WorldWideScience

Sample records for orbital express mission

  1. Automated and Adaptive Mission Planning for Orbital Express

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel; Koblick, Darin

    2008-01-01

    The Orbital Express space mission was a Defense Advanced Research Projects Agency (DARPA) lead demonstration of on-orbit satellite servicing scenarios, autonomous rendezvous, fluid transfers of hydrazine propellant, and robotic arm transfers of Orbital Replacement Unit (ORU) components. Boeing's Autonomous Space Transport Robotic Operations (ASTRO) vehicle provided the servicing to the Ball Aerospace's Next Generation Serviceable Satellite (NextSat) client. For communication opportunities, operations used the high-bandwidth ground-based Air Force Satellite Control Network (AFSCN) along with the relatively low-bandwidth GEO-Synchronous space-borne Tracking and Data Relay Satellite System (TDRSS) network. Mission operations were conducted out of the RDT&E Support Complex (RSC) at the Kirtland Air Force Base in New Mexico. All mission objectives were met successfully: The first of several autonomous rendezvous was demonstrated on May 5, 2007; autonomous free-flyer capture was demonstrated on June 22, 2007; the fluid and ORU transfers throughout the mission were successful. Planning operations for the mission were conducted by a team of personnel including Flight Directors, who were responsible for verifying the steps and contacts within the procedures, the Rendezvous Planners who would compute the locations and visibilities of the spacecraft, the Scenario Resource Planners (SRPs), who were concerned with assignment of communications windows, monitoring of resources, and sending commands to the ASTRO spacecraft, and the Mission planners who would interface with the real-time operations environment, process planning products and coordinate activities with the SRP. The SRP position was staffed by JPL personnel who used the Automated Scheduling and Planning ENvironment (ASPEN) to model and enforce mission and satellite constraints. The lifecycle of a plan began three weeks outside its execution on-board. During the planning timeframe, many aspects could change the plan

  2. Orbital Express mission operations planning and resource management using ASPEN

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel

    2008-04-01

    As satellite equipment and mission operations become more costly, the drive to keep working equipment running with less labor-power rises. Demonstrating the feasibility of autonomous satellite servicing was the main goal behind the Orbital Express (OE) mission. Like a tow-truck delivering gas to a car on the road, the "servicing" satellite of OE had to find the "client" from several kilometers away, connect directly to the client, and transfer fluid (or a battery) autonomously, while on earth-orbit. The mission met 100% of its success criteria, and proved that autonomous satellite servicing is now a reality for space operations. Planning the satellite mission operations for OE required the ability to create a plan which could be executed autonomously over variable conditions. As the constraints for execution could change weekly, daily, and even hourly, the tools used create the mission execution plans needed to be flexible and adaptable to many different kinds of changes. At the same time, the hard constraints of the plans needed to be maintained and satisfied. The Automated Scheduling and Planning Environment (ASPEN) tool, developed at the Jet Propulsion Laboratory, was used to create the schedule of events in each daily plan for the two satellites of the OE mission. This paper presents an introduction to the ASPEN tool, an overview of the constraints of the OE domain, the variable conditions that were presented within the mission, and the solution to operations that ASPEN provided. ASPEN has been used in several other domains, including research rovers, Deep Space Network scheduling research, and in flight operations for the NASA's Earth Observing One mission's EO1 satellite. Related work is discussed, as are the future of ASPEN and the future of autonomous satellite servicing.

  3. Orbital Express Mission Operations Planning and Resource Management using ASPEN

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Danny

    2008-01-01

    The Orbital Express satellite servicing demonstrator program is a DARPA program aimed at developing "a safe and cost-effective approach to autonomously service satellites in orbit". The system consists of: a) the Autonomous Space Transport Robotic Operations (ASTRO) vehicle, under development by Boeing Integrated Defense Systems, and b) a prototype modular next-generation serviceable satellite, NEXTSat, being developed by Ball Aerospace. Flexibility of ASPEN: a) Accommodate changes to procedures; b) Accommodate changes to daily losses and gains; c) Responsive re-planning; and d) Critical to success of mission planning Auto-Generation of activity models: a) Created plans quickly; b) Repetition/Re-use of models each day; and c) Guarantees the AML syntax. One SRP per day vs. Tactical team

  4. Titan Orbiter Aerorover Mission

    Science.gov (United States)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  5. Orbit determination for ISRO satellite missions

    Science.gov (United States)

    Rao, Ch. Sreehari; Sinha, S. K.

    Indian Space Research Organisation (ISRO) has been successful in using the in-house developed orbit determination and prediction software for satellite missions of Bhaskara, Rohini and APPLE. Considering the requirements of satellite missions, software packages are developed, tested and their accuracies are assessed. Orbit determination packages developed are SOIP, for low earth orbits of Bhaskara and Rohini missions, ORIGIN and ODPM, for orbits related to all phases of geo-stationary missions and SEGNIP, for drift and geo-stationary orbits. Software is tested and qualified using tracking data of SIGNE-3, D5-B, OTS, SYMPHONIE satellites with the help of software available with CNES, ESA and DFVLR. The results match well with those available from these agencies. These packages have supported orbit determination successfully throughout the mission life for all ISRO satellite missions. Member-Secretary

  6. Titan Orbiter with Aerorover Mission (TOAM)

    Science.gov (United States)

    Sittler, Edward C.; Cooper, J. F.; Mahaffey, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; TOAM Team

    2006-12-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG 500 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan’s atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  7. The Mars Reconnaissance Orbiter Mission: 10 Years of Exploration from Mars Orbit

    Science.gov (United States)

    Johnston, M. Daniel; Zurek, Richard W.

    2016-01-01

    The Mars Reconnaissance Orbiter ( MRO ) entered Mars orbit on March 10, 2006. After five months of aerobraking, a series of propulsive maneuvers were used to establish the desired low -altitude science orbit. The spacecraft has been on station in its 255 x 320 k m, sun -synchronous (approximately 3 am -pm ), primary science orbit since September 2006 performing both scientific and Mars programmatic support functions. This paper will provide a summary of the major achievements of the mission to date and the major flight activities planned for the remainder of its third Extended Mission (EM3). Some of the major flight challenges the flight team has faced are also discussed.

  8. Orbital Express fluid transfer demonstration system

    Science.gov (United States)

    Rotenberger, Scott; SooHoo, David; Abraham, Gabriel

    2008-04-01

    Propellant resupply of orbiting spacecraft is no longer in the realm of high risk development. The recently concluded Orbital Express (OE) mission included a fluid transfer demonstration that operated the hardware and control logic in space, bringing the Technology Readiness Level to a solid TRL 7 (demonstration of a system prototype in an operational environment). Orbital Express (funded by the Defense Advanced Research Projects Agency, DARPA) was launched aboard an Atlas-V rocket on March 9th, 2007. The mission had the objective of demonstrating technologies needed for routine servicing of spacecraft, namely autonomous rendezvous and docking, propellant resupply, and orbital replacement unit transfer. The demonstration system used two spacecraft. A servicing vehicle (ASTRO) performed multiple dockings with the client (NextSat) spacecraft, and performed a variety of propellant transfers in addition to exchanges of a battery and computer. The fluid transfer and propulsion system onboard ASTRO, in addition to providing the six degree-of-freedom (6 DOF) thruster system for rendezvous and docking, demonstrated autonomous transfer of monopropellant hydrazine to or from the NextSat spacecraft 15 times while on orbit. The fluid transfer system aboard the NextSat vehicle was designed to simulate a variety of client systems, including both blowdown pressurization and pressure regulated propulsion systems. The fluid transfer demonstrations started with a low level of autonomy, where ground controllers were allowed to review the status of the demonstration at numerous points before authorizing the next steps to be performed. The final transfers were performed at a full autonomy level where the ground authorized the start of a transfer sequence and then monitored data as the transfer proceeded. The major steps of a fluid transfer included the following: mate of the coupling, leak check of the coupling, venting of the coupling, priming of the coupling, fluid transfer, gauging

  9. SEP Mission Design Space for Mars Orbiters

    Science.gov (United States)

    Woolley, Ryan C.; Nicholas, Austin K.

    2015-01-01

    The advancement of solar-electric propulsion (SEP) technologies and larger, light-weight solar arrays offer a tremendous advantage to Mars orbiters in terms of both mass and timeline flexibility. These advantages are multiplied for round-trip orbiters (e.g. potential Mars sample return) where a large total Delta V would be required. In this paper we investigate the mission design characteristics of mission concepts utilizing various combinations and types of SEP thrusters, solar arrays, launch vehicles, launch dates, arrival dates, etc. SEP allows for greater than 50% more mass delivered and launch windows of months to years. We also present the SEP analog to the ballistic Porkchop plot - the "Bacon" plot.

  10. The Impact of Mission Duration on a Mars Orbital Mission

    Science.gov (United States)

    Arney, Dale; Earle, Kevin; Cirillo, Bill; Jones, Christopher; Klovstad, Jordan; Grande, Melanie; Stromgren, Chel

    2017-01-01

    Performance alone is insufficient to assess the total impact of changing mission parameters on a space mission concept, architecture, or campaign; the benefit, cost, and risk must also be understood. This paper examines the impact to benefit, cost, and risk of changing the total mission duration of a human Mars orbital mission. The changes in the sizing of the crew habitat, including consumables and spares, was assessed as a function of duration, including trades of different life support strategies; this was used to assess the impact on transportation system requirements. The impact to benefit is minimal, while the impact on cost is dominated by the increases in transportation costs to achieve shorter total durations. The risk is expected to be reduced by decreasing total mission duration; however, large uncertainty exists around the magnitude of that reduction.

  11. A Mars orbiter/rover/penetrator mission for the 1984 opportunity

    Science.gov (United States)

    Hastrup, R.; Driver, J.; Nagorski, R.

    1977-01-01

    A point design mission is described that utilizes the 1984 opportunity to extend the exploration of Mars after the successful Viking operations and provide the additional scientific information needed before conducting a sample return mission. Two identical multi-element spacecraft are employed, each consisting of (1) an orbiter, (2) a Viking-derived landing system that delivers a heavily instrumented, semi-autonomous rover, and (3) three penetrators deployed from the approach trajectory. Selection of the orbit profiles requires consideration of several important factors in order to satisfy all of the mission goals.

  12. A novel orbiter mission concept for venus with the EnVision proposal

    Science.gov (United States)

    de Oliveira, Marta R. R.; Gil, Paulo J. S.; Ghail, Richard

    2018-07-01

    In space exploration, planetary orbiter missions are essential to gain insight into planets as a whole, and to help uncover unanswered scientific questions. In particular, the planets closest to the Earth have been a privileged target of the world's leading space agencies. EnVision is a mission proposal designed for Venus and competing for ESA's next launch opportunity with the objective of studying Earth's closest neighbor. The main goal is to study geological and atmospheric processes, namely surface processes, interior dynamics and atmosphere, to determine the reasons behind Venus and Earth's radically different evolution despite the planets' similarities. To achieve these goals, the operational orbit selection is a fundamental element of the mission design process. The design of an orbit around Venus faces specific challenges, such as the impossibility of choosing Sun-synchronous orbits. In this paper, an innovative genetic algorithm optimization was applied to select the optimal orbit based on the parameters with more influence in the mission planning, in particular the mission duration and the coverage of sites of interest on the Venusian surface. The solution obtained is a near-polar circular orbit with an altitude of 259 km that enables the coverage of all priority targets almost two times faster than with the parameters considered before this study.

  13. Titan Orbiter Aerorover Mission with Enceladus Science (TOAMES)

    Science.gov (United States)

    Sittler, E.; Cooper, J.; Mahaffy, P.; Fairbrother, D.; de Pater, I.; Schulze-Makuch, D.; Pitman, J.

    2007-08-01

    same time made us aware of how little we understand about these bodies. For example, the source, and/or recycling mechanism, of methane in Titan's atmosphere is still puzzling. Indeed, river beds (mostly dry) and lakes have been spotted, and occasional clouds have been seen, but the physics to explain the observations is still mostly lacking, since our "image" of Titan is still sketchy and quite incomplete. Enceladus, only 500 km in extent, is even more puzzling, with its fiery plumes of vapor, dust and ice emanating from its south polar region, "feeding" Saturn's E ring. Long term variability of magnetospheric plasma, neutral gas, E-ring ice grain density, radio emissions, and corotation of Saturn's planetary magnetic field in response to Enceladus plume activity are of great interest for Saturn system science. Both Titan and Enceladus are bodies of considerable astrobiological interest in view of high organic abundances at Titan and potential subsurface liquid water at Enceladus. We propose to develop a new mission to Titan and Enceladus, the Titan Orbiter Aerorover Mission with Enceladus Science (TOAMES), to address these questions using novel new technologies. TOAMES is a multi-faceted mission that starts with orbit insertion around Saturn using aerobraking with Titan's extended atmosphere. We then have an orbital tour around Saturn (for 1-2 years) and close encounters with Enceladus, before it goes into orbit around Titan (via aerocapture). During the early reconnaissance phase around Titan, perhaps 6 months long, the orbiter will use altimetry, radio science and remote sensing instruments to measure Titan's global topography, subsurface structure and atmospheric winds. This information will be used to determine where and when to release the Aerorover, so that it can navigate safely around Titan and identify prime sites for surface sampling and analysis. In situ instruments will sample the upper atmosphere which may provide the seed population for the complex

  14. Optimisation of the Future Routine Orbit for Mars Express

    Science.gov (United States)

    Carranza, Manuel; Companys, Vincente

    2007-01-01

    Mars Express (MEX), the first planetary mission of the European Space Agency (ESA), reached Mars on December 25th 2003. Since then it is performing routine operations. Its operational phase had to cover one Martian year, with the possibility of an extension for a second Martian year (i.e. until November 2007). The end of the mission extension is approaching but, given the good health of the payload instruments and the high science return of the mission, there is a strong will to achieve further extensions. Mars Express is also seen as an important asset, capable to provide relay functions for future Martian missions. The ESA Science Program Committee has recently approved a second extension of the MEX mission until May 2009 and even further extensions are possible. Mars Express has an eccentric quasi-polar orbit with a period of approximately 6.72 hours and a pericentre height of about 300 km. Science observations are mainly performed at pericentre (but not only). In addition the orbit has a resonance of 11 revolutions per 3 Martian days. This means that ground tracks corresponding to orbits separated by 11 revolutions are adjacent, such that a given area can be covered by the on-board camera without leaving gaps. The J2 effect of Mars causes a drift of both ascending node and argument of pericentre. The drift of argument of pericentre makes it possible to observe periodically all Mars latitudes from close distance. Illumination conditions at pericentre are influenced by both the drift of the argument of pericentre and the drift of ascending node, as well as by the rotation of Mars around the Sun. The original MEX routine orbit was optimized for the duration of the nominal mission and extension, such that it produced a balanced share of day-side observations (for the optical instruments) and night-side observations (for the radar). The orbit was thus not optimized for the time beyond the assumed extension. Indeed, the evolution of the ascending node and argument of

  15. Active Debris Removal mission design in Low Earth Orbit

    Science.gov (United States)

    Martin, Th.; Pérot, E.; Desjean, M.-Ch.; Bitetti, L.

    2013-03-01

    Active Debris Removal (ADR) aims at removing large sized intact objects ― defunct satellites, rocket upper-stages ― from space crowded regions. Why? Because they constitute the main source of the long-term debris environment deterioration caused by possible future collisions with fragments and worse still with other intact but uncontrolled objects. In order to limit the growth of the orbital debris population in the future (referred to as the Kessler syndrome), it is now highly recommended to carry out such ADR missions, together with the mitigation measures already adopted by national agencies (such as postmission disposal). At the French Space Agency, CNES, and in the frame of advanced studies, the design of such an ADR mission in Low Earth Orbit (LEO) is under evaluation. A two-step preliminary approach has been envisaged. First, a reconnaissance mission based on a small demonstrator (˜500 kg) rendezvousing with several targets (observation and in-flight qualification testing). Secondly, an ADR mission based on a larger vehicle (inherited from the Orbital Transfer Vehicle (OTV) concept) being able to capture and deorbit several preselected targets by attaching a propulsive kit to these targets. This paper presents a flight dynamics level tradeoff analysis between different vehicle and mission concepts as well as target disposal options. The delta-velocity, times, and masses required to transfer, rendezvous with targets and deorbit are assessed for some propelled systems and propellant less options. Total mass budgets are then derived for two end-to-end study cases corresponding to the reconnaissance and ADR missions mentioned above.

  16. Prospective Ukrainian lunar orbiter mission

    Science.gov (United States)

    Shkuratov, Y.; Litvinenko, L.; Shulga, V.; Yatskiv, Y.; Kislyuk, V.

    Ukraine has launch vehicles that are able to deliver about 300 kg to the lunar orbit. Future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after Clementine and Lunar Prospector missions and the future missions, like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical polarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface in a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are: a synthetic aperture imaging radar (SAR), ground-penetrating radar (GPR), and imaging polarimeter (IP). The main purpose of SAR is to study with high resolution (50 m) the permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential of resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for permanent manned bases on the Moon. Radar imaging and mapping of other interesting regions could be also planned. Multi-frequencies multi-polarization soun d ing of the lunar surface with GPR can provide information about internal structure of the lunar surface from meters to several hundred meters deep. GPR can be used for measuring the megaregolith layer properties, detection of cryptomaria, and studies of internal structure of the largest craters. IP will be a CCD camera with an additional suite of polarizers. Modest spatial resolution (100 m) should provide a total coverage or a large portion of the lunar surface in oblique viewing basically at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional radiophysical experiments are considered with the use of the SAR system, e.g., bistatic radar

  17. Performance Evaluation of Orbit Determination System during Initial Phase of INSAT-3 Mission

    Science.gov (United States)

    Subramanian, B.; Vighnesam, N. V.

    INSAT-3C is the second in the third generation of ISRO's INSAT series of satellites that was launched by ARIANE-SPACE on 23 January 2002 at 23 h 46 m 57 s (lift off time in U.T). The ARIANE-4 Flight Nr.147 took off from Kourou in French Guyana and injected the 2750-kg communications satellite in a geostationary transfer orbit of (571 X 35935) km with an inclination of 4.007 deg at 00 h 07 m 48 s U.T on 24 January 2002 (1252 s after lift off). The satellite was successfully guided into its intended geostationary position of 74 deg E longitude by 09 February 2002 after a series of four firings of its Liquid Apogee Motor (LAM) and four station acquisition (STAQ) maneuvers. Six distinct phases of the mission were categorized based on the orbit characteristics of the INSAT- 3C mission, namely, the pre-launch phase, the launch phase, transfer orbit phase, intermediate orbit phase, drift orbit phase and synchronous orbit phase. The orbit with a perigee height of 571 km at injection of the satellite, was gradually raised to higher orbits with perigee height increasing to 9346 km after Apogee Motor Firing #1 (AMF #1), 18335 km after AMF #2, 32448 km after AMF #3 and 35493 km after AMF #4. The North and South solar panels and the reflectors were deployed at this stage of the mission and the attitude of the satellite with respect to the three axes was stabilized. The Orbit Determination System (ODS) that was used in the initial phase of the mission played a crucial role in realizing the objectives of the mission. This system which consisted of Tracking Data Pre-Processing (TDPP) software, Ephemeris Generation (EPHGEN) software and the Orbit Determination (OD) software, performed rigorously and its results were used for planning the AMF and STAQ strategies with a greater degree of accuracy. This paper reports the results of evaluation of the performance of the apogee-motor firings employed to place the satellite in its intended position where it is collocated with INSAT-1D

  18. Magnetoshell Aerocapture for Manned Missions and Planetary Deep Space Orbiters

    Data.gov (United States)

    National Aeronautics and Space Administration — It is clear from past mission studies that a manned Mars mission, as well as deep space planetary orbiters will require aerobraking and aerocapture which use...

  19. Abort Options for Human Missions to Earth-Moon Halo Orbits

    Science.gov (United States)

    Jesick, Mark C.

    2013-01-01

    Abort trajectories are optimized for human halo orbit missions about the translunar libration point (L2), with an emphasis on the use of free return trajectories. Optimal transfers from outbound free returns to L2 halo orbits are numerically optimized in the four-body ephemeris model. Circumlunar free returns are used for direct transfers, and cislunar free returns are used in combination with lunar gravity assists to reduce propulsive requirements. Trends in orbit insertion cost and flight time are documented across the southern L2 halo family as a function of halo orbit position and free return flight time. It is determined that the maximum amplitude southern halo incurs the lowest orbit insertion cost for direct transfers but the maximum cost for lunar gravity assist transfers. The minimum amplitude halo is the most expensive destination for direct transfers but the least expensive for lunar gravity assist transfers. The on-orbit abort costs for three halos are computed as a function of abort time and return time. Finally, an architecture analysis is performed to determine launch and on-orbit vehicle requirements for halo orbit missions.

  20. Ground Contact Analysis for Korea’s Fictitious Lunar Orbiter Mission

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2013-12-01

    Full Text Available In this research, the ground contact opportunity for the fictitious low lunar orbiter is analyzed to prepare for a future Korean lunar orbiter mission. The ground contact opportunity is basically derived from geometrical relations between the typical ground stations at the Earth, the relative positions of the Earth and Moon, and finally, the lunar orbiter itself. Both the cut-off angle and the orbiter’s Line of Sight (LOS conditions (weather orbiter is located at near or far side of the Moon seen from the Earth are considered to determine the ground contact opportunities. Four KOMPSAT Ground Stations (KGSs are assumed to be Korea’s future Near Earth Networks (NENs to support lunar missions, and world-wide separated Deep Space Networks (DSNs are also included during the contact availability analysis. As a result, it is concluded that about 138 times of contact will be made between the orbiter and the Daejeon station during 27.3 days of prediction time span. If these contact times are converted into contact duration, the duration is found to be about 8.55 days, about 31.31% of 27.3 days. It is discovered that selected four KGSs cannot provide continuous tracking of the lunar orbiter, meaning that international collaboration is necessary to track Korea’s future lunar orbiter effectively. Possible combinations of world-wide separated DSNs are also suggested to compensate for the lack of contact availability with only four KGSs, as with primary and backup station concepts. The provided algorithm can be easily modified to support any type of orbit around the Moon, and therefore, the presented results could aid further progress in the design field of Korea’s lunar orbiter missions.

  1. The O/OREOS Mission - Astrobiology in Low Earth Orbit. [Astrobiology in Low Earth Orbit

    Science.gov (United States)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; hide

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72 deg), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu cm) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA0s scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  2. A Summary of the Rendezvous, Proximity Operations, Docking, and Undocking (RPODU) Lessons Learned from the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) Demonstration System Mission

    Science.gov (United States)

    Dennehy, Cornelius J.; Carpenter, James R.

    2011-01-01

    The Guidance, Navigation, and Control (GN&C) Technical Discipline Team (TDT) sponsored Dr. J. Russell Carpenter, a Navigation and Rendezvous Subject Matter Expert (SME) from NASA's Goddard Space Flight Center (GSFC), to provide support to the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) rendezvous and docking flight test that was conducted in 2007. When that DARPA OE mission was completed, Mr. Neil Dennehy, NASA Technical Fellow for GN&C, requested Dr. Carpenter document his findings (lessons learned) and recommendations for future rendezvous missions resulting from his OE support experience. This report captures lessons specifically from anomalies that occurred during one of OE's unmated operations.

  3. Mars Relays Satellite Orbit Design Considerations for Global Support of Robotic Surface Missions

    Science.gov (United States)

    Hastrup, Rolf; Cesarone, Robert; Cook, Richard; Knocke, Phillip; McOmber, Robert

    1993-01-01

    This paper discusses orbit design considerations for Mars relay satellite (MRS)support of globally distributed robotic surface missions. The orbit results reported in this paper are derived from studies of MRS support for two types of Mars robotic surface missions: 1) the mars Environmental Survey (MESUR) mission, which in its current definition would deploy a global network of up to 16 small landers, and 2)a Small Mars Sample Return (SMSR) mission, which included four globally distributed landers, each with a return stage and one or two rovers, and up to four additional sets of lander/rover elements in an extended mission phase.

  4. Orbital mechanics and astrodynamics techniques and tools for space missions

    CERN Document Server

    Hintz, Gerald R

    2015-01-01

    This textbook covers fundamental and advanced topics in orbital mechanics and astrodynamics to expose the student to the basic dynamics of space flight. The engineers and graduate students who read this class-tested text will be able to apply their knowledge to mission design and navigation of space missions. Through highlighting basic, analytic and computer-based methods for designing interplanetary and orbital trajectories, this text provides excellent insight into astronautical techniques and tools. This book is ideal for graduate students in Astronautical or Aerospace Engineering and related fields of study, researchers in space industrial and governmental research and development facilities, as well as researchers in astronautics. This book also: ·       Illustrates all key concepts with examples ·       Includes exercises for each chapter ·       Explains concepts and engineering tools a student or experienced engineer can apply to mission design and navigation of space missions ·�...

  5. The Lunar Reconnaissance Orbiter, a Planning Tool for Missions to the Moon

    Science.gov (United States)

    Keller, J. W.; Petro, N. E.

    2017-12-01

    The Lunar Reconnaissance Orbiter Mission was conceived as a one year exploration mission to pave the way for a return to the lunar surface, both robotically and by humans. After a year in orbit LRO transitioned to a science mission but has operated in a duel role of science and exploration ever since. Over the years LRO has compiled a wealth of data that can and is being used for planning future missions to the Moon by NASA, other national agencies and by private enterprises. While collecting this unique and unprecedented data set, LRO's science investigations have uncovered new questions that motivate new missions and targets. Examples include: when did volcanism on the Moon cease, motivating a sample return mission from an irregular mare patch such as Ina-D; or, is there significant water ice sequestered near the poles outside of the permanently shaded regions? In this presentation we will review the data products, tools and maps that are available for mission planning, discuss how the operating LRO mission can further enhance future missions, and suggest new targets motivated by LRO's scientific investigations.

  6. Writing the History of Space Missions: Rosetta and Mars Express

    Science.gov (United States)

    Coradini, M.; Russo, A.

    2011-10-01

    Mars Express is the first planetary mission accomplished by the European Space Agency (ESA). Launched in early June 2003, the spacecraft entered Mars's orbit on Christmas day of that year, demonstrating the new European commitment to planetary exploration. Following a failed attempt in the mid-­-1980s, two valid proposals for a European mission to Mars were submitted to ESA's decision-­-making bodies in the early 1990s, in step with renewed international interest in Mars exploration. Both were rejected, however, in the competitive selection process for the agency's Science Programme. Eventually, the Mars Express proposal emerged during a severe budgetary crisis in the mid-­-1990s as an exemplar of a "flexible mission" that could reduce project costs and development time. Its successful maneuvering through financial difficulties and conflicting scientific interests was due to the new management approach as well as to the public appeal of Mars exploration. In addition to providing a case study in the functioning of the ESA's Science Programme, the story of Mars Express discussed in this paper provides a case study in the functioning of the European Space Agency's Science Programme and suggests some general considerations on the peculiar position of space research in the general field of the history of science and technology.

  7. Autonomous Mission Design in Extreme Orbit Environments

    Science.gov (United States)

    Surovik, David Allen

    An algorithm for autonomous online mission design at asteroids, comets, and small moons is developed to meet the novel challenges of their complex non-Keplerian orbit environments, which render traditional methods inapplicable. The core concept of abstract reachability analysis, in which a set of impulsive maneuvering options is mapped onto a space of high-level mission outcomes, is applied to enable goal-oriented decision-making with robustness to uncertainty. These nuanced analyses are efficiently computed by utilizing a heuristic-based adaptive sampling scheme that either maximizes an objective function for autonomous planning or resolves details of interest for preliminary analysis and general study. Illustrative examples reveal the chaotic nature of small body systems through the structure of various families of reachable orbits, such as those that facilitate close-range observation of targeted surface locations or achieve soft impact upon them. In order to fulfill extensive sets of observation tasks, the single-maneuver design method is implemented in a receding-horizon framework such that a complete mission is constructed on-the-fly one piece at a time. Long-term performance and convergence are assured by augmenting the objective function with a prospect heuristic, which approximates the likelihood that a reachable end-state will benefit the subsequent planning horizon. When state and model uncertainty produce larger trajectory deviations than were anticipated, the next control horizon is advanced to allow for corrective action -- a low-frequency form of feedback control. Through Monte Carlo analysis, the planning algorithm is ultimately demonstrated to produce mission profiles that vary drastically in their physical paths but nonetheless consistently complete all goals, suggesting a high degree of flexibility. It is further shown that the objective function can be tuned to preferentially minimize fuel cost or mission duration, as well as to optimize

  8. Optimizing Orbit-Instrument Configuration for Global Precipitation Mission (GPM) Satellite Fleet

    Science.gov (United States)

    Smith, Eric A.; Adams, James; Baptista, Pedro; Haddad, Ziad; Iguchi, Toshio; Im, Eastwood; Kummerow, Christian; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Following the scientific success of the Tropical Rainfall Measuring Mission (TRMM) spearheaded by a group of NASA and NASDA scientists, their external scientific collaborators, and additional investigators within the European Union's TRMM Research Program (EUROTRMM), there has been substantial progress towards the development of a new internationally organized, global scale, and satellite-based precipitation measuring mission. The highlights of this newly developing mission are a greatly expanded scope of measuring capability and a more diversified set of science objectives. The mission is called the Global Precipitation Mission (GPM). Notionally, GPM will be a constellation-type mission involving a fleet of nine satellites. In this fleet, one member is referred to as the "core" spacecraft flown in an approximately 70 degree inclined non-sun-synchronous orbit, somewhat similar to TRMM in that it carries both a multi-channel polarized passive microwave radiometer (PMW) and a radar system, but in this case it will be a dual frequency Ku-Ka band radar system enabling explicit measurements of microphysical DSD properties. The remainder of fleet members are eight orbit-synchronized, sun-synchronous "constellation" spacecraft each carrying some type of multi-channel PMW radiometer, enabling no worse than 3-hour diurnal sampling over the entire globe. In this configuration the "core" spacecraft serves as a high quality reference platform for training and calibrating the PMW rain retrieval algorithms used with the "constellation" radiometers. Within NASA, GPM has advanced to the pre-formulation phase which has enabled the initiation of a set of science and technology studies which will help lead to the final mission design some time in the 2003 period. This presentation first provides an overview of the notional GPM program and mission design, including its organizational and programmatic concepts, scientific agenda, expected instrument package, and basic flight

  9. Optimization of high-inclination orbits using planetary flybys for a zodiacal light-imaging mission

    Science.gov (United States)

    Soto, Gabriel; Lloyd, James; Savransky, Dmitry; Grogan, Keith; Sinha, Amlan

    2017-09-01

    The zodiacal light caused by interplanetary dust grains is the second-most luminous source in the solar system. The dust grains coalesce into structures reminiscent of early solar system formation; their composition has been predicted through simulations and some edge-on observations but better data is required to validate them. Scattered light from these dust grains presents challenges to exoplanet imaging missions: resolution of their stellar environment is hindered by exozodiacal emissions and therefore sets the size and scope of these imaging missions. Understanding the composition of this interplanetary dust in our solar system requires an imaging mission from a vantage point above the ecliptic plane. The high surface brightness of the zodiacal light requires only a small aperture with moderate sensitivity; therefore a 3cm camera is enough to meet the science goals of the mission at an orbital height of 0.1AU above the ecliptic. A 6U CubeSat is the target mass for this mission which will be a secondary payload detaching from an existing interplanetary mission. Planetary flybys are utilized to produce most of the plane change Δv deep space corrective maneuvers are implemented to optimize each planetary flyby. We developed an algorithm which determines the minimum Δv required to place the CubeSat on a transfer orbit to a planet's sphere of influence and maximizes the resultant orbital height with respect to the ecliptic plane. The satellite could reach an orbital height of 0.22 AU with an Earth gravity assist in late 2024 by boarding the Europa Clipper mission.

  10. NASA's Parker Solar Probe and Solar Orbiter Missions: Discovering the Secrets of our Star

    Science.gov (United States)

    Zurbuchen, T.

    2017-12-01

    This session will explore the importance of the Parker Solar Probe and Solar Orbiter missions to NASA Science, and the preparations for discoveries from these missions. NASA's Parker Solar Probe and Solar Orbiter Missions have complementary missions and will provide unique and unprecedented contributions to heliophysics and astrophysics overall. These inner heliospheric missions will also be part of the Heliophysics System Observatory which includes an increasing amount of innovative new technology and architectures to address science and data in an integrated fashion and advance models through assimilation and system-level tests. During this talk, we will briefly explore how NASA Heliophysics research efforts not only increase our understanding and predictive capability of space weather phenomena, but also provide key insights on fundamental processes important throughout the universe.

  11. IUS/TUG orbital operations and mission support study. Volume 4: Project planning data

    Science.gov (United States)

    1975-01-01

    Planning data are presented for the development phases of interim upper stage (IUS) and tug systems. Major project planning requirements, major event schedules, milestones, system development and operations process networks, and relevant support research and technology requirements are included. Topics discussed include: IUS flight software; tug flight software; IUS/tug ground control center facilities, personnel, data systems, software, and equipment; IUS mission events; tug mission events; tug/spacecraft rendezvous and docking; tug/orbiter operations interface, and IUS/orbiter operations interface.

  12. The Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter (LRO) mission

    Science.gov (United States)

    Riris, H.; Cavanaugh, J.; Sun, X.; Liiva, P.; Rodriguez, M.; Neuman, G.

    2017-11-01

    The Lunar Orbiter Laser Altimeter (LOLA) instrument [1-3] on NASA's Lunar Reconnaissance Orbiter (LRO) mission, launched on June 18th, 2009, from Kennedy Space Center, Florida, will provide a precise global lunar topographic map using laser altimetry. LOLA will assist in the selection of landing sites on the Moon for future robotic and human exploration missions and will attempt to detect the presence of water ice on or near the surface, which is one of the objectives of NASA's Exploration Program. Our present knowledge of the topography of the Moon is inadequate for determining safe landing areas for NASA's future lunar exploration missions. Only those locations, surveyed by the Apollo missions, are known with enough detail. Knowledge of the position and characteristics of the topographic features on the scale of a lunar lander are crucial for selecting safe landing sites. Our present knowledge of the rest of the lunar surface is at approximately 1 km kilometer level and in many areas, such as the lunar far side, is on the order of many kilometers. LOLA aims to rectify that and provide a precise map of the lunar surface on both the far and near side of the moon. LOLA uses short (6 ns) pulses from a single laser through a Diffractive Optical Element (DOE) to produce a five-beam pattern that illuminates the lunar surface. For each beam, LOLA measures the time of flight (range), pulse spreading (surface roughness), and transmit/return energy (surface reflectance). LOLA will produce a high-resolution global topographic model and global geodetic framework that enables precise targeting, safe landing, and surface mobility to carry out exploratory activities. In addition, it will characterize the polar illumination environment, and image permanently shadowed regions of the lunar surface to identify possible locations of surface ice crystals in shadowed polar craters.

  13. Evaluation of use of MPAD trajectory tape and number of orbit points for orbiter mission thermal predictions

    Science.gov (United States)

    Vogt, R. A.

    1979-01-01

    The application of using the mission planning and analysis division (MPAD) common format trajectory data tape to predict temperatures for preflight and post flight mission analysis is presented and evaluated. All of the analyses utilized the latest Space Transportation System 1 flight (STS-1) MPAD trajectory tape, and the simplified '136 note' midsection/payload bay thermal math model. For the first 6.7 hours of the STS-1 flight profile, transient temperatures are presented for selected nodal locations with the current standard method, and the trajectory tape method. Whether the differences are considered significant or not depends upon the view point. Other transient temperature predictions are also presented. These results were obtained to investigate an initial concern that perhaps the predicted temperature differences between the two methods would not only be caused by the inaccuracies of the current method's assumed nominal attitude profile but also be affected by a lack of a sufficient number of orbit points in the current method. Comparison between 6, 12, and 24 orbit point parameters showed a surprising insensitivity to the number of orbit points.

  14. Constellations of Next Generation Gravity Missions: Simulations regarding optimal orbits and mitigation of aliasing errors

    Science.gov (United States)

    Hauk, M.; Pail, R.; Gruber, T.; Purkhauser, A.

    2017-12-01

    The CHAMP and GRACE missions have demonstrated the tremendous potential for observing mass changes in the Earth system from space. In order to fulfil future user needs a monitoring of mass distribution and mass transport with higher spatial and temporal resolution is required. This can be achieved by a Bender-type Next Generation Gravity Mission (NGGM) consisting of a constellation of satellite pairs flying in (near-)polar and inclined orbits, respectively. For these satellite pairs the observation concept of the GRACE Follow-on mission with a laser-based low-low satellite-to-satellite tracking (ll-SST) system and more precise accelerometers and state-of-the-art star trackers is adopted. By choosing optimal orbit constellations for these satellite pairs high frequency mass variations will be observable and temporal aliasing errors from under-sampling will not be the limiting factor anymore. As part of the European Space Agency (ESA) study "ADDCON" (ADDitional CONstellation and Scientific Analysis Studies of the Next Generation Gravity Mission) a variety of mission design parameters for such constellations are investigated by full numerical simulations. These simulations aim at investigating the impact of several orbit design choices and at the mitigation of aliasing errors in the gravity field retrieval by co-parametrization for various constellations of Bender-type NGGMs. Choices for orbit design parameters such as altitude profiles during mission lifetime, length of retrieval period, value of sub-cycles and choice of prograde versus retrograde orbits are investigated as well. Results of these simulations are presented and optimal constellations for NGGM's are identified. Finally, a short outlook towards new geophysical applications like a near real time service for hydrology is given.

  15. MICROSCOPE Mission: on-orbit assessment of the Drag-Free and Attitude Control System

    DEFF Research Database (Denmark)

    Prieur, Pascal; Lienart, Thomas; Rodrigues, Manuel

    Microscope successfully completed in November 2016 its on-orbit assessment. The paper begins with a brief description of the mission, the challenging performances the DFACS has to comply with and how they led to the hardwareand software design. Then we go through the major phases of the commissio......Microscope successfully completed in November 2016 its on-orbit assessment. The paper begins with a brief description of the mission, the challenging performances the DFACS has to comply with and how they led to the hardwareand software design. Then we go through the major phases...

  16. Tracking and data system support for the Mariner Mars 1971 mission. Volume 3: Orbit insertion through end of primary mission

    Science.gov (United States)

    Barnum, P. W.; Renzetti, N. A.; Textor, G. P.; Kelly, L. B.

    1973-01-01

    The Tracking and Data System (TDS) Support for the Mariner Mars 1971 Mission final report contains the deep space tracking and data acquisition activities in support of orbital operations. During this period a major NASA objective was accomplished: completion of the 180th revolution and 90th day of data gathering with the spacecraft about the planet Mars. Included are presentations of the TDS flight support pass chronology data for each of the Deep Space Stations used, and performance evaluation for the Deep Space Network Telemetry, Tracking, Command, and Monitor Systems. With the loss of Mariner 8 at launch, Mariner 9 assumed the mission plan of Mariner 8, which included the TV mapping cycles and a 12-hr orbital period. The mission plan was modified as a result of a severe dust storm on the surface of Mars, which delayed the start of the TV mapping cycles. Thus, the end of primary mission date was extended to complete the TV mapping cycles.

  17. EUV imager and spectrometer for LYOT and solar orbiter space missions

    Science.gov (United States)

    Millard, Anne; Lemaire, Philippe; Vial, Jean-Claude

    2017-11-01

    In the 2010 horizon, solar space missions such as LYOT and Solar Orbiter will allow high cadence UV observations of the Sun at spatial and spectral resolution never obtained before. To reach these goals, the two missions could take advantage of spectro-imagers. A reflective only optical solution for such an instrument is described in this paper and the first results of the mock-up being built at IAS are shown.

  18. Autonomous Mars ascent and orbit rendezvous for earth return missions

    Science.gov (United States)

    Edwards, H. C.; Balmanno, W. F.; Cruz, Manuel I.; Ilgen, Marc R.

    1991-01-01

    The details of tha assessment of autonomous Mars ascent and orbit rendezvous for earth return missions are presented. Analyses addressing navigation system assessments, trajectory planning, targeting approaches, flight control guidance strategies, and performance sensitivities are included. Tradeoffs in the analysis and design process are discussed.

  19. Post-aerocapture orbit selection and maintenance for the Aerofast mission to Mars

    Science.gov (United States)

    Pontani, Mauro; Teofilatto, Paolo

    2012-10-01

    Aerofast is the abbreviation of “aerocapture for future space transportation” and represents a project aimed at developing aerocapture techniques with regard to an interplanetary mission to Mars, in the context of the 7th Framework Program, with the financial support of the European Union. This paper describes the fundamental characteristics of the operational orbit after aerocapture for the mission of interest, as well as the related maintenance strategy. The final orbit selection depends on the desired lighting conditions, maximum revisit time of specific target regions, and feasibility of the orbit maintenance strategy. A sunsynchronous, frozen, repeating-ground-track orbit is chosen. First, the period of repetition is such that adjacent ascending node crossings (over the Mars surface) have a separation compatible with the swath of the optical payload. Secondly, the sunsynchronism condition ensures that a given latitude is periodically visited at the same local time, which condition is essential for comparing images of the same region at different epochs. Lastly, the fulfillment of the frozen condition guarantees improved orbit stability with respect to perturbations due to the zonal harmonics of Mars gravitational field. These three fundamental features of the operational orbit lead to determining its mean orbital elements. The evaluation of short and long period effects (e.g., those due to the sectorial harmonics of the gravitational field or to the aerodynamic drag) requires the determination of the osculating orbital elements at an initial reference time. This research describes a simple and accurate approach that leads to numerically determining these initial values, without employing complicated analytical developments. Numerical simulations demonstrate the long-period stability of the orbit when a significant number of harmonics of the gravitational field are taken into account. However, aerodynamic drag produces a relatively slow orbital decay at the

  20. What's New for the Orbiting Carbon Observatory-2? A Summary of Changes between the Original and Re-flight Missions

    Science.gov (United States)

    Boland, S. W.; Kahn, P. B.

    2012-12-01

    The original Orbiting Carbon Observatory mission was lost in 2009 when the spacecraft failed to achieve orbit due to a launch vehicle failure. In 2010, NASA authorized a re-flight mission, known as the Orbiting Carbon Observatory-2 (OCO-2) mission, with direction to re-use the original hardware, designs, drawings, documents, and procedures wherever possible in order to minimize cost, schedule, and performance risk. During implementation, it was realized that some changes were required due to parts obsolescence, incorporation of lessons learned from the original OCO mission, and to provide optimal science return. In response to the OCO and Glory launch vehicle failures, a change in launch vehicle was also recently announced. A summary of changes, including those to hardware, orbit, and launch vehicle is provided, along with rationale, implementation approach, and impact (if any) on mission science.

