (CERES project provides observations of Earth’s radiation budget using measurements from CERES instruments onboard the Terra, Aqua and Suomi National Polar-orbiting Partnership (S-NPP satellites. As the objective is to create a long-term climate data record, it is necessary to periodically reprocess the data in order to incorporate the latest calibration changes and algorithm improvements. Here, we focus on the improvements and validation of CERES Terra and Aqua radiances in Edition 4, which are used to generate higher-level climate data products. Onboard sources indicate that the total (TOT channel response to longwave (LW radiation has increased relative to the start of the missions by 0.4% to 1%. In the shortwave (SW, the sensor response change ranges from −0.4% to 0.6%. To account for in-orbit changes in SW spectral response function (SRF, direct nadir radiance comparisons between instrument pairs on the same satellite are made and an improved wavelength dependent degradation model is used to adjust the SRF of the instrument operating in a rotating azimuth plane scan mode. After applying SRF corrections independently to CERES Terra and Aqua, monthly variations amongst these instruments are highly correlated and the standard deviation in the difference of monthly anomalies is 0.2 Wm−2 for ocean and 0.3 Wm−2 for land/desert. Additionally, trends in CERES Terra and Aqua monthly anomalies are consistent to 0.21 Wm−2 per decade for ocean and 0.31 Wm−2 per decade for land/desert. In the LW, adjustments to the TOT channel SRF are made to ensure that removal of the contribution from the SW portion of the TOT channel with SW channel radiance measurements during daytime is consistent throughout the mission. Accordingly, anomalies in day–night LW difference in Edition 4 are more consistent compared to Edition 3, particularly for the Aqua land/desert case.

  15. THE 2011 ERUPTION OF THE RECURRENT NOVA T PYXIDIS: THE DISCOVERY, THE PRE-ERUPTION RISE, THE PRE-ERUPTION ORBITAL PERIOD, AND THE REASON FOR THE LONG DELAY

    International Nuclear Information System (INIS)

    Schaefer, Bradley E.; Landolt, Arlo U.; Linnolt, Michael; Stubbings, Rod; Pojmanski, Grzegorz; Plummer, Alan; Kerr, Stephen; Nelson, Peter; Carstens, Rolf; Streamer, Margaret; Richards, Tom; Myers, Gordon; Dillon, William G.

    2013-01-01

    We report the discovery by M. Linnolt on JD 2,455,665.7931 (UT 2011 April 14.29) of the sixth eruption of the recurrent nova T Pyxidis. This discovery was made just as the initial fast rise was starting, so with fast notification and response by observers worldwide, the entire initial rise was covered (the first for any nova), and with high time resolution in three filters. The speed of the rise peaked at 9 mag day –1 , while the light curve is well fit over only the first two days by a model with a uniformly expanding sphere. We also report the discovery by R. Stubbings of a pre-eruption rise starting 18 days before the eruption, peaking 1.1 mag brighter than its long-time average, and then fading back toward quiescence 4 days before the eruption. This unique and mysterious behavior is only the fourth known (with V1500 Cyg, V533 Her, and T CrB) anticipatory rise closely spaced before a nova eruption. We present 19 timings of photometric minima from 1986 to 2011 February, where the orbital period is fast increasing with P/ P-dot =+313,000 yr. From 2008 to 2011, T Pyx had a small change in this rate of increase, so that the orbital period at the time of eruption was 0.07622950 ± 0.00000008 days. This strong and steady increase of the orbital period can only come from mass transfer, for which we calculate a rate of (1.7-3.5) × 10 –7 M ☉ yr –1 . We report 6116 magnitudes between 1890 and 2011, for an average B = 15.59 ± 0.01 from 1967 to 2011, which allows for an eruption in 2011 if the blue flux is nearly proportional to the accretion rate. The ultraviolet-optical-infrared spectral energy distribution is well fit by a power law with f ν ∝ν 1.0 , although the narrow ultraviolet region has a tilt with a fit of f ν ∝ν 1/3 . We prove that most of the T Pyx light is not coming from a disk, or any superposition of blackbodies, but rather is coming from some nonthermal source. We confirm the extinction measure from IUE with E(B – V) = 0.25 ± 0.02 mag

  16. THE 2011 ERUPTION OF THE RECURRENT NOVA T PYXIDIS: THE DISCOVERY, THE PRE-ERUPTION RISE, THE PRE-ERUPTION ORBITAL PERIOD, AND THE REASON FOR THE LONG DELAY

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Bradley E.; Landolt, Arlo U. [Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Linnolt, Michael [American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138 (United States); Stubbings, Rod [Tetoora Observatory, Tetoora Road, Victoria (Australia); Pojmanski, Grzegorz [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Plummer, Alan [Variable Stars South, Linden Observatory, 105 Glossop Road, Linden, NSW (Australia); Kerr, Stephen [American Association of Variable Star Observers, Variable Stars South, Astronomical Association of Queensland, 22 Green Avenue, Glenlee, Queensland (Australia); Nelson, Peter [Ellinbank Observatory, 1105 Hazeldean Road, Ellinbank 3821, Victoria (Australia); Carstens, Rolf [American Association of Variable Star Observers, Variable Stars South, CBA, Geyserland Observatory, 120 Homedale Street, Rotorua 3015 (New Zealand); Streamer, Margaret [Lexy' s Palace Observatory, 3 Lupin Place, Murrumbateman, NSW (Australia); Richards, Tom [Variable Stars South, Pretty Hill Observatory, P.O. Box 323, Kangaroo Ground 3097, Victoria (Australia); Myers, Gordon [Center for Backyard Astrophysics, Columbia University, 538 West 120th Street, New York, NY 10027 (United States); Dillon, William G. [American Association of Variable Star Observers, 4703 Birkenhead Circle, Missouri City, TX 77459 (United States)

    2013-08-10

    We report the discovery by M. Linnolt on JD 2,455,665.7931 (UT 2011 April 14.29) of the sixth eruption of the recurrent nova T Pyxidis. This discovery was made just as the initial fast rise was starting, so with fast notification and response by observers worldwide, the entire initial rise was covered (the first for any nova), and with high time resolution in three filters. The speed of the rise peaked at 9 mag day{sup -1}, while the light curve is well fit over only the first two days by a model with a uniformly expanding sphere. We also report the discovery by R. Stubbings of a pre-eruption rise starting 18 days before the eruption, peaking 1.1 mag brighter than its long-time average, and then fading back toward quiescence 4 days before the eruption. This unique and mysterious behavior is only the fourth known (with V1500 Cyg, V533 Her, and T CrB) anticipatory rise closely spaced before a nova eruption. We present 19 timings of photometric minima from 1986 to 2011 February, where the orbital period is fast increasing with P/ P-dot =+313,000 yr. From 2008 to 2011, T Pyx had a small change in this rate of increase, so that the orbital period at the time of eruption was 0.07622950 {+-} 0.00000008 days. This strong and steady increase of the orbital period can only come from mass transfer, for which we calculate a rate of (1.7-3.5) Multiplication-Sign 10{sup -7} M{sub Sun} yr{sup -1}. We report 6116 magnitudes between 1890 and 2011, for an average B = 15.59 {+-} 0.01 from 1967 to 2011, which allows for an eruption in 2011 if the blue flux is nearly proportional to the accretion rate. The ultraviolet-optical-infrared spectral energy distribution is well fit by a power law with f{sub {nu}}{proportional_to}{nu}{sup 1.0}, although the narrow ultraviolet region has a tilt with a fit of f{sub {nu}}{proportional_to}{nu}{sup 1/3}. We prove that most of the T Pyx light is not coming from a disk, or any superposition of blackbodies, but rather is coming from some nonthermal

  17. The 2011 Eruption of the Recurrent Nova T Pyxidis: The Discovery, the Pre-eruption Rise, the Pre-eruption Orbital Period, and the Reason for the Long Delay

    Science.gov (United States)

    Schaefer, Bradley E.; Landolt, Arlo U.; Linnolt, Michael; Stubbings, Rod; Pojmanski, Grzegorz; Plummer, Alan; Kerr, Stephen; Nelson, Peter; Carstens, Rolf; Streamer, Margaret; Richards, Tom; Myers, Gordon; Dillon, William G.

    2013-08-01

    We report the discovery by M. Linnolt on JD 2,455,665.7931 (UT 2011 April 14.29) of the sixth eruption of the recurrent nova T Pyxidis. This discovery was made just as the initial fast rise was starting, so with fast notification and response by observers worldwide, the entire initial rise was covered (the first for any nova), and with high time resolution in three filters. The speed of the rise peaked at 9 mag day-1, while the light curve is well fit over only the first two days by a model with a uniformly expanding sphere. We also report the discovery by R. Stubbings of a pre-eruption rise starting 18 days before the eruption, peaking 1.1 mag brighter than its long-time average, and then fading back toward quiescence 4 days before the eruption. This unique and mysterious behavior is only the fourth known (with V1500 Cyg, V533 Her, and T CrB) anticipatory rise closely spaced before a nova eruption. We present 19 timings of photometric minima from 1986 to 2011 February, where the orbital period is fast increasing with P/\\dot{P}=+313{,000} yr. From 2008 to 2011, T Pyx had a small change in this rate of increase, so that the orbital period at the time of eruption was 0.07622950 ± 0.00000008 days. This strong and steady increase of the orbital period can only come from mass transfer, for which we calculate a rate of (1.7-3.5) × 10-7 M ⊙ yr-1. We report 6116 magnitudes between 1890 and 2011, for an average B = 15.59 ± 0.01 from 1967 to 2011, which allows for an eruption in 2011 if the blue flux is nearly proportional to the accretion rate. The ultraviolet-optical-infrared spectral energy distribution is well fit by a power law with f νvpropν1.0, although the narrow ultraviolet region has a tilt with a fit of f νvpropν1/3. We prove that most of the T Pyx light is not coming from a disk, or any superposition of blackbodies, but rather is coming from some nonthermal source. We confirm the extinction measure from IUE with E(B - V) = 0.25 ± 0.02 mag.

  18. Preferred Hosts for Short-Period Exoplanets

    Science.gov (United States)

    Kohler, Susanna

    2015-12-01

    In an effort to learn more about how planets form around their host stars, a team of scientists has analyzed the population of Kepler-discovered exoplanet candidates, looking for trends in where theyre found.Planetary OccurrenceSince its launch in 2009, Kepler has found thousands of candidate exoplanets around a variety of star types. Especially intriguing is the large population of super-Earths and mini-Neptunes planets with masses between that of Earth and Neptune that have short orbital periods. How did they come to exist so close to their host star? Did they form in situ, or migrate inwards, or some combination of both processes?To constrain these formation mechanisms, a team of scientists led by Gijs Mulders (University of Arizona and NASAs NExSS coalition) analyzed the population of Kepler planet candidates that have orbital periods between 2 and 50 days.Mulders and collaborators used statistical reconstructions to find the average number of planets, within this orbital range, around each star in the Kepler field. They then determined how this planet occurrence rate changed for different spectral types and therefore the masses of the host stars: do low-mass M-dwarf stars host more or fewer planets than higher-mass, main-sequence F, G, or K stars?Challenging ModelsAuthors estimates for the occurrence rate for short-period planets of different radii around M-dwarfs (purple) and around F, G, and K-type stars (blue). [Mulders et al. 2015]The team found that M dwarfs, compared to F, G, or K stars, host about half as many large planets with orbital periods of P 50 days. But, surprisingly, they host significantly more small planets, racking up an average of 3.5 times the number of planets in the size range of 12.8 Earth-radii.Could it be that M dwarfs have a lower total mass of planets, but that mass is distributed into more, smaller planets? Apparently not: the authors show that the mass of heavy elements trapped in short-orbital-period planets is higher for M

  19. On the Dynamics of a Model with Coexistence of Three Attractors: A Point, a Periodic Orbit and a Strange Attractor

    Energy Technology Data Exchange (ETDEWEB)

    Llibre, Jaume, E-mail: jllibre@mat.uab.cat [Universitat Autònoma de Barcelona, Departament de Matemàtiques (Spain); Valls, Claudia, E-mail: cvalls@math.ist.utl.pt [Universidade de Lisboa, Departamento de Matemática, Instituto Superior Técnico (Portugal)

    2017-06-15

    For a dynamical system described by a set of autonomous differential equations, an attractor can be either a point, or a periodic orbit, or even a strange attractor. Recently a new chaotic system with only one parameter has been presented where besides a point attractor and a chaotic attractor, it also has a coexisting attractor limit cycle which makes evident the complexity of such a system. We study using analytic tools the dynamics of such system. We describe its global dynamics near the infinity, and prove that it has no Darboux first integrals.

  20. THE NASA-UC ETA-EARTH PROGRAM. III. A SUPER-EARTH ORBITING HD 97658 AND A NEPTUNE-MASS PLANET ORBITING Gl 785

    International Nuclear Information System (INIS)

    Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard; Johnson, John Asher; Fischer, Debra A.; Wright, Jason T.; Henry, Gregory W.; Valenti, Jeff A.; Anderson, Jay; Piskunov, Nikolai E.

    2011-01-01

    We report the discovery of planets orbiting two bright, nearby early K dwarf stars, HD 97658 and Gl 785. These planets were detected by Keplerian modeling of radial velocities measured with Keck-HIRES for the NASA-UC Eta-Earth Survey. HD 97658 b is a close-in super-Earth with minimum mass Msin i = 8.2 ± 1.2 M + , orbital period P = 9.494 ± 0.005 days, and an orbit that is consistent with circular. Gl 785 b is a Neptune-mass planet with Msin i = 21.6 ± 2.0 M + , P = 74.39 ± 0.12 days, and orbital eccentricity e = 0.30 ± 0.09. Photometric observations with the T12 0.8 m automatic photometric telescope at Fairborn Observatory show that HD 97658 is photometrically constant at the radial velocity period to 0.09 mmag, supporting the existence of the planet.

  1. Orbits of the inner satellites of Neptune

    Science.gov (United States)

    Brozovic, Marina; Showalter, Mark R.; Jacobson, Robert Arthur; French, Robert S.; de Pater, Imke; Lissauer, Jack

    2018-04-01

    We report on the numerically integrated orbits of seven inner satellites of Neptune, including S/2004 N1, the last moon of Neptune to be discovered by the Hubble Space Telescope (HST). The dataset includes Voyager imaging data as well as the HST and Earth-based astrometric data. The observations span time period from 1989 to 2016. Our orbital model accounts for the equatorial bulge of Neptune, perturbations from the Sun and the planets, and perturbations from Triton. The initial orbital integration assumed that the satellites are massless, but the residuals improved significantly as the masses adjusted toward values that implied that the density of the satellites is in the realm of 1 g/cm3. We will discuss how the integrated orbits compare to the precessing ellipses fits, mean orbital elements, current orbital uncertainties, and the need for future observations.

  2. Using heteroclinic orbits to quantify topological entropy in fluid flows

    International Nuclear Information System (INIS)

    Sattari, Sulimon; Chen, Qianting; Mitchell, Kevin A.

    2016-01-01

    Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or “ghost,” rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding of ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.

  3. ON THE PULSATIONAL-ORBITAL-PERIOD RELATION OF ECLIPSING BINARIES WITH δ-SCT COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. B.; Luo, C. Q. [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Fu, J. N. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2013-11-01

    We have deduced a theoretical relation between the pulsation and orbital-periods of pulsating stars in close binaries based on their Roche lobe filling. It appears to be of a simple linear form, with the slope as a function of the pulsation constant, the mass ratio, and the filling factor for an individual system. Testing the data of 69 known eclipsing binaries containing δ-Sct-type components yields an empirical slope of 0.020 ± 0.006 for the P{sub pul}-P{sub orb} relation. We have further derived the upper limit of the P{sub pul}/P{sub orb} ratio for the δ-Sct stars in eclipsing binaries with a value of 0.09 ± 0.02. This value could serve as a criterion to distinguish whether or not a pulsator in an eclipsing binary pulsates in the p-mode. Applying the deduced P{sub pul}-P{sub orb} relation, we have computed the dominant pulsation constants for 37 δ-Sct stars in eclipsing systems with definite photometric solutions. These ranged between 0.008 and 0.033 days with a mean value of about 0.014 days, indicating that δ-Sct stars in eclipsing binaries mostly pulsate in the fourth or fifth overtones.

  4. Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales

    Science.gov (United States)

    Esselborn, Saskia; Rudenko, Sergei; Schöne, Tilo

    2018-03-01

    Interannual to decadal sea level trends are indicators of climate variability and change. A major source of global and regional sea level data is satellite radar altimetry, which relies on precise knowledge of the satellite's orbit. Here, we assess the error budget of the radial orbit component for the TOPEX/Poseidon mission for the period 1993 to 2004 from a set of different orbit solutions. The errors for seasonal, interannual (5-year), and decadal periods are estimated on global and regional scales based on radial orbit differences from three state-of-the-art orbit solutions provided by different research teams: the German Research Centre for Geosciences (GFZ), the Groupe de Recherche de Géodésie Spatiale (GRGS), and the Goddard Space Flight Center (GSFC). The global mean sea level error related to orbit uncertainties is of the order of 1 mm (8 % of the global mean sea level variability) with negligible contributions on the annual and decadal timescales. In contrast, the orbit-related error of the interannual trend is 0.1 mm yr-1 (27 % of the corresponding sea level variability) and might hamper the estimation of an acceleration of the global mean sea level rise. For regional scales, the gridded orbit-related error is up to 11 mm, and for about half the ocean the orbit error accounts for at least 10 % of the observed sea level variability. The seasonal orbit error amounts to 10 % of the observed seasonal sea level signal in the Southern Ocean. At interannual and decadal timescales, the orbit-related trend uncertainties reach regionally more than 1 mm yr-1. The interannual trend errors account for 10 % of the observed sea level signal in the tropical Atlantic and the south-eastern Pacific. For decadal scales, the orbit-related trend errors are prominent in a several regions including the South Atlantic, western North Atlantic, central Pacific, South Australian Basin, and the Mediterranean Sea. Based on a set of test orbits calculated at GFZ, the sources of the

  5. Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales

    Directory of Open Access Journals (Sweden)

    S. Esselborn

    2018-03-01

    Full Text Available Interannual to decadal sea level trends are indicators of climate variability and change. A major source of global and regional sea level data is satellite radar altimetry, which relies on precise knowledge of the satellite's orbit. Here, we assess the error budget of the radial orbit component for the TOPEX/Poseidon mission for the period 1993 to 2004 from a set of different orbit solutions. The errors for seasonal, interannual (5-year, and decadal periods are estimated on global and regional scales based on radial orbit differences from three state-of-the-art orbit solutions provided by different research teams: the German Research Centre for Geosciences (GFZ, the Groupe de Recherche de Géodésie Spatiale (GRGS, and the Goddard Space Flight Center (GSFC. The global mean sea level error related to orbit uncertainties is of the order of 1 mm (8 % of the global mean sea level variability with negligible contributions on the annual and decadal timescales. In contrast, the orbit-related error of the interannual trend is 0.1 mm yr−1 (27 % of the corresponding sea level variability and might hamper the estimation of an acceleration of the global mean sea level rise. For regional scales, the gridded orbit-related error is up to 11 mm, and for about half the ocean the orbit error accounts for at least 10 % of the observed sea level variability. The seasonal orbit error amounts to 10 % of the observed seasonal sea level signal in the Southern Ocean. At interannual and decadal timescales, the orbit-related trend uncertainties reach regionally more than 1 mm yr−1. The interannual trend errors account for 10 % of the observed sea level signal in the tropical Atlantic and the south-eastern Pacific. For decadal scales, the orbit-related trend errors are prominent in a several regions including the South Atlantic, western North Atlantic, central Pacific, South Australian Basin, and the Mediterranean Sea. Based on a set of test

  6. Technical-economic feasibility of orbiting sunlight reflectors

    Science.gov (United States)

    Alferov, Z.; Minin, V.

    1986-02-01

    The use of deflectors in orbit as a means of providing artificial illumination is examined. Considerations of technical and economic feasibility are addressed. Three main areas of application are distinguished: reflecting sunlight onto the surface of the Earth; concentration of the flow of solar energy on an orbiting receiver; and retransmission of optical radiation. The advantages of the artificial Earth illumination application of the orbiting reflector scheme in terms of energy savings in lighting cities, and additional daylight time for critical periods of farming operations are discussed.

  7. WIYN Open Cluster Study: Binary Orbits and Tidal Circularization in NGC 6819

    Science.gov (United States)

    Morscher, Meagan B.; Mathieu, R. D.; Kaeppler, S.; Hole, K. T.; Meibom, S.

    2006-12-01

    We are conducting a comprehensive stellar radial-velocity survey in NGC 6819, a rich, intermediate age ( 2.4 Gyr) open cluster with [Fe/H] -0.05. As of October 2006, we have obtained 7065 radial-velocity measurements of 1409 stars using the WIYN Hydra Multi-Object Spectrograph, with typical velocity measurement precisions of 0.4 km/s. Using an E/I criterion of 3, we have identified 282 velocity variables. In the past year we have expanded the number of final orbital solutions by 45 to a total of more than 80 solutions. In coeval stellar populations, circular binaries tend to have the shortest orbital periods, while longer period binaries show a distribution of non-zero eccentricities. The circularization of the shortest period orbits is the result of an exchange of stellar and orbital angular momentum due to tidal interactions. We defined a population’s tidal circularization period as the longest orbital period at which a binary of typical initial eccentricity has become circularized (e.g., has evolved to an eccentricity e = 0.01) over the lifetime of the cluster (Meibom & Mathieu, 2005, ApJ, 620, 970). We are studying the trend of increasing tidal circularization periods with population age. Preliminary results in NGC 6819 indicate a tidal circularization period of 7.5 days, which is consistent with this overall trend. We will recalculate the tidal circularization period in order to include the latest sample of orbital solutions. This comprehensive survey also allows us to investigate the relative spatial distributions of spectroscopic binaries and other constant-velocity cluster members of similar mass. We find the spectroscopic binaries to be more centrally concentrated at a statistically significant level, which we attribute to energy equipartition processes. MM was supported by REU NSF grant AST-0453442. RDM, SK, KTH, and SM were supported by NSF grant AST-0406615.

  8. CryoSat/SIRAL Cal1 Calibration Orbits

    Science.gov (United States)

    Scagliola, Michele; Fornari, Marco; Bouffard, Jerome; Parrinello, Tommaso

    2017-04-01

    The main payload of CryoSat is a Ku band pulsewidth limited radar altimeter, called SIRAL (Synthetic interferometric radar altimeter), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for SAR processing. This allows to reach an along track resolution that is significantly improved with respect to traditional pulse-width limited altimeters. Due to the fact that SIRAL is a phase coherent pulse-width limited radar altimeter, a proper calibration approach has been developed. In fact, not only corrections for transfer function, gain and instrument path delay have to be computed (as in previous altimeters), but also corrections for phase (SAR/SARIn) and phase difference between the two receiving chains (SARIN only). Recalling that the CryoSat's orbit has a high inclination of 92° and it is non-sun-synchronous, the temperature of the SIRAL changes continuously along the orbit with a period of about 480 days and it is also function of the ascending/descending passes. By analysis of the CAL1 calibration corrections, it has been verified that the internal path delay and the instrument gain variation measured on the SIRAL are affected by the thermal status of the instrument and as a consequence they are expected to vary along the orbit. In order to gain knowledge on the calibration corrections (i.e. the instrument behavior) as function of latitude and temperature, it has been planned to command a few number of orbits where only CAL1 calibration acquisitions are continuously performed. The analysis of the CAL1 calibration corrections produced along the Calibration orbits can be also useful to verify whether the current calibration plan is able to provide sufficiently accurate corrections for the instrument acquisitions at any latitude. In 2016, the CryoSat/SIRAL Cal1 Calibration Orbits have been commanded two times, a first time the 20th of July 2016 and a second time the 24th of November 2016, and they

  9. Three Temperate Neptunes Orbiting Nearby Stars

    Science.gov (United States)

    Fulton, Benjamin J.; Howard, Andrew W.; Weiss, Lauren M.; Sinukoff, Evan; Petigura, Erik A.; Isaacson, Howard; Hirsch, Lea; Marcy, Geoffrey W.; Henry, Gregory W.; Grunblatt, Samuel K.; Huber, Daniel; von Braun, Kaspar; Boyajian, Tabetha S.; Kane, Stephen R.; Wittrock, Justin; Horch, Elliott P.; Ciardi, David R.; Howell, Steve B.; Wright, Jason T.; Ford, Eric B.

    2016-10-01

    We present the discovery of three modestly irradiated, roughly Neptune-mass planets orbiting three nearby Solar-type stars. HD 42618 b has a minimum mass of 15.4 ± 2.4 {M}\\oplus , a semimajor axis of 0.55 au, an equilibrium temperature of 337 K, and is the first planet discovered to orbit the solar analogue host star, HD 42618. We also discover new planets orbiting the known exoplanet host stars HD 164922 and HD 143761 (ρ CrB). The new planet orbiting HD 164922 has a minimum mass of 12.9 ± 1.6 {M}\\oplus and orbits interior to the previously known Jovian mass planet orbiting at 2.1 au. HD 164922 c has a semimajor axis of 0.34 au and an equilibrium temperature of 418 K. HD 143761 c orbits with a semimajor axis of 0.44 au, has a minimum mass of 25 ± 2 {M}\\oplus , and is the warmest of the three new planets with an equilibrium temperature of 445 K. It orbits exterior to the previously known warm Jupiter in the system. A transit search using space-based CoRoT data and ground-based photometry from the Automated Photometric Telescopes (APTs) at Fairborn Observatory failed to detect any transits, but the precise, high-cadence APT photometry helped to disentangle planetary-reflex motion from stellar activity. These planets were discovered as part of an ongoing radial velocity survey of bright, nearby, chromospherically inactive stars using the Automated Planet Finder (APF) telescope at Lick Observatory. The high-cadence APF data combined with nearly two decades of radial velocity data from Keck Observatory and gives unprecedented sensitivity to both short-period low-mass, and long-period intermediate-mass planets. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of Hawai‘I, the University of California, and NASA.

  10. Secular Orbit and Spin Variations of Asteroid (16) Psyche

    Science.gov (United States)

    Bills, B. G.; Park, R. S.; Scott, B.

    2016-12-01

    The obliquity, or angular separation between spin and orbit poles, of asteroid (16) Psyche is currently 95 degrees. We are interested in knowing how much that angular separation varies, on time scales of 104 to 106 years. To answer that question, we have done several related analyses. On short time scales, the orbital element variations of Psyche are dominated by perturbations from Jupiter. Jupiter's dominance has two basic causes: first is the large mass and relatively close position of Jupiter, and second is a 19:8 mean motion resonance. Jupiter completes 8 orbits in 94.9009 years, while Psyche takes 94.9107 years to complete 19 orbits. As a result of this, all of the orbital elements of Psyche exhibit significant periodic variations, with a 94.9 year period dominating. There are also significant variations at the synodic period, which is 8.628 years, or 1/11 of the resonant period. Over a 1000 year time span, centered on the present, the eccentricity varies from 0.133 to 0.140, and the inclination varies from 2.961 to 3.229 degrees. On longer time scales, the orbital elements of Psyche vary considerably more than that, due to secular perturbations from the planets. The secular variations are modeled as the response of interacting mass rings, rather than point masses. Again, Jupiter is the main perturbing influence on Psyche. The eccentricity and inclination both oscillate, with dominant periods of 18.667 kyr. The range of values seen over a million year time span, is 0.057 to 0.147 for eccentricity, and 0.384 to 4.777 degrees for inclination. Using a recent shape model, and assumption of uniform density, to constrain relevant moments of inertia, we estimate the spin pole precession rate parameter to be 8.53 arcsec/year. The current spin pole is at ecliptic {lon, lat} = { 32, -7} deg, whereas the orbit pole is at {lon, lat} = {60.47, 86.91} deg. The current obliquity is thus 94.3 degree. Using nominal values of the input parameters, the recovered spin pole

  11. Investigation of unstable periodic space-time states in distributed active system with supercritical current

    International Nuclear Information System (INIS)

    Koronovskij, A.A.; Rempen, I.S.; Khramov, A.E.

    2003-01-01

    The set of the unstable periodic space-time states, characterizing the chaotic space-time dynamics of the electron beam with the supercritical current in the Pierce diode is discussed. The Lyapunov indicators of the revealed instable space-time states of the chaotic dynamics of the distributed self-excited system are calculated. It is shown that change in the set of the unstable periodic states in dependence on the Pierce parameter is determined by change in the various orbits stability, which is demonstrated by the values of senior Lyapunov unstable state index [ru

  12. Effects on Ion Cyclotron Emission of the Orbit Topology Changes from the Wave-Particle Interactions

    International Nuclear Information System (INIS)

    Hellsten, T.; Holmstroem, K.; Johnson, T.; Bergkvist, T.; Laxaback, M.

    2006-01-01

    It is known that non-relaxed distribution functions can give rise to excitation of magnetosonic waves by ion cyclotron interactions when the distribution function increases with respect to the perpendicular velocity. We have found that in a toroidal plasma also collisional relaxed distribution functions of central peaked high-energy ions can destabilise magnetosonic eigenmodes by ion cyclotron interactions, due to the change in localisation of the orbits establishing inverted distribution functions with respect to energy along the characteristics describing the cyclotron interactions. This can take place by interactions with barely co-passing and marginally trapped high-energy ions at the plasma boundary. The interactions are enhanced by tangential interactions, which can also prevent the interactions to reach the stable part of the characteristics where they interact with more deeply trapped orbits. (author)

  13. Orbital scale vegetation change in Africa

    Science.gov (United States)

    Dupont, Lydie

    2011-12-01

    Palynological records of Middle and Late Pleistocene marine sediments off African shores is reviewed in order to reveal long-term patterns of vegetation change during climate cycles. Whether the transport of pollen and spores from the source areas on the continent to the ocean floor is mainly by wind or predominantly by rivers depends on the region. Despite the differences in transportation, accumulation rates in the marine sediments decline exponentially with distance to the shore. The marine sediments provide well-dated records presenting the vegetation history of the main biomes of western and southern Africa. The extent of different biomes varied with the climate changes of the glacial interglacial cycle. The Mediterranean forest area expanded during interglacials, the northern Saharan desert during glacials, and the semi-desert area in between during the transitions. In the sub-Saharan mountains ericaceous scrubland spread mainly during glacials and the mountainous forest area often increased during intermediate periods. Savannahs extended or shifted to lower latitudes during glacials. While the representation of the tropical rain forest fluctuated with summer insolation and precession, that of the subtropical biomes showed more obliquity variability or followed the pattern of glacial and interglacials.

  14. Influence of orbital forcing and solar activity on water isotopes in precipitation during the mid- and late Holocene

    Directory of Open Access Journals (Sweden)

    S. Dietrich

    2013-01-01

    Full Text Available In this study we investigate the impact of mid- and late Holocene orbital forcing and solar activity on variations of the oxygen isotopic composition in precipitation. The investigation is motivated by a recently published speleothem δ18O record from the well-monitored Bunker Cave in Germany. The record reveals some high variability on multi-centennial to millennial scales that does not linearly correspond to orbital forcing. Our model study is based on a set of novel climate simulations performed with the atmosphere general circulation model ECHAM5-wiso enhanced by explicit water isotope diagnostics. From the performed model experiments, we derive the following major results: (1 the response of both orbital and solar forcing lead to changes in surface temperatures and δ18O in precipitation with similar magnitudes during the mid- and late Holocene. (2 Past δ18O anomalies correspond to changing temperatures in the orbital driven simulations. This does not hold true if an additional solar forcing is added. (3 Two orbital driven mid-Holocene experiments, simulating the mean climate state approximately 5000 and 6000 yr ago, yield very similar results. However, if an identical additional solar activity-induced forcing is added, the simulated changes of surface temperatures as well as δ18O between both periods differ. We conclude from our simulation results that non-linear effects and feedbacks of the orbital and solar activity forcing substantially alter the δ18O in precipitation pattern and its relation to temperature change.

  15. Validation of Galileo orbits using SLR with a focus on satellites launched into incorrect orbital planes

    Science.gov (United States)

    Sośnica, Krzysztof; Prange, Lars; Kaźmierski, Kamil; Bury, Grzegorz; Drożdżewski, Mateusz; Zajdel, Radosław; Hadas, Tomasz

    2018-02-01

    The space segment of the European Global Navigation Satellite System (GNSS) Galileo consists of In-Orbit Validation (IOV) and Full Operational Capability (FOC) spacecraft. The first pair of FOC satellites was launched into an incorrect, highly eccentric orbital plane with a lower than nominal inclination angle. All Galileo satellites are equipped with satellite laser ranging (SLR) retroreflectors which allow, for example, for the assessment of the orbit quality or for the SLR-GNSS co-location in space. The number of SLR observations to Galileo satellites has been continuously increasing thanks to a series of intensive campaigns devoted to SLR tracking of GNSS satellites initiated by the International Laser Ranging Service. This paper assesses systematic effects and quality of Galileo orbits using SLR data with a main focus on Galileo satellites launched into incorrect orbits. We compare the SLR observations with respect to microwave-based Galileo orbits generated by the Center for Orbit Determination in Europe (CODE) in the framework of the International GNSS Service Multi-GNSS Experiment for the period 2014.0-2016.5. We analyze the SLR signature effect, which is characterized by the dependency of SLR residuals with respect to various incidence angles of laser beams for stations equipped with single-photon and multi-photon detectors. Surprisingly, the CODE orbit quality of satellites in the incorrect orbital planes is not worse than that of nominal FOC and IOV orbits. The RMS of SLR residuals is even lower by 5.0 and 1.5 mm for satellites in the incorrect orbital planes than for FOC and IOV satellites, respectively. The mean SLR offsets equal -44.9, -35.0, and -22.4 mm for IOV, FOC, and satellites in the incorrect orbital plane. Finally, we found that the empirical orbit models, which were originally designed for precise orbit determination of GNSS satellites in circular orbits, provide fully appropriate results also for highly eccentric orbits with variable linear

  16. Analysis of orbit determination from Earth-based tracking for relay satellites in a perturbed areostationary orbit

    Science.gov (United States)

    Romero, P.; Pablos, B.; Barderas, G.

    2017-07-01

    Areostationary satellites are considered a high interest group of satellites to satisfy the telecommunications needs of the foreseen missions to Mars. An areostationary satellite, in an areoequatorial circular orbit with a period of 1 Martian sidereal day, would orbit Mars remaining at a fixed location over the Martian surface, analogous to a geostationary satellite around the Earth. This work addresses an analysis of the perturbed orbital motion of an areostationary satellite as well as a preliminary analysis of the aerostationary orbit estimation accuracy based on Earth tracking observations. First, the models for the perturbations due to the Mars gravitational field, the gravitational attraction of the Sun and the Martian moons, Phobos and Deimos, and solar radiation pressure are described. Then, the observability from Earth including possible occultations by Mars of an areostationary satellite in a perturbed areosynchronous motion is analyzed. The results show that continuous Earth-based tracking is achievable using observations from the three NASA Deep Space Network Complexes in Madrid, Goldstone and Canberra in an occultation-free scenario. Finally, an analysis of the orbit determination accuracy is addressed considering several scenarios including discontinuous tracking schedules for different epochs and different areoestationary satellites. Simulations also allow to quantify the aerostationary orbit estimation accuracy for various tracking series durations and observed orbit arc-lengths.

  17. Astrometric detectability of systems with unseen companions: effects of the Earth orbital motion

    Science.gov (United States)

    Butkevich, Alexey G.

    2018-06-01

    The astrometric detection of an unseen companion is based on an analysis of the apparent motion of its host star around the system's barycentre. Systems with an orbital period close to 1 yr may escape detection if the orbital motion of their host stars is observationally indistinguishable from the effects of parallax. Additionally, an astrometric solution may produce a biased parallax estimation for such systems. We examine the effects of the orbital motion of the Earth on astrometric detectability in terms of a correlation between the Earth's orbital position and the position of the star relative to its system barycentre. The χ2 statistic for parallax estimation is calculated analytically, leading to expressions that relate the decrease in detectability and accompanying parallax bias to the position correlation function. The impact of the Earth's motion critically depends on the exoplanet's orbital period, diminishing rapidly as the period deviates from 1 yr. Selection effects against 1-yr-period systems is, therefore, expected. Statistical estimation shows that the corresponding loss of sensitivity results in a typical 10 per cent increase in the detection threshold. Consideration of eccentric orbits shows that the Earth's motion has no effect on detectability for e≳ 0.5. The dependence of the detectability on other parameters, such as orbital phases and inclination of the orbital plane to the ecliptic, are smooth and monotonic because they are described by simple trigonometric functions.

  18. Orbital and Landing Operations at Near-Earth

    Science.gov (United States)

    Scheeres, D. J.

    1995-01-01

    Orbital and landing operations about near-Earth asteroids are different than classical orbital operations about large bodies. The major differences lie with the small mass of the asteroid, the lower orbital velocities, the larger Solar tide and radiation pressure perturbations, the irregular shape of the asteroid and the potential for non-uniform rotation of the asteroid. These differences change the nature of orbits about an asteroid to where it is often common to find trajectories that evolve from stable, near-circular orbits to crashing or escaping orbits in a matter of days. The understanding and control of such orbits is important if a human or robotic presence at asteroids is to be commonplace in the future.

  19. Measurement of orbital volume by computed tomography. Especially on the growth of orbit

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Minoru [Fukushima Medical Coll. (Japan)

    2000-10-01

    Using reconstructed X-ray computed tomography (CT) images of serial coronal sections, we measured the orbital volume and studied its changes with age. The subjects consisted of 109 patients (74 males, 35 females) who had undergone X-ray CT. After the reproducibility of orbital volume measurements and laterality in individuals were confirmed, the relation between the orbital volume and the age, sex, weight, and interlateral orbital rim distance were examined. The difference between two measurements in the same patients was 0.4% for measured volume, which showed the reproducibility of this measurement to be good. The laterality in individuals was 0.06 cm{sup 3}: this difference was very small and not significant. The orbital volume showed no unbalance between the right and left at any stage of growth. Both the height and the interlateral orbital rim distance had a strong correlation with the orbital volume. Referring to the relation between age and orbital volume, a strong correlation with an almost identical approximate equation was obtained for both sexes under 12 years of age. Presumably, the rapid growth of the orbit comes to an end by 15 years of age in males and 11 years in females. This means that more than 95% growth of adults has already been completed in the first half of the teens. The mean orbital volume in adult Japanese is 23.6{+-}2.0 (mean{+-}standard deviation) cm{sup 3} in males and 20.9{+-}1.3 cm{sup 3} in females. (author)

  20. Measurement of orbital volume by computed tomography. Especially on the growth of orbit

    International Nuclear Information System (INIS)

    Furuta, Minoru

    2000-01-01

    Using reconstructed X-ray computed tomography (CT) images of serial coronal sections, we measured the orbital volume and studied its changes with age. The subjects consisted of 109 patients (74 males, 35 females) who had undergone X-ray CT. After the reproducibility of orbital volume measurements and laterality in individuals were confirmed, the relation between the orbital volume and the age, sex, weight, and interlateral orbital rim distance were examined. The difference between two measurements in the same patients was 0.4% for measured volume, which showed the reproducibility of this measurement to be good. The laterality in individuals was 0.06 cm 3 : this difference was very small and not significant. The orbital volume showed no unbalance between the right and left at any stage of growth. Both the height and the interlateral orbital rim distance had a strong correlation with the orbital volume. Referring to the relation between age and orbital volume, a strong correlation with an almost identical approximate equation was obtained for both sexes under 12 years of age. Presumably, the rapid growth of the orbit comes to an end by 15 years of age in males and 11 years in females. This means that more than 95% growth of adults has already been completed in the first half of the teens. The mean orbital volume in adult Japanese is 23.6±2.0 (mean±standard deviation) cm 3 in males and 20.9±1.3 cm 3 in females. (author)

  1. Extrasolar Giant Planet in Earth-like Orbit

    Science.gov (United States)

    1999-07-01

    an optical filter that adds its own absorption features to the absorption line spectrum of the star. When the radial velocity of a star changes, the wavelength of its spectral lines will shift according to the Doppler effect. They are then seen to move, relative to those of the iodine spectrum. Because of the relative nature of this measurement, the shift and hence the star's velocity change can be measured with a precision that is much higher than what the mechanical/optical stability of the spectrograph would otherwise allow. This particular technique is currently being applied by several research groups in the world and has led to most of the recent extra-solar planet discoveries. The new planet and its orbit ESO PR Photo 32a/99 ESO PR Photo 32a/99 [Preview - JPEG: 527 x 400 pix - 68k] [Normal - JPEG: 1053 x 800 pix - 144k] ESO PR Photo 32b/99 ESO PR Photo 32b/99 [Preview - JPEG: 523 x 400 pix - 76k] [Normal - JPEG: 1045 x 800 pix - 144k] Caption to ESO PR Photo 32a/99 : Radial velocity measurements (with individual errors shown as bars) of the 5.4-mag solar-type star iota Hor over a period of nearly six years. The thin line indicates the variation that is caused by the new planet (as a best-fit Keplerian orbit). Caption to ESO PR Photo 32b/99 : The combined radial velocity variations of iota Hor vrs. orbital phase of the newly discovered planet. The planet is in front of the star near phase 0.22 when the velocity is smallest and on the other side at phase 0.82. The orbital period is 320 days. For the star iota Hor , a measurement precision of about ± 17 m/sec (± 61 km/hour) was achieved. This is a very high accuracy in astronomical terms and it enabled the astronomers to detect radial velocity variations with an amplitude of ± 67 m/sec (or 134 m/sec peak-to-peak), cf. ESO PR Photos 32a/99 and 32b/99 . Five and a half years of monitoring and 95 individual spectra with exposure times between 15 and 30 minutes eventually revealed the presence of a planetary

  2. M2K. II. A TRIPLE-PLANET SYSTEM ORBITING HIP 57274

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Debra A.; Giguere, Matthew J.; Moriarty, John; Brewer, John; Spronck, Julien F. P.; Schwab, Christian; Szymkowiak, Andrew [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, Honolulu, HI 96822 (United States); Howard, Andrew W.; Marcy, Geoffrey W. [Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States); Johnson, John A. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Wright, Jason T. [Center for Exoplanets and Habitable Worlds, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16803 (United States); Valenti, Jeff A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Piskunov, Nikolai [Department of Astronomy and Space Physics, Uppsala University, Box 515, 751 20 Uppsala (Sweden); Clubb, Kelsey I.; Isaacson, Howard [Pufendorf Institute for Advanced Studies, Lund University, Lund (Sweden); Apps, Kevin [75B Cheyne Walk, Surrey RH6 7LR (United Kingdom); Lepine, Sebastien [American Museum of Natural History, New York, NY 10023 (United States); Mann, Andrew, E-mail: debra.fischer@yale.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2012-01-20

    Doppler observations from Keck Observatory have revealed a triple-planet system orbiting the nearby K4V star, HIP 57274. The inner planet, HIP 57274b, is a super-Earth with Msin i = 11.6 M{sub Circled-Plus} (0.036 M{sub Jup}), an orbital period of 8.135 {+-} 0.004 days, and slightly eccentric orbit e = 0.19 {+-} 0.1. We calculate a transit probability of 6.5% for the inner planet. The second planet has Msin i = 0.4 M{sub Jup} with an orbital period of 32.0 {+-} 0.02 days in a nearly circular orbit (e = 0.05 {+-} 0.03). The third planet has Msin i = 0.53 M{sub Jup} with an orbital period of 432 {+-} 8 days (1.18 years) and an eccentricity e = 0.23 {+-} 0.03. This discovery adds to the number of super-Earth mass planets with M sin i < 12 M{sub Circled-Plus} that have been detected with Doppler surveys. We find that 56% {+-} 18% of super-Earths are members of multi-planet systems. This is certainly a lower limit because of observational detectability limits, yet significantly higher than the fraction of Jupiter mass exoplanets, 20% {+-} 8%, that are members of Doppler-detected, multi-planet systems.