  1. A simulation of the Four-way lunar Lander-Orbiter tracking mode for the Chang'E-5 mission

    Science.gov (United States)

    Li, Fei; Ye, Mao; Yan, Jianguo; Hao, Weifeng; Barriot, Jean-Pierre

    2016-06-01

    The Chang'E-5 mission is the third phase of the Chinese Lunar Exploration Program and will collect and return lunar samples. After sampling, the Orbiter and the ascent vehicle will rendezvous and dock, and both spacecraft will require high precision orbit navigation. In this paper, we present a novel tracking mode-Four-way lunar Lander-Orbiter tracking that possibly can be employed during the Chang'E-5 mission. The mathematical formulas for the Four-way lunar Lander-Orbiter tracking mode are given and implemented in our newly-designed lunar spacecraft orbit determination and gravity field recovery software, the LUnar Gravity REcovery and Analysis Software/System (LUGREAS). The simulated observables permit analysis of the potential contribution Four-way lunar Lander-Orbiter tracking could make to precision orbit determination for the Orbiter. Our results show that the Four-way lunar Lander-Orbiter Range Rate has better geometric constraint on the orbit, and is more sensitive than the traditional two-way range rate that only tracks data between the Earth station and lunar Orbiter. After combining the Four-way lunar Lander-Orbiter Range Rate data with the traditional two-way range rate data and considering the Lander position error and lunar gravity field error, the accuracy of precision orbit determination for the Orbiter in the simulation was improved significantly, with the biggest improvement being one order of magnitude, and the Lander position could be constrained to sub-meter level. This new tracking mode could provide a reference for the Chang'E-5 mission and have enormous potential for the positioning of future lunar farside Lander due to its relay characteristic.

  2. Analysis of Orbital Lifetime Prediction Parameters in Preparation for Post-Mission Disposal

    Directory of Open Access Journals (Sweden)

    Ha–Yeon Choi

    2015-12-01

    Full Text Available Atmospheric drag force is an important source of perturbation of Low Earth Orbit (LEO orbit satellites, and solar activity is a major factor for changes in atmospheric density. In particular, the orbital lifetime of a satellite varies with changes in solar activity, so care must be taken in predicting the remaining orbital lifetime during preparation for post-mission disposal. In this paper, the System Tool Kit (STK® Long-term Orbit Propagator is used to analyze the changes in orbital lifetime predictions with respect to solar activity. In addition, the STK® Lifetime tool is used to analyze the change in orbital lifetime with respect to solar flux data generation, which is needed for the orbital lifetime calculation, and its control on the drag coefficient control. Analysis showed that the application of the most recent solar flux file within the Lifetime tool gives a predicted trend that is closest to the actual orbit. We also examine the effect of the drag coefficient, by performing a comparative analysis between varying and constant coefficients in terms of solar activity intensities.

  3. Thermal simulations of the STIX instrument for ESA Solar Orbiter mission

    Science.gov (United States)

    Białek, Agata; Severyn, Karol; Grassmann, Kamil; Orleańskii, Piotr; Skup, Konrad R.; Arnold, Nicolas; Gröbelbauer, Hans-Peter; Hurford, Gordon J.; Krucker, Samuel; Bauer, Svend-Marian; Mann, Gottfied; Önel, Hakan; Bernet, Adeline; Blecha, Luc; Grimm, Oliver; Limousin, Olivier; Martignac, Jerome; Meuris, Aline

    2013-07-01

    The ESA Solar Orbiter mission, planned to be launched in 2017, is going to study the Sun with ten different instruments including the Spectrometer/Telescope for Imaging X-rays - STIX. The thermal environment on the elliptical orbit around the Sun - 0.28 AU at perihelion and 0.952 AU at aphelion - is extreme, where at one point of the orbit is very hot, while on another very cold. That makes the requirements for the heat fluxes exchanged between each instrument and the spacecraft, as well as between the instrument - subsystems, very restrictive. Here the authors discuss the thermal design with respect to the defined requirements and present the results of the thermal analyses performed with ESATAN TMS software.

  4. A Synthetic Biology Tool Kit for Manned Missions Outside Low Earth Orbit

    Data.gov (United States)

    National Aeronautics and Space Administration — Our goal is to make human missions outside low earth orbit safer and better able to handle the unexpected through the use of synthetic biology as an enabling...

  5. Geo-oculus: high resolution multi-spectral earth imaging mission from geostationary orbit

    Science.gov (United States)

    Vaillon, L.; Schull, U.; Knigge, T.; Bevillon, C.

    2017-11-01

    Geo-Oculus is a GEO-based Earth observation mission studied by Astrium for ESA in 2008-2009 to complement the Sentinel missions, the space component of the GMES (Global Monitoring for Environment & Security). Indeed Earth imaging from geostationary orbit offers new functionalities not covered by existing LEO observation missions, like real-time monitoring and fast revisit capability of any location within the huge area in visibility of the satellite. This high revisit capability is exploited by the Meteosat meteorogical satellites, but with a spatial resolution (500 m nadir for the third generation) far from most of GMES needs (10 to 100 m). To reach such ground resolution from GEO orbit with adequate image quality, large aperture instruments (> 1 m) and high pointing stability (challenges of such missions. To address the requirements from the GMES user community, the Geo-Oculus mission is a combination of routine observations (daily systematic coverage of European coastal waters) with "on-demand" observation for event monitoring (e.g. disasters, fires and oil slicks). The instrument is a large aperture imaging telescope (1.5 m diameter) offering a nadir spatial sampling of 10.5 m (21 m worst case over Europe, below 52.5°N) in a PAN visible channel used for disaster monitoring. The 22 multi-spectral channels have resolutions over Europe ranging from 40 m in UV/VNIR (0.3 to 1 μm) to 750 m in TIR (10-12 μm).

  6. Orbiter data reduction complex data processing requirements for the OFT mission evaluation team (level C)

    Science.gov (United States)

    1979-01-01

    This document addresses requirements for post-test data reduction in support of the Orbital Flight Tests (OFT) mission evaluation team, specifically those which are planned to be implemented in the ODRC (Orbiter Data Reduction Complex). Only those requirements which have been previously baselined by the Data Systems and Analysis Directorate configuration control board are included. This document serves as the control document between Institutional Data Systems Division and the Integration Division for OFT mission evaluation data processing requirements, and shall be the basis for detailed design of ODRC data processing systems.

  7. Circular revisit orbits design for responsive mission over a single target

    Science.gov (United States)

    Li, Taibo; Xiang, Junhua; Wang, Zhaokui; Zhang, Yulin

    2016-10-01

    The responsive orbits play a key role in addressing the mission of Operationally Responsive Space (ORS) because of their capabilities. These capabilities are usually focused on supporting specific targets as opposed to providing global coverage. One subtype of responsive orbits is repeat coverage orbit which is nearly circular in most remote sensing applications. This paper deals with a special kind of repeating ground track orbit, referred to as circular revisit orbit. Different from traditional repeat coverage orbits, a satellite on circular revisit orbit can visit a target site at both the ascending and descending stages in one revisit cycle. This typology of trajectory allows a halving of the traditional revisit time and does a favor to get useful information for responsive applications. However the previous reported numerical methods in some references often cost lots of computation or fail to obtain such orbits. To overcome this difficulty, an analytical method to determine the existence conditions of the solutions to revisit orbits is presented in this paper. To this end, the mathematical model of circular revisit orbit is established under the central gravity model and the J2 perturbation. A constraint function of the circular revisit orbit is introduced, and the monotonicity of that function has been studied. The existent conditions and the number of such orbits are naturally worked out. Taking the launch cost into consideration, optimal design model of circular revisit orbit is established to achieve a best orbit which visits a target twice a day in the morning and in the afternoon respectively for several days. The result shows that it is effective to apply circular revisit orbits in responsive application such as reconnoiter of natural disaster.

  8. Coordinated science with the Solar Orbiter, Solar Probe Plus, Interhelioprobe and SPORT missions

    Science.gov (United States)

    Maksimovic, Milan; Vourlidas, Angelos; Zimovets, Ivan; Velli, Marco; Zhukov, Andrei; Kuznetsov, Vladimir; Liu, Ying; Bale, Stuart; Ming, Xiong

    The concurrent science operations of the ESA Solar Orbiter (SO), NASA Solar Probe Plus (SPP), Russian Interhelioprobe (IHP) and Chinese SPORT missions will offer a truly unique epoch in heliospheric science. While each mission will achieve its own important science objectives, taken together the four missions will be capable of doing the multi-point measurements required to address many problems in Heliophysics such as the coronal origin of the solar wind plasma and magnetic field or the way the Solar transients drive the heliospheric variability. In this presentation, we discuss the capabilities of the four missions and the Science synergy that will be realized by concurrent operations

  9. Robust approximate optimal guidance strategies for aeroassisted orbital transfer missions

    Science.gov (United States)

    Ilgen, Marc R.

    This thesis presents the application of game theoretic and regular perturbation methods to the problem of determining robust approximate optimal guidance laws for aeroassisted orbital transfer missions with atmospheric density and navigated state uncertainties. The optimal guidance problem is reformulated as a differential game problem with the guidance law designer and Nature as opposing players. The resulting equations comprise the necessary conditions for the optimal closed loop guidance strategy in the presence of worst case parameter variations. While these equations are nonlinear and cannot be solved analytically, the presence of a small parameter in the equations of motion allows the method of regular perturbations to be used to solve the equations approximately. This thesis is divided into five parts. The first part introduces the class of problems to be considered and presents results of previous research. The second part then presents explicit semianalytical guidance law techniques for the aerodynamically dominated region of flight. These guidance techniques are applied to unconstrained and control constrained aeroassisted plane change missions and Mars aerocapture missions, all subject to significant atmospheric density variations. The third part presents a guidance technique for aeroassisted orbital transfer problems in the gravitationally dominated region of flight. Regular perturbations are used to design an implicit guidance technique similar to the second variation technique but that removes the need for numerically computing an optimal trajectory prior to flight. This methodology is then applied to a set of aeroassisted inclination change missions. In the fourth part, the explicit regular perturbation solution technique is extended to include the class of guidance laws with partial state information. This methodology is then applied to an aeroassisted plane change mission using inertial measurements and subject to uncertainties in the initial value

  10. The Megha-Tropiques mission: a review after three years in orbit

    Directory of Open Access Journals (Sweden)

    Rémy eRoca

    2015-05-01

    Full Text Available The Megha-Tropiques mission is operating a suite of payloads dedicated to the documentation of the water and energy cycles in the intertropical region in a low inclination orbit. The satellite was launched in October, 2011 and we here review the scientific activity after the first three years of the mission. The microwave sounder (SAPHIR and the broad band radiometer (SCARAB are functioning nominally and exhibit instrumental performances well within the original specifications. The microwave imager, MADRAS, stopped acquisition of scientific data on January 26th, 2013 due to a mechanical failure. During its 16 months of operation, this radiometer experienced electrical issues making its usage difficult and delayed its validation. A suite of geophysical products has been retrieved from the Megha-Tropiques payloads, ranging from TOA radiative flux to water vapor profiles and instantaneous rain rates. Some of these geophysical products have been merged with geostationary data to provide, for instance, daily accumulation of rainfall all over the intertropical region. These products compare favorably with references from ground based or space-borne observation systems. The contribution of the mission unique orbit to its scientific objectives is investigated. Preliminary studies indicate a positive impact on both, humidity Numerical Weather Prediction forecasts thanks to the assimilation of SAPHIR Level 1 data, and on the rainfall estimation derived from the Global Precipitation Mission constellation. After a long commissioning phase, most of the data and the geophysical products suite are validated and readily available for further scientific investigation by the international community.

  11. Engineering a Successful Mission: Lessons from the Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Everett, David F.

    2011-01-01

    Schedule pressure is common in the commercial world, where late delivery of a product means delayed income and loss of profit. 12 Research spacecraft developed by NASA, on the other hand, tend to be driven by the high cost of launch vehicles and the public scrutiny of failure-- the primary driver is ensuring proper operation in space for a system that cannot be retrieved for repair. The Lunar Reconnaissance Orbiter (LRO) development faced both schedule pressure and high visibility. The team had to balance the strong push to meet a launch date against the need to ensure that this first mission for Exploration succeeded. This paper will provide an overview of the mission from concept through its first year of operation and explore some of the challenges the systems engineering team faced taking a mission from preliminary design review to pre-ship review in 3 years.

  12. Possible Periodic Orbit Control Maneuvers for an eLISA Mission

    Science.gov (United States)

    Bender, Peter L.; Welter, Gary L.

    2012-01-01

    This paper investigates the possible application of periodic orbit control maneuvers for so-called evolved-LISA (eLISA) missions, i.e., missions for which the constellation arm lengths and mean distance from the Earth are substantially reduced. We find that for missions with arm lengths of 106 km and Earth-trailing distance ranging from approx. 12deg to 20deg over the science lifetime, the occasional use of the spacecraft micro-Newton thrusters for constellation configuration maintenance should be able to essentially eliminate constellation distortion caused by Earth-induced tidal forces at a cost to science time of only a few percent. With interior angle variation kept to approx. +/-0:1deg, the required changes in the angles between the laser beam pointing directions for the two arms from any spacecraft could be kept quite small. This would considerably simplify the apparatus necessary for changing the transmitted beam directions.

  13. Mission Analysis for LEO Microwave Power-Beaming Station in Orbital Launch of Microwave Lightcraft

    Science.gov (United States)

    Myrabo, L. N.; Dickenson, T.

    2005-01-01

    A detailed mission analysis study has been performed for a 1 km diameter, rechargeable satellite solar power station (SPS) designed to boost 20m diameter, 2400 kg Micr,oWave Lightcraft (MWLC) into low earth orbit (LEO) Positioned in a 476 km daily-repeating oi.bit, the 35 GHz microwave power station is configured like a spinning, thin-film bicycle wheel covered by 30% efficient sola cells on one side and billions of solid state microwave transmitter elements on the other, At the rim of this wheel are two superconducting magnets that can stor,e 2000 G.J of energy from the 320 MW, solar array over a period of several orbits. In preparation for launch, the entire station rotates to coarsely point at the Lightcraft, and then phases up using fine-pointing information sent from a beacon on-board the Lightcraft. Upon demand, the station transmits a 10 gigawatt microwave beam to lift the MWLC from the earth surface into LEO in a flight of several minutes duration. The mission analysis study was comprised of two parts: a) Power station assessment; and b) Analysis of MWLC dynamics during the ascent to orbit including the power-beaming relationships. The power station portion addressed eight critical issues: 1) Drag force vs. station orbital altitude; 2) Solar pressure force on the station; 3) Station orbital lifetime; 4) Feasibility of geo-magnetic re-boost; 5) Beta angle (i..e., sola1 alignment) and power station effective area relationship; 6) Power station percent time in sun vs, mission elapsed time; 7) Station beta angle vs.. charge time; 8) Stresses in station structures.. The launch dynamics portion examined four issues: 1) Ascent mission/trajecto1y profile; 2) MWLC/power-station mission geometry; 3) MWLC thrust angle vs. time; 4) Power station pitch rate during power beaming. Results indicate that approximately 0 58 N of drag force acts upon the station when rotated edge-on to project the minimum frontal area of 5000 sq m. An ion engine or perhaps an electrodynamic

  14. Overview of the LARES Mission: orbit, error analysis and technological aspects

    International Nuclear Information System (INIS)

    Ciufolini, Ignazio; Paolozzi, Antonio; Paris, Claudio

    2012-01-01

    LARES (LAser RElativity Satellite), is an Italian Space Agency (ASI) mission to be launched beginning of 2012 with the new European launch vehicle, VEGA; the launch opportunity was provided by the European Space Agency (ESA). LARES is a laser ranged satellite; it will be launched into a nearly circular orbit, with an altitude of 1450 km and an inclination of 69.5 degrees. The goal of the mission is the measurement of the Lense-Thirring effect with an uncertainty of few percent; such a small uncertainty will be achieved using LARES data together with data from the LAGEOS I (NASA) and LAGEOS II (NASA and ASI) satellites, and because GRACE mission (NASA-CSR and DLR-GFZ) is improving Earth's gravity field models. This paper describes LARES experiment along with the principal error sources affecting the measurement. Furthermore, some engineering aspects of the mission, in particular the structure and materials of the satellite (designed in order to minimize the non-gravitational perturbations), are described.

  15. Objectives of a prospective Ukrainian orbiter mission to the moon

    Science.gov (United States)

    Shkuratov, Yu. G.; Lytvynenko, L. M.; Shulga, V. M.; Yatskiv, Ya. S.; Vidmachenko, A. P.; Kislyulk, V. S.

    2003-06-01

    Ukraine has launch vehicles that are able to deliver about 300 kg to lunar orbit. A future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after the Clementine and Lunar Prospector missions and future missions like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical photopolarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface at a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are a synthetic aperture imaging radar, ground-penetrating radar, and imaging UV-spectropolarimeter. The main purpose of the synthetic aperture imaging radar experiment is to study with high-resolution (50 m) permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential for resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for long-term manned bases on the Moon. Radar and optical imaging and mapping of other interesting regions could be also planned. Multi-frequency, multi-polarization sounding of the lunar surface with ground-penetrating radar can provide data about internal structure of the lunar surface from meters to several hundred meters deep. The ground-penetrating radar can be used for measuring megaregolith properties, detection of cryptomaria, and studies of internal structure of the largest craters. Modest spatial resolution (50 m) of the imaging UV-spectropolarimeter should provide total coverage (or coverage of a large portion) of the lunar surface in oblique viewing at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional experiments could use the synthetic aperture

  16. A Framework for Orbital Performance Evaluation in Distributed Space Missions for Earth Observation

    Science.gov (United States)

    Nag, Sreeja; LeMoigne-Stewart, Jacqueline; Miller, David W.; de Weck, Olivier

    2015-01-01

    Distributed Space Missions (DSMs) are gaining momentum in their application to earth science missions owing to their unique ability to increase observation sampling in spatial, spectral and temporal dimensions simultaneously. DSM architectures have a large number of design variables and since they are expected to increase mission flexibility, scalability, evolvability and robustness, their design is a complex problem with many variables and objectives affecting performance. There are very few open-access tools available to explore the tradespace of variables which allow performance assessment and are easy to plug into science goals, and therefore select the most optimal design. This paper presents a software tool developed on the MATLAB engine interfacing with STK, for DSM orbit design and selection. It is capable of generating thousands of homogeneous constellation or formation flight architectures based on pre-defined design variable ranges and sizing those architectures in terms of predefined performance metrics. The metrics can be input into observing system simulation experiments, as available from the science teams, allowing dynamic coupling of science and engineering designs. Design variables include but are not restricted to constellation type, formation flight type, FOV of instrument, altitude and inclination of chief orbits, differential orbital elements, leader satellites, latitudes or regions of interest, planes and satellite numbers. Intermediate performance metrics include angular coverage, number of accesses, revisit coverage, access deterioration over time at every point of the Earth's grid. The orbit design process can be streamlined and variables more bounded along the way, owing to the availability of low fidelity and low complexity models such as corrected HCW equations up to high precision STK models with J2 and drag. The tool can thus help any scientist or program manager select pre-Phase A, Pareto optimal DSM designs for a variety of science

  17. An analytical optimization method for electric propulsion orbit transfer vehicles

    International Nuclear Information System (INIS)

    Oleson, S.R.

    1993-01-01

    Due to electric propulsion's inherent propellant mass savings over chemical propulsion, electric propulsion orbit transfer vehicles (EPOTVs) are a highly efficient mode of orbit transfer. When selecting an electric propulsion device (ion, MPD, or arcjet) and propellant for a particular mission, it is preferable to use quick, analytical system optimization methods instead of time intensive numerical integration methods. It is also of interest to determine each thruster's optimal operating characteristics for a specific mission. Analytical expressions are derived which determine the optimal specific impulse (Isp) for each type of electric thruster to maximize payload fraction for a desired thrusting time. These expressions take into account the variation of thruster efficiency with specific impulse. Verification of the method is made with representative electric propulsion values on a LEO-to-GEO mission. Application of the method to specific missions is discussed

  18. Mars orbiter redirected in bid to find Beagle

    CERN Multimedia

    2003-01-01

    "Mission controllers in Darmstadt, Germany, have successfully redirected Europe's Mars Express orbiter into a polar orbit, putting it on course for a last-ditch attempt to contact Beagle 2, the lander that has been missing since Christmas day when it should have touched down on the red planet" (1/2 page).

  19. A Design for an Orbital Assembly Facility for Complex Missions

    Science.gov (United States)

    Feast, S.; Bond, A.

    A design is presented for an Operations Base Station (OBS) in low earth orbit that will function as an integral part of a space transportation system, enabling assembly and maintenance of a Cis-Lunar transportation infrastructure and integration of vehicles for other high energy space missions to be carried out. Construction of the OBS assumes the use of the SKYLON Single-Stage-to-Orbit (SSTO) spaceplane, which imposes design and assembly constraints due to its payload mass limits and payload bay dimensions. It is assumed that the space transport infrastructure and high mission energy vehicles would also make use of SKYLON to deploy standard transport equipment and stages bound by these same constraints. The OBS is therefore a highly modular arrangement, incorporating some of these other vehicle system elements in its layout design. Architecturally, the facilities of the OBS are centred around the Assembly Dock which is in the form of a large cylindrical spaceframe structure with two large doors on either end incorporating a skin of aluminised Mylar to enclose the dock. Longitudinal rails provide internal tether attachments to anchor vehicles and components while manipulators are used for the handling and assembling of vehicle structures. The exterior of the OBS houses the habitation modules for workforce and vehicle crews along with propellant farms and other operational facilities.

  20. Global-scale Observations of the Limb and Disk (GOLD) Mission: Science from Geostationary Orbit on-board a Commercial Communications Satellite

    Science.gov (United States)

    Eastes, R.; Deaver, T.; Krywonos, A.; Lankton, M. R.; McClintock, W. E.; Pang, R.

    2011-12-01

    Geostationary orbits are ideal for many science investigations of the Earth system on global scales. These orbits allow continuous observations of the same geographic region, enabling spatial and temporal changes to be distinguished and eliminating the ambiguity inherent to observations from low Earth orbit (LEO). Just as observations from geostationary orbit have revolutionized our understanding of changes in the troposphere, they will dramatically improve our understanding of the space environment at higher altitudes. However, geostationary orbits are infrequently used for science missions because of high costs. Geostationary satellites are large, typically weighing tons. Consequently, devoting an entire satellite to a science mission requires a large financial commitment, both for the spacecraft itself and for sufficient science instrumentation to justify a dedicated spacecraft. Furthermore, the small number of geostationary satellites produced for scientific missions increases the costs of each satellite. For these reasons, it is attractive to consider flying scientific instruments on satellites operated by commercial companies, some of whom have fleets of ~40 satellites. However, scientists' lack of understanding of the capabilities of commercial spacecraft as well as commercial companies' concerns about risks to their primary mission have impeded the cooperation necessary for the shared use of a spacecraft. Working with a commercial partner, the GOLD mission has successfully overcome these issues. Our experience indicates that there are numerous benefits to flying on commercial communications satellites (e.g., it is possible to downlink large amounts of data) and the costs are low if the experimental requirements adequately match the capabilities and available resources of the host spacecraft. Consequently, affordable access to geostationary orbit aboard a communications satellite now appears possible for science payloads.

  1. An Orbit Propagation Software for Mars Orbiting Spacecraft

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2004-12-01

    Full Text Available An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods, the results show about maximum ±5 meter errors, in every position state components(radial, cross-track and along-track, when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.

  2. A probabilistic analysis of the implications of instrument failures on ESA's Swarm mission for its individual satellite orbit deployments

    Science.gov (United States)

    Jackson, Andrew

    2015-07-01

    On launch, one of Swarm's absolute scalar magnetometers (ASMs) failed to function, leaving an asymmetrical arrangement of redundant spares on different spacecrafts. A decision was required concerning the deployment of individual satellites into the low-orbit pair or the higher "lonely" orbit. I analyse the probabilities for successful operation of two of the science components of the Swarm mission in terms of a classical probabilistic failure analysis, with a view to concluding a favourable assignment for the satellite with the single working ASM. I concentrate on the following two science aspects: the east-west gradiometer aspect of the lower pair of satellites and the constellation aspect, which requires a working ASM in each of the two orbital planes. I use the so-called "expert solicitation" probabilities for instrument failure solicited from Mission Advisory Group (MAG) members. My conclusion from the analysis is that it is better to have redundancy of ASMs in the lonely satellite orbit. Although the opposite scenario, having redundancy (and thus four ASMs) in the lower orbit, increases the chance of a working gradiometer late in the mission; it does so at the expense of a likely constellation. Although the results are presented based on actual MAG members' probabilities, the results are rather generic, excepting the case when the probability of individual ASM failure is very small; in this case, any arrangement will ensure a successful mission since there is essentially no failure expected at all. Since the very design of the lower pair is to enable common mode rejection of external signals, it is likely that its work can be successfully achieved during the first 5 years of the mission.

  3. Exploring Europa's Habitability: Science achieved from the Europa Orbiter and Clipper Mission Concepts

    Science.gov (United States)

    Senske, D. A.; Prockter, L. M.; Pappalardo, R. T.; Patterson, G. W.; Vance, S.

    2012-12-01

    Europa is a prime candidate in the search for present-day habitable environments in our solar system. Europa is unique among the large icy satellites because it probably has a saltwater ocean today beneath an ice shell that is geodynamically active. The combination of irradiation of its surface and tidal heating of its interior could make Europa a rich source of chemical energy for life. Perhaps most importantly, Europa's ocean is believed to be in direct contact with its rocky mantle, where conditions could be similar to those on Earth's biologically rich sea floor. Hydrothermal zones on Earth's seafloor are known to be rich with life, powered by energy and nutrients that result from reactions between the seawater and the warm rocky ocean floor. Life as we know it depends on three principal "ingredients": 1) a sustained liquid water environment; 2) essential chemical elements that are critical for building life; and 3) a source of energy that could be utilized by life. Europa's habitability requires understanding whether it possesses these three ingredients. NASA has enlisted a study team to consider Europa mission options feasible over the next decade, compatible with NASA's projected planetary science budget and addressing Planetary Decadal Survey priorities. Two Europa mission concepts (Orbiter and multiple flyby—call the "Clipper") are undergoing continued study with the goal to "Explore Europa to investigate its habitability." Each mission would address this goal in complementary ways, with high science value of its own. The Orbiter and Clipper architectures lend themselves to specific types of scientific measurements. The Orbiter concept is tailored to the unique geophysical science that requires being in orbit at Europa. This includes confirming the existence of an ocean and characterizing that ocean through geophysical measurements of Europa's gravitational tides and magnetic induction response. It also includes mapping of the global morphology and

  4. Mission Analysis and Orbit Control of Interferometric Wheel Formation Flying

    Science.gov (United States)

    Fourcade, J.

    Flying satellite in formation requires maintaining the specific relative geometry of the spacecraft with high precision. This requirement raises new problem of orbit control. This paper presents the results of the mission analysis of a low Earth observation system, the interferometric wheel, patented by CNES. This wheel is made up of three receiving spacecraft, which follow an emitting Earth observation radar satellite. The first part of this paper presents trades off which were performed to choose orbital elements of the formation flying which fulfils all constraints. The second part presents orbit positioning strategies including reconfiguration of the wheel to change its size. The last part describes the station keeping of the formation. Two kinds of constraints are imposed by the interferometric system : a constraint on the distance between the wheel and the radar satellite, and constraints on the distance between the wheel satellites. The first constraint is fulfilled with a classical chemical station keeping strategy. The second one is fulfilled using pure passive actuators. Due to the high stability of the relative eccentricity of the formation, only the relative semi major axis had to be controlled. Differential drag due to differential attitude motion was used to control relative altitude. An autonomous orbit controller was developed and tested. The final accuracy is a relative station keeping better than few meters for a wheel size of one kilometer.

  5. Optimal mission planning of GEO on-orbit refueling in mixed strategy

    Science.gov (United States)

    Chen, Xiao-qian; Yu, Jing

    2017-04-01

    The mission planning of GEO on-orbit refueling (OOR) in Mixed strategy is studied in this paper. Specifically, one SSc will be launched to an orbital slot near the depot when multiple GEO satellites are reaching their end of lives. The SSc replenishes fuel from the depot and then extends the lifespan of the target satellites via refueling. In the mixed scenario, only some of the target satellites could be served by the SSc, and the remaining ones will be fueled by Pseudo SScs (the target satellite which has already been refueled by the SSc and now has sufficient fuel for its operation as well as the fuel to refuel other target satellites is called Pseudo SSc here). The mission sequences and fuel mass of the SSc and Pseudo SScs, the dry mass of the SSc are used as design variables, whereas the economic benefit of the whole mission is used as design objective. The economic cost and benefit models are stated first, and then a mathematical optimization model is proposed. A comprehensive solution method involving enumeration, particle swarm optimization and modification is developed. Numerical examples are carried out to demonstrate the effectiveness of the model and solution method. Economic efficiencies of different OOR strategies are compared and discussed. The mixed strategy would perform better than the other strategies only when the target satellites satisfy some conditions. This paper presents an available mixed strategy scheme for users and analyzes its advantages and disadvantages by comparing with some other OOR strategies, providing helpful references to decision makers. The best strategy in practical applications depends on the specific demands and user preference.

  6. Nuclear electric propulsion /NEP/ spacecraft for the outer planet orbiter mission

    International Nuclear Information System (INIS)

    Garrison, P.W.; Nock, K.T.

    1982-01-01

    The design, operating features, and a possible Neptune orbit for the spacecraft powered by the SP-100 nuclear electric propulsion (NEP) system under study by NASA and the DOE are described. The system features a reactor and a payload situated on opposite ends of a 0.5 m diam, 11 m long astromast. Mercury-ion thrusters are located beneath the reactor for side thrusting, and no contamination of the payload or obstruction of the viewing angles for scientific objectives occurs with the system, which would not degrade in performance even under high insolation during near-sun maneuvers. Results of a theoretical study of earth escapes are presented to show that an NEP powered spiral trajectory out of a 700 km Shuttle orbit and using a Triton gravity assist would be superior to departing from a 300 km orbit with a Centaur boost. The mission profile includes a 1249 kg Galileo payload. The SP-100 has a 1.4 MWth reactor with UO2 fuel tiles and weighs 19,904 kg

  7. Characterizing Martian Soils: Correlating Orbital Observations with Chemistry and Mineralogy from Landed Missions

    Science.gov (United States)

    Bishop, J. L.

    2010-12-01

    Great advances have been achieved recently in our understanding of the surface of Mars at global scales from orbital missions and at local scales from landed missions. This presentation seeks to provide links between the chemistry and mineralogy observed by landed missions with remote detections of minerals from orbit. Spectral data from CRISM, OMEGA and TES characterize a mostly basaltic planet with some outcrops of hematite, clays, sulfates and carbonates at the surface. Recent alteration of these rocks to form soils has likely been dominated by physical processes; however, martian soils probably also contain relicts of early alteration involving aqueous processes. Clays, hydroxides, sulfates, carbonates and perchlorates are examples of surface components that may have formed early in the planet’s history in the presence of liquid water. Some of these minerals have not been detected in the soil, but all have likely contributed to the current soil composition. The grain size, shape, chemistry, mineralogy, and magnetic properties of Martian soils are similar to altered volcanic ash found at many analog sites on Earth. Reflectance and emission spectra of some of these analog soils are consistent with the basic soil spectral properties observed from orbit. The cemented soil units observed by rovers may have formed through interaction of the soil grains with salts, clays, and hydroxides. Lab experiments have shown that cementing of analog grains darkens the VN reflectance, which could explain the low reflectance of Martian soils compared to analog sites. Reflectance spectra of an analog soil mixture containing altered ash and sulfate are shown in Figure 1. A pellet was made by adding water and allowing the sample to dry in air. Finally, the pellet was crushed and ground again to properties might be.

  8. OCO-2 (Orbiting Carbon Observatory-2) mission operations planning and initial operations experiences

    Science.gov (United States)

    Basilio, Ralph R.; Pollock, H. Randy; Hunyadi-Lay, Sarah L.

    2014-10-01

    OCO-2 (Orbiting Carbon Observatory-2) is the first NASA (National Aeronautics and Space Administration) mission dedicated to studying atmospheric carbon dioxide, specifically to identify sources (emitters) and sinks (absorbers) on a regional (1000 km x 1000 km) scale. The mission is designed to meet a science imperative by providing critical and urgent measurements needed to improve understanding of the carbon cycle and global climate change processes. The single instrument consisting of three grating spectrometers was built at the Jet Propulsion Laboratory, but is based on the design co-developed with Hamilton Sundstrand Corporation for the original OCO mission. The instrument underwent an extensive ground test program. This was generally made possible through the use of a thermal vacuum chamber with a window/port that allowed optical ground support equipment to stimulate the instrument. The instrument was later delivered to Orbital Sciences Corporation for integration and test with the LEOStar-2 spacecraft. During the overall ground test campaign, proper function and performance in simulated launch, ascent, and space environments were verified. The observatory was launched into space on 02 July 2014. Initial indications are that the instrument is meeting functional and performance specifications, and there is every expectation that the spatially-order, geo-located, calibrated spectra of reflected sunlight and the science retrievals will meet the Level 1 science requirements.

  9. Orbital express capture system: concept to reality

    Science.gov (United States)

    Stamm, Shane; Motaghedi, Pejmun

    2004-08-01

    The development of autonomous servicing of on-orbit spacecraft has been a sought after objective for many years. A critical component of on-orbit servicing involves the ability to successfully capture, institute mate, and perform electrical and fluid transfers autonomously. As part of a Small Business Innovation Research (SBIR) grant, Starsys Research Corporation (SRC) began developing such a system. Phase I of the grant started in 1999, with initial work focusing on simultaneously defining the parameters associated with successful docking while designing to those parameters. Despite the challenge of working without specific requirements, SRC completed development of a prototype design in 2000. Throughout the following year, testing was conducted on the prototype to characterize its performance. Having successfully completed work on the prototype, SRC began a Phase II SBIR effort in mid-2001. The focus of the second phase was a commercialization effort designed to augment the prototype model into a more flight-like design. The technical requirements, however, still needed clear definition for the design to progress. The advent of the Orbital Express (OE) program provided much of that definition. While still in the proposal stages of the OE program, SRC began tailoring prototype redesign efforts to the OE program requirements. A primary challenge involved striking a balance between addressing the technical requirements of OE while designing within the scope of the SBIR. Upon award of the OE contract, the Phase II SBIR design has been fully developed. This new design, designated the Mechanical Docking System (MDS), successfully incorporated many of the requirements of the OE program. SRC is now completing dynamic testing on the MDS hardware, with a parallel effort of developing a flight design for OE. As testing on the MDS progresses, the design path that was once common to both SBIR effort and the OE program begins to diverge. The MDS will complete the scope of the

  10. On-Orbit Gradiometry with the scientific instrument of the French Space Mission MICROSCOPE

    Science.gov (United States)

    Foulon, B.; Baghi, Q.; Panet, I.; Rodrigues, M.; Metris, G.; Touboul, P.

    2017-12-01

    The MICROSCOPE mission is fully dedicated to the in-orbit test of the universality of free fall, the so-called Weak Equivalence Principle (WEP). Based on a CNES Myriade microsatellite launched on the 25th of April 2016, MICROSCOPE is a CNES-ESA-ONERA-CNRS-OCA mission, the scientific objective of which is to test of the Equivalence Principle with an extraordinary accuracy at the level of 10-15. The measurement will be obtained from the T-SAGE (Twin Space Accelerometer for Gravitational Experimentation) instrument constituted by two ultrasensitive differential accelerometers. One differential electrostatic accelerometer, labeled SU-EP, contains, at its center, two proof masses made of Titanium and Platinum and is used for the test. The twin accelerometer, labeled SU-REF, contains two Platinum proof masses and is used as a reference instrument. Separated by a 17 cm-length arm, they are embarked in a very stable and soft environment on board a satellite equipped with a drag-free control system and orbiting on a sun synchronous circular orbit at 710 km above the Earth. In addition to the WEP test, this configuration can be interesting for various applications, and one of the proposed ideas is to use MICROSCOPE data for the measurement of Earth's gravitational gradient. Considering the gradiometer formed by the inner Platinum proof-masses of the two differential accelerometers and the arm along the Y-axis of the instrument which is perpendicular to the orbital plane, possibly 3 components of the gradient can be measured: Txy, Tyy and Tzy. Preliminary studies suggest that the errors can be lower than 10mE. Taking advantage of its higher altitude with respect to GOCE, the low frequency signature of Earth's potential seen by MICROSCOPE could provide an additional observable in gradiometry to discriminate between different models describing the large scales of the mass distribution in the Earth's deep mantle. The poster will shortly present the MICROSCOPE mission

  11. Designing Mission Operations for the Gravity Recovery and Interior Laboratory Mission

    Science.gov (United States)

    Havens, Glen G.; Beerer, Joseph G.

    2012-01-01

    NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, to understand the internal structure and thermal evolution of the Moon, offered unique challenges to mission operations. From launch through end of mission, the twin GRAIL orbiters had to be operated in parallel. The journey to the Moon and into the low science orbit involved numerous maneuvers, planned on tight timelines, to ultimately place the orbiters into the required formation-flying configuration necessary. The baseline GRAIL mission is short, only 9 months in duration, but progressed quickly through seven very unique mission phases. Compressed into this short mission timeline, operations activities and maneuvers for both orbiters had to be planned and coordinated carefully. To prepare for these challenges, development of the GRAIL Mission Operations System began in 2008. Based on high heritage multi-mission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin, the GRAIL mission operations system was adapted to meet the unique challenges posed by the GRAIL mission design. This paper describes GRAIL's system engineering development process for defining GRAIL's operations scenarios and generating requirements, tracing the evolution from operations concept through final design, implementation, and validation.

  12. Missions to Venus

    Science.gov (United States)

    Titov, D. V.; Baines, K. H.; Basilevsky, A. T.; Chassefiere, E.; Chin, G.; Crisp, D.; Esposito, L. W.; Lebreton, J.-P.; Lellouch, E.; Moroz, V. I.; Nagy, A. F.; Owen, T. C.; Oyama, K.-I.; Russell, C. T.; Taylor, F. W.; Young, R. E.

    2002-10-01

    Venus has always been a fascinating objective for planetary studies. At the beginning of the space era Venus became one of the first targets for spacecraft missions. Our neighbour in the solar system and, in size, the twin sister of Earth, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration in 1962-1992 by the family of Soviet Venera and Vega spacecraft and US Mariner, Pioneer Venus, and Magellan missions discovered an entirely different, exotic world hidden behind a curtain of dense clouds. These studies gave us a basic knowledge of the conditions on the planet, but generated many more questions concerning the atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and the plasma environment. Despite all of this exploration by more than 20 spacecraft, the "morning star" still remains a mysterious world. But for more than a decade Venus has been a "forgotten" planet with no new missions featuring in the plans of the world space agencies. Now we are witnessing the revival of interest in this planet: the Venus Orbiter mission is approved in Japan, Venus Express - a European orbiter mission - has successfully passed the selection procedure in ESA, and several Venus Discovery proposals are knocking at the doors of NASA. The paper presents an exciting story of Venus spacecraft exploration, summarizes open scientific problems, and builds a bridge to the future missions.

  13. Solar Electric and Chemical Propulsion Technology Applications to a Titan Orbiter/Lander Mission

    Science.gov (United States)

    Cupples, Michael

    2007-01-01

    Several advanced propulsion technology options were assessed for a conceptual Titan Orbiter/Lander mission. For convenience of presentation, the mission was broken into two phases: interplanetary and Titan capture. The interplanetary phase of the mission was evaluated for an advanced Solar Electric Propulsion System (SEPS), while the Titan capture phase was evaluated for state-of-art chemical propulsion (NTO/Hydrazine), three advanced chemical propulsion options (LOX/Hydrazine, Fluorine/Hydrazine, high Isp mono-propellant), and advanced tank technologies. Hence, this study was referred to as a SEPS/Chemical based option. The SEPS/Chemical study results were briefly compared to a 2002 NASA study that included two general propulsion options for the same conceptual mission: an all propulsive based mission and a SEPS/Aerocapture based mission. The SEP/Chemical study assumed identical science payload as the 2002 NASA study science payload. The SEPS/Chemical study results indicated that the Titan mission was feasible for a medium launch vehicle, an interplanetary transfer time of approximately 8 years, an advanced SEPS (30 kW), and current chemical engine technology (yet with advanced tanks) for the Titan capture. The 2002 NASA study showed the feasibility of the mission based on a somewhat smaller medium launch vehicle, an interplanetary transfer time of approximately 5.9 years, an advanced SEPS (24 kW), and advanced Aerocapture based propulsion technology for the Titan capture. Further comparisons and study results were presented for the advanced chemical and advanced tank technologies.

  14. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    Science.gov (United States)

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.

  15. Small Orbital Stereo Tracking Camera Technology Development

    Science.gov (United States)

    Gagliano, L.; Bryan, T.; MacLeod, T.

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASAs Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  16. Global-scale Observations of the Limb and Disk (GOLD) Mission -Ultraviolet Remote Sensing of Earth's Space Environment from Geostationary Orbit

    Science.gov (United States)

    Burns, A. G.; Eastes, R.

    2017-12-01

    The GOLD mission of opportunity will fly a far ultraviolet imaging spectrograph in geostationary (GEO) orbit as a hosted payload. The mission is scheduled for launch in late January 2018 on SES-14, a commercial communications satellite that will be stationed over eastern South America at 47.5 degrees west longitude. GOLD is on schedule to be the first NASA science mission to fly as a hosted payload on a commercial communications satellite. The GOLD imager has two identical channels. Each channel can scan the full disk at a 30 minute cadence, making spectral images of Earth's UV emission from 132 to 162 nm, as well as make a measurement on the Earth's limb. Remote sensing techniques that have been proven on previous Low Earth Orbit (LEO) missions will be used to derive fundamental parameters for the neutral and ionized space environment. Parameters that will be derived include composition (O/N2 ratio) and temperature of the neutral atmosphere on the dayside disk. On the nightside, peak electron densities will be obtained in the low latitude ionosphere. Many of the algorithms developed for the mission are extensions of ones used on previous earth and planetary missions, with modifications for observations from geostationary orbit. All the algorithms have been tested using simulated observations based on the actual instrument performance. From geostationary orbit, GOLD can repeatedly image the same geographic locations over most of the hemisphere at a cadence comparable to that of the T-I system (order of an hour). Such time resolution and spatial coverage will allow the mission to track the changes due to geomagnetic storms, variations in solar extreme ultraviolet radiation, and forcing from the lower atmosphere. In addition to providing a new perspective by being able to repeatedly remotely sense the same hemisphere at a high cadence, GOLD's simultaneous measurements of not only composition but also temperatures across the disk will provide a valuable, new parameter

  17. Improved OSC Amtec generator design to meet goals of JPL's candidate Europa Orbiter mission

    International Nuclear Information System (INIS)

    Schock, A.; Noravian, H.; Or, C.; Kumar, V.

    1998-01-01

    The preceding paper (Paper IECEC.98.244) described OSC's initial designs of AMTEC (Alkali Metal Thermal-to-Electrical Conversion) power systems, consisting of one or two generators, each with 2, 3, or 4 General Purpose Heat Source (GPHS) modules and with 16 refractory AMTEC cells containing 5 Beta Alumina Solid Electrolyte (BASE) tubes; and presented the effect of heat input and voltage output on the generator's BOM evaporator and clad temperatures and on its EOM system efficiency and power output. Comparison of the computed results with JPL's goals for the Europa Orbiter mission showed that all of the initial 16-cell design options yielded either excessive evaporator and clad temperatures or insufficient EOM power to satisfy the JPL-specified mission goals. The present paper describes modified OSC generator designs with different numbers of AMTEC cells, cell diameters, cell lengths, cell materials, BASE tube lengths, and number of tubes per cell. These efforts succeeded in identifying generator designs with only half the number of AMTEC cells which -- for the same assumptions -- can produce EOM power outputs substantially in excess of JPL's goals for NASA's Europa Orbiter mission while operating well below the prescribed BOM limits on evaporator and clad temperature; and revealed that lowering the emissivity of the generator's housing to raise the cells' condenser temperatures can achieve substantial additional performance improvement. Finally, the paper culminates in programmatic recommendations

  18. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    Science.gov (United States)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  19. Design Concepts for a Small Space-Based GEO Relay Satellite for Missions Between Low Earth and near Earth Orbits

    Science.gov (United States)

    Bhasin, Kul B.; Warner, Joseph D.; Oleson, Steven; Schier, James

    2014-01-01

    The main purpose of the Small Space-Based Geosynchronous Earth orbiting (GEO) satellite is to provide a space link to the user mission spacecraft for relaying data through ground networks to user Mission Control Centers. The Small Space Based Satellite (SSBS) will provide services comparable to those of a NASA Tracking Data Relay Satellite (TDRS) for the same type of links. The SSBS services will keep the user burden the same or lower than for TDRS and will support the same or higher data rates than those currently supported by TDRS. At present, TDRSS provides links and coverage below GEO; however, SSBS links and coverage capability to above GEO missions are being considered for the future, especially for Human Space Flight Missions (HSF). There is also a rising need for the capability to support high data rate links (exceeding 1 Gbps) for imaging applications. The communication payload on the SSBS will provide S/Ka-band single access links to the mission and a Ku-band link to the ground, with an optical communication payload as an option. To design the communication payload, various link budgets were analyzed and many possible operational scenarios examined. To reduce user burden, using a larger-sized antenna than is currently in use by TDRS was considered. Because of the SSBS design size, it was found that a SpaceX Falcon 9 rocket could deliver three SSBSs to GEO. This will greatly reduce the launch costs per satellite. Using electric propulsion was also evaluated versus using chemical propulsion; the power system size and time to orbit for various power systems were also considered. This paper will describe how the SSBS will meet future service requirements, concept of operations, and the design to meet NASA users' needs for below and above GEO missions. These users' needs not only address the observational mission requirements but also possible HSF missions to the year 2030. We will provide the trade-off analysis of the communication payload design in terms of

  20. Orbit and geometry constraints on the design and operation of a long-life SIRTF mission. [Shuttle Infrared Telescope Facility

    Science.gov (United States)

    Jackson, R. W.

    1984-01-01

    For a long-life SIRTF mission, the ability of the telescope to observe targets everywhere in the sky is an important requirement. For low-inclination orbits, a telescope aperture shade must be designed for Sun and Earth Limb avoidance angles of 50 deg to 60 deg to prevent unwanted radiation from entering the telescope. The minimum orbit inclination depends on the Earth Limb avoidance angle. About 30 percent of the sky will be prohibited for observations during any day in orbit, with about 100 days in orbit required to observe the entire sky.

  1. Stable low-altitude orbits around Ganymede considering a disturbing body in a circular orbit

    Science.gov (United States)

    Cardoso dos Santos, J.; Carvalho, J. P. S.; Vilhena de Moraes, R.

    2014-10-01

    Some missions are being planned to visit Ganymede like the Europa Jupiter System Mission that is a cooperation between NASA and ESA to insert the spacecraft JGO (Jupiter Ganymede Orbiter) into Ganymedes orbit. This comprehension of the dynamics of these orbits around this planetary satellite is essential for the success of this type of mission. Thus, this work aims to perform a search for low-altitude orbits around Ganymede. An emphasis is given in polar orbits and it can be useful in the planning of space missions to be conducted around, with respect to the stability of orbits of artificial satellites. The study considers orbits of artificial satellites around Ganymede under the influence of the third-body (Jupiter's gravitational attraction) and the polygenic perturbations like those due to non-uniform distribution of mass (J_2 and J_3) of the main body. A simplified dynamic model for these perturbations is used. The Lagrange planetary equations are used to describe the orbital motion of the artificial satellite. The equations of motion are developed in closed form to avoid expansions in eccentricity and inclination. The results show the argument of pericenter circulating. However, low-altitude (100 and 150 km) polar orbits are stable. Another orbital elements behaved variating with small amplitudes. Thus, such orbits are convenient to be applied to future space missions to Ganymede. Acknowledgments: FAPESP (processes n° 2011/05671-5, 2012/12539-9 and 2012/21023-6).

  2. Deadly Sunflower Orbits

    Science.gov (United States)

    Hamilton, Douglas P.

    2018-04-01

    Solar radiation pressure is usually very effective at removing hazardous millimeter-sized debris from distant orbits around asteroidsand other small solar system bodies (Hamilton and Burns 1992). Theprimary loss mechanism, driven by the azimuthal component of radiationpressure, is eccentricity growth followed by a forced collision withthe central body. One large class of orbits, however, neatly sidestepsthis fate. Orbits oriented nearly perpendicular to the solar directioncan maintain their face-on geometry, oscillating slowly around a stableequilibrium orbit. These orbits, designated sunflower orbits, arerelated to terminator orbits studied by spacecraft mission designers(Broschart etal. 2014).Destabilization of sunflower orbits occurs only for particles smallenough that radiation pressure is some tens of percent the strength ofthe central body's direct gravity. This greatly enhanced stability,which follows from the inability of radiation incident normal to theorbit to efficiently drive eccentricities, presents a threat tospacecraft missions, as numerous dangerous projectiles are potentiallyretained in orbit. We have investigated sunflower orbits insupport of the New Horizons, Aida, and Lucy missions and find thatthese orbits are stable for hazardous particle sizes at asteroids,comets, and Kuiper belt objects of differing dimensions. Weinvestigate the sources and sinks for debris that might populate suchorbits, estimate timescales and equilibrium populations, and willreport on our findings.

  3. MESSENGER, MErcury: Surface, Space ENvironment, GEochemistry, and Ranging; A Mission to Orbit and Explore the Planet Mercury

    Science.gov (United States)

    1999-01-01

    MESSENGER is a scientific mission to Mercury. Understanding this extraordinary planet and the forces that have shaped it is fundamental to understanding the processes that have governed the formation, evolution, and dynamics of the terrestrial planets. MESSENGER is a MErcury Surface, Space ENvironment, GEochemistry and Ranging mission to orbit Mercury for one Earth year after completing two flybys of that planet following two flybys of Venus. The necessary flybys return significant new data early in the mission, while the orbital phase, guided by the flyby data, enables a focused scientific investigation of this least-studied terrestrial planet. Answers to key questions about Mercury's high density, crustal composition and structure, volcanic history, core structure, magnetic field generation, polar deposits, exosphere, overall volatile inventory, and magnetosphere are provided by an optimized set of miniaturized space instruments. Our goal is to gain new insight into the formation and evolution of the solar system, including Earth. By traveling to the inner edge of the solar system and exploring a poorly known world, MESSENGER fulfills this quest.

  4. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    Science.gov (United States)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  5. Trajectory Options for a Potential Mars Mission Combining Orbiting Science, Relay and a Sample Return Rendezvous Demonstration

    Science.gov (United States)

    Guinn, Joseph R.; Kerridge, Stuart J.; Wilson, Roby S.

    2012-01-01

    Mars sample return is a major scientific goal of the 2011 US National Research Council Decadal Survey for Planetary Science. Toward achievement of this goal, recent architecture studies have focused on several mission concept options for the 2018/2020 Mars launch opportunities. Mars orbiters play multiple roles in these architectures such as: relay, landing site identification/selection/certification, collection of on-going or new measurements to fill knowledge gaps, and in-orbit collection and transportation of samples from Mars to Earth. This paper reviews orbiter concepts that combine these roles and describes a novel family of relay orbits optimized for surface operations support. Additionally, these roles provide an intersection of objectives for long term NASA science, human exploration, technology development and international collaboration.

  6. Comparison of technologies for deorbiting spacecraft from low-earth-orbit at end of mission

    Science.gov (United States)

    Sánchez-Arriaga, G.; Sanmartín, J. R.; Lorenzini, E. C.

    2017-09-01

    An analytical comparison of four technologies for deorbiting spacecraft from Low-Earth-Orbit at end of mission is presented. Basic formulas based on simple physical models of key figures of merit for each device are found. Active devices - rockets and electrical thrusters - and passive technologies - drag augmentation devices and electrodynamic tethers - are considered. A basic figure of merit is the deorbit device-to-spacecraft mass ratio, which is, in general, a function of environmental variables, technology development parameters and deorbit time. For typical state-of-the-art values, equal deorbit time, middle inclination and initial altitude of 850 km, the analysis indicates that tethers are about one and two orders of magnitude lighter than active technologies and drag augmentation devices, respectively; a tether needs a few percent mass-ratio for a deorbit time of a couple of weeks. For high inclination, the performance drop of the tether system is moderate: mass ratio and deorbit time increase by factors of 2 and 4, respectively. Besides collision risk with other spacecraft and system mass considerations, such as main driving factors for deorbit space technologies, the analysis addresses other important constraints, like deorbit time, system scalability, manoeuver capability, reliability, simplicity, attitude control requirement, and re-entry and multi-mission capability (deorbit and re-boost) issues. The requirements and constraints are used to make a critical assessment of the four technologies as functions of spacecraft mass and initial orbit (altitude and inclination). Emphasis is placed on electrodynamic tethers, including the latest advances attained in the FP7/Space project BETs. The superiority of tape tethers as compared to round and multi-line tethers in terms of deorbit mission performance is highlighted, as well as the importance of an optimal geometry selection, i.e. tape length, width, and thickness, as function of spacecraft mass and initial

  7. Overview of Mission Design for NASA Asteroid Redirect Robotic Mission Concept

    Science.gov (United States)

    Strange, Nathan; Landau, Damon; McElrath, Timothy; Lantoine, Gregory; Lam, Try; McGuire, Melissa; Burke, Laura; Martini, Michael; Dankanich, John

    2013-01-01

    Part of NASA's new asteroid initiative would be a robotic mission to capture a roughly four to ten meter asteroid and redirect its orbit to place it in translunar space. Once in a stable storage orbit at the Moon, astronauts would then visit the asteroid for science investigations, to test in space resource extraction, and to develop experience with human deep space missions. This paper discusses the mission design techniques that would enable the redirection of a 100-1000 metric ton asteroid into lunar orbit with a 40-50 kW Solar Electric Propulsion (SEP) system.

  8. Definition of technology development missions for early space station, orbit transfer vehicle servicing. Volume 1: Executive summary

    Science.gov (United States)

    1983-01-01

    Orbital Transfer Vehicle (OTV) servicing study scope, propellant transfer, storage and reliquefaction technology development missions (TDM), docking and berthing TDM, maintenance TDM, OTV/payload integration TDM, combined TDMS design, summary space station accomodations, programmatic analysis, and TDM equipment operational usage are discussed.

  9. Feasibility analysis of cislunar flight using the Shuttle Orbiter

    Science.gov (United States)

    Haynes, Davy A.

    1991-01-01

    A first order orbital mechanics analysis was conducted to examine the possibility of utilizing the Space Shuttle Orbiter to perform payload delivery missions to lunar orbit. In the analysis, the earth orbit of departure was constrained to be that of Space Station Freedom. Furthermore, no enhancements of the Orbiter's thermal protection system were assumed. Therefore, earth orbit insertion maneuvers were constrained to be all propulsive. Only minimal constraints were placed on the lunar orbits and no consideration was given to possible landing sites for lunar surface payloads. The various phases and maneuvers of the mission are discussed for both a conventional (Apollo type) and an unconventional mission profile. The velocity impulses needed, and the propellant masses required are presented for all of the mission maneuvers. Maximum payload capabilities were determined for both of the mission profiles examined. In addition, other issues relating to the feasibility of such lunar shuttle missions are discussed. The results of the analysis indicate that the Shuttle Orbiter would be a poor vehicle for payload delivery missions to lunar orbit.

  10. The PROPEL Electrodynamic Tether Demonstration Mission

    Science.gov (United States)

    Bilen, Sven G.; Johnson, C. Les; Wiegmann, Bruce M.; Alexander, Leslie; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael

    2012-01-01

    The PROPEL ("Propulsion using Electrodynamics") mission will demonstrate the operation of an electrodynamic tether propulsion system in low Earth orbit and advance its technology readiness level for multiple applications. The PROPEL mission has two primary objectives: first, to demonstrate the capability of electrodynamic tether technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and, second, to fully characterize and validate the performance of an integrated electrodynamic tether propulsion system, qualifying it for infusion into future multiple satellite platforms and missions with minimal modification. This paper provides an overview of the PROPEL system and design reference missions; mission goals and required measurements; and ongoing PROPEL mission design efforts.

  11. Global Precipitation Measurement Mission: Architecture and Mission Concept

    Science.gov (United States)

    Bundas, David

    2005-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses some of the key trades that have been completed, including the selection of the Core Observatory s orbit, orbit maintenance trades, and design issues related to meeting orbital debris requirements.

  12. Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    Science.gov (United States)

    Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad

    2016-01-01

    NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  13. Review of a relativity and geodesy mission with counter-orbiting polar satellites

    International Nuclear Information System (INIS)

    Van Patten, R.A.

    1977-01-01

    A new test of general relativity, capable of measuring the Lense-Thirring precession on a satellite orbit was proposed in 1974. We have recently realized that the remarkable geophysical output of this experiment can be enriched by allowing the point of encounter between the two satellites to progress from the poles to the equator during the course of the mission. There is reason to believe that by performing the experiment in this mode, all tesseral harmonics up to about 60th order could be separated and determined to accuracies up to three orders of magnitude better than current knowledge, and still obtain a 1% Lense-Thirring measurement. (orig.) [de

  14. A versatile silver oxide-zinc battery for synchronous orbit and planetary missions

    Science.gov (United States)

    Schwartz, H. J.; Soltis, D. G.

    1973-01-01

    A new kind of silver-zinc cell has been developed and tested under NASA support which can withstand severe heat sterilization requirements and does not display the traditional life limiting aspect of zinc electrodes - i.e., shape change. These cells could be used on a planetary lander mission which requires wet-stand periods of over a year, a modest number of cycles (400 to 500) and may require dry heat sterilization. The weight advantage of these cells over the traditional nickel-cadmium batteries makes them also an attractive alternative for synchronous orbit service where 400 to 500 cycles would be required over a five-year period.

  15. Telecommunications Relay Support of the Mars Phoenix Lander Mission

    Science.gov (United States)

    Edwards, Charles D., Jr.; Erickson, James K.; Gladden, Roy E.; Guinn, Joseph R.; Ilott, Peter A.; Jai, Benhan; Johnston, Martin D.; Kornfeld, Richard P.; Martin-Mur, Tomas J.; McSmith, Gaylon W.; hide

    2010-01-01

    The Phoenix Lander, first of NASA's Mars Scout missions, arrived at the Red Planet on May 25, 2008. From the moment the lander separated from its interplanetary cruise stage shortly before entry, the spacecraft could no longer communicate directly with Earth, and was instead entirely dependent on UHF relay communications via an international network of orbiting Mars spacecraft, including NASA's 2001 Mars Odyssey (ODY) and Mars Reconnaissance Orbiter (MRO) spacecraft, as well as ESA's Mars Express (MEX) spacecraft. All three orbiters captured critical event telemetry and/or tracking data during Phoenix Entry, Descent and Landing. During the Phoenix surface mission, ODY and MRO provided command and telemetry services, far surpassing the original data return requirements. The availability of MEX as a backup relay asset enhanced the robustness of the surface relay plan. In addition to telecommunications services, Doppler tracking observables acquired on the UHF link yielded an accurate position for the Phoenix landing site.

  16. Solar Array Disturbances to Spacecraft Pointing During the Lunar Reconnaissance Orbiter (LRO) Mission

    Science.gov (United States)

    Calhoun, Philip

    2010-01-01

    The Lunar Reconnaissance Orbiter (LRO), the first spacecraft to support NASA s return to the Moon, launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle. It was initially inserted into a direct trans-lunar trajectory to the Moon. After a five day transit to the Moon, LRO was inserted into the Lunar orbit and successfully lowered to a low altitude elliptical polar orbit for spacecraft commissioning. Successful commissioning was completed in October 2009 when LRO was placed in its near circular mission orbit with an approximate altitude of 50km. LRO will spend at least one year orbiting the Moon, collecting lunar environment science and mapping data, utilizing a suite of seven instruments to enable future human exploration. The objective is to provide key science data necessary to facilitate human return to the Moon as well as identification of opportunities for future science missions. LRO's instrument suite will provide the high resolution imaging data with sub-meter accuracy, highly accurate lunar cartographic maps, mineralogy mapping, amongst other science data of interest. LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing Mode", provides Lunar nadir, off-nadir, and inertial fine pointing for the science data collection and instrument calibration. This controller combines the capability of fine pointing with on-demand large angle full-sky attitude reorientation. It provides simplicity of spacecraft operation as well as additional flexibility for science data collection. A conventional suite of ACS components is employed in the Observing Mode to meet the pointing and control objectives. Actuation is provided by a set of four reaction wheels developed in-house at NASA Goddard Space Flight Center (GSFC). Attitude feedback is provided by a six state Kalman filter which utilizes two SELEX Galileo Star Trackers for attitude updates, and a single Honeywell Miniature

  17. ERS orbit control

    Science.gov (United States)

    Rosengren, Mats

    1991-12-01

    The European remote sensing mission orbit control is addressed. For the commissioning phase, the orbit is defined by the following requirements: Sun synchronous, local time of descending node 10:30; three days repeat cycle with 43 orbital revolutions; overhead Venice tower (12.508206 deg east, 45.314222 deg north). The launch, maneuvers for the initial acquisition of the operational orbit, orbit maintenance maneuvers, evaluation of the orbit control, and the drift of the inclination are summarized.

  18. The OICETS mission

    Science.gov (United States)

    Jono, Takashi; Arai, Katsuyoshi

    2017-11-01

    The Optical Inter-orbit Communications Engineering Test Satellite (OICETS) was successfully launched on 23th August 2005 and thrown into a circular orbit at the altitude of 610 km. The main mission is to demonstrate the free-space inter satellite laser communications with the cooperation of the Advanced Relay and Technology Mission (ARTEMIS) geostationary satellite developed by the European Space Agency. This paper presents the overview of the OICETS and laser terminal, a history of international cooperation between Japan Aerospace Exploration Agency (JAXA) and ESA and typical results of the inter-orbit laser communication experiment carried out with ARTEMIS.

  19. Robotic planetary mission benefits from nuclear electric propulsion

    International Nuclear Information System (INIS)

    Kelley, J.H.; Yen, C.L.

    1992-01-01

    Several interesting planetary missions are either enabled or significantly enhanced by nuclear electric propulsion (NEP) in the 50 to 100 kW power range. These missions include a Pluto Orbiter/Probe with an 11-year flight time and several years of operational life in orbit versus a ballistic very fast (13 km/s) flyby which would take longer to get to Pluto and would have a very short time to observe the planet. (A ballistic orbiter would take about 40 years to get to Pluto.) Other missions include a Neptune Orbiter/Probe, a Jupiter Grand Tour orbiting each of the major moons in order, a Uranus Orbiter/Probe, a Multiple Mainbelt Asteroid Rendezvous orbiting six selected asteroids, and a Comet Nucleus Sample Return. This paper discusses potential missions and compares the nuclear electric propulsion option to the conventional ballistic approach on a parametric basis

  20. Exomars orbiter science and data-relay mission / looking for trace gases on Mars

    Science.gov (United States)

    Fratacci, Olivier

    EXOMARS Orbiter Module: looking for trace gas on Mars and providing data relay support for future Mars Surface assets O.Fratacci, M.Mesrine, H.Renault, Thales Alenia Space France B.Musetti, M.Montagna, Thales Alenia Space Italy M.Kesselmann, M.Barczewski OHB P.Mitschdoerfer, D.Dellantonio Euro-pean Space Agency / ESTEC The European Space Agency (ESA) in a joint cooperation with NASA, will launch in 2016 the EXOMARS spacecraft composite to develop European landing technologies and provide a science orbiter with data-relay capability around Mars until end 2022. The spacecraft composite is composed of the Orbitr Module (OM), provided by TAS-France, an entry descent and landing demonstrator module (EDM) provided by TAS-Italy, and a set of six scientific payloads to be selected by the JPL during 2010. Recent observations of the planet Mars have indicated detection of methane as well as temporal, perhaps spatial variability in the detected signal while current photochemical models cannot explain the presence of methane in the atmosphere of Mars nor its reported rapid variations in space and time. The triple scientific objectives that drive the selection of these six instruments for the Exomars 2016 mission is to detect trace gases in Mars atmosphere, to characterise their spatial and temporal variation and to explore the source of the key trace gases (e.g. methane) on the surface. The launch is scheduled in January 2016 from Kennedy Space Center (KSC) using an ATLAS V 421 launcher with a total launch mass of 4.4 tons. After release of the EDM on Mars, the OM will perform the Mars Orbit Insertion manoeuvre and then reduce its elliptic orbit by implementing the first European Aerobraking around Mars for about 6 to 9 months, to finally end on a circular 400x400km orbit with an altitude in the range of 350km to 420km. From this orbit, a science phase will follow lasting 2 years in which the Mars atmosphere and surface is continuously observed. Science instruments composed of

  1. The Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission

    Science.gov (United States)

    Crisp, David

    2003-01-01

    A viewgraph presentation describing the Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission is shown. The contents include: 1) Why CO2?; 2) What Processes Control CO2 Sinks?; 3) OCO Science Team; 4) Space-Based Measurements of CO2; 5) Driving Requirement: Precise, Bias-Free Global Measurements; 6) Making Precise CO2 Measurements from Space; 7) OCO Spatial Sampling Strategy; 8) OCO Observing Modes; 9) Implementation Approach; 10) The OCO Instrument; 11) The OCO Spacecraft; 12) OCO Will Fly in the A-Train; 13) Validation Program Ensures Accuracy and Minimizes Spatially Coherent Biases; 14) Can OCO Provide the Required Precision?; 15) O2 Column Retrievals with Ground-based FTS; 16) X(sub CO2) Retrieval Simulations; 17) Impact of Albedo and Aerosol Uncertainty on X(sub CO2) Retrievals; 18) Carbon Cycle Modeling Studies: Seasonal Cycle; 19) Carbon Cycle Modeling Studies: The North-South Gradient in CO2; 20) Carbon Cycle Modeling Studies: Effect of Diurnal Biases; 21) Project Status and Schedule; and 22) Summary.

  2. Effects of DeOrbitSail as applied to Lifetime predictions of Low Earth Orbit Satellites

    Science.gov (United States)

    Afful, Andoh; Opperman, Ben; Steyn, Herman

    2016-07-01

    Orbit lifetime prediction is an important component of satellite mission design and post-launch space operations. Throughout its lifetime in space, a spacecraft is exposed to risk of collision with orbital debris or operational satellites. This risk is especially high within the Low Earth Orbit (LEO) region where the highest density of space debris is accumulated. This paper investigates orbital decay of some LEO micro-satellites and accelerating orbit decay by using a deorbitsail. The Semi-Analytical Liu Theory (SALT) and the Satellite Toolkit was employed to determine the mean elements and expressions for the time rates of change. Test cases of observed decayed satellites (Iridium-85 and Starshine-1) are used to evaluate the predicted theory. Results for the test cases indicated that the theory fitted observational data well within acceptable limits. Orbit decay progress of the SUNSAT micro-satellite was analysed using relevant orbital parameters derived from historic Two Line Element (TLE) sets and comparing with decay and lifetime prediction models. This paper also explored the deorbit date and time for a 1U CubeSat (ZACUBE-01). The use of solar sails as devices to speed up the deorbiting of LEO satellites is considered. In a drag sail mode, the deorbitsail technique significantly increases the effective cross-sectional area of a satellite, subsequently increasing atmospheric drag and accelerating orbit decay. The concept proposed in this study introduced a very useful technique of orbit decay as well as deorbiting of spacecraft.

  3. Orbital motions as gradiometers for post-Newtonian tidal effects

    Directory of Open Access Journals (Sweden)

    Lorenzo eIorio

    2014-08-01

    Full Text Available The direct long-term changes occurring in the orbital dynamics of a local gravitationally bound binary system S due to the post-Newtonian tidal acceleration caused by an external massive source are investigated. A class of systems made of a test particle m rapidly orbiting with orbital frequency nb an astronomical body of mass M which, in turn, slowly revolves around a distantobject of mass M with orbital frequency nb'<< □ nb is considered. The characteristic frequenciesof the non-Keplerian orbital variations of m and of M itself are assumed to be negligible withrespect to both nb and nb'. General expressions for the resulting Newtonian and post-Newtoniantidal orbital shifts of m are obtained. The future missions BepiColombo and JUICE to Mercuryand Ganymede, respectively, are considered in view of a possible detection. The largest effects,of the order of □ 0:1 □□ 0:5 milliarcseconds per year (mas yr□□1, occur for the Ganymede orbiterof the JUICE mission. Although future improvements in spacecraft tracking and orbit determina14tion might, perhaps, reach the required sensitivity, the systematic bias represented by the otherknown orbital perturbations of both Newtonian and post-Newtonian origin would be overwhel16ming. The realization of a dedicated artificial mini-planetary system to be carried onboard andEarth-orbiting spacecraft is considered as well. Post-Newtonian tidal precessions as large as1 □□ 102 mas yr□□1 could be obtained, but the quite larger Newtonian tidal effects would be amajor source of systematic bias because of the present-day percent uncertainty in the product of the Earth’s mass times the Newtonian gravitational parameter.

  4. Optimization of the Orbiting Wide-Angle Light Collectors (OWL) Mission for Charged-Particle and Neutrino Astronomy

    Science.gov (United States)

    Krizmanic, John F.; Mitchell, John W.; Streitmatter, Robert E.

    2013-01-01

    OWL [1] uses the Earth's atmosphere as a vast calorimeter to fully enable the emerging field of charged-particle astronomy with high-statistics measurements of ultra-high-energy cosmic rays (UHECR) and a search for sources of UHE neutrinos and photons. Confirmation of the Greisen-Zatsepin-Kuzmin (GZK) suppression above approx. 4 x 10(exp 19) eV suggests that most UHECR originate in astrophysical objects. Higher energy particles must come from sources within about 100 Mpc and are deflected by approx. 1 degree by predicted intergalactic/galactic magnetic fields. The Pierre Auger Array, Telescope Array and the future JEM-EUSO ISS mission will open charged-particle astronomy, but much greater exposure will be required to fully identify and measure the spectra of individual sources. OWL uses two large telescopes with 3 m optical apertures and 45 degree FOV in near-equatorial orbits. Simulations of a five-year OWL mission indicate approx. 10(exp 6) sq km/ sr/ yr of exposure with full aperture at approx. 6 x 10(exp 19) eV. Observations at different altitudes and spacecraft separations optimize sensitivity to UHECRs and neutrinos. OWL's stereo event reconstruction is nearly independent of track inclination and very tolerant of atmospheric conditions. An optional monocular mode gives increased reliability and can increase the instantaneous aperture. OWL can fully reconstruct horizontal and upward-moving showers and so has high sensitivity to UHE neutrinos. New capabilities in inflatable structures optics and silicon photomultipliers can greatly increase photon sensitivity, reducing the energy threshold for n detection or increasing viewed area using a higher orbit. Design trades between the original and optimized OWL missions and the enhanced science capabilities are described.

  5. MetNet - In situ observational Network and Orbital platform to investigate the Martian environment

    Science.gov (United States)

    Harri, Ari-Matti; Leinonen, Jussi; Merikallio, Sini; Paton, Mark; Haukka, Harri; Polkko, Jouni

    2007-09-01

    MetNet Mars Mission is an in situ observational network and orbital platform mission to investigate the Martian environment and it has been proposed to European Space Agency in response to Call for proposals for the first planning cycle of Cosmic Vision 2015-2025 D/SCI/DJS/SV/val/21851. The MetNet Mars Mission is to be implemented in collaboration with ESA, FMI, LA, IKI and the payload providing science teams. The scope of the MetNet Mission is to deploy 16 MetNet Landers (MNLs) on the Martian surface by using inflatable descent system structures accompanied by an atmospheric sounder and data relay onboard the MetNet Orbiter (MNO), which is based on ESA Mars Express satellite platform. The MNLs are attached on the three sides of the satellite and most of the MNLs are deployed to Mars separately a few weeks prior to the arrival to Mars. The MetNet Orbiter will perform continuous atmospheric soundings thus complementing the accurate in situ observations at the Martian ground produced by the MetNet observation network, as well as the orbiter will serve as the primary data relay between the MetNet Landers and the Earth. The MNLs are equipped with a versatile science payload focused on the atmospheric science of Mars. Detailed characterisation of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatological cycles, as well as interior investigations, require simultaneous in situ meteorological, seismic and magnetic measurements from networks of stations on the Martian surface. MetNet Mars Mission will also provide a crucial support for the safety of large landing missions in general and manned Mars missions in particular. Accurate knowledge of atmospheric conditions and weather data is essential to guarantee safe landings of the forthcoming Mars mission elements.

  6. Theory and design methods of special space orbits

    CERN Document Server

    Zhang, Yasheng; Zhou, Haijun

    2017-01-01

    This book focuses on the theory and design of special space orbits. Offering a systematic and detailed introduction to the hovering orbit, spiral cruising orbit, multi-target rendezvous orbit, initiative approaching orbit, responsive orbit and earth pole-sitter orbit, it also discusses the concept, theory, design methods and application of special space orbits, particularly the design and control method based on kinematics and astrodynamics. In addition the book presents the latest research and its application in space missions. It is intended for researchers, engineers and postgraduates, especially those working in the fields of orbit design and control, as well as space-mission planning and research.

  7. A MATLAB based Distributed Real-time Simulation of Lander-Orbiter-Earth Communication for Lunar Missions

    Science.gov (United States)

    Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa

    Lunar explorations often involve use of a lunar lander , a rover [1],[2] and an orbiter which rotates around the moon with a fixed radius. The orbiters are usually lunar satellites orbiting along a polar orbit to ensure visibility with respect to the rover and the Earth Station although with varying latency. Communication in such deep space missions is usually done using a specialized protocol like Proximity-1[3]. MATLAB simulation of Proximity-1 have been attempted by some contemporary researchers[4] to simulate all features like transmission control, delay etc. In this paper it is attempted to simulate, in real time, the communication between a tracking station on earth (earth station), a lunar orbiter and a lunar rover using concepts of Distributed Real-time Simulation(DRTS).The objective of the simulation is to simulate, in real-time, the time varying communication delays associated with the communicating elements with a facility to integrate specific simulation modules to study different aspects e.g. response due to a specific control command from the earth station to be executed by the rover. The hardware platform comprises four single board computers operating as stand-alone real time systems (developed by MATLAB xPC target and inter-networked using UDP-IP protocol). A time triggered DRTS approach is adopted. The earth station, the orbiter and the rover are programmed as three standalone real-time processes representing the communicating elements in the system. Communication from one communicating element to another constitutes an event which passes a state message from one element to another, augmenting the state of the latter. These events are handled by an event scheduler which is the fourth real-time process. The event scheduler simulates the delay in space communication taking into consideration the distance between the communicating elements. A unique time synchronization algorithm is developed which takes into account the large latencies in space

  8. Satellite laser ranging to low Earth orbiters: orbit and network validation

    Science.gov (United States)

    Arnold, Daniel; Montenbruck, Oliver; Hackel, Stefan; Sośnica, Krzysztof

    2018-04-01

    Satellite laser ranging (SLR) to low Earth orbiters (LEOs) provides optical distance measurements with mm-to-cm-level precision. SLR residuals, i.e., differences between measured and modeled ranges, serve as a common figure of merit for the quality assessment of orbits derived by radiometric tracking techniques. We discuss relevant processing standards for the modeling of SLR observations and highlight the importance of line-of-sight-dependent range corrections for the various types of laser retroreflector arrays. A 1-3 cm consistency of SLR observations and GPS-based precise orbits is demonstrated for a wide range of past and present LEO missions supported by the International Laser Ranging Service (ILRS). A parameter estimation approach is presented to investigate systematic orbit errors and it is shown that SLR validation of LEO satellites is not only able to detect radial but also along-track and cross-track offsets. SLR residual statistics clearly depend on the employed precise orbit determination technique (kinematic vs. reduced-dynamic, float vs. fixed ambiguities) but also reveal pronounced differences in the ILRS station performance. Using the residual-based parameter estimation approach, corrections to ILRS station coordinates, range biases, and timing offsets are derived. As a result, root-mean-square residuals of 5-10 mm have been achieved over a 1-year data arc in 2016 using observations from a subset of high-performance stations and ambiguity-fixed orbits of four LEO missions. As a final contribution, we demonstrate that SLR can not only validate single-satellite orbit solutions but also precise baseline solutions of formation flying missions such as GRACE, TanDEM-X, and Swarm.

  9. Mars Express - ESA sets ambitious goals for the first European mission to Mars

    Science.gov (United States)

    2003-05-01

    Mars has always fascinated human beings. No other planet has been visited so many times by spacecraft. And still, it has not been easy to unveil its secrets. Martian mysteries seem to have increased in quantity and complexity with every mission. When the first spacecraft were sent - the Mariner series in 1960s - the public was expecting an Earth ‘twin’, a green, inhabited planet full of oceans. Mariner shattered this dream by showing a barren surface. This was followed by the Viking probes which searched for life unsuccessfully in 1976. Mars appeared dry, cold and uninhabited: the Earth’s opposite. Now, two decades later, modern spacecraft have changed that view, but they have also returned more questions. Current data show that Mars was probably much warmer in the past. Scientists now think that Mars had oceans, so it could have been a suitable place for life in the past. “We do not know what happened to the planet in the past. Which process turned Mars into the dry, cold world we see today?” says Agustin Chicarro, ESA’s Mars Express project scientist. “With Mars Express, we will find out. Above all, we aim to obtain a complete global view of the planet - its history, its geology, how it has evolved. Real planetology!” Mars Express will reach the Red Planet by the end of December 2003, after a trip of just over six months. Six days before injection into its final orbit, Mars Express will eject the lander, Beagle 2, named after the ship on which Charles Darwin found inspiration to formulate his theory of evolution. The Mars Express orbiter will observe the planet and its atmosphere from a near-polar orbit, and will remain in operation for at least a whole Martian year (687 Earth days). Beagle 2 will land in an equatorial region that was probably flooded in the past, and where traces of life may have been preserved. The Mars Express orbiter carries seven advanced experiments, in addition to the Beagle 2 lander. The orbiter’s instruments have been

  10. Payload/orbiter contamination control requirement study: Preliminary contamination mission support plan. [a management analysis of project planning of spacecraft sterilization

    Science.gov (United States)

    Bareiss, L. E.; Hooper, V. W.; Ress, E. B.

    1976-01-01

    Progress is reported on the mission support plan and those support activities envisioned to be applicable and necessary during premission and postmission phases of the Spacelab program. The purpose, role, and requirements of the contamination control operations for the first two missions of the Spacelab equipped Space Transportation System are discussed. The organization of the contamination control operation and its relationship to and interfaces with other mission support functions is also discussed. Some specific areas of contamination to be investigated are treated. They are: (1) windows and viewports, (2) experiment equipment, (3) thermal control surfaces, (4) the contaminant induced atmosphere (as differentiated from the normal ambient atmosphere at the orbit altitude), and (5) optical navigation instruments.

  11. Orbital motions as gradiometers for post-Newtonian tidal effects

    Energy Technology Data Exchange (ETDEWEB)

    Iorio, Lorenzo, E-mail: lorenzo.iorio@libero.it [Ministero dell' Istruzione, dell' Università e della Ricerca, Istruzione, Bari (Italy)

    2014-08-14

    The direct long-term changes occurring in the orbital dynamics of a local gravitationally bound binary system S due to the post-Newtonian tidal acceleration caused by an external massive source are investigated. A class of systems made of a test particle m rapidly orbiting with orbital frequency n{sub b} an astronomical body of mass M which, in turn, slowly revolves around a distant object of mass M′ with orbital frequency n{sub b}′ « n{sub b} is considered. The characteristic frequencies of the non-Keplerian orbital variations of m and of M itself are assumed to be negligible with respect to both n{sub b} and n{sub b}′. General expressions for the resulting Newtonian and post-Newtonian tidal orbital shifts of m are obtained. The future missions BepiColombo and JUICE to Mercury and Ganymede, respectively, are considered in view of a possible detection. The largest effects, of the order of ≈ 0.1-0.5 milliarcseconds per year (mas yr{sup −1}), occur for the Ganymede orbiter of the JUICE mission. Although future improvements in spacecraft tracking and orbit determination might, perhaps, reach the required sensitivity, the systematic bias represented by the other known orbital perturbations of both Newtonian and post-Newtonian origin would be overwhelming. The realization of a dedicated artificial mini-planetary system to be carried onboard and Earth-orbiting spacecraft is considered as well. Post-Newtonian tidal precessions as large as ≈ 1−10{sup 2} mas yr{sup −1} could be obtained, but the quite larger Newtonian tidal effects would be a major source of systematic bias because of the present-day percent uncertainty in the product of the Earth's mass times the Newtonian gravitational parameter.

  12. Guidance system operations plan for manned CM earth orbital missions using program Skylark 1. Section 2: Data links

    Science.gov (United States)

    Hamilton, M. H.

    1972-01-01

    A computer program to define the digital uplink and downlink for use in manned command module orbital missions is presented. The subjects discussed are: (1) digital uplink to command module, (2) CMC digital downlink, (3) downlist formats, (4) description of telemetered qualities, (5) flagbits, and (6) effects of Fresh Start (V36) and Hardware Restart on flagword and channel bits.

  13. Guiding Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    Science.gov (United States)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    The National Aeronautics and Space Administration's (NASA) technology development roadmaps provide guidance to focus technological development in areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-flight maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  14. The Planetary Fourier Spectrometer (PFS) onboard the European Mars Express mission

    Science.gov (United States)

    Formisano, V.; Angrilli, F.; Arnold, G.; Atreya, S.; Bianchini, G.; Biondi, D.; Blanco, A.; Blecka, M. I.; Coradini, A.; Colangeli, L.; Ekonomov, A.; Esposito, F.; Fonti, S.; Giuranna, M.; Grassi, D.; Gnedykh, V.; Grigoriev, A.; Hansen, G.; Hirsh, H.; Khatuntsev, I.; Kiselev, A.; Ignatiev, N.; Jurewicz, A.; Lellouch, E.; Lopez Moreno, J.; Marten, A.; Mattana, A.; Maturilli, A.; Mencarelli, E.; Michalska, M.; Moroz, V.; Moshkin, B.; Nespoli, F.; Nikolsky, Y.; Orfei, R.; Orleanski, P.; Orofino, V.; Palomba, E.; Patsaev, D.; Piccioni, G.; Rataj, M.; Rodrigo, R.; Rodriguez, J.; Rossi, M.; Saggin, B.; Titov, D.; Zasova, L.

    2005-08-01

    The Planetary Fourier Spectrometer (PFS) for the Mars Express mission is an infrared spectrometer optimised for atmospheric studies. This instrument has a short wave (SW) channel that covers the spectral range from 1700 to 8200.0cm-1 (1.2- 5.5μm) and a long-wave (LW) channel that covers 250- 1700cm-1 (5.5- 45μm). Both channels have a uniform spectral resolution of 1.3cm-1. The instrument field of view FOV is about 1.6∘ (FWHM) for the Short Wavelength channel (SW) and 2.8∘ (FWHM) for the Long Wavelength channel (LW) which corresponds to a spatial resolution of 7 and 12 km when Mars is observed from an height of 250 km. PFS can provide unique data necessary to improve our knowledge not only of the atmosphere properties but also about mineralogical composition of the surface and the surface-atmosphere interaction. The SW channel uses a PbSe detector cooled to 200-220 K while the LW channel is based on a pyroelectric ( LiTaO3) detector working at room temperature. The intensity of the interferogram is measured every 150 nm of physical mirrors displacement, corresponding to 600 nm optical path difference, by using a laser diode monochromatic light interferogram (a sine wave), whose zero crossings control the double pendulum motion. PFS works primarily around the pericentre of the orbit, only occasionally observing Mars from large distances. Each measurements take 4 s, with a repetition time of 8.5 s. By working roughly 0.6 h around pericentre, a total of 330 measurements per orbit will be acquired 270 looking at Mars and 60 for calibrations. PFS is able to take measurements at all local times, facilitating the retrieval of surface temperatures and atmospheric vertical temperature profiles on both the day and the night side.

  15. Burn Delay Analysis of the Lunar Orbit Insertion for Korea Pathfinder Lunar Orbiter

    Science.gov (United States)

    Bae, Jonghee; Song, Young-Joo; Kim, Young-Rok; Kim, Bangyeop

    2017-12-01

    The first Korea lunar orbiter, Korea Pathfinder Lunar Orbiter (KPLO), has been in development since 2016. After launch, the KPLO will execute several maneuvers to enter into the lunar mission orbit, and will then perform lunar science missions for one year. Among these maneuvers, the lunar orbit insertion (LOI) is the most critical maneuver because the KPLO will experience an extreme velocity change in the presence of the Moon’s gravitational pull. However, the lunar orbiter may have a delayed LOI burn during operation due to hardware limitations and telemetry delays. This delayed burn could occur in different captured lunar orbits; in the worst case, the KPLO could fly away from the Moon. Therefore, in this study, the burn delay for the first LOI maneuver is analyzed to successfully enter the desired lunar orbit. Numerical simulations are performed to evaluate the difference between the desired and delayed lunar orbits due to a burn delay in the LOI maneuver. Based on this analysis, critical factors in the LOI maneuver, the periselene altitude and orbit period, are significantly changed and an additional delta-V in the second LOI maneuver is required as the delay burn interval increases to 10 min from the planned maneuver epoch.