  3. M2K. II. A TRIPLE-PLANET SYSTEM ORBITING HIP 57274

    International Nuclear Information System (INIS)

    Fischer, Debra A.; Giguere, Matthew J.; Moriarty, John; Brewer, John; Spronck, Julien F. P.; Schwab, Christian; Szymkowiak, Andrew; Gaidos, Eric; Howard, Andrew W.; Marcy, Geoffrey W.; Johnson, John A.; Wright, Jason T.; Valenti, Jeff A.; Piskunov, Nikolai; Clubb, Kelsey I.; Isaacson, Howard; Apps, Kevin; Lepine, Sebastien; Mann, Andrew

    2012-01-01

    Doppler observations from Keck Observatory have revealed a triple-planet system orbiting the nearby K4V star, HIP 57274. The inner planet, HIP 57274b, is a super-Earth with Msin i = 11.6 M ⊕ (0.036 M Jup ), an orbital period of 8.135 ± 0.004 days, and slightly eccentric orbit e = 0.19 ± 0.1. We calculate a transit probability of 6.5% for the inner planet. The second planet has Msin i = 0.4 M Jup with an orbital period of 32.0 ± 0.02 days in a nearly circular orbit (e = 0.05 ± 0.03). The third planet has Msin i = 0.53 M Jup with an orbital period of 432 ± 8 days (1.18 years) and an eccentricity e = 0.23 ± 0.03. This discovery adds to the number of super-Earth mass planets with M sin i ⊕ that have been detected with Doppler surveys. We find that 56% ± 18% of super-Earths are members of multi-planet systems. This is certainly a lower limit because of observational detectability limits, yet significantly higher than the fraction of Jupiter mass exoplanets, 20% ± 8%, that are members of Doppler-detected, multi-planet systems.

  4. Shells, orbit bifurcations, and symmetry restorations in Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Magner, A. G., E-mail: magner@kinr.kiev.ua; Koliesnik, M. V. [NASU, Institute for Nuclear Research (Ukraine); Arita, K. [Nagoya Institute of Technology, Department of Physics (Japan)

    2016-11-15

    The periodic-orbit theory based on the improved stationary-phase method within the phase-space path integral approach is presented for the semiclassical description of the nuclear shell structure, concerning themain topics of the fruitful activity ofV.G. Soloviev. We apply this theory to study bifurcations and symmetry breaking phenomena in a radial power-law potential which is close to the realistic Woods–Saxon one up to about the Fermi energy. Using the realistic parametrization of nuclear shapes we explain the origin of the double-humped fission barrier and the asymmetry in the fission isomer shapes by the bifurcations of periodic orbits. The semiclassical origin of the oblate–prolate shape asymmetry and tetrahedral shapes is also suggested within the improved periodic-orbit approach. The enhancement of shell structures at some surface diffuseness and deformation parameters of such shapes are explained by existence of the simple local bifurcations and new non-local bridge-orbit bifurcations in integrable and partially integrable Fermi-systems. We obtained good agreement between the semiclassical and quantum shell-structure components of the level density and energy for several surface diffuseness and deformation parameters of the potentials, including their symmetry breaking and bifurcation values.

  5. On the atmospheric drag in orbit determination for low Earth orbit

    Science.gov (United States)

    Tang, Jingshi; Liu, Lin; Miao, Manqian

    2012-07-01

    The atmosphere model is always a major limitation for low Earth orbit (LEO) in orbit prediction and determination. The accelerometer can work around the non-gravitational perturbations in orbit determination, but it helps little to improve the atmosphere model or to predict the orbit. For certain satellites, there may be some specific software to handle the orbit problem. This solution can improve the orbit accuracy for both prediction and determination, yet it always contains empirical terms and is exclusive for certain satellites. This report introduces a simple way to handle the atmosphere drag for LEO, which does not depend on instantaneous atmosphere conditions and improves accuracy of predicted orbit. This approach, which is based on mean atmospheric density, is supported by two reasons. One is that although instantaneous atmospheric density is very complicated with time and height, the major pattern is determined by the exponential variation caused by hydrostatic equilibrium and periodic variation caused by solar radiation. The mean density can include the major variations while neglect other minor details. The other reason is that the predicted orbit is mathematically the result from integral and the really determinant factor is the mean density instead of instantaneous density for every time and spot. Using the mean atmospheric density, which is mainly determined by F10.7 solar flux and geomagnetic index, can be combined into an overall parameter B^{*} = C_{D}(S/m)ρ_{p_{0}}. The combined parameter contains several less accurate parameters and can be corrected during orbit determination. This approach has been confirmed in various LEO computations and an example is given below using Tiangong-1 spacecraft. Precise orbit determination (POD) is done using one-day GPS positioning data without any accurate a-priori knowledge on spacecraft or atmosphere conditions. Using the corrected initial state vector of the spacecraft and the parameter B^* from POD, the

  6. Progress in reconstruction of orbital wall after fracture

    Directory of Open Access Journals (Sweden)

    Lu-Lu Xu

    2018-04-01

    Full Text Available At present, the orbital wall fracture is a very common facial trauma. The orbital contents are often incarcerated in the fracture cracks resulting in changes in the orbital eye position, then can bring a lifetime of diplopia and enophthalmos, which greatly affects the visual acuity and facial appearance. The purpose of repairing of orbital fracture is reconstructing orbital wall, repairing defect to correct eye position, avoiding enophthalmos and recovering visual function. The review will provide a comprehensive overview of orbital fracture reconstruction.

  7. Minimum period and the gap in periods of Cataclysmic binaries

    International Nuclear Information System (INIS)

    Paczynski, B.; Sienkiewicz, R.

    1983-01-01

    The 81 minute cutoff to the orbital periods of hydrogen-rich cataclysmic binaries is consistent with evolution of those systems being dominated by angular momentum losses due to gravitational radiation. Unfortunately, many uncertainties, mainly poorly known atmospheric opacities below 2000 K, make is physically impossible to verify the quadrupole formula for gravitational radiation by using the observed cutoff at 81 minutes. The upper boundary of the gap in orbital periods observed at about 3 hours is almost certainly due to enhanced angular momentum losses from cataclysmic binaries which have longer periods. The physical mechanism of those losses is not identified, but a possible importance of stellar winds is pointed out. The lower boundary of the gap may be explained with the oldest cataclysmic binaries, whose periods evolved past the minimum at 81 minutes and reached the value of 2 hours within about 12 x 10 9 years after the binary had formed. Those binaries should have secondary components of only 0.02 solar masses, and their periods could be used to estimate ages of the oldest cataclysmic stars, and presumably the age of Galaxy. An alternative explanation for the gap requires that binaries should be detached while crossing the gap. A possible mechanism for this phenomenon is discussed. It requires the secondary components to be about 0.2 solar masses in the binaries just below the gap

  8. Periodicity and repeatability in data

    Science.gov (United States)

    Southwood, D.

    Using magnetic data from the first two years in Saturn orbit, the basic periodicity of apparent is examined with the aim of elucidating the `cam' shaft model of Espinosa et al. (2003) identifying the nature of the `cam' and giving a definitive period for its rotation. An initial hypothesis, supported by the spectral analysis of analysis of the first 8 months in orbit Gianpieri et al. (2006), is made that the source of the period is linked to something inside the planet and therefore that the source inertia means that the period effectively does not change over the 2 years. Moreover one expects that the source phase is fixed. Using this approach, not only can the period identified by spectral analysis (647.1 + 0.6 min.) be verified but also by phase analysis between successive passes over the 2 years the period can be refined to 647.6 + 0.1 min. The signal itself is remarkably reproducible from pass to pass. It appears in all three components of the field and its polarisation is unambiguously not attributable to direct detection of an internal field. Not only does the signal not decay rapidly with distance from the planet, but although it has the m=1 symmetry of a tilted dipole, the field lines diverge from the planet indicating an exterior source. This feature led to the `cam' model. The polarisation and comparisons of passes with different latitude profiles show a surprising north-south symmetry in the azimuthal field. The absence of asymmetry with respect to the magnetic equator rules out a direct magnetospheric-ionospheric interaction source. Accordingly, it is proposed that the basic `cam' effect is generated by a single hemisphere anomaly which creates hemisphere to hemisphere field aligned currents. The existence of Saturn phase related anomaly appears to produce a basic asymmetry in the inner magnetosphere that sets the phase of both an inflowing and outflowing sector in a rotating circulation system.

  9. Beam-beam-induced orbit effects at LHC

    International Nuclear Information System (INIS)

    Schaumann, M; Fernandez, R Alemany

    2014-01-01

    For high bunch intensities the long-range beam-beam interactions are strong enough to provoke effects on the orbit. As a consequence the closed orbit changes. The closed orbit of an unperturbed machine with respect to a machine where the beam-beam force becomes more and more important has been studied and the results are presented in this paper

  10. On the fluctuations of density and temperature in outer space atmosphere obtained from orbital shift of TAIYO

    International Nuclear Information System (INIS)

    Kato, Yoshio; Onishi, Nobuto; Shimizu, Osamu; Enmi, Sachiko; Hirao, Kunio.

    1976-01-01

    The temperature and density in outer space atmosphere were obtained from the change of the orbital period of the artificial satellite TAIYO which was launched on February 24, 1975, from Kagoshima. An equation to calculate atmospheric density with the characteristic values of the satellite is presented in the first part together with the observed variation of the orbital elements of TAIYO. The weekly changes of temperature and density in outer space atmosphere at the altitude of 250 km, which is the perigee of the satellite, from April 1975 to May 1976 were obtained. The relations between outer space temperature and sigma KP, F10.7, and the position of the perigee were also obtained. The outer space temperature as a function of local time is presented, and it is observed that the temperature change in relation to the local time agrees with the atmospheric model, and that the ratio of maximum or minimum temperature within a day becomes nearly 1.3. It is commented that more data will be available for the further detailed analysis because TAIYO is still orbiting normally. (Aoki, K.)

  11. AD Leonis: Radial Velocity Signal of Stellar Rotation or Spin–Orbit Resonance?

    Science.gov (United States)

    Tuomi, Mikko; Jones, Hugh R. A.; Barnes, John R.; Anglada-Escudé, Guillem; Butler, R. Paul; Kiraga, Marcin; Vogt, Steven S.

    2018-05-01

    AD Leonis is a nearby magnetically active M dwarf. We find Doppler variability with a period of 2.23 days, as well as photometric signals: (1) a short-period signal, which is similar to the radial velocity signal, albeit with considerable variability; and (2) a long-term activity cycle of 4070 ± 120 days. We examine the short-term photometric signal in the available All-Sky Automated Survey and Microvariability and Oscillations of STars (MOST) photometry and find that the signal is not consistently present and varies considerably as a function of time. This signal undergoes a phase change of roughly 0.8 rad when considering the first and second halves of the MOST data set, which are separated in median time by 3.38 days. In contrast, the Doppler signal is stable in the combined High-Accuracy Radial velocity Planet Searcher and High Resolution Echelle Spectrometer radial velocities for over 4700 days and does not appear to vary in time in amplitude, phase, period, or as a function of extracted wavelength. We consider a variety of starspot scenarios and find it challenging to simultaneously explain the rapidly varying photometric signal and the stable radial velocity signal as being caused by starspots corotating on the stellar surface. This suggests that the origin of the Doppler periodicity might be the gravitational tug of a planet orbiting the star in spin–orbit resonance. For such a scenario and no spin–orbit misalignment, the measured v\\sin i indicates an inclination angle of 15.°5 ± 2.°5 and a planetary companion mass of 0.237 ± 0.047 M Jup.

  12. Ordered and isomorphic mapping of periodic structures in the parametrically forced logistic map

    Energy Technology Data Exchange (ETDEWEB)

    Maranhão, Dariel M., E-mail: dariel@ifsp.edu.br [Departamento de Ciências e Matemática, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, São Paulo (Brazil); Diretoria de Informática, Universidade Nove de Julho, São Paulo (Brazil)

    2016-09-23

    Highlights: • A direct description of the internal structure of a periodic window in terms of winding numbers is proposed. • Periodic structures in parameter spaces are mapped in a recurrent and isomorphic way. • Sequences of winding numbers show global and local organization of periodic domains. - Abstract: We investigate the periodic domains found in the parametrically forced logistic map, the classical logistic map when its control parameter changes dynamically. Phase diagrams in two-parameter spaces reveal intricate periodic structures composed of patterns of intersecting superstable orbits curves, defining the cell of a periodic window. Cells appear multifoliated and ordered, and they are isomorphically mapped when one changes the map parameters. Also, we identify the characteristics of simplest cell and apply them to other more complex, discussing how the topography on parameter space is affected. By use of the winding number as defined in periodically forced oscillators, we show that the hierarchical organization of the periodic domains is manifested in global and local scales.

  13. Evolutionary period changes in rotating hot pre--white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Kawaler, S.D.; Winget, D.E.; Hansen, C.J.

    1985-11-15

    We have calculated and splitting of high order nonradial g-modes due to slow rotation in models of hot pre-white dwarf (''PWD'') stars of 0.60 M/sub sun/. We have investigated the effects of rotational spin-up, produced by gravitational contraction, on the rate of evolutionary period change for the cases of uniform and differential rotation. For models in the luminosity range of PG 1159-035 (Lapprox.100 L/sub sun/), we find that rotation rates of a few thousand seconds for modes with m< or approx. =-2 produce values of d(ln P)/dt that are consistent with the measurement of the rate of period change of the 516 second period of PG 1159-035.

  14. Uncertainty Requirement Analysis for the Orbit, Attitude, and Burn Performance of the 1st Lunar Orbit Insertion Maneuver

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2016-12-01

    Full Text Available In this study, the uncertainty requirements for orbit, attitude, and burn performance were estimated and analyzed for the execution of the 1st lunar orbit insertion (LOI maneuver of the Korea Pathfinder Lunar Orbiter (KPLO mission. During the early design phase of the system, associate analysis is an essential design factor as the 1st LOI maneuver is the largest burn that utilizes the onboard propulsion system; the success of the lunar capture is directly affected by the performance achieved. For the analysis, the spacecraft is assumed to have already approached the periselene with a hyperbolic arrival trajectory around the moon. In addition, diverse arrival conditions and mission constraints were considered, such as varying periselene approach velocity, altitude, and orbital period of the capture orbit after execution of the 1st LOI maneuver. The current analysis assumed an impulsive LOI maneuver, and two-body equations of motion were adapted to simplify the problem for a preliminary analysis. Monte Carlo simulations were performed for the statistical analysis to analyze diverse uncertainties that might arise at the moment when the maneuver is executed. As a result, three major requirements were analyzed and estimated for the early design phase. First, the minimum requirements were estimated for the burn performance to be captured around the moon. Second, the requirements for orbit, attitude, and maneuver burn performances were simultaneously estimated and analyzed to maintain the 1st elliptical orbit achieved around the moon within the specified orbital period. Finally, the dispersion requirements on the B-plane aiming at target points to meet the target insertion goal were analyzed and can be utilized as reference target guidelines for a mid-course correction (MCC maneuver during the transfer. More detailed system requirements for the KPLO mission, particularly for the spacecraft bus itself and for the flight dynamics subsystem at the ground

  15. Analysis of Orbital Lifetime Prediction Parameters in Preparation for Post-Mission Disposal

    Directory of Open Access Journals (Sweden)

    Ha–Yeon Choi

    2015-12-01

    Full Text Available Atmospheric drag force is an important source of perturbation of Low Earth Orbit (LEO orbit satellites, and solar activity is a major factor for changes in atmospheric density. In particular, the orbital lifetime of a satellite varies with changes in solar activity, so care must be taken in predicting the remaining orbital lifetime during preparation for post-mission disposal. In this paper, the System Tool Kit (STK® Long-term Orbit Propagator is used to analyze the changes in orbital lifetime predictions with respect to solar activity. In addition, the STK® Lifetime tool is used to analyze the change in orbital lifetime with respect to solar flux data generation, which is needed for the orbital lifetime calculation, and its control on the drag coefficient control. Analysis showed that the application of the most recent solar flux file within the Lifetime tool gives a predicted trend that is closest to the actual orbit. We also examine the effect of the drag coefficient, by performing a comparative analysis between varying and constant coefficients in terms of solar activity intensities.

  16. The long view: Causes of climate change over the instrumental period

    Science.gov (United States)

    Hegerl, G. C.; Schurer, A. P.; Polson, D.; Iles, C. E.; Bronnimann, S.

    2016-12-01

    The period of instrumentally recorded data has seen remarkable changes in climate, with periods of rapid warming, and periods of stagnation or cooling. A recent analysis of the observed temperature change from the instrumental record confirms that most of the warming recorded since the middle of the 20rst century has been caused by human influences, but shows large uncertainty in separating greenhouse gas from aerosol response if accounting for model uncertainty. The contribution by natural forcing and internal variability to the recent warming is estimated to be small, but becomes more important when analysing climate change over earlier or shorter time periods. For example, the enigmatic early 20th century warming was a period of strong climate anomalies, including the US dustbowl drought and exceptional heat waves, and pronounced Arctic warming. Attribution results suggests that about half of the global warming 1901-1950 was forced by greenhouse gases increases, with an anomalously strong contribution by climate variability, and contributions by natural forcing. Long term variations in circulation are important for some regional climate anomalies. Precipitation is important for impacts of climate change and precipitation changes are uncertain in models. Analysis of the instrumental record suggests a human influence on mean and heavy precipitation, and supports climate model estimates of the spatial pattern of precipitation sensitivity to warming. Broadly, and particularly over ocean, wet regions are getting wetter and dry regions are getting drier. In conclusion, the historical record provides evidence for a strong response to external forcings, supports climate models, and raises questions about multi-decadal variability.

  17. Semiclassical description of resonant tunnel effect: bifurcations and periodic orbits in the resonant current

    International Nuclear Information System (INIS)

    Rouben, D.C.

    1997-01-01

    A semiclassical method for resonant tunneling in a quantum well in the presence of a magnetic field tilted with regard to an electric field is developed. In particular a semiclassical formula is derived for the total current of electrons after the second barrier of the quantum well. The contribution of the stable and unstable orbits is studied. It appears that the parameters which describe the classical chaos in the quantum well have an important effect on the tunneling current. A numerical experiment is led, the contributions to the current of some particular orbits are evaluated and the results are compared with those given by the quantum theory. (A.C.)

  18. Changes in root lengths of maxillary incisors during orthodontic retention period

    Directory of Open Access Journals (Sweden)

    Ravanmehr H

    2006-01-01

    Full Text Available Background and Aim: External apical root resorption is a common iatrogenic consequence of orthodontic treatment. Much controversy exists in the literature about changes in root lengths at post treatment periods. Although many practitioners believe that resorption becomes stable after active treatment, quantitative data are scarce. The purpose of this study was to determine quantitative changes in root lengths of maxillary incisors during fixed orthodontic post treatment period, and to assess if it is influenced by gender and factors related to active treatment. Materials and Methods: This was a case cross over study, performed on 80 patients (52 females and 28 males aged between 13 and 22 years. At debonding stage and beginning of retention phase of fixed orthodontic treatment, Hawley type retainer was fabricated for maxillary arch. Periapical radiographs of maxillary incisors using standard parallel technique were obtained immediately after debonding, and 3 and 7 months later. Crown and root lengths of maxillary incisors were measured using computer program. Changes in root lengths were calculated considering correction factors. Also associations between some factors and the change in root lengths during post treatment periods were assessed. These included gender, type of treatment plan (non extraction/extraction, technique (standard edgewise/straight-wire edgewise and duration of active treatment (less than 2 years/2 years and more. T-test and 4-way ANOVA were used for statistical analysis with P0.05 as the limit of significance. Results: No significant relation was found between apical root resorption of maxillary central incisors and time elapsed after treatment. Significant relation was observed between apical root resorption of maxillary lateral incisors and the length of post treatment period. No significant relation was found between root length changes of maxillary incisors during post treatment period and gender, type of treatment

  19. Discrete changes of current statistics in periodically driven stochastic systems

    International Nuclear Information System (INIS)

    Chernyak, Vladimir Y; Sinitsyn, N A

    2010-01-01

    We demonstrate that the counting statistics of currents in periodically driven ergodic stochastic systems can show sharp changes of some of its properties in response to continuous changes of the driving protocol. To describe this effect, we introduce a new topological phase factor in the evolution of the moment generating function which is akin to the topological geometric phase in the evolution of a periodically driven quantum mechanical system with time-reversal symmetry. This phase leads to the prediction of a sign change for the difference of the probabilities to find even and odd numbers of particles transferred in a stochastic system in response to cyclic evolution of control parameters. The driving protocols that lead to this sign change should enclose specific degeneracy points in the space of control parameters. The relation between the topology of the paths in the control parameter space and the sign changes can be described in terms of the first Stiefel–Whitney class of topological invariants. (letter)

  20. The rotational barrier in ethane: a molecular orbital study.

    Science.gov (United States)

    Quijano-Quiñones, Ramiro F; Quesadas-Rojas, Mariana; Cuevas, Gabriel; Mena-Rejón, Gonzalo J

    2012-04-20

    The energy change on each Occupied Molecular Orbital as a function of rotation about the C-C bond in ethane was studied using the B3LYP, mPWB95 functional and MP2 methods with different basis sets. Also, the effect of the ZPE on rotational barrier was analyzed. We have found that σ and π energies contribution stabilize a staggered conformation. The σ(s) molecular orbital stabilizes the staggered conformation while the stabilizes the eclipsed conformation and destabilize the staggered conformation. The π(z) and molecular orbitals stabilize both the eclipsed and staggered conformations, which are destabilized by the π(v) and molecular orbitals. The results show that the method of calculation has the effect of changing the behavior of the energy change in each Occupied Molecular Orbital energy as a function of the angle of rotation about the C-C bond in ethane. Finally, we found that if the molecular orbital energy contribution is deleted from the rotational energy, an inversion in conformational preference occurs.

  1. The Rotational Barrier in Ethane: A Molecular Orbital Study

    Directory of Open Access Journals (Sweden)

    Gonzalo J. Mena-Rejón

    2012-04-01

    Full Text Available The energy change on each Occupied Molecular Orbital as a function of rotation about the C-C bond in ethane was studied using the B3LYP, mPWB95 functional and MP2 methods with different basis sets. Also, the effect of the ZPE on rotational barrier was analyzed. We have found that σ and π energies contribution stabilize a staggered conformation. The σs molecular orbital stabilizes the staggered conformation while the  stabilizes the eclipsed conformation and destabilize the staggered conformation. The πz and  molecular orbitals stabilize both the eclipsed and staggered conformations, which are destabilized by the πv and  molecular orbitals. The results show that the method of calculation has the effect of changing the behavior of the energy change in each Occupied Molecular Orbital energy as a function of the angle of rotation about the C–C bond in ethane. Finally, we found that if the molecular orbital energy contribution is deleted from the rotational energy, an inversion in conformational preference occurs.

  2. Orbital motion in pre-main sequence binaries

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, G. H. [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Prato, L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Simon, M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Patience, J., E-mail: schaefer@chara-array.org [Astrophysics Group, School of Physics, University of Exeter, Exeter, EX4 4QL (United Kingdom)

    2014-06-01

    We present results from our ongoing program to map the visual orbits of pre-main sequence (PMS) binaries in the Taurus star forming region using adaptive optics imaging at the Keck Observatory. We combine our results with measurements reported in the literature to analyze the orbital motion for each binary. We present preliminary orbits for DF Tau, T Tau S, ZZ Tau, and the Pleiades binary HBC 351. Seven additional binaries show curvature in their relative motion. Currently, we can place lower limits on the orbital periods for these systems; full solutions will be possible with more orbital coverage. Five other binaries show motion that is indistinguishable from linear motion. We suspect that these systems are bound and might show curvature with additional measurements in the future. The observations reported herein lay critical groundwork toward the goal of measuring precise masses for low-mass PMS stars.

  3. Radiologic evaluation of orbital index among Ghanaians using CT scan

    OpenAIRE

    Botwe, Benard Ohene; Sule, Derick Seyram; Ismael, Abdul Mumin

    2017-01-01

    Background Orbital index (OI) expresses the proportion of the orbital height to the orbital width and varies with race, regions within the same race and periods in evolution. This index is useful in forensic medicine, anthropology and surgery. However, the average OI among Ghanaian adults was unknown. Aim The aim of this study was to determine the orbital index of adult Ghanaians and classify them under one of the three predetermined groups. Method The study design was a retrospective cross-s...

  4. Periodic orbits from Δ-modulation of stable linear systems

    OpenAIRE

    Xia, X.; Zinober, A.

    2004-01-01

    The �-modulated control of a single input, discrete time, linear stable system is investigated. The modulation direction is given by cTx where c �Rn/{0} is a given, otherwise arbitrary, vector. We obtain necessary and sufficient conditions for the existence of periodic points of a finite order. Some concrete results about the existence of a certain order of periodic points are also derived. We also study the relationship between certain polyhedra and the periodicity of the �-modulated orb...

  5. Cassini ISS Observation of Saturn from Grand Finale Orbits

    Science.gov (United States)

    Blalock, J. J.; Sayanagi, K. M.; Ingersoll, A. P.; Dyudina, U.; Ewald, S. P.; McCabe, R. M.; Garland, J.; Gunnarson, J.; Gallego, A.

    2017-12-01

    We present images captured during Cassini's Grand Finale orbits, and their preliminary analyses. During the final 22 orbits of the mission, the spacecraft is in orbits that have 6.5 day period at an inclination of 62 degrees, apoapsis altitude of about 1,272,000 km, and periapsis altitudes of about 2,500 km. Images captured during periapsis passes show Saturn's atmosphere at unprecedented spatial resolution. We present preliminary analyses of these images, including the final images captured before the end of the mission when the spacecraft enters Saturn's atmosphere on September 15th, 2017. Prominent features captured during the final orbits include the north polar vortex and other vortices as well as very detailed views of the "popcorn clouds" that reside between the Hexagon and the north pole. In the cloud field between zonal jets, clouds either resemble linear streaks suggestive of cirrus-like clouds or round shapes suggestive of vortices or cumulus anvil. The presence of linear streaks that follow lines of constant latitudes suggests that meridional mixing is inhibited at those latitudes. The size of vortices may reflect latitudinal variation in the atmospheric deformation radius. We also compare the new images to those captured earlier in the Cassini mission to characterize the temporal evolution such as changes in the zonal jet speeds, and prevalence and colors of vortices. A particular focus of our interest is the long-term change in the color of the hexagon, the evolution of the wind speeds in the jetstream that blows eastward at the boundary of the hexagon, and the morphology of the north polar vortex. Our work has been supported by NASA PATM NNX14AK07G, NSF AAG 1212216, and NASA NESSF NNX15AQ70H.

  6. The TWA 3 Young Triple System: Orbits, Disks, Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Kellogg, Kendra [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada); Prato, L.; Avilez, I.; Wasserman, L. H.; Levine, S. E.; Bosh, A. S. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Torres, Guillermo [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Schaefer, G. H. [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Ruíz-Rodríguez, D. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Bonanos, Alceste Z. [IAASARS, National Observatory of Athens, 15236 Penteli (Greece); Guenther, E. W. [Thüringer Landessternwarte Tautenburg, D-07778 Tautenburg (Germany); Neuhäuser, R. [Astrophysikalisches Institut und Universitäts-Sternwarte, FSU Jena, Schillergäßchen 2-3, D-07745 Jena (Germany); Morzinski, Katie M.; Close, Laird; Hinz, Phil; Males, Jared R. [Steward Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721 (United States); Bailey, Vanessa, E-mail: kkellogg@uwo.ca, E-mail: lprato@lowell.edu [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University, Stanford, CA, 94305 (United States)

    2017-08-01

    We have characterized the spectroscopic orbit of the TWA 3A binary and provide preliminary families of probable solutions for the TWA 3A visual orbit, as well as for the wide TWA 3A–B orbit. TWA 3 is a hierarchical triple located at 34 pc in the ∼10 Myr old TW Hya association. The wide component separation is 1.″55; the close pair was first identified as a possible binary almost 20 years ago. We initially identified the 35-day period orbital solution using high-resolution infrared spectroscopy that angularly resolved the A and B components. We then refined the preliminary orbit by combining the infrared data with a reanalysis of our high-resolution optical spectroscopy. The orbital period from the combined spectroscopic solution is ∼35 days, the eccentricity is ∼0.63, and the mass ratio is ∼0.84; although this high mass ratio would suggest that optical spectroscopy alone should be sufficient to identify the orbital solution, the presence of the tertiary B component likely introduced confusion in the blended optical spectra. Using millimeter imaging from the literature, we also estimate the inclinations of the stellar orbital planes with respect to the TWA 3A circumbinary disk inclination and find that all three planes are likely misaligned by at least ∼30°. The TWA 3A spectroscopic binary components have spectral types of M4.0 and M4.5; TWA 3B is an M3. We speculate that the system formed as a triple, is bound, and that its properties were shaped by dynamical interactions between the inclined orbits and disk.

  7. NICER Discovers the Ultracompact Orbit of the Accreting Millisecond Pulsar IGR J17062–6143

    DEFF Research Database (Denmark)

    Strohmayer, T. E.; Arzoumanian, Z.; Bogdanov, S.

    2018-01-01

    We present results of recent Neutron Star Interior Composition Explorer (NICER) observations of the accreting millisecond X-ray pulsar (AMXP) IGR J17062−6143 that show that it resides in a circular, ultracompact binary with a 38-minute orbital period. NICER observed the source for ≈26 ks over a 5...... of the neutron star. A coherent search for the orbital solution using the Z2 method finds a best-fitting circular orbit with a period of 2278.21 s (37.97 minutes), a projected semimajor axis of 0.00390 lt-s, and a barycentric pulsar frequency of 163.6561105 Hz. This is currently the shortest known orbital period...

  8. Three Super-Earths Orbiting HD 7924

    Science.gov (United States)

    Fulton, Benjamin J.; Weiss, Lauren M.; Sinukoff, Evan; Isaacson, Howard; Howard, Andrew W.; Marcy, Geoffrey W.; Henry, Gregory W.; Holden, Bradford P.; Kibrick, Robert I.

    2015-06-01

    We report the discovery of two super-Earth-mass planets orbiting the nearby K0.5 dwarf HD 7924, which was previously known to host one small planet. The new companions have masses of 7.9 and 6.4 {{M}\\oplus }, and orbital periods of 15.3 and 24.5 days. We perform a joint analysis of high-precision radial velocity data from Keck/HIRES and the new Automated Planet Finder Telescope (APF) to robustly detect three total planets in the system. We refine the ephemeris of the previously known planet using 5 yr of new Keck data and high-cadence observations over the last 1.3 yr with the APF. With this new ephemeris, we show that a previous transit search for the inner-most planet would have covered 70% of the predicted ingress or egress times. Photometric data collected over the last eight years using the Automated Photometric Telescope shows no evidence for transits of any of the planets, which would be detectable if the planets transit and their compositions are hydrogen-dominated. We detect a long-period signal that we interpret as the stellar magnetic activity cycle since it is strongly correlated with the Ca ii H and K activity index. We also detect two additional short-period signals that we attribute to rotationally modulated starspots and a one-month alias. The high-cadence APF data help to distinguish between the true orbital periods and aliases caused by the window function of the Keck data. The planets orbiting HD 7924 are a local example of the compact, multi-planet systems that the Kepler Mission found in great abundance. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of Hawai‘i, the University of California, and NASA.

  9. To the problem of DQ Herculis orbital period variations.

    Science.gov (United States)

    Dmitrienko, E. S.

    The eclipses of the primary component by the secondary one in DQ Her (Nova Her 1934) were analyzed using the light curves obtained by photometrical observations in 1982 - 1986. It is suspected that the value O-C is varying with time according to a sinusoidal law with the period of about 5 years and the amplitude ≡3 - 4 min. The secondary minimum is not shown up on the UBVRI-light curves of DQ Her. That is why the two hypotheses - the apsidal motion and the third component in the system - would seem adequate to explain the sinusoidal change of the value "O-C". By assuming that a probable sinusoidal dependence O-C on time occurs due to apsidal motion, it can be a result of deformation of the secondary component shape, since the contribution from the relativistic motion does not exceed 5%. The obtained value of k2 for the models with zero viscosity is (1 - 5)×10-3 that corresponds to a very high concentration of stellar matter toward the centre of the star. Application of models with the viscosity not equal to zero must lead to the increase of the k2 parameter.

  10. Orbit Feedback Operation with RCBX (MD 1209)

    CERN Document Server

    Wenninger, Jorg; Nisbet, David; Ponce, Laurette; Louro Alves, Diogo Miguel; CERN. Geneva. ATS Department

    2017-01-01

    The LHC Orbit Feedback (OFB) is able to drive any orbit corrector circuit (COD) to steer the LHC orbit. But during the first feedback tests in 2010, all attempts to use the common triplet orbit correctors (MCBX) failed because the QPS system installed to protect those magnets triggered power aborts as soon as the OFB steered the beam with those CODs. The reason was most likely the violation of the RCBX circuit acceleration limits. For this reason the MCBX orbit correctors were never driven by the OFB in regular operation. Although the performance of the OFB is generally excellent, the quality of the beam steering around IRs could be improved if the OFB could correct the orbit with the MCBX to counteract locally triplet quadrupole movements. The aim of this MD was to make a new attempt to use the MCBX in the OFB. The test was successful at injection (no circuit trip) and failed during the ramp (QPS power abort). The PC voltages and QPS Ures signals revealed the presence of voltage spikes with a period of 10~s...

  11. Orbital exenteration: Institutional review of evolving trends in indications and rehabilitation techniques.

    Science.gov (United States)

    Kiratli, Hayyam; Koç, İrem

    2018-06-01

    To determine the changes in indications for orbital exenteration over 20 years and to assess its impact on patient survival. Evolving techniques of rehabilitation of the orbit in our institution were also evaluated. This was a retrospective review of hospital records of patients who underwent orbital exenteration from 1995 to 2015 in a tertiary care center. Data extracted included primary location of the tumor, preoperative treatments, interval between initial diagnosis and exenteration, status of surgical margins, presence of metastatic disease, and postoperative survival. The types of prosthesis utilized over the years were also reviewed. Cox regression analysis was performed for categorical variables. Kaplan-Meier analysis was used to estimate post-exenteration survival. Over a 20-year period, orbital exenteration was performed on 100 orbits of 100 patients. The mean age was 39.4 years (range: 2 months to 90 years). The most common indications among 98 malignant causes were retinoblastoma, squamous cell carcinoma, basal cell carcinoma, extraocular extension of uveal melanoma, and conjunctival melanoma. Postoperative survival was significantly related to age and tumor location but independent from gender, surgical margin, histopathological diagnosis, previous treatment modality, and preoperative interval. In the whole cohort, 1-year and 5-year survival rates were 97% and 84%, respectively. Exenteration appears to be life-saving in children with orbital extension of retinoblastoma. While patients exenterated for malignant eyelid tumors have the best chance of survival, those with orbital extension of uveal melanoma and adenoid cystic carcinoma of the lacrimal gland have the worst prognosis.

  12. Post-aerocapture orbit selection and maintenance for the Aerofast mission to Mars

    Science.gov (United States)

    Pontani, Mauro; Teofilatto, Paolo

    2012-10-01

    Aerofast is the abbreviation of “aerocapture for future space transportation” and represents a project aimed at developing aerocapture techniques with regard to an interplanetary mission to Mars, in the context of the 7th Framework Program, with the financial support of the European Union. This paper describes the fundamental characteristics of the operational orbit after aerocapture for the mission of interest, as well as the related maintenance strategy. The final orbit selection depends on the desired lighting conditions, maximum revisit time of specific target regions, and feasibility of the orbit maintenance strategy. A sunsynchronous, frozen, repeating-ground-track orbit is chosen. First, the period of repetition is such that adjacent ascending node crossings (over the Mars surface) have a separation compatible with the swath of the optical payload. Secondly, the sunsynchronism condition ensures that a given latitude is periodically visited at the same local time, which condition is essential for comparing images of the same region at different epochs. Lastly, the fulfillment of the frozen condition guarantees improved orbit stability with respect to perturbations due to the zonal harmonics of Mars gravitational field. These three fundamental features of the operational orbit lead to determining its mean orbital elements. The evaluation of short and long period effects (e.g., those due to the sectorial harmonics of the gravitational field or to the aerodynamic drag) requires the determination of the osculating orbital elements at an initial reference time. This research describes a simple and accurate approach that leads to numerically determining these initial values, without employing complicated analytical developments. Numerical simulations demonstrate the long-period stability of the orbit when a significant number of harmonics of the gravitational field are taken into account. However, aerodynamic drag produces a relatively slow orbital decay at the

  13. A versatile silver oxide-zinc battery for synchronous orbit and planetary missions

    Science.gov (United States)

    Schwartz, H. J.; Soltis, D. G.

    1973-01-01

    A new kind of silver-zinc cell has been developed and tested under NASA support which can withstand severe heat sterilization requirements and does not display the traditional life limiting aspect of zinc electrodes - i.e., shape change. These cells could be used on a planetary lander mission which requires wet-stand periods of over a year, a modest number of cycles (400 to 500) and may require dry heat sterilization. The weight advantage of these cells over the traditional nickel-cadmium batteries makes them also an attractive alternative for synchronous orbit service where 400 to 500 cycles would be required over a five-year period.

  14. Orbital Resonances in the Vinti Solution

    Science.gov (United States)

    Zurita, L. D.

    As space becomes more congested, contested, and competitive, high-accuracy orbital predictions become critical for space operations. Current orbit propagators use the two-body solution with perturbations added, which have significant error growth when numerically integrated for long time periods. The Vinti Solution is a more accurate model than the two-body problem because it also accounts for the equatorial bulge of the Earth. Unfortunately, the Vinti solution contains small divisors near orbital resonances in the perturbative terms of the Hamiltonian, which lead to inaccurate orbital predictions. One approach to avoid the small divisors is to apply transformation theory, which is presented in this research. The methodology of this research is to identify the perturbative terms of the Vinti Solution, perform a coordinate transformation, and derive the new equations of motion for the Vinti system near orbital resonances. An analysis of these equations of motion offers insight into the dynamics found near orbital resonances. The analysis in this research focuses on the 2:1 resonance, which includes the Global Positioning System. The phase portrait of a nominal Global Positioning System satellite orbit is found to contain a libration region and a chaotic region. Further analysis shows that the dynamics of the 2:1 resonance affects orbits with semi-major axes ranging from -5.0 to +5.4 kilometers from an exactly 2:1 resonant orbit. Truth orbits of seven Global Positioning System satellites are produced for 10 years. Two of the satellites are found to be outside of the resonance region and three are found to be influenced by the libration dynamics of the resonance. The final satellite is found to be influenced by the chaotic dynamics of the resonance. This research provides a method of avoiding the small divisors found in the perturbative terms of the Vinti Solution near orbital resonances.

  15. Transport from non-classical orbits

    International Nuclear Information System (INIS)

    Christiansen, J.P.

    2001-10-01

    changes to y from gyrophase-scattering and changes to ξ, ρ caused by pitch angle scattering and momentum changes in Coulomb collisions. In order to calculate the dependence of this vector upon plasma variables it is necessary to impose the statistical properties associated with the aforementioned collisionless - collisional changes. However, this transport mechanism is augmented by changes δ which occur in the vicinity of those boundaries that separate different orbit topologies; such narrow regions act like 'loss cones' in phase space because the gradient of Δx becomes very large, reaching infinity on the boundaries. (author)

  16. Orbital resonances of Taiwan's FORMOSAT-2 remote sensing satellite

    Science.gov (United States)

    Lin, Shin-Fa; Hwang, Cheinway

    2018-06-01

    Unlike a typical remote sensing satellite that has a global coverage and non-integral orbital revolutions per day, Taiwan's FORMOSAT-2 (FS-2) satellite has a non-global coverage due to the mission requirements of one-day repeat cycle and daily visit around Taiwan. These orbital characteristics result in an integer number of revolutions a day and orbital resonances caused by certain components of the Earth's gravity field. Orbital flight data indicated amplified variations in the amplitudes of FS-2's Keplerian elements. We use twelve years of orbital observations and maneuver data to analyze the cause of the resonances and explain the differences between the simulated (at the pre-launch stage) and real orbits of FS-2. The differences are quantified using orbital perturbation theories that describe secular and long-period orbital evolutions caused by resonances. The resonance-induced orbital rising rate of FS-2 reaches +1.425 m/day, due to the combined (modeled) effect of resonances and atmospheric drags (the relative modeling errors remote sensing mission similar to FS-2, especially in the early mission design and planning phase.

  17. Substituent effects on the optical properties of naphthalenediimides: A frontier orbital analysis across the periodic table.

    Science.gov (United States)

    Mulder, Joshua R; Guerra, Célia Fonseca; Slootweg, J Chris; Lammertsma, Koop; Bickelhaupt, F Matthias

    2016-01-15

    A comprehensive theoretical treatment is presented for the electronic excitation spectra of ca. 50 different mono-, di-, and tetrasubstituted naphthalenediimides (NDI) using time-dependent density functional theory (TDDFT) at ZORA-CAM-B3LYP/TZ2P//ZORA-BP86/TZ2P with COSMO for simulating the effect of dichloromethane (DCM) solution. The substituents -XHn are from groups 14-17 and rows 2-5 of the periodic table. The lowest dipole-allowed singlet excitation (S0 -S1 ) of the monosubstituted NDIs can be tuned from 3.39 eV for -F to 2.42 eV for -TeH, while the S0 -S2 transition is less sensitive to substitution with energies ranging between 3.67 eV for -CH3 and 3.44 eV for -SbH2 . In the case of NDIs with group-15 and -16 substituents, the optical transitions strongly depend on the extent to which -XHn is planar or pyramidal as well as on the possible formation of intramolecular hydrogen bonds. The accumulative effect of double and quadruple substitution leads in general to increasing bathochromic shifts, but the increased steric hindrance in tetrasubstituted NDIs can lead to deformations that diminish the effectiveness of the substituents. Detailed analyses of the Kohn-Sham orbital electronic structure in monosubstituted NDIs reveal the mesomeric destabilization of the HOMO as the primary cause of the bathochromic shift of the S0-S1 transition. © 2015 Wiley Periodicals, Inc.