  16. Monte Carlo Analysis as a Trajectory Design Driver for the TESS Mission

    Science.gov (United States)

    Nickel, Craig; Lebois, Ryan; Lutz, Stephen; Dichmann, Donald; Parker, Joel

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will be injected into a highly eccentric Earth orbit and fly 3.5 phasing loops followed by a lunar flyby to enter a mission orbit with lunar 2:1 resonance. Through the phasing loops and mission orbit, the trajectory is significantly affected by lunar and solar gravity. We have developed a trajectory design to achieve the mission orbit and meet mission constraints, including eclipse avoidance and a 30-year geostationary orbit avoidance requirement. A parallelized Monte Carlo simulation was performed to validate the trajectory after injecting common perturbations, including launch dispersions, orbit determination errors, and maneuver execution errors. The Monte Carlo analysis helped identify mission risks and is used in the trajectory selection process.

  17. Orbital transfer vehicle concept definition and system analysis study. Volume 2: OTV concept definition and evaluation. Book 1: Mission and system requirements

    Science.gov (United States)

    Kofal, Allen E.

    1987-01-01

    The mission and system requirements for the concept definition and system analysis of the Orbital Transfer Vehicle (OTV) are established. The requirements set forth constitute the single authority for the selection, evaluation, and optimization of the technical performance and design of the OTV. This requirements document forms the basis for the Ground and Space Based OTV concept definition analyses and establishes the physical, functional, performance and design relationships to STS, Space Station, Orbital Maneuvering Vehicle (OMV), and payloads.

  18. An Atmospheric Variability Model for Venus Aerobraking Missions

    Science.gov (United States)

    Tolson, Robert T.; Prince, Jill L. H.; Konopliv, Alexander A.

    2013-01-01

    Aerobraking has proven to be an enabling technology for planetary missions to Mars and has been proposed to enable low cost missions to Venus. Aerobraking saves a significant amount of propulsion fuel mass by exploiting atmospheric drag to reduce the eccentricity of the initial orbit. The solar arrays have been used as the primary drag surface and only minor modifications have been made in the vehicle design to accommodate the relatively modest aerothermal loads. However, if atmospheric density is highly variable from orbit to orbit, the mission must either accept higher aerothermal risk, a slower pace for aerobraking, or a tighter corridor likely with increased propulsive cost. Hence, knowledge of atmospheric variability is of great interest for the design of aerobraking missions. The first planetary aerobraking was at Venus during the Magellan mission. After the primary Magellan science mission was completed, aerobraking was used to provide a more circular orbit to enhance gravity field recovery. Magellan aerobraking took place between local solar times of 1100 and 1800 hrs, and it was found that the Venusian atmospheric density during the aerobraking phase had less than 10% 1 sigma orbit to orbit variability. On the other hand, at some latitudes and seasons, Martian variability can be as high as 40% 1 sigmaFrom both the MGN and PVO mission it was known that the atmosphere, above aerobraking altitudes, showed greater variability at night, but this variability was never quantified in a systematic manner. This paper proposes a model for atmospheric variability that can be used for aerobraking mission design until more complete data sets become available.

  19. A Wide Field Auroral Imager (WFAI for low Earth orbit missions

    Directory of Open Access Journals (Sweden)

    N. P. Bannister

    2007-03-01

    Full Text Available A comprehensive understanding of the solar wind interaction with Earth's coupled magnetosphere-ionosphere system requires an ability to observe the charged particle environment and auroral activity from the same platform, generating particle and photon image data which are matched in time and location. While unambiguous identification of the particles giving rise to the aurora requires a Low Earth Orbit satellite, obtaining adequate spatial coverage of aurorae with the relatively limited field of view of current space bourne auroral imaging systems requires much higher orbits. A goal for future satellite missions, therefore, is the development of compact, wide field-of-view optics permitting high spatial and temporal resolution ultraviolet imaging of the aurora from small spacecraft in low polar orbit. Microchannel plate optics offer a method of achieving the required performance. We describe a new, compact instrument design which can observe a wide field-of-view with the required spatial resolution. We report the focusing of 121.6 nm radiation using a spherically-slumped, square-pore microchannel plate with a focal length of 32 mm and an F number of 0.7. Measurements are compared with detailed ray-trace simulations of imaging performance. The angular resolution is 2.7±0.2° for the prototype, corresponding to a footprint ~33 km in diameter for an aurora altitude of 110 km and a spacecraft altitude of 800 km. In preliminary analysis, a more recent optic has demonstrated a full width at half maximum of 5.0±0.3 arcminutes, corresponding to a footprint of ~1 km from the same spacecraft altitude. We further report the imaging properties of a convex microchannel plate detector with planar resistive anode readout; this detector, whose active surface has a radius of curvature of only 100 mm, is shown to meet the spatial resolution and sensitivity requirements of the new wide field auroral imager (WFAI.

  20. KEPLER Mission: development and overview

    International Nuclear Information System (INIS)

    Borucki, William J

    2016-01-01

    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170 000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many ‘blind alleys’ before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170 000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth. (review article)

  1. Discovery touches down after successful mission STS-95

    Science.gov (United States)

    1998-01-01

    Orbiter Discovery touches down on runway 33 at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  2. Stability of orbits around planetary satellites considering a disturbing body in an elliptical orbit: Applications to Europa and Ganymede

    Science.gov (United States)

    Cardoso dos Santos, Josué; Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho

    Europa and Ganymede are two of the four Jupiter’s moons which compose the Galilean satellite. These ones are planetary satellites of greater interest at the present moment among the scientific community. There are some missions being planned to visit them and and the Jovian system. One of them is the cooperation between NASA and ESA for the Europa Jupiter System Mission (EJSM). In this mission are planned the insertion of the spacecrafts JEO (Jupiter Europa Orbiter) and JGO (Jupiter Ganymede Orbiter) into Europa and Ganymede’s orbit. Thus, there is a great necessity for having a better comprehension of the dynamics of the orbits around this planetary satellite. This comprehension is essential for the success of this type of mission. In this context, this work aims to perform a search for low-altitude orbits around these planetary satellites. An emphasis is given in polar orbits. These orbits can be useful in the planning of aerospace activities to be conducted around this planetary satellite, with respect to the stability of orbits of artificial satellites. The study considers orbits of an artificial satellite around Europa and Ganymede under the influence of the third-body perturbation (the gravitational attraction of Jupiter) and the polygenic perturbations. These last ones occur due to forces such as the non-uniform distribution of mass (J2 and J3) of the main (central) body. A simplified dynamic model for polygenic perturbations is used. A new model for the third-body disturbance is presented considering it in an elliptical orbit. The Lagrange planetary equations, which compose a system of nonlinear differential equations, are used to describe the orbital motion of the artificial satellite around Ganymede. The equations showed here are developed in closed form to avoid expansions in inclination and eccentricity.

  3. The STEREO Mission

    CERN Document Server

    2008-01-01

    The STEREO mission uses twin heliospheric orbiters to track solar disturbances from their initiation to 1 AU. This book documents the mission, its objectives, the spacecraft that execute it and the instruments that provide the measurements, both remote sensing and in situ. This mission promises to unlock many of the mysteries of how the Sun produces what has become to be known as space weather.

  4. Orbital resonances of Taiwan's FORMOSAT-2 remote sensing satellite

    Science.gov (United States)

    Lin, Shin-Fa; Hwang, Cheinway

    2018-06-01

    Unlike a typical remote sensing satellite that has a global coverage and non-integral orbital revolutions per day, Taiwan's FORMOSAT-2 (FS-2) satellite has a non-global coverage due to the mission requirements of one-day repeat cycle and daily visit around Taiwan. These orbital characteristics result in an integer number of revolutions a day and orbital resonances caused by certain components of the Earth's gravity field. Orbital flight data indicated amplified variations in the amplitudes of FS-2's Keplerian elements. We use twelve years of orbital observations and maneuver data to analyze the cause of the resonances and explain the differences between the simulated (at the pre-launch stage) and real orbits of FS-2. The differences are quantified using orbital perturbation theories that describe secular and long-period orbital evolutions caused by resonances. The resonance-induced orbital rising rate of FS-2 reaches +1.425 m/day, due to the combined (modeled) effect of resonances and atmospheric drags (the relative modeling errors remote sensing mission similar to FS-2, especially in the early mission design and planning phase.

  5. Navigating the MESSENGER Spacecraft through End of Mission

    Science.gov (United States)

    Bryan, C. G.; Williams, B. G.; Williams, K. E.; Taylor, A. H.; Carranza, E.; Page, B. R.; Stanbridge, D. R.; Mazarico, E.; Neumann, G. A.; O'Shaughnessy, D. J.; McAdams, J. V.; Calloway, A. B.

    2015-12-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited the planet Mercury from March 2011 until the end of April 2015, when it impacted the planetary surface after propellant reserves used to maintain the orbit were depleted. This highly successful mission was led by the principal investigator, Sean C. Solomon, of Columbia University. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and assembled the spacecraft and served as the home for spacecraft operations. Spacecraft navigation for the entirety of the mission was provided by the Space Navigation and Flight Dynamics Practice (SNAFD) of KinetX Aerospace. Orbit determination (OD) solutions were generated through processing of radiometric tracking data provided by NASA's Deep Space Network (DSN) using the MIRAGE suite of orbital analysis tools. The MESSENGER orbit was highly eccentric, with periapsis at a high northern latitude and periapsis altitude in the range 200-500 km for most of the orbital mission phase. In a low-altitude "hover campaign" during the final two months of the mission, periapsis altitudes were maintained within a narrow range between about 35 km and 5 km. Navigating a spacecraft so near a planetary surface presented special challenges. Tasks required to meet those challenges included the modeling and estimation of Mercury's gravity field and of solar and planetary radiation pressure, and the design of frequent orbit-correction maneuvers. Superior solar conjunction also presented observational modeling issues. One key to the overall success of the low-altitude hover campaign was a strategy to utilize data from an onboard laser altimeter as a cross-check on the navigation team's reconstructed and predicted estimates of periapsis altitude. Data obtained from the Mercury Laser Altimeter (MLA) on a daily basis provided near-real-time feedback that proved invaluable in evaluating alternative orbit estimation strategies, and

  6. Relativity mission with two counter-orbiting polar satellites

    International Nuclear Information System (INIS)

    Van Patten, R.A.; Everitt, C.W.F.

    1975-01-01

    In 1918, J. Lense and H. Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. An experiment to measure this effect with two counter-orbiting drag-free satellites in polar earth orbit is described. For a 2 1 / 2 year experiment, the measurement accuracy should approach 1 percent. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken at points of passing near the poles. New geophysical information on both earth harmonics and tidal effects is inherent in the polar ranging data. (auth)

  7. The Exo-S probe class starshade mission

    Science.gov (United States)

    Seager, Sara; Turnbull, Margaret; Sparks, William; Thomson, Mark; Shaklan, Stuart B.; Roberge, Aki; Kuchner, Marc; Kasdin, N. Jeremy; Domagal-Goldman, Shawn; Cash, Webster; Warfield, Keith; Lisman, Doug; Scharf, Dan; Webb, David; Trabert, Rachel; Martin, Stefan; Cady, Eric; Heneghan, Cate

    2015-09-01

    Exo-S is a direct imaging space-based mission to discover and characterize exoplanets. With its modest size, Exo-S bridges the gap between census missions like Kepler and a future space-based flagship direct imaging exoplanet mission. With the ability to reach down to Earth-size planets in the habitable zones of nearly two dozen nearby stars, Exo-S is a powerful first step in the search for and identification of Earth-like planets. Compelling science can be returned at the same time as the technological and scientific framework is developed for a larger flagship mission. The Exo-S Science and Technology Definition Team studied two viable starshade-telescope missions for exoplanet direct imaging, targeted to the $1B cost guideline. The first Exo-S mission concept is a starshade and telescope system dedicated to each other for the sole purpose of direct imaging for exoplanets (The "Starshade Dedicated Mission"). The starshade and commercial, 1.1-m diameter telescope co-launch, sharing the same low-cost launch vehicle, conserving cost. The Dedicated mission orbits in a heliocentric, Earth leading, Earth-drift away orbit. The telescope has a conventional instrument package that includes the planet camera, a basic spectrometer, and a guide camera. The second Exo-S mission concept is a starshade that launches separately to rendezvous with an existing on-orbit space telescope (the "Starshade Rendezvous Mission"). The existing telescope adopted for the study is the WFIRST-AFTA (Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Asset). The WFIRST-AFTA 2.4-m telescope is assumed to have previously launched to a Halo orbit about the Earth-Sun L2 point, away from the gravity gradient of Earth orbit which is unsuitable for formation flying of the starshade and telescope. The impact on WFIRST-AFTA for starshade readiness is minimized; the existing coronagraph instrument performs as the starshade science instrument, while formation guidance is handled by the

  8. VEGA Space Mission

    Science.gov (United States)

    Moroz, V.; Murdin, P.

    2000-11-01

    VEGA (mission) is a combined spacecraft mission to VENUS and COMET HALLEY. It was launched in the USSR at the end of 1984. The mission consisted of two identical spacecraft VEGA 1 and VEGA 2. VEGA is an acronym built from the words `Venus' and `Halley' (`Galley' in Russian spelling). The basic design of the spacecraft was the same as has been used many times to deliver Soviet landers and orbiter...

  9. Guidance system operations plan for manned cm earth orbital and lunar missions using program Colossus 3. Section 2: Data links

    Science.gov (United States)

    Hamilton, M. H.

    1971-01-01

    The data links for use with the guidance system operations plan for manned command module earth orbital and lunar missions using program Colossus 3 are presented. The subjects discussed are: (1) digital uplink to CMC, (2) command module contiguous block update, (3) CMC retrofire external data update, (4) CMC digital downlink, and (5) CMC entry update.

  10. Options for Staging Orbits in Cis-Lunar Space

    Science.gov (United States)

    Martinez, Roland; Whitley, Ryan

    2016-01-01

    NASA has been studying options to conduct missions beyond Low Earth Orbit, but within the Earth-Moon system, in preparation for deep space exploration including human missions to Mars. Referred to as the Proving Ground, this arena of exploration activities will enable the development of human spaceflight systems and operations to satisfy future exploration objectives beyond the cis-lunar environment. One option being considered includes the deployment of a habitable element or elements, which could be used as a central location for aggregation of supplies and resources for human missions in cis-lunar space and beyond. Characterizing candidate orbit locations for this asset and the impacts on system design and mission operations is important in the overall assessment of the options being considered. The orbits described in this paper were initially selected by taking advantage of previous studies conducted by NASA and the work of other authors. In this paper orbits are assessed for their relative attractiveness based on various factors. A set of constraints related to the capability of the combined Orion and SLS system to deliver humans and cargo to and from the orbit are evaluated. Deployed assets intended to spend multiple years in the Proving Ground would ideally require minimal station keeping costs to reduce the mass budget allocated to this function. Additional mission design drivers include eclipse frequency, potential for uninterrupted communication with deployed assets, thermal, attitude control, communications, and other operational implications. Also the ability to support potential lunar surface activities and excursion missions beyond Earth-Moon space is considered. The results of the characterization and evaluation of the selected orbits indicate a Near Rectilinear Orbit (NRO) is an attractive candidate as an aggregation point or staging location for operations. In this paper, the NRO is further described in terms which balance a number of key

  11. Apollo guidance, navigation and control: Guidance system operations plan for manned CM earth orbital and lunar missions using Program COLOSSUS 3. Section 3: Digital autopilots (revision 14)

    Science.gov (United States)

    1972-01-01

    Digital autopilots for the manned command module earth orbital and lunar missions using program COLOSSUS 3 are discussed. Subjects presented are: (1) reaction control system digital autopilot, (2) thrust vector control autopilot, (3) entry autopilot and mission control programs, (4) takeover of Saturn steering, and (5) coasting flight attitude maneuver routine.

  12. Fuel Consumption and Collision Avoidance Strategy in Multi-static Orbit Formations

    OpenAIRE

    Jochim, Fritz; Fiedler, Hauke; Krieger, Gerhard

    2011-01-01

    This paper analysesthe fuel consumption of interferometric rader missions employing small satellite formations like, e.g., Cross-track pendulum, Cartwheel, CarPe, or Trinodal Pendulum. Individual analytic expressions are provides for each of the following contributions: separation from a simultaneously injected master satellite, formation set-up, orbit maintenance, formation maintenance, and distance maintenance. For this, a general system of equations is derived describing the relative motio...

  13. Missions and planning for nuclear space power

    International Nuclear Information System (INIS)

    Buden, D.

    1979-01-01

    Requirements for electrical and propulsion power for space are expected to increase dramatically in the 1980s. Nuclear power is probably the only source for some deep space missions and a major competitor for many orbital missions, especially those at geosynchronous orbit. Because of the potential requirements, a technology program on reactor components has been initiated by the Department of Energy. The missions that are foreseen, the current reactor concept, and the technology program plan are described

  14. Cassini Solstice Mission Maneuver Experience: Year Two

    Science.gov (United States)

    Arrieta, Juan; Ballard, Christopher G.; Hahn, Yungsun

    2012-01-01

    The Cassini Spacecraft was launched in October 1997 on a mission to observe Saturn and its moons; it entered orbit around Saturn in July 2004 for a nominal four-year Prime Mission, later augmented by two extensions: the Equinox Mission, from July 2008 through September 2010, and the Solstice Mission, from October 2010 through September 2017. This paper provides an overview of the maneuver activities from August 2011 through June 2012 which include the design of 38 Orbit Trim Maneuvers--OTM-288 through OTM-326-- for attaining 14 natural satellite encounters: seven with Titan, six with Enceladus, and one with Dione.

  15. Mission Analysis for the Don Quijote Phase-A Study

    Science.gov (United States)

    Cano, Juan L.; Sanchez, Mariano; Cornara, Stefania; Carnelli, Ian

    2007-01-01

    The Don Quijote Phase-A study is a definition study funded by ESA and devoted to the analysis of the possibilities to deflect a Near Earth Object (NEO) in the range of 300-800 m diameter. DEIMOS Space S.L. and EADS Astrium have teamed up within this study to form one of the three consortia that have analyzed these aspects for ESA. Target asteroids for the mission are 1989 ML, 2002 AT4 and Apophis. This paper presents the mission analysis activities within the consortium providing: low-thrust interplanetary rendezvous Orbiter trajectories to the target asteroids, ballistic interplanetary trajectories for the Impactor, Orbiter arrival description at the asteroids, Orbiter stable orbits characterization at the asteroid, deflection determination by means of a Radio Science Experiment (RSE) as well as the mission timelines and overall mission scenarios.

  16. CRaTER: The Cosmic Ray Telescope for the Effects of Radiation Experiment on the Lunar Reconnaissance Orbiter Mission

    OpenAIRE

    Spence, H. E.; Case, A. W.; Golightly, M. J.; Heine, T.; Larsen, B. A.; Blake, J. B.; Caranza, P.; Crain, W. R.; George, J.; Lalic, M.; Lin, A.; Looper, M. D.; Mazur, J. E.; Salvaggio, D.; Kasper, J. C.

    2009-01-01

    The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) characterizes the radiation environment to be experienced by humans during future lunar missions. CRaTER measures the effects of ionizing energy loss in matter due to penetrating solar energetic protons (SEP) and galactic cosmic rays (GCR), specifically in silicon solid-state detectors and after interactions with tissue-equivalent plastic (TEP), a synthetic analog of human tissue. The CRaT...

  17. Crew Transportation System Design Reference Missions

    Science.gov (United States)

    Mango, Edward J.

    2015-01-01

    Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.

  18. Guidance system operations plan for manned LM earth orbital and lunar missions using program luminary 1E. Section 2: Data links

    Science.gov (United States)

    Hamilton, M. H.

    1972-01-01

    Data links for the guidance system of manned lunar module orbital and lunar missions are presented. Subjects discussed are: (1) digital uplink to lunar module, (2) lunar module liftoff time increment, (3) lunar module contiguous block update, (4) lunar module scatter update, (5) lunar module digital downlink, and (6) absolute addresses for update program.

  19. On-Orbit Quantitative Real-Time Gene Expression Analysis Using the Wetlab-2 System

    Science.gov (United States)

    Parra, Macarena; Jung, Jimmy; Almeida, Eduardo; Boone, Travis; Tran, Luan; Schonfeld, Julie

    2015-01-01

    NASA Ames Research Center's WetLab-2 Project enables on-orbit quantitative Reverse Transcriptase PCR (qRT-PCR) analysis without the need for sample return. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage of using non-toxic chemicals and does not require alcohols or other organics. The resulting RNA is dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The project selected the Cepheid SmartCycler (TradeMark), a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, because of its advantages including rugged modular design, low power consumption, rapid thermal ramp times and four-color multiplex detection. Single tube multiplex assays can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system can downlink data from the ISS to the ground after a completed run and uplink new thermal cycling programs. The ability to conduct qRT-PCR and generate results on-orbit is an important step towards utilizing the ISS as a National Laboratory facility. Specifically, the ability to get on-orbit data will provide investigators with the opportunity to adjust experimental parameters in real time without the need for sample return and re-flight. On orbit gene expression analysis can also eliminate the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples and provide on-orbit gene expression benchmarking prior to sample return. Finally, the system can also be used for analysis of

  20. SNAP 19 Viking RTG mission performance

    International Nuclear Information System (INIS)

    Brittain, W.M.

    1976-01-01

    The Viking-75 mission utilized the August/September 1975 opportunity to launch two spacecrafts to Mars for arrival in 1976 after about a one-year transit period. On arrival, each spacecraft, consisting of an orbiter and lander, will be placed in Mars orbit, with each lander subsequently descending from orbit to a soft-landing on the Martian surface. Two SNAP 19 RTG's (radioisotope thermoelectric generators) provide the primary source of electrical power and means of thermal control for each Viking lander. The RTG's will be switched on-load just prior to separation of the lander from the orbiter for checkout of the lander, and will remain on-load during entry and the remainder of the 90-day minimum surface mission

  1. The PH-D proposal - A manned mission to PHOBOS and Deimos

    Science.gov (United States)

    Singer, S. F.

    The rationale for a manned mission to the satellites of Mars is discussed. The view has been expressed that NASA must define a major program to follow the Shuttle and to utilize it. However, such a program could not be initiated and proceed without public support, and to obtain this support, public interest would have to be excited. It is shown that, of a number of possible targets for manned exploration in the solar system, Mars appears to be the only possible candidate. Attention is given to a comparison of three Mars missions, a Mars 1984 mission, a manned landing on Mars surface, a manned landing on Phobos and Deimos (Ph-D project), putting men in Mars orbit, the capabilities of the Ph-D mission, a description of the spacecraft, a Ph-D project operations plan, and aspects of timing, technology, and costs.

  2. Distant retrograde orbits and the asteroid hazard

    Science.gov (United States)

    Perozzi, Ettore; Ceccaroni, Marta; Valsecchi, Giovanni B.; Rossi, Alessandro

    2017-08-01

    Distant Retrograde Orbits (DROs) gained a novel wave of fame in space mission design because of their numerous advantages within the framework of the US plans for bringing a large asteroid sample in the vicinity of the Earth as the next target for human exploration. DROs are stable solutions of the three-body problem that can be used whenever an object, whether of natural or artificial nature, is required to remain in the neighborhood of a celestial body without being gravitationally captured by it. As such, they represent an alternative option to Halo orbits around the collinear Lagrangian points L1 and L2. Also known under other names ( e.g., quasi-satellite orbits, cis-lunar orbits, family- f orbits) these orbital configurations found interesting applications in several mission profiles, like that of a spacecraft orbiting around the small irregularly shaped satellite of Mars Phobos or the large Jovian moon Europa. In this paper a basic explanation of the DRO dynamics is presented in order to clarify some geometrical properties that characterize them. Their accessibility is then discussed from the point of view of mission analysis under different assumptions. Finally, their relevance within the framework of the present asteroid hazard protection programs is shown, stressing the significant increase in warning time they would provide in the prediction of impactors coming from the direction of the Sun.

  3. GPS Based Reduced-Dynamic Orbit Determination for Low Earth Orbiters with Ambiguity Fixing

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2015-01-01

    Full Text Available With the ever-increasing number of satellites in Low Earth Orbit (LEO for scientific missions, the precise determination of the position and velocity of the satellite is a necessity. GPS (Global Positioning System based reduced-dynamic orbit determination (RPOD method is commonly used in the post processing with high precision. This paper presents a sequential RPOD strategy for LEO satellite in the framework of Extended Kalman Filter (EKF. Precise Point Positioning (PPP technique is used to process the GPS observations, with carrier phase ambiguity resolution using Integer Phase Clocks (IPCs products. A set of GRACE (Gravity Recovery And Climate Experiment mission data is used to test and validate the RPOD performance. Results indicate that orbit determination accuracy could be improved by 15% in terms of 3D RMS error in comparison with traditional RPOD method with float ambiguity solutions.

  4. Exploring the martian moons a human mission to Deimos and Phobos

    CERN Document Server

    von Ehrenfried, Manfred “Dutch”

    2017-01-01

    This book explores the once popular idea of 'Flexible Path' in terms of Mars, a strategy that would focus on a manned orbital mission to Mars's moons rather than the more risky, expensive and time-consuming trip to land humans on the Martian surface. While currently still not the most popular idea, this mission would take advantage of the operational, scientific and engineering lessons to be learned from going to Mars's moons first. Unlike a trip to the planet's surface, an orbital mission avoids the dangers of the deep gravity well of Mars and a very long stay on the surface. This is analogous to Apollo 8 and 10, which preceded the landing on the Moon of Apollo 11. Furthermore, a Mars orbital mission could be achieved at least five years, possibly 10 before a landing mission. Nor would an orbital mission require all of the extra vehicles, equipment and supplies needed for a landing and a stay on the planet for over a year. The cost difference between the two types of missions is in the order of tens of billi...

  5. Weights assessment for orbit-on-demand vehicles

    Science.gov (United States)

    Macconochie, I. O.; Martin, J. A.; Breiner, C. A.; Cerro, J. A.

    1985-01-01

    Future manned, reusable earth-to-orbit vehicles may be required to reach orbit within hours or even minutes of a mission decision. A study has been conducted to consider vehicles with such a capability. In the initial phase of the study, 11 vehicles were sized for deployment of 5000 lbs to a polar orbit. From this matrix, two of the most promising concepts were resized for a modified mission and payload. A key feature of the study was the use of consistent mass estimating techniques for a broad range of concepts, allowing direct comparisons of sizes and weights.

  6. NASA's Planetary Science Missions and Participations

    Science.gov (United States)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  7. Dynamic and reduced-dynamic precise orbit determination of satellites in low earth orbits

    International Nuclear Information System (INIS)

    Swatschina, P.

    2009-01-01

    The precise positioning of satellites in Low Earth Orbits (LEO) has become a key technology for advanced space missions. Dedicated satellite missions, such as CHAMP, GRACE and GOCE, that aim to map the Earths gravity field and its variation over time with unprecedented accuracy, initiated the demand for highly precise orbit solutions of LEO satellites. Furthermore, a wide range of additional science opportunities opens up with the capability to generate accurate LEO orbits. For all considered satellite missions, the primary measurement system for navigation is a spaceborne GPS receiver. The goal of this thesis is to establish and implement methods for Precise Orbit Determination (POD) of LEO satellites using GPS. Striving for highest precision using yet efficient orbit generation strategies, the attained orbit solutions are aimed to be competitive with the most advanced solutions of other institutions. Dynamic and reduced-dynamic orbit models provide the basic concepts of this work. These orbit models are subsequently adjusted to the highly accurate GPS measurements. The GPS measurements are introduced at the zero difference level in the ionosphere free linear combination. Appropriate procedures for GPS data screening and editing are established to detect erroneous data and to employ measurements of good quality only. For the dynamic orbit model a sophisticated force model, especially designed for LEO satellites, has been developed. In order to overcome the limitations that are induced by the deficiencies of the purely dynamical model, two different types of empirical parameters are introduced into the force model. These reduced-dynamic orbit models allow for the generation of much longer orbital arcs while preserving the spacecraft dynamics to the most possible extent. The two methods for reduced-dynamic orbit modeling are instantaneous velocity changes (pulses) or piecewise constant accelerations. For both techniques highly efficient modeling algorithms are

  8. ESOC activities during the MIR de-orbit

    Science.gov (United States)

    Klinkrad, H.; Flury, W.; Hernández, C.; Landgraf, M.; Jehn, R.; Christ, U.; Sintoni, F.

    2002-11-01

    On March 23, 2001, MIR was de-orbited in a controlled fashion, following a successful mission of 15 years. The de-orbiting operations were conducted by the TsUP Mission Control Center, who also consulted entities outside Russia, in order to consolidate their knowledge on the MIR orbit and attitude prior to the initiation of the de-orbit sequence. The European Space Agency ESA through their operations centre ESOC was tasked to support the pre-entry analysis of TsUP by own results, and by routing of Russian and European data via a dedicated communications network. Analysis results produced by ESOC, and details on the data exchange will be highlighted in this paper. The MIR de-orbit and its assessed risk potential will also be compared with the re-entries of Skylab and Salyut-7/Kosmos-1686.

  9. Mars Sample Return - Launch and Detection Strategies for Orbital Rendezvous

    Science.gov (United States)

    Woolley, Ryan C.; Mattingly, Richard L.; Riedel, Joseph E.; Sturm, Erick J.

    2011-01-01

    This study sets forth conceptual mission design strategies for the ascent and rendezvous phase of the proposed NASA/ESA joint Mars Sample Return Campaign. The current notional mission architecture calls for the launch of an acquisition/cache rover in 2018, an orbiter with an Earth return vehicle in 2022, and a fetch rover and ascent vehicle in 2024. Strategies are presented to launch the sample into a coplanar orbit with the Orbiter which facilitate robust optical detection, orbit determination, and rendezvous. Repeating ground track orbits exist at 457 and 572 km which provide multiple launch opportunities with similar geometries for detection and rendezvous.

  10. Mars Sample Return: Launch and Detection Strategies for Orbital Rendezvous

    Science.gov (United States)

    Woolley, Ryan C.; Mattingly, Richard L.; Riedel, Joseph E.; Sturm, Erick J.

    2011-01-01

    This study sets forth conceptual mission design strategies for the ascent and rendezvous phase of the proposed NASA/ESA joint Mars Sample Return Campaign. The current notional mission architecture calls for the launch of an acquisition/ caching rover in 2018, an Earth return orbiter in 2022, and a fetch rover with ascent vehicle in 2024. Strategies are presented to launch the sample into a nearly coplanar orbit with the Orbiter which would facilitate robust optical detection, orbit determination, and rendezvous. Repeating ground track orbits existat 457 and 572 km which would provide multiple launch opportunities with similar geometries for detection and rendezvous.

  11. Stability and evolution of orbits around the binary asteroid 175706 (1996 FG3): Implications for the MarcoPolo-R mission

    Science.gov (United States)

    Hussmann, Hauke; Oberst, Jürgen; Wickhusen, Kai; Shi, Xian; Damme, Friedrich; Lüdicke, Fabian; Lupovka, Valery; Bauer, Sven

    2012-09-01

    In support of the MarcoPolo-R mission, we have carried out numerical simulations of spacecraft trajectories about the binary asteroid 175706 (1996 FG3) under the influence of solar radiation pressure. We study the effects of (1) the asteroid's mass, shape, and rotational parameters, (2) the secondary's mass, shape, and orbit parameters, (3) the spacecraft's mass, surface area, and reflectivity, and (4) the time of arrival, and therefore the relative position to the sun and planets. We have considered distance regimes between 5 and 20 km, the typical range for a detailed characterization of the asteroids - primary and secondary - with imaging systems, spectrometers and by laser altimetry. With solar radiation pressure and gravity forces of the small asteroid competing, orbits are found to be unstable, in general. However, limited orbital stability can be found in the so-called Self-Stabilized Terminator Orbits (SSTO), where initial orbits are circular, orbital planes are oriented approximately perpendicular to the solar radiation pressure, and where the orbital plane of the spacecraft is shifted slightly (between 0.2 and 1 km) from the asteroid in the direction away from the sun. Under the effect of radiation pressure, the vector perpendicular to the orbit plane is observed to follow the sun direction. Shape and rotation parameters of the asteroid as well as gravitational perturbations by the secondary (not to mention sun and planets) were found not to affect the results. Such stable orbits may be suited for long radio tracking runs, which will allow for studying the gravity field. As the effect of the solar radiation pressure depends on the spacecraft mass, shape, and albedo, good knowledge of the spacecraft model and persistent monitoring of the spacecraft orientation are required.

  12. The Double Star mission

    Directory of Open Access Journals (Sweden)

    Liu

    2005-11-01

    Full Text Available The Double Star Programme (DSP was first proposed by China in March, 1997 at the Fragrant Hill Workshop on Space Science, Beijing, organized by the Chinese Academy of Science. It is the first mission in collaboration between China and ESA. The mission is made of two spacecraft to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer", was launched on 29 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C rockets. TC-1 was injected in an equatorial orbit of 570x79000 km altitude with a 28° inclination and TC-2 in a polar orbit of 560x38000 km altitude. The orbits have been designed to complement the Cluster mission by maximizing the time when both Cluster and Double Star are in the same scientific regions. The two missions allow simultaneous observations of the Earth magnetosphere from six points in space. To facilitate the comparison of data, half of the Double Star payload is made of spare or duplicates of the Cluster instruments; the other half is made of Chinese instruments. The science operations are coordinated by the Chinese DSP Scientific Operations Centre (DSOC in Beijing and the European Payload Operations Service (EPOS at RAL, UK. The spacecraft and ground segment operations are performed by the DSP Operations and Management Centre (DOMC and DSOC in China, using three ground station, in Beijing, Shanghai and Villafranca.

  13. Orbit Propagation and Determination of Low Earth Orbit Satellites

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2014-01-01

    Full Text Available This paper represents orbit propagation and determination of low Earth orbit (LEO satellites. Satellite global positioning system (GPS configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP. The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF. As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.

  14. Attitude control analysis of tethered de-orbiting

    Science.gov (United States)

    Peters, T. V.; Briz Valero, José Francisco; Escorial Olmos, Diego; Lappas, V.; Jakowski, P.; Gray, I.; Tsourdos, A.; Schaub, H.; Biesbroek, R.

    2018-05-01

    The increase of satellites and rocket upper stages in low earth orbit (LEO) has also increased substantially the danger of collisions in space. Studies have shown that the problem will continue to grow unless a number of debris are removed every year. A typical active debris removal (ADR) mission scenario includes launching an active spacecraft (chaser) which will rendezvous with the inactive target (debris), capture the debris and eventually deorbit both satellites. Many concepts for the capture of the debris while keeping a connection via a tether, between the target and chaser have been investigated, including harpoons, nets, grapples and robotic arms. The paper provides an analysis on the attitude control behaviour for a tethered de-orbiting mission based on the ESA e.Deorbit reference mission, where Envisat is the debris target to be captured by a chaser using a net which is connected to the chaser with a tether. The paper provides novel insight on the feasibility of tethered de-orbiting for the various mission phases such as stabilization after capture, de-orbit burn (plus stabilization), stabilization during atmospheric pass, highlighting the importance of various critical mission parameters such as the tether material. It is shown that the selection of the appropriate tether material while using simple controllers can reduce the effort needed for tethered deorbiting and can safely control the attitude of the debris/chaser connected with a tether, without the danger of a collision.

  15. Business analysis: The commercial mission of the International Asteroid Mission

    Science.gov (United States)

    The mission of the International Asteroid Mission (IAM) is providing asteroidal resources to support activities in space. The short term goal is to initiate IAM by mining a near-Earth, hydrous carbonaceous chondrite asteroid to service the nearer-term market of providing cryogenic rocket fuel in low lunar orbit (LLO). The IAM will develop and contract for the building of the transportation vehicles and equipment necessary for this undertaking. The long-term goal is to expand operations by exploiting asteroids in other manners, as these options become commercially viable. The primary business issues are what revenue can be generated from the baseline mission, how much will the mission cost, and how funding for this mission can be raised. These issues are addressed.

  16. Monte Carlo Analysis as a Trajectory Design Driver for the Transiting Exoplanet Survey Satellite (TESS) Mission

    Science.gov (United States)

    Nickel, Craig; Parker, Joel; Dichmann, Don; Lebois, Ryan; Lutz, Stephen

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will be injected into a highly eccentric Earth orbit and fly 3.5 phasing loops followed by a lunar flyby to enter a mission orbit with lunar 2:1 resonance. Through the phasing loops and mission orbit, the trajectory is significantly affected by lunar and solar gravity. We have developed a trajectory design to achieve the mission orbit and meet mission constraints, including eclipse avoidance and a 30-year geostationary orbit avoidance requirement. A parallelized Monte Carlo simulation was performed to validate the trajectory after injecting common perturbations, including launch dispersions, orbit determination errors, and maneuver execution errors. The Monte Carlo analysis helped identify mission risks and is used in the trajectory selection process.

  17. MOM-E: Moon-Orbiting Mothership Explorer

    Science.gov (United States)

    Murphy, Gloria A.

    2010-01-01

    The National Aeronautics and Space Administration proposed that a new class of robotic space missions and spacecrafts be introduced to "ensure that future missions are safe, sustainable and affordable". Indeed, the United States space program aims for a return to manned space missions beyond Earth orbit, and robotic explorers are intended to pave the way. This vision requires that all future missions become less costly, provide a sustainable business plan, and increase in safety. Over the course of several fast feasibility studies that considered the 3 drivers above, the small-scale, consumer-driven Moon-Orbiting Mothership Explorer (MOM-E) mission was born. MOM-E's goals are to enable space exploration by offering a scaled down platform which carries multiple small space explorers to the Moon. Each payload will be dropped at their desired destination, offering a competitive price to customers. MOM-E's current scope of operations is limited to the Moon and will be used as a proof of concept mission. However, MOM-E is specifically designed with the idea that the platform is scalable.

  18. 3D Printing in Zero G Technology Demonstration Mission: Summary of On-Orbit Operations, Material Testing, and Future Work

    Science.gov (United States)

    Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ordonez, Erick; Ledbetter, Frank; Ryan, Richard; Newton, Steve

    2016-01-01

    Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS), an orbiting laboratory 200 miles above the earth, provides a unique and incredible opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture farther into the solar system. The ability to manufacture parts in-space rather than launch them from earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In particularly, additive manufacturing (or 3D printing) techniques can potentially be deployed in the space environment to enhance crew safety (by providing an on-demand part replacement capability) and decrease launch mass by reducing the number of spare components that must be launched for missions where cargo resupply is not a near-term option. In September 2014, NASA launched the 3D Printing in Zero G technology demonstration mission to the ISS to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on-orbit. The printer for this mission was designed and operated by the company Made In Space under a NASA SBIR (Small Business Innovation Research) phase III contract. The overarching objectives of the 3D print mission were to use ISS as a testbed to further maturation of enhancing technologies needed for long duration human exploration missions, introduce new materials and methods to fabricate structure in space, enable cost-effective manufacturing for structures and mechanisms made in low-unit production, and enable physical components to be manufactured in space on long duration missions if necessary. The 3D print unit for fused deposition modeling (FDM) of acrylonitrile butadiene styrene (ABS) was integrated into the ISS Microgravity Science Glovebox (MSG) in November 2014 and phase I printing operations took place from

  19. Analytical theory for artificial satellites. [nominal orbit expressed by means of Chebyshev polynomials

    Science.gov (United States)

    Deprit, A.

    1975-01-01

    A theory for generating segmented ephemerides is discussed as a means for fast generation and simple retrieval of nominal orbit data. Over a succession of finite intervals of time, the orbit is represented by a best approximation expressed by Chebyshev polynomials. Storage of coefficients tables for Chebyshev polynomials is seen as a method to reduce data and decrease transmission costs. A general algorithm was constructed and computer programs were designed. The possibility of storing an ephemeris for a few days in the on-board computer, or in microprocessors attached to the data collectors is suggested.

  20. Chandrayaan-2: India's First Soft-landing Mission to Moon

    Science.gov (United States)

    Mylswamy, Annadurai; Krishnan, A.; Alex, T. K.; Rama Murali, G. K.

    2012-07-01

    The first Indian planetary mission to moon, Chandrayaan-1, launched on 22nd October, 2008 with a suite of Indian and International payloads on board, collected very significant data over its mission duration of close to one year. Important new findings from this mission include, discovery of hydroxyl and water molecule in sunlit lunar surface region around the poles, exposure of large anorthositic blocks confirming the global lunar magma hypothesis, signature of sub surface ice layers in permanently shadowed regions near the lunar north pole, evidence for a new refractory rock type, mapping of reflected lunar neutral atoms and identification of mini-magnetosphere, possible signature of water molecule in lunar exosphere, preserved lava tube that may provide site for future human habitation and radiation dose en-route and around the moon. Chandrayaan-2:, The success of Chandrayaan-1 orbiter mission provided impetus to implement the second approved Indian mission to moon, Chandrayaan-2, with an Orbiter-Lander-Rover configuration. The enhanced capabilities will enable addressing some of the questions raised by the results obtained from the Chandrayaan-1 and other recent lunar missions and also to enhance our understanding of origin and evolution of the moon. The orbiter that will carry payloads to further probe the morphological, mineralogical and chemical properties of the lunar surface material through remote sensing observations in X-ray, visible, infra-red and microwave regions. The Lander-Rover system will enable in-depth studies of a specific lunar location and probe various physical properties of the moon. The Chandrayaan-2 mission will be collaboration between Indian Space Research Organization (ISRO) and the Federal Space Agency of Russia. ISRO will be responsible for the Launch Vehicle, the Orbiter and the Rover while the Lander will be provided by Russia. Initial work to realize the different elements of the mission is currently in progress in both countries

  1. FORMOSAT-3/COSMIC Spacecraft Constellation System, Mission Results, and Prospect for Follow-On Mission

    Directory of Open Access Journals (Sweden)

    Chen-Joe Fong

    2009-01-01

    Full Text Available The FORMOSAT-3/COSMIC spacecraft constellation consisting of six LEO satellites is the world's first operational GPS Radio Occultation (RO mission. The mission is jointly developed by Taiwan¡¦s National Space Organization (NSPO and the United States¡¦UCAR in collaboration with NSF, USAF, NOAA, NASA, NASA's Jet Propulsion Laboratory, and the US Naval Research Laboratory. The FORMOSAT-3/COSMIC satellites were successfully launched from Vandenberg US AFB in California at 0140 UTC 15 April 2006 into the same orbit plane of the designated 516 km altitude. The mission goal is to deploy the six satellites into six orbit planes at 800 km altitude with a 30-degree separation for evenly distributed global coverage. All six FORMOSAT-3/COSMIC satellites are currently maintaining a satisfactory good state-of-health. Five out of six satellites have reached their final mission orbit of 800 km as of November 2007. The data as received by FORMOSAT-3/COSMIC satellites constellation have been processed in near real time into 2500 good ionospheric profiles and 1800 good atmospheric profiles per day. These have outnumbered the worldwide radiosondes (~900 mostly over land launched from the ground per day. The processed atmospheric RO data have been assimilated into the Numerical Weather Prediction (NWP models for real-time weather prediction and typhoon/hurricane forecasting by many major weather centers in the world. This paper describes the FORMOSAT-3/COSMIC satellite constellation system performance and the mission results that span the period from April 2006 to October 2007; and reviews the prospect of a future follow-on mission.

  2. Wide angle view of MOCR activity during STS-3 mission

    Science.gov (United States)

    1982-01-01

    Wide angle view of Mission Operation Control Room (MOCR) activity during Day 2 of STS-3 mission. This view shows many of th consoles, tracking map, and Eidophor-controlled data screens. Flight controllers in the foreground are (l.r.) R. John Rector and Chares L. Dumie. They are seated at the EECOM console. The 'thermodillo' contraption, used by flight controllers to indicate the Shuttle's position in relation to the sun for various tests, can be seen at right (28732); closeup view of the 'thermodillo'. The position of the armadillo's tail indicates position of the orbiter in relation to sun (28733); Mission Specialist/Astronaut Sally K. Ride, STS-3 orbit team spacecraft communicator (CAPCOM), talks to flight director during mission control center activity. Mission Specialist/Astronaut George D. Nelson, backup orbit team CAPCOM, watches the monitor at his console (28734).

  3. [Hospital: values expressed as a mission].

    Science.gov (United States)

    Anunciação, Alan Lira da; Zoboli, Elma

    2008-01-01

    The hospital, as a unique type of social organization requires elevated values for management. This paper shows the result of a documented, qualitative, exploratory and descriptive survey about hospitals and their value statements. Identify values expected for hospitals by a search of literature; identify values expressed by hospitals on their web pages and compare results of both. Critical reading of theses, books and articles. A bibliographic search was carried out on BVS (Health Virtual Library) using keywords such as ethics and healthcare management. The values stated by hospitals on web pages were found in sections such as social responsibility, mission, view, principles, and our values. The categories care, healthcare management and accountability were defined after content analysis of empirical data. Values stated by hospitals on web pages express social expectations for an organization that deals with issues as elevated as health and life. Although hospitals have a bureaucratic and organizational structure that resembles those of business enterprises, they are different due to their 'duties to patients' rights and life. Healthcare managers, as well as health professionals, must imprint an ethical attitude on their job and daily work. Only such an attitude will permit patients to trust the hospital and its services.

  4. Simulated orbits of heavy planetary ions at Mars for different IMF configurations

    Science.gov (United States)

    Curry, Shannon; Luhmann, Janet; Livi, Roberto; Hara, Takuya; Dong, Chuanfei; Ma, Yingjuan; McFadden, James; Bougher, Stephen

    2014-11-01

    We present simulated detections of O+, O2+ and CO2+ ions at Mars along a virtual orbit in the Mars space environment. Planetary pick-up ions are formed through the direct interaction of the solar wind with the neutral upper atmosphere, causing the newly created ions to be picked up and accelerated by the background convective electric field. Because previous missions such as Mars Global Surveyor (MGS) and Mars Express (MEX) have not been able to measure the interplanetary magnetic field (IMF) components simultaneously with plasma measurements, the response of heavy planetary pick-up ions to changes in the IMF has not been well characterized. Using a steady-state multi-species MHD model to provide the background electric and magnetic fields, the Mars Test Particle (MTP) simulation can trace each of these particles along field lines in near-Mars space and construct virtual ion detections from a spacecraft orbit. Specifically, we will present energy-time spectrograms and velocity space distributions (VSDs) for a selection of orbits during different IMF configurations and solar cycle conditions. These simulated orbits have broader implications for how to measure ion escape. Using individual particle traces, the origin and trajectories of different ion populations can be analyzed in order to assess how and where they contribute to the total atmospheric escape rate, which is a major objective of the upcoming MAVEN mission.

  5. Mission to the comets

    International Nuclear Information System (INIS)

    Hughes, D.

    1980-01-01

    The plans of space agencies in the United States and Europe for an exploratory comet mission including a one year rendezvous with comet Temple-2 and a fast fly-by of comet Halley are discussed. The mission provides an opportunity to make comparative measurements on the two different types of comets and also satisfies the three major scientific objectives of cometary missions namely: (1) To determine the chemical nature and the physical structure of cometary nuclei, and the changes that occur with time and orbital position. (2) To study the chemical and physical nature of the atmospheres and ionospheres of comets, the processes that occur in them, and their development with time and orbital position. (3) To determine the nature of the tails of comets and the processes by which they are formed, and to characterise the interaction of comets with solar wind. (UK)

  6. Computer graphics aid mission operations. [NASA missions

    Science.gov (United States)

    Jeletic, James F.

    1990-01-01

    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  7. The ENVISAT Atmospheric Chemistry mission (GOMOS, MIPAS and SCIAMACHY) -Instrument status and mission evolution

    Science.gov (United States)

    Dehn, Angelika

    The ENVISAT ESA's satellite was launched on a polar orbit on March 2002. It carries on-board three atmospheric chemistry instruments: GOMOS, MIPAS and SCIAMACHY [1]. At the present time, although the mission expected lifetime of 5 years has been already exceeded, all the payload modules are in good to excellent status. The only limiting factor is the available fuel that is used for orbit control manoeuvre. A new strategy was proposed [2] that will allow to save fuel and to extend the mission up to 2013. Following this strategy, the altitude of the orbit will be lowered by 17 km starting from end of 2010 and the inclination will be allowed to drift. The new orbit scenario will result in a new repeating cycle with a variation of the Mean Local Solar Time (MLST). This will have an impact on both the in-flight operations, on the science data and on the mission. The simulations carried out for the atmospheric chemistry instruments show that the new orbit strategy will neither have a significant impact in the instrument operations nor on the quality of the science data. Therefore we expect that the atmospheric mission will continue nominally until the end of the platform life time, providing to the scientist a unique dataset of the most important geophysical parameters (e.g., trace gases, clouds, and aerosol) spanning a time interval of about 11 years. The aim of this paper is to review the overall ENVISAT atmospheric mission status for the past, present and future. The evolution of the instrument performances since launch will be analyzed with focus on the life-limited items monitoring. The tuning of the instrument in-flight operations decided to cope with instrument degradation or scientific needs will be described. The lessons learned on how to operate and monitor the instruments will be highlighted. Finally the expected evolution of the instrument performances until the ENVISAT end-of-life will be discussed. [1] H. Nett, J. Frerick, T. Paulsen, and G. Levrini, "The

  8. Mars Express — how to be fastest to the Red Planet

    Science.gov (United States)

    2003-05-01

    Mars Express is the first example of ESA’s new style of developing scientific missions: faster, smarter and more cost-effective, but without compromising reliability and quality - there have been no cuts in tests or pre-launch preparations. Mars Express will face demanding technical challenges during its trip to the Red Planet and ESA engineers have worked hard to make sure it meets them. "With Mars Express, Europe is building its own expertise in many fields. This ranges from the development of science experiments and new technologies - new for European industry - to the control of a mission that includes landing on another planet. We have never done this before,” says Rudi Schmidt, Mars Express Project Manager. Quicker, smarter…safe! Mars Express’s design and development phase has taken about four years, compared with about six years for previous similar missions. And its cost, 300 million euros, is much less than other comparable planetary missions. The ‘magic’ lies in the new managerial approach being used. This new approach includes the reuse of existing hardware and instruments. Also, the mission was developed by a smaller ESA team, who gave more responsibility to industry. Mars Express has been built by a consortium of 24 companies from ESA’s 15 Member States and the United States, led by Astrium as prime contractor. However, mission safety was never compromised. “Although we were under heavy pressure towards the end of the project, we did not drop any of the planned tests to save time. I call this a fast design phase, followed by thorough testing activity,” says Schmidt. This new streamlined development method will continue with Venus Express and probably other future missions. Launch Mars Express will be launched on 2 June on board a Soyuz-Fregat rocket from the Baikonur Cosmodrome in Kazakhstan. The mission consists of an orbiter and a lander, called Beagle 2. In its launch configuration, Mars Express is a honeycombed aluminium box that

  9. Estimating maneuvers for precise relative orbit determination using GPS

    Science.gov (United States)

    Allende-Alba, Gerardo; Montenbruck, Oliver; Ardaens, Jean-Sébastien; Wermuth, Martin; Hugentobler, Urs

    2017-01-01

    Precise relative orbit determination is an essential element for the generation of science products from distributed instrumentation of formation flying satellites in low Earth orbit. According to the mission profile, the required formation is typically maintained and/or controlled by executing maneuvers. In order to generate consistent and precise orbit products, a strategy for maneuver handling is mandatory in order to avoid discontinuities or precision degradation before, after and during maneuver execution. Precise orbit determination offers the possibility of maneuver estimation in an adjustment of single-satellite trajectories using GPS measurements. However, a consistent formulation of a precise relative orbit determination scheme requires the implementation of a maneuver estimation strategy which can be used, in addition, to improve the precision of maneuver estimates by drawing upon the use of differential GPS measurements. The present study introduces a method for precise relative orbit determination based on a reduced-dynamic batch processing of differential GPS pseudorange and carrier phase measurements, which includes maneuver estimation as part of the relative orbit adjustment. The proposed method has been validated using flight data from space missions with different rates of maneuvering activity, including the GRACE, TanDEM-X and PRISMA missions. The results show the feasibility of obtaining precise relative orbits without degradation in the vicinity of maneuvers as well as improved maneuver estimates that can be used for better maneuver planning in flight dynamics operations.

  10. One-Centimeter Orbits in Near-Real Time: The GPS Experience on OSTM/JASON-2

    Science.gov (United States)

    Haines, Bruce; Armatys, Michael; Bar-Sever, Yoaz; Bertiger, Willy; Desai, Shailen; Dorsey, Angela; Lane, Christopher; Weiss, Jan

    2010-01-01

    The advances in Precise Orbit Determination (POD) over the past three decades have been driven in large measure by the increasing demands of satellite altimetry missions. Since the launch of Seasat in 1978, both tracking-system technologies and orbit modeling capabilities have evolved considerably. The latest in a series of precise (TOPEX-class) altimeter missions is the Ocean Surface Topography Mission (OSTM, also Jason-2). GPS-based orbit solutions for this mission are accurate to 1-cm (radial RMS) within 3-5 hrs of real time. These GPS-based orbit products provide the basis for a near-real time sea-surface height product that supports increasingly diverse applications of operational oceanography and climate forecasting.

  11. MONTE: the next generation of mission design and navigation software

    Science.gov (United States)

    Evans, Scott; Taber, William; Drain, Theodore; Smith, Jonathon; Wu, Hsi-Cheng; Guevara, Michelle; Sunseri, Richard; Evans, James

    2018-03-01

    The Mission analysis, Operations and Navigation Toolkit Environment (MONTE) (Sunseri et al. in NASA Tech Briefs 36(9), 2012) is an astrodynamic toolkit produced by the Mission Design and Navigation Software Group at the Jet Propulsion Laboratory. It provides a single integrated environment for all phases of deep space and Earth orbiting missions. Capabilities include: trajectory optimization and analysis, operational orbit determination, flight path control, and 2D/3D visualization. MONTE is presented to the user as an importable Python language module. This allows a simple but powerful user interface via CLUI or script. In addition, the Python interface allows MONTE to be used seamlessly with other canonical scientific programming tools such as SciPy, NumPy, and Matplotlib. MONTE is the prime operational orbit determination software for all JPL navigated missions.

  12. Endeavour blasts-off on ambitious mission

    Science.gov (United States)

    1993-12-01

    "I am delighted to see the servicing mission off to such a beautiful start", said Roger Bonnet, ESA's Director of Science, who watched the launch from the Kennedy Space Center, Florida. "We are anxious to see the Hubble Space Telescope restored to its full capability so astronomers world- wide can take advantage of this unique observatory". During the eight and a half minute climb to orbit ESA astronaut Claude Nicollier helped the shuttle commander and pilot monitor the cockpit displays. Nicollier is the first international astronaut to serve as a shuttle's flight engineer. He will perform the same task at the end of the mission for reentry and landing. The European Space Agency has a major role in the telescope servicing mission. In addition to the presence of its astronaut, the agency is supplying new, improved power generating solar arrays and helped NASA test the Costar system of corrective optics. Nicollier will be responsible for operation of the shuttle's robot arm during the 11-day mission. He will use the arm to pluck the telescope from orbit and move astronauts and equipment around the payload bay during the mission's five spacewalks. The astronauts are spending their first hours in space setting up equipment in the orbiter's crew cabin. They will fire the shuttle's manoeuvring jets before going to bed to begin the two-day pursuit of the orbiting telescope. There will be three orbital manoeuvres tomorrow to further close the gap. The shuttle is due to reach the telescope Saturday and repair work will begin Sunday. Checkouts of the four space suits and the robot arm will occupy the crew tomorrow. Nicollier will use the arm to inspect the equipment in the cargo bay and later practise the manoeuvre he will use on Saturday to capture the telescope. Hubble Space Telescope science operations will be suspended at midnight tonight EST (06h00 a.m. CET tomorrow) and the HST aperture door closed at 07h30 a.m. EST (01h30 p.m. CET).

  13. Earth Observatory Satellite system definition study. Report 1: Orbit/launch vehicle trade-off studies and recommendations

    Science.gov (United States)

    1974-01-01

    A summary of the constraints and requirements on the Earth Observatory Satellite (EOS-A) orbit and launch vehicle analysis is presented. The propulsion system (hydrazine) and the launch vehicle (Delta 2910) selected for EOS-A are examined. The rationale for the selection of the recommended orbital altitude of 418 nautical miles is explained. The original analysis was based on the EOS-A mission with the Thematic Mapper and the High Resolution Pointable Imager. The impact of the revised mission model is analyzed to show how the new mission model affects the previously defined propulsion system, launch vehicle, and orbit. A table is provided to show all aspects of the EOS multiple mission concepts. The subjects considered include the following: (1) mission orbit analysis, (2) spacecraft parametric performance analysis, (3) launch system performance analysis, and (4) orbits/launch vehicle selection.

  14. New vision solar system exploration missions study: Analysis of the use of biomodal space nuclear power systems to support outer solar system exploration missions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-08

    This report presents the results of an analysis of the capability of nuclear bimodal systems to perform outer solar system exploration missions. Missions of interest include orbiter mission s to Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. An initial technology baseline consisting of a NEBA 10 kWe, 1000 N thrust, 850 s, 1500 kg bimodal system was selected, and its performance examined against a data base for trajectories to outer solar system planetary destinations to select optimal direct and gravity assisted trajectories for study. A conceptual design for a common bimodal spacecraft capable of performing missions to all the planetary destinations was developed and made the basis of end to end mission designs for orbiter missions to Jupiter, Saturn, and Neptune. Concepts for microspacecraft capable of probing Jupiter`s atmosphere and exploring Titan were also developed. All mission designs considered use the Atlas 2AS for launch. It is shown that the bimodal nuclear power and propulsion system offers many attractive option for planetary missions, including both conventional planetary missions in which all instruments are carried by a single primary orbiting spacecraft, and unconventional missions in which the primary spacecraft acts as a carrier, relay, and mother ship for a fleet of micro spacecraft deployed at the planetary destination.

  15. STS-61 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1994-02-01

    The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.

  16. Searching Less Perturbed Circular Orbits for a Spacecraft Travelling around Europa

    Directory of Open Access Journals (Sweden)

    J. P. S. Carvalho

    2014-01-01

    Full Text Available Space missions to visit the natural satellite of Jupiter, Europa, constitute an important topic in space activities today, because missions to this moon are under study now. Several considerations have to be made for these missions. The present paper searches for less perturbed circular orbits around Europa. This search is made based on the total effects of the perturbing forces over the time, evaluated by the integral of those forces over the time. This value depends on the dynamical model and on the orbit of the spacecraft. The perturbing forces considered are the third-body perturbation that comes from Jupiter and the J2, J3, and C22 terms of the gravitational potential of Europa. Several numerical studies are performed and the results show the locations of the less perturbed orbits. Using those results, it is possible to find near-circular frozen orbits with smaller amplitudes of variations of the orbital elements.

  17. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    Science.gov (United States)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  18. The Europa Ocean Discovery mission

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.C. [Los Alamos National Lab., NM (United States); Chyba, C.F. [Univ. of Arizona, Tucson, AZ (United States); Abshire, J.B. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center] [and others

    1997-06-01

    Since it was first proposed that tidal heating of Europa by Jupiter might lead to liquid water oceans below Europa`s ice cover, there has been speculation over the possible exobiological implications of such an ocean. Liquid water is the essential ingredient for life as it is known, and the existence of a second water ocean in the Solar System would be of paramount importance for seeking the origin and existence of life beyond Earth. The authors present here a Discovery-class mission concept (Europa Ocean Discovery) to determine the existence of a liquid water ocean on Europa and to characterize Europa`s surface structure. The technical goal of the Europa Ocean Discovery mission is to study Europa with an orbiting spacecraft. This goal is challenging but entirely feasible within the Discovery envelope. There are four key challenges: entering Europan orbit, generating power, surviving long enough in the radiation environment to return valuable science, and complete the mission within the Discovery program`s launch vehicle and budget constraints. The authors will present here a viable mission that meets these challenges.

  19. Discovery prepares to land after successful mission STS-95

    Science.gov (United States)

    1998-01-01

    Orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  20. Mission operations for unmanned nuclear electric propulsion outer planet exploration with a thermionic reactor spacecraft.

    Science.gov (United States)

    Spera, R. J.; Prickett, W. Z.; Garate, J. A.; Firth, W. L.

    1971-01-01

    Mission operations are presented for comet rendezvous and outer planet exploration NEP spacecraft employing in-core thermionic reactors for electric power generation. The selected reference missions are the Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. The characteristics of the baseline multi-mission NEP spacecraft are presented and its performance in other outer planet missions, such as Saturn and Uranus orbiters and a Neptune flyby, are discussed. Candidate mission operations are defined from spacecraft assembly to mission completion. Pre-launch operations are identified. Shuttle launch and subsequent injection to earth escape by the Centaur D-1T are discussed, as well as power plant startup and the heliocentric mission phases. The sequence and type of operations are basically identical for all missions investigated.

  1. Rendezvous missions with minimoons from L1

    Science.gov (United States)

    Chyba, M.; Haberkorn, T.; Patterson, G.

    2014-07-01

    We propose to present asteroid capture missions with the so-called minimoons. Minimoons are small asteroids that are temporarily captured objects on orbits in the Earth-Moon system. It has been suggested that, despite their small capture probability, at any time there are one or two meter diameter minimoons, and progressively greater numbers at smaller diameters. The minimoons orbits differ significantly from elliptical orbits which renders a rendezvous mission more challenging, however they offer many advantages for such missions that overcome this fact. First, they are already on geocentric orbits which results in short duration missions with low Delta-v, this translates in cost efficiency and low-risk targets. Second, beside their close proximity to Earth, an advantage is their small size since it provides us with the luxury to retrieve the entire asteroid and not only a sample of material. Accessing the interior structure of a near-Earth satellite in its morphological context is crucial to an in-depth analysis of the structure of the asteroid. Historically, 2006 RH120 is the only minimoon that has been detected but work is ongoing to determine which modifications to current observation facilities is necessary to provide detection algorithm capabilities. In the event that detection is successful, an efficient algorithm to produce a space mission to rendezvous with the detected minimoon is highly desirable to take advantage of this opportunity. This is the main focus of our work. For the design of the mission we propose the following. The spacecraft is first placed in hibernation on a Lissajoux orbit around the liberation point L1 of the Earth-Moon system. We focus on eight-shaped Lissajoux orbits to take advantage of the stability properties of their invariant manifolds for our transfers since the cost to minimize is the spacecraft fuel consumption. Once a minimoon has been detected we must choose a point on its orbit to rendezvous (in position and velocities

  2. Influence of the Choice of Lunar Gravity Model on Orbit Determination for Lunar Orbiters

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim

    2018-01-01

    Full Text Available We examine the influence of the lunar gravity model on the orbit determination (OD of a lunar orbiter operating in a 100 km high, lunar polar orbit. Doppler and sequential range measurements by three Deep Space Network antennas and one Korea Deep Space Antenna were used. For measurement simulation and OD analysis, STK11 and ODTK6 were utilized. GLGM2, LP100K, LP150Q, GRAIL420A, and GRAIL660B were used for investigation of lunar gravity model selection effect. OD results were assessed by position and velocity uncertainties with error covariance and an external orbit comparison using simulated true orbit. The effect of the lunar gravity models on the long-term OD, degree and order level, measurement-acquisition condition, and lunar altitude was investigated. For efficiency verification, computational times for the five lunar gravity models were compared. Results showed that significant improvements to OD accuracy are observed by applying a GRAIL-based model; however, applying a full order and degree gravity modeling is not always the best strategy, owing to the computational burden. Consequently, we consider that OD using GRAIL660B with 70 × 70 degree and order is the most efficient strategy for mission preanalysis. This study provides useful guideline for KPLO OD analysis during nominal mission operation.

  3. The Science Operations Concept for the ExoMars 2016 Trace Gas Orbiter

    Science.gov (United States)

    Frew, D.

    2014-04-01

    The ExoMars 2016 Science Operations Centre (SOC) based at the European Space Astronomy Centre is responsible for coordinating the science planning activities for the Trace Gas Orbiter. Science planning will involve all members of the ExoMars 2016 science ground segment (SGS), namely the SOC at ESAC, the Russian SOC at IKI, the orbiter instrument teams and the science management of the 2016 mission represented by the science working team (SWT) that is chaired by the project scientist. The science operations concept for the mission builds on the legacy inherited from previous ESA planetary missions, in particular from Mars Express for the core plan validation aspects and from the Smart-1 lunar mission for the opportunity analysis and longterm planning approach. Further concept drivers have been derived from the ExoMars 2016 mission profile in the areas of orbit predictability, instrument design and the usage of TGO as a relay for surface assets including the ExoMars 2018 rover. This paper will give an over view of the entire uplink planning process as it is conducted over 3 distinct planning cycles. The Long Term Plan (LTP) establishes the baseline science plan and demonstrates the operational feasibility of meeting the mission science goals formulated by the science working team (SWT) at science management level. The LTP has a planning horizon of 6 months. Each month of the baseline science plan is refined with the instrument teams within the Medium Term Plan (MTP) to converge on a frozen attitude request and resource envelopes for all of the observations in the plan. During the Short Term Planning cycle the SOC will iterate with the teams to finalise the commanding for all of the observations in the plan for the coming week. The description of the uplink planning process will focus on two key areas that are common to all of the planning cycles mentioned above: • Science Plan Abstraction: Interacting with the science plan at the appropriate level of abstraction to

  4. SEL2 servicing: increased science return via on-orbit propellant replenishment

    Science.gov (United States)

    Reed, Benjamin B.; DeWeese, Keith; Kienlen, Michael; Aranyos, Thomas; Pellegrino, Joseph; Bacon, Charles; Qureshi, Atif

    2016-07-01

    Spacecraft designers are driving observatories to the distant Sun-Earth Lagrange Point 2 (SEL2) to meet ever-increasing science requirements. The mass fraction dedicated to propellant for these observatories to reach and operate at SEL2 will be allocated with the upmost care, as it comes at the expense of optics and instrument masses. As such, these observatories could benefit from on-orbit refueling, allowing greater dry-to-wet mass ratio at launch and/or longer mission life. NASA is developing technologies, capabilities and integrated mission designs for multiple servicing applications in low Earth orbit (LEO), geosynchronous Earth orbit (GEO) and cisluner locations. Restore-L, a mission officially in formulation, will launch a free-flying robotic servicer to refuel a government-owned satellite in LEO by mid 2020. This paper will detail the results of a point design mission study to extend Restore-L servicing technologies from LEO to SEL2. This SEL2 mission would launch an autonomous, robotic servicer spacecraft equipped to extend the life of two space assets through refueling. Two space platforms were chosen to 1) drive the requirements for achieving SEL2 orbit and rendezvous with a spacecraft, and 2) to drive the requirements to translate within SEL2 to conduct a follow-on servicing mission. Two fuels, xenon and hydrazine, were selected to assess a multiple delivery system. This paper will address key mission drivers, such as servicer autonomy (necessitated due to communications latency at L2). Also discussed will be the value of adding cooperative servicing elements to the client observatories to reduce mission risk.

  5. Project Freebird: An orbital transfer vehicle

    Science.gov (United States)

    Aneses, Carlos A.; Blanchette, Ryan L.; Brann, David M.; Campos, Mario J.; Cohen, Lisa E.; Corcoran, Daniel J., III; Cox, James F.; Curtis, Trevor J.; Douglass, Deborah A.; Downard, Catherine L.

    1994-08-01

    Freebird is a space-based orbital transfer vehicle designed to repair and deorbit orbital assets. Freebird is based at International Space Station Alpha (ISSA) at an inclination of 51.6 deg and is capable of three types of missions: crewed and teleoperated LEO missions, and extended robotic missions. In a crewed local configuration, the vehicle can visit inclinations between 30.8 deg and 72.4 deg at altitudes close to 390 km. Adding extra fuel tanks extends this range of inclination up to 84.9 deg and down to 18.3 deg. Furthermore, removing the crew module, using the vehicle in a teleoperated manner, and operating with extra fuel tanks allows missions to polar and geosynchronous orbits. To allow for mission flexibility, the vehicle was designed in a semimodular configuration. The major system components include a crew module, a 'smart box' (which contains command, communications, guidance, and navigation equipment), a propulsion pack, extra fuel tanks, and a vehicle storage facility (VSF) for storage purposes. To minimize risk as well as development time and cost, the vehicle was designed using only proven technology or technology which is expected to be flight-qualified in time for the intended launch date of 2002. And, because Freebird carries crew and operates near the space station, it must meet or exceed the NASA reliability standard of 0.994, as well as other standard requirements for such vehicles. The Freebird program was conceived and designed as a way to provide important and currently unavailable satellite repair and replacement services of a value equal to or exceeding operational costs.

  6. Sentinel-5: the new generation European operational atmospheric chemistry mission in polar orbit

    Science.gov (United States)

    Pérez Albiñana, Abelardo; Erdmann, Matthias; Wright, Norrie; Martin, Didier; Melf, Markus; Bartsch, Peter; Seefelder, Wolfgang

    2017-08-01

    Sentinel-5 is an Earth Observation instrument to be flown on the Metop Second Generation (Metop-SG) satellites with the fundamental objective of monitoring atmospheric composition from polar orbit. The Sentinel-5 instrument consists of five spectrometers to measure the solar spectral radiance backscattered by the earth atmosphere in five bands within the UV (270nm) to SWIR (2385nm) spectral range. Data provided by Sentinel-5 will allow obtaining the distribution of important atmospheric constituents such as ozone, on a global daily basis and at a finer spatial resolution than its precursor instruments on the first generation of Metop satellites. The launch of the first Metop-SG satellite is foreseen for 2021. The Sentinel-5 instrument is being developed by Airbus DS under contract to the European Space Agency. The Sentinel-5 mission is part of the Space Component of the Copernicus programme, a joint initiative by ESA, EUMETSAT and the European Commission. The Preliminary Design Review (PDR) for the Sentinel-5 development was successfully completed in 2015. This paper provides a description of the Sentinel-5 instrument design and data calibration.

  7. Preliminary analysis of space mission applications for electromagnetic launchers

    Science.gov (United States)

    Miller, L. A.; Rice, E. E.; Earhart, R. W.; Conlon, R. J.

    1984-01-01

    The technical and economic feasibility of using electromagnetically launched EML payloads propelled from the Earth's surface to LEO, GEO, lunar orbit, or to interplanetary space was assessed. Analyses of the designs of rail accelerators and coaxial magnetic accelerators show that each is capable of launching to space payloads of 800 KG or more. A hybrid launcher in which EML is used for the first 2 KM/sec followed by chemical rocket stages was also tested. A cost estimates study shows that one to two EML launches per day are needed to break even, compared to a four-stage rocket. Development models are discussed for: (1) Earth orbital missions; (2) lunar base supply mission; (3) solar system escape mission; (4) Earth escape missions; (5) suborbital missions; (6) electromagnetic boost missions; and (7) space-based missions. Safety factors, environmental impacts, and EML systems analysis are discussed. Alternate systems examined include electrothermal thrustors, an EML rocket gun; an EML theta gun, and Soviet electromagnetic accelerators.

  8. Earth Observatory Satellite system definition study. Report no. 1: Orbit/launch vehicle tradeoff studies and recommendations

    Science.gov (United States)

    1974-01-01

    A study was conducted to determine the recommended orbit for the Earth Observatory Satellite (EOS) Land Resources Mission. It was determined that a promising sun synchronous orbit is 366 nautical miles when using an instrument with a 100 nautical mile swath width. The orbit has a 17 day repeat cycle and a 14 nautical mile swath overlap. Payloads were developed for each mission, EOS A through F. For each mission, the lowest cost booster that was capable of lifting the payload to the EOS orbit was selected. The launch vehicles selected for the missions are identified on the basis of tradeoff studies and recommendations. The reliability aspects of the launch vehicles are analyzed.

  9. Venus Express set for launch to the cryptic planet

    Science.gov (United States)

    2005-10-01

    heading east. This injection is done by the first burn of the Fregat engine, due to take place at 06:52 CEST (04:52 GMT). At 08:03 CEST, about one hour and twenty minutes after lift-off and after an almost full circle around Earth, the third phase starts. While flying over Africa, Fregat will ignite for a second time to escape Earth orbit and head into the hyperbolic trajectory that will bring the spacecraft to Venus. After this burn, Fregat will gently release Venus Express, by firing a separation mechanism. With this last step, the launcher will have concluded its task. Plenty of ground activities for a successful trip Once separated from Fregat at 08:21 CEST, Venus Express will be awoken from its dormant status by a series of automatic on-board commands, such as the activation of its propulsion and thermal control systems, the deployment of solar arrays and manoeuvres to ‘orient’ itself in space. From this moment the spacecraft comes under the control of ESA’s European Space Operations Centre (ESOC) for the full duration of the mission. The flight control team co-ordinate and manage a network of ESA ground stations and antennas around the globe, to regularly communicate with the spacecraft. The New Norcia station in Australia and the Kourou station in French Guiana will in turn communicate with Venus Express in the initial phase of the mission. The first opportunity to receive a signal and confirm that the spacecraft is in good health will be the privilege of the New Norcia station about two hours after launch. In this early phase of the mission, once ESOC has taken full control of the satellite, the spacecraft will be fully activated. Operations will also include two burns of the Venus Express thrusters, to correct any possible error in the trajectory after separation from Fregat. On 28 October, the newly inaugurated Cebreros station in Spain, with its 35-metre antenna, will start to take an active part in ground network operations to relay information between

  10. Uncertainty Requirement Analysis for the Orbit, Attitude, and Burn Performance of the 1st Lunar Orbit Insertion Maneuver

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2016-12-01

    Full Text Available In this study, the uncertainty requirements for orbit, attitude, and burn performance were estimated and analyzed for the execution of the 1st lunar orbit insertion (LOI maneuver of the Korea Pathfinder Lunar Orbiter (KPLO mission. During the early design phase of the system, associate analysis is an essential design factor as the 1st LOI maneuver is the largest burn that utilizes the onboard propulsion system; the success of the lunar capture is directly affected by the performance achieved. For the analysis, the spacecraft is assumed to have already approached the periselene with a hyperbolic arrival trajectory around the moon. In addition, diverse arrival conditions and mission constraints were considered, such as varying periselene approach velocity, altitude, and orbital period of the capture orbit after execution of the 1st LOI maneuver. The current analysis assumed an impulsive LOI maneuver, and two-body equations of motion were adapted to simplify the problem for a preliminary analysis. Monte Carlo simulations were performed for the statistical analysis to analyze diverse uncertainties that might arise at the moment when the maneuver is executed. As a result, three major requirements were analyzed and estimated for the early design phase. First, the minimum requirements were estimated for the burn performance to be captured around the moon. Second, the requirements for orbit, attitude, and maneuver burn performances were simultaneously estimated and analyzed to maintain the 1st elliptical orbit achieved around the moon within the specified orbital period. Finally, the dispersion requirements on the B-plane aiming at target points to meet the target insertion goal were analyzed and can be utilized as reference target guidelines for a mid-course correction (MCC maneuver during the transfer. More detailed system requirements for the KPLO mission, particularly for the spacecraft bus itself and for the flight dynamics subsystem at the ground

  11. A Preliminary Formation Flying Orbit Dynamics Analysis for Leonardo-BRDF

    Science.gov (United States)

    Hughes, Steven P.; Mailhe, Laurie M.

    2001-01-01

    Leonardo-BRDF is a NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the orbit dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal two-burn initialization scheme is presented with the required delta-V to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated delta-V's are calculated to maintain the formation in the presence of perturbations.

  12. Lunar Prospector Orbit Determination Uncertainties Using the High Resolution Lunar Gravity Models

    Science.gov (United States)

    Carranza, Eric; Konopliv, Alex; Ryne, Mark

    1999-01-01

    The Lunar Prospector (LP) mission began on January 6, 1998, when the LP spacecraft was launched from Cape Canaveral, Florida. The objectives of the mission were to determine whether water ice exists at the lunar poles, generate a global compositional map of the lunar surface, detect lunar outgassing, and improve knowledge of the lunar magnetic and gravity fields. Orbit determination of LP performed at the Jet Propulsion Laboratory (JPL) is conducted as part of the principal science investigation of the lunar gravity field. This paper will describe the JPL effort in support of the LP Gravity Investigation. This support includes high precision orbit determination, gravity model validation, and data editing. A description of the mission and its trajectory will be provided first, followed by a discussion of the orbit determination estimation procedure and models. Accuracies will be examined in terms of orbit-to-orbit solution differences, as a function of oblateness model truncation, and inclination in the plane-of-sky. Long term predictions for several gravity fields will be compared to the reconstructed orbits to demonstrate the accuracy of the orbit determination and oblateness fields developed by the Principal Gravity Investigator.

  13. US Decadal Survey Outer Solar System Missions: Trajectory Options

    Science.gov (United States)

    Spilker, T. R.; Atkinson, D. H.; Strange, N. J.; Landau, D.

    2012-04-01

    The report of the US Planetary Science Decadal Survey (PSDS), released in draft form March 7, 2011, identifies several mission concepts involving travel to high-priority outer solar system (OSS) destinations. These include missions to Europa and Jupiter, Saturn and two of its satellites, and Uranus. Because travel to the OSS involves much larger distances and larger excursions out of the sun's gravitational potential well than inner solar system (ISS) missions, transfer trajectories for OSS missions are stronger drivers of mission schedule and resource requirements than for ISS missions. Various characteristics of each planet system, such as obliquity, radiation belts, rings, deep gravity wells, etc., carry ramifications for approach trajectories or trajectories within the systems. The maturity of trajectory studies for each of these destinations varies significantly. Europa has been the focus of studies for well over a decade. Transfer trajectory options from Earth to Jupiter are well understood. Current studies focus on trajectories within the Jovian system that could reduce the total mission cost of a Europa orbiter mission. Three missions to the Saturn system received high priority ratings in the PSDS report: two flagship orbital missions, one to Titan and one to Enceladus, and a Saturn atmospheric entry probe mission for NASA's New Frontiers Program. The Titan Saturn System Mission (TSSM) studies of 2007-2009 advanced our understanding of trajectory options for transfers to Saturn, including solar electric propulsion (SEP) trajectories. But SEP trajectories depend more on details of spacecraft and propulsion system characteristics than chemical trajectories, and the maturity of SEP trajectory search tools has not yet caught up with chemical trajectory tools, so there is still more useful research to be done on Saturn transfers. The TSSM studies revealed much about Saturn-orbiting trajectories that yield efficient and timely delivery to Titan or Enceladus

  14. Summary of the results from the lunar orbiter laser altimeter after seven years in lunar orbit

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan; Lemoine, Frank G.; Head, James W., III; Lucey, Paul G.; Aharonson, Oded; Robinson, Mark S.; Sun, Xiaoli; Torrence, Mark H.; Barker, Michael K.; Oberst, Juergen; Duxbury, Thomas C.; Mao, Dandan; Barnouin, Olivier S.; Jha, Kopal; Rowlands, David D.; Goossens, Sander; Baker, David; Bauer, Sven; Gläser, Philipp; Lemelin, Myriam; Rosenburg, Margaret; Sori, Michael M.; Whitten, Jennifer; Mcclanahan, Timothy

    2017-02-01

    In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, following a 3-month commissioning phase. On completion of its exploration objectives, the LRO mission transitioned to a science mission. After 7 years in lunar orbit, the LOLA instrument continues to map the lunar surface. The LOLA dataset is one of the foundational datasets acquired by the various LRO instruments. LOLA provided a high-accuracy global geodetic reference frame to which past, present and future lunar observations can be referenced. It also obtained high-resolution and accurate global topography that were used to determine regions in permanent shadow at the lunar poles. LOLA further contributed to the study of polar volatiles through its unique measurement of surface brightness at zero phase, which revealed anomalies in several polar craters that may indicate the presence of water ice. In this paper, we describe the many LOLA accomplishments to date and its contribution to lunar and planetary science.

  15. Summary of the Results from the Lunar Orbiter Laser Altimeter after Seven Years in Lunar Orbit

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan; Lemoine, Frank G.; Head, James W., III; Lucey, Paul G.; Aharonson, Oded; Robinson, Mark S.; Sun, Xiaoli; hide

    2016-01-01

    In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, following a 3-month commissioning phase. On completion of its exploration objectives, the LRO mission transitioned to a science mission. After 7 years in lunar orbit, the LOLA instrument continues to map the lunar surface. The LOLA dataset is one of the foundational datasets acquired by the various LRO instruments. LOLA provided a high-accuracy global geodetic reference frame to which past, present and future lunar observations can be referenced. It also obtained high-resolution and accurate global topography that were used to determine regions in permanent shadow at the lunar poles. LOLA further contributed to the study of polar volatiles through its unique measurement of surface brightness at zero phase, which revealed anomalies in several polar craters that may indicate the presence of water ice. In this paper, we describe the many LOLA accomplishments to date and its contribution to lunar and planetary science.

  16. The Messenger Mission to Mercury

    CERN Document Server

    Domingue, D. L

    2007-01-01

    NASA’s MESSENGER mission, launched on 3 August, 2004 is the seventh mission in the Discovery series. MESSENGER encounters the planet Mercury four times, culminating with an insertion into orbit on 18 March 2011. It carries a comprehensive package of geophysical, geological, geochemical, and space environment experiments to complete the complex investigations of this solar-system end member, which begun with Mariner 10. The articles in this book, written by the experts in each area of the MESSENGER mission, describe the mission, spacecraft, scientific objectives, and payload. The book is of interest to all potential users of the data returned by the MESSENGER mission, to those studying the nature of the planet Mercury, and by all those interested in the design and implementation of planetary exploration missions.

  17. Venus winds at cloud level from VIRTIS during the Venus Express mission

    Science.gov (United States)

    Hueso, Ricardo; Peralta, Javier; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Piccioni, Giuseppe; Drossart, Pierre

    2010-05-01

    The Venus Express (VEX) mission has been in orbit to Venus for almost four years now. The VIRTIS instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. Images in the ultraviolet range are used to study the upper cloud at 66 km while images in the infrared (1.74 μm) map the opacity of the lower cloud deck at 48 km. Here we present our latest results on the analysis of the global atmospheric dynamics at these cloud levels using a large selection over the full VIRTIS dataset. We will show the atmospheric zonal superrotation at these levels and the mean meridional motions. The zonal winds are very stable in the lower cloud at mid-latitudes to the tropics while it shows different signatures of variability in the upper cloud where solar tide effects are manifest in the data. While the upper clouds present a net meridional motion consistent with the upper branch of a Hadley cell the lower cloud present almost null global meridional motions at all latitudes but with particular features traveling both northwards and southwards in a turbulent manner depending on the cloud morphology on the observations. A particular important atmospheric feature is the South Polar vortex which might be influencing the structure of the zonal winds in the lower cloud at latitudes from the vortex location up to 55°S. Acknowledgements This work has been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  18. An Overview of the Jupiter Europa Orbiter Concept's Europa Science Phase Orbit Design

    Science.gov (United States)

    Lock, Robert E.; Ludwinski, Jan M.; Petropoulos, Anastassios E.; Clark, Karla B.; Pappalardo, Robert T.

    2009-01-01

    Jupiter Europa Orbiter (JEO), the proposed NASA element of the proposed joint NASA-ESA Europa Jupiter System Mission (EJSM), could launch in February 2020 and conceivably arrive at Jupiter in December of 2025. The concept is to perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. This paper provides an overview of the JEO concept and describes the Europa Science phase orbit design and the related science priorities, model pay-load and operations scenarios needed to conduct the Europa Science phase. This overview is for planning and discussion purposes only.

  19. Fuzzy attitude control for a nanosatellite in leo orbit

    Science.gov (United States)

    Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria; Aviles, Taisir

    Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In this work, a tailored fuzzy controller is designed for a nanosatellite and is compared with a traditional Proportional Integrative Derivative (PID) controller. Both control methodologies are compared within the same specific mission. The orbit height varies along the mission from injection at around 380 km down to a 200 km height orbit, and the mission requires pointing accuracy over the whole time. Due to both the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, a robust and efficient ADCS is required. For these reasons a fuzzy logic controller is implemented as the brain of the ADCS and its performance and efficiency are compared to a traditional PID. The fuzzy controller is designed in three separated controllers, each one acting on one of the Euler angles of the satellite in an orbital frame. The fuzzy memberships are constructed taking into account the mission requirements, the physical properties of the satellite and the expected performances. Both methodologies, fuzzy and PID, are fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. Finally both methods are probed in different environments to test their characteristics. The simulations show that the fuzzy controller is much more efficient (up to 65% less power required) in single maneuvers, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. A brief mission description is depicted as well as the design process of both ADCS controllers. Finally the validation process and the results obtained during the simulations are described. Those results show that the fuzzy logic methodology is valid for small

  20. Gemini flies! unmanned flights and the first manned mission

    CERN Document Server

    Shayler, David J

    2018-01-01

    In May 1961, President John F. Kennedy committed the United States to landing a man on the moon before the end of the decade. With just a handful of years to pull it off, NASA authorized the Project Gemini space program, which gathered vital knowledge needed to achieve the nation’s goal. This book introduces the crucial three-step test program employed by the Gemini system, covering:  The short unmanned orbital flight of Gemini 1 that tested the compatibility of launch vehicle, spacecraft and ground systems.  The unmanned suborbital flight of Gemini 2 to establish the integrity of the reentry system and protective heat shield.  The three-orbit manned evaluation flight of Gemini 3, christened ‘Molly Brown’ by her crew. A mission recalled orbit by orbit, using mission transcripts, post-flight reports and the astronauts’ own account of their historic journey. The missions of Project Gemini was the pivotal steppingstone between Project Mercury and the Apollo Program. Following the success of its fi...