  18. Tectonics, orbital forcing, global climate change, and human evolution in Africa: introduction to the African paleoclimate special volume.

    Science.gov (United States)

    Maslin, Mark A; Christensen, Beth

    2007-11-01

    The late Cenozoic climate of Africa is a critical component for understanding human evolution. African climate is controlled by major tectonic changes, global climate transitions, and local variations in orbital forcing. We introduce the special African Paleoclimate Issue of the Journal of Human Evolution by providing a background for and synthesis of the latest work relating to the environmental context for human evolution. Records presented in this special issue suggest that the regional tectonics, appearance of C(4) plants in East Africa, and late Cenozoic global cooling combined to produce a long-term drying trend in East Africa. Of particular importance is the uplift associated with the East African Rift Valley formation, which altered wind flow patterns from a more zonal to more meridinal direction. Results in this volume suggest a marked difference in the climate history of southern and eastern Africa, though both are clearly influenced by the major global climate thresholds crossed in the last 3 million years. Papers in this volume present lake, speleothem, and marine paleoclimate records showing that the East African long-term drying trend is punctuated by episodes of short, alternating periods of extreme wetness and aridity. These periods of extreme climate variability are characterized by the precession-forced appearance and disappearance of large, deep lakes in the East African Rift Valley and paralleled by low and high wind-driven dust loads reaching the adjacent ocean basins. Dating of these records show that over the last 3 million years such periods only occur at the times of major global climatic transitions, such as the intensification of Northern Hemisphere Glaciation (2.7-2.5 Ma), intensification of the Walker Circulation (1.9-1.7 Ma), and the Mid-Pleistocene Revolution (1-0.7 Ma). Authors in this volume suggest this onset occurs as high latitude forcing in both Hemispheres compresses the Intertropical Convergence Zone so that East Africa

  19. Effects of DeOrbitSail as applied to Lifetime predictions of Low Earth Orbit Satellites

    Science.gov (United States)

    Afful, Andoh; Opperman, Ben; Steyn, Herman

    2016-07-01

    Orbit lifetime prediction is an important component of satellite mission design and post-launch space operations. Throughout its lifetime in space, a spacecraft is exposed to risk of collision with orbital debris or operational satellites. This risk is especially high within the Low Earth Orbit (LEO) region where the highest density of space debris is accumulated. This paper investigates orbital decay of some LEO micro-satellites and accelerating orbit decay by using a deorbitsail. The Semi-Analytical Liu Theory (SALT) and the Satellite Toolkit was employed to determine the mean elements and expressions for the time rates of change. Test cases of observed decayed satellites (Iridium-85 and Starshine-1) are used to evaluate the predicted theory. Results for the test cases indicated that the theory fitted observational data well within acceptable limits. Orbit decay progress of the SUNSAT micro-satellite was analysed using relevant orbital parameters derived from historic Two Line Element (TLE) sets and comparing with decay and lifetime prediction models. This paper also explored the deorbit date and time for a 1U CubeSat (ZACUBE-01). The use of solar sails as devices to speed up the deorbiting of LEO satellites is considered. In a drag sail mode, the deorbitsail technique significantly increases the effective cross-sectional area of a satellite, subsequently increasing atmospheric drag and accelerating orbit decay. The concept proposed in this study introduced a very useful technique of orbit decay as well as deorbiting of spacecraft.

  20. Long-term orbit prediction for Tiangong-1 spacecraft using the mean atmosphere model

    Science.gov (United States)

    Tang, Jingshi; Liu, Lin; Cheng, Haowen; Hu, Songjie; Duan, Jianfeng

    2015-03-01

    China is planning to complete its first space station by 2020. For the long-term management and maintenance, the orbit of the space station needs to be predicted for a long period of time. Since the space station is expected to work in a low-Earth orbit, the error in the a priori atmosphere model contributes significantly to the rapid increase of the predicted orbit error. When the orbit is predicted for 20 days, the error in the a priori atmosphere model, if not properly corrected, could induce a semi-major axis error of up to a few kilometers and an overall position error of several thousand kilometers respectively. In this work, we use a mean atmosphere model averaged from NRLMSISE00. The a priori reference mean density can be corrected during the orbit determination. For the long-term orbit prediction, we use sufficiently long period of observations and obtain a series of the diurnal mean densities. This series contains the recent variation of the atmosphere density and can be analyzed for various periodic components. After being properly fitted, the mean density can be predicted and then applied in the orbit prediction. Here we carry out the test with China's Tiangong-1 spacecraft at the altitude of about 340 km and we show that this method is simple and flexible. The densities predicted with this approach can serve in the long-term orbit prediction. In several 20-day prediction tests, most predicted orbits show semi-major axis errors better than 700 m and overall position errors better than 400 km.

  1. Saturn's Magnetic Field from the Cassini Grand Finale orbits

    Science.gov (United States)

    Dougherty, M. K.; Cao, H.; Khurana, K. K.; Hunt, G. J.; Provan, G.; Kellock, S.; Burton, M. E.; Burk, T. A.

    2017-12-01

    The fundamental aims of the Cassini magnetometer investigation during the Cassini Grand Finale orbits were determination of Saturn's internal planetary magnetic field and the rotation rate of the deep interior. The unique geometry of the orbits provided an unprecedented opportunity to measure the intrinsic magnetic field at close distances never before encountered. The surprising close alignment of Saturn's magnetic axis with its spin axis, known about since the days of Pioneer 11, has been a focus of the team's analysis since Cassini Saturn Orbit Insertion. However, the varying northern and southern magnetospheric planetary period oscillations, which fill the magnetosphere, has been a factor in masking the field signals from the interior. Here we describe an overview of the magnetometer results from the Grand Finale orbits, including confirmation of the extreme axisymmetric nature of the planetary magnetic field, implications for knowledge of the rotation rate and the behaviour of external magnetic fields (arising from the ring current, field aligned currents both at high and low latitudes and the modulating effect of the planetary period oscillations).

  2. ASSOCIATING LONG-TERM γ-RAY VARIABILITY WITH THE SUPERORBITAL PERIOD OF LS I +61°303

    International Nuclear Information System (INIS)

    Ackermann, M.; Buehler, R.; Ajello, M.; Ballet, J.; Casandjian, J. M.; Barbiellini, G.; Bastieri, D.; Buson, S.; Bellazzini, R.; Bregeon, J.; Bonamente, E.; Cecchi, C.; Brandt, T. J.; Brigida, M.; Bruel, P.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cavazzuti, E.; Chekhtman, A.

    2013-01-01

    Gamma-ray binaries are stellar systems for which the spectral energy distribution (discounting the thermal stellar emission) peaks at high energies. Detected from radio to TeV gamma rays, the γ-ray binary LS I +61°303 is highly variable across all frequencies. One aspect of this system's variability is the modulation of its emission with the timescale set by the ∼26.4960 day orbital period. Here we show that, during the time of our observations, the γ-ray emission of LS I +61°303 also presents a sinusoidal variability consistent with the previously known superorbital period of 1667 days. This modulation is more prominently seen at orbital phases around apastron, whereas it does not introduce a visible change close to periastron. It is also found in the appearance and disappearance of variability at the orbital period in the power spectrum of the data. This behavior could be explained by a quasi-cyclical evolution of the equatorial outflow of the Be companion star, whose features influence the conditions for generating gamma rays. These findings open the possibility to use γ-ray observations to study the outflows of massive stars in eccentric binary systems

  3. Computed tomographic features of orbital lesions

    International Nuclear Information System (INIS)

    Azevedo, C.M. de; Hoch, H.; Azevedo, M. de L.

    1990-01-01

    The purpose of this m anuscript is to present the use of CT in the evaluation of 42 cases of orbital lesions studied at the National Institute of Cancer in an one year and half period. Correlation with clinical and pathological data was performed and the results compared with those of the literature. Four cases of rare lesions are shown: alveolar soft tissue sarcoma, giant cell tumor and hematogenic metastatic deposits of a clear cell sarcoma and epidermoid carcinoma. The value of CT in the evaluation of all orbital masses is emphasized. (author) [pt

  4. A UNIFIED FRAMEWORK FOR THE ORBITAL STRUCTURE OF BARS AND TRIAXIAL ELLIPSOIDS

    Energy Technology Data Exchange (ETDEWEB)

    Valluri, Monica; Abbott, Caleb [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Shen, Juntai [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Debattista, Victor P., E-mail: mvalluri@umich.edu, E-mail: calebga@umich.edu, E-mail: jshen@shao.ac.cn, E-mail: vpdebattista@uclan.ac.uk [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE (United Kingdom)

    2016-02-20

    We examine a large random sample of orbits in two self-consistent simulations of N-body bars. Orbits in these bars are classified both visually and with a new automated orbit classification method based on frequency analysis. The well-known prograde x1 orbit family originates from the same parent orbit as the box orbits in stationary and rotating triaxial ellipsoids. However, only a small fraction of bar orbits (∼4%) have predominately prograde motion like their periodic parent orbit. Most bar orbits arising from the x1 orbit have little net angular momentum in the bar frame, making them equivalent to box orbits in rotating triaxial potentials. In these simulations a small fraction of bar orbits (∼7%) are long-axis tubes that behave exactly like those in triaxial ellipsoids: they are tipped about the intermediate axis owing to the Coriolis force, with the sense of tipping determined by the sign of their angular momentum about the long axis. No orbits parented by prograde periodic x2 orbits are found in the pure bar model, but a tiny population (∼2%) of short-axis tube orbits parented by retrograde x4 orbits are found. When a central point mass representing a supermassive black hole (SMBH) is grown adiabatically at the center of the bar, those orbits that lie in the immediate vicinity of the SMBH are transformed into precessing Keplerian orbits that belong to the same major families (short-axis tubes, long-axis tubes and boxes) occupying the bar at larger radii. During the growth of an SMBH, the inflow of mass and outward transport of angular momentum transform some x1 and long-axis tube orbits into prograde short-axis tubes. This study has important implications for future attempts to constrain the masses of SMBHs in barred galaxies using orbit-based methods like the Schwarzschild orbit superposition scheme and for understanding the observed features in barred galaxies.

  5. K2-137 b: an Earth-sized planet in a 4.3-h orbit around an M-dwarf

    DEFF Research Database (Denmark)

    Smith, A. M. S.; Cabrera, J.; Csizmadia, Sz

    2018-01-01

    We report the discovery in K2's Campaign 10 of a transiting terrestrial planet in an ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in only 4.3 h, the second shortest orbital period of any known planet, just 4 min longer than that of KOI 1843.03, which also orbits an M-d...

  6. Explore Stochastic Instabilities of Periodic Points by Transition Path Theory

    Science.gov (United States)

    Cao, Yu; Lin, Ling; Zhou, Xiang

    2016-06-01

    We consider the noise-induced transitions from a linearly stable periodic orbit consisting of T periodic points in randomly perturbed discrete logistic map. Traditional large deviation theory and asymptotic analysis at small noise limit cannot distinguish the quantitative difference in noise-induced stochastic instabilities among the T periodic points. To attack this problem, we generalize the transition path theory to the discrete-time continuous-space stochastic process. In our first criterion to quantify the relative instability among T periodic points, we use the distribution of the last passage location related to the transitions from the whole periodic orbit to a prescribed disjoint set. This distribution is related to individual contributions to the transition rate from each periodic points. The second criterion is based on the competency of the transition paths associated with each periodic point. Both criteria utilize the reactive probability current in the transition path theory. Our numerical results for the logistic map reveal the transition mechanism of escaping from the stable periodic orbit and identify which periodic point is more prone to lose stability so as to make successful transitions under random perturbations.

  7. Flight dynamics facility operational orbit determination support for the ocean topography experiment

    Science.gov (United States)

    Bolvin, D. T.; Schanzle, A. F.; Samii, M. V.; Doll, C. E.

    1991-01-01

    The Ocean Topography Experiment (TOPEX/POSEIDON) mission is designed to determine the topography of the Earth's sea surface across a 3 yr period, beginning with launch in June 1992. The Goddard Space Flight Center Dynamics Facility has the capability to operationally receive and process Tracking and Data Relay Satellite System (TDRSS) tracking data. Because these data will be used to support orbit determination (OD) aspects of the TOPEX mission, the Dynamics Facility was designated to perform TOPEX operational OD. The scientific data require stringent OD accuracy in navigating the TOPEX spacecraft. The OD accuracy requirements fall into two categories: (1) on orbit free flight; and (2) maneuver. The maneuver OD accuracy requirements are of two types; premaneuver planning and postmaneuver evaluation. Analysis using the Orbit Determination Error Analysis System (ODEAS) covariance software has shown that, during the first postlaunch mission phase of the TOPEX mission, some postmaneuver evaluation OD accuracy requirements cannot be met. ODEAS results also show that the most difficult requirements to meet are those that determine the change in the components of velocity for postmaneuver evaluation.

  8. Shell structure and orbit bifurcations in finite fermion systems

    Science.gov (United States)

    Magner, A. G.; Yatsyshyn, I. S.; Arita, K.; Brack, M.

    2011-10-01

    We first give an overview of the shell-correction method which was developed by V.M. Strutinsky as a practicable and efficient approximation to the general self-consistent theory of finite fermion systems suggested by A.B. Migdal and collaborators. Then we present in more detail a semiclassical theory of shell effects, also developed by Strutinsky following original ideas of M.C. Gutzwiller. We emphasize, in particular, the influence of orbit bifurcations on shell structure. We first give a short overview of semiclassical trace formulae, which connect the shell oscillations of a quantum system with a sum over periodic orbits of the corresponding classical system, in what is usually called the "periodic orbit theory". We then present a case study in which the gross features of a typical double-humped nuclear fission barrier, including the effects of mass asymmetry, can be obtained in terms of the shortest periodic orbits of a cavity model with realistic deformations relevant for nuclear fission. Next we investigate shell structures in a spheroidal cavity model which is integrable and allows for far-going analytical computation. We show, in particular, how period-doubling bifurcations are closely connected to the existence of the so-called "superdeformed" energy minimum which corresponds to the fission isomer of actinide nuclei. Finally, we present a general class of radial power-law potentials which approximate well the shape of a Woods-Saxon potential in the bound region, give analytical trace formulae for it and discuss various limits (including the harmonic oscillator and the spherical box potentials).

  9. Satellite Orbital Precessions Caused by the Octupolar Mass Moment ...

    Indian Academy of Sciences (India)

    Abstract. I consider a satellite moving around a non-spherical body of mass M and equatorial radius R, and calculate its orbital precessions caused by the body's octupolar mass moment J4. I consider only the effects averaged over one orbital period T of the satellite. I give exact for- mulas, not restricted to any special values ...

  10. Conductance of two-dimensional waveguide in presence of the Rashba spin-orbit interaction

    Science.gov (United States)

    Liu, Duan-Yang; Xia, Jian-Bai

    2018-04-01

    By using the transfer matrix method, we investigated spin transport in some straight structures in presence of the Rashba spin-orbit interaction. It is proved that the interference of two spin states is the same as that in one-dimensional Datta-Das spin field-effect transistor. The conductance of these structures has been calculated. Conductance quantization is common in these waveguides when we change the Fermi energy and the width of the waveguide. Using a periodic system of quadrate stubs and changing the Fermi energy, a nearly square-wave conductance can be obtained in some regions of the Fermi energy.

  11. Dynamic orbital textures in 3He-A

    International Nuclear Information System (INIS)

    Hall, H.E.; Hook, J.R.; Main, P.C.; Bagley, M.

    1978-01-01

    Three related pieces of work on the dynamic orbital texture of 3 He-A in a slab geometry have been carried out. (1) The non-linear equation of motion of the orbital axis has been studied analytically and numerically for heat flow normal to a slab. If the product of counter-flow velocity and slab thickness is greater than 5 π h/3 m, the lower energy uniform texture is unstable, and persistent orbital oscillation results in. (2) The torsion pendulum experiment has demonstrated the alignment of l by flow in a channel of width 380 μm. In this experiment, the oscillation was rapid as compared with the orbital relaxation time, so that the texture is controlled by the root mean square velocity. (3) In an attempt to observe directly the dissipation by orbital viscosity, the torsion pendulum experiment has been repeated with 17μm flow channels, for which orbital relaxation time and oscillation period should be comparable. Dissipation above a critical amplitude that occurs in the A-phase but not in the B-phase was observed. The dissipation is of the expected magnitude. (Kobatake, H

  12. Impact of ITRS 2014 realizations on altimeter satellite precise orbit determination

    Science.gov (United States)

    Zelensky, Nikita P.; Lemoine, Frank G.; Beckley, Brian D.; Chinn, Douglas S.; Pavlis, Despina E.

    2018-01-01

    This paper evaluates orbit accuracy and systematic error for altimeter satellite precise orbit determination on TOPEX, Jason-1, Jason-2 and Jason-3 by comparing the use of four SLR/DORIS station complements from the International Terrestrial Reference System (ITRS) 2014 realizations with those based on ITRF2008. The new Terrestrial Reference Frame 2014 (TRF2014) station complements include ITRS realizations from the Institut National de l'Information Géographique et Forestière (IGN) ITRF2014, the Jet Propulsion Laboratory (JPL) JTRF2014, the Deutsche Geodätisches Forschungsinstitut (DGFI) DTRF2014, and the DORIS extension to ITRF2014 for Precise Orbit Determination, DPOD2014. The largest source of error stems from ITRF2008 station position extrapolation past the 2009 solution end time. The TRF2014 SLR/DORIS complement impact on the ITRF2008 orbit is only 1-2 mm RMS radial difference between 1992-2009, and increases after 2009, up to 5 mm RMS radial difference in 2016. Residual analysis shows that station position extrapolation error past the solution span becomes evident even after two years, and will contribute to about 3-4 mm radial orbit error after seven years. Crossover data show the DTRF2014 orbits are the most accurate for the TOPEX and Jason-2 test periods, and the JTRF2014 orbits for the Jason-1 period. However for the 2016 Jason-3 test period only the DPOD2014-based orbits show a strong and statistically significant margin of improvement. The positive results with DTRF2014 suggest the new approach to correct station positions or normal equations for non-tidal loading before combination is beneficial. We did not find any compelling POD advantage in using non-linear over linear station velocity models in our SLR & DORIS orbit tests on the Jason satellites. The JTRF2014 proof-of-concept ITRS realization demonstrates the need for improved SLR+DORIS orbit centering when compared to the Ries (2013) CM annual model. Orbit centering error is seen as an annual

  13. Evolution of Spin, Orbital, and Superorbital Modulations of 4U 0114+650

    International Nuclear Information System (INIS)

    Hu, Chin-Ping; Ng, C.-Y.; Chou, Yi; Lin, Lupin Chun-Che; Yen, David Chien-Chang

    2017-01-01

    We report a systematic analysis of the spin, orbital, and superorbital modulations of 4U 0114+650, a high-mass X-ray binary that consists of one of the slowest spinning neutron stars. Using the dynamic power spectrum, we found that the spin period varied dramatically and is anticorrelated with the long-term X-ray flux variation that can be observed using the Rossi X-ray Timing Explorer ASM, Swift BAT, and the Monitor of All-sky X-ray Image. The spin-up rate over the entire data set is consistent with previously reported values; however, the local spin-up rate is considerably higher. The corresponding local spin-up timescale is comparable to the local spin-up rate of OAO 1657−415, indicating that 4U 0114+650 could also have a transient disk. Moreover, the spin period evolution shows two ∼1000-day spin-down/random-walk epochs that appeared together with depressions of the superorbital modulation amplitude. This implies that the superorbital modulation was closely related to the presence of the accretion disk, which is not favored in the spin-down/random-walk epochs because the accretion is dominated by the direct wind accretion. The orbital period is stable during the entire time span; however, the orbital profile significantly changes with time. We found that the depth of the dip near the inferior conjunction of the companion is highly variable, which disfavors the eclipsing scenario. Moreover, the dip was less obvious during the spin-down/random-walk epochs, indicating its correlation with the accretion disk. Further monitoring in both X-ray and optical bands could reveal the establishment of the accretion disk in this system.

  14. Evolution of Spin, Orbital, and Superorbital Modulations of 4U 0114+650

    Science.gov (United States)

    Hu, Chin-Ping; Chou, Yi; Ng, C.-Y.; Lin, Lupin Chun-Che; Yen, David Chien-Chang

    2017-07-01

    We report a systematic analysis of the spin, orbital, and superorbital modulations of 4U 0114+650, a high-mass X-ray binary that consists of one of the slowest spinning neutron stars. Using the dynamic power spectrum, we found that the spin period varied dramatically and is anticorrelated with the long-term X-ray flux variation that can be observed using the Rossi X-ray Timing Explorer ASM, Swift BAT, and the Monitor of All-sky X-ray Image. The spin-up rate over the entire data set is consistent with previously reported values; however, the local spin-up rate is considerably higher. The corresponding local spin-up timescale is comparable to the local spin-up rate of OAO 1657-415, indicating that 4U 0114+650 could also have a transient disk. Moreover, the spin period evolution shows two ˜1000-day spin-down/random-walk epochs that appeared together with depressions of the superorbital modulation amplitude. This implies that the superorbital modulation was closely related to the presence of the accretion disk, which is not favored in the spin-down/random-walk epochs because the accretion is dominated by the direct wind accretion. The orbital period is stable during the entire time span; however, the orbital profile significantly changes with time. We found that the depth of the dip near the inferior conjunction of the companion is highly variable, which disfavors the eclipsing scenario. Moreover, the dip was less obvious during the spin-down/random-walk epochs, indicating its correlation with the accretion disk. Further monitoring in both X-ray and optical bands could reveal the establishment of the accretion disk in this system.

  15. Evolution of Spin, Orbital, and Superorbital Modulations of 4U 0114+650

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chin-Ping; Ng, C.-Y. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Chou, Yi [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China); Lin, Lupin Chun-Che [Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan (China); Yen, David Chien-Chang, E-mail: cphu@hku.hk [Department of Mathematics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China)

    2017-07-20

    We report a systematic analysis of the spin, orbital, and superorbital modulations of 4U 0114+650, a high-mass X-ray binary that consists of one of the slowest spinning neutron stars. Using the dynamic power spectrum, we found that the spin period varied dramatically and is anticorrelated with the long-term X-ray flux variation that can be observed using the Rossi X-ray Timing Explorer ASM, Swift BAT, and the Monitor of All-sky X-ray Image. The spin-up rate over the entire data set is consistent with previously reported values; however, the local spin-up rate is considerably higher. The corresponding local spin-up timescale is comparable to the local spin-up rate of OAO 1657−415, indicating that 4U 0114+650 could also have a transient disk. Moreover, the spin period evolution shows two ∼1000-day spin-down/random-walk epochs that appeared together with depressions of the superorbital modulation amplitude. This implies that the superorbital modulation was closely related to the presence of the accretion disk, which is not favored in the spin-down/random-walk epochs because the accretion is dominated by the direct wind accretion. The orbital period is stable during the entire time span; however, the orbital profile significantly changes with time. We found that the depth of the dip near the inferior conjunction of the companion is highly variable, which disfavors the eclipsing scenario. Moreover, the dip was less obvious during the spin-down/random-walk epochs, indicating its correlation with the accretion disk. Further monitoring in both X-ray and optical bands could reveal the establishment of the accretion disk in this system.

  16. Solar radiation pressure and deviations from Keplerian orbits

    Energy Technology Data Exchange (ETDEWEB)

    Kezerashvili, Roman Ya. [Physics Department, New York City College of Technology, the City University of New York, Brooklyn, NY 11201 (United States); Vazquez-Poritz, Justin F. [Physics Department, New York City College of Technology, City University of New York, Brooklyn, NY 11201 (United States)], E-mail: jporitz@gmail.com

    2009-05-04

    Newtonian gravity and general relativity give exactly the same expression for the period of an object in circular orbit around a static central mass. However, when the effects of the curvature of spacetime and solar radiation pressure are considered simultaneously for a solar sail propelled satellite, there is a deviation from Kepler's third law. It is shown that solar radiation pressure affects the period of this satellite in two ways: by effectively decreasing the solar mass, thereby increasing the period, and by enhancing the effects of other phenomena, potentially rendering some of them detectable. In particular, we consider deviations from Keplerian orbits due to spacetime curvature, frame dragging from the rotation of the sun, the oblateness of the sun, a possible net electric charge of the sun, and a very small positive cosmological constant.

  17. EG Andromedae: A New Orbit and Additional Evidence for a Photoionized Wind

    Science.gov (United States)

    Kenyon, Scott J.; Garcia, Michael R.

    2016-07-01

    We analyze a roughly 20 yr set of spectroscopic observations for the symbiotic binary EG And. Radial velocities derived from echelle spectra are best fit with a circular orbit having an orbital period of P = 483.3 ± 1.6 days and semi-amplitude K = 7.34 ± 0.07 km s-1. Combined with previous data, these observations rule out an elliptical orbit at the 10σ level. Equivalent widths of H I Balmer emission lines and various absorption features vary in phase with the orbital period. Relative to the radius of the red giant primary, the apparent size of the H II region is consistent with a model where a hot secondary star with effective temperature T h ≈ 75,000 K ionizes the wind from the red giant.

  18. A Search for Exoplanets in Short-Period Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Ronald Kaitchuck

    2012-03-01

    Full Text Available This paper reports the progress of a search for exoplanets with S-type orbits in short-period binary star systems. The selected targets have stellar orbital periods of just a few days. These systems are eclipsing binaries so that exoplanet transits, if planets exist, will be highly likely. We report the results for seven binary star systems.

  19. KEPLER-1647B: THE LARGEST AND LONGEST-PERIOD KEPLER TRANSITING CIRCUMBINARY PLANET

    Energy Technology Data Exchange (ETDEWEB)

    Kostov, Veselin B. [NASA Goddard Space Flight Center, Mail Code 665, Greenbelt, MD 20771 (United States); Orosz, Jerome A.; Welsh, William F.; Short, Donald R. [Department of Astronomy, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 (United States); Doyle, Laurance R. [SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Principia College, IMoP, One Maybeck Place, Elsah, IL 62028 (United States); Fabrycky, Daniel C. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Haghighipour, Nader [Institute for Astronomy, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Quarles, Billy [Department of Physics and Physical Science, The University of Nebraska at Kearney, Kearney, NE 68849 (United States); Cochran, William D.; Endl, Michael [McDonald Observatory, The University of Texas as Austin, Austin, TX 78712-0259 (United States); Ford, Eric B. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 428A Davey Lab, University Park, PA 16802 (United States); Gregorio, Joao [Atalaia Group and Crow-Observatory, Portalegre (Portugal); Hinse, Tobias C. [Korea Astronomy and Space Science Institute (KASI), Advanced Astronomy and Space Science Division, Daejeon 305-348 (Korea, Republic of); Isaacson, Howard [Department of Astronomy, University of California Berkeley, 501 Campbell Hall, Berkeley, CA 94720 (United States); Jenkins, Jon M. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Jensen, Eric L. N. [Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081 (United States); Kane, Stephen [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); Kull, Ilya, E-mail: veselin.b.kostov@nasa.gov [Department of Astronomy and Astrophysics, Tel Aviv University, 69978 Tel Aviv (Israel); and others

    2016-08-10

    We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of known short-period planets orbiting near the stability limit of binary stars. Unlike the previous discoveries, the planet revolving around the eclipsing binary system Kepler-1647 has a very long orbital period (∼1100 days) and was at conjunction only twice during the Kepler mission lifetime. Due to the singular configuration of the system, Kepler-1647b is not only the longest-period transiting CBP at the time of writing, but also one of the longest-period transiting planets. With a radius of 1.06 ± 0.01 R {sub Jup}, it is also the largest CBP to date. The planet produced three transits in the light curve of Kepler-1647 (one of them during an eclipse, creating a syzygy) and measurably perturbed the times of the stellar eclipses, allowing us to measure its mass, 1.52 ± 0.65 M {sub Jup}. The planet revolves around an 11-day period eclipsing binary consisting of two solar-mass stars on a slightly inclined, mildly eccentric ( e {sub bin} = 0.16), spin-synchronized orbit. Despite having an orbital period three times longer than Earth’s, Kepler-1647b is in the conservative habitable zone of the binary star throughout its orbit.

  20. KEPLER-1647B: THE LARGEST AND LONGEST-PERIOD KEPLER TRANSITING CIRCUMBINARY PLANET

    International Nuclear Information System (INIS)

    Kostov, Veselin B.; Orosz, Jerome A.; Welsh, William F.; Short, Donald R.; Doyle, Laurance R.; Fabrycky, Daniel C.; Haghighipour, Nader; Quarles, Billy; Cochran, William D.; Endl, Michael; Ford, Eric B.; Gregorio, Joao; Hinse, Tobias C.; Isaacson, Howard; Jenkins, Jon M.; Jensen, Eric L. N.; Kane, Stephen; Kull, Ilya

    2016-01-01

    We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of known short-period planets orbiting near the stability limit of binary stars. Unlike the previous discoveries, the planet revolving around the eclipsing binary system Kepler-1647 has a very long orbital period (∼1100 days) and was at conjunction only twice during the Kepler mission lifetime. Due to the singular configuration of the system, Kepler-1647b is not only the longest-period transiting CBP at the time of writing, but also one of the longest-period transiting planets. With a radius of 1.06 ± 0.01 R Jup , it is also the largest CBP to date. The planet produced three transits in the light curve of Kepler-1647 (one of them during an eclipse, creating a syzygy) and measurably perturbed the times of the stellar eclipses, allowing us to measure its mass, 1.52 ± 0.65 M Jup . The planet revolves around an 11-day period eclipsing binary consisting of two solar-mass stars on a slightly inclined, mildly eccentric ( e bin = 0.16), spin-synchronized orbit. Despite having an orbital period three times longer than Earth’s, Kepler-1647b is in the conservative habitable zone of the binary star throughout its orbit.

  1. Co-periodic stability of periodic waves in some Hamiltonian PDEs

    Science.gov (United States)

    Benzoni-Gavage, S.; Mietka, C.; Rodrigues, L. M.

    2016-10-01

    The stability of periodic traveling wave solutions to dispersive PDEs with respect to ‘arbitrary’ perturbations is still widely open. The focus is put here on stability with respect to perturbations of the same period as the wave, for KdV-like systems of one-dimensional Hamiltonian PDEs. Stability criteria are derived and investigated first in a general abstract framework, and then applied to three basic examples that are very closely related, and ubiquitous in mathematical physics, namely, a quasilinear version of the generalized Korteweg-de Vries equation (qKdV), and the Euler-Korteweg system in both Eulerian coordinates (EKE) and in mass Lagrangian coordinates (EKL). Those criteria consist of a necessary condition for spectral stability, and of a sufficient condition for orbital stability. Both are expressed in terms of a single function, the abbreviated action integral along the orbits of waves in the phase plane, which is the counterpart of the solitary waves moment of instability introduced by Boussinesq. Regarding solitary waves, the celebrated Grillakis-Shatah-Strauss stability criteria amount to looking for the sign of the second derivative of the moment of instability with respect to the wave speed. For periodic waves, the most striking results obtained here can be summarized as: an odd value for the difference between N—the size of the PDE system—and the negative signature of the Hessian of the action implies spectral instability, whereas a negative signature of the same Hessian being equal to N implies orbital stability. Since these stability criteria are merely encoded by the negative signature of matrices, they can at least be checked numerically. Various numerical experiments are presented, which clearly discriminate between stable cases and unstable cases for (qKdV), (EKE) and (EKL).

  2. Non-isochronous spiral orbit particle accelerator and fixed frequency closed orbit particle accelerator

    International Nuclear Information System (INIS)

    Fujisawa, Takashi; Hattori, Toshiyuki

    2006-01-01

    One of the present inventions provides a spiral orbit charged particle accelerator in which the magnetic field increases as the radius increases more rapidly than an isochronous magnetic field distribution, and the distribution of fixed-frequency accelerating RF voltage is formed so that a harmonic number changes in integer for every particle revolution. The other invention realizes to make the closed orbit charged particle accelerator having a fixed frequency amplitude modulator that is able to modulate amplitude of the RF voltage so that a harmonic number decreases in integer in an every particle revolution. (author)

  3. SPIN-ORBIT ALIGNMENT FOR THE CIRCUMBINARY PLANET HOST KEPLER-16 A

    International Nuclear Information System (INIS)

    Winn, Joshua N.; Albrecht, Simon; Johnson, John Asher; Torres, Guillermo; Carter, Joshua A.; Ragozzine, Darin; Quinn, Samuel N.; Latham, David W.; Cochran, William D.; Marcy, Geoffrey W.; Howard, Andrew W.; Isaacson, Howard; Fischer, Debra; Doyle, Laurance; Welsh, William; Orosz, Jerome; Fabrycky, Daniel C.; Shporer, Avi; Howell, Steve B.; Prsa, Andrej

    2011-01-01

    Kepler-16 is an eccentric low-mass eclipsing binary with a circumbinary transiting planet. Here, we investigate the angular momentum of the primary star, based on Kepler photometry and Keck spectroscopy. The primary star's rotation period is 35.1 ± 1.0 days, and its projected obliquity with respect to the stellar binary orbit is 1. 0 6 ± 2. 0 4. Therefore, the three largest sources of angular momentum-the stellar orbit, the planetary orbit, and the primary's rotation-are all closely aligned. This finding supports a formation scenario involving accretion from a single disk. Alternatively, tides may have realigned the stars despite their relatively wide separation (0.2 AU), a hypothesis that is supported by the agreement between the measured rotation period and the 'pseudosynchronous' period of tidal evolution theory. The rotation period, chromospheric activity level, and fractional light variations suggest a main-sequence age of 2-4 Gyr. Evolutionary models of low-mass stars can match the observed masses and radii of the primary and secondary stars to within about 3%.

  4. Applicability of meteor radiant determination methods depending on orbit type. I. High-eccentric orbits

    Science.gov (United States)

    Svoren, J.; Neslusan, L.; Porubcan, V.

    1993-07-01

    It is evident that there is no uniform method of calculating meteor radiants which would yield reliable results for all types of cometary orbits. In the present paper an analysis of this problem is presented, together with recommended methods for various types of orbits. Some additional methods resulting from mathematical modelling are presented and discussed together with Porter's, Steel-Baggaley's and Hasegawa's methods. In order to be able to compare how suitable the application of the individual radiant determination methods is, it is necessary to determine the accuracy with which they approximate real meteor orbits. To verify the accuracy with which the orbit of a meteoroid with at least one node at 1 AU fits the original orbit of the parent body, we applied the Southworth-Hawkins D-criterion (Southworth, R.B., Hawkins, G.S.: 1963, Smithson. Contr. Astrophys 7, 261). D0.2 the fit is rather poor and the change of orbit unrealistic. The optimal methods with the smallest values of D for given types of orbits are shown in two series of six plots. The new method of rotation around the line of apsides we propose is very appropriate in the region of small inclinations. There is no doubt that Hasegawa's omega-adjustment method (Hasegawa, I.: 1990, Publ. Astron. Soc. Japan 42, 175) has the widest application. A comparison of the theoretical radiants with the observed radiants of seven known meteor showers is also presented.

  5. Fulde-Ferrell state in superconducting core/shell nanowires: role of the orbital effect

    Science.gov (United States)

    Mika, Marek; Wójcik, Paweł

    2017-11-01

    The orbital effect on the Fulde-Ferrell (FF) phase is investigated in superconducting core/shell nanowires subjected to the axial magnetic field. Confinement in the radial direction results in quantization of the electron motion with energies determined by the radial j and orbital m quantum numbers. In the external magnetic field, the twofold degeneracy with respect to the orbital magnetic quantum number m is lifted which leads to the Fermi wave vector mismatch between the paired electrons, (k, j, m, \\uparrow) ≤ftrightarrow (-k, j, -m, \\downarrow) . This mismatch is transferred to the nonzero total momentum of the Cooper pairs, which results in a formation of the FF phase occurring sequentially with increasing magnetic field. By changing the nanowire radius R and the superconducting shell thickness d, we discuss the role of the orbital effect in the FF phase formation in both the nanowire-like (R/d \\ll 1 ) and nanofilm-like (R/d \\gg 1 ) regime. We have found that the irregular pattern of the FF phase which appears for the case of the nanowire-like regime, for the nanofilm-like geometry evolves towards the regular distribution in which the FF phase stability regions emerge periodically between the BCS states. The transition between these two different phase diagrams is explained as resulting from the orbital effect and the multigap character of superconductivity in the core/shell nanowires.

  6. Dynamic and reduced-dynamic precise orbit determination of satellites in low earth orbits

    International Nuclear Information System (INIS)

    Swatschina, P.

    2009-01-01

    The precise positioning of satellites in Low Earth Orbits (LEO) has become a key technology for advanced space missions. Dedicated satellite missions, such as CHAMP, GRACE and GOCE, that aim to map the Earths gravity field and its variation over time with unprecedented accuracy, initiated the demand for highly precise orbit solutions of LEO satellites. Furthermore, a wide range of additional science opportunities opens up with the capability to generate accurate LEO orbits. For all considered satellite missions, the primary measurement system for navigation is a spaceborne GPS receiver. The goal of this thesis is to establish and implement methods for Precise Orbit Determination (POD) of LEO satellites using GPS. Striving for highest precision using yet efficient orbit generation strategies, the attained orbit solutions are aimed to be competitive with the most advanced solutions of other institutions. Dynamic and reduced-dynamic orbit models provide the basic concepts of this work. These orbit models are subsequently adjusted to the highly accurate GPS measurements. The GPS measurements are introduced at the zero difference level in the ionosphere free linear combination. Appropriate procedures for GPS data screening and editing are established to detect erroneous data and to employ measurements of good quality only. For the dynamic orbit model a sophisticated force model, especially designed for LEO satellites, has been developed. In order to overcome the limitations that are induced by the deficiencies of the purely dynamical model, two different types of empirical parameters are introduced into the force model. These reduced-dynamic orbit models allow for the generation of much longer orbital arcs while preserving the spacecraft dynamics to the most possible extent. The two methods for reduced-dynamic orbit modeling are instantaneous velocity changes (pulses) or piecewise constant accelerations. For both techniques highly efficient modeling algorithms are

  7. Long-term orbit prediction for China's Tiangong-1 spacecraft based on mean atmosphere model

    Science.gov (United States)

    Tang, Jingshi; Liu, Lin; Miao, Manqian

    Tiangong-1 is China's test module for future space station. It has gone through three successful rendezvous and dockings with Shenzhou spacecrafts from 2011 to 2013. For the long-term management and maintenance, the orbit sometimes needs to be predicted for a long period of time. As Tiangong-1 works in a low-Earth orbit with an altitude of about 300-400 km, the error in the a priori atmosphere model contributes significantly to the rapid increase of the predicted orbit error. When the orbit is predicted for 10-20 days, the error in the a priori atmosphere model, if not properly corrected, could induce the semi-major axis error and the overall position error up to a few kilometers and several thousand kilometers respectively. In this work, we use a mean atmosphere model averaged from NRLMSIS00. The a priori reference mean density can be corrected during precise orbit determination (POD). For applications in the long-term orbit prediction, the observations are first accumulated. With sufficiently long period of observations, we are able to obtain a series of the diurnal mean densities. This series bears the recent variation of the atmosphere density and can be analyzed for various periods. After being properly fitted, the mean density can be predicted and then applied in the orbit prediction. We show that the densities predicted with this approach can serve to increase the accuracy of the predicted orbit. In several 20-day prediction tests, most predicted orbits show semi-major axis errors better than 700m and overall position errors better than 600km.

  8. Efficient orbit integration by manifold correction methods.

    Science.gov (United States)

    Fukushima, Toshio

    2005-12-01

    Triggered by a desire to investigate, numerically, the planetary precession through a long-term numerical integration of the solar system, we developed a new formulation of numerical integration of orbital motion named manifold correct on methods. The main trick is to rigorously retain the consistency of physical relations, such as the orbital energy, the orbital angular momentum, or the Laplace integral, of a binary subsystem. This maintenance is done by applying a correction to the integrated variables at each integration step. Typical methods of correction are certain geometric transformations, such as spatial scaling and spatial rotation, which are commonly used in the comparison of reference frames, or mathematically reasonable operations, such as modularization of angle variables into the standard domain [-pi, pi). The form of the manifold correction methods finally evolved are the orbital longitude methods, which enable us to conduct an extremely precise integration of orbital motions. In unperturbed orbits, the integration errors are suppressed at the machine epsilon level for an indefinitely long period. In perturbed cases, on the other hand, the errors initially grow in proportion to the square root of time and then increase more rapidly, the onset of which depends on the type and magnitude of the perturbations. This feature is also realized for highly eccentric orbits by applying the same idea as used in KS-regularization. In particular, the introduction of time elements greatly enhances the performance of numerical integration of KS-regularized orbits, whether the scaling is applied or not.

  9. Meta-orbital transition in heavy-fermion systems. Analysis by dynamical mean field theory and self-consistent renormalization theory of orbital fluctuations

    International Nuclear Information System (INIS)

    Hattori, Kazumasa

    2010-01-01

    We investigate a two-orbital Anderson lattice model with Ising orbital intersite exchange interactions on the basis of a dynamical mean field theory combined with the static mean field approximation of intersite orbital interactions. Focusing on Ce-based heavy-fermion compounds, we examine the orbital crossover between two orbital states, when the total f-electron number per site n f is ∼1. We show that a 'meta-orbital' transition, at which the occupancy of two orbitals changes steeply, occurs when the hybridization between the ground-state f-electron orbital and conduction electrons is smaller than that between the excited f-electron orbital and conduction electrons at low pressures. Near the meta-orbital critical end point, orbital fluctuations are enhanced and couple with charge fluctuations. A critical theory of meta-orbital fluctuations is also developed by applying the self-consistent renormalization theory of itinerant electron magnetism to orbital fluctuations. The critical end point, first-order transition, and crossover are described within Gaussian approximations of orbital fluctuations. We discuss the relevance of our results to CeAl 2 , CeCu 2 Si 2 , CeCu 2 Ge 2 , and related compounds, which all have low-lying crystalline-electric-field excited states. (author)

  10. Reconstruction of Midface and Orbital Wall Defects After Maxillectomy and Orbital Content Preservation With Titanium Mesh and Fascia Lata: 3-Year Follow-Up.