  1. Fundamentals of the orbit and response for TianQin

    Science.gov (United States)

    Hu, Xin-Chun; Li, Xiao-Hong; Wang, Yan; Feng, Wen-Fan; Zhou, Ming-Yue; Hu, Yi-Ming; Hu, Shou-Cun; Mei, Jian-Wei; Shao, Cheng-Gang

    2018-05-01

    TianQin is a space-based laser interferometric gravitational wave detector aimed at detecting gravitational waves at low frequencies (0.1 mHz–1 Hz). It is formed by three identical drag-free spacecrafts in an equilateral triangular constellation orbiting around the Earth. The distance between each pair of spacecrafts is approximately 1.7 × 105 ~km . The spacecrafts are interconnected by infrared laser beams forming up to three Michelson-type interferometers. The detailed mission design and the study of science objectives for the TianQin project depend crucially on the orbit and the response of the detector. In this paper, we provide the analytic expressions for the coordinates of the orbit for each spacecraft in the heliocentric-ecliptic coordinate system to the leading orders. This enables a sufficiently accurate study of science objectives and data analysis, and serves as a first step to further orbit design and optimization. We calculate the response of a single Michelson detector to plane gravitational waves in arbitrary waveform which is valid in the full range of the sensitive frequencies. It is then used to generate the more realistic sensitivity curve of TianQin. We apply this model on a reference white-dwarf binary as a proof of principle.

  2. Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Crewed Mission

    Science.gov (United States)

    Lopez, Pedro, Jr.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  3. Human and Robotic Exploration Missions to Phobos Prior to Crewed Mars Surface Missions

    Science.gov (United States)

    Gernhardt, Michael L.; Chappell, Steven P.; Bekdash, Omar S.; Abercromby, Andrew F.

    2016-01-01

    Phobos is a scientifically significant destination that would facilitate the development and operation of the human Mars transportation infrastructure, unmanned cargo delivery systems and other Mars surface systems. In addition to developing systems relevant to Mars surface missions, Phobos offers engineering, operational, and public engagement opportunities that could enhance subsequent Mars surface operations. These opportunities include the use of low latency teleoperations to control Mars surface assets associated with exploration science, human landing-site selection and infrastructure development which may include in situ resource utilization (ISRU) to provide liquid oxygen for the Mars Ascent Vehicle (MAV). A human mission to Mars' moons would be preceded by a cargo predeploy of a surface habitat and a pressurized excursion vehicle (PEV) to Mars orbit. Once in Mars orbit, the habitat and PEV would spiral to Phobos using solar electric propulsion based systems, with the habitat descending to the surface and the PEV remaining in orbit. When a crewed mission is launched to Phobos, it would include the remaining systems to support the crew during the Earth-Mars transit and to reach Phobos after insertion in to Mars orbit. The crew would taxi from Mars orbit to Phobos to join with the predeployed systems in a spacecraft that is based on a MAV, dock with and transfer to the PEV in Phobos orbit, and descend in the PEV to the surface habitat. A static Phobos surface habitat was chosen as a baseline architecture, in combination with the PEV that was used to descend from orbit as the main exploration vehicle. The habitat would, however, have limited capability to relocate on the surface to shorten excursion distances required by the PEV during exploration and to provide rescue capability should the PEV become disabled. To supplement exploration capabilities of the PEV, the surface habitat would utilize deployable EVA support structures that allow astronauts to work

  4. A Saturn Ring Observer Mission Using Multi-Mission Radioisotope Power Systems

    International Nuclear Information System (INIS)

    Abelson, Robert D.; Spilker, Thomas R.; Shirley, James H.

    2006-01-01

    Saturn remains one of the most fascinating planets within the solar system. To better understand the complex ring structure of this planet, a conceptual Saturn Ring Observer (SRO) mission is presented that would spend one year in close proximity to Saturn's A and B rings, and perform detailed observations and measurements of the ring particles and electric and magnetic fields. The primary objective of the mission would be to understand ring dynamics, including the microphysics of individual particles and small scale (meters to a few kilometers) phenomena such as particle agglomeration behavior. This would be accomplished by multispectral imaging of the rings at multiple key locations within the A and B rings, and by ring-particle imaging at an unprecedented resolution of 0.5 cm/pixel. The SRO spacecraft would use a Venus-Earth-Earth-Jupiter Gravity Assist (VEEJGA) and be aerocaptured into Saturn orbit using an advanced aeroshell design to minimize propellant mass. Once in orbit, the SRO would stand off from the ring plane 1 to 1.4 km using chemical thrusters to provide short propulsive maneuvers four times per revolution, effectively causing the SRO vehicle to 'hop' above the ring plane. The conceptual SRO spacecraft would be enabled by the use of a new generation of multi-mission Radioisotope Power Systems (RPSs) currently being developed by NASA and DOE. These RPSs include the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and Stirling Radioisotope Generator (SRG). The RPSs would generate all necessary electrical power (≥330 We at beginning of life) during the 10-year cruise and 1-year science mission (∼11 years total). The RPS heat would be used to maintain the vehicle's operating and survival temperatures, minimizing the need for electrical heaters. Such a mission could potentially launch in the 2015-2020 timeframe, with operations at Saturn commencing in approximately 2030

  5. The ARTEMIS mission

    CERN Document Server

    Angelopoulos, Vassilis

    2014-01-01

    The ARTEMIS mission was initiated by skillfully moving the two outermost Earth-orbiting THEMIS spacecraft into lunar orbit to conduct unprecedented dual spacecraft observations of the lunar environment. ARTEMIS stands for Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun. Indeed, this volume discusses initial findings related to the Moon’s magnetic and plasma environments and the electrical conductivity of the lunar interior. This work is aimed at researchers and graduate students in both heliophysics and planetary physics. Originally published in Space Science Reviews, Vol. 165/1-4, 2011.

  6. Expression of Vascular Endothelial Growth Factor Receptors in Benign Vascular Lesions of the Orbit: A Case Series.

    Science.gov (United States)

    Atchison, Elizabeth A; Garrity, James A; Castillo, Francisco; Engman, Steven J; Couch, Steven M; Salomão, Diva R

    2016-01-01

    Vascular lesions of the orbit, although not malignant, can cause morbidity because of their location near critical structures in the orbit. For the same reason, they can be challenging to remove surgically. Anti-vascular endothelial growth factor (VEGF) drugs are increasingly being used to treat diseases with prominent angiogenesis. Our study aimed to determine to what extent VEGF receptors and their subtypes are expressed on selected vascular lesions of the orbit. Retrospective case series of all orbital vascular lesions removed by one of the authors (JAG) at the Mayo Clinic. A total of 52 patients who underwent removal of vascular orbital lesions. The pathology specimens from the patients were retrieved, their pathologic diagnosis was confirmed, demographic and clinical information were gathered, and sections from vascular tumors were stained with vascular endothelial growth factor receptor (VEGFR), vascular endothelial growth factor receptor type 1 (VEGFR1), vascular endothelial growth factor receptor type 2 (VEGFR2), and vascular endothelial growth factor receptor type 3 (VEGFR3). The existence and pattern of staining with VEGF and its subtypes on these lesions. There were 28 specimens of venous malformations, 4 capillary hemangiomas, 7 lymphatic malformations, and 6 lymphaticovenous malformations. All samples stained with VEGF, 55% stained with VEGFR1, 98% stained with VEGFR2, and 96% stained with VEGFR3. Most (94%) of the VEGFR2 staining was diffuse. Most orbital vascular lesions express VEGF receptors, which may suggest a future target for nonsurgical treatment. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  7. The Inner Magnetospheric Imager (IMI): Instrument heritage and orbit viewing analysis

    Science.gov (United States)

    Wilson, Gordon R.

    1992-12-01

    For the last two years an engineering team in the Program Development Office at MSFC has been doing design studies for the proposed Inner Magnetospheric Imager (IMI) mission. This team had a need for more information about the instruments that this mission would carry so that they could get a better handle on instrument volume, mass, power, and telemetry needs as well as information to help assess the possible cost of such instruments and what technology development they would need. To get this information, an extensive literature search was conducted as well as interviews with several members of the IMI science working group. The results of this heritage survey are summarized below. There was also a need to evaluate the orbits proposed for this mission from the stand point of their suitability for viewing the various magnetospheric features that are planned for this mission. This was accomplished by first, identifying the factors which need to be considered in selecting an orbit, second, translating these considerations into specific criteria, and third, evaluating the proposed orbits against these criteria. The specifics of these criteria and the results of the orbit analysis are contained in the last section of this report.

  8. SeaWiFS technical report series. Volume 11: Analysis of selected orbit propagation models for the SeaWiFS mission

    Science.gov (United States)

    Patt, Frederick S.; Hoisington, Charles M.; Gregg, Watson W.; Coronado, Patrick L.; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Indest, A. W. (Editor)

    1993-01-01

    An analysis of orbit propagation models was performed by the Mission Operations element of the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) Project, which has overall responsibility for the instrument scheduling. The orbit propagators selected for this analysis are widely available general perturbations models. The analysis includes both absolute accuracy determination and comparisons of different versions of the models. The results show that all of the models tested meet accuracy requirements for scheduling and data acquisition purposes. For internal Project use the SGP4 propagator, developed by the North American Air Defense (NORAD) Command, has been selected. This model includes atmospheric drag effects and, therefore, provides better accuracy. For High Resolution Picture Transmission (HRPT) ground stations, which have less stringent accuracy requirements, the publicly available Brouwer-Lyddane models are recommended. The SeaWiFS Project will make available portable source code for a version of this model developed by the Data Capture Facility (DCF).

  9. RS-34 (Peacekeeper Post Boost Propulsion System) Orbital Debris Application Concept Study

    Science.gov (United States)

    Esther, Elizabeth A.; Burnside, Christopher G.

    2013-01-01

    The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) lead a study to evaluate the Rocketdyne produced RS-34 propulsion system as it applies to an orbital debris removal design reference mission. The existing RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper ICBM program; specifically the pressure-fed storable bi-propellant Stage IV Post Boost Propulsion System. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC is working closely with the USAF to obtain all the remaining RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Concept Study, preceded by a utilization study to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions, sought to further understand application for an orbital debris design reference mission as the orbital debris removal mission was found to closely mimic the heritage RS-34 mission. The RS-34 Orbital Debris Application Concept Study sought to identify multiple configurations varying the degree of modification to trade for dry mass optimization and propellant load for overall capability and evaluation of several candidate missions. The results of the RS-34 Phoenix Utilization Study show that the system is technically sufficient to successfully support all of the missions

  10. MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION

    OpenAIRE

    J. Dong; Z. Sun; W. Rao; Y. Jia; L. Meng; C. Wang; B. Chen

    2017-01-01

    An orbiter and a descent module will be delivered to Mars in the Chinese first Mars exploration mission. The descent module is composed of a landing platform and a rover. The module will be released into the atmosphere by the orbiter and make a controlled landing on Martian surface. After landing, the rover will egress from the platform to start its science mission. The rover payloads mainly include the subsurface radar, terrain camera, multispectral camera, magnetometer, anemometer to achiev...

  11. Electric sail elliptic displaced orbits with advanced thrust model

    Science.gov (United States)

    Niccolai, Lorenzo; Quarta, Alessandro A.; Mengali, Giovanni

    2017-09-01

    This paper analyzes the performance of an Electric Solar Wind Sail for generating and maintaining an elliptic, heliocentric, displaced non-Keplerian orbit. In this sense, this paper extends and completes recent studies regarding the performances of an Electric Solar Wind Sail that covers a circular, heliocentric, displaced orbit of given characteristics. The paper presents the general equations that describe the elliptic orbit maintenance in terms of both spacecraft attitude and performance requirements, when a refined thrust model (recently proposed for the preliminary mission design) is taken into account. In particular, the paper also discusses some practical applications on particular mission scenarios in which an analytic solution of the governing equations has been found.

  12. Nuclear reactor power as applied to a space-based radar mission

    Science.gov (United States)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    A space-based radar mission and spacecraft are examined to determine system requirements for a 300 kWe space nuclear reactor power system. The spacecraft configuration and its orbit, launch vehicle, and propulsion are described. Mission profiles are addressed, and storage in assembly orbit is considered. Dynamics and attitude control and the problems of nuclear and thermal radiation are examined.

  13. The Kepler Mission: A Search for Terrestrial Planets - Development Status

    Science.gov (United States)

    Koch, David; Borucki, W.; Mayer, D.; Caldwell, D.; Jenkens, J.; Dunham, E.; Geary, J.; Bachtell, E.; Deininger, W.; Philbrick, R.

    2003-01-01

    We have embarked on a mission to detect terrestrial planets. The space mission has been optimized to search for earth-size planets (0.5 to 10 earth masses) in the habitable zone (HZ) of solar-like stars. Given this design, the mission will necessarily be capable of not only detecting Earth analogs, but a wide range of planetary types and characteristics ranging from Mercury-size objects with orbital periods of days to gas-giants in decade long orbits that have undeniable signatures even with only one transit detected. The mission is designed to survey the full range of spectral-type dwarf stars. The approach is to detect the periodic signal of transiting planets. Three or more transits of a star exceeding a combined threshold of eight sigma with a statistically consistent period, brightness change and duration provide a rigorous method of detection. From the relative brightness change the planet size can be calculated. From the period the orbital size can be calculated and its location relative to the HZ determined. Presented here are: the mission goals, the top level system design requirements derived from these goals that drive the flight system design, a number of the trades that have lead to the mission concept, expected photometric performance dependence on stellar brightness and spectral type based on the system 'noise tree' analysis. Updated estimates are presented of the numbers of detectable planets versus size, orbit, stellar spectral type and distances based on a planet frequency hypothesis. The current project schedule and organization are given.

  14. Human missions to Mars enabling technologies for exploring the red planet

    CERN Document Server

    Rapp, Donald

    2016-01-01

    A mission to send humans to explore the surface of Mars has been the ultimate goal of planetary exploration since the 1950s, when von Braun conjectured a flotilla of 10 interplanetary vessels carrying a crew of at least 70 humans. Since then, more than 1,000 studies were carried out on human missions to Mars, but after 60 years of study, we remain in the early planning stages. The second edition of this book now includes an annotated history of Mars mission studies, with quantitative data wherever possible. Retained from the first edition, Donald Rapp looks at human missions to Mars from an engineering perspective. He divides the mission into a number of stages: Earth’s surface to low-Earth orbit (LEO); departing from LEO toward Mars; Mars orbit insertion and entry, descent and landing; ascent from Mars; trans-Earth injection from Mars orbit and Earth return. For each segment, he analyzes requirements for candidate technologies. In this connection, he discusses the status and potential of a wide range of el...

  15. Formation Control of the MAXIM L2 Libration Orbit Mission

    Science.gov (United States)

    Folta, David; Hartman, Kate; Howell, Kathleen; Marchand, Belinda

    2004-01-01

    The Micro-Arcsecond X-ray Imaging Mission (MAXIM), a proposed concept for the Structure and Evolution of the Universe (SEU) Black Hole Imager mission, is designed to make a ten million-fold improvement in X-ray image clarity of celestial objects by providing better than 0.1 micro-arcsecond imaging. Currently the mission architecture comprises 25 spacecraft, 24 as optics modules and one as the detector, which will form sparse sub-apertures of a grazing incidence X-ray interferometer covering the 0.3-10 keV bandpass. This formation must allow for long duration continuous science observations and also for reconfiguration that permits re-pointing of the formation. To achieve these mission goals, the formation is required to cooperatively point at desired targets. Once pointed, the individual elements of the MAXIM formation must remain stable, maintaining their relative positions and attitudes below a critical threshold. These pointing and formation stability requirements impact the control and design of the formation. In this paper, we provide analysis of control efforts that are dependent upon the stability and the configuration and dimensions of the MAXIM formation. We emphasize the utilization of natural motions in the Lagrangian regions to minimize the control efforts and we address continuous control via input feedback linearization (IFL). Results provide control cost, configuration options, and capabilities as guidelines for the development of this complex mission.

  16. BepiColombo — The Next Step of Mercury Exploration with Two Orbiting Spacecraft

    Science.gov (United States)

    Benkhoff, J.

    2018-05-01

    BepiColombo is a joint project between ESA and JAXA. The mission consists of two orbiters — the Mercury Planetary Orbiter and the Mercury Magnetospheric Orbiter. From dedicated orbits, the spacecraft will be studying the planet and its environment.

  17. Bi-objective optimization of a multiple-target active debris removal mission

    Science.gov (United States)

    Bérend, Nicolas; Olive, Xavier

    2016-05-01

    The increasing number of space debris in Low-Earth Orbit (LEO) raises the question of future Active Debris Removal (ADR) operations. Typical ADR scenarios rely on an Orbital Transfer Vehicle (OTV) using one of the two following disposal strategies: the first one consists in attaching a deorbiting kit, such as a solid rocket booster, to the debris after rendezvous; with the second one, the OTV captures the debris and moves it to a low-perigee disposal orbit. For multiple-target ADR scenarios, the design of such a mission is very complex, as it involves two optimization levels: one for the space debris sequence, and a second one for the "elementary" orbit transfer strategy from a released debris to the next one in the sequence. This problem can be seen as a Time-Dependant Traveling Salesman Problem (TDTSP) with two objective functions to minimize: the total mission duration and the total propellant consumption. In order to efficiently solve this problem, ONERA has designed, under CNES contract, TOPAS (Tool for Optimal Planning of ADR Sequence), a tool that implements a Branch & Bound method developed in previous work together with a dedicated algorithm for optimizing the "elementary" orbit transfer. A single run of this tool yields an estimation of the Pareto front of the problem, which exhibits the trade-off between mission duration and propellant consumption. We first detail our solution to cope with the combinatorial explosion of complex ADR scenarios with 10 debris. The key point of this approach is to define the orbit transfer strategy through a small set of parameters, allowing an acceptable compromise between the quality of the optimum solution and the calculation cost. Then we present optimization results obtained for various 10 debris removal scenarios involving a 15-ton OTV, using either the deorbiting kit or the disposal orbit strategy. We show that the advantage of one strategy upon the other depends on the propellant margin, the maximum duration allowed

  18. TandEM: Titan and Enceladus mission

    Science.gov (United States)

    Coustenis, A.; Atreya, S.K.; Balint, T.; Brown, R.H.; Dougherty, M.K.; Ferri, F.; Fulchignoni, M.; Gautier, D.; Gowen, R.A.; Griffith, C.A.; Gurvits, L.I.; Jaumann, R.; Langevin, Y.; Leese, M.R.; Lunine, J.I.; McKay, C.P.; Moussas, X.; Muller-Wodarg, I.; Neubauer, F.; Owen, T.C.; Raulin, F.; Sittler, E.C.; Sohl, F.; Sotin, Christophe; Tobie, G.; Tokano, T.; Turtle, E.P.; Wahlund, J.-E.; Waite, J.H.; Baines, K.H.; Blamont, J.; Coates, A.J.; Dandouras, I.; Krimigis, T.; Lellouch, E.; Lorenz, R.D.; Morse, A.; Porco, C.C.; Hirtzig, M.; Saur, J.; Spilker, T.; Zarnecki, J.C.; Choi, E.; Achilleos, N.; Amils, R.; Annan, P.; Atkinson, D.H.; Benilan, Y.; Bertucci, C.; Bezard, B.; Bjoraker, G.L.; Blanc, M.; Boireau, L.; Bouman, J.; Cabane, M.; Capria, M.T.; Chassefiere, E.; Coll, P.; Combes, M.; Cooper, J.F.; Coradini, A.; Crary, F.; Cravens, T.; Daglis, I.A.; de Angelis, E.; De Bergh, C.; de Pater, I.; Dunford, C.; Durry, G.; Dutuit, O.; Fairbrother, D.; Flasar, F.M.; Fortes, A.D.; Frampton, R.; Fujimoto, M.; Galand, M.; Grasset, O.; Grott, M.; Haltigin, T.; Herique, A.; Hersant, F.; Hussmann, H.; Ip, W.; Johnson, R.; Kallio, E.; Kempf, S.; Knapmeyer, M.; Kofman, W.; Koop, R.; Kostiuk, T.; Krupp, N.; Kuppers, M.; Lammer, H.; Lara, L.-M.; Lavvas, P.; Le, Mouelic S.; Lebonnois, S.; Ledvina, S.; Li, Ji; Livengood, T.A.; Lopes, R.M.; Lopez-Moreno, J. -J.; Luz, D.; Mahaffy, P.R.; Mall, U.; Martinez-Frias, J.; Marty, B.; McCord, T.; Salvan, C.M.; Milillo, A.; Mitchell, D.G.; Modolo, R.; Mousis, O.; Nakamura, M.; Neish, Catherine D.; Nixon, C.A.; Mvondo, D.N.; Orton, G.; Paetzold, M.; Pitman, J.; Pogrebenko, S.; Pollard, W.; Prieto-Ballesteros, O.; Rannou, P.; Reh, K.; Richter, L.; Robb, F.T.; Rodrigo, R.; Rodriguez, S.; Romani, P.; Bermejo, M.R.; Sarris, E.T.; Schenk, P.; Schmitt, B.; Schmitz, N.; Schulze-Makuch, D.; Schwingenschuh, K.; Selig, A.; Sicardy, B.; Soderblom, L.; Spilker, L.J.; Stam, D.; Steele, A.; Stephan, K.; Strobel, D.F.; Szego, K.; Szopa,

    2009-01-01

    TandEM was proposed as an L-class (large) mission in response to ESA’s Cosmic Vision 2015–2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini–Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini–Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (Montgolfière) and possibly several landing probes to be delivered through the atmosphere.

  19. STS-49 Endeavour, Orbiter Vehicle (OV) 105, Orbit Team O1 in MCC Bldg 30 FCR

    Science.gov (United States)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, Orbit Team 1 (O1) poses in front of large display screens in JSC's Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR) for group portrait. Lead Flight Director (FD) Granvil A. Pennington stands next to a model of the James Cook's ship, the Endeavour (left). Astronaut and Spacecraft Communicator (CAPCOM) John H. Casper stands at the right of the model.

  20. Mars Mission Concepts: SAR and Solar Electric Propulsion

    Science.gov (United States)

    Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.

    2012-12-01

    Introduction: The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow (Models uniquely useful for exploration planning and science purposes. Since the SAR and the notional high-resolution stereo imaging system would be huge data volume producers - to maximize the science return we are currently considering the usage of laser communications systems; this notional spacecraft represents one pathway to evaluate the utility of laser communications in planetary exploration while providing useful science return.. Mission Concept: Using a common space craft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. SEP provides the greatest payload advantage albeit at the sacrifice of mission time. Our concept involves using a SEP enabled space craft (Boeing 702SP) with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Our concept of operations is to launch on May 5, 2018 using a launch vehicle with 2000kg launch capacity with a C3 of 7.4. After reaching Mars it takes 145 days to spiral down to a 250 km orbit above the surface of Mars when Mars SAR operations begin. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute the baseline science mission and conduct necessary Mars Sample Return Technology Demonstrations in Mars orbit on the same mission. An

  1. Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST)

    Science.gov (United States)

    Baldauf, Brian; Conti, Alberto

    2016-01-01

    The "Search for Life" via imaging of exoplanets is a mission that requires extremely stable telescopes with apertures in the 10 m to 20 m range. The High Definition Space Telescope (HDST) envisioned for this mission would have an aperture >10 m, which is a larger payload than what can be delivered to space using a single launch vehicle. Building and assembling the mirror segments enabling large telescopes will likely require multiple launches and assembly in space. Space-based telescopes with large apertures will require major changes to system architectures.The Optical Telescope Assembly (OTA) for HDST is a primary mission cost driver. Enabling and affordable solutions for this next generation of large aperture space-based telescope are needed.This paper reports on the concept for the Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST), which demonstrates on-orbit robotic and/or astronaut assembly of a precision optical telescope in space. It will also facilitate demonstration of active correction of phase and mirror shape. MODEST is proposed to be delivered to the ISS using standard Express Logistics Carriers (ELCs) and can mounted to one of a variety of ISS pallets. Post-assembly value includes space, ground, and environmental studies, and a testbed for new instruments. This demonstration program for next generation mirror technology provides significant risk reduction and demonstrates the technology in a six-mirror phased telescope. Other key features of the demonstration include the use of an active primary optical surface with wavefront feedback control that allows on-orbit optimization and demonstration of precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Carbon Fiber Reinforced Polymer that have excellent mechanical and thermal properties, e.g. high stiffness, high modulus, high thermal

  2. Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission

    Science.gov (United States)

    Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.

    2012-01-01

    The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).

  3. Science Planning and Orbit Classification for Solar Probe Plus

    Science.gov (United States)

    Kusterer, M. B.; Fox, N. J.; Rodgers, D. J.; Turner, F. S.

    2016-12-01

    There are a number of challenges for the Science Planning Team (SPT) of the Solar Probe Plus (SPP) Mission. Since SPP is using a decoupled payload operations approach, tight coordination between the mission operations and payload teams will be required. The payload teams must manage the volume of data that they write to the spacecraft solid-state recorders (SSR) for their individual instruments for downlink to the ground. Making this process more difficult, the geometry of the celestial bodies and the spacecraft during some of the SPP mission orbits cause limited uplink and downlink opportunities. The payload teams will also be required to coordinate power on opportunities, command uplink opportunities, and data transfers from instrument memory to the spacecraft SSR with the operation team. The SPT also intend to coordinate observations with other spacecraft and ground based systems. To solve these challenges, detailed orbit activity planning is required in advance for each orbit. An orbit planning process is being created to facilitate the coordination of spacecraft and payload activities for each orbit. An interactive Science Planning Tool is being designed to integrate the payload data volume and priority allocations, spacecraft ephemeris, attitude, downlink and uplink schedules, spacecraft and payload activities, and other spacecraft ephemeris. It will be used during science planning to select the instrument data priorities and data volumes that satisfy the orbit data volume constraints and power on, command uplink and data transfer time periods. To aid in the initial stages of science planning we have created an orbit classification scheme based on downlink availability and significant science events. Different types of challenges arise in the management of science data driven by orbital geometry and operational constraints, and this scheme attempts to identify the patterns that emerge.

  4. Dynamics of Orbits near 3:1 Resonance in the Earth-Moon System

    Science.gov (United States)

    Dichmann, Donald J.; Lebois, Ryan; Carrico, John P., Jr.

    2013-01-01

    The Interstellar Boundary Explorer (IBEX) spacecraft is currently in a highly elliptical orbit around Earth with a period near 3:1 resonance with the Moon. Its orbit is oriented so that apogee does not approach the Moon. Simulations show this orbit to be remarkably stable over the next twenty years. This article examines the dynamics of such orbits in the Circular Restricted 3-Body Problem (CR3BP). We look at three types of periodic orbits, each exhibiting a type of symmetry of the CR3BP. For each of the orbit types, we assess the local stability using Floquet analysis. Although not all of the periodic solutions are stable in the mathematical sense, any divergence is so slow as to produce practical stability over several decades. We use Poincare maps with twenty-year propagations to assess the nonlinear stability of the orbits, where the perturbation magnitudes are related to the orbit uncertainty for the IBEX mission. Finally we show that these orbits belong to a family of orbits connected in a bifurcation diagram that exhibits exchange of stability. The analysis of these families of period orbits provides a valuable starting point for a mission orbit trade study.

  5. Accompanied by the Shuttle Training Aircraft, Discovery touches down after successful mission STS-95

    Science.gov (United States)

    1998-01-01

    The Shuttle Training Aircraft (top) seems to chase orbiter Discovery as it touches down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  6. Space nuclear tug mission applications

    International Nuclear Information System (INIS)

    Hodge, J.R.; Rauen, L.A.

    1996-01-01

    An initial assessment indicates that the NEBA-1 and NEBA-3 bimodal reactor designs can be integrated into a reusable tug which is capable of supporting many missions including GSO delivery, GSO retrieval, lunar trajectory deliveries, interplanetary deliveries, and a variety of satellite servicing. The tug close-quote s nuclear thermal propulsion provides timely transport and payload delivery, with GSO deliveries on the order of 3 endash 7 days. In general, the tug may provide a number of potential benefits to users. The tug may, for example, extend the life of an existing on-orbit spacecraft, boost spacecraft which were not delivered to their operational orbit, offer increased payload capability, or possibly allow payloads to launch on smaller less expensive launch vehicles. Reusing the tug for 5 or 10 missions requires total reactor burn times of 50 and 100 hours, respectively. Shielding, boom structure, and radiator requirements were identified as key factors in the configuration layout. Economic feasibility is still under evaluation, but preliminary estimates indicate that average flight costs may range from $32 M to $34 M for a 10-mission vehicle and from $39 M to $42 M for a 5-mission vehicle. copyright 1996 American Institute of Physics

  7. Present status of the Japanese Venus climate orbiter

    Science.gov (United States)

    Nakamura, M.; Imamura, T.; Abe, T.; Ishii, N.

    The code name of 24th science spacecraft of ISAS/JAXA is Planet-C. It is the first Venus Climate Orbiter (VCO) of Japan. The ministry of finance of Japan finally agreed to start phase B study of VCO from this April, 2004. We plan 1-2 years phase B study followed by 2 years of flight model integration. The spacecraft will be launched between 2009 and 2010. After arriving Venus, 2 years of operation is expected. VCO will complemet the ESA's Venus Express mission which have several spectrometers and will reveal the composition of the Venusian atmosphere. On the other hand, VCO is designed to reveal the details of the atmospheric motion on Venus and approach the dynamics of the Venusian climate. Cooperation between Japanese VCO and ESA's Venus Express, in the colaboration framework of U.S., Europian, and Japanese scienctist is very important. To elucidate the driving mechanism of the 4-days super-rotation is one of our main targets. We have 4 cameras to take snap shots of the planets in different wave lengths. They are the IR1 camera (1 micron-meter), the IR2 camera (2.4 micron-meter), the LIR camera (10-12 micron-meter), and the UVI camera (340nm). They are attached to the side panel of the 3-axis stabilized spacecraft, and are directed to Venus with the spacecraft's attitude control. Snap shots are expected to be taken every 2 hours. The spacecraft has an orbit of 300km x 13Rv (Venusian radii) with 172 degrees inclination. Orbital period is 30 hours. The angular position of the spacecraft on this orbit is synchronized for 20 hours at its apoapsis with the global atmospheric circulation at the altitude of 50km, thus the snap shots of every 2 hours will be the images of the same side of the atmosphere. In addition to these 4 cameras, we have a Lightning and Airglow camera (LAC) in visible range. This will be operated when the orbiter is close to the planet.

  8. Report of the NASA Science Definition Team for the Mars Science Orbiter (MSO)

    Science.gov (United States)

    Smith, Michael

    2007-01-01

    NASA is considering that its Mars Exploration Program (MEP) will launch an orbiter to Mars in the 2013 launch opportunity. To further explore this opportunity, NASA has formed a Science Definition Team (SDT) for this orbiter mission, provisionally called the Mars Science Orbiter (MSO). Membership and leadership of the SDT are given in Appendix 1. Dr. Michael D. Smith chaired the SDT. The purpose of the SDT was to define the: 1) Scientific objectives of an MSO mission to be launched to Mars no earlier than the 2013 launch opportunity, building on the findings for Plan A [Atmospheric Signatures and Near-Surface Change] of the Mars Exploration Program Analysis Group (MEPAG) Second Science Analysis Group (SAG-2); 2) Science requirements of instruments that are most likely to make high priority measurements from the MSO platform, giving due consideration to the likely mission, spacecraft and programmatic constraints. The possibilities and opportunities for international partners to provide the needed instrumentation should be considered; 3) Desired orbits and mission profile for optimal scientific return in support of the scientific objectives, and the likely practical capabilities and the potential constraints defined by the science requirements; and 4) Potential science synergies with, or support for, future missions, such as a Mars Sample Return. This shall include imaging for evaluation and certification of future landing sites. As a starting point, the SDT was charged to assume spacecraft capabilities similar to those of the Mars Reconnaissance Orbiter (MRO). The SDT was further charged to assume that MSO would be scoped to support telecommunications relay of data from, and commands to, landed assets, over a 10 Earth year period following orbit insertion. Missions supported by MSO may include planned international missions such as EXOMARS. The MSO SDT study was conducted during October - December 2007. The SDT was directed to complete its work by December 15, 2007

  9. Limitations of Electromagnetic Ion Cyclotron Wave Observations in Low Earth Orbit

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2018-03-01

    Full Text Available Pc1 pulsations are geomagnetic fluctuations in the frequency range of 0.2 to 5 Hz. There have been several observations of Pc1 pulsations in low earth orbit by MAGSAT, DE-2, Viking, Freja, CHAMP, and SWARM satellites. However, there has been a clear limitation in resolving the spatial and temporal variations of the pulsation by using a single-point observation by a single satellite. To overcome such limitations of previous observations, a new space mission was recently initiated, using the concept of multi-satellites, named the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE. The SNIPE mission consists of four nanosatellites (~10 kg, which will be launched into a polar orbit at an altitude of 600 km (TBD in 2020. Four satellites will be deployed in orbit, and the distances between each satellite will be controlled from 10 to 1,000 km by a high-end formation-flying algorithm. One of the possible science targets of the SNIPE mission is observing electromagnetic ion cyclotron (EMIC waves. In this paper, we report on examples of observations, showing the limitations of previous EMIC observations in low earth orbit, and suggest possibilities to overcome those limitations through a new mission.

  10. Small Probes for Orbital Return of Experiments Mission Design

    Data.gov (United States)

    National Aeronautics and Space Administration — Currently the Georgia Tech Small Probes for Orbital Return of Experiments (SPORE) team is collaborating with Aurora Flight Sciences to provide a launch, re-entry,...

  11. The K-1 Active Dispenser for Orbit Transfer

    Science.gov (United States)

    Lai, G.; Cochran, D.; Curtis, R.

    2002-01-01

    Kistler Aerospace Corporation is building the K-1, the world's first fully reusable launch vehicle. The two-stage K- 1 is designed primarily to service the market for low-earth orbit (LEO) missions, due to Kistler's need to recover both stages. For customers requiring payload delivery to high-energy orbits, Kistler can outfit the payload with a K- 1 Active Dispenser (an expendable third stage). The K-1 second stage will deploy the Active Dispenser mated with its payload into a 200 km circular LEO parking orbit. From this orbit, the Active Dispenser would use its own propulsion to place its payload into the final desired drop-off orbit or earth-escape trajectory. This approach allows Kistler to combine the low-cost launch services offered by the reusable two-stage K-1 with the versatility of a restartable, expendable upper stage. Enhanced with an Active Dispenser, the K-1 will be capable of delivering 1,500 kg to a geosynchronous transfer orbit or up to approximately 1,000 kg into a Mars rendezvous trajectory. The list price of a K-1 Active Dispenser launch is 25 million (plus the price of mission unique integration services) significantly less than the price of any launch vehicle service in the world with comparable capability.

  12. A framework for employing femtosatellites in planetary science missions, including a proposed mission concept for Titan

    Science.gov (United States)

    Perez, Tracie Renea Conn

    Over the past 15 years, there has been a growing interest in femtosatellites, a class of tiny satellites having mass less than 100 grams. Research groups from Peru, Spain, England, Canada, and the United States have proposed femtosat designs and novel mission concepts for them. In fact, Peru made history in 2013 by releasing the first - and still only - femtosat tracked from LEO. However, femtosatellite applications in interplanetary missions have yet to be explored in detail. An interesting operations concept would be for a space probe to release numerous femtosatellites into orbit around a planetary object of interest, thereby augmenting the overall data collection capability of the mission. A planetary probe releasing hundreds of femtosats could complete an in-situ, simultaneous 3D mapping of a physical property of interest, achieving scientific investigations not possible for one probe operating alone. To study the technical challenges associated with such a mission, a conceptual mission design is proposed where femtosats are deployed from a host satellite orbiting Titan. The conceptual mission objective is presented: to study Titan's dynamic atmosphere. Then, the design challenges are addressed in turn. First, any science payload measurements that the femtosats provide are only useful if their corresponding locations can be determined. Specifically, what's required is a method of position determination for femtosatellites operating beyond Medium Earth Orbit and therefore beyond the help of GPS. A technique is presented which applies Kalman filter techniques to Doppler shift measurements, allowing for orbit determination of the femtosats. Several case studies are presented demonstrating the usefulness of this approach. Second, due to the inherit power and computational limitations in a femtosatellite design, establishing a radio link between each chipsat and the mothersat will be difficult. To provide a mathematical gain, a particular form of forward error

  13. Orion's Powered Flight Guidance Burn Options for Near Term Exploration Missions

    Science.gov (United States)

    Fill, Thomas; Goodman, John; Robinson, Shane

    2018-01-01

    NASA's Orion exploration spacecraft will fly more demanding mission profiles than previous NASA human flight spacecraft. Missions currently under development are destined for cislunar space. The EM-1 mission will fly unmanned to a Distant Retrograde Orbit (DRO) around the Moon. EM-2 will fly astronauts on a mission to the lunar vicinity. To fly these missions, Orion requires powered flight guidance that is more sophisticated than the orbital guidance flown on Apollo and the Space Shuttle. Orion's powered flight guidance software contains five burn guidance options. These five options are integrated into an architecture based on a proven shuttle heritage design, with a simple closed-loop guidance strategy. The architecture provides modularity, simplicity, versatility, and adaptability to future, yet-to-be-defined, exploration mission profiles. This paper provides a summary of the executive guidance architecture and details the five burn options to support both the nominal and abort profiles for the EM-1 and EM-2 missions.

  14. Atmospheric interaction with nanosatellites from observed orbital decay

    Science.gov (United States)

    Macario-Rojas, A.; Smith, K. L.; Crisp, N. H.; Roberts, P. C. E.

    2018-06-01

    Nanosatellites have gained considerable presence in low Earth orbits wherein the atmospheric interaction with exposed surfaces plays a fundamental role in the evolution of motion. These aspects become relevant with the increasing applicability of nanosatellites to a broader range of missions objectives. This investigation sets out to determine distinctive drag coefficient development and attributes of atmospheric gas-surface interactions in nanosatellites in the common form of standard 3U CubeSats from observed orbital decay. As orbital decay can be measured with relative accuracy, and its mechanism broken down into its constituent sources, the value of drag-related coefficients can be inferred by fitting modelled orbit predictions to observed data wherein the coefficient of interest is the adjusted parameter. The analysis uses the data of ten historical missions with documented passive attitude stabilisation strategies to reduce uncertainties. Findings indicate that it is possible to estimate fitted drag coefficients in CubeSats with physical representativeness. Assessment of atomic oxygen surface coverage derived from the fitted drag coefficients is broadly consistent with theoretical trends. The proposed methodology opens the possibility to assess atmospheric interaction characteristics by using the unprecedented opportunity arising from the numerous observed orbital decay of nanosatellites.

  15. Target selection and mass estimation for manned NEO exploration using a baseline mission design

    Science.gov (United States)

    Boden, Ralf C.; Hein, Andreas M.; Kawaguchi, Junichiro

    2015-06-01

    In recent years Near-Earth Objects (NEOs) have received an increased amount of interest as a target for human exploration. NEOs offer scientifically interesting targets, and at the same time function as a stepping stone for achieving future Mars missions. The aim of this research is to identify promising targets from the large number of known NEOs that qualify for a manned sample-return mission with a maximum duration of one year. By developing a baseline mission design and a mass estimation model, mission opportunities are evaluated based on on-orbit mass requirements, safety considerations, and the properties of the potential targets. A selection of promising NEOs is presented and the effects of mission requirements and restrictions are discussed. Regarding safety aspects, the use of free-return trajectories provides the lowest on-orbit mass, when compared to an alternative design that uses system redundancies to ensure return of the spacecraft to Earth. It is discovered that, although a number of targets are accessible within the analysed time frame, no NEO offers both easy access and high incentive for its exploration. Under the discussed aspects a first human exploration mission going beyond the vicinity of Earth will require a trade off between targets that provide easy access and those that are of scientific interest. This lack of optimal mission opportunities can be seen in the small number of only 4 NEOs that meet all requirements for a sample-return mission and remain below an on-orbit mass of 500 metric Tons (mT). All of them require a mass between 315 and 492 mT. Even less ideal, smaller asteroids that are better accessible require an on-orbit mass that exceeds the launch capability of future heavy lift vehicles (HLV) such as SLS by at least 30 mT. These mass requirements show that additional efforts are necessary to increase the number of available targets and reduce on-orbit mass requirements through advanced mission architectures. The need for on-orbit

  16. Modification of an impulse-factoring orbital transfer technique to account for orbit determination and maneuver execution errors

    Science.gov (United States)

    Kibler, J. F.; Green, R. N.; Young, G. R.; Kelly, M. G.

    1974-01-01

    A method has previously been developed to satisfy terminal rendezvous and intermediate timing constraints for planetary missions involving orbital operations. The method uses impulse factoring in which a two-impulse transfer is divided into three or four impulses which add one or two intermediate orbits. The periods of the intermediate orbits and the number of revolutions in each orbit are varied to satisfy timing constraints. Techniques are developed to retarget the orbital transfer in the presence of orbit-determination and maneuver-execution errors. Sample results indicate that the nominal transfer can be retargeted with little change in either the magnitude (Delta V) or location of the individual impulses. Additonally, the total Delta V required for the retargeted transfer is little different from that required for the nominal transfer. A digital computer program developed to implement the techniques is described.

  17. Mission,System Design and Payload Aspects of ESA's Mercury Cornerstone Mission

    Science.gov (United States)

    Ferri, A.; Anselmi, A.; Scoon, G. E. N.

    1999-09-01

    Aim of this paper is to summarise the 1-year study performed by Alenia Aerospazio in close co-operation with the European Space Agency, on the Mercury Cornerstone System and Technology Study, as a part of Horizon 2000+ Scientific Programme plan. ESA's definition study towards a mission to Mercury conceives the launch of a S/C in 2009, on a two to three years journey, plus a one-year scientific observations and data take. The mission's primary objectives are manyfolded, aiming at approaching basic scientific questions on the origin and evolution of Mercury: identify and map the chemical and mineral composition of the surface, measure the topography of surface landforms, define the gravitational field, investigate particles and magnetic fields. The mission is also intended to resolve the librational state of the planet, in a system experiment requiring high accuracy inertial attitude (arcsecond level) and orbit (m-level) reconstitution. This experiment will allow to infer whether Mercury has a molten core, which is crucial to theories of magnetic field generation, and theories of the thermal history of terrestrial type planets. A hard-lander is planned to perform in-situ surface geochemical analysis. The mission is expected to provide scientists with a global portrait of Mercury returning about 1200 Gbits of scientific data, during a 1-year observation phase. The crucial aspects of the spacecraft design have to do with the high-temperature and high-radiation environment. Thermal control is achieved by a combination of orbit selection, attitude law, and special design provisions for IR shielding and HT insulation. Ad-hoc design provisions are envisaged for power and antenna mechanisms. Though the conceptual objectives of this industrial study focused on system architectures and enabling technologies for a "Cornerstone" class mission, in this paper emphasis is given on the scientific payload aspects.

  18. MESSENGER at Mercury: Early Orbital Operations

    Science.gov (United States)

    McNutt, Ralph L., Jr; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.; hide

    2013-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA's Discovery Program, was inserted into orbit about the planet Mercury in March 2011. MESSENGER's three flybys of Mercury in 2008-2009 marked the first spacecraft visits to the innermost planet since the Mariner 10 flybys in 1974-1975. The unprecedented orbital operations are yielding new insights into the nature and evolution of Mercury. The scientific questions that frame the MESSENGER mission led to the mission measurement objectives to be achieved by the seven payload instruments and the radio science experiment. Interweaving the full set of required orbital observations in a manner that maximizes the opportunity to satisfy all mission objectives and yet meet stringent spacecraft pointing and thermal constraints was a complex optimization problem that was solved with a software tool that simulates science observations and tracks progress toward meeting each objective. The final orbital observation plan, the outcome of that optimization process, meets all mission objectives. MESSENGER's Mercury Dual Imaging System is acquiring a global monochromatic image mosaic at better than 90% coverage and at least 250 m average resolution, a global color image mosaic at better than 90% coverage and at least 1 km average resolution, and global stereo imaging at better than 80% coverage and at least 250 m average resolution. Higher-resolution images are also being acquired of targeted areas. The elemental remote sensing instruments, including the Gamma-Ray and Neutron Spectrometer and the X-Ray Spectrometer, are being operated nearly continuously and will establish the average surface abundances of most major elements. The Visible and Infrared Spectrograph channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer is acquiring a global map of spectral reflectance from 300 to 1450 nm wavelength at a range of incidence and emission

  19. The History of Orbiter Corrosion Control (1981 - 2011)

    Science.gov (United States)

    Russell, Richard W.

    2014-01-01

    After 135 missions and 30 years the Orbiter fleet was retired in 2011. Working with Orbiter project management and a world class engineering team the CCRB was successful in providing successful sustaining engineering support for approximately 20 years. Lessons learned from the Orbiter program have aided NASA and contractor engineers in the design and manufacture of new spacecraft so that exploration of space can continue. The Orbiters are proudly being displayed for all the public to see in New York City, Washington D.C., Los Angeles, and at the Kennedy Space Center in Florida.

  20. Towards the integration of orbital space use in Life Cycle Impact Assessment.

    Science.gov (United States)

    Maury, Thibaut; Loubet, Philippe; Ouziel, Jonathan; Saint-Amand, Maud; Dariol, Ludovic; Sonnemann, Guido

    2017-10-01

    A rising sustainability concern is occurring in the space sector: 29,000 human-made objects, larger than 10cm are orbiting the Earth but only 6% are operational spacecrafts. Today, space debris is today a significant and constant danger to all space missions. Consequently, it becomes compelled to design new space missions considering End-of-Life requirements in order to ensure the sustainable use of space orbits. Furthermore, Life Cycle Assessment (LCA) has been identified by the European Space Agency as an adequate tool to measure the environmental impact of spacecraft missions. Hence, our challenge is to integrate orbital space use into Life Cycle Impact Assessment (LCIA) to broaden the scope of LCA for space systems. The generation of debris in the near-Earth's orbital regions leads to a decrease in volume availability. The Area-of-Protection (AoP) 'resources' seems to be the most relevant reflection of this depletion. To address orbital space use in a comprehensive way, we propose a first attempt at establishing an impact pathway linking outer space use to resources. This framework will be the basis for defining new indicator(s) related to orbital space use. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. WetLab-2: Tools for Conducting On-Orbit Quantitative Real-Time Gene Expression Analysis on ISS

    Science.gov (United States)

    Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Schonfeld, Julie

    2014-01-01

    The objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a research platform capable of conducting gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens sampled or cultured on orbit. The project has selected a Commercial-Off-The-Shelf (COTS) qRT-PCR system, the Cepheid SmartCycler and will fly it in its COTS configuration. The SmartCycler has a number of advantages including modular design (16 independent PCR modules), low power consumption, rapid ramp times and the ability to detect up to four separate fluorescent channels at one time enabling multiplex assays that can be used for normalization and to study multiple genes of interest in each module. The team is currently working with Cepheid to enable the downlink of data from the ISS to the ground and provide uplink capabilities for programming, commanding, monitoring, and instrument maintenance. The project has adapted commercial technology to design a module that can lyse cells and extract RNA of sufficient quality and quantity for use in qRT-PCR reactions while using a housekeeping gene to normalize RNA concentration and integrity. The WetLab-2 system is capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on-orbit. The ability to conduct qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples. The system can be used to validate terrestrial analyses of samples returned from ISS by providing on-orbit gene expression benchmarking prior to sample return. The ability to get on orbit data will provide investigators with the opportunity to adjust experiment parameters for subsequent trials based on the real-time data analysis without need for sample return and re-flight. Researchers will also be able to sample multigenerational changes in organisms. Finally, the system can be

  2. Orbit Determination of Spacecraft in Earth-Moon L1 and L2 Libration Point Orbits

    Science.gov (United States)

    Woodard, Mark; Cosgrove, Daniel; Morinelli, Patrick; Marchese, Jeff; Owens, Brandon; Folta, David

    2011-01-01

    The ARTEMIS mission, part of the THEMIS extended mission, is the first to fly spacecraft in the Earth-Moon Lissajous regions. In 2009, two of the five THEMIS spacecraft were redeployed from Earth-centered orbits to arrive in Earth-Moon Lissajous orbits in late 2010. Starting in August 2010, the ARTEMIS P1 spacecraft executed numerous stationkeeping maneuvers, initially maintaining a lunar L2 Lissajous orbit before transitioning into a lunar L1 orbit. The ARTEMIS P2 spacecraft entered a L1 Lissajous orbit in October 2010. In April 2011, both ARTEMIS spacecraft will suspend Lissajous stationkeeping and will be maneuvered into lunar orbits. The success of the ARTEMIS mission has allowed the science team to gather unprecedented magnetospheric measurements in the lunar Lissajous regions. In order to effectively perform lunar Lissajous stationkeeping maneuvers, the ARTEMIS operations team has provided orbit determination solutions with typical accuracies on the order of 0.1 km in position and 0.1 cm/s in velocity. The ARTEMIS team utilizes the Goddard Trajectory Determination System (GTDS), using a batch least squares method, to process range and Doppler tracking measurements from the NASA Deep Space Network (DSN), Berkeley Ground Station (BGS), Merritt Island (MILA) station, and United Space Network (USN). The team has also investigated processing of the same tracking data measurements using the Orbit Determination Tool Kit (ODTK) software, which uses an extended Kalman filter and recursive smoother to estimate the orbit. The orbit determination results from each of these methods will be presented and we will discuss the advantages and disadvantages associated with using each method in the lunar Lissajous regions. Orbit determination accuracy is dependent on both the quality and quantity of tracking measurements, fidelity of the orbit force models, and the estimation techniques used. Prior to Lissajous operations, the team determined the appropriate quantity of tracking

  3. A Dual Launch Robotic and Human Lunar Mission Architecture

    Science.gov (United States)

    Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David

    2010-01-01

    This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This

  4. LO2/LH2 propulsion for outer planet orbiter spacecraft

    Science.gov (United States)

    Garrison, P. W.; Sigurdson, K. B.

    1983-01-01

    Galileo class orbiter missions (750-1500 kg) to the outer planets require a large postinjection delta-V for improved propulsion performance. The present investigation shows that a pump-fed low thrust LO2/LH2 propulsion system can provide a significantly larger net on-orbit mass for a given delta-V than a state-of-the-art earth storable, N2O4/monomethylhydrazine pressure-fed propulsion system. A description is given of a conceptual design for a LO2/LH2 pump-fed propulsion system developed for a Galileo class mission to the outer planets. Attention is given to spacecraft configuration, details regarding the propulsion system, the thermal control of the cryogenic propellants, and aspects of mission performance.

  5. Conceptual definition of a 50-100 kWe NEP system for planetary science missions

    Science.gov (United States)

    Friedlander, Alan

    1993-01-01

    The Phase 1 objective of this project is to assess the applicability of a common Nuclear Electric Propulsion (NEP) flight system of the 50-100 kWe power class to meet the advanced transportation requirements of a suite of planetary science (robotic) missions, accounting for differences in mission-specific payloads and delivery requirements. The candidate missions are as follows: (1) Comet Nucleus Sample Return; (2) Multiple Mainbelt Asteroid Rendezvous; (3) Jupiter Grand Tour (Galilean satellites and magnetosphere); (4) Uranus Orbiter/Probe (atmospheric entry and landers); (5) Neptune Orbiter/Probe (atmospheric entry and landers); and (6) Pluto-Charon Orbiter/Lander. The discussion is presented in vugraph form.

  6. Lunar Topography: Results from the Lunar Orbiter Laser Altimeter

    Science.gov (United States)

    Neumann, Gregory; Smith, David E.; Zuber, Maria T.; Mazarico, Erwan

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO) has been operating nearly continuously since July 2009, accumulating over 6 billion measurements from more than 2 billion in-orbit laser shots. LRO's near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, with full coverage at the equator from more than 12000 orbital tracks averaging less than 1 km in spacing at the equator. LRO has obtained a global geodetic model of the lunar topography with 50-meter horizontal and 1-m radial accuracy in a lunar center-of-mass coordinate system, with profiles of topography at 20-m horizontal resolution, and 0.1-m vertical precision. LOLA also provides measurements of reflectivity and surface roughness down to its 5-m laser spot size. With these data LOLA has measured the shape of all lunar craters 20 km and larger. In the proposed extended mission commencing late in 2012, LOLA will concentrate observations in the Southern Hemisphere, improving the density of the polar coverage to nearly 10-m pixel resolution and accuracy to better than 20 m total position error. Uses for these data include mission planning and targeting, illumination studies, geodetic control of images, as well as lunar geology and geophysics. Further improvements in geodetic accuracy are anticipated from the use of re ned gravity fields after the successful completion of the Gravity Recovery and Interior Laboratory (GRAIL) mission in 2012.

  7. Medical Implications of Space Radiation Exposure Due to Low-Altitude Polar Orbits.

    Science.gov (United States)

    Chancellor, Jeffery C; Auñon-Chancellor, Serena M; Charles, John

    2018-01-01

    Space radiation research has progressed rapidly in recent years, but there remain large uncertainties in predicting and extrapolating biological responses to humans. Exposure to cosmic radiation and solar particle events (SPEs) may pose a critical health risk to future spaceflight crews and can have a serious impact on all biomedical aspects of space exploration. The relatively minimal shielding of the cancelled 1960s Manned Orbiting Laboratory (MOL) program's space vehicle and the high inclination polar orbits would have left the crew susceptible to high exposures of cosmic radiation and high dose-rate SPEs that are mostly unpredictable in frequency and intensity. In this study, we have modeled the nominal and off-nominal radiation environment that a MOL-like spacecraft vehicle would be exposed to during a 30-d mission using high performance, multicore computers. Projected doses from a historically large SPE (e.g., the August 1972 solar event) have been analyzed in the context of the MOL orbit profile, providing an opportunity to study its impact to crew health and subsequent contingencies. It is reasonable to presume that future commercial, government, and military spaceflight missions in low-Earth orbit (LEO) will have vehicles with similar shielding and orbital profiles. Studying the impact of cosmic radiation to the mission's operational integrity and the health of MOL crewmembers provides an excellent surrogate and case-study for future commercial and military spaceflight missions.Chancellor JC, Auñon-Chancellor SM, Charles J. Medical implications of space radiation exposure due to low-altitude polar orbits. Aerosp Med Hum Perform. 2018; 89(1):3-8.

  8. On-orbit technology experiment facility definition

    Science.gov (United States)

    Russell, Richard A.; Buchan, Robert W.; Gates, Richard M.

    1988-01-01

    A study was conducted to identify on-orbit integrated facility needs to support in-space technology experiments on the Space Station and associated free flyers. In particular, the first task was to examine the proposed technology development missions (TDMX's) from the model mission set and other proposed experimental facilities, both individually and by theme, to determine how and if the experiments might be combined, what equipment might be shared, what equipment might be used as generic equipment for continued experimentation, and what experiments will conflict with the conduct of other experiments or Space Station operations. Then using these results, to determine on-orbit facility needs to optimize the implementation of technology payloads. Finally, to develop one or more scenarios, design concepts, and outfitting requirements for implementation of onboard technology experiments.

  9. Earth to Orbit Beamed Energy Experiment

    Science.gov (United States)

    Johnson, Les; Montgomery, Edward E.

    2017-01-01

    As a means of primary propulsion, beamed energy propulsion offers the benefit of offloading much of the propulsion system mass from the vehicle, increasing its potential performance and freeing it from the constraints of the rocket equation. For interstellar missions, beamed energy propulsion is arguably the most viable in the near- to mid-term. A near-term demonstration showing the feasibility of beamed energy propulsion is necessary and, fortunately, feasible using existing technologies. Key enabling technologies are large area, low mass spacecraft and efficient and safe high power laser systems capable of long distance propagation. NASA is currently developing the spacecraft technology through the Near Earth Asteroid Scout solar sail mission and has signed agreements with the Planetary Society to study the feasibility of precursor laser propulsion experiments using their LightSail-2 solar sail spacecraft. The capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination now make it possible to investigate the practicalities of an Earth-to-orbit Beamed Energy eXperiment (EBEX) - a demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail-2 spacecraft and laser power levels modest in comparison to those proposed previously. While the technology demonstrated by such an experiment is not sufficient to enable an interstellar precursor mission, if approved, then it would be the next step toward that goal.

  10. Advanced Solar-propelled Cargo Spacecraft for Mars Missions

    Science.gov (United States)

    Auziasdeturenne, Jacqueline; Beall, Mark; Burianek, Joseph; Cinniger, Anna; Dunmire, Barbrina; Haberman, Eric; Iwamoto, James; Johnson, Stephen; Mccracken, Shawn; Miller, Melanie

    1989-01-01

    Three concepts for an unmanned, solar powered, cargo spacecraft for Mars support missions were investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: A Solar Radiation Absorption (SRA) system, a Solar-Pumped Laser (SPL) system and a solar powered magnetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sunsynchronous Earth orbit converts solar energy to laser energy. The MPD system used indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft and the SPL powered spacecraft return to Earth for subsequent missions. The MPD propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years).

  11. The Kepler Mission: A Mission to Determine the Frequency of Inner Planets Near the Habitable Zone of a Wide Range of Stars

    Science.gov (United States)

    Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.

    1997-01-01

    The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change. in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours. From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg. field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.

  12. The Kepler Mission: A Mission to Determine the Frequency of Inner Planets Neat the Habitable Zone of a Wide Range of Stars

    Science.gov (United States)

    Borucki, W. J.; Koch, D. G.; Dunham, E. W.; Jenkins, J. M.; Young, Richard E. (Technical Monitor)

    1997-01-01

    The surprising discovery of giant planets in inner orbits around solar-like stars has brought into question our understanding of the development and evolution of planetary systems, including our solar system. To make further progress, it is critical to detect and obtain data on the frequency and characteristics of Earth-class planets. The Kepler Mission is designed to be a quick, low-cost approach to accomplish that objective. Transits by Earth-class planets produce a fractional change in stellar brightness of 5 x 10(exp -5) to 40 x 10(exp -5) lasting for 4 to 16 hours, From the period and depth of the transits, the orbit and size of the planets can be calculated. The proposed instrument is a one-meter aperture photometer with a 12 deg field-of-view (FOV). To obtain the required precision and to avoid interruptions caused by day-night and seasonal cycles, the photometer will be launched into a heliocentric orbit. It will continuously and simultaneously monitor the flux from 80,000 dwarf stars brighter than 14th magnitude in the Cygnus constellation. The mission tests the hypothesis that the formation of most stars produces Earth-class planets in inner orbits. Based on this assumption and the recent observations that 2% of the stars have giant planets in inner orbits, several types of results are expected from the mission: 1. From transits of Earth-class planets, about 480 planet detections and 60 cases where two or more planets are found in the same system. 2. From transits of giant planets, about 160 detections of inner-orbit planets and 24 detections of outer-orbit planets. 3. From the phase modulation of the reflected light from giant planets, about 1400 planet detections with periods less than a week, albedos for 160 of these giant planets, and densities for seven planets.

  13. Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design

    Science.gov (United States)

    Sedlak, Joseph E.; Superfin, Emil; Raymond, Juan C.

    2011-01-01

    This paper describes the attitude ground system (AGS) design to be used for support of the Magnetospheric MultiScale (MMS) mission. The AGS exists as one component of the mission operations control center. It has responsibility for validating the onboard attitude and accelerometer bias estimates, calibrating the attitude sensors and the spacecraft inertia tensor, and generating a definitive attitude history for use by the science teams. NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland is responsible for developing the MMS spacecraft, for the overall management of the MMS mission, and for mission operations. MMS is scheduled for launch in 2014 for a planned two-year mission. The MMS mission consists of four identical spacecraft flying in a tetrahedral formation in an eccentric Earth orbit. The relatively tight formation, ranging from 10 to 400 km, will provide coordinated observations giving insight into small-scale magnetic field reconnection processes. By varying the size of the tetrahedron and the orbital semi-major axis and eccentricity, and making use of the changing solar phase, this geometry allows for the study of both bow shock and magnetotail plasma physics, including acceleration, reconnection, and turbulence. The mission divides into two phases for science; these phases will have orbit dimensions of l.2xl2 Earth radii in the first phase and l.2x25 Earth radii in the second in order to study the dayside magnetopause and the nightside magnetotail, respectively. The orbital periods are roughly one day and three days for the two mission phases. Each of the four MMS spacecraft will be spin stabilized at 3 revolutions per minute (rpm), with the spin axis oriented near the ecliptic north pole but tipped approximately 2.5 deg towards the Sun line. The main body of each spacecraft will be an eight-sided platform with diameter of 3.4 m and height of 1.2 m. Several booms are attached to this central core: two axial booms of 14.9 m length, two radial

  14. Electrical Power System Architectures for In-House NASA/GSFC Missions

    Science.gov (United States)

    Yun, Diane D.

    2006-01-01

    This power point presentation reviews the electrical power system (EPS) architecture used for a few NASA GSFC's missions both current and planned. Included in the presentation are reviews of electric power systems for the Space Technology 5 (ST5) mission, the Solar Dynamics Observatory (SDO) Mission, and the Lunar Reconnaissance Orbiter (LRO). There is a slide that compares the three missions' electrical supply systems.

  15. Model-Based Trade Space Exploration for Near-Earth Space Missions

    Science.gov (United States)

    Cohen, Ronald H.; Boncyk, Wayne; Brutocao, James; Beveridge, Iain

    2005-01-01

    We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable for space mission architectural design.

  16. Development Status of the WetLab-2 Project: New Tools for On-orbit Real-time Quantitative Gene Expression.

    Science.gov (United States)

    Jung, Jimmy; Parra, Macarena P.; Almeida, Eduardo; Boone, Travis; Chinn, Tori; Ricco, Antonio; Souza, Kenneth; Hyde, Liz; Rukhsana, Yousuf; Richey, C. Scott

    2013-01-01

    The primary objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a research platform to facilitate gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens grown or cultured on orbit. The WetLab-2 equipment will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on-orbit. In addition to the logistical benefits of in-situ sample processing and analysis, conducting qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms. The system can also validate terrestrial analyses of samples returned from ISS by providing quantitative on-orbit gene expression benchmarking prior to sample return. The ability to get on orbit data will provide investigators with the opportunity to adjust experimental parameters for subsequent trials based on the real-time data analysis without need for sample return and re-flight. Finally, WetLab-2 can be used for analysis of air, surface, water, and clinical samples to monitor environmental contaminants and crew health. The verification flight of the instrument is scheduled to launch on SpaceX-5 in Aug. 2014.Progress to date: The WetLab-2 project completed a thorough study of commercially available qRT-PCR systems and performed a downselect based on both scientific and engineering requirements. The selected instrument, the Cepheid SmartCycler, has advantages including modular design (16 independent PCR modules), low power consumption, and rapid ramp times. The SmartCycler has multiplex capabilities, assaying up to four genes of interest in each of the 16 modules. The WetLab-2 team is currently working with Cepheid to modify the unit for housing within an EXPRESS rack locker on the ISS. This will enable the downlink of data to the ground and provide uplink capabilities for programming, commanding, monitoring, and instrument maintenance. The project is

  17. A comparison of propulsion systems for potential space mission applications

    International Nuclear Information System (INIS)

    Harvego, E.A.; Sulmeisters, T.K.

    1987-01-01

    A derivative of the NERVA nuclear rocket engine was compared with a chemical propulsion system and a nuclear electric propulsion system to assess the relative capabilities of the different propulsion system options for three potential space missions. The missions considered were (1) orbital transfer from low earth orbit (LEO) to geosynchronous earth orbit (GEO), (2) LEO to a lunar base, and (3) LEO to Mars. The results of this comparison indicate that the direct-thrust NERVA-derivative nuclear rocket engine has the best performance characteristics for the missions considered. The combined high thrust and high specific impulse achievable with a direct-thrust nuclear stage permits short operating times (transfer times) comparable to chemical propulsion systems, but with considerably less required propellant. While nuclear-electric propulsion systems are more fuel efficient than either direct-nuclear or chemical propulsion, they are not stand-alone systems, since their relatively low thrust levels require the use of high-thrust ferry or lander stages in high gravity applications such as surface-to-orbit propulsion. The extremely long transfer times and inefficient trajectories associated with electric propulsion systems were also found to be a significant drawback

  18. A Comparative Study of Aerocapture Missions with a Mars Destination

    Science.gov (United States)

    Vaughan, Diane; Miller, Heather C.; Griffin, Brand; James, Bonnie F.; Munk, Michelle M.

    2005-01-01

    Conventional interplanetary spacecraft use propulsive systems to decelerate into orbit. Aerocapture is an alternative approach for orbit capture, in which the spacecraft makes a single pass through a target destination's atmosphere. Although this technique has never been performed, studies show there are substantial benefits of using aerocapture for reduction of propellant mass, spacecraft size, and mission cost. The In-Space Propulsion (ISP) Program, part of NASA's Science Mission Directorate, has invested in aerocapture technology development since 2002. Aerocapture investments within ISP are largely driven by mission systems analysis studies, The purpose of this NASA-funded report is to identify and document the fundamental parameters of aerocapture within previous human and robotic Mars mission studies which will assist the community in identifying technology research gaps in human and robotic missions, and provide insight for future technology investments. Upon examination of the final data set, some key attributes within the aerocapture disciplines are identified.

  19. Castalia - European Mission to a Main Belt Comet

    Science.gov (United States)

    Hilchenbach, M.

    2013-12-01

    Main Belt Comets (MBCs) are a recently identified new solar system population with stable asteroid-like orbits and a comet-like appearance. It is believed that they survived the age of the solar system in a dormant state and that their activity occurred only recently. Buried water ice is the only volatile expected to survive under an insulating surface. Excavation by an impact might expose the ice and trigger the start of MBC activity. The specific science goals of the Castalia mission are: 1. Characterize a new Solar System family, the MBCs, by in-situ investigation 2. Understand the physics of activity on MBCs 3. Directly detect water in the asteroid belt 4. Test if MBCs are a viable source for Earth's water 5. Use MBCs as tracers of planetary system formation and evolution These goals can be achieved by a spacecraft designed to rendezvous with and orbit an MBC for a time interval of some months, arriving before the active period for mapping and then directly sampling the gas and dust released during the active phase. Given the low level of activity of MBCs, and the expectation that their activity comes from only a localized patch on the surface, the orbiting spacecraft will have to be able to maintain a very close orbit over extended periods - the Castalia plan envisages an orbiter capable of ';hovering' autonomously at distances of only a few km from the surface of the MBC. The straw-man instrument payload is made up of: - Visible and near-infrared spectral imager - Thermal infrared imager - Radio science - Dust impact detector - Dust composition analyzer - Neutral/ion mass spectrometer - Magnetometer - Plasma package In addition to this, the option of a surface science package is being considered. At the moment MBC 133P/Elst-Pizarro is the best-known target for such a mission. A design study for the Castalia mission has been carried out in partnership between the science team, DLR and OHB Systems. This study looked at possible missions to 133P with launch

  20. Failure analysis of satellite subsystems to define suitable de-orbit devices

    Science.gov (United States)

    Palla, Chiara; Peroni, Moreno; Kingston, Jennifer

    2016-11-01

    Space missions in Low Earth Orbit (LEO) are severely affected by the build-up of orbital debris. A key practice, to be compliant with IADC (Inter-Agency Space Debris Coordination Committee) mitigation guidelines, is the removal of space systems that interfere with the LEO region not later than 25 years after the End of Mission. It is important to note that the current guidelines are not generally legally binding, even if different Space Agencies are now looking at the compliance for their missions. If the guidelines will change in law, it will be mandatory to have a postmission disposal strategy for all satellites, including micro and smaller classes. A potential increased number of these satellites is confirmed by different projections, in particular in the commercial sector. Micro and smaller spacecraft are, in general, not provided with propulsion capabilities to achieve a controlled re-entry, so they need different de-orbit disposal methods. When considering the utility of different debris mitigation methods, it is useful to understand which spacecraft subsystems are most likely to fail and how this may affect the operation of a de-orbit system. This also helps the consideration of which components are the most relevant or should be redundant depending on the satellite mass class. This work is based on a sample of LEO and MEO satellites launched between January 2000 and December 2014 with mass lower than 1000 kg. Failure analysis of satellite subsystems is performed by means of the Kaplan-Meier survival analysis; the parametric fits are conducted with Weibull distributions. The study is carried out by using the satellite database SpaceTrak™ which provides anomalies, failures, and trends information for spacecraft subsystems and launch vehicles. The database identifies five states for each satellite subsystem: three degraded states, one fully operational state, and one failed state (complete failure). The results obtained can guide the identification of the

  1. The Ulysses mission: An introduction

    International Nuclear Information System (INIS)

    Marsden, R.G.

    1996-01-01

    On 30 September 1995, Ulysses completed its initial, highly successful, survey of the polar regions of the heliosphere in both southern and northern hemispheres, thereby fulfilling its prime mission. The results obtained to date are leading to a revision of many earlier ideas concerning the solar wind and the heliosphere. Now embarking on the second phase of the mission, Ulysses will continue along its out-of-ecliptic flight path for another complete orbit of the Sun. In contrast to the high-latitude phase of the prime mission, which occurred near solar minimum, the next polar passes (in 2000 and 2001) will take place when the Sun is at its most active

  2. Instrument demonstration effort for the CLARREO mission

    Science.gov (United States)

    Grandmont, Frédéric; Moreau, Louis; Bourque, Hugo; Taylor, Joe; Girard, Frédéric; Larouche, Martin; Veilleux, James

    2017-11-01

    NASA and other national agencies ask the National Research Council (NRC) once every decade to look out ten or more years into the future and prioritize research areas, observations, and notional missions to make those observations. The latest such scientific community consultation referred to as the Decadal Survey (DS), was completed in 2007 [1]. DS thematic panels developed 35 missions from more than 100 missions proposed, from which the DS Executive Committee synthesized 17 missions, with suggested order presented in three time-phased blocks. The first block with aim for near term launch (2010-2013) included four missions. The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is one of them. The CLARREO mission was classified as a Small Mission to be contained in a 300 M US$ budgetary envelope. CLARREO will provide a benchmark climate record that is global, accurate in perpetuity, tested against independent strategies that reveal systematic errors, and pinned to international standards. The long term objective thus suggests that NOAA or NASA will fly the CLARREO instrument suite on an operational basis following the first scientific experiment The CLARREO missions will conduct the following observations: 1. Absolute spectrally-resolved measurements of terrestrial thermal emission with an absolute accuracy of 0.1 K in brightness temperature (3σ or 99% confidence limits.) The measurements should cover most of the thermal spectrum. 2. Absolute spectrally-resolved measurements of the solar radiation reflected from Earth. The measurements should cover the part of the solar spectrum most important to climate, including the near-ultraviolet, visible, and near-infrared. 3. Independent measurements of atmospheric temperature, pressure, and humidity using Global Positioning System (GPS) occultation measurements of atmospheric refraction. 4. Serve as a high accuracy calibration standard for use by the broadband CERES instruments on-orbit. Following

  3. New Space at Airbus Defence & Space to facilitate science missions

    Science.gov (United States)

    Boithias, Helene; Benchetrit, Thierry

    2016-10-01

    In addition to Airbus legacy activities, where Airbus satellites usually enable challenging science missions such as Venus Express, Mars Express, Rosetta with an historic landing on a comet, Bepi Colombo mission to Mercury and JUICE to orbit around Jupiter moon Ganymede, Swarm studying the Earth magnetic field, Goce to measure the Earth gravitational field and Cryosat to monitor the Earth polar ice, Airbus is now developing a new approach to facilitate next generation missions.After more than 25 years of collaboration with the scientists on space missions, Airbus has demonstrated its capacity to implement highly demanding missions implying a deep understanding of the science mission requirements and their intrinsic constraints such as- a very fierce competition between the scientific communities,- the pursuit of high maturity for the science instrument in order to be selected,- the very strict institutional budget limiting the number of operational missions.As a matter of fact, the combination of these constraints may lead to the cancellation of valuable missions.Based on that and inspired by the New Space trend, Airbus is developing an highly accessible concept called HYPE.The objective of HYPE is to make access to Space much more simple, affordable and efficient.With a standardized approach, the scientist books only the capacities he needs among the resources available on-board, as the HYPE satellites can host a large range of payloads from 1kg up to 60kg.At prices significantly more affordable than those of comparable dedicated satellite, HYPE is by far a very cost-efficient way of bringing science missions to life.After the launch, the scientist enjoys a plug-and-play access to two-way communications with his instrument through a secure high-speed portal available online 24/7.Everything else is taken care of by Airbus: launch services and the associated risk, reliable power supply, setting up and operating the communication channels, respect of space law

  4. Advanced Russian Mission Laplace-P to Study the Planetary System of Jupiter: Scientific Goals, Objectives, Special Features and Mission Profile

    Science.gov (United States)

    Martynov, M. B.; Merkulov, P. V.; Lomakin, I. V.; Vyatlev, P. A.; Simonov, A. V.; Leun, E. V.; Barabanov, A. A.; Nasyrov, A. F.

    2017-12-01

    The advanced Russian project Laplace-P is aimed at developing and launching two scientific spacecraft (SC)— Laplace-P1 ( LP1 SC) and Laplace-P2 ( LP2 SC)—designed for remote and in-situ studies of the system of Jupiter and its moon Ganymede. The LP1 and LP2 spacecraft carry an orbiter and a lander onboard, respectively. One of the orbiter's objectives is to map the surface of Ganymede from the artificial satellite's orbit and to acquire the data for the landing site selection. The main objective of the lander is to carry out in-situ investigations of Ganymede's surface. The paper describes the scientific goals and objectives of the mission, its special features, and the LP1 and LP2 mission profiles during all of the phases—from the launch to the landing on the surface of Ganymede.

  5. On the effects of solar storms to the decaying orbital space debris

    International Nuclear Information System (INIS)

    Herdiwijaya, Dhani; Rachman, Abdul

    2014-01-01

    Any man-made object in Earth's orbit that no longer serves a useful purpose is classified as orbital debris. Debris objects come from a variety of sources. The majority is related to satellite fragmentation. Other major sources of debris are propulsion systems, and fragmentation of spent upper stages, payload and mission related debris. Serious concern about orbital debris has been growing. Knowledge of the future debris environment is important to both satellite designers, and mission planners, who need to know what hazards a satellite might encounter during the course of its mission. Therefore, it is important to know how much debris is in orbit, where it is located, and when it will decay. The debris environment is complex and dynamically evolving. Objects of different shape and size behave differently in orbit. The geoeffectiveness space environments include solar flux at 10.7 cm, solar energetic particles flux or speed, solar wind flow pressure, electric field, and geomagnetic indices. We study the decaying orbital debris from Tracking and Impact Prediction (TIP) messages in conjuction with geoeffectiveness space environments through time epoch correlation. We found that the decaying and reentry orbital debris are triggered by space environment enhancement within at least one week before reentry. It is not necessary a transient or high energetic and severe solar storm events are needed in decaying processes. We propose that the gradual enhancement processes of space environment will cause satellite surface charging due to energetic electron and enhance drag force

  6. On the effects of solar storms to the decaying orbital space debris

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id [Astronomy Division and Bosscha Observatory, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung 40132 (Indonesia); Rachman, Abdul [Space Science Center, National Institute of Aeronautics and Space, Junjunan 133, Bandung 40173 (Indonesia)

    2014-03-24

    Any man-made object in Earth's orbit that no longer serves a useful purpose is classified as orbital debris. Debris objects come from a variety of sources. The majority is related to satellite fragmentation. Other major sources of debris are propulsion systems, and fragmentation of spent upper stages, payload and mission related debris. Serious concern about orbital debris has been growing. Knowledge of the future debris environment is important to both satellite designers, and mission planners, who need to know what hazards a satellite might encounter during the course of its mission. Therefore, it is important to know how much debris is in orbit, where it is located, and when it will decay. The debris environment is complex and dynamically evolving. Objects of different shape and size behave differently in orbit. The geoeffectiveness space environments include solar flux at 10.7 cm, solar energetic particles flux or speed, solar wind flow pressure, electric field, and geomagnetic indices. We study the decaying orbital debris from Tracking and Impact Prediction (TIP) messages in conjuction with geoeffectiveness space environments through time epoch correlation. We found that the decaying and reentry orbital debris are triggered by space environment enhancement within at least one week before reentry. It is not necessary a transient or high energetic and severe solar storm events are needed in decaying processes. We propose that the gradual enhancement processes of space environment will cause satellite surface charging due to energetic electron and enhance drag force.

  7. Mission Analysis, Operations, and Navigation Toolkit Environment (Monte) Version 040

    Science.gov (United States)

    Sunseri, Richard F.; Wu, Hsi-Cheng; Evans, Scott E.; Evans, James R.; Drain, Theodore R.; Guevara, Michelle M.

    2012-01-01

    Monte is a software set designed for use in mission design and spacecraft navigation operations. The system can process measurement data, design optimal trajectories and maneuvers, and do orbit determination, all in one application. For the first time, a single software set can be used for mission design and navigation operations. This eliminates problems due to different models and fidelities used in legacy mission design and navigation software. The unique features of Monte 040 include a blowdown thruster model for GRAIL (Gravity Recovery and Interior Laboratory) with associated pressure models, as well as an updated, optimalsearch capability (COSMIC) that facilitated mission design for ARTEMIS. Existing legacy software lacked the capabilities necessary for these two missions. There is also a mean orbital element propagator and an osculating to mean element converter that allows long-term orbital stability analysis for the first time in compiled code. The optimized trajectory search tool COSMIC allows users to place constraints and controls on their searches without any restrictions. Constraints may be user-defined and depend on trajectory information either forward or backwards in time. In addition, a long-term orbit stability analysis tool (morbiter) existed previously as a set of scripts on top of Monte. Monte is becoming the primary tool for navigation operations, a core competency at JPL. The mission design capabilities in Monte are becoming mature enough for use in project proposals as well as post-phase A mission design. Monte has three distinct advantages over existing software. First, it is being developed in a modern paradigm: object- oriented C++ and Python. Second, the software has been developed as a toolkit, which allows users to customize their own applications and allows the development team to implement requirements quickly, efficiently, and with minimal bugs. Finally, the software is managed in accordance with the CMMI (Capability Maturity Model

  8. End-of-Mission Passivation: Successes and Challenges

    Science.gov (United States)

    Johnson, Nicholas; Matney, Mark

    2012-01-01

    The passivation of spacecraft and launch vehicle orbital stages at end-of-mission has been a principal space debris mitigation measure world-wide since the 1980 s. Space vehicle passivation includes the removal of stored energies, especially those associated with propulsion and electrical power systems. Prior to 2007 the breakup of non-functioning, non-passivated space vehicles was the major source of hazardous debris in Earth orbit. The United Nations and the Inter-Agency Space Debris Coordination Committee have both included passivation in their formal space debris mitigation guidelines. This often simple countermeasure has been adopted by many spacefaring countries and organizations and has undoubtedly prevented numerous major satellite breakups. For some existing space vehicle designs, passivation requires changes in hardware, software, and/or operational procedures. Questions about the permissible degree of passivation for both current and future space vehicles have arisen and are addressed herein. An important element to be considered is the potentially long period in which the space vehicle will remain in orbit, i.e., up to 25 years after mission termination in LEO and for centuries in orbits above LEO. Finally, the issue of passivation of space vehicles which have failed prematurely is addressed.

  9. Flight dynamics facility operational orbit determination support for the ocean topography experiment

    Science.gov (United States)

    Bolvin, D. T.; Schanzle, A. F.; Samii, M. V.; Doll, C. E.

    1991-01-01

    The Ocean Topography Experiment (TOPEX/POSEIDON) mission is designed to determine the topography of the Earth's sea surface across a 3 yr period, beginning with launch in June 1992. The Goddard Space Flight Center Dynamics Facility has the capability to operationally receive and process Tracking and Data Relay Satellite System (TDRSS) tracking data. Because these data will be used to support orbit determination (OD) aspects of the TOPEX mission, the Dynamics Facility was designated to perform TOPEX operational OD. The scientific data require stringent OD accuracy in navigating the TOPEX spacecraft. The OD accuracy requirements fall into two categories: (1) on orbit free flight; and (2) maneuver. The maneuver OD accuracy requirements are of two types; premaneuver planning and postmaneuver evaluation. Analysis using the Orbit Determination Error Analysis System (ODEAS) covariance software has shown that, during the first postlaunch mission phase of the TOPEX mission, some postmaneuver evaluation OD accuracy requirements cannot be met. ODEAS results also show that the most difficult requirements to meet are those that determine the change in the components of velocity for postmaneuver evaluation.

  10. Mars Express en route for the Red Planet

    Science.gov (United States)

    2003-06-01

    trajectory with Mars, on 20 December. It will enter the Martian atmosphere on Christmas day, after five days’ ballistic flight. As it descends, the lander will be protected in the first instance by a heat-shield; two parachutes will then open to provide further deceleration. With its weight down to 30 kg at most, it will land in an equatorial region known as Isidis Planitia. Three airbags will soften the final impact. This crucial phase in the mission will last just ten minutes, from entry into the atmosphere to landing. Meanwhile, the Mars Express probe proper will have performed a series of manœuvres through to a capture orbit. At this point its main motor will fire, providing the deceleration needed to acquire a highly elliptical transition orbit. Attaining the final operational orbit will call for four more firings. This 7.5 hour quasi-polar orbit will take the probe to within 250 km of the planet. Getting to know Mars - inside and out Having landed on Mars, Beagle 2 - named after HMS Beagle, on which Charles Darwin voyaged round the world, developing his evolutionary theory - will deploy its solar panels and the payload adjustable workbench, a set of instruments (two cameras, a microscope and two spectrometers) mounted on the end of a robot arm. It will proceed to explore its new environment, gathering geological and mineralogical data that should, for the first time, allow rock samples to be dated with absolute accuracy. Using a grinder and corer, and the “mole”, a wire-guided mini-robot able to borrow its way under rocks and dig the ground to a depth of 2 m, samples will be collected and then examined in the GAP automated mini-laboratory, equipped with 12 furnaces and a mass spectrometer. The spectrometer will have the job of detecting possible signs of life and dating rock samples. The Mars Express orbiter will carry out a detailed investigation of the planet, pointing its instruments at Mars for between half-an-hour and an hour per orbit and then, for the

  11. Fluxgate Magnetometry on the Experimental Albertan Satellite #1 (Ex-Alta-1) CubeSat Mission: Steps Toward a Magnetospheric Constellation Mission

    Science.gov (United States)

    Mann, I. R.; Miles, D.; Nokes, C.; Cupido, C.; Elliott, D.; Ciurzynski, M.; Barona, D.; Narod, B. B.; Bennest, J.; Pakhotin, I.; Kale, A.; Bruner, B.; Haluza-DeLay, T.; Forsyth, C.; Rae, J.; Lange, C.; Sameoto, D.; Milling, D. K.

    2017-12-01

    Making low noise magnetic measurements is a significant challenge to the use of cube-satellite (CubeSat) platforms for scientific constellation class missions for studies of geospace. We describe the design, validation, and test, and initial on-orbit results from a miniature, low-mass, low-power, and low-magnetic noise boom-mounted fluxgate magnetometer flown on the University of Alberta Experimental Albertan Satellite #1 (Ex-Alta-1) Cube Satellite, launched in 2017 from the International Space Station as part of the QB50 constellation mission. The miniature instrument achieves a magnetic noise floor of 150-200 pT/√Hz at 1 Hz, consumes 400 mW of power, has a mass of 121 g (sensor and boom), stows on the hull, and deploys on a 60 cm boom from a three-unit CubeSat reducing the noise from the onboard reaction wheel to less than 1.5 nT at the sensor. The instrument's capabilities are being demonstrated and validated in space with flight on Ex-Alta-1. We present on-orbit data from the boom-deployment and initial operations of the fluxgate sensor and illustrate the potential scientific returns and utility of using CubeSats carrying such fluxgate magnetometers to constitute a magnetospheric constellation mission. We further illustrate the value of scientific constellations using example data from the low-Earth orbit European Space Agency Swarm mission. Swarm data reveal significant changes in the spatiotemporal characteristics of the magnetic fields in the coupled magnetosphere-ionosphere system, even when the spacecraft are separated by only approximately 10 s along track and approximately 1.4° in longitude. This indicates the likely energetic significance of Alfven wave dynamics, and we use Swarm measurements to illustrate the value of satellite constellations for diagnosing magnetosphere-ionosphere coupling even in low-Earth orbit.

  12. The Long, Bumpy Road to a Mars Aeronomy Mission (Invited)

    Science.gov (United States)

    Grebowsky, J. M.; Luhmann, J. G.; Bougher, S. W.; Jakosky, B. M.