    Science.gov (United States)

    Motiee-Langroudi, Maziar; Harirchi, Iraj; Amali, Amin; Jafari, Mehrdad

    2015-12-01

    To describe the authors' experience in the reconstruction of patients after total maxillectomy with preservation of orbital contents for maxillary tumors using titanium mesh and autogenous fascia lata, where no setting for free flap reconstruction is available. Twelve consecutive patients with paranasal sinus tumors underwent total maxillectomy without orbital exenterations and primary reconstruction. The defects were reconstructed by titanium mesh in combination with autogenous fascia lata in the orbital floor performed by 1 surgical team. Titanium mesh (0.2 mm thick) was contoured and fixed to reconstruct the orbital floor and obtain midface projection. Fascia lata was used to cover the titanium mesh along the orbital floor to prevent fat entrapment in the mesh holes. The most common pathology was squamous cell carcinoma (50%). Patients' mean age was 45.66 years (33 to 74 yr). The mean follow-up period was 35.2 months (30 to 49 months). During follow-up, no infection or foreign body reaction was encountered. Extrusion of titanium mesh occurred in 4 patients who underwent postoperative radiotherapy. Two cases of mild diplopia at extreme gaze occurred early during the postoperative period that resolved after a few months. Placing fascia lata between the titanium mesh surface of the orbital implant and the orbital contents was successful in preventing long-term diplopia or dystopia. Nevertheless, exposure of the titanium implant through the skin surface represented a complication of this technique in 25% of patients. Further studies are required with head-to-head comparisons of artificial materials and free flaps for reconstruction of maxillectomy defects. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Theoretical and experimental studies of the orbit expansion effect

    International Nuclear Information System (INIS)

    Glazov, A.A.; Denisov, Yu.N.; Dmitrievskij, V.P.

    1985-01-01

    Calculation and experiment results of investigations on the orbit expansion effect in the periodic magnetic structures are considered. Experiments, conducted with the use of ring cyclotron electron model, have shown, that the orbit expansion effect leads to the beam cross section radial size increase. This phenomenon was eliminated through the introduction of correction coils, which provide for the required low harmonic phase and value change in the whole acceleration area. Energy spread leads to the spreading of beam in the expansion area. Numeric calculations show, that for the electron model used the relative energy spread must be less than 10 -3 . The conclusion is drawn, that the only real possibility to obtain an accelerated beam with such an energy spread is to perform the ''flat-top'' regime. Equipment for cyclotron electron model RF supply is developed and produced to realise this regime. Particle dinamics calculation in the ''flat-top'' regime and the first experiments have shown, that acceleration asymmetry leads to the rapid coherent oscillation swing in the centre up to the amplitude of 6-7 sm

  12. EG ANDROMEDAE: A NEW ORBIT AND ADDITIONAL EVIDENCE FOR A PHOTOIONIZED WIND

    International Nuclear Information System (INIS)

    Kenyon, Scott J.; Garcia, Michael R.

    2016-01-01

    We analyze a roughly 20 yr set of spectroscopic observations for the symbiotic binary EG And. Radial velocities derived from echelle spectra are best fit with a circular orbit having an orbital period of P = 483.3 ± 1.6 days and semi-amplitude K = 7.34 ± 0.07 km s −1 . Combined with previous data, these observations rule out an elliptical orbit at the 10 σ level. Equivalent widths of H i Balmer emission lines and various absorption features vary in phase with the orbital period. Relative to the radius of the red giant primary, the apparent size of the H ii region is consistent with a model where a hot secondary star with effective temperature T h ≈ 75,000 K ionizes the wind from the red giant.

  13. EG ANDROMEDAE: A NEW ORBIT AND ADDITIONAL EVIDENCE FOR A PHOTOIONIZED WIND

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Garcia, Michael R., E-mail: skenyon@cfa.harvard.edu, E-mail: michael.r.garcia@nasa.gov [NASA Headquarters, Mail Suite 3Y28, 300 E Street SW, Washington, DC 20546-0001 (United States)

    2016-07-01

    We analyze a roughly 20 yr set of spectroscopic observations for the symbiotic binary EG And. Radial velocities derived from echelle spectra are best fit with a circular orbit having an orbital period of P = 483.3 ± 1.6 days and semi-amplitude K = 7.34 ± 0.07 km s{sup −1}. Combined with previous data, these observations rule out an elliptical orbit at the 10 σ level. Equivalent widths of H i Balmer emission lines and various absorption features vary in phase with the orbital period. Relative to the radius of the red giant primary, the apparent size of the H ii region is consistent with a model where a hot secondary star with effective temperature T{sub h} ≈ 75,000 K ionizes the wind from the red giant.

  14. External Periodic Force Control of a Single-Degree-of-Freedom Vibroimpact System

    Directory of Open Access Journals (Sweden)

    Jingyue Wang

    2013-01-01

    Full Text Available A single-degree-of-freedom mechanical model of vibro-impact system is established. Bifurcation and chaos in the system are revealed with the time history diagram, phase trajectory map, and Poincaré map. According to the bifurcation and chaos of the actual vibro-impact system, the paper puts forward external periodic force control strategy. The method of controlling chaos by external periodic force feedback controller is developed to guide chaotic motions towards regular motions. The stability of the control system is also analyzed especially by theory. By selecting appropriate feedback coefficients, the unstable periodic orbits of the original chaotic orbit can be stabilized to the stable periodic orbits. The effectiveness of this control method is verified by numerical simulation.

  15. The value of X-ray CT in orbital fractures

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung Hee; Lee, Jae Mun; Kim, Choon Yul; Bahk, Yong Whee [Catholic Medical College, Seoul (Korea, Republic of)

    1986-08-15

    On the pulse from the trauma transiting to posterior side of the orbit, orbital fractures are occurred through the weak point of the orbital wall. Invagination of soft tissue or entrapment of muscles may be associated with orbital fracture. In condition of inaccurate diagnosis, appropriate surgical repairment is impossible and complication such as diplopia or enophthalmia are developed. CT scan is diagnostic procedure which demonstrates accurately the site and state of orbital fracture, and its associated findings. The authors has been studied in 21 orbital CT scan to evaluate the relative value of plain X rays and CT scans in the diagnosis of orbital fractures during the period from January 1982 to September 1985. The conclusions were as follows: 1. Diagnostic rate was 100% by CT, 40% by initial and 80% by retrospective interpretation of conventional X-ray films. 2. Low X-ray diagnostic rate of medical wall fractures (26.7%) was due to thinness of the bone. 3. Medial wall fractures were associated with floor fractures in 46%. 4. Orbital soft tissue injuries and abnormalities of PNS were precisely evaluated by CT scan.

  16. How Do Earth-Sized, Short-Period Planets Form?

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    Matching theory to observation often requires creative detective work. In a new study, scientists have used a clever test to reveal clues about the birth of speedy, Earth-sized planets.Former Hot Jupiters?Artists impression of a hot Jupiter with an evaporating atmosphere. [NASA/Ames/JPL-Caltech]Among the many different types of exoplanets weve observed, one unusual category is that of ultra-short-period planets. These roughly Earth-sized planets speed around their host stars at incredible rates, with periods of less than a day.How do planets in this odd category form? One popular theory is that they were previously hot Jupiters, especially massive gas giants orbiting very close to their host stars. The close orbit caused the planets atmospheres to be stripped away, leaving behind only their dense cores.In a new study, a team of astronomers led by Joshua Winn (Princeton University) has found a clever way to test this theory.Planetary radius vs. orbital period for the authors three statistical samples (colored markers) and the broader sample of stars in the California Kepler Survey. [Winn et al. 2017]Testing MetallicitiesStars hosting hot Jupiters have an interesting quirk: they typically have metallicities that are significantly higher than an average planet-hosting star. It is speculated that this is because planets are born from the same materials as their host stars, and hot Jupiters require the presence of more metals to be able to form.Regardless of the cause of this trend, if ultra-short-period planets are in fact the solid cores of former hot Jupiters, then the two categories of planets should have hosts with the same metallicity distributions. The ultra-short-period-planet hosts should therefore also be weighted to higher metallicities than average planet-hosting stars.To test this, the authors make spectroscopic measurements and gather data for a sample of stellar hosts split into three categories:64 ultra-short-period planets (orbital period shorter than a

  17. Spin-orbit beams for optical chirality measurement

    Science.gov (United States)

    Samlan, C. T.; Suna, Rashmi Ranjan; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2018-01-01

    Accurate measurement of chirality is essential for the advancement of natural and pharmaceutical sciences. We report here a method to measure chirality using non-separable states of light with geometric phase-gradient in the circular polarization basis, which we refer to as spin-orbit beams. A modified polarization Sagnac interferometer is used to generate spin-orbit beams wherein the spin and orbital angular momentum of the input Gaussian beam are coupled. The out-of-phase interference between counter-propagating Gaussian beams with orthogonal spin states and lateral-shear or/and linear-phase difference between them results in spin-orbit beams with linear and azimuthal phase gradient. The spin-orbit beams interact efficiently with the chiral medium, inducing a measurable change in the center-of-mass of the beam, using the polarization rotation angle and hence the chirality of the medium are accurately calculated. Tunable dynamic range of measurement and flexibility to introduce large values of orbital angular momentum for the spin-orbit beam, to improve the measurement sensitivity, highlight the techniques' versatility.

  18. Periodic driving control of Raman-induced spin-orbit coupling in Bose-Einstein condensates: The heating mechanisms

    Science.gov (United States)

    Gomez Llorente, J. M.; Plata, J.

    2016-06-01

    We focus on a technique recently implemented for controlling the magnitude of synthetic spin-orbit coupling (SOC) in ultracold atoms in the Raman-coupling scenario. This technique uses a periodic modulation of the Raman-coupling amplitude to tune the SOC. Specifically, it has been shown that the effect of a high-frequency sinusoidal modulation of the Raman-laser intensity can be incorporated into the undriven Hamiltonian via effective parameters, whose adiabatic variation can therefore be used to tune the SOC. Here, we characterize the heating mechanisms that can be relevant to this method. We identify the main mechanism responsible for the heating observed in the experiments as basically rooted in driving-induced transfer of population to excited states. Characteristics of that process determined by the harmonic trapping, the decay of the excited states, and the technique used for preparing the system are discussed. Additional heating, rooted in departures from adiabaticity in the variation of the effective parameters, is also described. Our analytical study provides some clues that may be useful in the design of strategies for curbing the effects of heating on the efficiency of the control methods.

  19. TWO NEW LONG-PERIOD HOT SUBDWARF BINARIES WITH DWARF COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Brad N.; Wade, Richard A. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Liss, Sandra E. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Green, Elizabeth M., E-mail: bbarlow@psu.edu [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States)

    2013-07-01

    Hot subdwarf stars with F-K main sequence binary companions have been known for decades, but the first orbital periods for such systems were published just recently. Current observations suggest that most have long periods, on the order of years, and that some are or once were hierarchical triple systems. As part of a survey with the Hobby-Eberly Telescope, we have been monitoring the radial velocities of several composite-spectra binaries since 2005 in order to determine their periods, velocities, and eccentricities. Here we present observations and orbital solutions for two of these systems, PG 1449+653 and PG 1701+359. Similar to the other sdB+F/G/K binaries with solved orbits, their periods are long, 909 and 734 days, respectively, and pose a challenge to current binary population synthesis models of hot subdwarf stars. Intrigued by their relatively large systemic velocities, we also present a kinematical analysis of both targets and find that neither is likely a member of the Galactic thin disk.

  20. TWO NEW LONG-PERIOD HOT SUBDWARF BINARIES WITH DWARF COMPANIONS

    International Nuclear Information System (INIS)

    Barlow, Brad N.; Wade, Richard A.; Liss, Sandra E.; Green, Elizabeth M.

    2013-01-01

    Hot subdwarf stars with F-K main sequence binary companions have been known for decades, but the first orbital periods for such systems were published just recently. Current observations suggest that most have long periods, on the order of years, and that some are or once were hierarchical triple systems. As part of a survey with the Hobby-Eberly Telescope, we have been monitoring the radial velocities of several composite-spectra binaries since 2005 in order to determine their periods, velocities, and eccentricities. Here we present observations and orbital solutions for two of these systems, PG 1449+653 and PG 1701+359. Similar to the other sdB+F/G/K binaries with solved orbits, their periods are long, 909 and 734 days, respectively, and pose a challenge to current binary population synthesis models of hot subdwarf stars. Intrigued by their relatively large systemic velocities, we also present a kinematical analysis of both targets and find that neither is likely a member of the Galactic thin disk.

  1. On the Stability of Periodic Mercury-type Rotations

    Science.gov (United States)

    Churkina, Tatyana E.; Stepanov, Sergey Y.

    2017-12-01

    We consider the stability of planar periodic Mercury-type rotations of a rigid body around its center of mass in an elliptical orbit in a central Newtonian field of forces. Mercurytype rotations mean that the body makes 3 turns around its center of mass during 2 revolutions of the center of mass in its orbit (resonance 3:2). These rotations can be 1) symmetrical 2π- periodic, 2) symmetrical 4π-periodic and 3) asymmetrical 4π-periodic. The stability of rotations of type 1) was investigated by A.P.Markeev. In our paper we present a nonlinear stability analysis for some rotations of types 2) and 3) in 3rd- and 4th-order resonant cases, in the nonresonant case and at the boundaries of regions of linear stability.

  2. Self-consistent coupling of atomic orbitals to a moving charge

    International Nuclear Information System (INIS)

    Da Costa, H.F.M.; Micha, D.A.

    1994-01-01

    The authors describe the time evolution of hydrogenic orbitals perturbed by a moving charge. Starting with the equation for an atom interacting with a charge, the authors use an eikonal representation of the total wave-function, followed by an eikonal approximation, to derive coupled differential equations for the temporal change of the orbitals and the charge's trajectory. The orbitals are represented by functions with complex exponents changing with time, describing electronic density and flux changes. For each orbital, they solve a set of six coupled differential equations; two of them are derived with a time-dependent variational procedure for the real and imaginary parts of the exponents, and the other four are the Hamilton equations of the positions and momenta of the moving charge. The molecular potentials are derived from the exact expressions for the electronic energies. Results of calculations for 1s and 2s orbitals show large variation of the real exponent parts over time, with respect to asymptotic values, and that imaginary parts remain small

  3. Spin–orbit coupling induced magnetoresistance oscillation in a dc biased two-dimensional electron system

    International Nuclear Information System (INIS)

    Wang, C M; Lei, X L

    2014-01-01

    We study dc-current effects on the magnetoresistance oscillation in a two-dimensional electron gas with Rashba spin-orbit coupling, using the balance-equation approach to nonlinear magnetotransport. In the weak current limit the magnetoresistance exhibits periodical Shubnikov-de Haas oscillation with changing Rashba coupling strength for a fixed magnetic field. At finite dc bias, the period of the oscillation halves when the interbranch contribution to resistivity dominates. With further increasing current density, the oscillatory resistivity exhibits phase inversion, i.e., magnetoresistivity minima (maxima) invert to maxima (minima) at certain values of the dc bias, which is due to the current-induced magnetoresistance oscillation. (paper)

  4. Spin-orbit scattering in superconducting nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alhassid, Y. [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut, 06520 (United States); Nesterov, K.N. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin, 53706 (United States)

    2017-06-15

    We review interaction effects in chaotic metallic nanoparticles. Their single-particle Hamiltonian is described by the proper random-matrix ensemble while the dominant interaction terms are invariants under a change of the single-particle basis. In the absence of spin-orbit scattering, the nontrivial invariants consist of a pairing interaction, which leads to superconductivity in the bulk, and a ferromagnetic exchange interaction. Spin-orbit scattering breaks spin-rotation invariance and when it is sufficiently strong, the only dominant nontrivial interaction is the pairing interaction. We discuss how the magnetic response of discrete energy levels of the nanoparticle (which can be measured in single-electron tunneling spectroscopy experiments) is affected by such pairing correlations and how it can provide a signature of pairing correlations. We also consider the spin susceptibility of the nanoparticle and discuss how spin-orbit scattering changes the signatures of pairing correlations in this observable. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Lyapunov Orbits in the Jupiter System Using Electrodynamic Tethers

    Science.gov (United States)

    Bokelmann, Kevin; Russell, Ryan P.; Lantoine, Gregory

    2013-01-01

    Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. The effect of tether forces on periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added to the restricted three-body problem model and a series of simplifications allows development of a conservative system that retains the Jacobi integral. Expressions are developed to find modified locations of equilibrium positions. Modified families of Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero velocity curves and stability analyses are used to evaluate the dynamical properties of tether-modified orbits.

  6. Analytic model for the long-term evolution of circular Earth satellite orbits including lunar node regression

    Science.gov (United States)

    Zhu, Ting-Lei; Zhao, Chang-Yin; Zhang, Ming-Jiang

    2017-04-01

    This paper aims to obtain an analytic approximation to the evolution of circular orbits governed by the Earth's J2 and the luni-solar gravitational perturbations. Assuming that the lunar orbital plane coincides with the ecliptic plane, Allan and Cook (Proc. R. Soc. A, Math. Phys. Eng. Sci. 280(1380):97, 1964) derived an analytic solution to the orbital plane evolution of circular orbits. Using their result as an intermediate solution, we establish an approximate analytic model with lunar orbital inclination and its node regression be taken into account. Finally, an approximate analytic expression is derived, which is accurate compared to the numerical results except for the resonant cases when the period of the reference orbit approximately equals the integer multiples (especially 1 or 2 times) of lunar node regression period.

  7. THE FORMATION MECHANISM OF GAS GIANTS ON WIDE ORBITS

    International Nuclear Information System (INIS)

    Dodson-Robinson, Sarah E.; Veras, Dimitri; Ford, Eric B.; Beichman, C. A.

    2009-01-01

    The recent discoveries of massive planets on ultra-wide orbits of HR 8799 and Fomalhaut present a new challenge for planet formation theorists. Our goal is to figure out which of three giant planet formation mechanisms-core accretion (with or without migration), scattering from the inner disk, or gravitational instability-could be responsible for Fomalhaut b, HR 8799 b, c and d, and similar planets discovered in the future. This paper presents the results of numerical experiments comparing the long-period planet formation efficiency of each possible mechanism in model A star, G star, and M star disks. First, a simple core accretion simulation shows that planet cores forming beyond 35 AU cannot reach critical mass, even under the most favorable conditions one can construct. Second, a set of N-body simulations demonstrates that planet-planet scattering does not create stable, wide-orbit systems such as HR 8799. Finally, a linear stability analysis verifies previous work showing that global spiral instabilities naturally arise in high-mass disks. We conclude that massive gas giants on stable orbits with semimajor axes a ∼> 35 AU form by gravitational instability in the disk. We recommend that observers examine the planet detection rate as a function of stellar age, controlling for the planets' dimming with time. Any age trend would indicate that planets on wide orbits are transient relics of scattering from the inner disk. If planet detection rate is found to be independent of stellar age, it would confirm our prediction that gravitational instability is the dominant mode of producing detectable planets on wide orbits. We also predict that the occurrence ratio of long-period to short-period gas giants should be highest for M dwarfs due to the inefficiency of core accretion and the expected small fragment mass (∼10 M Jup ) in their disks.

  8. Neural network technique for orbit correction in accelerators/storage rings

    International Nuclear Information System (INIS)

    Bozoki, E.; Friedman, A.

    1995-01-01

    The authors are exploring the use of Neural Networks, using the SNNS simulator, for orbit control in accelerators (primarily circular accelerators) and storage rings. The orbit of the beam in those machines are measured by orbit monitors (input nodes) and controlled by orbit corrector magnets (output nodes). The physical behavior of an accelerator is changing slowly in time. Thus, an adoptive algorithm is necessary. The goal is to have a trained net which will predict the exact corrector strengths which will minimize a measured orbit. The relationship between open-quotes kickclose quotes from the correctors and open-quotes responseclose quotes from the monitors is in general non-linear and may slowly change during long-term operation of the machine. In the study, several network architectures are examined as well as various training methods for each architecture

  9. STELLAR PULSATIONS AND PERIOD CHANGES IN THE SX PHOENICIS STAR XX CYGNI

    International Nuclear Information System (INIS)

    Yang, X. H.; Fu, J. N.; Zha, Q.

    2012-01-01

    Time-series photometric observations were made for the SX Phoenicis star XX Cyg between 2007 and 2011 at the Xinglong Station of National Astronomical Observatories of China. With the light curves derived from the new observations, we do not detect any secondary maximum in the descending portion of the light curves of XX Cyg, as reported in some previous work. Frequency analysis of the light curves confirms a fundamental frequency f 0 = 7.4148 cycles day –1 and up to 19 harmonics, 11 of which are newly detected. However, no secondary mode of pulsation is detected from the light curves. The O–C diagram, produced from 46 newly determined times of maximum light combined with those derived from the literature, reveals a continuous period increase with the rate of (1/P)(dP/dt) = 1.19(13) × 10 –8 yr -1 . Theoretical rates of period change due to the stellar evolution were calculated with a modeling code. The result shows that the observed rate of period change is fully consistent with period change caused by evolutionary behavior predicted by standard theoretical models.

  10. Resonant Orbital Dynamics in LEO Region: Space Debris in Focus

    Directory of Open Access Journals (Sweden)

    J. C. Sampaio

    2014-01-01

    Full Text Available The increasing number of objects orbiting the earth justifies the great attention and interest in the observation, spacecraft protection, and collision avoidance. These studies involve different disturbances and resonances in the orbital motions of these objects distributed by the distinct altitudes. In this work, objects in resonant orbital motions are studied in low earth orbits. Using the two-line elements (TLE of the NORAD, resonant angles and resonant periods associated with real motions are described, providing more accurate information to develop an analytical model that describes a certain resonance. The time behaviors of the semimajor axis, eccentricity, and inclination of some space debris are studied. Possible irregular motions are observed by the frequency analysis and by the presence of different resonant angles describing the orbital dynamics of these objects.

  11. Accelerated simulation of near-Earth-orbit polymer degradation

    Science.gov (United States)

    Laue, Eric

    1992-01-01

    There is a need to simulate the near-Earth-orbit environmental conditions, and it is useful to be able to monitor the changes in physical properties of spacecraft materials. Two different methods for simulating the vacuum-ultraviolet (VUV) and soft X-ray near-Earth-orbit flux are presented. Also, methods for monitoring the changes in optical ultraviolet transmission and mass loss are presented. The results of exposures to VUV photons and charged particles on these materials are discussed.

  12. Orbit monitoring in the SLC

    International Nuclear Information System (INIS)

    Sanchez-Chopitea, L.; Emma, P.; Van Olst, D.

    1991-05-01

    Beam orbits in the SLC are monitored in real time and the data is stored for future trend and correlation analysis. A background process acquires Beam Position Monitor (BPM) and Toroid data on a periodic basis and saves the general quantities such as orbit RMS and beam intensity in addition to the individual readings. Some of this data is archived by the SLC History Buffer facility and the rest is saved in files for later analysis. This has permitted the tracing of interaction point instabilities to specific devices as far away as the damping rings. In addition, the data is displayed for the operators both in summary and in full form. The different displays can be configured from the control consoles. 2 refs., 5 figs

  13. Metrics in Keplerian orbits quotient spaces

    Science.gov (United States)

    Milanov, Danila V.

    2018-03-01

    Quotient spaces of Keplerian orbits are important instruments for the modelling of orbit samples of celestial bodies on a large time span. We suppose that variations of the orbital eccentricities, inclinations and semi-major axes remain sufficiently small, while arbitrary perturbations are allowed for the arguments of pericentres or longitudes of the nodes, or both. The distance between orbits or their images in quotient spaces serves as a numerical criterion for such problems of Celestial Mechanics as search for common origin of meteoroid streams, comets, and asteroids, asteroid families identification, and others. In this paper, we consider quotient sets of the non-rectilinear Keplerian orbits space H. Their elements are identified irrespective of the values of pericentre arguments or node longitudes. We prove that distance functions on the quotient sets, introduced in Kholshevnikov et al. (Mon Not R Astron Soc 462:2275-2283, 2016), satisfy metric space axioms and discuss theoretical and practical importance of this result. Isometric embeddings of the quotient spaces into R^n, and a space of compact subsets of H with Hausdorff metric are constructed. The Euclidean representations of the orbits spaces find its applications in a problem of orbit averaging and computational algorithms specific to Euclidean space. We also explore completions of H and its quotient spaces with respect to corresponding metrics and establish a relation between elements of the extended spaces and rectilinear trajectories. Distance between an orbit and subsets of elliptic and hyperbolic orbits is calculated. This quantity provides an upper bound for the metric value in a problem of close orbits identification. Finally the invariance of the equivalence relations in H under coordinates change is discussed.

  14. Quantitative MR imaging of intra-orbital structures: Tissue-specific measurements and age dependency compared to extra-orbital structures using multispectral quantitative MR imaging.

    Science.gov (United States)

    Watanabe, Memi; Buch, Karen; Fujita, Akifumi; Jara, Hernán; Qureshi, Muhammad Mustafa; Sakai, Osamu

    2017-08-01

    The orbit can be affected by unique pathologic conditions and often requires MRI evaluation. The purpose of this study was to investigate the age-related changes in multiple intra-orbital structures using quantitative MRI (qMRI). Thirty-eight subjects (20 males, 18 females; ages 0.5-87 years) underwent MRI with a mixed turbo spin echo sequence. T1 and T2 measurements were obtained within ROI in 6 intra-orbital structures (medial and lateral rectus muscles, medial and lateral retrobulbar fat, lacrimal gland, and optic nerve), and compared with those of corresponding extra-orbital structures (masseter muscle, subcutaneous cheek fat, buccal fat, parotid gland, and frontal white matter). Statistical analyses were performed using Pearson's correlation coefficients. T1 and T2 values of the extra-ocular muscles increased with age, with higher T1 and T2 values compared to the masseter muscles. Retrobulbar fat showed significant age-associated increases in T1 values in the lateral side and in T2 values in both sides. T1 and T2 values in the lacrimal gland increased with age, while the parotid gland showed an age-associated increase in T2 values and decrease in T1 values. Optic nerves demonstrated age-related changes, similar to that of frontal white matter; rapid decreases with age in T1 and T2 times in early stages of life, and slight increases in T1 and T2 times later in life. Intra-orbital structures demonstrated specific qMRI measurements and aging patterns, which were different from extra-orbital structures. Location-specific age-related changes of intra-orbital structures should be considered in the qMRI assessment of the orbital pathology.

  15. Conjugate gradient determination of optimal plane changes for a class of three-impulse transfers between noncoplanar circular orbits

    Science.gov (United States)

    Burrows, R. R.

    1972-01-01

    A particular type of three-impulse transfer between two circular orbits is analyzed. The possibility of three plane changes is recognized, and the problem is to optimally distribute these plane changes to minimize the sum of the individual impulses. Numerical difficulties and their solution are discussed. Numerical results obtained from a conjugate gradient technique are presented for both the case where the individual plane changes are unconstrained and for the case where they are constrained. Possibly not unexpectedly, multiple minima are found. The techniques presented could be extended to the finite burn case, but primarily the contents are addressed to preliminary mission design and vehicle sizing.

  16. Stabilization of the quasi-periodic motion of a Q-switched Nd:YAG laser

    International Nuclear Information System (INIS)

    Kim, Chil-Min; Rim, Sunghwan; Kye, Won-Ho; Kim, Jeong-Moog; Lee, Kang-Soo

    2004-01-01

    We have developed a stabilization method of quasi-periodicity based on a return map. The method is explained in the forced Van der Pol oscillator, and applied experimentally to a quasi-periodic output of a Q-switched Nd:YAG laser. Even though the attractors have no unstable periodic orbit, we were able to stabilize them to an arbitrarily chosen orbit by targeting the trajectory into it

  17. Holocene climatic fluctuations and periodic changes in the Asian southwest monsoon region

    Science.gov (United States)

    Zhang, Wenxiang; Niu, Jie; Ming, Qingzhong; Shi, Zhengtao; Lei, Guoliang; Huang, Linpei; Long, Xian'e.; Chang, Fengqin

    2018-05-01

    Climatic changes in the Asian southwest monsoon (ASWM) during the Holocene have become a topic of recent studies. It is important to understand the patterns and causes of Holocene climatic changes and their relationship with global changes. Based on the climate proxies and wavelet analysis of Lugu Lake in the ASWM region, the climatic fluctuations and periodic changes in the ASWM region during the Holocene have been reconstructed with a high-precision chronology. The results indicate the intensification of ASWM began to increase with Northern Hemisphere low-latitude solar insolation (LSI) and solar activity during the early Holocene, and gradually decreased during the late Holocene, exhibiting an apparent synchrony with numerous records of ASWM region. Meanwhile, an apparent 1000-a quasi-periodic signal is present in the environment proxies, and it demonstrates that the environmental change in the ASWM region has been driven mainly by LSI and solar activity.

  18. Comparison of precision orbit derived density estimates for CHAMP and GRACE satellites

    Science.gov (United States)

    Fattig, Eric Dale

    Current atmospheric density models cannot adequately represent the density variations observed by satellites in Low Earth Orbit (LEO). Using an optimal orbit determination process, precision orbit ephemerides (POE) are used as measurement data to generate corrections to density values obtained from existing atmospheric models. Densities obtained using these corrections are then compared to density data derived from the onboard accelerometers of satellites, specifically the CHAMP and GRACE satellites. This comparison takes two forms, cross correlation analysis and root mean square analysis. The densities obtained from the POE method are nearly always superior to the empirical models, both in matching the trends observed by the accelerometer (cross correlation), and the magnitudes of the accelerometer derived density (root mean square). In addition, this method consistently produces better results than those achieved by the High Accuracy Satellite Drag Model (HASDM). For satellites orbiting Earth that pass through Earth's upper atmosphere, drag is the primary source of uncertainty in orbit determination and prediction. Variations in density, which are often not modeled or are inaccurately modeled, cause difficulty in properly calculating the drag acting on a satellite. These density variations are the result of many factors; however, the Sun is the main driver in upper atmospheric density changes. The Sun influences the densities in Earth's atmosphere through solar heating of the atmosphere, as well as through geomagnetic heating resulting from the solar wind. Data are examined for fourteen hour time spans between November 2004 and July 2009 for both the CHAMP and GRACE satellites. This data spans all available levels of solar and geomagnetic activity, which does not include data in the elevated and high solar activity bins due to the nature of the solar cycle. Density solutions are generated from corrections to five different baseline atmospheric models, as well as

  19. Ghost Imaging Using Orbital Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    赵生妹; 丁建; 董小亮; 郑宝玉

    2011-01-01

    We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum. In the signal arm, object spatial information is encoded as a phase matrix. For an N-grey-scale object, different phase matrices, varying from 0 to K with increment n/N, are used for different greyscales, and then they are modulated to a signal beam by a spatial light modulator. According to the conservation of the orbital angular momentum in the ghost imaging system, these changes will give different coincidence rates in measurement, and hence the object information can be extracted in the idler arm. By simulations and experiments, the results show that our scheme can improve the resolution of the image effectively. Compared with another encoding method using orbital angular momentum, our scheme has a better performance for both characters and the image object.%We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum.In the signal arm,object spatial information is encoded as a phase matrix.For an N-grey-scale object,different phase matrices,varying from 0 to π with increment π/N,are used for different greyscales,and then they are modulated to a signal beam by a spatial light modulator.According to the conservation of the orbital angular momentum in the ghost imaging system,these changes will give different coincidence rates in measurement,and hence the object information can be extracted in the idler arm.By simulations and experiments,the results show that our scheme can improve the resolution of the image effectively.Compared with another encoding method using orbital angular momentum,our scheme has a better performance for both characters and the image object.

  20. ASSOCIATING LONG-TERM {gamma}-RAY VARIABILITY WITH THE SUPERORBITAL PERIOD OF LS I +61 Degree-Sign 303

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Ballet, J.; Casandjian, J. M. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bonamente, E.; Cecchi, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M. [Dipartimento di Fisica ' ' M. Merlin' ' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); Caliandro, G. A. [Institute of Space Sciences (IEEE-CSIC), Campus UAB, E-08193 Barcelona (Spain); Cameron, R. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Caraveo, P. A. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, I-20133 Milano (Italy); Cavazzuti, E. [Agenzia Spaziale Italiana (ASI) Science Data Center, I-00044 Frascati (Roma) (Italy); Chekhtman, A., E-mail: andrea.caliandro@ieec.uab.es, E-mail: hadasch@ieec.uab.es, E-mail: dtorres@ieec.uab.es [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); and others

    2013-08-20

    Gamma-ray binaries are stellar systems for which the spectral energy distribution (discounting the thermal stellar emission) peaks at high energies. Detected from radio to TeV gamma rays, the {gamma}-ray binary LS I +61 Degree-Sign 303 is highly variable across all frequencies. One aspect of this system's variability is the modulation of its emission with the timescale set by the {approx}26.4960 day orbital period. Here we show that, during the time of our observations, the {gamma}-ray emission of LS I +61 Degree-Sign 303 also presents a sinusoidal variability consistent with the previously known superorbital period of 1667 days. This modulation is more prominently seen at orbital phases around apastron, whereas it does not introduce a visible change close to periastron. It is also found in the appearance and disappearance of variability at the orbital period in the power spectrum of the data. This behavior could be explained by a quasi-cyclical evolution of the equatorial outflow of the Be companion star, whose features influence the conditions for generating gamma rays. These findings open the possibility to use {gamma}-ray observations to study the outflows of massive stars in eccentric binary systems.

  1. [Orbital inflammation].

    Science.gov (United States)

    Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N

    2014-12-01

    Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. PyORBIT: A Python Shell For ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Francois Ostiguy; Jeffrey Holmes

    2003-07-01

    ORBIT is code developed at SNS to simulate beam dynamics in accumulation rings and synchrotrons. The code is structured as a collection of external C++ modules for SuperCode, a high level interpreter shell developed at LLNL in the early 1990s. SuperCode is no longer actively supported and there has for some time been interest in replacing it by a modern scripting language, while preserving the feel of the original ORBIT program. In this paper, we describe a new version of ORBIT where the role of SuperCode is assumed by Python, a free, well-documented and widely supported object-oriented scripting language. We also compare PyORBIT to ORBIT from the standpoint of features, performance and future expandability.

  3. PyORBIT: A Python Shell For ORBIT

    International Nuclear Information System (INIS)

    Jean-Francois Ostiguy; Jeffrey Holmes

    2003-01-01

    ORBIT is code developed at SNS to simulate beam dynamics in accumulation rings and synchrotrons. The code is structured as a collection of external C++ modules for SuperCode, a high level interpreter shell developed at LLNL in the early 1990s. SuperCode is no longer actively supported and there has for some time been interest in replacing it by a modern scripting language, while preserving the feel of the original ORBIT program. In this paper, we describe a new version of ORBIT where the role of SuperCode is assumed by Python, a free, well-documented and widely supported object-oriented scripting language. We also compare PyORBIT to ORBIT from the standpoint of features, performance and future expandability

  4. Orbital Eccentricity and the Stability of Planets in the Alpha Centauri System

    Science.gov (United States)

    Lissauer, Jack

    2016-01-01

    Planets on initially circular orbits are typically more dynamically stable than planets initially having nonzero eccentricities. However, the presence of a major perturber that forces periodic oscillations of planetary eccentricity can alter this situation. We investigate the dependance of system lifetime on initial eccentricity for planets orbiting one star within the alpha Centauri system. Our results show that initial conditions chosen to minimize free eccentricity can substantially increase stability compared to planets on circular orbits.

  5. A Period Study of the Near Contact Binary EG Cep

    Directory of Open Access Journals (Sweden)

    Chun-Hwey Kim

    2006-06-01

    Full Text Available New eight times of minimum light of the near-contact binary EG Cep were presented. All times of minimum light for EG Cep, including ours, were collected and analyzed to study it's orbital period variation. It was found that the orbital period have varied in a cyclical way superposed on an upward parabola. A secular period increase of 3.22 times 10^{-8} d/y was calculated. Under the assumption of a conservative mass transfer, it implied that the stellar gaseous material of about 3.18 times 10^{-8} rm M_odot /year is transferring from the less massive secondary component to the primary. The cyclical period variation was interpreted as light-time effect due to an unseen third body in the system. The resultant period, semi-amplitude and eccentricity of the light time orbit were calculated to be 38.^{rm y}4, 0.^{rm d}0034 and 0.29, respectively. The mass range of the tertiary proposed in the system is deduced to be quite small as 0.10M_{odot} leq M_3 leq 0.21M_{odot} for i_3 g!

  6. Automated low-thrust guidance for the orbital maneuvering vehicle

    Science.gov (United States)

    Rose, Richard E.; Schmeichel, Harry; Shortwell, Charles P.; Werner, Ronald A.

    1988-01-01

    This paper describes the highly autonomous OMV Guidance Navigation and Control system. Emphasis is placed on a key feature of the design, the low thrust guidance algorithm. The two guidance modes, orbit change guidance and rendezvous guidance, are discussed in detail. It is shown how OMV will automatically transfer from its initial orbit to an arbitrary target orbit and reach a specified rendezvous position relative to the target vehicle.

  7. AN EXTENDED AND MORE SENSITIVE SEARCH FOR PERIODICITIES IN ROSSI X-RAY TIMING EXPLORER/ALL-SKY MONITOR X-RAY LIGHT CURVES

    International Nuclear Information System (INIS)

    Levine, Alan M.; Bradt, Hale V.; Chakrabarty, Deepto; Corbet, Robin H. D.; Harris, Robert J.

    2011-01-01

    We present the results of a systematic search in ∼14 years of Rossi X-ray Timing Explorer All-Sky Monitor (ASM) data for evidence of periodicities. Two variations of the commonly used Fourier analysis search method have been employed to significantly improve upon the sensitivity achieved by Wen et al. in 2006, who also searched for periodicities in ASM data. In addition, the present search is comprehensive in terms of sources studied and frequency range covered, and has yielded the detection of the signatures of the orbital periods of eight low-mass X-ray binary systems and of ten high-mass X-ray binaries not listed in the tables of Wen et al. Orbital periods, epochs, signal amplitudes, modulation fractions, and folded light curves are given for each of these systems. Seven of the orbital periods are the most precise reported to date. In the course of this work, the 18.545 day orbital period of IGR J18483-0311 was co-discovered, and the first detections in X-rays were made of the ∼3.9 day orbital period of LMC X-1 and the ∼3.79 hr orbital period of 4U 1636-536. The results inform future searches for orbital and other periodicities in X-ray binaries.

  8. Orbital fractures due to domestic violence: an epidemiologic study.

    Science.gov (United States)

    Goldberg, Stuart H.; McRill, Connie M.; Bruno, Christopher R.; Ten Have, Tom; Lehman, Erik

    2000-09-01

    Domestic violence is an important cause of orbital fractures in women. Physicians who treat patients with orbital fractures may not suspect this mechanism of injury. The purpose of this study was to assess the association between domestic violence and orbital fractures. A medical center-based case-control study with matching on age and site of admission was done. Medical center databases were searched using ICD-9 codes to identify all cases of orbital fractures encountered during a three-year period. Medical records of female patients age 13 and older were reviewed along with those of age, gender and site of admission matched controls. A stratified exact test was employed to test the association between domestic violence and orbital fracture. Among 41 adult female cases with orbital fractures treated at our medical center, three (7.3%) reported domestic violence compared to zero among the matched controls (p = 0.037). We believe that domestic violence may be under-reported in both orbital fracture cases and controls. This may result in an underestimate of the orbital fracture versus domestic violence association. Domestic violence is a serious women's health and societal problem. Domestic violence may have a variety of presentations, including illnesses and injuries. Orbital fracture is an identifiable manifestation of domestic violence. Domestic violence is more likely to be detected in adult female hospital patients with orbital fracture than in matched controls with any other diagnosis. Physicians who treat patients with orbital fractures should be familiar with this mechanism of injury.

  9. Advanced Earth-to-orbit propulsion technology information, dissemination and research

    Science.gov (United States)

    Wu, S. T.

    1995-01-01

    In this period of performance a conference (The 1994 Conference on Advanced Earth-to-Orbit Propulsion Technology) was organized and implemented by the University of Alabama in Huntsville and held May 15-17 to assemble and disseminate the current information on Advanced Earth-to-Orbit Propulsion Technology. The results were assembled for publication as NASA-CP-3282, Volume 1 and 2 and NASA-CP-3287.

  10. Ownership Structure and Earnings Management in periods of Executive Changes

    DEFF Research Database (Denmark)

    Sommer, Rasmus S.

    This paper reports evidence of earnings management associated with non-routine executive changes in a Danish context. It is hypothesised that incoming executives in non-owner-controlled companies decrease earnings by means of discretionary accruals in the financial statements relating to the period...

  11. Geosynchronous inclined orbits for high-latitude communications

    Science.gov (United States)

    Fantino, E.; Flores, R. M.; Di Carlo, M.; Di Salvo, A.; Cabot, E.

    2017-11-01

    We present and discuss a solution to the growing demand for satellite telecommunication coverage in the high-latitude geographical regions (beyond 55°N), where the signal from geostationary satellites is limited or unavailable. We focus on the dynamical issues associated to the design, the coverage, the maintenance and the disposal of a set of orbits selected for the purpose. Specifically, we identify a group of highly inclined, moderately eccentric geosynchronous orbits derived from the Tundra orbit (geosynchronous, eccentric and critically inclined). Continuous coverage can be guaranteed by a constellation of three satellites in equally spaced planes and suitably phased. By means of a high-precision model of the terrestrial gravity field and the relevant environmental perturbations, we study the evolution of these orbits. The effects of the different perturbations on the ground track (which is more important for coverage than the orbital elements themselves) are isolated and analyzed. The physical model and the numerical setup are optimized with respect to computing time and accuracy. We show that, in order to maintain the ground track unchanged, the key parameters are the orbital period and the argument of perigee. Furthermore, corrections to the right ascension of the ascending node are needed in order to preserve the relative orientation of the orbital planes. A station-keeping strategy that minimizes propellant consumption is then devised, and comparisons are made between the cost of a solution based on impulsive maneuvers and one with continuous thrust. Finally, the issue of end-of-life disposal is discussed.

  12. Orbit Propagation and Determination of Low Earth Orbit Satellites

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2014-01-01

    Full Text Available This paper represents orbit propagation and determination of low Earth orbit (LEO satellites. Satellite global positioning system (GPS configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP. The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF. As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.

  13. Cranio-orbital approach for complex aneurysmal surgery.

    LENUS (Irish Health Repository)

    Kelleher, M O

    2012-02-03

    Certain aneurysms of the anterior circulation continue to offer a technical challenge for safe exposure and clipping. The purpose of this paper was to describe the cranio-orbital approach for surgical clipping of complex aneurysms and to evaluate prospectively the associated complications of this approach. Prospective audit of all patients undergoing cranio-orbital approach for aneurysm surgery from 1997 to 2004 by the senior author. Twenty-five patients, eight male and 17 female, median age of 52 years, range 28-73. All patients had a standard pterional approach supplemented by an orbital osteotomy. In the 7-year period 367 patients underwent treatment for their aneurysms (169 clipped and 198 coiled). Of the 169 patients who were operated on, 29 had a skull base approach, of which 25 were cranio-orbital. The aneurysm location was as follows: 16 middle cerebral artery (MCA), three carotid bifurcation, four anterior communicating artery (ACOMM), one ophthalmic and one basilar. There were no approach-related complications. The cranio-orbital craniotomy can be a useful adjunct in the surgical treatment of giant or complex aneurysms. It offers the following advantages over a standard pterional approach: reduces operative distance; allows easy splitting of the sylvian fissure; and provides a wide arc of exposure with multiple working corridors.

  14. Rehabilitation of orbital cavity after orbital exenteration using polymethyl methacrylate orbital prosthesis

    Directory of Open Access Journals (Sweden)

    Sumeet Jain

    2016-01-01

    Full Text Available Squamous cell carcinoma of the eyelid is the second most common malignant neoplasm of the eye with the incidence of 0.09 and 2.42 cases/100 000 people. Orbital invasion is a rare complication but, if recognized early, can be treated effectively with exenteration. Although with advancements in technology such as computer-aided design and computer-aided manufacturing, material science, and retentive methods like implants, orbital prosthesis with stock ocular prosthesis made of methyl methacrylate retained by anatomic undercuts is quiet effective and should not be overlooked and forgotten. This clinical report describes prosthetic rehabilitation of two male patients with polymethyl methacrylate resin orbital prosthesis after orbital exenteration, for squamous cell carcinoma of the upper eyelid. The orbital prosthesis was sufficiently retained by hard and soft tissue undercuts without any complications. The patients using the prosthesis are quite satisfied with the cosmetic results and felt comfortable attending the social events.

  15. Central configurations, periodic orbits, and Hamiltonian systems

    CERN Document Server

    Llibre, Jaume; Simó, Carles

    2015-01-01

    The notes of this book originate from three series of lectures given at the Centre de Recerca Matemàtica (CRM) in Barcelona. The first one is dedicated to the study of periodic solutions of autonomous differential systems in Rn via the Averaging Theory and was delivered by Jaume Llibre. The second one, given by Richard Moeckel, focusses on methods for studying Central Configurations. The last one, by Carles Simó, describes the main mechanisms leading to a fairly global description of the dynamics in conservative systems. The book is directed towards graduate students and researchers interested in dynamical systems, in particular in the conservative case, and aims at facilitating the understanding of dynamics of specific models. The results presented and the tools introduced in this book include a large range of applications.

  16. Absorption coefficient and refractive index changes of a quantum ring in the presence of spin-orbit couplings: Temperature and Zeeman effects

    Science.gov (United States)

    Zamani, A.; Azargoshasb, T.; Niknam, E.

    2017-10-01

    Effects of applied magnetic field, temperature and dimensions on the optical absorption coefficients (AC) and refractive index (RI) changes of a GaAs quantum ring are investigated in the presence of both Rashba and Dresselhaus spin-orbit interactions (SOI). To this end, the finite difference method (FDM) is used in order to numerically calculate the energy eigenvalues and eigenstates of the system while the compact density matrix approach is hired to calculate the optical properties. It is shown that application of magnetic field, temperature as well as the geometrical size in the presence of spin-orbit interactions, alter the electronic structure and consequently influence the linear and third-order nonlinear optical absorption coefficients as well as the refractive index changes of the system. Results show an obvious blue shift in optical curves with enhancing external magnetic field and temperature while the increment of dimensions result in red shift.

  17. Correlation between the luminosity and spin-period changes during outbursts of 12 Be binary pulsars observed by the MAXI/GSC and the Fermi/GBM

    Science.gov (United States)

    Sugizaki, Mutsumi; Mihara, Tatehiro; Nakajima, Motoki; Makishima, Kazuo

    2017-12-01

    To study observationally the spin-period changes of accreting pulsars caused by the accretion torque, the present work analyzes X-ray light curves of 12 Be binary pulsars obtained by the MAXI Gas-Slit Camera all-sky survey and their pulse periods measured by the Fermi Gamma-ray Burst Monitor pulsar project, both covering more than six years, from 2009 August to 2016 March. The 12 objects were selected because they are accompanied by clear optical identification and accurate measurements of surface magnetic fields. The luminosity L and the spin-frequency derivatives \\dot{ν}, measured during large outbursts with L ≳ 1 × 1037 erg s-1, were found to follow approximately the theoretical relations in the accretion torque models, represented by \\dot{ν} ∝ L^{α} (α ≃ 1), and the coefficient of proportionality between \\dot{ν} and Lα agrees, within a factor of ˜3, with that proposed by Ghosh and Lamb (1979b, ApJ, 234, 296). In the course of the present study, the orbital elements of several sources were refined.

  18. ORBITAL INJURIES

    Directory of Open Access Journals (Sweden)

    Andrej Kansky

    2002-12-01

    Full Text Available Background. Orbit is involved in 40% of all facial fractures. There is considerable variety in severity, ranging from simple nondisplaced to complex comminuted fractures. Complex comminuted fractures (up to 20% are responsible for the majority of complications and unfavorable results. Orbital fractures are classified as internal orbital fractures, zygomatico-orbital fractures, naso-orbito-ethmoidal fractures and combined fractures. The ophtalmic sequelae of midfacial fractures are usually edema and ecchymosis of the soft tissues, subconjuctival hemorrhage, diplopia, iritis, retinal edema, ptosis, enophthalmos, ocular muscle paresis, mechanical restriction of ocular movement and nasolacrimal disturbances. More severe injuries such as optic nerve trauma and retinal detachments have also been reported. Within the wide range of orbital fractures small group of complex fractures causes most of the sequelae. Therefore identification of severe injuries and adequate treatment is of major importance. The introduction of craniofacial techniques made possible a wide exposure even of large orbital wall defects and their reconstruction by bone grafts. In spite of significant progress, repair of complex orbital wall defects remains a problem even for the experienced surgeons.Results. In 1999 121 facial injuries were treated at our department (Clinical Centre Ljubljana Dept. Of Maxillofacial and Oral Surgery. Orbit was involved in 65% of cases. Isolated inner orbital fractures presented 4% of all fractures. 17 (14% complex cases were treated, 5 of them being NOE, 5 orbital (frame and inner walls, 3 zygomatico-orbital, 2 FNO and 2 maxillo-orbital fractures.Conclusions. Final result of the surgical treatment depends on severity of maxillofacial trauma. Complex comminuted fractures are responsable for most of the unfavorable results and ocular function is often permanently damaged (up to 75% in these fractures.

  19. Orbital

    OpenAIRE

    Yourshaw, Matthew Stephen

    2017-01-01

    Orbital is a virtual reality gaming experience designed to explore the use of traditional narrative structure to enhance immersion in virtual reality. The story structure of Orbital was developed based on the developmental steps of 'The Hero's Journey,' a narrative pattern identified by Joseph Campbell. Using this standard narrative pattern, Orbital is capable of immersing the player quickly and completely for the entirety of play time. MFA

  20. Planet X as the source of the periodic and steady-state flux of short period comets

    International Nuclear Information System (INIS)

    Matese, J.J.; Whitmire, D.P.

    1986-01-01

    The cratering and fossil records suggest that impacts on the earth have been modulated with a period of roughly 30 Myr. In the Planet X model, this modulation is the result of the interaction of Planet X with a primordial disk of planetesimals lying beyond the orbit of Neptune. In this paper, observational and theoretical evidence supporting the existence of Planet X and the planetesimal disk is briefly reviewed, and the constraints on the orbit parameters of Planet X and the disk parameters which must be satisfied to ensure consistency with observational limits are discussed

  1. Space Tourism: Orbital Debris Considerations

    Science.gov (United States)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a

  2. Orbit Functions

    Directory of Open Access Journals (Sweden)

    Anatoliy Klimyk

    2006-01-01

    Full Text Available In the paper, properties of orbit functions are reviewed and further developed. Orbit functions on the Euclidean space E_n are symmetrized exponential functions. The symmetrization is fulfilled by a Weyl group corresponding to a Coxeter-Dynkin diagram. Properties of such functions will be described. An orbit function is the contribution to an irreducible character of a compact semisimple Lie group G of rank n from one of its Weyl group orbits. It is shown that values of orbit functions are repeated on copies of the fundamental domain F of the affine Weyl group (determined by the initial Weyl group in the entire Euclidean space E_n. Orbit functions are solutions of the corresponding Laplace equation in E_n, satisfying the Neumann condition on the boundary of F. Orbit functions determine a symmetrized Fourier transform and a transform on a finite set of points.

  3. Solar Radiation Pressure Binning for the Geosynchronous Orbit

    Science.gov (United States)

    Hejduk, M. D.; Ghrist, R. W.

    2011-01-01

    Orbital maintenance parameters for individual satellites or groups of satellites have traditionally been set by examining orbital parameters alone, such as through apogee and perigee height binning; this approach ignored the other factors that governed an individual satellite's susceptibility to non-conservative forces. In the atmospheric drag regime, this problem has been addressed by the introduction of the "energy dissipation rate," a quantity that represents the amount of energy being removed from the orbit; such an approach is able to consider both atmospheric density and satellite frontal area characteristics and thus serve as a mechanism for binning satellites of similar behavior. The geo-synchronous orbit (of broader definition than the geostationary orbit -- here taken to be from 1300 to 1800 minutes in orbital period) is not affected by drag; rather, its principal non-conservative force is that of solar radiation pressure -- the momentum imparted to the satellite by solar radiometric energy. While this perturbation is solved for as part of the orbit determination update, no binning or division scheme, analogous to the drag regime, has been developed for the geo-synchronous orbit. The present analysis has begun such an effort by examining the behavior of geosynchronous rocket bodies and non-stabilized payloads as a function of solar radiation pressure susceptibility. A preliminary examination of binning techniques used in the drag regime gives initial guidance regarding the criteria for useful bin divisions. Applying these criteria to the object type, solar radiation pressure, and resultant state vector accuracy for the analyzed dataset, a single division of "large" satellites into two bins for the purposes of setting related sensor tasking and orbit determination (OD) controls is suggested. When an accompanying analysis of high area-to-mass objects is complete, a full set of binning recommendations for the geosynchronous orbit will be available.

  4. Contribution of computerized tomography to orbit fracture diagnosis

    International Nuclear Information System (INIS)

    Nemeth, T.; Sobota, J.

    1984-01-01

    Suitability and specificity of examinations using computerized tomography are discussed for diagnoses fractures of the orbit including accurate anatomical localization of traumatic changes. The possibility of accurate assessment of the drop of the floor of the orbit which is essential for determination of the thickness of the bone or cartilaginous graft under the eyeball is also important

  5. NEW PRECISION ORBITS OF BRIGHT DOUBLE-LINED SPECTROSCOPIC BINARIES. V. THE AM STARS HD 434 AND 41 SEXTANTIS

    International Nuclear Information System (INIS)

    Fekel, Francis C.; Williamson, Michael H.

    2010-01-01

    We have detected the secondary component in two previously known spectroscopic binaries, HD 434 and 41 Sex, and for the first time determined double-lined orbits for them. Despite the relatively long period of 34.26 days and a moderate eccentricity of 0.32, combined with the components' rotationally broadened lines, measurement of the primary and secondary radial velocities of HD 434 has enabled us to obtain significantly improved orbital elements. While the 41 Sex system has a much shorter period of 6.167 days and a circular orbit, the estimated V mag difference of 3.2 between its components also makes this a challenging system. The new orbital dimensions (a 1 sin i and a 2 sin i) and minimum masses (m 1 sin 3 i and m 2 sin 3 i) of HD 434 have accuracies of 0.8% or better, while the same quantities for 41 Sex are good to 0.5% or better. Both components of HD 434 are Am stars while the Am star primary of 41 Sex has a late-F or early-G companion. All four stars are on the main sequence. The two components of HD 434 are rotating much faster than their predicted pseudosynchronous velocities, while both components of 41 Sex are synchronously rotating. For the primary of 41 Sex, the spectrum line depth changes noted by Sreedhar Rao et al. were not detected.

  6. DISK-PLANETS INTERACTIONS AND THE DIVERSITY OF PERIOD RATIOS IN KEPLER'S MULTI-PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Baruteau, Clement; Papaloizou, John C. B.

    2013-01-01

    The Kepler mission is dramatically increasing the number of planets known in multi-planetary systems. Many adjacent planets have orbital period ratios near resonant values, with a tendency to be larger than required for exact first-order mean-motion resonances. This feature has been shown to be a natural outcome of orbital circularization of resonant planetary pairs due to star-planet tidal interactions. However, this feature holds in multi-planetary systems with periods longer than 10 days, in which tidal circularization is unlikely to provide efficient divergent evolution of the planets' orbits to explain these orbital period ratios. Gravitational interactions between planets and their parent protoplanetary disk may instead provide efficient divergent evolution. For a planet pair embedded in a disk, we show that interactions between a planet and the wake of its companion can reverse convergent migration and significantly increase the period ratio from a near-resonant value. Divergent evolution due to wake-planet interactions is particularly efficient when at least one of the planets opens a partial gap around its orbit. This mechanism could help account for the diversity of period ratios in Kepler's multiple systems from super-Earth to sub-Jovian planets with periods greater than about 10 days. Diversity is also expected for pairs of planets massive enough to merge their gap. The efficiency of wake-planet interactions is then much reduced, but convergent migration may stall with a variety of period ratios depending on the density structure in the common gap. This is illustrated for the Kepler-46 system, for which we reproduce the period ratio of Kepler-46b and c

  7. A Dynamical Systems Approach to the Design of the Science Orbit Around Europa

    Science.gov (United States)

    Gomez, Gerard; Lara, Martin; Russell, Ryan P.

    2006-01-01

    The science orbit for a future mission to Europa requires low eccentricity, low altitude, and high inclination. However, high inclination orbits around planetary satellites are unstable due to third-body perturbations. Without control, the orbiter impacts Europa after few weeks. To minimize control, a tour over the stable-unstable, averaged manifolds of unstable frozen orbits has been suggested. We proceed with the unaveraged equations and study the manifolds of unstable orbits that are periodic in a rotating frame attached to Europa. Massive numerical computation helps in understanding the unstable dynamics close to Europa, and, thus, in selecting long lifetime high inclination orbits. A final test of a selected set of initial conditions on a high fidelity, ephemeris model, validate the results.

  8. Changes in the physical capacity of road cyclists during the preparatory period

    Directory of Open Access Journals (Sweden)

    Krzysztof Byzdra

    2017-07-01

    Full Text Available Graduation work entitled "Changes in the physical capacity of road cyclists during the preparatory period" is based on spiroergometric tests, which assess at the same time three systems: respiratory, circulatory and muscular.                The work shows the changes effort possibilities of road cyclists, under the influence of training conducted during the preparatory period.                In the theoretical part of this work were characterized the concept of physical capacity, its division and assessment methods of capacity. Selected parameters were presented, determined in the spiroergometric tests. Also the time structure of training in road cycling was described.                Each of competitors were tested twice a time. The first test took place at the turn of January and December, that is during the preparatory period. The second test cyclists took place in the second half of March, so at the end of the preparatory period,  before the first races. The results of five parameters were analyzed: WR max, WR (VT1, VO2max, VO2 / HR (VT1,% VO2max (VT1.                All tested parameters were increased during preparatory period. The most susceptible to the increase parameters under the influence of training during the preparatory period are: power generated on the anaerobic threshold and on the top of the effort (increase 12,68% and 11,25%, oxygen pulse (12,88%. Training improve the work of the muscular and circulatory systems. The least exposed to changes are parameters of gas exchange.                Spiroergometric tests results can be used for planning training in subsequent training periods.

  9. MR imaging of orbital disease

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Yasuyuki; Sato, Ryuiti; Sakamoto, Yuji; Kojima, Ryutaro; Takahashi, Mutsumasa; Maruoka, Syouko; Okamura, Ryoichi; Oguni, Tatsuro.

    1989-05-01

    Sixty five cases with orbital and ocular lesions were evaluated by MRI in comparison with high resolution CT. MRI was performed with spin echo techniques (short TR/TE and long TR/TE) using a 0.22 tesla resistive unit (Toshiba MRT-22A) or a 1.5 tesla superconductive unit (Siemens Magnetom). MRI was superior to CT in (1) detecting ocular lesions and vitreous changes, (2) differentiating a tumor from the adjacent extraocular muscles and optic nerves, (3) identifying the lesion in the orbital apex and demonstrating the posterior extent of the tumor and (4) detecting the abnormal flow in the orbital vascular structures. Although some tumors had specific signal intensities including hemangioma, menigioma, and pseudotumor, majority of tumors revealed non-sepcific signal intensities. CT was superior to MRI in detection for small and calcified lesions as well as visualization of bone details. (author).

  10. The recent development in understanding the periodic table of elements

    International Nuclear Information System (INIS)

    Niizeki, K.

    1986-01-01

    The recent development in understanding the periodic table of elements is reviewed. The author's concern is focussed on the effects which make different elements of a group of the periodic table to have different chemical properties, which result in that different members of a homologous series of compounds have different physical properties. The most important effect is due to the effective repulsion of the valence orbital of an atom from the core region by orthogonality with the core orbitals with the same azimuthal quantum number

  11. Hydrology of surface waters and thermohaline circulation during the last glacial period

    International Nuclear Information System (INIS)

    Vidal, L.

    1996-01-01

    Sedimentological studies on oceanic cores from the north Atlantic have revealed, over the last glacial period, abrupt climatic changes with a periodicity of several thousand years which contrasts strongly with the glacial-interglacial periodicity (several tens of thousand years). These periods of abrupt climate changes correspond to massive icebergs discharges into the north Atlantic. The aim of this work was to study the evolution of the thermohaline circulation in relation to these episodic iceberg discharges which punctuated the last 60 ka. To reconstruct the oceanic circulation in the past, we have analysed oxygen and carbon stable isotopes on benthic foraminifera from north Atlantic deep-sea cores. First of all, the higher temporal resolution of sedimentary records has enabled us to establish a precise chrono-stratigraphy for the different cores. Then, we have shown the close linkage between surface water hydrology and deep circulation, giving evidence of the sensibility of thermohaline circulation to melt water input in the north Atlantic ocean. Indeed, changes in deep circulation are synchronous from those identified in surface waters and are recorded on a period which lasted ∼ 1500 years. Deep circulation reconstructions, before and during a typical iceberg discharge reveal several modes of circulation linked to different convection sites at the high latitudes of the Atlantic basin. Moreover, the study of the last glacial period gives the opportunity to differentiate circulation changes due to the external forcing (variations of the orbital parameters) and those linked to a more local forcing (icebergs discharges). 105 refs., 50 figs., 14 tabs., 4 appends

  12. On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars

    Science.gov (United States)

    Fleming, David P.; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.

    2018-05-01

    We outline a mechanism that explains the observed lack of circumbinary planets (CBPs) via coupled stellar–tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time, impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that, in some cases, the stability semimajor axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that, typically, at least one planet is ejected from the system. We apply our theory to the shortest-period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar–tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.

  13. The TERMS Project: Improved Orbital Parameters and Photometry of HD168443 and the Photometry Pipeline

    Science.gov (United States)

    Pilyavsky, Genady; Mahadevan, S.; Kane, S. R.; Howard, A. W.; Ciardi, D. R.; de Pree, C.; Dragomir, D.; Fischer, D.; Henry, G. W.; Jensen, E. L. N.; Laughlin, G.; Marlowe, H.; Rabus, M.; von Braun, K.; Wright, J. T.; Wang, X.

    2012-01-01

    The discovery of transiting planets around bright stars holds the potential to greatly enhance our understanding of planetary atmospheres. The Transit Ephemeris Refinement and Monitoring Survey (TERMS) project focuses on updating the ephemerides of known exoplanets, put tighter constraints on the orbital parameters and shrink the large errors on the predicted transit windows, enabling photometric monitoring to search for a transit signature. Here, we present the revised orbital parameters and the photometric coverage during a predicted transit window of HD168443b, a massive planet orbiting the bright star HD 168443 (V = 6.92) with a period of 58.11 days. The high eccentricity of the planetary orbit (e = 0.53) significantly enhances the a-priori transit probability (3.7%) from what is expected for a circular orbit (2.5%). The transit ephemeris was updated using refined orbital parameters from additional Keck-HIRES radial velocities. The photometry obtained at the 1 m telescope in Cerro Tololo Inter-American Observatory (CTIO) and the T8 0.8 m Automated Photometric Telescope (APT) at Fairborn Observatory achieved the necessary millimag precision. The expected change in flux (0.5%) for HD168443 was not observed during the predicted transit window, thus allowing us to rule out the transit and put tighter constrains on the orbital inclination of HD168443b. Additionally, we present the software used to analyze the CTIO data. Developed by the TERMS team, this IDL based package is a fast, precise, and easy to use program which has eliminated the need for external software and command line prompts by utilizing the functionality of a graphical user interface (GUI).

  14. Controlling the Orbital Sequence in Individual Cu-Phthalocyanine Molecules

    NARCIS (Netherlands)

    Uhlmann, C.; Swart, I.; Repp, J.

    2013-01-01

    We report on the controlled change of the energetic ordering of molecular orbitals. Negatively charged copper(II)phthalocyanine on NaCl/Cu(100) undergoes a Jahn–Teller distortion that lifts the degeneracy of two frontier orbitals. The energetic order of the levels can be controlled by Au and Ag

  15. A Free-Return Earth-Moon Cycler Orbit for an Interplanetary Cruise Ship

    Science.gov (United States)

    Genova, Anthony L.; Aldrin, Buzz

    2015-01-01

    A periodic circumlunar orbit is presented that can be used by an interplanetary cruise ship for regular travel between Earth and the Moon. This Earth-Moon cycler orbit was revealed by introducing solar gravity and modest phasing maneuvers (average of 39 m/s per month) which yields close-Earth encounters every 7 or 10 days. Lunar encounters occur every 26 days and offer the chance for a smaller craft to depart the cycler and enter lunar orbit, or head for a Lagrange point (e.g., EM-L2 halo orbit), distant retrograde orbit (DRO), or interplanetary destination such as a near-Earth object (NEO) or Mars. Additionally, return-to-Earth abort options are available from many points along the cycling trajectory.

  16. K-theory and periodic cyclic homology of some noncompact quantum algebras

    International Nuclear Information System (INIS)

    Do Ngoc Diep; Kuku, Aderemi O.

    2003-07-01

    We prove in this paper that the periodic cyclic homology of the quantized algebras of functions on coadjoint orbits of connected and simply connected Lie group, are isomorphic to the periodic cyclic homology of the quantized algebras of functions on coadjoint orbits of compact maximal subgroups, without localization. Some noncompact quantum groups and algebras were constructed and their irreducible representations were classified in recent works of Do Ngoc Diep and Nguyen Viet Hai [DH1]-[DH2] and Do Due Hanh [DD] by using deformation quantization. In this paper we compute their K-groups, periodic cyclic homology groups and their Chern characters. (author)

  17. Increasing average period lengths by switching of robust chaos maps in finite precision

    Science.gov (United States)

    Nagaraj, N.; Shastry, M. C.; Vaidya, P. G.

    2008-12-01

    Grebogi, Ott and Yorke (Phys. Rev. A 38, 1988) have investigated the effect of finite precision on average period length of chaotic maps. They showed that the average length of periodic orbits (T) of a dynamical system scales as a function of computer precision (ɛ) and the correlation dimension (d) of the chaotic attractor: T ˜ɛ-d/2. In this work, we are concerned with increasing the average period length which is desirable for chaotic cryptography applications. Our experiments reveal that random and chaotic switching of deterministic chaotic dynamical systems yield higher average length of periodic orbits as compared to simple sequential switching or absence of switching. To illustrate the application of switching, a novel generalization of the Logistic map that exhibits Robust Chaos (absence of attracting periodic orbits) is first introduced. We then propose a pseudo-random number generator based on chaotic switching between Robust Chaos maps which is found to successfully pass stringent statistical tests of randomness.

  18. Radiologic evaluation of orbital index among Ghanaians using CT scan.

    Science.gov (United States)

    Botwe, Benard Ohene; Sule, Derick Seyram; Ismael, Abdul Mumin

    2017-07-11

    Orbital index (OI) expresses the proportion of the orbital height to the orbital width and varies with race, regions within the same race and periods in evolution. This index is useful in forensic medicine, anthropology and surgery. However, the average OI among Ghanaian adults was unknown. The aim of this study was to determine the orbital index of adult Ghanaians and classify them under one of the three predetermined groups. The study design was a retrospective cross-sectional. A systematic random sampling method was used for selecting 350 adult Ghanaian head computed tomography images available from 1 January to 31 December 2015 at KBTH Hospital. The orbital height and orbital width of each orbit were measured on a 3D CT skull. Data was analysed using Microsoft Excel and Statistical Package for Social Sciences version 20. The study had more females than men (167, 47.71%, vs 183, 52.29%). The observed orbital index of Ghanaians in the study was 81.22 ± 4.22. The mean orbital index was 80.52 ± 4.66 in males and 82.15 ± 3.83 in females with their difference being statistically significant (p value forensic medicine for skull classification and also for better surgical approach in neurosurgery as well as cosmetic surgery.

  19. Attitude Control and Orbital Dynamics Challenges of Removing the First 3-Axis Stabilized Tracking and Data Relay Satellite from the Geosynchronous ARC

    Science.gov (United States)

    Benet, Charles A.; Hofman, Henry; Williams, Thomas E.; Olney, Dave; Zaleski, Ronald

    2011-01-01

    Launched on April 4, 1983 onboard STS 6 (Space Shuttle Challenger), the First Tracking and Data Relay Satellite (TDRS 1) was retired above the Geosynchronous Orbit (GEO) on June 27, 2010 after having provided real-time communications with a variety of low-orbiting spacecraft over a 26-year period. To meet NASA requirements limiting orbital debris 1, a team of experts was assembled to conduct an End-Of-Mission (EOM) procedure to raise the satellite 350 km above the GEO orbit. Following the orbit raising via conventional station change maneuvers, the team was confronted with having to deplete the remaining propellant and passivate all energy storage or generation sources. To accomplish these tasks within the time window, communications (telemetry and control links), electrical power, propulsion, and thermal constraints, a spacecraft originally designed as a three-axis stabilized satellite was turned into a spinner. This paper (a companion paper to Innovative Approach Enabled the Retirement of TDRS 1, paper # 1699, IEEE 2011 Aerospace Conference, March 5-12, 2011 sup 2) focuses on the challenges of maintaining an acceptable spinning dynamics, while repetitively firing thrusters. Also addressed are the effects of thruster firings on the orbit characteristics and how they were mitigated by a careful scheduling of the fuel depletion operations. Periodic thruster firings for spin rate adjustment, nutation damping, and precession of the momentum vector were also required in order to maintain effective communications with the satellite. All operations were thoroughly rehearsed and supported by simulations thus lending a high level of confidence in meeting the NASA EOM goals.

  20. Transport from chaotic orbits in the geomagnetic tail

    International Nuclear Information System (INIS)

    Horton, W.; Tajima, T.

    1991-01-01

    The rapid change in direction and magnitude of the magnetic field vector in crossing the quasineutral sheet in the geomagnetic tail leads to deterministic Hamiltonian chaos. The finite correlation times in the single particle orbits due to the continuum of orbital frequencies leads to well-defined collisionless transport coefficients. The transport coefficients are derived for plasma trapped in the quasineutral sheet

  1. Pathology of orbital bones. The XXXII Edward Jackson Memorial Lecture.

    Science.gov (United States)

    Blodi, F C

    1976-01-01

    The orbital bones may show nearly all the pathologic changes observed in the skull and in the face. The congenital anomalies in this area are numerous and involve various forms of craniostenoses. Among the benign osseous tumors the osteoma is most frequently encountered in the orbit. Fibrous dysplasia is a tumefaction of indeterminate behavior that often involves the orbit. Osteosarcoma or other malignant neoplasms are rarely seen in this area. Eosinophilic granuloma and Hand-Schüller-Christian disease are tumor-like lesions that may involve the orbit.

  2. Spectroscopic orbit for HDE 245770 A0535+26

    International Nuclear Information System (INIS)

    Hutchings, J.B.

    1984-01-01

    Optical spectroscopic data are examined using the X-ray intensity period of 111 days. Optical and X-ray pulse-timing orbit parameters agree well and indicate an eccentricity of approximately 0.3. Masses of the stars and periastron effects are discussed. 6 references

  3. Present Status and Near Term Activities for the ExoMars Trace Gas Orbiter.

    Science.gov (United States)

    Svedhem, H.; Vago, J. L.

    2017-12-01

    The ExoMars 2016 mission was launched on a Proton rocket from Baikonur, Kazakhstan, on 14 March 2016 and arrived at Mars on 19 October 2016. The spacecraft is now performing aerobraking to reduce its orbital period from initial post-insertion orbital period of one Sol to the final science orbit with a 2 hours period. The orbital inclination will be 74 degrees. During the aerobraking a wealth of data has been acquired on the state of the atmosphere along the tracks between 140km and the lowest altitude at about 105 km. These data are now being analysed and compared with existing models. In average TGO measures a lower atmospheric density than predicted, but the numbers lay within the expected variability. ExoMars is a joint programme of the European Space Agency (ESA) and Roscosmos, Russia. It consists of the ExoMars 2016 mission with the Trace Gas Orbiter, TGO, and the Entry Descent and Landing Demonstrator, EDM, named Schiaparelli, and the ExoMars 2020 mission, which carries a lander and a rover. The TGO scientific payload consists of four instruments: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector to search for subsurface hydrogen (as proxy for water ice and hydrated minerals). The launch mass of the TGO was 3700 kg, including fuel. In addition to its scientific measurements TGO will act as a relay orbiter for NASA's landers on Mars and as from 2021 for the ESA-Roscosmos Rover and Surface Station.

  4. Glacial cycles:exogenous orbital changes vs. endogenous climate dynamics

    OpenAIRE

    Kaufmann, R. K.; Juselius, Katarina

    2010-01-01

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduc...

  5. Evidence for Companion-induced Secular Changes in the Turbulent Disk of a Be Star in the Large Magellanic Cloud MACHO Database

    Science.gov (United States)

    Struble, Mitchell F.; Galatola, Anthony; Faccioli, Lorenzo; Alcock, Charles; Cruz, Kelle

    2006-04-01

    The light curve of a blue variable in the MACHO LMC database (FTS ID 78.5979.72) appeared nearly unvarying for about 4 yr (the quasi-flat segment) but then rapidly changed to become periodic with noisy minima for the remaining 4 yr (the periodic segment); there are no antecedent indications of a gradual approach to this change. Lomb periodogram analyses indicate the presence of two distinct periods of ~61 and 8 days in both the quasi-flat and the periodic segments. Minima of the periodic segment cover at least 50% of the orbital period and contain spikes of light with the 8 day period; maxima do not show this short period. The system typically shows maxima to be redder than minima. The most recent OGLE-III light curve shows only a 30 day periodicity. The variable's V and R magnitudes and color are those of a Be star, and recent sets of near-infrared spectra 4 days apart, secured during the time of the OGLE-III data, show Hα emission near and at a maximum, confirming its Be star characteristics. The model that best fits the photometric behavior consists of a thin ringlike circumstellar disk of low mass with four obscuring sectors orbiting the central B star in unison at the 61 day period. The central star peers through the three equispaced separations between the four sectors producing the 8 day period. These sectors could be dusty vortices comprised of particles larger than typical interstellar dust grains that dim but selectively scatter the central star's light, while the remainder of the disk contains hydrogen in emission, making maxima appear redder. A companion star of lower mass in an inclined and highly eccentric orbit produces an impulsive perturbation near its periastron to change the disk's orientation, changing eclipses from partial to complete within ~10 days. The most recent change to a 30 day period observed in the OGLE-III data may be caused by obscuring sectors that have coalesced into larger ones and spread out along the disk.

  6. The Deep Space Gateway Lightning Mapper (DLM) - Monitoring Global Change and Thunderstorm Processes Through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit

    Science.gov (United States)

    Lang, Timothy; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; hide

    2018-01-01

    Function: Monitor global change and thunderstorm processes through observations of Earth's high-latitude lightning. This instrument will combine long-lived sampling of individual thunderstorms with long-term observations of lightning at high latitudes: How is global change affecting thunderstorm patterns; How do high-latitude thunderstorms differ from low-latitude? Why is the Gateway the optimal facility for this instrument / research: Expected DSG (Deep Space Gateway) orbits will provide nearly continuous viewing of the Earth's high latitudes (50 degrees latitude and poleward); These regions are not well covered by existing lightning mappers (e.g., Lightning Imaging Sensor / LIS, or Geostationary Lightning Mapper / GLM); Polar, Molniya, Tundra, etc. Earth orbits have significant drawbacks related to continuous coverage and/or stable FOVs (Fields of View).

  7. INFRARED SPECTROSCOPY OF SYMBIOTIC STARS. XI. ORBITS FOR SOUTHERN S-TYPE SYSTEMS: HEN 3-461, SY MUS, HEN 3-828, AND AR PAV

    International Nuclear Information System (INIS)

    Fekel, Francis C.; Hinkle, Kenneth H.; Joyce, Richard R.; Wood, Peter R.

    2017-01-01

    Employing new infrared radial velocities, we have computed spectroscopic orbits of the cool giants in four southern S-type symbiotic systems. The orbits for two of the systems, Hen 3-461 and Hen 3-828, have been determined for the first time, while orbits of the other two, SY Mus and AR Pav, have previously been determined. For the latter two systems, we compare our results with those in the literature. The low mass of the secondary of SY Mus suggests that it has gone through a common envelope phase. Hen 3-461 has an orbital period of 2271 days, one of the longest currently known for S-type symbiotic systems. That period is very different from the orbital period proposed previously from its photometric variations. The other three binaries have periods between 600 and 700 day, values that are typical for S-type symbiotic orbits. Basic properties of the M giant components and the distance to each system are determined.

  8. Linear-scaling explicitly correlated treatment of solids: Periodic local MP2-F12 method

    Energy Technology Data Exchange (ETDEWEB)

    Usvyat, Denis, E-mail: denis.usvyat@chemie.uni-regensburg.de [Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg (Germany)

    2013-11-21

    Theory and implementation of the periodic local MP2-F12 method in the 3*A fixed-amplitude ansatz is presented. The method is formulated in the direct space, employing local representation for the occupied, virtual, and auxiliary orbitals in the form of Wannier functions (WFs), projected atomic orbitals (PAOs), and atom-centered Gaussian-type orbitals, respectively. Local approximations are introduced, restricting the list of the explicitly correlated pairs, as well as occupied, virtual, and auxiliary spaces in the strong orthogonality projector to the pair-specific domains on the basis of spatial proximity of respective orbitals. The 4-index two-electron integrals appearing in the formalism are approximated via the direct-space density fitting technique. In this procedure, the fitting orbital spaces are also restricted to local fit-domains surrounding the fitted densities. The formulation of the method and its implementation exploits the translational symmetry and the site-group symmetries of the WFs. Test calculations are performed on LiH crystal. The results show that the periodic LMP2-F12 method substantially accelerates basis set convergence of the total correlation energy, and even more so the correlation energy differences. The resulting energies are quite insensitive to the resolution-of-the-identity domain sizes and the quality of the auxiliary basis sets. The convergence with the orbital domain size is somewhat slower, but still acceptable. Moreover, inclusion of slightly more diffuse functions, than those usually used in the periodic calculations, improves the convergence of the LMP2-F12 correlation energy with respect to both the size of the PAO-domains and the quality of the orbital basis set. At the same time, the essentially diffuse atomic orbitals from standard molecular basis sets, commonly utilized in molecular MP2-F12 calculations, but problematic in the periodic context, are not necessary for LMP2-F12 treatment of crystals.

  9. MATLAB based beam orbit correction system of HLS storage ring

    International Nuclear Information System (INIS)

    Ding Shichuan; Liu Gongfa; Xuan Ke; Li Weimin; Wang Lin; Wang Jigang; Li Chuan; Bao Xun; Guo Weiqun

    2006-01-01

    The distortion of closed orbit usually causes much side effect which is harmful to synchrotron radiation source such as HLS, so it is necessary to correct the distortion of closed orbit. In this paper, the correction principle, development procedure and test of MATLAB based on beam orbit correction system of HLS storage ring are described. The correction system is consisted of the beam orbit measure system, corrector magnet system and the control system, and the beam orbit correction code based on MATLAB is working on the operation interface. The data of the beam orbit are analyzed and calculated firstly, and then the orbit is corrected by changing corrector strength via control system. The test shows that the distortion of closed orbit is from max 4.468 mm before correction to max 0.299 mm after correction as well as SDEV is from 2.986 mm to 0.087 mm. So the correction system reaches the design goal. (authors)

  10. On the orbit calculation of visual binaries with a very short arc: application to the PMS binary system, FW Tau AB

    Science.gov (United States)

    Docobo, J. A.; Tamazian, V. S.; Campo, P. P.

    2018-05-01

    In the vast majority of cases when available astrometric measurements of a visual binary cover a very short orbital arc, it is practically impossible to calculate a good quality orbit. It is especially important for systems with pre-main-sequence components where standard mass-spectrum calibrations cannot be applied nor can a dynamical parallax be calculated. We have shown that the analytical method of Docobo allows us to put certain constraints on the most likely orbital solutions, using an available realistic estimate of the global mass of the system. As an example, we studied the interesting PMS binary, FW Tau AB, located in the Taurus-Auriga as well as investigated a range of its possible orbital solutions combined with an assumed distance between 120 and 160 pc. To maintain the total mass of FW Tau AB in a realistic range between 0.2 and 0.6M_{⊙}, minimal orbital periods should begin at 105, 150, 335, and 2300 yr for distances of 120, 130, 140, and 150 pc, respectively (no plausible orbits were found assuming a distance of 160 pc). An original criterion to establish the upper limit of the orbital period is applied. When the position angle in some astrometric measurements was flipped by 180°, orbits with periods close to 45 yr are also plausible. Three example orbits with periods of 44.6, 180, and 310 yr are presented.

  11. The Discovery and Mass Measurement of a New Ultra-short-period Planet: K2-131b

    Science.gov (United States)

    Dai, Fei; Winn, Joshua N.; Gandolfi, Davide; Wang, Sharon X.; Teske, Johanna K.; Burt, Jennifer; Albrecht, Simon; Barragán, Oscar; Cochran, William D.; Endl, Michael; Fridlund, Malcolm; Hatzes, Artie P.; Hirano, Teruyuki; Hirsch, Lea A.; Johnson, Marshall C.; Justesen, Anders Bo; Livingston, John; Persson, Carina M.; Prieto-Arranz, Jorge; Vanderburg, Andrew; Alonso, Roi; Antoniciello, Giuliano; Arriagada, Pamela; Butler, R. P.; Cabrera, Juan; Crane, Jeffrey D.; Cusano, Felice; Csizmadia, Szilárd; Deeg, Hans; Dieterich, Sergio B.; Eigmüller, Philipp; Erikson, Anders; Everett, Mark E.; Fukui, Akihiko; Grziwa, Sascha; Guenther, Eike W.; Henry, Gregory W.; Howell, Steve B.; Johnson, John Asher; Korth, Judith; Kuzuhara, Masayuki; Narita, Norio; Nespral, David; Nowak, Grzegorz; Palle, Enric; Pätzold, Martin; Rauer, Heike; Montañés Rodríguez, Pilar; Shectman, Stephen A.; Smith, Alexis M. S.; Thompson, Ian B.; Van Eylen, Vincent; Williamson, Michael W.; Wittenmyer, Robert A.

    2017-12-01

    We report the discovery of a new ultra-short-period planet and summarize the properties of all such planets for which the mass and radius have been measured. The new planet, K2-131b, was discovered in K2 Campaign 10. It has a radius of {1.81}-0.12+0.16 {R}\\oplus and orbits a G dwarf with a period of 8.9 hr. Radial velocities obtained with Magellan/PFS and TNG/HARPS-N show evidence for stellar activity along with orbital motion. We determined the planetary mass using two different methods: (1) the “floating chunk offset” method, based only on changes in velocity observed on the same night; and (2) a Gaussian process regression based on both the radial velocity and photometric time series. The results are consistent and lead to a mass measurement of 6.5+/- 1.6 {M}\\oplus and a mean density of {6.0}-2.7+3.0 g cm-3.

  12. ERS orbit control

    Science.gov (United States)

    Rosengren, Mats

    1991-12-01

    The European remote sensing mission orbit control is addressed. For the commissioning phase, the orbit is defined by the following requirements: Sun synchronous, local time of descending node 10:30; three days repeat cycle with 43 orbital revolutions; overhead Venice tower (12.508206 deg east, 45.314222 deg north). The launch, maneuvers for the initial acquisition of the operational orbit, orbit maintenance maneuvers, evaluation of the orbit control, and the drift of the inclination are summarized.

  13. Orbit Determination of Spacecraft in Earth-Moon L1 and L2 Libration Point Orbits

    Science.gov (United States)

    Woodard, Mark; Cosgrove, Daniel; Morinelli, Patrick; Marchese, Jeff; Owens, Brandon; Folta, David

    2011-01-01

    measurements that would be needed to meet the required orbit determination accuracies. Analysts used the Orbit Determination Error Analysis System (ODEAS) to perform covariance analyses using various tracking data schedules. From this analysis, it was determined that 3.5 hours of DSN TRK-2-34 range and Doppler tracking data every other day would suffice to meet the predictive orbit knowledge accuracies in the Lissajous region. The results of this analysis are presented. Both GTDS and ODTK have high-fidelity environmental orbit force models that allow for very accurate orbit estimation in the lunar Lissajous regime. These models include solar radiation pressure, Earth and Moon gravity models, third body gravitational effects from the Sun, and to a lesser extent third body gravitational effects from Jupiter, Venus, Saturn, and Mars. Increased position and velocity uncertainties following each maneuver, due to small execution performance errors, requires that several days of post-maneuver tracking data be processed to converge on an accurate post-maneuver orbit solution. The effects of maneuvers on orbit determination accuracy will be presented, including a comparison of the batch least squares technique to the extended Kalman filter/smoother technique. We will present the maneuver calibration results derived from processing post-maneuver tracking data. A dominant error in the orbit estimation process is the uncertainty in solar radiation pressure and the resultant force on the spacecraft. An estimation of this value can include many related factors, such as the uncertainty in spacecraft reflectivity and surface area which is a function of spacecraft orientation (spin-axis attitude), uncertainty in spacecraft wet mass, and potential seasonal variability due to the changing direction of the Sun line relative to the Earth-Moon Lissajous reference frame. In addition, each spacecraft occasionally enters into Earth or Moon penumbra or umbra and these shadow crossings reduche solar

  14. ORBIT II sub-analysis: Impact of impaired renal function following treatment of severely calcified coronary lesions with the Orbital Atherectomy System.

    Science.gov (United States)

    Lee, Michael S; Lee, Arthur C; Shlofmitz, Richard A; Martinsen, Brad J; Hargus, Nick J; Elder, Mahir D; Généreux, Philippe; Chambers, Jeffrey W

    2017-04-01

    To investigate the safety and efficacy of the coronary Orbital Atherectomy System (OAS) to prepare severely calcified lesions for stent deployment in patients grouped by renal function. Percutaneous coronary intervention (PCI) of severely calcified lesions is associated with increased rates of major adverse cardiac events (MACE), including death, myocardial infarction (MI), and target vessel revascularization (TVR) compared with PCI of non-calcified vessels. Patients with chronic kidney disease (CKD) are at increased risk for MACE after PCI. The impact of CKD on coronary orbital atherectomy treatment has not been well characterized. ORBIT II was a prospective, multicenter trial in the U.S., which enrolled 443 patients with severely calcified coronary lesions. The MACE rate was defined as a composite of cardiac death, MI, and target vessel revascularization. Of the 441 patients enrolled with known estimated glomerular filtration rate (eGFR) values at baseline, 333 (75.5%) patients had eGFR renal impairment had a higher MACE rate through one year follow-up due to a higher rate of periprocedural MI. Interestingly, the rates of cardiac death and revascularization through 1-year were similar in patients with eGFR renal impairment and severely calcified coronary lesions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Why the 18.6 year tide cannot explain the change of sign observed in j2

    Directory of Open Access Journals (Sweden)

    F. Deleflie

    2003-01-01

    Full Text Available Recent studies show a change, starting in 1998, in the behavior of the variation of the dynamical flattening of the Earth (J2, supposed to be constant (secular, and mainly due to the post glacial rebound effect. In this paper, we study to what extent this behavior can be correlated or not with the 18.6 year tide: with more than twenty years of tracking data on LAGEOS-1, that is to say more than a period of 18.6 years, this effect can now be separated from the secular variation. We use our theory of mean orbital motion, dedicated to studies of the long period effects on the orbital motion. We build one single arc of LAGEOS-1 from 1980 to 2002, which provides a continuous description of the orbital parameters. This is the great originality of our approach. We focus our attention on the ascending node of LAGEOS-1, and we show that the change observed in j2 cannot be attributed to a statistical error due to a correlation, in short arcs results, between the secular variation of J2 and the 18.6 year tide. The proof is based on the adjustment of amplitudes and phases of the long period tides, and on the shape of the residuals.Key words. secular variation of J2, 18.6 year tide, mean orbital motione

  16. In-Orbit Operation of the ASTRO-H SXS

    Science.gov (United States)

    Tsujimoto, Masahiro; Mitsuda, Kazuhisa; Kelley, Richard L.; den Herder, Jan-Willem A.; Akamatsu, Hiroki; Bialas, Thomas G.; Boyce, Kevin R.; Brown, Gregory V.; Chiao, Meng P.; Costantini, Elisa; hide

    2016-01-01

    We summarize all of the in-orbit operations of the soft x-ray spectrometer (SXS) onboard the ASTROH (Hitomi) satellite. The satellite was launched on February 17, 2016, and the communication with the satellite ceased on March 26, 2016. The SXS was still in the commissioning phase, in which the set-ups were progressively changed. This paper is intended to serve as a concise reference of the events in orbit in order to properly interpret the SXS data taken during its short lifetime and as a test case for planning the in-orbit operation for future microcalorimeter missions.

  17. Deadly Sunflower Orbits

    Science.gov (United States)

    Hamilton, Douglas P.

    2018-04-01

    Solar radiation pressure is usually very effective at removing hazardous millimeter-sized debris from distant orbits around asteroidsand other small solar system bodies (Hamilton and Burns 1992). Theprimary loss mechanism, driven by the azimuthal component of radiationpressure, is eccentricity growth followed by a forced collision withthe central body. One large class of orbits, however, neatly sidestepsthis fate. Orbits oriented nearly perpendicular to the solar directioncan maintain their face-on geometry, oscillating slowly around a stableequilibrium orbit. These orbits, designated sunflower orbits, arerelated to terminator orbits studied by spacecraft mission designers(Broschart etal. 2014).Destabilization of sunflower orbits occurs only for particles smallenough that radiation pressure is some tens of percent the strength ofthe central body's direct gravity. This greatly enhanced stability,which follows from the inability of radiation incident normal to theorbit to efficiently drive eccentricities, presents a threat tospacecraft missions, as numerous dangerous projectiles are potentiallyretained in orbit. We have investigated sunflower orbits insupport of the New Horizons, Aida, and Lucy missions and find thatthese orbits are stable for hazardous particle sizes at asteroids,comets, and Kuiper belt objects of differing dimensions. Weinvestigate the sources and sinks for debris that might populate suchorbits, estimate timescales and equilibrium populations, and willreport on our findings.

  18. Symmetric periodic orbits near a heteroclinic loop formed by two singular points and their invariant manifolds of dimension 1 and 2

    International Nuclear Information System (INIS)

    Corbera, Montserrat; Llibre, Jaume; Perez-Chavela, Ernesto

    2006-01-01

    In this paper we consider vector fields in R 3 that are invariant under a suitable symmetry and that possess a 'generalized heteroclinic loop' L formed by two singular points (e + and e - ) and their invariant manifolds: one of dimension 2 (a sphere minus the points e + and e - ) and one of dimension 1 (the open diameter of the sphere having endpoints e + and e - ). In particular, we analyse the dynamics of the vector field near the heteroclinic loop L by means of a convenient Poincar? map, and we prove the existence of infinitely many symmetric periodic orbits near L. We also study two families of vector fields satisfying this dynamics. The first one is a class of quadratic polynomial vector fields in R 3 , and the second one is the charged rhomboidal four-body problem

  19. Neoclassical diffusion due to trapping/detrapping orbits in stellarators: Annual progress report for the period September 15,1987-September 14, 1988

    International Nuclear Information System (INIS)

    Cary, J.R.

    1988-03-01

    In the last funding year significant progress was made in understanding the orbits of charged particles in stellarators and rippled tokamaks. Averaged equations of motion were derived for the invariants found in previous work. The first-order corrections to the ripple-averaged invariants were found. A code for testing the analytical theory was developed. The phase change between successive separatrix crossings was derived. A code for testing the effect of quantum quenching of the separatrix crossing induced spreading of the adiabatic invariant was nearly completed. The completed work allows significant savings in computer time for Monte Carlo codes. It will also reduce the dimensionality of linearized collision operator theory

  20. 3D computational mechanics elucidate the evolutionary implications of orbit position and size diversity of early amphibians.

    Directory of Open Access Journals (Sweden)

    Jordi Marcé-Nogué

    Full Text Available For the first time in vertebrate palaeontology, the potential of joining Finite Element Analysis (FEA and Parametrical Analysis (PA is used to shed new light on two different cranial parameters from the orbits to evaluate their biomechanical role and evolutionary patterns. The early tetrapod group of Stereospondyls, one of the largest groups of Temnospondyls is used as a case study because its orbits position and size vary hugely within the members of this group. An adult skull of Edingerella madagascariensis was analysed using two different cases of boundary and loading conditions in order to quantify stress and deformation response under a bilateral bite and during skull raising. Firstly, the variation of the original geometry of its orbits was introduced in the models producing new FEA results, allowing the exploration of the ecomorphology, feeding strategy and evolutionary patterns of these top predators. Secondly, the quantitative results were analysed in order to check if the orbit size and position were correlated with different stress patterns. These results revealed that in most of the cases the stress distribution is not affected by changes in the size and position of the orbit. This finding supports the high mechanical plasticity of this group during the Triassic period. The absence of mechanical constraints regarding the orbit probably promoted the ecomorphological diversity acknowledged for this group, as well as its ecological niche differentiation in the terrestrial Triassic ecosystems in clades as lydekkerinids, trematosaurs, capitosaurs or metoposaurs.

  1. 3D Computational Mechanics Elucidate the Evolutionary Implications of Orbit Position and Size Diversity of Early Amphibians

    Science.gov (United States)

    Marcé-Nogué, Jordi; Fortuny, Josep; De Esteban-Trivigno, Soledad; Sánchez, Montserrat; Gil, Lluís; Galobart, Àngel

    2015-01-01

    For the first time in vertebrate palaeontology, the potential of joining Finite Element Analysis (FEA) and Parametrical Analysis (PA) is used to shed new light on two different cranial parameters from the orbits to evaluate their biomechanical role and evolutionary patterns. The early tetrapod group of Stereospondyls, one of the largest groups of Temnospondyls is used as a case study because its orbits position and size vary hugely within the members of this group. An adult skull of Edingerella madagascariensis was analysed using two different cases of boundary and loading conditions in order to quantify stress and deformation response under a bilateral bite and during skull raising. Firstly, the variation of the original geometry of its orbits was introduced in the models producing new FEA results, allowing the exploration of the ecomorphology, feeding strategy and evolutionary patterns of these top predators. Secondly, the quantitative results were analysed in order to check if the orbit size and position were correlated with different stress patterns. These results revealed that in most of the cases the stress distribution is not affected by changes in the size and position of the orbit. This finding supports the high mechanical plasticity of this group during the Triassic period. The absence of mechanical constraints regarding the orbit probably promoted the ecomorphological diversity acknowledged for this group, as well as its ecological niche differentiation in the terrestrial Triassic ecosystems in clades as lydekkerinids, trematosaurs, capitosaurs or metoposaurs. PMID:26107295

  2. Our experience using primary oral antibiotics in the management of orbital cellulitis in a tertiary referral centre.

    Science.gov (United States)

    Cannon, P S; Mc Keag, D; Radford, R; Ataullah, S; Leatherbarrow, B

    2009-03-01

    Orbital cellulitis is conventionally managed by intravenous (i.v.) antibiotic therapy, followed by oral antibiotics once the infection shows signs of significant improvement. We report 4 years of experience using primary oral ciprofloxacin and clindamycin in cases of orbital cellulitis. Oral ciprofloxacin and clindamycin have a similar bioavailability to the i.v. preparations and provide an appropriate spectrum of antibiotic cover for the pathogens responsible for orbital cellulitis. A retrospective review was performed that identified all patients with orbital cellulitis and treated with primary oral antibiotic therapy admitted to the Manchester Royal Eye Hospital between March 2003 and March 2007. Age, stage of disease, surgical intervention, hospital duration, and complications were obtained. A comparison was made with patients admitted to our unit with orbital cellulitis and treated with primary i.v. antibiotics between March 2000 and March 2003. Nineteen patients were included in the review for the period March 2003 to March 2007, which comprised of 7 children and 12 adults. Five patients required surgical intervention. All patients responded to the oral regimen, 18 patients had no change to their oral antibiotic therapy. Mean hospital stay was 4.4 days. There were no complications. Empirical oral ciprofloxacin and clindamycin combination may be as safe and effective as i.v. therapy in the management of orbital cellulitis. Oral treatment can offer the advantages of rapid delivery of the first antibiotic dose, fewer interruptions in treatment, and simplified delivery of medication particularly in children.

  3. Chaotic orbits of a pendulum with variable length

    Directory of Open Access Journals (Sweden)

    Massimo Furi

    2004-03-01

    Full Text Available The main purpose of this investigation is to show that a pendulum, whose pivot oscillates vertically in a periodic fashion, has uncountably many chaotic orbits. The attribute chaotic is given according to the criterion we now describe. First, we associate to any orbit a finite or infinite sequence as follows. We write 1 or $-1$ every time the pendulum crosses the position of unstable equilibrium with positive (counterclockwise or negative (clockwise velocity, respectively. We write 0 whenever we find a pair of consecutive zero's of the velocity separated only by a crossing of the stable equilibrium, and with the understanding that different pairs cannot share a common time of zero velocity. Finally, the symbol $omega$, that is used only as the ending symbol of a finite sequence, indicates that the orbit tends asymptotically to the position of unstable equilibrium. Every infinite sequence of the three symbols ${1,-1,0}$ represents a real number of the interval $[0,1]$ written in base 3 when $-1$ is replaced with 2. An orbit is considered chaotic whenever the associated sequence of the three symbols ${1,2,0}$ is an irrational number of $[0,1]$. Our main goal is to show that there are uncountably many orbits of this type.

  4. A Gaussian Process Based Online Change Detection Algorithm for Monitoring Periodic Time Series

    Energy Technology Data Exchange (ETDEWEB)

    Chandola, Varun [ORNL; Vatsavai, Raju [ORNL

    2011-01-01

    Online time series change detection is a critical component of many monitoring systems, such as space and air-borne remote sensing instruments, cardiac monitors, and network traffic profilers, which continuously analyze observations recorded by sensors. Data collected by such sensors typically has a periodic (seasonal) component. Most existing time series change detection methods are not directly applicable to handle such data, either because they are not designed to handle periodic time series or because they cannot operate in an online mode. We propose an online change detection algorithm which can handle periodic time series. The algorithm uses a Gaussian process based non-parametric time series prediction model and monitors the difference between the predictions and actual observations within a statistically principled control chart framework to identify changes. A key challenge in using Gaussian process in an online mode is the need to solve a large system of equations involving the associated covariance matrix which grows with every time step. The proposed algorithm exploits the special structure of the covariance matrix and can analyze a time series of length T in O(T^2) time while maintaining a O(T) memory footprint, compared to O(T^4) time and O(T^2) memory requirement of standard matrix manipulation methods. We experimentally demonstrate the superiority of the proposed algorithm over several existing time series change detection algorithms on a set of synthetic and real time series. Finally, we illustrate the effectiveness of the proposed algorithm for identifying land use land cover changes using Normalized Difference Vegetation Index (NDVI) data collected for an agricultural region in Iowa state, USA. Our algorithm is able to detect different types of changes in a NDVI validation data set (with ~80% accuracy) which occur due to crop type changes as well as disruptive changes (e.g., natural disasters).

  5. Orbits

    CERN Document Server

    Xu, Guochang

    2008-01-01

    This is the first book of the satellite era which describes orbit theory with analytical solutions of the second order with respect to all possible disturbances. Based on such theory, the algorithms of orbits determination are completely revolutionized.

  6. RAPID ORBITAL DECAY IN THE 12.75-MINUTE BINARY WHITE DWARF J0651+2844

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Winget, D. E. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Kilic, Mukremin; Gianninas, A.; Kenyon, Scott J. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Allende Prieto, Carlos; Cabrera-Lavers, Antonio [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Mukadam, Anjum S., E-mail: jjhermes@astro.as.utexas.edu [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States)

    2012-10-01

    We report the detection of orbital decay in the 12.75-minute, detached binary white dwarf (WD) SDSS J065133.338+284423.37 (hereafter J0651). Our photometric observations over a 13 month baseline constrain the orbital period to 765.206543(55) s and indicate that the orbit is decreasing at a rate of (- 9.8 {+-} 2.8) Multiplication-Sign 10{sup -12} s s{sup -1} (or -0.31 {+-} 0.09 ms yr{sup -1}). We revise the system parameters based on our new photometric and spectroscopic observations: J0651 contains two WDs with M{sub 1} = 0.26 {+-} 0.04 M{sub Sun} and M{sub 2} = 0.50 {+-} 0.04 M{sub Sun }. General relativity predicts orbital decay due to gravitational wave radiation of (- 8.2 {+-} 1.7) Multiplication-Sign 10{sup -12} s s{sup -1} (or -0.26 {+-} 0.05 ms yr{sup -1}). Our observed rate of orbital decay is consistent with this expectation. J0651 is currently the second-loudest gravitational wave source known in the milli-Hertz range and the loudest non-interacting binary, which makes it an excellent verification source for future missions aimed at directly detecting gravitational waves. Our work establishes the feasibility of monitoring this system's orbital period decay at optical wavelengths.

  7. ARE TIDAL EFFECTS RESPONSIBLE FOR EXOPLANETARY SPIN–ORBIT ALIGNMENT?

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gongjie [Harvard-Smithsonian Center for Astrophysics, The Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138 (United States); Winn, Joshua N., E-mail: gli@cfa.harvard.edu [Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2016-02-10

    The obliquities of planet-hosting stars are clues about the formation of planetary systems. Previous observations led to the hypothesis that for close-in giant planets, spin–orbit alignment is enforced by tidal interactions. Here, we examine two problems with this hypothesis. First, Mazeh and coworkers recently used a new technique—based on the amplitude of starspot-induced photometric variability—to conclude that spin–orbit alignment is common even for relatively long-period planets, which would not be expected if tides were responsible. We re-examine the data and find a statistically significant correlation between photometric variability and planetary orbital period that is qualitatively consistent with tidal interactions. However it is still difficult to explain quantitatively, as it would require tides to be effective for periods as long as tens of days. Second, Rogers and Lin argued against a particular theory for tidal re-alignment by showing that initially retrograde systems would fail to be re-aligned, in contradiction with the observed prevalence of prograde systems. We investigate a simple model that overcomes this problem by taking into account the dissipation of inertial waves and the equilibrium tide, as well as magnetic braking. We identify a region of parameter space where re-alignment can be achieved, but it only works for close-in giant planets, and requires some fine tuning. Thus, while we find both problems to be more nuanced than they first appeared, the tidal model still has serious shortcomings.

  8. Photometric Studies of GEO Orbital Debris

    Science.gov (United States)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the Cerro Tololo Inter- American Observatory (CTIO) 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R=15th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? More than 90 calibrated sequences of R-B-V-I-R magnitudes for a sample of 50 objects have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus the B-R color is a true measure of the surface of the debris piece facing the

  9. Orbital and epicyclic frequencies around neutron and strange stars in R{sup 2} gravity

    Energy Technology Data Exchange (ETDEWEB)

    Staykov, Kalin V., E-mail: kstaykov@phys.uni-sofia.bg [Department of Theoretical Physics, Faculty of Physics, Sofia University, 1164, Sofia (Bulgaria); Doneva, Daniela D., E-mail: daniela.doneva@uni-tuebingen.de [Theoretical Astrophysics, Eberhard Karls University of Tübingen, 72076, Tübingen (Germany); INRNE-Bulgarian Academy of Sciences, 1784, Sofia (Bulgaria); Yazadjiev, Stoytcho S., E-mail: yazad@phys.uni-sofia.bg [Department of Theoretical Physics, Faculty of Physics, Sofia University, 1164, Sofia (Bulgaria); Theoretical Astrophysics, Eberhard Karls University of Tübingen, 72076, Tübingen (Germany)

    2015-12-21

    According to various models, the orbital and the epicyclic frequencies of particles moving on a circular orbit around compact objects are related to the quasi-periodic oscillations observed in the X-ray flux of some pulsars or black hole candidates. It is expected that they originate from the inner edge of the accretion discs, deep into the gravitational field of the compact objects. Considering the planned new generation X-ray timing observatories with large collective areas, the quasi-periodic oscillations might be an excellent tool for testing gravity in strong field regime and, respectively, alternative gravitational theories. We examine the orbital and the epicyclic frequencies of a particle moving on a circular orbit around neutron or strange stars in R{sup 2} gravity. The case of slow rotation is considered too. The R{sup 2} gravity results are compared to the general relativistic case. We comment on the deviations from general relativity, as well as the deviations due to rotation in both theories.

  10. Orbital and epicyclic frequencies around neutron and strange stars in R{sup 2} gravity

    Energy Technology Data Exchange (ETDEWEB)

    Staykov, Kalin V. [Sofia University, Department of Theoretical Physics, Faculty of Physics, Sofia (Bulgaria); Doneva, Daniela D. [Eberhard Karls University of Tuebingen, Theoretical Astrophysics, Tuebingen (Germany); INRNE-Bulgarian Academy of Sciences, Sofia (Bulgaria); Yazadjiev, Stoytcho S. [Sofia University, Department of Theoretical Physics, Faculty of Physics, Sofia (Bulgaria); Eberhard Karls University of Tuebingen, Theoretical Astrophysics, Tuebingen (Germany)

    2015-12-15

    According to various models, the orbital and the epicyclic frequencies of particles moving on a circular orbit around compact objects are related to the quasi-periodic oscillations observed in the X-ray flux of some pulsars or black hole candidates. It is expected that they originate from the inner edge of the accretion discs, deep into the gravitational field of the compact objects. Considering the planned new generation X-ray timing observatories with large collective areas, the quasi-periodic oscillations might be an excellent tool for testing gravity in strong field regime and, respectively, alternative gravitational theories. We examine the orbital and the epicyclic frequencies of a particle moving on a circular orbit around neutron or strange stars in R{sup 2} gravity. The case of slow rotation is considered too. The R{sup 2} gravity results are compared to the general relativistic case. We comment on the deviations from general relativity, as well as the deviations due to rotation in both theories. (orig.)

  11. Orbital Chondroma: A rare mesenchymal tumor of orbit

    Directory of Open Access Journals (Sweden)

    Ruchi S Kabra

    2015-01-01

    Full Text Available While relatively common in the skeletal system, cartilaginous tumors are rarely seen originating from the orbit. Here, we report a rare case of an orbital chondroma. A 27-year-old male patient presented with a painless hard mass in the superonasal quadrant (SNQ of left orbit since 3 months. On examination, best-corrected visual acuity of both eyes was 20/20, with normal anterior and posterior segment with full movements of eyeballs and normal intraocular pressure. Computerized tomography scan revealed well defined soft tissue density lesion in SNQ of left orbit. Patient was operated for anteromedial orbitotomy under general anesthesia. Mass was excised intact and sent for histopathological examination (HPE. HPE report showed lobular aggregates of benign cartilaginous cells with mild atypia suggesting of benign cartilaginous tumor - chondroma. Very few cases of orbital chondroma have been reported in literature so far.

  12. Discovery and Orbital Determination of the Transient X-Ray Pulsar GRO J1750-27

    Science.gov (United States)

    Scott, D. M.; Finger, M. H.; Wilson, R. B.; Koh, D. T.; Prince, T. A.; Vaughan, B. A.; Chakrabarty, D.

    1997-01-01

    We report on the discovery and hard X-ray (20 - 70 keV) observations of the 4.45 s period transient X-ray pulsar GRO J1750-27 with the BATSE all-sky monitor on board CGRO. A relatively faint out- burst (less than 30 mcrab peak) lasting at least 60 days was observed during which the spin-up rate peaked at 38 pHz/s and was correlated with the pulsed intensity. An orbit with a period of 29.8 days was found. The large spin-up rate, spin period, and orbital period together suggest that accretion is occurring from a disk and that the outburst is a "giant" outburst typical of a Be/X-ray transient system. No optical counterpart has yet been reported.

  13. GOC: General Orbit Code

    International Nuclear Information System (INIS)

    Maddox, L.B.; McNeilly, G.S.

    1979-08-01

    GOC (General Orbit Code) is a versatile program which will perform a variety of calculations relevant to isochronous cyclotron design studies. In addition to the usual calculations of interest (e.g., equilibrium and accelerated orbits, focusing frequencies, field isochronization, etc.), GOC has a number of options to calculate injections with a charge change. GOC provides both printed and plotted output, and will follow groups of particles to allow determination of finite-beam properties. An interactive PDP-10 program called GIP, which prepares input data for GOC, is available. GIP is a very easy and convenient way to prepare complicated input data for GOC. Enclosed with this report are several microfiche containing source listings of GOC and other related routines and the printed output from a multiple-option GOC run

  14. Calculation of photoionization differential cross sections using complex Gauss-type orbitals.

    Science.gov (United States)

    Matsuzaki, Rei; Yabushita, Satoshi

    2017-09-05

    Accurate theoretical calculation of photoelectron angular distributions for general molecules is becoming an important tool to image various chemical reactions in real time. We show in this article that not only photoionization total cross sections but also photoelectron angular distributions can be accurately calculated using complex Gauss-type orbital (cGTO) basis functions. Our method can be easily combined with existing quantum chemistry techniques including electron correlation effects, and applied to various molecules. The so-called two-potential formula is applied to represent the transition dipole moment from an initial bound state to a final continuum state in the molecular coordinate frame. The two required continuum functions, the zeroth-order final continuum state and the first-order wave function induced by the photon field, have been variationally obtained using the complex basis function method with a mixture of appropriate cGTOs and conventional real Gauss-type orbitals (GTOs) to represent the continuum orbitals as well as the remaining bound orbitals. The complex orbital exponents of the cGTOs are optimized by fitting to the outgoing Coulomb functions. The efficiency of the current method is demonstrated through the calculations of the asymmetry parameters and molecular-frame photoelectron angular distributions of H2+ and H2 . In the calculations of H2 , the static exchange and random phase approximations are employed, and the dependence of the results on the basis functions is discussed. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Molecular orbitals of nucleons in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Imanishi, B.; Oertzen, W. von.

    1986-05-01

    A formalism for the dynamical treatment of the molecular orbitals of valence nucleons in nucleus-nucleus collisions at low bombarding energy is developed with the use of the coupled-reaction-channel (CRC) method. The Coriolis coupling effects as well as the finite mass effects of the nucleon are taken into account in this model, of rotating molecular orbitals, RMO. First, the validity of the concept is examined from the view point of the multi-step processes in a standard CRC calculation for systems containing two identical [core] nuclei. The calculations show strong CRC effects particularly in the case where the mixing of different l-parity orbitals - called hybridization in atomic physics - occurs. Then, the RMO representation for active nucleons is applied to the same systems and compared to the CRC results. Its validity is investigated with respect to the radial motion (adiabaticity) and the rotation of the molecular axis (radial and rotational coupling). Characteristic molecular orbitals of covalent molecules appear as rotationally stable states (K = 1/2) with good adiabaticity. Using the RMO's we obtain a new interpretation of various scattering phenomena. Dynamically induced changes in the effective Q-values (or scaling of energies), dynamically induced moments of inertia and an dynamically induced effective (L · S) interaction are obtained as a result of the molecular orbital formation. Various experimental data on transfer and subbarrier fusion reactions are understood in terms of the RMO's and their adiabatic potentials. Landau-Zener transitions, which strongly depend on the total angular momentum of the system, definitely predict the observation of characteristic changes in the cross sections for the inelastic scattering 13 C( 12 C, 12 C) 13 C* (3.086 MeV, 1/2 + ) with the change of the bombarding energy. (author)

  16. Detecting unstable periodic orbits of nonlinear mappings by a novel quantum-behaved particle swarm optimization non-Lyapunov way

    International Nuclear Information System (INIS)

    Gao Fei; Gao Hongrui; Li Zhuoqiu; Tong Hengqing; Lee, Ju-Jang

    2009-01-01

    It is well known that set of unstable periodic orbits (UPOs) can be thought of as the skeleton for the dynamics. However, detecting UPOs of nonlinear map is one of the most challenging problems of nonlinear science in both numerical computations and experimental measures. In this paper, a new method is proposed to detect the UPOs in a non-Lyapunov way. Firstly three special techniques are added to quantum-behaved particle swarm optimization (QPSO), a novel mbest particle, contracting the searching space self-adaptively and boundaries restriction (NCB), then the new method NCB-QPSO is proposed. It can maintain an effective search mechanism with fine equilibrium between exploitation and exploration. Secondly, the problems of detecting the UPOs are converted into a non-negative functions' minimization through a proper translation in a non-Lyapunov way. Thirdly the simulations to 6 benchmark optimization problems and different high order UPOs of 5 classic nonlinear maps are done by the proposed method. And the results show that NCB-QPSO is a successful method in detecting the UPOs, and it has the advantages of fast convergence, high precision and robustness.

  17. Trapped Proton Environment in Medium-Earth Orbit (2000-2010)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yue [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Friedel, Reinhard Hans [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kippen, Richard Marc [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-31

    This report describes the method used to derive fluxes of the trapped proton belt along the GPS orbit (i.e., a Medium-Earth Orbit) during 2000 – 2010, a period almost covering a solar cycle. This method utilizes a newly developed empirical proton radiation-belt model, with the model output scaled by GPS in-situ measurements, to generate proton fluxes that cover a wide range of energies (50keV- 6MeV) and keep temporal features as well. The new proton radiation-belt model is developed based upon CEPPAD proton measurements from the Polar mission (1996 – 2007). Comparing to the de-facto standard empirical model of AP8, this model is not only based upon a new data set representative of the proton belt during the same period covered by GPS, but can also provide statistical information of flux values such as worst cases and occurrence percentiles instead of solely the mean values. The comparison shows quite different results from the two models and suggests that the commonly accepted error factor of 2 on the AP8 flux output over-simplifies and thus underestimates variations of the proton belt. Output fluxes from this new model along the GPS orbit are further scaled by the ns41 in-situ data so as to reflect the dynamic nature of protons in the outer radiation belt at geomagnetically active times. Derived daily proton fluxes along the GPS ns41 orbit, whose data files are delivered along with this report, are depicted to illustrate the trapped proton environment in the Medium-Earth Orbit. Uncertainties on those daily proton fluxes from two sources are evaluated: One is from the new proton-belt model that has error factors < ~3; the other is from the in-situ measurements and the error factors could be ~ 5.

  18. An Earth-mass planet orbiting α Centauri B.

    Science.gov (United States)

    Dumusque, Xavier; Pepe, Francesco; Lovis, Christophe; Ségransan, Damien; Sahlmann, Johannes; Benz, Willy; Bouchy, François; Mayor, Michel; Queloz, Didier; Santos, Nuno; Udry, Stéphane

    2012-11-08

    Exoplanets down to the size of Earth have been found, but not in the habitable zone--that is, at a distance from the parent star at which water, if present, would be liquid. There are planets in the habitable zone of stars cooler than our Sun, but for reasons such as tidal locking and strong stellar activity, they are unlikely to harbour water-carbon life as we know it. The detection of a habitable Earth-mass planet orbiting a star similar to our Sun is extremely difficult, because such a signal is overwhelmed by stellar perturbations. Here we report the detection of an Earth-mass planet orbiting our neighbour star α Centauri B, a member of the closest stellar system to the Sun. The planet has an orbital period of 3.236 days and is about 0.04 astronomical units from the star (one astronomical unit is the Earth-Sun distance).

  19. Two New Long-period Hot Subdwarf Binaries with Dwarf Companions

    Science.gov (United States)

    Barlow, Brad N.; Liss, Sandra E.; Wade, Richard A.; Green, Elizabeth M.

    2013-07-01

    Hot subdwarf stars with F-K main sequence binary companions have been known for decades, but the first orbital periods for such systems were published just recently. Current observations suggest that most have long periods, on the order of years, and that some are or once were hierarchical triple systems. As part of a survey with the Hobby-Eberly Telescope, we have been monitoring the radial velocities of several composite-spectra binaries since 2005 in order to determine their periods, velocities, and eccentricities. Here we present observations and orbital solutions for two of these systems, PG 1449+653 and PG 1701+359. Similar to the other sdB+F/G/K binaries with solved orbits, their periods are long, 909 and 734 days, respectively, and pose a challenge to current binary population synthesis models of hot subdwarf stars. Intrigued by their relatively large systemic velocities, we also present a kinematical analysis of both targets and find that neither is likely a member of the Galactic thin disk. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  20. Sticky orbits of a kicked harmonic oscillator

    International Nuclear Information System (INIS)

    Lowenstein, J H

    2005-01-01

    We study a Hamiltonian dynamical system consisting of a one-dimensional harmonic oscillator kicked impulsively in 4:1 resonance with its natural frequency, with the amplitude of the kick proportional to a sawtooth function of position. For special values of the coupling parameter, the dynamical map W relating the phase-space coordinates just prior to each kick acts locally as a piecewise affine map K on a square with rational rotation number p/q. For λ = 2cos2πp/q a quadratic irrational, a recursive return-map structure allows us to completely characterize the orbits of the map K. The aperiodic orbits of this system are sticky in the sense that they spend all of their time wandering pseudo-chaotically (with strictly zero Lyapunov exponent) in the vicinity of self-similar archipelagos of periodic islands. The same recursive structure used locally for K gives us the asymptotic scaling features of long orbits of W on the infinite plane. For some coupling parameters the orbits remain bounded, but for others the distance from the origin increases as a logarithm or power of the time. In the latter case, we find examples of sub-diffusive, diffusive, super-diffusive, and ballistic power-law behavior

  1. Local orbitals by minimizing powers of the orbital variance

    DEFF Research Database (Denmark)

    Jansik, Branislav; Høst, Stinne; Kristensen, Kasper

    2011-01-01

    's correlation consistent basis sets, it is seen that for larger penalties, the virtual orbitals become more local than the occupied ones. We also show that the local virtual HF orbitals are significantly more local than the redundant projected atomic orbitals, which often have been used to span the virtual...

  2. Spin Orbit Torque in Ferromagnetic Semiconductors

    KAUST Repository

    Li, Hang

    2016-06-21

    effect on spin orbit torque in nanoribbons with a hexagonal lattice. We find a dramatic modification of the nature of the torque (field like and damping-like component) when crossing the topological phase transition. The relative agnitude of the two torque components can be significantly modifies by changing the magnetization direction. Finally, motivated by recent experimental results, we conclude by investigating the features of spin-orbit torque in magnetic transition metal dichalcogenides. We find the torque is associated with the valley polarization. By changing the magnetization direction, the torque can be changed from a finite value to zero when the valley polarization decreases from a finite value to zero.

  3. THE FIRST SPECTROSCOPICALLY RESOLVED SUB-PARSEC ORBIT OF A SUPERMASSIVE BINARY BLACK HOLE

    Energy Technology Data Exchange (ETDEWEB)

    Bon, E.; Jovanovic, P.; Bon, N.; Popovic, L. C. [Astronomical Observatory, Volgina 7, 11060 Belgrade (Serbia); Marziani, P. [INAF, Osservatorio Astronomico di Padova, Padova (Italy); Shapovalova, A. I. [Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, Karachaevo-Cherkesia 369167 (Russian Federation); Borka Jovanovic, V.; Borka, D. [Isaac Newton Institute of Chile, Yugoslavia Branch, Belgrade (Serbia); Sulentic, J. [Instituto de Astrofisica de Andalucia, CSIC, Apdo. 3004, E-18080 Granada (Spain)

    2012-11-10

    One of the most intriguing scenarios proposed to explain how active galactic nuclei are triggered involves the existence of a supermassive binary black hole (BH) system in their cores. Here, we present an observational evidence for the first spectroscopically resolved sub-parsec orbit of a such system in the core of Seyfert galaxy NGC 4151. Using a method similar to those typically used for spectroscopic binary stars, we obtained radial velocity curves of the supermassive binary system, from which we calculated orbital elements and made estimates about the masses of the components. Our analysis shows that periodic variations in the light and radial velocity curves can be accounted for by an eccentric, sub-parsec Keplerian orbit with a 15.9 year period. The flux maximum in the light curve corresponds to the approaching phase of the secondary component toward the observer. According to the obtained results, we speculate that the periodic variations in the observed H{alpha} line shape and flux are due to shock waves generated by the supersonic motion of the components through the surrounding medium. Given the large observational effort needed to reveal this spectroscopically resolved binary orbital motion, we suggest that many such systems may exist in similar objects even if they are hard to find. Detecting more of them will provide us with insight into the BH mass growth process.

  4. THE FIRST SPECTROSCOPICALLY RESOLVED SUB-PARSEC ORBIT OF A SUPERMASSIVE BINARY BLACK HOLE

    International Nuclear Information System (INIS)

    Bon, E.; Jovanović, P.; Bon, N.; Popović, L. Č.; Marziani, P.; Shapovalova, A. I.; Borka Jovanović, V.; Borka, D.; Sulentic, J.

    2012-01-01

    One of the most intriguing scenarios proposed to explain how active galactic nuclei are triggered involves the existence of a supermassive binary black hole (BH) system in their cores. Here, we present an observational evidence for the first spectroscopically resolved sub-parsec orbit of a such system in the core of Seyfert galaxy NGC 4151. Using a method similar to those typically used for spectroscopic binary stars, we obtained radial velocity curves of the supermassive binary system, from which we calculated orbital elements and made estimates about the masses of the components. Our analysis shows that periodic variations in the light and radial velocity curves can be accounted for by an eccentric, sub-parsec Keplerian orbit with a 15.9 year period. The flux maximum in the light curve corresponds to the approaching phase of the secondary component toward the observer. According to the obtained results, we speculate that the periodic variations in the observed Hα line shape and flux are due to shock waves generated by the supersonic motion of the components through the surrounding medium. Given the large observational effort needed to reveal this spectroscopically resolved binary orbital motion, we suggest that many such systems may exist in similar objects even if they are hard to find. Detecting more of them will provide us with insight into the BH mass growth process.

  5. Successful endoscopic management with Mitomycin C application for sinusitis with orbital cellulitis

    Directory of Open Access Journals (Sweden)

    Anil S Harugop

    2013-01-01

    Full Text Available Background: Sinusitis with orbital complication is a potentially fatal disease that has been known since the days of Hippocrates. Primary sinus infection is the most common cause of orbital cellulitis. It is an emergency that threatens not only vision but also life from complications such as meningitis, cavernous sinus thrombosis, and brain abscess. Surgical intervention is mandatory whenever antibiotic treatment fails. There are two surgical options for the drainage, an external approach via a Lynch incision and an intranasal endoscopic procedure. Materials and Methods: Five patients with orbital cellulitis secondary to acute on chronic rhinosinusitis were included in the study from the period of 2010 - 2011. All five patients did not respond to medical management and hence underwent endoscopic sinus surgery with treatment of orbital pathology. At the end of the surgical procedure Mitomycin C in a concentration of 0.4mg/ml was applied with a cottonoid for a period of 4 minutes to prevent chance of adhesion formation. Results: In this series 3 females and 2 male patient with orbital cellulitis secondary to acute on chronic rhinosinusitis underwent endoscopic sinus surgery with treatment of orbital pathology. All 5 patients showed subjective and objective improvement within one week of endoscopic management. Conclusion: Though antibiotics have altered the course of sinusitis, its grave complications still persist in our environment. The excellent results and the absence of any major complications of endoscopic sinus surgery and drainage of abscess with application of Mitomycin C can be recommended as the preferred surgical technique.

  6. Model, Proxy and Isotopic Perspectives on the East African Humid Period

    Science.gov (United States)

    Tierney, Jessica E.; Lewis, Sophie C.; Cook, Benjamin I.; LeGrande, Allegra N.; Schmidt, Gavin A.

    2011-01-01

    Both North and East Africa experienced more humid conditions during the early and mid-Holocene epoch (11,000-5000yr BP; 11-5 ka) relative to today. The North African Humid Period has been a major focus of paleoclimatic study, and represents a response of the hydrological cycle to the increase in boreal summer insolation and associated ocean, atmosphere and land surface feedbacks. Meanwhile, the mechanisms that caused the coeval East African Humid Period are poorly understood. Here, we use results from isotopeenabled coupled climate modeling experiments to investigate the cause of the East African Humid Period. The modeling results are interpreted alongside proxy records of both water balance and the isotopic composition of rainfall. Our simulations show that the orbitally-induced increase in dry season precipitation and the subsequent reduction in precipitation seasonality can explain the East African Humid Period, and this scenario agrees well with regional lake level and pollen paleoclimate data. Changes in zonal moisture flux from both the Atlantic and Indian Ocean account for the simulated increase in precipitation from June through November. Isotopic paleoclimate data and simulated changes in moisture source demonstrate that the western East African Rift Valley in particular experienced more humid conditions due to the influx of Atlantic moisture and enhanced convergence along the Congo Air Boundary. Our study demonstrates that zonal changes in moisture advection are an important determinant of climate variability in the East African region.

  7. Outcomes in Diabetic Patients Undergoing Orbital Atherectomy System.

    Science.gov (United States)

    Lee, Michael S; Shlofmitz, Evan; Nguyen, Heajung; Shlofmitz, Richard A

    2016-10-01

    We evaluated the angiographic and clinical outcomes of orbital atherectomy to treat severely calcified coronary lesions in diabetic and non-diabetic patients. Diabetics have increased risk for death, myocardial infarction, and target vessel revascularization after percutaneous coronary intervention. Severely calcified coronary lesions are associated with increased cardiac events. Orbital atherectomy facilitates stent delivery and optimizes stent expansion by modifying severely calcified plaque. Outcomes in diabetic patients who undergo orbital atherectomy have not been reported. Our retrospective multicenter registry included 458 consecutive real-world patients with severely calcified coronary arteries who underwent orbital atherectomy. The primary safety endpoint was the rate of major adverse cardiac and cerebrovascular events at 30 days. Diabetics represented 42.1% (193/458) of the entire cohort. The primary endpoint was similar in diabetics and non-diabetics (1.0% vs. 3.0%%, P = 0.20), as were 30-day rates of death (0.5% vs. 1.9%, P = 0.41), myocardial infarction (0.5% vs. 1.5%, P = 0.40), target vessel revascularization (0% vs. 0%, P = 1), and stroke (0% vs. 0.4%, P > 0.9). Angiographic complications and stent thrombosis rate were low and did not differ between the 2 groups. Diabetics represented a sizeable portion of patients who underwent orbital atherectomy. Diabetics who had severely calcified coronary arteries and underwent orbital atherectomy had low event rates that were similar to non-diabetics. Orbital atherectomy appears to be a viable treatment strategy for diabetic patients. Randomized trials with longer-term follow-up are needed to determine the ideal treatment strategy for diabetics. © 2016, Wiley Periodicals, Inc.

  8. Kepler-36: a pair of planets with neighboring orbits and dissimilar densities.

    Science.gov (United States)

    Carter, Joshua A; Agol, Eric; Chaplin, William J; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Christensen-Dalsgaard, Jørgen; Deck, Katherine M; Elsworth, Yvonne; Fabrycky, Daniel C; Ford, Eric B; Fortney, Jonathan J; Hale, Steven J; Handberg, Rasmus; Hekker, Saskia; Holman, Matthew J; Huber, Daniel; Karoff, Christopher; Kawaler, Steven D; Kjeldsen, Hans; Lissauer, Jack J; Lopez, Eric D; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Rogers, Leslie A; Stello, Dennis; Borucki, William J; Bryson, Steve; Christiansen, Jessie L; Cochran, William D; Geary, John C; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer; Howard, Andrew W; Jenkins, Jon M; Klaus, Todd; Koch, David G; Latham, David W; MacQueen, Phillip J; Sasselov, Dimitar; Steffen, Jason H; Twicken, Joseph D; Winn, Joshua N

    2012-08-03

    In the solar system, the planets' compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal and that planets' orbits can change substantially after their formation. Here, we report another violation of the orbit-composition pattern: two planets orbiting the same star with orbital distances differing by only 10% and densities differing by a factor of 8. One planet is likely a rocky "super-Earth," whereas the other is more akin to Neptune. These planets are 20 times more closely spaced and have a larger density contrast than any adjacent pair of planets in the solar system.

  9. Weight and body composition change over a six-week holiday period.

    Science.gov (United States)

    Wagner, D R; Larson, J N; Wengreen, H

    2012-03-01

    Change in weight and body composition was assessed over a six-week holiday period. Baseline testing occurred the Monday or Tuesday prior to Thanksgiving Day (November 24 or 25, 2008), and the post-holiday assessment was the Monday or Tuesday after New Year's Day (January 5 or 6, 2009). Thirteen men and 21 women ranging in age from 23-61 years completed the study. The majority of participants (24 of 34) perceived that they had gained weight, and four did gain ≥2 kg. However, despite some changes to dietary and exercise habits, on average there was no difference between pre-holiday weight (74.0±17.8 kg) and post-holiday weight (73.9±18.1 kg), nor between pre-holiday body fat percentage (25.4±9.0%) and post-holiday body fat percentage (25.4±8.9%). Despite a perception of substantial weight gain, body weight and body fat remained unchanged over a six-week holiday period.

  10. Frozen orbit realization using LQR analogy

    Science.gov (United States)

    Nagarajan, N.; Rayan, H. Reno

    In the case of remote sensing orbits, the Frozen Orbit concept minimizes altitude variations over a given region using passive means. This is achieved by establishing the mean eccentricity vector at the orbital poles i.e., by fixing the mean argument of perigee at 90 deg with an appropriate eccentricity to balance the perturbations due to zonal harmonics J2 and J3 of the Earth's potential. Eccentricity vector is a vector whose magnitude is the eccentricity and direction is the argument of perigee. The launcher dispersions result in an eccentricity vector which is away from the frozen orbit values. The objective is then to formulate an orbit maneuver strategy to optimize the fuel required to achieve the frozen orbit in the presence of visibility and impulse constraints. It is shown that the motion of the eccentricity vector around the frozen perigee can be approximated as a circle. Combining the circular motion of the eccentricity vector around the frozen point and the maneuver equation, the following discrete equation is obtained. X(k+1) = AX(k) + Bu(k), where X is the state (i.e. eccentricity vector components), A the state transition matrix, u the scalar control force (i.e. dV in this case) and B the control matrix which transforms dV into eccentricity vector change. Based on this, it is shown that the problem of optimizing the fuel can be treated as a Linear Quadratic Regulator (LQR) problem in which the maneuver can be solved by using control system design tools like MATLAB by deriving an analogy LQR design.

  11. Climatic Change. Human Influence?

    OpenAIRE

    Gonçalves, Dionísio; Leite, Solange; Ribeiro, A.C.; Figueiredo, Tomás de

    2016-01-01

    We begin by presenting the functioning of the Climate System and the variety of climates that occurs on the surface of the globe. We analyze climate change based on the sun's orbital parameters and other causes, focusing on the current interglacial period and the influence it had on the development of human societies. The following text looks on developing of the climate of the last 1000 years, with considerations about the warm medieval climate, the little ice age, the recovery...

  12. Oscillations of the energy, magnetic moment, and current with a period equal to the normal or superconducting flux quantum in cyclic systems

    International Nuclear Information System (INIS)

    Svirskii, M.S.

    1985-01-01

    Oscillations with a period equal to the normal or superconducting flux quantum occur in the current density and the orbital parts of the energy and the magnetic moment in cyclic systems. Transitions between these regimes can be induced by changing the number of electrons or by switching between states with different energies

  13. Tune and Orbit feedbacks performance: a user perspective

    CERN Document Server

    Ponce, L

    2012-01-01

    The presentation will present the performance and issues of tune and orbit feedbacks seen from the user (operation) perspective. Some statistics on the beam dumps causes will be presented to emphasize the two main limitations of the system : the issue on the tune measurement and the triggering of the QPS system of RQTs circuits. The possible improvements for 2012 will then be discussed together with the foreseen software changes for the orbit reference management.

  14. Response of carbon fluxes and climate to orbital forcing changes in the Community Climate System Model

    Science.gov (United States)

    Jochum, M.; Peacock, S.; Moore, J. K.; Lindsay, K. T.

    2009-12-01

    A global general circulation model coupled to an ocean ecosystem model is used to quantify the response of carbon fluxes and climate to changes in orbital forcing. Compared to the present-day simulation, the simulation with the Earth's orbital parameters from 115,000 years ago features significantly cooler northern high latitudes, but only moderately cooler southern high latitudes. This asymmetry is explained by a 30% reduction of the strength of the Atlantic Meridional Overturning Circulation that is caused by an increased Arctic sea-ice export and a resulting freshening of the North Atlantic. The strong northern high-latitude cooling and the direct insolation induced tropical warming lead to global shifts in precipitation and winds to the order of 10-20%. These climate shifts lead to regional differences in air-sea carbon fluxes of the same order. However, the differences in global net carbon fluxes are insignificant. This surprising result is due to several effects, two of which stand out: Firstly, colder sea surface temperature leads to a more effective solubility pump but also to increased sea-ice concentration which blocks air-sea exchange; and secondly, the weakening of Southern Ocean winds, which is predicted by some idealized studies, is small compared to its interannual variability.

  15. Orbital Dynamics of Low-Earth Orbit Laser-Propelled Space Vehicles

    International Nuclear Information System (INIS)

    Yamakawa, Hiroshi; Funaki, Ikkoh; Komurasaki, Kimiya

    2008-01-01

    Trajectories applicable to laser-propelled space vehicles with a laser station in low-Earth orbit are investigated. Laser vehicles are initially located in the vicinity of the Earth-orbiting laser station in low-earth orbit at an altitude of several hundreds kilometers, and are accelerated by laser beaming from the laser station. The laser-propelled vehicles start from low-earth orbit and finally escape from the Earth gravity well, enabling interplanetary trajectories and planetary exploration

  16. RAPID ORBITAL DECAY IN THE 12.75-MINUTE BINARY WHITE DWARF J0651+2844

    International Nuclear Information System (INIS)

    Hermes, J. J.; Winget, D. E.; Kilic, Mukremin; Gianninas, A.; Kenyon, Scott J.; Brown, Warren R.; Allende Prieto, Carlos; Cabrera-Lavers, Antonio; Mukadam, Anjum S.

    2012-01-01

    We report the detection of orbital decay in the 12.75-minute, detached binary white dwarf (WD) SDSS J065133.338+284423.37 (hereafter J0651). Our photometric observations over a 13 month baseline constrain the orbital period to 765.206543(55) s and indicate that the orbit is decreasing at a rate of (– 9.8 ± 2.8) × 10 –12 s s –1 (or –0.31 ± 0.09 ms yr –1 ). We revise the system parameters based on our new photometric and spectroscopic observations: J0651 contains two WDs with M 1 = 0.26 ± 0.04 M ☉ and M 2 = 0.50 ± 0.04 M ☉ . General relativity predicts orbital decay due to gravitational wave radiation of (– 8.2 ± 1.7) × 10 –12 s s –1 (or –0.26 ± 0.05 ms yr –1 ). Our observed rate of orbital decay is consistent with this expectation. J0651 is currently the second-loudest gravitational wave source known in the milli-Hertz range and the loudest non-interacting binary, which makes it an excellent verification source for future missions aimed at directly detecting gravitational waves. Our work establishes the feasibility of monitoring this system's orbital period decay at optical wavelengths.

  17. Characterizing Longitude-Dependent Orbital Debris Congestion in the Geosynchronous Orbit Regime

    Science.gov (United States)

    Anderson, Paul V.

    The geosynchronous orbit (GEO) is a unique commodity of the satellite industry that is becoming increasingly contaminated with orbital debris, but is heavily populated with high-value assets from the civil, commercial, and defense sectors. The GEO arena is home to hundreds of communications, data transmission, and intelligence satellites collectively insured for an estimated 18.3 billion USD. As the lack of natural cleansing mechanisms at the GEO altitude renders the lifetimes of GEO debris essentially infinite, conjunction and risk assessment must be performed to safeguard operational assets from debris collisions. In this thesis, longitude-dependent debris congestion is characterized by predicting the number of near-miss events per day for every longitude slot at GEO, using custom debris propagation tools and a torus intersection metric. Near-miss events with the present-day debris population are assigned risk levels based on GEO-relative position and speed, and this risk information is used to prioritize the population for debris removal target selection. Long-term projections of debris growth under nominal launch traffic, mitigation practices, and fragmentation events are also discussed, and latitudinal synchronization of the GEO debris population is explained via node variations arising from luni-solar gravity. In addition to characterizing localized debris congestion in the GEO ring, this thesis further investigates the conjunction risk to operational satellites or debris removal systems applying low-thrust propulsion to raise orbit altitude at end-of-life to a super-synchronous disposal orbit. Conjunction risks as a function of thrust level, miss distance, longitude, and semi-major axis are evaluated, and a guidance method for evading conjuncting debris with continuous thrust by means of a thrust heading change via single-shooting is developed.

  18. Quantum walks and orbital states of a Weyl particle

    International Nuclear Information System (INIS)

    Katori, Makoto; Fujino, Soichi; Konno, Norio

    2005-01-01

    The time-evolution equation of a one-dimensional quantum walker is exactly mapped to the three-dimensional Weyl equation for a zero-mass particle with spin 1/2, in which each wave number k of the walker's wave function is mapped to a point q(k) in the three-dimensional momentum space and q(k) makes a planar orbit as k changes its value in [-π,π). The integration over k providing the real-space wave function for a quantum walker corresponds to considering an orbital state of a Weyl particle, which is defined as a superposition (curvilinear integration) of the energy-momentum eigenstates of a free Weyl equation along the orbit. Konno's novel distribution function of a quantum walker's pseudovelocities in the long-time limit is fully controlled by the shape of the orbit and how the orbit is embedded in the three-dimensional momentum space. The family of orbital states can be regarded as a geometrical representation of the unitary group U(2) and the present study will propose a new group-theoretical point of view for quantum-walk problems

  19. Changes in northeast African hydrology and vegetation associated with Pliocene–Pleistocene sapropel cycles

    Science.gov (United States)

    Rose, Cassaundra; Polissar, Pratigya J.; Tierney, Jessica E.; Filley, Timothy

    2016-01-01

    East African climate change since the Late Miocene consisted of persistent shorter-term, orbital-scale wet–dry cycles superimposed upon a long-term trend towards more open, grassy landscapes. Either or both of these modes of palaeoclimate variability may have influenced East African mammalian evolution, yet the interrelationship between these secular and orbital palaeoclimate signals remains poorly understood. Here, we explore whether the long-term secular climate change was also accompanied by significant changes at the orbital-scale. We develop northeast African hydroclimate and vegetation proxy data for two 100 kyr-duration windows near 3.05 and 1.75 Ma at ODP Site 967 in the eastern Mediterranean basin, where sedimentation is dominated by eastern Sahara dust input and Nile River run-off. These two windows were selected because they have comparable orbital configurations and bracket an important increase in East African C4 grasslands. We conducted high-resolution (2.5 kyr sampling) multiproxy biomarker, H- and C-isotopic analyses of plant waxes and lignin phenols to document orbital-scale changes in hydrology, vegetation and woody cover for these two intervals. Both intervals are dominated by large-amplitude, precession-scale (approx. 20 kyr) changes in northeast African vegetation and rainfall/run-off. The δ13Cwax values and lignin phenol composition record a variable but consistently C4 grass-dominated ecosystem for both intervals (50–80% C4). Precessional δDwax cycles were approximately 20–30‰ in peak-to-peak amplitude, comparable with other δDwax records of the Early Holocene African Humid Period. There were no significant differences in the means or variances of the δDwax or δ13Cwax data for the 3.05 and 1.75 Ma intervals studied, suggesting that the palaeohydrology and palaeovegetation responses to precessional forcing were similar for these two periods. Data for these two windows suggest that the eastern Sahara did not experience the

  20. A model perspective on orbital forcing of monsoons and Mediterranean climate using EC-Earth

    NARCIS (Netherlands)

    Bosmans, J.H.C.

    2014-01-01

    This thesis focuses on orbitally forced changes of monsoons and Mediterranean climate. Changes in the shape of the Earths orbit around the Sun and its rotational axis govern the seasonal and latitudinal distribution of incoming solar radiation on time scales of thousands to millions of years. The

  1. ORBIT FEEDBACK CONTROL FOR THE LHC Prototyping at the SPS

    CERN Document Server

    Steinhagen, Ralph J

    2004-01-01

    The Large Hadron Collider (LHC) is the next generation proton collider that is presently built at CERN. The LHC will be installed in the former LEP (Large Electron Positron Collider) tunnel. The presence of a high intensity beam in an environment of cryogenic magnets requires an excellent control of particle losses from the beam. Eventually the performance of the LHC may be limited by the ability to control the beam losses. The performance of the LHC cleaning system depends critically on the beam position stability. Ground motion, field and alignment imperfections and beam manipulations may cause orbit movements. The role of the future LHC Orbit Feedback System is the minimisation of closed orbit perturbations by periodically measuring and steering the transverse beam position back to its reference position. This diploma thesis focuses on the design and prototyping of an orbit feedback system at the SPS. The design is based on a separation of the steering problem into space and time. While the correction in s...

  2. CONGENITAL ORBITAL TERATOMA

    African Journals Online (AJOL)

    was done without contrast and 3mm/5mm/10mm slices were obtained to cover the orbit, skull base and brain. The findings included a soft tissue mass arising from the orbit. The left eye ball was extra orbital. There was no defect .... love's Short Practice of Surgery. 7 Edition,. Levis London, 1997; 45-64. 2. Orbital tumor Part 1, ...

  3. Confirmation of Earth-Mass Planets Orbiting the Millisecond Pulsar PSR B1257 + 12.

    Science.gov (United States)

    Wolszczan, A

    1994-04-22

    The discovery of two Earth-mass planets orbiting an old ( approximately 10(9) years), rapidly spinning neutron star, the 6.2-millisecond radio pulsar PSR B1257+12, was announced in early 1992. It was soon pointed out that the approximately 3:2 ratio of the planets' orbital periods should lead to accurately predictable and possibly measurable gravitational perturbations of their orbits. The unambiguous detection of this effect, after 3 years of systematic timing observations of PSR B1257+12 with the 305-meter Arecibo radiotelescope, as well as the discovery of another, moon-mass object in orbit around the pulsar, constitutes irrefutable evidence that the first planetary system around a star other than the sun has been identified.

  4. EVIDENCE FOR PERIODICITY IN 43 YEAR-LONG MONITORING OF NGC 5548

    Energy Technology Data Exchange (ETDEWEB)

    Bon, E.; Bon, N.; Jovanović, P.; Popović, L. Č.; Stalevski, M. [Astronomical Observatory, Volgina 7, 11060 Belgrade (Serbia); Zucker, S. [Department of Geosciences, Tel-Aviv University, Tel-Aviv 6997801 (Israel); Netzer, H. [School of Physics and Astronomy and the Wise Observatory, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801 (Israel); Marziani, P. [INAF, Osservatorio Astronomico di Padova, Padova (Italy); Shapovalova, A. I.; Burenkov, A. N. [Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, Karachaevo-Cherkesia 369167 (Russian Federation); Komossa, S.; Britzen, S. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn (Germany); Gaskell, C. M. [Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Chavushyan, V. H.; Valdés, J. R. [Instituto Nacional de Astrofsica, Óptica y Electrónica, Apartado Postal 51, CP 72000, Puebla, Pue, Mexico (Mexico); Sergeev, S. [Crimean Astrophysical Observatory, P/O Nauchny, Republic of Crimea 298409 (Russian Federation); Mura, G. La [Dipartimento di Fisica e Astronomia “G. Galilei,” Università degli Studi di Padova, Vicolo dell’Osservatorio 3, I-35122—Padova (Italy)

    2016-08-01

    We present an analysis of 43 years (1972 to 2015) of spectroscopic observations of the Seyfert 1 galaxy NGC 5548. This includes 12 years of new unpublished observations (2003 to 2015). We compiled about 1600 H β spectra and analyzed the long-term spectral variations of the 5100 Å continuum and the H β line. Our analysis is based on standard procedures, including the Lomb–Scargle method, which is known to be rather limited to such heterogeneous data sets, and a new method developed specifically for this project that is more robust and reveals a ∼5700 day periodicity in the continuum light curve, the H β light curve, and the radial velocity curve of the red wing of the H β line. The data are consistent with orbital motion inside the broad emission line region of the source. We discuss several possible mechanisms that can explain this periodicity, including orbiting dusty and dust-free clouds, a binary black hole system, tidal disruption events, and the effect of an orbiting star periodically passing through an accretion disk.

  5. K2-137 b: an Earth-sized planet in a 4.3-h orbit around an M-dwarf

    Science.gov (United States)

    Smith, A. M. S.; Cabrera, J.; Csizmadia, Sz; Dai, F.; Gandolfi, D.; Hirano, T.; Winn, J. N.; Albrecht, S.; Alonso, R.; Antoniciello, G.; Barragán, O.; Deeg, H.; Eigmüller, Ph; Endl, M.; Erikson, A.; Fridlund, M.; Fukui, A.; Grziwa, S.; Guenther, E. W.; Hatzes, A. P.; Hidalgo, D.; Howard, A. W.; Isaacson, H.; Korth, J.; Kuzuhara, M.; Livingston, J.; Narita, N.; Nespral, D.; Nowak, G.; Palle, E.; Pätzold, M.; Persson, C. M.; Petigura, E.; Prieto-Arranz, J.; Rauer, H.; Ribas, I.; Van Eylen, V.

    2018-03-01

    We report the discovery in K2's Campaign 10 of a transiting terrestrial planet in an ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in only 4.3 h, the second shortest orbital period of any known planet, just 4 min longer than that of KOI 1843.03, which also orbits an M-dwarf. Using a combination of archival images, adaptive optics imaging, radial velocity measurements, and light-curve modelling, we show that no plausible eclipsing binary scenario can explain the K2 light curve, and thus confirm the planetary nature of the system. The planet, whose radius we determine to be 0.89 ± 0.09 R⊕, and which must have an iron mass fraction greater than 0.45, orbits a star of mass 0.463 ± 0.052 M⊙ and radius 0.442 ± 0.044 R⊙.

  6. Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J. A.; Agol, E.; Chaplin, W. J.; Basu, S.; Bedding, T. R.; Buchhave, L. A.; Christensen-Dalsgaard, J.; Deck, K. M.; Elsworth, Y.; Fabrycky, D. C.; Ford, E. B.; Fortney, J. J.; Hale, S. J.; Handberg, R.; Hekker, S.; Holman, M. J.; Huber, D.; Karoff, C.; Kawaler, S. D.; Kjeldsen, H.; Lissauer, J. J.; Lopez, E. D.; Lund, M. N.; Lundkvist, M.; Metcalfe, T. S.; Miglio, A.; Rogers, L. A.; Stello, D.; Borucki, W. J.; Bryson, S.; Christiansen, J. L.; Cochran, W. D.; Geary, J. C.; Gilliland, R. L.; Haas, M. R.; Hall, J.; Howard, A. W.; Jenkins, J. M.; Klaus, T.; Koch, D. G.; Latham, D. W.; MacQueen, P. J.; Sasselov, D.; Steffen, J. H.; Twicken, J. D.; Winn, J. N.

    2012-06-21

    In the Solar system the planets' compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal, and that planets' orbits can change substantially after their formation. Here we report another violation of the orbit-composition pattern: two planets orbiting the same star with orbital distances differing by only 10%, and densities differing by a factor of 8. One planet is likely a rocky `super-Earth', whereas the other is more akin to Neptune. These planets are thirty times more closely spaced--and have a larger density contrast--than any adjacent pair of planets in the Solar system.

  7. Radiovolumetry of the orbit

    International Nuclear Information System (INIS)

    Abujamra, S.

    1983-01-01

    The authors present a method called ''Radiovolumetry of the orbit'' that permits the evaluation of the orbital volume from anteroposterior skull X-Rays (CALDWELL 30 0 position). The research was based in the determination of the orbital volume with lead spheres, in 1010 orbits of 505 dry skulls of Anatomy Museums. After the dry skulls was X-rayed six frontal orbital diameters were made, with care to correct the radiographic amplification. PEARSON correlation coeficient test was applied between the mean orbital diameter and the orbital volume. The result was r = 0,8 with P [pt

  8. Solar Effects of Low-Earth Orbit objects in ORDEM 3.0

    Science.gov (United States)

    Vavrin, A. B.; Anz-Meador, P.; Kelley, R. L.

    2014-01-01

    Variances in atmospheric density are directly related to the variances in solar flux intensity between 11- year solar cycles. The Orbital Debris Engineering Model (ORDEM 3.0) uses a solar flux table as input for calculating orbital lifetime of intact and debris objects in Low-Earth Orbit. Long term projections in solar flux activity developed by the NASA Orbital Debris Program Office (ODPO) extend the National Oceanic and Atmospheric Administration Space Environment Center (NOAA/SEC) daily historical flux values with a 5-year projection. For purposes of programmatic scheduling, the Q2 2009 solar flux table was chosen for ORDEM 3.0. Current solar flux activity shows that the current solar cycle has entered a period of lower solar flux intensity than previously forecasted in 2009. This results in a deviation of the true orbital debris environment propagation in ORDEM 3.0. In this paper, we present updated orbital debris populations in LEO using the latest solar flux values. We discuss the effects on recent breakup events such as the FY-1C anti-satellite test and the Iridium 33 / Cosmos 2251 accidental collision. Justifications for chosen solar flux tables are discussed.

  9. IGR J14257-6117, a magnetic accreting white dwarf with a very strong strong X-ray orbital modulation

    Science.gov (United States)

    Bernardini, F.; de Martino, D.; Mukai, K.; Falanga, M.

    2018-04-01

    IGR J14257-6117 is an unclassified source in the hard X-ray catalogues. Optical follow-ups suggest it could be a Cataclysmic Variable of the magnetic type. We present the first high S/N X-ray observation performed by XMM-Newton at 0.3-10 keV, complemented with 10-80 keV coverage by Swift/BAT, aimed at revealing the source nature. We detected for the first time a fast periodic variability at 509.5 s and a longer periodic variability at 4.05 h, ascribed to the white dwarf (WD) spin and binary orbital periods, respectively. These unambiguously identify IGR J14257-6117 as a magnetic CV of the Intermediate Polar (IP) type. The energy resolved light curves at both periods reveal amplitudes decreasing with increasing energy, with the orbital modulation reaching ˜100% in the softest band. The energy spectrum shows optically thin thermal emission with an excess at the iron complex, absorbed by two dense media (NH ˜ 1022 - 23 cm-2), partially covering the X-ray source. These are likely localised in the magnetically confined accretion flow above the WD surface and at the disc rim, producing the energy dependent spin and orbital variabilities, respectively. IGR J14257-6117, joins the group of strongest orbitally modulated IPs now counting four systems. Drawing similarities with low-mass X-ray binaries displaying orbital dips, these IPs should be seen at large orbital inclinations allowing azimuthally extended absorbing material fixed in the binary frame to intercept the line of sight. For IGR J14257-6117, we estimate (50o ≲ i ≲ 70o). Whether also the mass accretion rate plays a role in the large orbital modulations in IPs cannot be established with the present data.

  10. [Exenteration of the Orbit for Basal Cell Carcinoma].

    Science.gov (United States)

    Furdová, A; Horkovičová, K; Krčová, I; Krásnik, V

    2015-08-01

    Primary treatment of basal cell carcinoma of the lower eyelid and the inner corner is essentially surgical, but advanced lesions require extensive surgical interventions. In some cases it is necessary to continue with the mutilating surgery--exenteration of the orbit. In this work we evaluate the indications of radical solutions in patients with basal cell carcinoma invading the orbit and the subsequent possibility for individually made prosthesis to cover the defect of the cavity. Indications to exenteration of the orbit in patients with basal cell carcinoma findings in 2008-2013. Case report of 2 patients. In period 2008-20013 at the Dept. of Ophthalmology, Comenius University in Bratislava totally 221 patients with histologically confirmed basal cell carcinoma of the eyelids and the inner corner were treated. In 5 cases (2.7 %) with infiltration of the orbit the radical surgical procedure, exenteration was necessary. In 3 patients exenteration was indicated as the first surgical procedure in the treatment of basal cell carcinoma, since they had never visited ophthalmologist before only at in the stage of infiltration of the orbit (stage T4). In one case was indicated exenteration after previous surgical interventions and relapses. After healing the cavity patients got individually prepared epithesis. Surgical treatment of basal cell carcinoma involves the radical removal of the neoplasm entire eyelid and stage T1 or T2 can effectively cure virtually all tumors with satisfactory cosmetic and functional results. In advanced stages (T4 stage) by infiltrating the orbit by basal cell carcinoma exenteration of the orbit is necessary. This surgery is a serious situation for the patient and also for his relatives. Individually made prosthesis helps the patient to be enrolled to the social environment.

  11. Orbital Battleship: A Guessing Game to Reinforce Atomic Structure

    Science.gov (United States)

    Kurushkin, Mikhail; Mikhaylenko, Maria

    2016-01-01

    A competitive educational guessing game "Orbital Battleship" which reinforces Madelung's and Hund's rules, values of quantum numbers, and understanding of periodicity was designed. The game develops strategic thinking, is not time-consuming, requires minimal preparation and supervision, and is an efficient and fun alternative to more…

  12. Exterior Companions to Hot Jupiters Orbiting Cool Stars Are Coplanar

    Science.gov (United States)

    Becker, Juliette C.; Vanderburg, Andrew; Adams, Fred C.; Khain, Tali; Bryan, Marta

    2017-12-01

    The existence of hot Jupiters has challenged theories of planetary formation since the first extrasolar planets were detected. Giant planets are generally believed to form far from their host stars, where volatile materials like water exist in their solid phase, making it easier for giant planet cores to accumulate. Several mechanisms have been proposed to explain how giant planets can migrate inward from their birth sites to short-period orbits. One such mechanism, called Kozai-Lidov migration, requires the presence of distant companions in orbits inclined by more than ˜40° with respect to the plane of the hot Jupiter’s orbit. The high occurrence rate of wide companions in hot-Jupiter systems lends support to this theory for migration. However, the exact orbital inclinations of these detected planetary and stellar companions is not known, so it is not clear whether the mutual inclination of these companions is large enough for the Kozai-Lidov process to operate. This paper shows that in systems orbiting cool stars with convective outer layers, the orbits of most wide planetary companions to hot Jupiters must be well aligned with the orbits of the hot Jupiters and the spins of the host stars. For a variety of possible distributions for the inclination of the companion, the width of the distribution must be less than ˜20° to recreate the observations with good fidelity. As a result, the companion orbits are likely well aligned with those of the hot Jupiters, and the Kozai-Lidov mechanism does not enforce migration in these systems.

  13. Report of the NASA Science Definition Team for the Mars Science Orbiter (MSO)

    Science.gov (United States)

    Smith, Michael

    2007-01-01

    NASA is considering that its Mars Exploration Program (MEP) will launch an orbiter to Mars in the 2013 launch opportunity. To further explore this opportunity, NASA has formed a Science Definition Team (SDT) for this orbiter mission, provisionally called the Mars Science Orbiter (MSO). Membership and leadership of the SDT are given in Appendix 1. Dr. Michael D. Smith chaired the SDT. The purpose of the SDT was to define the: 1) Scientific objectives of an MSO mission to be launched to Mars no earlier than the 2013 launch opportunity, building on the findings for Plan A [Atmospheric Signatures and Near-Surface Change] of the Mars Exploration Program Analysis Group (MEPAG) Second Science Analysis Group (SAG-2); 2) Science requirements of instruments that are most likely to make high priority measurements from the MSO platform, giving due consideration to the likely mission, spacecraft and programmatic constraints. The possibilities and opportunities for international partners to provide the needed instrumentation should be considered; 3) Desired orbits and mission profile for optimal scientific return in support of the scientific objectives, and the likely practical capabilities and the potential constraints defined by the science requirements; and 4) Potential science synergies with, or support for, future missions, such as a Mars Sample Return. This shall include imaging for evaluation and certification of future landing sites. As a starting point, the SDT was charged to assume spacecraft capabilities similar to those of the Mars Reconnaissance Orbiter (MRO). The SDT was further charged to assume that MSO would be scoped to support telecommunications relay of data from, and commands to, landed assets, over a 10 Earth year period following orbit insertion. Missions supported by MSO may include planned international missions such as EXOMARS. The MSO SDT study was conducted during October - December 2007. The SDT was directed to complete its work by December 15, 2007

  14. Orbital wall fractures

    International Nuclear Information System (INIS)

    Iinuma, Toshitaka; Ishio, Ken-ichirou; Yoshinami, Hiroyoshi; Kuriyama, Jun-ichi; Hirota, Yoshiharu.

    1993-01-01

    A total of 59 cases of mild facial fractures (simple orbital wall fractures, 34 cases, other facial fractures, 25 cases) with the clinical suspects of orbital wall fractures were evaluated both by conventional views (Waters' and Caldwell views) and coronal CT scans. Conventional views were obtained, as an average, after 4 days and CT after 7 days of injuries. Both the medial wall and the floor were evaluated at two sites, i.e., anterior and posterior. The ethmoid-maxillary plate was also included in the study. The degree of fractures was classified as, no fractures, fractures of discontinuity, dislocation and fragmentation. The coronal CT images in bone window condition was used as reference and the findings were compared between conventional views and CT. The correct diagnosis was obtained as follows: orbital floor (anterior, 78%, posterior, 73%), medial orbital wall (anterior, 72%, posterior, 72%) and ethmoid-maxillary plate (64%). The false positive diagnosis was as follows: orbital floor (anterior only, 13%), medial orbital wall (anterior only, 7%) and ethmoid-maxillary plate (11%). The false negative diagnosis was as follows: orbital floor (anterior, 9%, posterior, 10%), medial orbital wall (anterior, 21%, posterior, 28%) and ethmoid-maxillary plate (21%). The results were compared with those of others in the past. (author)

  15. Exciting a rotating mass on a spring without change to its rotation rate

    International Nuclear Information System (INIS)

    Kenyon, Kern E.

    2001-01-01

    An exact mathematical solution, in terms of elementary functions, is presented for the two-dimensional problem of a mass rotating on a linear spring. The two governing equations in polar coordinates are nonlinear, coupled ordinary differential equations, but they can be solved analytically in sequence. In general, the orbit of the mass is an ellipse with the fixed end of the spring located at the centre of the ellipse. The orbital frequency is identical to the natural frequency of the spring and it is independent of the amplitude of the motion (independent of the major and minor axes of the ellipse). Based on the solution the following claim is made. No matter how the mass is perturbed, within its plane of motion, the orbital frequency will remain constant. The disturbance can be infinitesimal or finite and it can cause either the total energy or the angular momentum of the system or both to increase or decrease but the orbital period will not change. It follows from the fixed end of the spring being at the ellipse's centre that the radial vibration of the mass has twice the natural frequency of the spring; i.e. two maxima and minima in one orbital period, which is not possible unless there is rotation. (author)

  16. Prediction Model for Relativistic Electrons at Geostationary Orbit

    Science.gov (United States)

    Khazanov, George V.; Lyatsky, Wladislaw

    2008-01-01

    We developed a new prediction model for forecasting relativistic (greater than 2MeV) electrons, which provides a VERY HIGH correlation between predicted and actually measured electron fluxes at geostationary orbit. This model implies the multi-step particle acceleration and is based on numerical integrating two linked continuity equations for primarily accelerated particles and relativistic electrons. The model includes a source and losses, and used solar wind data as only input parameters. We used the coupling function which is a best-fit combination of solar wind/interplanetary magnetic field parameters, responsible for the generation of geomagnetic activity, as a source. The loss function was derived from experimental data. We tested the model for four year period 2004-2007. The correlation coefficient between predicted and actual values of the electron fluxes for whole four year period as well as for each of these years is stable and incredibly high (about 0.9). The high and stable correlation between the computed and actual electron fluxes shows that the reliable forecasting these electrons at geostationary orbit is possible.

  17. Proteomics approach reveals mechanism underlying susceptibility of loquat fruit to sunburn during color changing period.

    Science.gov (United States)

    Jiang, Ji-Mou; Lin, Yong-Xiang; Chen, Yi-Yong; Deng, Chao-Jun; Gong, Hui-Wen; Xu, Qi-Zhi; Zheng, Shao-Quan; Chen, Wei

    2015-06-01

    The objective of this work was to investigate why loquat fruit peels are more sensitive to high temperature and strong sunlight, making them highly susceptible to sunburn, during the color changing period (CCP). Two dimensional gel electrophoresis (2-DE) of the fruit peel proteins was performed over three developmental periods, namely green fruit period (GFP), color changing period and yellow ripening period (YRP). Fifty-five protein spots with at least 2-fold differences in abundance were successfully identified by MALDI-TOF-TOF/MS. The identified proteins were divided into categories related to heat-shock response, stress response and defense, energy metabolism, photosynthesis and protein biosynthesis. The results showed that expression of proteins related to anaerobic respiration and photorespiration were increased while the proteins related to ROS scavenging, polyamine biosynthesis, defense pathogens and photosynthesis were decreased during CCP under heat stress. Our findings provide new insights into the molecular mechanism of loquat fruit susceptible to sunburn during CCP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Science Planning and Orbit Classification for Solar Probe Plus

    Science.gov (United States)

    Kusterer, M. B.; Fox, N. J.; Rodgers, D. J.; Turner, F. S.

    2016-12-01

    There are a number of challenges for the Science Planning Team (SPT) of the Solar Probe Plus (SPP) Mission. Since SPP is using a decoupled payload operations approach, tight coordination between the mission operations and payload teams will be required. The payload teams must manage the volume of data that they write to the spacecraft solid-state recorders (SSR) for their individual instruments for downlink to the ground. Making this process more difficult, the geometry of the celestial bodies and the spacecraft during some of the SPP mission orbits cause limited uplink and downlink opportunities. The payload teams will also be required to coordinate power on opportunities, command uplink opportunities, and data transfers from instrument memory to the spacecraft SSR with the operation team. The SPT also intend to coordinate observations with other spacecraft and ground based systems. To solve these challenges, detailed orbit activity planning is required in advance for each orbit. An orbit planning process is being created to facilitate the coordination of spacecraft and payload activities for each orbit. An interactive Science Planning Tool is being designed to integrate the payload data volume and priority allocations, spacecraft ephemeris, attitude, downlink and uplink schedules, spacecraft and payload activities, and other spacecraft ephemeris. It will be used during science planning to select the instrument data priorities and data volumes that satisfy the orbit data volume constraints and power on, command uplink and data transfer time periods. To aid in the initial stages of science planning we have created an orbit classification scheme based on downlink availability and significant science events. Different types of challenges arise in the management of science data driven by orbital geometry and operational constraints, and this scheme attempts to identify the patterns that emerge.

  19. Semiclassical description of resonant tunnel effect: bifurcations and periodic orbits in the resonant current; Description semiclassique de l`effet tunnel resonant: bifurcations et orbites periodiques dans le courant resonant

    Energy Technology Data Exchange (ETDEWEB)

    Rouben, D C

    1997-11-28

    A semiclassical method for resonant tunneling in a quantum well in the presence of a magnetic field tilted with regard to an electric field is developed. In particular a semiclassical formula is derived for the total current of electrons after the second barrier of the quantum well. The contribution of the stable and unstable orbits is studied. It appears that the parameters which describe the classical chaos in the quantum well have an important effect on the tunneling current. A numerical experiment is led, the contributions to the current of some particular orbits are evaluated and the results are compared with those given by the quantum theory. (A.C.) 70 refs.

  20. A 3D Visualization and Analysis Model of the Earth Orbit, Milankovitch Cycles and Insolation.

    Science.gov (United States)

    Kostadinov, Tihomir; Gilb, Roy

    2013-04-01

    Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism. Although controversies remain, ample geologic evidence supports the major role of the Milankovitch cycles in climate, e.g. glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity (main periodicities of ~100,000 and ~400,000 years), precession (quantified as the longitude of perihelion, main periodicities 19,000-24,000 years) and obliquity of the ecliptic (Earth's axial tilt, main periodicity 41,000 years). The combination of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing of the seasons with respect to perihelion, as well as season duration. The complex interplay of the Milankovitch orbital parameters on various time scales makes assessment and visualization of Earth's orbit and insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns. These factors also make Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, an astronomically precise and accurate Earth orbit visualization model is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Both research and educational uses are envisioned for the model, which is developed in Matlab® as a user-friendly graphical user interface (GUI). We present the user with a choice between the Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the three Milankovitch parameters to be varied independently of each other (and over much larger ranges than the naturally occurring ones), so the user can isolate the effects of each parameter on orbital geometry

  1. Charge-spin-orbital dynamics of one-dimensional two-orbital Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Hiroaki [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2010-01-15

    We study the real-time evolution of a charge-excited state in a one-dimensional e{sub g}-orbital degenerate Hubbard model, by a time-dependent density-matrix renormalization group method. Considering a chain along the z direction, electrons hop between adjacent 3z{sup 2}-r{sup 2} orbitals, while x{sup 2}-y{sup 2} orbitals are localized. For the charge-excited state, a holon-doublon pair is introduced into the ground state at quarter filling. At initial time, there is no electron in a holon site, while a pair of electrons occupies 3z{sup 2}-r{sup 2} orbital in a doublon site. As the time evolves, the holon motion is governed by the nearest-neighbor hopping, but the electron pair can transfer between 3z{sup 2}-r{sup 2} orbital and x{sup 2}-y{sup 2} orbital through the pair hopping in addition to the nearest-neighbor hopping. Thus holon and doublon propagate at different speed due to the pair hopping that is characteristic of multi-orbital systems.

  2. Reactivity index based on orbital energies.

    Science.gov (United States)

    Tsuneda, Takao; Singh, Raman K

    2014-05-30

    This study shows that the chemical reactivities depend on the orbital energy gaps contributing to the reactions. In the process where a reaction only makes progress through charge transfer with the minimal structural transformation of the reactant, the orbital energy gap gradient (OEGG) between the electron-donating and electron-accepting orbitals is proven to be very low. Using this relation, a normalized reaction diagram is constructed by plotting the normalized orbital energy gap with respect to the normalized intrinsic reaction coordinate. Application of this reaction diagram to 43 fundamental reactions showed that the majority of the forward reactions provide small OEGGs in the initial stages, and therefore, the initial processes of the forward reactions are supposed to proceed only through charge transfer. Conversely, more than 60% of the backward reactions are found to give large OEGGs implying very slow reactions associated with considerable structural transformations. Focusing on the anti-activation-energy reactions, in which the forward reactions have higher barriers than those of the backward ones, most of these reactions are shown to give large OEGGs for the backward reactions. It is also found that the reactions providing large OEGGs in the forward directions inconsistent with the reaction rate constants are classified into SN 2, symmetric, and methyl radical reactions. Interestingly, several large-OEGG reactions are experimentally established to get around the optimum pathways. This indicates that the reactions can take significantly different pathways from the optimum ones provided no charge transfer proceeds spontaneously without the structural transformations of the reactants. Copyright © 2014 Wiley Periodicals, Inc.

  3. Early Reconstruction of Orbital Roof Fractures: Clinical Features and Treatment Outcomes

    Directory of Open Access Journals (Sweden)

    Jin Woo Kim

    2012-01-01

    Full Text Available BackgroundOrbital roof fractures are frequently associated with a high energy impact to the craniofacial region, and displaced orbital roof fractures can cause ophthalmic and neurologic complications and occasionally require open surgical intervention. The purpose of this article was to investigate the clinical features and treatment outcomes of orbital root fractures combined with neurologic injuries after early reconstruction.MethodsBetween January 2006 and December 2008, 45 patients with orbital roof fractures were admitted; among them, 37 patients were treated conservatively and 8 patients underwent early surgical intervention for orbital roof fractures. The type of injuries that caused the fractures, patient characteristics, associated fractures, ocular and neurological injuries, patient management, and treatment outcomes were investigated.ResultsThe patients underwent frontal craniotomy and free bone fragment removal, their orbital roofs were reconstructed with titanium micromesh, and associated fractures were repaired. The mean follow up period was 11 months. There were no postoperative neurologic sequelae. Postoperative computed tomography scans showed anatomically reconstructed orbital roofs. Two of the five patients with traumatic optic neuropathy achieved full visual acuity recovery, one patient showed decreased visual acuity, and the other two patients completely lost their vision due to traumatic optic neuropathy. Preoperative ophthalmic symptoms, such as proptosis, diplopia, upper eyelid ptosis, and enophthalmos were corrected.ConclusionsEarly recognition and treatment of orbital roof fractures can reduce intracranial and ocular complications. A coronal flap with frontal craniotomy and orbital roof reconstruction using titanium mesh provides a versatile method and provides good functional and cosmetic results.

  4. Satellite remote sensing of limnological indicators of global change

    International Nuclear Information System (INIS)

    Wynne, R.H.; Lillesand, T.M.

    1991-01-01

    The paper examines the general hypothesis that large-scale and long-term trends in lake ice formation and breakup, along with changes in the optical properties of lakes, can serve as robust integrated measures of regional and global climate change. Recent variation in the periodicity of lake ice formation and breakup is investigated using the AVHRR aboard the NOAA/TIROS series of polar orbiting satellites. The study area consists of 44 lakes and reservoirs with a surface area of greater than 1000 hectares in Wisconsin. The utility of AVHRR for lake ice detection with high temporal resolution is demonstrated, the relationship between ice phenology and periodicity with lake morphometry for the lakes in the study is elucidated, and remotely sensed measures of ice periodicity are correlated with local and regional temperature trends. 31 refs

  5. ON THE ORBIT OF EXOPLANET WASP-12b

    International Nuclear Information System (INIS)

    Campo, Christopher J.; Harrington, Joseph; Hardy, Ryan A.; Stevenson, Kevin B.; Nymeyer, Sarah; Lust, Nate B.; Blecic, Jasmina; Britt, Christopher B. T.; Bowman, William C.; Ragozzine, Darin; Anderson, David R.; Hellier, Coel; Maxted, Pierre F. L.; Collier-Cameron, Andrew; Wheatley, Peter J.; Loredo, Thomas J.; Deming, Drake; Hebb, Leslie; Pollaco, Don; West, Richard G.

    2011-01-01

    We observed two secondary eclipses of the exoplanet WASP-12b using the Infrared Array Camera on the Spitzer Space Telescope. The close proximity of WASP-12b to its G-type star results in extreme tidal forces capable of inducing apsidal precession with a period as short as a few decades. This precession would be measurable if the orbit had a significant eccentricity, leading to an estimate of the tidal Love number and an assessment of the degree of central concentration in the planetary interior. An initial ground-based secondary-eclipse phase reported by Lopez-Morales et al. (0.510 ± 0.002) implied eccentricity at the 4.5σ level. The spectroscopic orbit of Hebb et al. has eccentricity 0.049 ± 0.015, a 3σ result, implying an eclipse phase of 0.509 ± 0.007. However, there is a well-documented tendency of spectroscopic data to overestimate small eccentricities. Our eclipse phases are 0.5010 ± 0.0006 (3.6 and 5.8 μm) and 0.5006 ± 0.0007 (4.5 and 8.0 μm). An unlikely orbital precession scenario invoking an alignment of the orbit during the Spitzer observations could have explained this apparent discrepancy, but the final eclipse phase of Lopez-Morales et al. (0.510 ± +0.007 -0.006 ) is consistent with a circular orbit at better than 2σ. An orbit fit to all the available transit, eclipse, and radial-velocity data indicates precession at <1σ; a non-precessing solution fits better. We also comment on analysis and reporting for Spitzer exoplanet data in light of recent re-analyses.

  6. Return to Venus of AKATSUKI, the Japanese Venus Orbiter

    Science.gov (United States)

    Nakamura, M.; Iwagami, N.; Satoh, T.; Taguchi, M.; Watanabe, S.; Takahashi, Y.; Imamura, T.; Suzuki, M.; Ueno, M.; Yamazaki, A.; Fukuhara, T.; Yamada, M.; Ishii, N.; Ogohara, K.

    2011-12-01

    Japanese Venus Climate Orbiter 'AKATSUKI' (PLANET-C) was proposed in 2001 with strong support by international Venus science community and approved as an ISAS mission soon after the proposal. AKATSUKI and ESA's Venus Express complement each other in Venus climate study. Various coordinated observations using the two spacecraft have been planned. Also participating scientists from US have been selected. Its science target is to understand the climate of Venus. The mission life we expected was more than 2 Earth years in Venus orbit. AKATSUKI was successfully launched at 06:58:22JST on May 21, by H-IIA F17. After the separation from H-IIA, the telemetry from AKATSUKI was normally detected by DSN Goldstone station (10:00JST) and the solar cell paddles' expansion was confirmed. AKATSUKI was put into the 3-axis stabilized mode in the initial operation from Uchinoura station and the critical operation was finished at 20:00JST on the same day. The malfunction, which happened during the Venus Orbit Insertion (VOI) on7 Dec, 2010 is as follows. We set all commands on Dec. 5. Attitude control for Venus orbit insertion (VOI) was automatically done on Dec. 6. Orbital maneuver engine (OME) was fired 08:49 JST on Dec. 7. 1min. after firing the spacecraft went into the occultation region and we had no telemetry, but we expected to continuous firing for 12min. Recording on the spacecraft told us later that, unfortunately the firing continued just 152sec. and stopped. The reason of the malfunction of the OME was the blocking of check valve of the gas pressure line to push the fuel to the engine. We failed to make the spacecraft the Venus orbiter, and it is rotating the sun with the orbital period of 203 days. As the Venus orbit the sun with the period of 225 days, AKATSUKI has a chance to meet Venus again in 5 or 6 years depending on the orbit correction plan. Let us summarize the present situation of AKATSUKI. Most of the fuel still remains. But the condition of the propulsion

  7. Simulation of charge transfer and orbital rehybridization in molecular and condensed matter systems

    Science.gov (United States)

    Nistor, Razvan A.

    The mixing and shifting of electronic orbitals in molecules, or between atoms in bulk systems, is crucially important to the overall structure and physical properties of materials. Understanding and accurately modeling these orbital interactions is of both scientific and industrial relevance. Electronic orbitals can be perturbed in several ways. Doping, adding or removing electrons from systems, can change the bond-order and the physical properties of certain materials. Orbital rehybridization, driven by either thermal or pressure excitation, alters the short-range structure of materials and changes their long-range transport properties. Macroscopically, during bond formation, the shifting of electronic orbitals can be interpreted as a charge transfer phenomenon, as electron density may pile up around, and hence, alter the effective charge of, a given atom in the changing chemical environment. Several levels of theory exist to elucidate the mechanisms behind these orbital interactions. Electronic structure calculations solve the time-independent Schrodinger equation to high chemical accuracy, but are computationally expensive and limited to small system sizes and simulation times. Less fundamental atomistic calculations use simpler parameterized functional expressions called force-fields to model atomic interactions. Atomistic simulations can describe systems and time-scales larger and longer than electronic-structure methods, but at the cost of chemical accuracy. In this thesis, both first-principles and phenomenological methods are addressed in the study of several encompassing problems dealing with charge transfer and orbital rehybridization. Firstly, a new charge-equilibration method is developed that improves upon existing models to allow next-generation force-fields to describe the electrostatics of changing chemical environments. Secondly, electronic structure calculations are used to investigate the doping dependent energy landscapes of several high

  8. A period-doubling cascade precedes chaos for planar maps.

    Science.gov (United States)

    Sander, Evelyn; Yorke, James A

    2013-09-01

    A period-doubling cascade is often seen in numerical studies of those smooth (one-parameter families of) maps for which as the parameter is varied, the map transitions from one without chaos to one with chaos. Our emphasis in this paper is on establishing the existence of such a cascade for many maps with phase space dimension 2. We use continuation methods to show the following: under certain general assumptions, if at one parameter there are only finitely many periodic orbits, and at another parameter value there is chaos, then between those two parameter values there must be a cascade. We investigate only families that are generic in the sense that all periodic orbit bifurcations are generic. Our method of proof in showing there is one cascade is to show there must be infinitely many cascades. We discuss in detail two-dimensional families like those which arise as a time-2π maps for the Duffing equation and the forced damped pendulum equation.

  9. Constellations of Next Generation Gravity Missions: Simulations regarding optimal orbits and mitigation of aliasing errors

    Science.gov (United States)

    Hauk, M.; Pail, R.; Gruber, T.; Purkhauser, A.

    2017-12-01

    The CHAMP and GRACE missions have demonstrated the tremendous potential for observing mass changes in the Earth system from space. In order to fulfil future user needs a monitoring of mass distribution and mass transport with higher spatial and temporal resolution is required. This can be achieved by a Bender-type Next Generation Gravity Mission (NGGM) consisting of a constellation of satellite pairs flying in (near-)polar and inclined orbits, respectively. For these satellite pairs the observation concept of the GRACE Follow-on mission with a laser-based low-low satellite-to-satellite tracking (ll-SST) system and more precise accelerometers and state-of-the-art star trackers is adopted. By choosing optimal orbit constellations for these satellite pairs high frequency mass variations will be observable and temporal aliasing errors from under-sampling will not be the limiting factor anymore. As part of the European Space Agency (ESA) study "ADDCON" (ADDitional CONstellation and Scientific Analysis Studies of the Next Generation Gravity Mission) a variety of mission design parameters for such constellations are investigated by full numerical simulations. These simulations aim at investigating the impact of several orbit design choices and at the mitigation of aliasing errors in the gravity field retrieval by co-parametrization for various constellations of Bender-type NGGMs. Choices for orbit design parameters such as altitude profiles during mission lifetime, length of retrieval period, value of sub-cycles and choice of prograde versus retrograde orbits are investigated as well. Results of these simulations are presented and optimal constellations for NGGM's are identified. Finally, a short outlook towards new geophysical applications like a near real time service for hydrology is given.

  10. On Quasi-Periodic Brightness Variations of P Cygni

    Science.gov (United States)

    Kochiashvili, N.; Beradze, S.; Natsvlishvili, R.; Kochiashvili, I.; Vardosanidze, M.; Pannicke, A.

    2018-03-01

    Until recent decades, it was considered that all Luminous Blue Variables are single massive and high luminosity stars. Now for several of them a companion has been found. The opinion exists that P Cygni also has a companion with an orbital period of about seven years. In accordance with this hypothesis, a known powerful eruption occurred near the periastron point. P Cygni, as well as several other well-known Luminous Blue Variable (LBV) stars, is a so-called "Supernova Impostor" because it survived after a powerful outburst. However, there were cases during the last decade when a LBV star survived after a powerful giant eruption, and then after a few years, explode as a supernova. Because the real reason for the great eruption and characteristic light variability of LBV, including P Cygni, is not established yet, any kind of photometric and spectral observational data is very significant. We present the results of analysis of the long-term photometric observations of hypergiant P Cygni. On the basis of these data, different quasi-periodic brightness changes of the star were revealed.

  11. NICER Discovers the Ultracompact Orbit of the Accreting Millisecond Pulsar IGR J17062–6143

    Science.gov (United States)

    Strohmayer, T. E.; Arzoumanian, Z.; Bogdanov, S.; Bult, P. M.; Chakrabarty, D.; Enoto, T.; Gendreau, K. C.; Guillot, S.; Harding, A. K.; Ho, W. C. G.; Homan, J.; Jaisawal, G. K.; Keek, L.; Kerr, M.; Mahmoodifar, S.; Markwardt, C. B.; Ransom, S. M.; Ray, P. S.; Remillard, R.; Wolff, M. T.

    2018-05-01

    We present results of recent Neutron Star Interior Composition Explorer (NICER) observations of the accreting millisecond X-ray pulsar (AMXP) IGR J17062‑6143 that show that it resides in a circular, ultracompact binary with a 38-minute orbital period. NICER observed the source for ≈26 ks over a 5.3-day span in 2017 August, and again for 14 and 11 ks in 2017 October and November, respectively. A power spectral analysis of the August exposure confirms the previous detection of pulsations at 163.656 Hz in Rossi X-ray Timing Explorer (RXTE) data, and reveals phase modulation due to orbital motion of the neutron star. A coherent search for the orbital solution using the Z 2 method finds a best-fitting circular orbit with a period of 2278.21 s (37.97 minutes), a projected semimajor axis of 0.00390 lt-s, and a barycentric pulsar frequency of 163.6561105 Hz. This is currently the shortest known orbital period for an AMXP. The mass function is 9.12 × 10‑8 M ⊙, presently the smallest known for a stellar binary. The minimum donor mass ranges from ≈0.005 to 0.007 M ⊙ for a neutron star mass from 1.2 to 2 M ⊙. Assuming mass transfer is driven by gravitational radiation, we find donor mass and binary inclination bounds of 0.0175–0.0155 M ⊙ and 19° < i < 27.°5, where the lower and upper bounds correspond to 1.4 and 2 M ⊙ neutron stars, respectively. Folding the data accounting for the orbital modulation reveals a sinusoidal profile with fractional amplitude 2.04 ± 0.11% (0.3–3.2 keV).

  12. Improving BDS Autonomous Orbit Determination Performance Using Onboard Accelerometers

    Directory of Open Access Journals (Sweden)

    QIAO Jing

    2017-05-01

    achieved over a service life of two months using SST data and accelerometers. If only SST data are used, the orbit accuracy is 3~6 m with the same time period, which is an order worse.

  13. Electron orbits in the microwave inverse FEL accelerator (MIFELA)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.B.; Marshall, T.C. [Columbia Univ., New York, NY (United States)

    1995-12-31

    The MIFELA is a new device based on stimulated absorption of microwaves by electrons moving along an undulator. An intense microwave field is used (a{sub s} = eE{sub s}/k{sub s} m c{sup 2} = 0.2) as well as a large undulator field (a{sub w}/{gamma} = eB{sub {perpendicular}}/{gamma}k{sub w} mc{sup 2} = 1/2) to accelerate electrons emitted at 6MeV from a rf gun to 20MeV in 1.5m. The spiral radius of the electrons in the undulator is 8mm, in a waveguide of diameter 34mm, with undulator period about 10cm. There is a small guiding field, and the electrons move in type I orbits. We describe three problems connected with the orbital motion of the electrons in this structure: (i) injecting the electrons in an increasing undulator field prior to entering the MIFELA; (ii) orbital motion and stability inside the MIFELA; (iii) extraction of electrons from the spiral orbit in the accelerator into an axially-propagating beam, obtaining {Beta}{sub {perpendicular}} < 0.02. These studies have application to a MIFELA which is under construction at Yale University by Omega-P.

  14. Traumatic orbital CSF leak

    Science.gov (United States)

    Borumandi, Farzad

    2013-01-01

    Compared to the cerebrospinalfluid (CSF) leak through the nose and ear, the orbital CSF leak is a rare and underreported condition following head trauma. We present the case of a 49-year-old woman with oedematous eyelid swelling and ecchymosis after a seemingly trivial fall onto the right orbit. Apart from the above, she was clinically unremarkable. The CT scan revealed a minimally displaced fracture of the orbital roof with no emphysema or intracranial bleeding. The fractured orbital roof in combination with the oedematous eyelid swelling raised the suspicion for orbital CSF leak. The MRI of the neurocranium demonstrated a small-sized CSF fistula extending from the anterior cranial fossa to the right orbit. The patient was treated conservatively and the lid swelling resolved completely after 5 days. Although rare, orbital CSF leak needs to be included in the differential diagnosis of periorbital swelling following orbital trauma. PMID:24323381

  15. Changes in effective moisture on the Tibetan Plateau during the period 1981-2010

    Science.gov (United States)

    Yin, Y.; Wu, S.; Zhao, D.

    2013-12-01

    Observed evaporative demand has decreased worldwide during the past several decades. This trend is also noted on the Tibetan Plateau, a region that is particularly sensitive to climate change. However, actual evapotranspiration trends and their relationship to drought stress on the Tibetan Plateau are poorly understood. We analyzed the spatiotemporal changes in potential evapotranspiration(PET), actual evapotranspiration(AET) and effective moisture (defined as AET/PET) during 1981-2010. Climate data from 80 meteorological stations on the Tibetan Plateau were compiled for the period 1981-2010. New plant functional types were defined for the Tibetan Plateau and evapotranspiration is simulated by the modified Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ). The results show regional trends towards decreasing PET and statistically significant increases in AET (p < 0.05) and effective moisture (p < 0.001) during the period 1981-2010. A transition from significant negative to positive PET occurred in 1997. Additionally, a pronounced increase in effective moisture occurred during the period 1981-1997 because of significant decreased PET before 1997.

  16. Orbitals from local RDMFT: Are they Kohn-Sham or natural orbitals?

    International Nuclear Information System (INIS)

    Theophilou, Iris; Helbig, Nicole; Lathiotakis, Nektarios N.; Gidopoulos, Nikitas I.; Rubio, Angel

    2015-01-01

    Recently, an approximate theoretical framework was introduced, called local reduced density matrix functional theory (local-RDMFT), where functionals of the one-body reduced density matrix (1-RDM) are minimized under the additional condition that the optimal orbitals satisfy a single electron Schrödinger equation with a local potential. In the present work, we focus on the character of these optimal orbitals. In particular, we compare orbitals obtained by local-RDMFT with those obtained with the full minimization (without the extra condition) by contrasting them against the exact NOs and orbitals from a density functional calculation using the local density approximation (LDA). We find that the orbitals from local-RMDFT are very close to LDA orbitals, contrary to those of the full minimization that resemble the exact NOs. Since local RDMFT preserves the good quality of the description of strong static correlation, this finding opens the way to a mixed density/density matrix scheme, where Kohn-Sham orbitals obtain fractional occupations from a minimization of the occupation numbers using 1-RDM functionals. This will allow for a description of strong correlation at a cost only minimally higher than a density functional calculation

  17. Orbital parameters of the multiple system EM Boo

    Science.gov (United States)

    Özkardeş, B.; Bakış, H.; Bakış, V.

    2018-02-01

    EM Boo is a relatively bright (V = 8.98 mag.) and short orbital period (P⁓2.45 days) binary star member of the multiple system WDS J14485+2445AB. There is neither photometric nor spectroscopic study of the system in the literature. In this work, we obtained spectroscopic orbital parameters of the system from new high resolution spectroscopic observations made with échelle spectrograph attached to UBT60 telescope of Akdeniz University. The spectroscopic solution yielded the values K1 = 100.7±2.6 km/s, K2 = 120.1±2.6 km/s and Vγ = -14.6±3.1 km/s, and thus the mass ratio of the system q = 0.838±0.064.

  18. INFRARED SPECTROSCOPY OF SYMBIOTIC STARS. VIII. ORBITS FOR THREE S-TYPE SYSTEMS: AE ARAE, Y CORONAE AUSTRALIS, AND SS 73-147

    International Nuclear Information System (INIS)

    Fekel, Francis C.; Hinkle, Kenneth H.; Joyce, Richard R.; Wood, Peter R.

    2010-01-01

    With new infrared radial velocities we have computed orbits of the M giants in three southern S-type symbiotic systems. AE Ara and SS 73-147 have circular orbits with periods of 803 and 820 days, respectively. The eccentric orbit of Y CrA has a period that is about twice as long, 1619 days. Except for CH Cyg it is currently the S-type symbiotic system with the longest period for which a spectroscopic orbit has been determined. The Paschen δ emission line velocities of AE Ara are nearly in antiphase with the M giant absorption feature velocities and result in a mass ratio of 2.7. Emission lines in the 1.005 μm region for the other two symbiotic systems are not good proxies for the hot components in those systems. There is no evidence that these three symbiotics are eclipsing. With spectral classes of M5.5 or M6, the three giants presumably also have velocity variations that result from pulsations, but we have been unable to identify specific pulsation periods in the absorption line velocity residuals.

  19. Field theoretic approach to dynamical orbital localization in ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Thomas, Jordan W.; Iftimie, Radu; Tuckerman, Mark E.

    2004-01-01

    Techniques from gauge-field theory are employed to derive an alternative formulation of the Car-Parrinello ab initio molecular-dynamics method that allows maximally localized Wannier orbitals to be generated dynamically as the calculation proceeds. In particular, the Car-Parrinello Lagrangian is mapped onto an SU(n) non-Abelian gauge-field theory and the fictitious kinetic energy in the Car-Parrinello Lagrangian is modified to yield a fully gauge-invariant form. The Dirac gauge-fixing method is then employed to derive a set of equations of motion that automatically maintain orbital locality by restricting the orbitals to remain in the 'Wannier gauge'. An approximate algorithm for integrating the equations of motion that is stable and maintains orbital locality is then developed based on the exact equations of motion. It is shown in a realistic application (64 water molecules plus one hydrogen-chloride molecule in a periodic box) that orbital locality can be maintained with only a modest increase in CPU time. The ability to keep orbitals localized in an ab initio molecular-dynamics calculation is a crucial ingredient in the development of emerging linear scaling approaches

  20. Astrophysical parameters and orbital solution of the peculiar X-ray transient IGR J00370+6122

    Science.gov (United States)

    González-Galán, A.; Negueruela, I.; Castro, N.; Simón-Díaz, S.; Lorenzo, J.; Vilardell, F.

    2014-06-01

    Context. BD + 60° 73 is the optical counterpart of the X-ray source IGR J00370+6122, a probable accretion-powered X-ray pulsar. The X-ray light curve of this binary system shows clear periodicity at 15.7 d, which has been interpreted as repeated outbursts around the periastron of an eccentric orbit. Aims: We aim to characterise the binary system IGR J00370+6122 by deriving its orbital and physical parameters. Methods: We obtained high-resolution spectra of BD + 60° 73 at different epochs. We used the fastwind code to generate a stellar atmosphere model to fit the observed spectrum and obtain physical magnitudes. The synthetic spectrum was used as a template for cross-correlation with the observed spectra to measure radial velocities. The radial velocity curve provided an orbital solution for the system. We also analysed the RXTE/ASM and Swift/BAT light curves to confirm the stability of the periodicity. Results: BD + 60° 73 is a BN0.7 Ib low-luminosity supergiant located at a distance ~3.1 kpc, in the Cas OB4 association. We derive Teff = 24 000 K and log gc = 3.0, and chemical abundances consistent with a moderately high level of evolution. The spectroscopic and evolutionary masses are consistent at the 1-σ level with a mass M∗ ≈ 15 M⊙. The recurrence time of the X-ray flares is the orbital period of the system. The neutron star is in a high-eccentricity (e = 0.56 ± 0.07) orbit, and the X-ray emission is strongly peaked around orbital phase φ = 0.2, though the observations are consistent with some level of X-ray activity happening at all orbital phases. Conclusions: The X-ray behaviour of IGR J00370+6122 is reminiscent of "intermediate" supergiant X-ray transients, though its peak luminosity is rather low. The orbit is somewhat wider than those of classical persistent supergiant X-ray binaries, which when combined with the low luminosity of the mass donor, explains the low X-ray luminosity. IGR J00370+6122 will very likely evolve towards a persistent

  1. MRI demonstration of orbital lipolysis in anorexia nervosa

    Energy Technology Data Exchange (ETDEWEB)

    Demaerel, Philippe; Dekimpe, Piet; Wilms, Guy [Department of Radiology, University Hospitals, Herestraat 49, 3000 Leuven (Belgium); Muls, Erik [Department of Endocrinology, University Hospitals, Herestraat 49, 3000 Leuven (Belgium)

    2002-07-01

    The purpose of this article is to describe the orbital changes due to lipolysis in anorexia nervosa. We examined a cachectic patient with MR imaging using T1-weighted images before and after contrast enhancement. Orbital fat edema has been observed in extreme forms of cachexia and the CT and MR findings have recently been reported. The imaging appearances have been explained by the disappearance of the fat tissue and the appearance of edema due to a disturbance in the electrolyte fluid balance. In the recent literature particular attention has been paid to the increased lipid peroxidation and lipolysis in anorexia nervosa. These metabolic processes result in an increased permeability of the vessel wall endothelium, which can explain the extravasation of the contrast agent in the orbital fat on MR imaging. (orig.)

  2. MRI demonstration of orbital lipolysis in anorexia nervosa

    International Nuclear Information System (INIS)

    Demaerel, Philippe; Dekimpe, Piet; Wilms, Guy; Muls, Erik

    2002-01-01

    The purpose of this article is to describe the orbital changes due to lipolysis in anorexia nervosa. We examined a cachectic patient with MR imaging using T1-weighted images before and after contrast enhancement. Orbital fat edema has been observed in extreme forms of cachexia and the CT and MR findings have recently been reported. The imaging appearances have been explained by the disappearance of the fat tissue and the appearance of edema due to a disturbance in the electrolyte fluid balance. In the recent literature particular attention has been paid to the increased lipid peroxidation and lipolysis in anorexia nervosa. These metabolic processes result in an increased permeability of the vessel wall endothelium, which can explain the extravasation of the contrast agent in the orbital fat on MR imaging. (orig.)

  3. Ground Track Acquisition and Maintenance Maneuver Modeling for Low-Earth Orbit Satellite

    Directory of Open Access Journals (Sweden)

    Byoung-Sun Lee

    1997-12-01

    Full Text Available This paper presents a comprehensive analytical approach for determining key maneuver parameters associated with the acquisition and maintenance of the ground track for a low-earth orbit. A livearized model relating changes in the drift rate of the ground track directly to changes in the orbital semi-major axis is also developed. The effect of terrestrial atmospheric drag on the semi-major axis is also explored, being quantified through an analytical expression for the decay rate as a function of density. The non-singular Lagrange planetary equations, further simplified for nearly circular orbits, provide the desired relationships between the corrective in-plane impulsive velocity increments and the corresponding effects on the orbit elements. The resulting solution strategy offers excellent insight into the dynamics affecting the timing, magnitude, and frequency of these maneuvers. Simulations are executed for the ground track acquisition and maintenance maneuver as a pre-flight planning and analysis.

  4. PERIODIC VARIABILITY OF LOW-MASS STARS IN SLOAN DIGITAL SKY SURVEY STRIPE 82

    International Nuclear Information System (INIS)

    Becker, A. C.; Hawley, S. L.; Ivezic, Z.; Kowalski, A. F.; Sesar, B.; Bochanski, J. J.; West, A. A.

    2011-01-01

    We present a catalog of periodic stellar variability in the 'Stripe 82' region of the Sloan Digital Sky Survey. After aggregating and re-calibrating catalog-level data from the survey, we ran a period-finding algorithm (Supersmoother) on all point-source light curves. We used color selection to identify systems that are likely to contain low-mass stars, in particular M dwarfs and white dwarfs. In total, we found 207 candidates, the vast majority of which appear to be in eclipsing binary systems. The catalog described in this paper includes 42 candidate M dwarf/white dwarf pairs, four white dwarf pairs, 59 systems whose colors indicate they are composed of two M dwarfs and whose light-curve shapes suggest they are in detached eclipsing binaries, and 28 M dwarf systems whose light-curve shapes suggest they are in contact binaries. We find no detached systems with periods longer than 3 days, thus the majority of our sources are likely to have experienced orbital spin-up and enhanced magnetic activity. Indeed, 26 of 27 M dwarf systems that we have spectra for show signs of chromospheric magnetic activity, far higher than the 24% seen in field stars of the same spectral type. We also find binaries composed of stars that bracket the expected boundary between partially and fully convective interiors, which will allow the measurement of the stellar mass-radius relationship across this transition. The majority of our contact systems have short orbital periods, with small variance (0.02 days) in the sample near the observed cutoff of 0.22 days. The accumulation of these stars at short orbital period suggests that the process of angular momentum loss, leading to period evolution, becomes less efficient at short periods. These short-period systems are in a novel regime for studying the effects of orbital spin-up and enhanced magnetic activity, which are thought to be the source of discrepancies between mass-radius predictions and measurements of these properties in eclipsing

  5. OTORHINOLARYNGOLOGICAL DISEASES MASQUERADING AS ORBITAL TUMOURS

    Directory of Open Access Journals (Sweden)

    Sharmistha Behera

    2017-09-01

    Full Text Available BACKGROUND The close proximity of the orbit and the paranasal sinuses, both of which share more than two-thirds of common walls makes the orbit too susceptible to infections spreading from the paranasal sinuses. In any case of proptosis indicating an orbital tumour, extension from a PNS lesion should be ruled out. MATERIALS AND METHODS The study was a retrospective descriptive study. Data taken from the patient's medical record during the period of July 2014- June 2017. A total of 32 cases of proptosis were studied all of which were secondary to paranasal sinus pathology. These cases were subject to routine clinical examination and investigations including CT and MRI scan. Histopathological diagnosis was obtained by biopsy in appropriate cases. RESULTS Out of 32 patients, males were 68.75% (n=22 and females were 31.25% (n=10. The largest age group are in the age range 41-50 years (31.25%, n=10 and in age group 0-10 years (31.25%. Out of the whole, 13 (40.6% of them were due to sinusitis, 6 (18.75% due to sinonasal malignancy, all of which were histopathologically confirmed to be squamous cell carcinoma of maxillary sinus, 6 (18.75% cases were of mucoceles from frontoethmoidal origin, 4 (12.50% cases were of fibrous dysplasia of maxillary sinus, 2 (6.25% case was of schwannoma of frontal sinus origin and 1 (3.12% case of Langerhans cell histiocytosis of maxillary sinus. In our study, proptosis was commonest presenting complaint in all 32 patients followed by nasal obstruction (62.5%, reduced vision (25%, facial asymmetry (25%, redness of eye (18.75% and double vision (12.50%. Out of all investigative modalities, biopsy was found to be the most accurate followed by CT scan brain, PNS and orbit. CONCLUSION Due to close proximity, nasal and PNS diseases through bone erosion or preformed pathways can invade the orbit and cause proptosis. Longstanding optic nerve compression by orbital encroachment of PNS lesion can lead to blindness due to optic

  6. EXTRACTING PERIODIC TRANSIT SIGNALS FROM NOISY LIGHT CURVES USING FOURIER SERIES

    Energy Technology Data Exchange (ETDEWEB)

    Samsing, Johan [Department of Astrophysical Sciences, Princeton University, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States)

    2015-07-01

    We present a simple and powerful method for extracting transit signals associated with a known transiting planet from noisy light curves. Assuming the orbital period of the planet is known and the signal is periodic, we illustrate that systematic noise can be removed in Fourier space at all frequencies by only using data within a fixed time frame with a width equal to an integer number of orbital periods. This results in a reconstruction of the full transit signal, which on average is unbiased despite no prior knowledge of either the noise or the transit signal itself being used in the analysis. The method therefore has clear advantages over standard phase folding, which normally requires external input such as nearby stars or noise models for removing systematic components. In addition, we can extract the full orbital transit signal (360°) simultaneously, and Kepler-like data can be analyzed in just a few seconds. We illustrate the performance of our method by applying it to a dataset composed of light curves from Kepler with a fake injected signal emulating a planet with rings. For extracting periodic transit signals, our presented method is in general the optimal and least biased estimator and could therefore lead the way toward the first detections of, e.g., planet rings and exo-trojan asteroids.

  7. Antisymmetric Orbit Functions

    Directory of Open Access Journals (Sweden)

    Anatoliy Klimyk

    2007-02-01

    Full Text Available In the paper, properties of antisymmetric orbit functions are reviewed and further developed. Antisymmetric orbit functions on the Euclidean space $E_n$ are antisymmetrized exponential functions. Antisymmetrization is fulfilled by a Weyl group, corresponding to a Coxeter-Dynkin diagram. Properties of such functions are described. These functions are closely related to irreducible characters of a compact semisimple Lie group $G$ of rank $n$. Up to a sign, values of antisymmetric orbit functions are repeated on copies of the fundamental domain $F$ of the affine Weyl group (determined by the initial Weyl group in the entire Euclidean space $E_n$. Antisymmetric orbit functions are solutions of the corresponding Laplace equation in $E_n$, vanishing on the boundary of the fundamental domain $F$. Antisymmetric orbit functions determine a so-called antisymmetrized Fourier transform which is closely related to expansions of central functions in characters of irreducible representations of the group $G$. They also determine a transform on a finite set of points of $F$ (the discrete antisymmetric orbit function transform. Symmetric and antisymmetric multivariate exponential, sine and cosine discrete transforms are given.

  8. Orbital motions as gradiometers for post-Newtonian tidal effects

    Energy Technology Data Exchange (ETDEWEB)

    Iorio, Lorenzo, E-mail: lorenzo.iorio@libero.it [Ministero dell' Istruzione, dell' Università e della Ricerca, Istruzione, Bari (Italy)

    2014-08-14

    The direct long-term changes occurring in the orbital dynamics of a local gravitationally bound binary system S due to the post-Newtonian tidal acceleration caused by an external massive source are investigated. A class of systems made of a test particle m rapidly orbiting with orbital frequency n{sub b} an astronomical body of mass M which, in turn, slowly revolves around a distant object of mass M′ with orbital frequency n{sub b}′ « n{sub b} is considered. The characteristic frequencies of the non-Keplerian orbital variations of m and of M itself are assumed to be negligible with respect to both n{sub b} and n{sub b}′. General expressions for the resulting Newtonian and post-Newtonian tidal orbital shifts of m are obtained. The future missions BepiColombo and JUICE to Mercury and Ganymede, respectively, are considered in view of a possible detection. The largest effects, of the order of ≈ 0.1-0.5 milliarcseconds per year (mas yr{sup −1}), occur for the Ganymede orbiter of the JUICE mission. Although future improvements in spacecraft tracking and orbit determination might, perhaps, reach the required sensitivity, the systematic bias represented by the other known orbital perturbations of both Newtonian and post-Newtonian origin would be overwhelming. The realization of a dedicated artificial mini-planetary system to be carried onboard and Earth-orbiting spacecraft is considered as well. Post-Newtonian tidal precessions as large as ≈ 1−10{sup 2} mas yr{sup −1} could be obtained, but the quite larger Newtonian tidal effects would be a major source of systematic bias because of the present-day percent uncertainty in the product of the Earth's mass times the Newtonian gravitational parameter.

  9. Angles-only relative orbit determination in low earth orbit

    Science.gov (United States)

    Ardaens, Jean-Sébastien; Gaias, Gabriella

    2018-06-01

    The paper provides an overview of the angles-only relative orbit determination activities conducted to support the Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment. This in-orbit endeavor was carried out by the German Space Operations Center (DLR/GSOC) in autumn 2016 to demonstrate the capability to perform spaceborne autonomous close-proximity operations using solely line-of-sight measurements. The images collected onboard have been reprocessed by an independent on-ground facility for precise relative orbit determination, which served as ultimate instance to monitor the formation safety and to characterize the onboard navigation and control performances. During two months, several rendezvous have been executed, generating a valuable collection of images taken at distances ranging from 50 km to only 50 m. Despite challenging experimental conditions characterized by a poor visibility and strong orbit perturbations, angles-only relative positioning products could be continuously derived throughout the whole experiment timeline, promising accuracy at the meter level during the close approaches. The results presented in the paper are complemented with former angles-only experience gained with the PRISMA satellites to better highlight the specificities induced by different orbits and satellite designs.

  10. Paleoclimate from ice cores : abrupt climate change and the prolonged Holocene

    International Nuclear Information System (INIS)

    White, J.W.C.

    2001-01-01

    Ice cores provide valuable information about the Earth's past climates and past environments. They can also help in predicting future climates and the nature of climate change. Recent findings in ice cores have shown large and abrupt climate changes in the past. This paper addressed abrupt climate changes and the peculiar nature of the Holocene. An abrupt climate change is a shift of 5 degrees C in mean annual temperature in less than 50 years. This is considered to be the most threatening aspect of potential future climate change since it leaves very little time for adaptation by humans or any other part of the Earth's ecosystem. This paper also discussed the arrival of the next glacial period. In the past 50 years, scientists have recognized the importance of the Earth's orbit around the sun in pacing the occurrence of large ice sheets. The timing of orbital forcing suggests that the Earth is overdue for the next major glaciation. The reason for this anomaly was discussed. Abrupt climate shifts seem to be caused by mode changes in sensitive points in the climate system, such as the North Atlantic Deep Water Formation and its impact on sea ice cover in the North Atlantic. These changes have been observed in ice cores in Greenland but they are not restricted to Greenland. Evidence from Antarctic ice cores suggest that abrupt climate change may also occur in the Southern Hemisphere. The Vostok ice core in Antarctica indicates that the 11,000 year long interglacial period that we are in right now is longer than the previous four interglacial periods. The Holocene epoch is unique because both methane and carbon dioxide rise in the last 6,000 years, an atypical response from these greenhouse gases during an interglacial period. It was suggested that the rise in methane can be attributed to human activities. 13 refs., 2 figs

  11. Orbital fractures: a review

    Directory of Open Access Journals (Sweden)

    Jeffrey M Joseph

    2011-01-01

    Full Text Available Jeffrey M Joseph, Ioannis P GlavasDivision of Ophthalmic Plastic and Reconstructive Surgery, Department of Ophthalmology, School of Medicine, New York University, New York, NY, USA; Manhattan Eye, Ear, and Throat Hospital, New York, NY, USAAbstract: This review of orbital fractures has three goals: 1 to understand the clinically relevant orbital anatomy with regard to periorbital trauma and orbital fractures, 2 to explain how to assess and examine a patient after periorbital trauma, and 3 to understand the medical and surgical management of orbital fractures. The article aims to summarize the evaluation and management of commonly encountered orbital fractures from the ophthalmologic perspective and to provide an overview for all practicing ophthalmologists and ophthalmologists in training.Keywords: orbit, trauma, fracture, orbital floor, medial wall, zygomatic, zygomatic complex, zmc fracture, zygomaticomaxillary complex fractures 

  12. Collisional cascading - The limits of population growth in low earth orbit

    Science.gov (United States)

    Kessler, Donald J.

    1991-01-01

    Random collisions between made-made objects in earth orbit will lead to a significant source of orbital debris, but there are a number of uncertainties in these models, and additional analysis and data are required to fully characterize the future environment. However, the nature of these uncertainties are such that while the future environment is uncertain, the fact that collisions will control the future environment is less uncertain. The data that already exist is sufficient to show that cascading collisions will control the future debris environment with no, or very minor increases in the current low-earth-orbit population. Two populations control this process: explosion fragments and expended rocket bodies and payloads. Practices are already changing to limit explosions in low earth orbit; it is necessary to begin limiting the number of expended rocket bodies and payloads in orbit.

  13. Analysis of the change of period and the photometry of the minima of the eclipsing binary system TX Ursae Maioris

    International Nuclear Information System (INIS)

    Kreiner, J.M.; Tremko, J.

    1980-01-01

    Changes were investigated in the shape of the light curve of the close binary TX Ursae Maioris in the vicinity of the primary minimum and changes in the period were analysed. It was proved that the change in the shape of the light curve was asymmetric and the effect on determining the minimum epoch was established. The hypothesis of the existence of the effect of the rotation of the line of apsides was disproved. It was found that processes leading to a change in the period occurred at least three times. In the first approximation the values of the periods in all intervals are constant. The run of the last change indicates that it did not occur suddenly but over a period of several years. The light changes during the recent period can be expressed by a linear ephemeris derived from the photoelectric epochs of the minimum. (author)

  14. A planet in a polar orbit of 1.4 solar-mass star

    Directory of Open Access Journals (Sweden)

    Guenther E.W.

    2015-01-01

    Full Text Available Although more than a thousand transiting extrasolar planets have been discovered, only very few of them orbit stars that are more massive than the Sun. The discovery of such planets is interesting, because they have formed in disks that are more massive but had a shorter life time than those of solar-like stars. Studies of planets more massive than the Sun thus tell us how the properties of the proto-planetary disks effect the formation of planets. Another aspect that makes these planets interesting is that they have kept their original orbital inclinations. By studying them we can thus find out whether the orbital axes planets are initially aligned to the stars rotational axes, or not. Here we report on the discovery of a planet of a 1.4 solar-mass star with a period of 5.6 days in a polar orbit made by CoRoT. This new planet thus is one of the few known close-in planets orbiting a star that is substantially more massive than the Sun.

  15. Orbital motions as gradiometers for post-Newtonian tidal effects

    Directory of Open Access Journals (Sweden)

    Lorenzo eIorio

    2014-08-01

    Full Text Available The direct long-term changes occurring in the orbital dynamics of a local gravitationally bound binary system S due to the post-Newtonian tidal acceleration caused by an external massive source are investigated. A class of systems made of a test particle m rapidly orbiting with orbital frequency nb an astronomical body of mass M which, in turn, slowly revolves around a distantobject of mass M with orbital frequency nb'<< □ nb is considered. The characteristic frequenciesof the non-Keplerian orbital variations of m and of M itself are assumed to be negligible withrespect to both nb and nb'. General expressions for the resulting Newtonian and post-Newtoniantidal orbital shifts of m are obtained. The future missions BepiColombo and JUICE to Mercuryand Ganymede, respectively, are considered in view of a possible detection. The largest effects,of the order of □ 0:1 □□ 0:5 milliarcseconds per year (mas yr□□1, occur for the Ganymede orbiterof the JUICE mission. Although future improvements in spacecraft tracking and orbit determina14tion might, perhaps, reach the required sensitivity, the systematic bias represented by the otherknown orbital perturbations of both Newtonian and post-Newtonian origin would be overwhel16ming. The realization of a dedicated artificial mini-planetary system to be carried onboard andEarth-orbiting spacecraft is considered as well. Post-Newtonian tidal precessions as large as1 □□ 102 mas yr□□1 could be obtained, but the quite larger Newtonian tidal effects would be amajor source of systematic bias because of the present-day percent uncertainty in the product of the Earth’s mass times the Newtonian gravitational parameter.

  16. Peripheral orbit model

    CERN Document Server

    Hara, Yasuo

    1975-01-01

    Peripheral orbit model, in which an incoming hadron is assumed to revolve in a peripheral orbit around a target hadron, is discussed. The non-diffractive parts of two-body reaction amplitudes of hadrons are expressed in terms of the radius, width an absorptivity of the orbit. The radius of the orbit is about 1 fm and the width of the orbit is determined by the range of the interaction between the hadrons. The model reproduces all available experimental data on differential cross-sections and polarizations of $K^{-}p\\to K^{-}p$ and $\\bar K^{\\circ}n$ reactions for all angles successfully. This contribution is not included in the proceedings since it will appear in Progress of Theoretical Physics Vol. 51 (1974) No 2. Any person interested in the subject may apply for reprints to the author.

  17. Affective changes during the postpartum period: Influences of genetic and experiential factors.

    Science.gov (United States)

    Agrati, Daniella; Lonstein, Joseph S

    2016-01-01

    This article is part of a Special Issue "Parental Care". The postpartum period involves some truly transformational changes in females' socioemotional behaviors. For most female laboratory rodents and women, these changes include an improvement in their affective state, which has positive consequences for their ability to sensitively care for their offspring. There is heterogeneity among females in the likelihood of this positive affective change, though, and some women experience elevated anxiety or depression (or in rodents anxiety- or depression-related behaviors) after giving birth. We aim to contribute to the understanding of this heterogeneity in maternal affectivity by reviewing selected components of the scientific literatures on laboratory rodents and humans examining how mothers' physical contact with her infants, genetics, history of anxiety and depression and early-life and recent-life experiences contribute to individual differences in postpartum affective states. These studies together indicate that multiple biological and environmental factors beyond female maternal state shape affective responses during the postpartum period, and probably do so in an interactive manner. Furthermore, the similar capacity of some of these factors to modulate anxiety and depression in human and rodent mothers suggests cross-species conservation of mechanisms regulating postpartum affectivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Drift-free solar sail formations in elliptical Sun-synchronous orbits

    Science.gov (United States)

    Parsay, Khashayar; Schaub, Hanspeter

    2017-10-01

    To study the spatial and temporal variations of plasma in the highly dynamic environment of the magnetosphere, multiple spacecraft must fly in a formation. The objective for this study is to investigate the feasibility of solar sail formation flying in the Earth-centered, Sun-synchronous orbit regime. The focus of this effort is to enable formation flying for a group of solar sails that maintain a nominally fixed Sun-pointing attitude during formation flight, solely for the purpose of precessing their orbit apse lines Sun-synchronously. A fixed-attitude solar sail formation is motivated by the difficulties in the simultaneous control of orbit and attitude in flying solar sails. First, the secular rates of the orbital elements resulting from the effects of solar radiation pressure (SRP) are determined using averaging theory for a Sun-pointing attitude sail. These averaged rates are used to analytically derive the first-order necessary conditions for a drift-free solar sail formation in Sun-synchronous orbits, assuming a fixed Sun-pointing orientation for each sail in formation. The validity of the first-order necessary conditions are illustrated by designing quasi-periodic relative motions. Next, nonlinear programming is applied to design truly drift-free two-craft solar sail formations. Lastly, analytic expressions are derived to determine the long-term dynamics and sensitivity of the formation with respect to constant attitude errors, uncertainty in orbital elements, and uncertainty in a sail's characteristic acceleration.

  19. Orbital transport

    International Nuclear Information System (INIS)

    Oertel, H. Jr.; Koerner, H.

    1993-01-01

    The Third Aerospace Symposium in Braunschweig presented, for the first time, the possibility of bringing together the classical disciplines of aerospace engineering and the natural science disciplines of meteorology and air chemistry in a european setting. In this way, aspects of environmental impact on the atmosphere could be examined quantitatively. An essential finding of the european conference, is the unrestricted agreement of the experts that the given launch frequencies of the present orbital transport result in a negligible amount of pollutants being released in the atmosphere. The symposium does, however, call attention to the increasing need to consider the effect of orbital and atmospheric environmental impact of a future increase in launch frequencies of orbital transport in connection with future space stations. The Third Aerospace Symposium, 'Orbital Transport, Technical, Meteorological and Chemical Aspects', constituted a first forum of discussion for engineers and scientists. Questions of new orbital transport technologies and their environmental impact were to be discussed towards a first consensus. Through the 34 reports and articles, the general problems of space transportation and environmental protection were addressed, as well as particular aspects of high temperatures during reentry in the atmosphere of the earth, precision navigation of flight vehicles or flow behavior and air chemistry in the stratosphere. (orig./CT). 342 figs

  20. Orbital apex syndrome associated with fractures of the inferomedial orbital wall

    Directory of Open Access Journals (Sweden)

    Sugamata A

    2013-03-01

    Full Text Available Akira SugamataDepartment of Plastic and Reconstructive Surgery, Tokyo Medical University Hachioji Medical Center, Tokyo, JapanAbstract: Although trauma is one of the main causes of orbital apex syndrome (OAS, reports of OAS associated with orbital fractures are relatively rare. We recently treated two patients who sustained severe visual impairment with damage to multiple cranial nerves (third to sixth associated with inferomedial orbital wall fractures. In these patients, posterior movement of the globe caused neuropathy of the cranial and optic nerves by posterior globe edema and hemorrhage, or direct impact between the globe and wall, which might then have induced OAS in the cases described in this report. Steroid therapy was unsuccessful for optic neuropathy due to the delay between injury and administration. When treating patients with inferomedial orbital blowout fractures due to globe-to-wall contact, it is necessary to routinely assess and monitor visual acuity since there may be a delay between the injury and OAS onset.Keywords: orbital apex syndrome, orbital fracture, blowout fracture, optic nerve, globe-to-wall contact mechanism