    2013-12-01

    With the advent of the space age, early focus was put into characterizing the Earth's upper atmosphere with aeronomy missions. These missions were designed to study the upper atmosphere region of a planet where the ionosphere is produced with particular attention given to the composition, properties and motion of atmosphere constituents. In particular a very successful US series of Atmosphere Explorer aeronomy spacecraft (1963-1977) was implemented. This upper atmosphere region is the envelope that all energy from the sun must penetrate and is recognized as an inseparable part of a planet's entire atmosphere. Venus was the next planet to have its upper atmosphere/ionosphere deeply probed via the Pioneer Venus Orbiter (1978-1986) that carried a complement of instruments similar to some flown on the Atmosphere Explorers. The planet which humans have long set their imagination on, Mars, has yet to be subjected to the same detailed upper atmosphere perusal until now, with MAVEN. Not that attempts have been wanting. More than 30 spacecraft launches to Mars were attempted, but half were not successful and those that attained orbit came far short of attaining the same level of knowledge of the Martian upper atmosphere. Other countries had planned Mars aeronomy missions that didn't bear fruit - e.g. Mars-96 and Nozomi and the US did studies for two missions, Mars Aeronomy Orbiter and MUADEE, that never were implemented. This is about to change. NASA's Scout Program singled out two aeronomy missions in its final competition and the selected mission, MAVEN, will fly with the needed sophistication of instruments to finally probe and understand the top of Mars' atmosphere. Was this late selection of a NASA aeronomy mission to Mars a philosophy change in US priorities or was it an accident of planning and budget constraints? Was it driven by the developing knowledge that Mars really had an early atmosphere environment conducive to life and that an aeronomy mission is indeed

  13. MSFC Skylab electrical power systems mission evaluation

    Science.gov (United States)

    Woosley, A. P.

    1974-01-01

    The design, development, and operation of the Skylab electrical power system are discussed. The electrical systems for the airlock module of the orbital workshop and the Apollo telescope mount are described. Skylab is considered an integral laboratory, however, both cluster and module hardware distinct sections are included. Significant concept and requirement evolution, testing, and modifications resulting from tests are briefly summarized to aid in understanding the launch configuration description and the procedures and performance discussed for in-orbit operation. Specific problems encountered during Skylab orbital missions are analyzed.

  14. Early Phase Contingency Trajectory Design for the Failure of the First Lunar Orbit Insertion Maneuver: Direct Recovery Options

    Science.gov (United States)

    Song, Young-Joo; Bae, Jonghee; Kim, Young-Rok; Kim, Bang-Yeop

    2017-12-01

    To ensure the successful launch of the Korea pathfinder lunar orbiter (KPLO) mission, the Korea Aerospace Research Institute (KARI) is now performing extensive trajectory design and analysis studies. From the trajectory design perspective, it is crucial to prepare contingency trajectory options for the failure of the first lunar brake or the failure of the first lunar orbit insertion (LOI) maneuver. As part of the early phase trajectory design and analysis activities, the required time of flight (TOF) and associated delta-V magnitudes for each recovery maneuver (RM) to recover the KPLO mission trajectory are analyzed. There are two typical trajectory recovery options, direct recovery and low energy recovery. The current work is focused on the direct recovery option. Results indicate that a quicker execution of the first RM after the failure of the first LOI plays a significant role in saving the magnitudes of the RMs. Under the conditions of the extremely tight delta-V budget that is currently allocated for the KPLO mission, it is found that the recovery of the KPLO without altering the originally planned mission orbit (a 100 km circular orbit) cannot be achieved via direct recovery options. However, feasible recovery options are suggested within the boundaries of the currently planned delta-V budget. By changing the shape and orientation of the recovered final mission orbit, it is expected that the KPLO mission may partially pursue its scientific mission after successful recovery, though it will be limited.

  15. OMV mission simulator

    Science.gov (United States)

    Cok, Keith E.

    1989-01-01

    The Orbital Maneuvering Vehicle (OMV) will be remotely piloted during rendezvous, docking, or proximity operations with target spacecraft from a ground control console (GCC). The real-time mission simulator and graphics being used to design a console pilot-machine interface are discussed. A real-time orbital dynamics simulator drives the visual displays. The dynamics simulator includes a J2 oblate earth gravity model and a generalized 1962 rotating atmospheric and drag model. The simulator also provides a variable-length communication delay to represent use of the Tracking and Data Relay Satellite System (TDRSS) and NASA Communications (NASCOM). Input parameter files determine the graphics display. This feature allows rapid prototyping since displays can be easily modified from pilot recommendations. A series of pilot reviews are being held to determine an effective pilot-machine interface. Pilots fly missions with nominal to 3-sigma dispersions in translational or rotational axes. Console dimensions, switch type and layout, hand controllers, and graphic interfaces are evaluated by the pilots and the GCC simulator is modified for subsequent runs. Initial results indicate a pilot preference for analog versus digital displays and for two 3-degree-of-freedom hand controllers.

  16. OSIRIS-REx Touch-And-Go (TAG) Mission Design and Analysis

    Science.gov (United States)

    Berry, Kevin; Sutter, Brian; May, Alex; Williams, Ken; Barbee, Brent W.; Beckman, Mark; Williams, Bobby

    2013-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016 to rendezvous with the near-Earth asteroid (101955) 1999 RQ36 in late 2018. After several months in formation with and orbit about the asteroid, OSIRIS-REx will fly a Touch-And-Go (TAG) trajectory to the asteroid s surface to obtain a regolith sample. This paper describes the mission design of the TAG sequence and the propulsive maneuvers required to achieve the trajectory. This paper also shows preliminary results of orbit covariance analysis and Monte-Carlo analysis that demonstrate the ability to arrive at a targeted location on the surface of RQ36 within a 25 meter radius with 98.3% confidence.

  17. Maintaining Aura's Orbit Requirements While Performing Orbit Maintenance Maneuvers Containing an Orbit Normal Delta-V Component

    Science.gov (United States)

    Johnson, Megan R.; Petersen, Jeremy D.

    2014-01-01

    The Earth Observing System (EOS) Afternoon Constellation consists of five member missions (GCOM-W1, Aqua, CALIPSO, CloudSat, and Aura), each of which maintain a frozen, sun-synchronous orbit with a 16-day repeating ground track that follows the Worldwide Reference System-2 (WRS-2). Under nominal science operations for Aura, the propulsion system is oriented such that the resultant thrust vector is aligned 13.493 degrees away from the velocity vector along the yaw axis. When performing orbit maintenance maneuvers, the spacecraft performs a yaw slew to align the thrust vector in the appropriate direction. A new Drag Make Up (DMU) maneuver operations scheme has been implemented for Aura alleviating the need for the 13.493 degree yaw slew. The focus of this investigation is to assess the impact that no-slew DMU maneuver operations will have on Aura's Mean Local Time (MLT) which drives the required along track separation between Aura and the constellation members, as well as Aura's frozen orbit properties, eccentricity and argument of perigee. Seven maneuver strategies were analyzed to determine the best operational approach. A mirror pole strategy, with maneuvers alternating at the North and South poles, was implemented operationally to minimize impact to the MLT. Additional analysis determined that the mirror pole strategy could be further modified to include frozen orbit maneuvers and thus maintain both MLT and the frozen orbit properties under noslew operations.

  18. Ocean Surface Topography Mission (OSTM) /Jason-3: Orbital Information, 2015- (NODC Accession 0122598)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  19. Autonomous scheduling technology for Earth orbital missions

    Science.gov (United States)

    Srivastava, S.

    1982-01-01

    The development of a dynamic autonomous system (DYASS) of resources for the mission support of near-Earth NASA spacecraft is discussed and the current NASA space data system is described from a functional perspective. The future (late 80's and early 90's) NASA space data system is discussed. The DYASS concept, the autonomous process control, and the NASA space data system are introduced. Scheduling and related disciplines are surveyed. DYASS as a scheduling problem is also discussed. Artificial intelligence and knowledge representation is considered as well as the NUDGE system and the I-Space system.

  20. Fuel Optimization for Low Earth Orbit Maintenance

    Directory of Open Access Journals (Sweden)

    Yong Jae Park

    2008-06-01

    Full Text Available The resolution of Earth images taken from a satellite has close relation with satellite's altitude. If a satellite has lower altitude, it gets a picture having better resolution. However the satellite will be exposed to heavier air drag and will spend more fuel to maintain its altitude for a desired mission. Therefore, in this study, the required fuel to maintain very low earth orbit(LEO with severe air drag is analyzed using optimization method such as collocation method. The required fuel to maintain the low altitude has significantly increased as the mission altitude is lowered and the solar activity is maximized. This study also shows that the fuel reduced by increasing the period of the satellite maneuver is very small, and that slightly increasing the satellite's mission altitude is much effective in reducing the amount of fuel to maintain its altitude. The calculated fuel to maintain very low earth orbit in this study would give useful information in planning the budget of fuel and cost for LEO satellites.

  1. Small Aerostationary Telecommunications Orbiter Concept for Mars in the 2020s

    Science.gov (United States)

    Lock, Robert E.; Edwards, Charles D., Jr.; Nicholas, Austin; Woolley, Ryan; Bell, David J.

    2016-01-01

    Current Mars science orbiters carry UHF proximity payloads to provide limited access and data services to landers and rovers on Mars surface. In the era of human spaceflight to Mars, very high rate and reliable relay services will be needed to serve a large number of supporting vehicles, habitats, and orbiters, as well as astronaut EVAs. These will likely be provided by a robust network of orbiting assets in very high orbits, such as areostationary orbits. In the decade leading to that era, telecommunications orbits can be operated at areostationary orbit that can support a significant population of robotic precursor missions and build the network capabilities needed for the human spaceflight era. Telecommunications orbiters of modest size and cost, delivered by Solar Electric Propulsion to areostationary orbit, can provide continuous access at very high data rates to users on the surface and in Mars orbit.In the era of human spaceflight to Mars very high rate andreliable relay services will be needed to serve a largenumber of supporting vehicles, habitats, and orbiters, aswell as astronaut EVAs. These could be provided by arobust network of orbiting assets in very high orbits. In thedecade leading to that era, telecommunications orbiterscould be operated at areostationary orbit that could support asignificant population of robotic precursor missions andbuild the network capabilities needed for the humanspaceflight era. These orbiters could demonstrate thecapabilities and services needed for the future but withoutthe high bandwidth and high reliability requirements neededfor human spaceflight.Telecommunications orbiters of modest size and cost,delivered by Solar Electric Propulsion to areostationaryorbit, could provide continuous access at very high datarates to users on the surface and in Mars orbit. Twoexamples highlighting the wide variety of orbiter deliveryand configuration options were shown that could providehigh-performance service to users.

  2. Orbit Stability of OSIRIS-REx in the Vicinity of Bennu Using a High-Fidelity Solar Radiation Model

    Science.gov (United States)

    Williams, Trevor; Hughes, Kyle; Mashiku, Alinda; Longuski, James

    2015-01-01

    The OSIRIS-REx mission (Origins Spectral Interpretation Resource Identification Security Regolith EXPlorer) is an asteroid sample return mission to Bennu (RQ36) that is scheduled to launch in 2016. The planned science operations precluding the small retrieval involve operations in terminator orbits (orbit plane is perpendicular to the sun). Over longer durations the solar radiation pressure (SRP) perturbs the orbit causing it to precess. Our work involves: modeling high fidelity SRP model to capture the perturbations during attitude changes; design a stable orbit from the high fidelity models to analyze the stability over time.

  3. Active space debris removal—A preliminary mission analysis and design

    Science.gov (United States)

    Castronuovo, Marco M.

    2011-11-01

    The active removal of five to ten large objects per year from the low Earth orbit (LEO) region is the only way to prevent the debris collisions from cascading. Among the three orbital regions near the Earth where most catastrophic collisions are predicted to occur, the one corresponding to a sun-synchronous condition is considered the most relevant. Forty-one large rocket bodies orbiting in this belt have been identified as the priority targets for removal. As part of a more comprehensive system engineering solution, a space mission dedicated to the de-orbiting of five rocket bodies per year from this orbital regime has been designed. The selected concept of operations envisages the launch of a satellite carrying a number of de-orbiting devices, such as solid propellant kits. The satellite performs a rendezvous with an identified object and mates with it by means of a robotic arm. A de-orbiting device is attached to the object by means of a second robotic arm, the object is released and the device is activated. The spacecraft travels then to the next target. The present paper shows that an active debris removal mission capable of de-orbiting 35 large objects in 7 years is technically feasible, and the resulting propellant mass budget is compatible with many existing platforms.

  4. Castalia: A European Mission to a Main Belt Comet

    Science.gov (United States)

    Snodgrass, Colin; Castalia mission science Team

    2013-10-01

    Main Belt Comets (MBCs) are a newly identified population, with stable asteroid-like orbits in the outer main belt and a comet-like appearance. It is believed that they survived the age of the solar system in a dormant state and that their activity occurred only recently. Water ice is the only volatile expected to survive, and only when buried under an insulating surface. Excavation by impact could bring the water ice (closer) to the surface and trigger the start of MBC activity. The specific science goals of the Castalia mission are: 1. Characterize a new Solar System family, the MBCs, by in-situ investigation 2. Understand the physics of activity on MBCs 3. Directly detect water in the asteroid belt 4. Test if MBCs are a viable source for Earth’s water 5. Use MBCs as tracers of planetary system formation and evolution These goals can be achieved by a spacecraft designed to rendezvous with and orbit an MBC for some months, arriving before the active period begins for mapping before directly sampling the gas and dust released during the active phase. Given the low level of activity of MBCs, and the expectation that their activity comes from only a localized patch on the surface, the orbiting spacecraft will have to be able to maintain a very close orbit over extended periods - the Castalia plan envisages an orbiter capable of ‘hovering’ autonomously at distances of only a few km from the surface of the MBC. The straw-man instrument payload is made up of: - Visible and near-infrared spectral imager - Thermal infrared imager - Radio science - Dust impact detector - Dust composition analyzer - Neutral/ion mass spectrometer - Magnetometer - Plasma package In addition to this, the option of a surface science package is being considered. At the moment MBC 133P/Elst-Pizarro is the best-known target for such a mission. A design study for the Castalia mission has been carried out in partnership between the science team, DLR and OHB Systems. This study looked at

  5. STS-62 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).

  6. A High Power Solar Electric Propulsion - Chemical Mission for Human Exploration of Mars

    Science.gov (United States)

    Burke, Laura M.; Martini, Michael C.; Oleson, Steven R.

    2014-01-01

    Recently Solar Electric Propulsion (SEP) as a main propulsion system has been investigated as an option to support manned space missions to near-Earth destinations for the NASA Gateway spacecraft. High efficiency SEP systems are able to reduce the amount of propellant long duration chemical missions require, ultimately reducing the required mass delivered to Low Earth Orbit (LEO) by a launch vehicle. However, for long duration interplanetary Mars missions, using SEP as the sole propulsion source alone may not be feasible due to the long trip times to reach and insert into the destination orbit. By combining an SEP propulsion system with a chemical propulsion system the mission is able to utilize the high-efficiency SEP for sustained vehicle acceleration and deceleration in heliocentric space and the chemical system for orbit insertion maneuvers and trans-earth injection, eliminating the need for long duration spirals. By capturing chemically instead of with low-thrust SEP, Mars stay time increases by nearly 200 days. Additionally, the size the of chemical propulsion system can be significantly reduced from that of a standard Mars mission because the SEP system greatly decreases the Mars arrival and departure hyperbolic excess velocities (V(sub infinity)).

  7. Orbiter LH2 Feedline Flowliner Cracking Problem. Version 1.0

    Science.gov (United States)

    Harris, Charles E.; Cragg, Clinton H.; Raju, Ivatury S.; Elliot, Kenny B.; Madaras, Eric I.; Piascik, Robert S.; Halford, Gary R.; Bonacuse, Peter J.; Sutliff, Daniel L.; Bakhle, Milind A.

    2005-01-01

    In May of 2002, three cracks were found in the downstream flowliner at the gimbal joint in the LH2 feedline at the interface with the Low Pressure Fuel Turbopump (LPFP) of Space Shuttle Main Engine (SSME) #1 of Orbiter OV-104. Subsequent inspections of the feedline flowliners in the other orbiters revealed the existence of 8 additional cracks. No cracks were found in the LO2 feedline flowliners. A solution to the cracking problem was developed and implemented on all orbiters. The solution included weld repair of all detectable cracks and the polishing of all slot edges to remove manufacturing discrepancies that could initiate new cracks. Using the results of a fracture mechanics analysis with a scatter factor of 4 on the predicted fatigue life, the orbiters were cleared for return to flight with a one-flight rationale requiring inspections after each flight. OV-104 flew mission STS-112 and OV-105 flew mission STS-113. The post-flight inspections did not find any cracks in the repaired flowliners. At the request of the Orbiter Program, the NESC conducted an assessment of the Orbiter LH2 Feedline Flowliner cracking problem with a team of subject matter experts from throughout NASA.

  8. STS-40 Mission Insignia

    Science.gov (United States)

    1990-01-01

    The STS-40 patch makes a contemporary statement focusing on human beings living and working in space. Against a background of the universe, seven silver stars, interspersed about the orbital path of Columbia, represent the seven crew members. The orbiter's flight path forms a double-helix, designed to represent the DNA molecule common to all living creatures. In the words of a crew spokesman, ...(the helix) affirms the ceaseless expansion of human life and American involvement in space while simultaneously emphasizing the medical and biological studies to which this flight is dedicated. Above Columbia, the phrase Spacelab Life Sciences 1 defines both the Shuttle mission and its payload. Leonardo Da Vinci's Vitruvian man, silhouetted against the blue darkness of the heavens, is in the upper center portion of the patch. With one foot on Earth and arms extended to touch Shuttle's orbit, the crew feels, he serves as a powerful embodiment of the extension of human inquiry from the boundaries of Earth to the limitless laboratory of space. Sturdily poised amid the stars, he serves to link scentists on Earth to the scientists in space asserting the harmony of efforts which produce meaningful scientific spaceflight missions. A brilliant red and yellow Earth limb (center) links Earth to space as it radiates from a native American symbol for the sun. At the frontier of space, the traditional symbol for the sun vividly links America's past to America's future, the crew states. Beneath the orbiting Shuttle, darkness of night rests peacefully over the United States. Drawn by artist Sean Collins, the STS 40 Space Shuttle patch was designed by the crewmembers for the flight.

  9. LISA Pathfinder: A Mission Status

    Science.gov (United States)

    Hewitson, Martin; LISA Pathfinder Team Team

    2016-03-01

    On December 3rd at 04:04 UTC, The European Space Agency launched the LISA Pathfinder satellite on board a VEGA rocket from Kourou in French Guiana. After a series of orbit raising manoeuvres and a 2 month long transfer orbit, LISA Pathfinder arrived at L1. Following a period of commissioning, the science operations commenced at the start of March, beginning the demonstration of technologies and methodologies which pave the way for a future large-scale gravitational wave observatory in space. This talk will present the scientific goals of the mission, discuss the technologies being tested, elucidate the link to a future space-based observatory, such as LISA, and present preliminary results from the in-orbit operations and experiments.

  10. An Integrated Tool for Low Thrust Optimal Control Orbit Transfers in Interplanetary Trajectories

    Science.gov (United States)

    Dargent, T.; Martinot, V.

    In the last recent years a significant progress has been made in optimal control orbit transfers using low thrust electrical propulsion for interplanetary missions. The system objective is always the same: decrease the transfer duration and increase the useful satellite mass. The optimum control strategy to perform the minimum time to orbit or the minimum fuel consumption requires the use of sophisticated mathematical tools, most of the time dedicated to a specific mission and therefore hardly reusable. To improve this situation and enable Alcatel Space to perform rather quick trajectory design as requested by mission analysis, we have developed a software tool T-3D dedicated to optimal control orbit transfers which integrates various initial and terminal rendezvous conditions - e.g. fixed arrival time for planet encounter - and engine thrust profiles -e.g. thrust law variation with respect to the distance to the Sun -. This single and quite versatile tool allows to perform analyses like minimum consumption for orbit insertions around a planet from an hyperbolic trajectory, interplanetary orbit transfers, low thrust minimum time multiple revolution orbit transfers, etc… From a mathematical point of view, the software relies on the minimum principle formulation to find the necessary conditions of optimality. The satellite dynamics is a two body model and relies of an equinoctial formulation of the Gauss equation. This choice has been made for numerical purpose and to solve more quickly the two point boundaries values problem. In order to handle the classical problem of co-state variables initialization, problems simpler than the actual one can be solved straight forward by the tool and the values of the co-state variables are kept as first guess for a more complex problem. Finally, a synthesis of the test cases is presented to illustrate the capacities of the tool, mixing examples of interplanetary mission, orbit insertion, multiple revolution orbit transfers

  11. Advances in Rodent Research Missions on the International Space Station

    Science.gov (United States)

    Choi, S. Y.; Ronca, A.; Leveson-Gower, D.; Gong, C.; Stube, K.; Pletcher, D.; Wigley, C.; Beegle, J.; Globus, R. K.

    2016-01-01

    Biomedical Problems. The expression levels of select genes including albumin, catalase, GAPDH, HMGCoA Reductase, and IGF1 were determined using RNA isolated from the livers by qPCR and no significant differences by one factor ANOVA were found between flight and ground control groups. In addition, some of the liver samples were analyzed for transcriptomic, epigenomic and proteomic profiles; some of the data sets are now available to the scientific community through GeneLabs open science data website. A second long duration mission, Rodent Research-2 (RR-2) was completed on the ISS in 2015; 20 female C57BL6J mice were successfully maintained on the ISS for various durations, with the last group of 5 animals living on-orbit for 54 days. Furthermore, we continue to expand the ISSs capabilities by introducing new on-orbit technologies including blood collection and separation, bone densitometry scanning, muscle grip strength and anesthesia with recovery. In addition, series of ground-based verification testing to fly male mice and increase the total number of mice on-orbit from 20 to 40. Subsequent missions will provide the capability to return live mice from the ISS animals to evaluate recovery on Earth, further expanding operational and science capabilities of the RR project on the ISS.

  12. Safe passage: astronaut care for exploration missions

    National Research Council Canada - National Science Library

    Ball, John; Evans, Charles H

    2001-01-01

    .... As space missions increase in duration from months to years and extend well beyond Earth’s orbit, so will the attendant risks of working in these extreme and isolated environmental conditions...

  13. It Takes a Village. Collaborative Outer Planet Missions

    Science.gov (United States)

    Rymer, A. M.; Turtle, E. P.; Hofstadter, M. D.; Simon, A. A.; Hospodarsky, G. B.

    2017-01-01

    A mission to one or both of our local Ice Giants (Uranus and Neptune) emerged as a high priority in the most recent Planetary Science Decadal Survey and was also specifically mentioned supportively in the Heliophysics Decadal Survey. In 2016, NASA convened a science definition team to study ice giant mission concepts in more detail. Uranus and Neptune represent the last remaining planetary type in our Solar System to have a dedicated orbiting mission. The case for a Uranus mission has been made eloquently in the Decadal Surveys. Here we summarize some of the major drivers that lead to enthusiastic support for an Ice Giant mission in general, and use the example of a Uranus Mission concept to illustrate opportunities such a mission might provide for cross-division collaboration and cost-sharing.

  14. STS-95 Mission Highlights Resources Tape

    Science.gov (United States)

    1999-01-01

    The STS-95 flight crew, Commander Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn present a video overview of their space flight. They are seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. Once on-orbit the primary objectives include conducting a variety of science experiments in the pressurized SPACEHAB module, the deployment and retrieval of the Spartan free-flyer payload, and operations with the Hubble Space Telescope (HST) Orbiting Systems Test (HOST) and the International Extreme Ultraviolet Hitchhiker (IEH) payloads being carried in the payload bay. Throughout the presentation, the astronauts take turns narrating particular aspects of the mission with which they were involved.

  15. Risk assessment and late effects of radiation in low-earth orbits

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1989-01-01

    The radiation dose rates in low-earth orbits are dependent on the altitude and orbital inclination. The doses to which the crews of space vehicles are exposed is governed by the duration of the mission and the shielding, and in low-earth orbit missions protons are the dominant particles encountered. The risk of concern with the low dose rates and the relatively low total doses of radiation that will be incurred on the space station is excess cancer. The National Council on Radiation Protection and Measurements has recently recommended career dose-equivalent limits that take into account sex and age. The new recommendations for career limits range from 1.0 Sv to 4 Sv, depending on sex and on the age at the time of their first space mission, compared to a single career limit of 4.0 Sv previously used by NASA. Risk estimates for radiated-induced cancer are evolving and changes in the current guidance may be required in the next few years. 10 refs., 1 fig., 3 tabs

  16. Multiple Smaller Missions as a Direct Pathway to Mars Sample Return

    Science.gov (United States)

    Niles, P. B.; Draper, D. S.; Evans, C. A.; Gibson, E. K.; Graham, L. D.; Jones, J. H.; Lederer, S. M.; Ming, D.; Seaman, C. H.; Archer, P. D.; hide

    2012-01-01

    Recent discoveries by the Mars Exploration Rovers, Mars Express, Mars Odyssey, and Mars Reconnaissance Orbiter spacecraft include multiple, tantalizing astrobiological targets representing both past and present environments on Mars. The most desirable path to Mars Sample Return (MSR) would be to collect and return samples from that site which provides the clearest examples of the variety of rock types considered a high priority for sample return (pristine igneous, sedimentary, and hydrothermal). Here we propose an MSR architecture in which the next steps (potentially launched in 2018) would entail a series of smaller missions, including caching, to multiple landing sites to verify the presence of high priority sample return targets through in situ analyses. This alternative architecture to one flagship-class sample caching mission to a single site would preserve a direct path to MSR as stipulated by the Planetary Decadal Survey, while permitting investigation of diverse deposit types and providing comparison of the site of returned samples to other aqueous environments on early Mars

  17. End-to-End Trade-space Analysis for Designing Constellation Missions

    Science.gov (United States)

    LeMoigne, J.; Dabney, P.; Foreman, V.; Grogan, P.; Hache, S.; Holland, M. P.; Hughes, S. P.; Nag, S.; Siddiqi, A.

    2017-12-01

    Multipoint measurement missions can provide a significant advancement in science return and this science interest coupled with many recent technological advances are driving a growing trend in exploring distributed architectures for future NASA missions. Distributed Spacecraft Missions (DSMs) leverage multiple spacecraft to achieve one or more common goals. In particular, a constellation is the most general form of DSM with two or more spacecraft placed into specific orbit(s) for the purpose of serving a common objective (e.g., CYGNSS). Because a DSM architectural trade-space includes both monolithic and distributed design variables, DSM optimization is a large and complex problem with multiple conflicting objectives. Over the last two years, our team has been developing a Trade-space Analysis Tool for Constellations (TAT-C), implemented in common programming languages for pre-Phase A constellation mission analysis. By evaluating alternative mission architectures, TAT-C seeks to minimize cost and maximize performance for pre-defined science goals. This presentation will describe the overall architecture of TAT-C including: a User Interface (UI) at several levels of details and user expertise; Trade-space Search Requests that are created from the Science requirements gathered by the UI and validated by a Knowledge Base; a Knowledge Base to compare the current requests to prior mission concepts to potentially prune the trade-space; a Trade-space Search Iterator which, with inputs from the Knowledge Base, and, in collaboration with the Orbit & Coverage, Reduction & Metrics, and Cost& Risk modules, generates multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, modeling orbits to balance accuracy and performance. The current version includes uniform and non-uniform Walker constellations as well as Ad-Hoc and precessing constellations, and its

  18. Overload control of artificial gravity facility using spinning tether system for high eccentricity transfer orbits

    Science.gov (United States)

    Gou, Xing-wang; Li, Ai-jun; Tian, Hao-chang; Wang, Chang-qing; Lu, Hong-shi

    2018-06-01

    As the major part of space life supporting systems, artificial gravity requires further study before it becomes mature. Spinning tether system is a good alternative solution to provide artificial gravity for the whole spacecraft other than additional devices, and its longer tether length could significantly reduce spinning velocity and thus enhance comfortability. An approximated overload-based feedback method is proposed to provide estimated spinning velocity signals for controller, so that gravity level could be accurately controlled without complicated GPS modules. System behavior in high eccentricity transfer orbits is also studied to give a complete knowledge of the spinning stabilities. The application range of the proposed method is studied in various orbit cases and spinning velocities, indicating that it is accurate and reliable for most of the mission phases especially for the final constant gravity level phase. In order to provide stable gravity level for transfer orbit missions, a sliding mode controller based on estimated angular signals is designed for closed-loop control. Numerical results indicate that the combination of overload-based feedback and sliding mode controller could satisfy most of the long-term artificial gravity missions. It is capable of forming flexible gravity environment in relatively good accuracy even in the lowest possible orbital radiuses and high eccentricity orbits of crewed space missions. The proposed scheme provides an effective tether solution for the artificial gravity construction in interstellar travel.

  19. Theory of orbital magnetoelectric response

    International Nuclear Information System (INIS)

    Malashevich, Andrei; Souza, Ivo; Coh, Sinisa; Vanderbilt, David

    2010-01-01

    We extend the recently developed theory of bulk orbital magnetization to finite electric fields, and use it to calculate the orbital magnetoelectric (ME) response of periodic insulators. Working in the independent-particle framework, we find that the finite-field orbital magnetization can be written as a sum of three gauge-invariant contributions, one of which has no counterpart at zero field. The extra contribution is collinear with and explicitly dependent on the electric field. The expression for the orbital magnetization is suitable for first-principles implementations, allowing one to calculate the ME response coefficients by numerical differentiation. Alternatively, perturbation-theory techniques may be used, and for that purpose we derive an expression directly for the linear ME tensor by taking the first field-derivative analytically. Two types of terms are obtained. One, the 'Chern-Simons' term, depends only on the unperturbed occupied orbitals and is purely isotropic. The other, 'Kubo' terms, involve the first-order change in the orbitals and give isotropic as well as anisotropic contributions to the response. In ordinary ME insulators all terms are generally present, while in strong Z 2 topological insulators only the Chern-Simons term is allowed, and is quantized. In order to validate the theory, we have calculated under periodic boundary conditions the linear ME susceptibility for a 3D tight-binding model of an ordinary ME insulator, using both the finite-field and perturbation-theory expressions. The results are in excellent agreement with calculations on bounded samples.

  20. Poor Man's Asteroid Sample Return Missions

    Science.gov (United States)

    Landis, R. R.; Graham, L. D.

    2018-02-01

    A cislunar platform at a Near-Rectilinear [Halo] Orbit in the vicinity of the Moon could provide an opportunity for a small NEA sample return mission at relatively low cost. There are a couple potential small ( 1m) object target dynamical groups.

  1. Caliste-SO X-ray micro-camera for the STIX instrument on-board Solar Orbiter space mission

    International Nuclear Information System (INIS)

    Meuris, A.; Hurford, G.; Bednarzik, M.; Limousin, O.; Gevin, O.; Le Mer, I.; Martignac, J.; Horeau, B.; Grimm, O.; Resanovic, R.; Krucker, S.; Orleański, P.

    2012-01-01

    The Spectrometer Telescope for Imaging X-rays (STIX) is an instrument on the Solar-Orbiter space mission that performs hard X-ray imaging spectroscopy of solar flares. It consists of 32 collimators with grids and 32 spectrometer units called Caliste-SO for indirect Fourier-transform imaging. Each Caliste-SO device integrates a 1 cm 2 CdTe pixel sensor with a low-noise low-power analog front-end ASIC and circuits for supply regulation and filtering. The ASIC named IDeF-X HD is designed by CEA/Irfu (France) whereas CdTe-based semiconductor detectors are provided by the Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute (Switzerland). The design of the hybrid, based on 3D Plus technology (France), is well suited for STIX spectroscopic requirements (1 keV FWHM at 6 keV, 4 keV low-level threshold) and system constraints (4 W power and 5 kg mass). The performance of the sub-assemblies and the design of the first Caliste-SO prototype are presented.

  2. CASTOR: Cathode/Anode Satellite Thruster for Orbital Repositioning

    Science.gov (United States)

    Mruphy, Gloria A.

    2010-01-01

    The purpose of CASTOR (Cathode/Anode Satellite Thruster for Orbital Repositioning) satellite is to demonstrate in Low Earth Orbit (LEO) a nanosatellite that uses a Divergent Cusped Field Thruster (DCFT) to perform orbital maneuvers representative of an orbital transfer vehicle. Powered by semi-deployable solar arrays generating 165W of power, CASTOR will achieve nearly 1 km/s of velocity increment over one year. As a technology demonstration mission, success of CASTOR in LEO will pave the way for a low cost, high delta-V orbital transfer capability for small military and civilian payloads in support of Air Force and NASA missions. The educational objective is to engage graduate and undergraduate students in critical roles in the design, development, test, carrier integration and on-orbit operations of CASTOR as a supplement to their curricular activities. This program is laying the foundation for a long-term satellite construction program at MIT. The satellite is being designed as a part of AFRL's University Nanosatellite Program, which provides the funding and a framework in which student satellite teams compete for a launch to orbit. To this end, the satellite must fit within an envelope of 50cmx50cmx60cm, have a mass of less than 50kg, and meet stringent structural and other requirements. In this framework, the CASTOR team successfully completed PDR in August 2009 and CDR in April 2010 and will compete at FCR (Flight Competition Review) in January 2011. The complexity of the project requires implementation of many systems engineering techniques which allow for development of CASTOR from conception through FCR and encompass the full design, fabrication, and testing process.

  3. A SEARCH FOR ASTEROIDS, MOONS, AND RINGS ORBITING WHITE DWARFS

    International Nuclear Information System (INIS)

    Di Stefano, Rosanne; Howell, Steve B.; Kawaler, Steven D.

    2010-01-01

    Do white dwarfs host asteroid systems? Although several lines of argument suggest that white dwarfs may be orbited by large populations of asteroids, transits would provide the most direct evidence. We demonstrate that the Kepler mission has the capability to detect transits of white dwarfs by asteroids. Because white-dwarf asteroid systems, if they exist, are likely to contain many asteroids orbiting in a spatially extended distribution, discoveries of asteroid transits can be made by monitoring only a small number of white dwarfs, compatible with Kepler's primary mission, which is to monitor stars with potentially habitable planets. Possible future missions that survey 10 times as many stars with similar sensitivity and minute-cadence monitoring can establish the characteristics of asteroid systems around white dwarfs, such as the distribution of asteroid sizes and semimajor axes. Transits by planets would be more dramatic, but the probability that they will occur is lower. Ensembles of planetary moons and/or the presence of rings around planets can also produce transits detectable by Kepler. The presence of moons and rings can significantly increase the probability that Kepler will discover planets orbiting white dwarfs, even while monitoring only a small number of them.

  4. PEG Enhancement for EM1 and EM2+ Missions

    Science.gov (United States)

    Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt

    2018-01-01

    NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. The next evolution of SLS, the Block-1B Exploration Mission 2 (EM-2), is currently being designed. The Block-1 and Block-1B vehicles will use the Powered Explicit Guidance (PEG) algorithm. Due to the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS), certain enhancements to the Block-1 PEG algorithm are needed to perform Block-1B missions. In order to accommodate mission design for EM-2 and beyond, PEG has been significantly improved since its use on the Space Shuttle program. The current version of PEG has the ability to switch to different targets during Core Stage (CS) or EUS flight, and can automatically reconfigure for a single Engine Out (EO) scenario, loss of communication with the Launch Abort System (LAS), and Inertial Navigation System (INS) failure. The Thrust Factor (TF) algorithm uses measured state information in addition to a priori parameters, providing PEG with an improved estimate of propulsion information. This provides robustness against unknown or undetected engine failures. A loft parameter input allows LAS jettison while maximizing payload mass. The current PEG algorithm is now able to handle various classes of missions with burn arcs much longer than were seen in the shuttle program. These missions include targeting a circular LEO orbit with a low-thrust, long-burn-duration upper stage, targeting a highly eccentric Trans-Lunar Injection (TLI) orbit, targeting a disposal orbit using the low-thrust Reaction Control System (RCS), and targeting a hyperbolic orbit. This paper will describe the design and implementation of the TF algorithm, the strategy to handle EO in various flight regimes, algorithms to cover off-nominal conditions, and other enhancements to the Block-1 PEG algorithm. This paper illustrates challenges posed by the Block-1B vehicle, and results show that the improved PEG

  5. A Small Spacecraft Swarm Deployment and Stationkeeping Strategy for Sun-Earth L1 Halo Orbits

    Science.gov (United States)

    Renea Conn, Tracie; Bookbinder, Jay

    2018-01-01

    Spacecraft orbits about the Sun-Earth librarian point L1 have been of interest since the 1950s. An L1 halo orbit was first achieved with the International Sun-Earth Explorer-3 (ISEE-3) mission, and similar orbits around Sun-Earth L1 were achieved in the Solar and Heliospheric Observatory (SOHO), Advanced Composition Explorer (ACE), Genesis, and Deep Space Climate Observatory (DSCOVR) missions. With recent advancements in CubeSat technology, we envision that it will soon be feasible to deploy CubeSats at L1. As opposed to these prior missions where one large satellite orbited alone, a swarm of CubeSats at L1 would enable novel science data return, providing a topology for intersatellite measurements of heliophysics phenomena both spatially and temporally, at varying spatial scales.The purpose of this iPoster is to present a flight dynamics strategy for a swarm of numerous CubeSats orbiting Sun-Earth L1. The presented method is a coupled, two-part solution. First, we present a deployment strategy for the CubeSats that is optimized to produce prescribed, time-varying intersatellite baselines for the purposes of collecting magnetometer data as well as radiometric measurements from cross-links. Second, we employ a loose control strategy that was successfully applied to SOHO and ACE for minimized stationkeeping propellant expenditure. We emphasize that the presented solution is practical within the current state-of-the-art and heritage CubeSat technology, citing capabilities of CubeSat designs that will launch on the upcoming Exploration Mission 1 (EM-1) to lunar orbits and beyond. Within this iPoster, we present animations of the simulated deployment strategy and resulting spacecraft trajectories. Mission design parameters such as total Δv required for long-term station keeping and minimum/maximum/mean spacecraft separation distances are also presented.

  6. Mapping magnetized geologic structures from space: The effect of orbital and body parameters

    Science.gov (United States)

    Schnetzler, C. C.; Taylor, P. T.; Langel, R. A.

    1984-01-01

    When comparing previous satellite magnetometer missions (such as MAGSAT) with proposed new programs (for example, Geopotential Research Mission, GRM) it is important to quantify the difference in scientific information obtained. The ability to resolve separate magnetic blocks (simulating geological units) is used as a parameter for evaluating the expected geologic information from each mission. The effect of satellite orbital altitude on the ability to resolve two magnetic blocks with varying separations is evaluated and quantified. A systematic, nonlinear, relationship exists between resolution and distance between magnetic blocks as a function of orbital altitude. The proposed GRM would provide an order-of-magnitude greater anomaly resolution than the earlier MAGSAT mission for widely separated bodies. The resolution achieved at any particular altitude varies depending on the location of the bodies and orientation.

  7. Solar Electric Propulsion Technologies Being Designed for Orbit Transfer Vehicle Applications

    Science.gov (United States)

    Sarver-Verhey, Timothy R.; Hoffman, David J.; Kerslake, Thomas W.; Oleson, Steven R.; Falck, Robert D.

    2002-01-01

    There is increasing interest in employing Solar Electric Propulsion (SEP) for new missions requiring transfer from low Earth orbit to the Earth-Moon Lagrange point, L1. Mission architecture plans place the Gateway Habitat at L1 in the 2011 to 2016 timeframe. The Gateway Habitat is envisioned to be used for Lunar exploration, space telescopes, and planetary mission staging. In these scenarios, an SEP stage, or "tug," is used to transport payloads to L1--such as the habitat module, lunar excursion and return vehicles, and chemical propellant for return crew trips. SEP tugs are attractive because they are able to efficiently transport large (less than 10,000 kg) payloads while minimizing propellant requirements. To meet the needs of these missions, a preliminary conceptual design for a general-purpose SEP tug was developed that incorporates several of the advanced space power and in-space propulsion technologies (such as high-power gridded ion and Hall thrusters, high-performance thin-film photovoltaics, lithium-ion batteries, and advanced high-voltage power processing) being developed at the NASA Glenn Research Center. A spreadsheet-based vehicle system model was developed for component sizing and is currently being used for mission planning. This model incorporates a low-thrust orbit transfer algorithm to make preliminary determinations of transfer times and propellant requirements. Results from this combined tug mass estimation and orbit transfer model will be used in a higher fidelity trajectory model to refine the analysis.

  8. DRAGONS-A Micrometeoroid and Orbital Debris Impact Sensor on the ISS

    Science.gov (United States)

    Liou, J.-C.; Hamilton, J.; Liolios, S.; Anderson, C.; Sadilek, A.; Corsaro, R.; Giovane, F.; Burchell, M.

    2015-01-01

    The Debris Resistive/Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is intended to be a large area impact sensor for in situ measurements of micrometeoroids and orbital debris (MMOD) in the sub-millimeter to millimeter size regime in the near Earth space environment. These MMOD particles are too small to be detected by ground-based radars and optical telescopes, but still large enough to be a serious threat to human space activities and robotic missions in the low Earth orbit (LEO) region. The nominal detection area of DRAGONS is 1 sq m, consisting of four 0.5 m × 0.5 m independent panels, but the dimensions of the panels can easily be modified to accommodate different payload constraints. The approach of the DRAGONS design is to combine three particle impact detection concepts to maximize information that can be extracted from each detected impact. The first is a resistive grid consisting of 75-micrometer-wide resistive lines, coated in parallel and separated by 75 micrometer gaps on a 25-micrometer thin film. When a particle a few hundred micrometers or larger strikes the grid, it would penetrate the film and sever some resistive lines. The size of the damage area can be estimated from the increased resistance. The second concept is based on polyvinylidene fluoride (PVDF) acoustic impact sensors. Multiple PVDF sensors are attached to the thin film to provide the impact timing information. From the different signal arrival times at different acoustic sensors, the impact location can be calculated via triangulation algorithms. The third concept employs a dual-layer film system where a second 25-micrometer film is placed 15 cm behind the resistive-grid film. Multiple PVDF acoustic sensors are also attached to the second film. The combination of impact timing and location information from the two films allows for direct measurements of the impact direction and speed. The DRAGONS technology development has been funded by several NASA organizations since 2002, first

  9. Short rendezvous missions for advanced Russian human spacecraft

    Science.gov (United States)

    Murtazin, Rafail F.; Budylov, Sergey G.

    2010-10-01

    The two-day stay of crew in a limited inhabited volume of the Soyuz-TMA spacecraft till docking to ISS is one of the most stressful parts of space flight. In this paper a number of possible ways to reduce the duration of the free flight phase are considered. The duration is defined by phasing strategy that is necessary for reduction of the phase angle between the chaser and target spacecraft. Some short phasing strategies could be developed. The use of such strategies creates more comfortable flight conditions for crew thanks to short duration and additionally it allows saving spacecraft's life support resources. The transition from the methods of direct spacecraft rendezvous using one orbit phasing (first flights of " Vostok" and " Soyuz" vehicles) to the currently used methods of two-day rendezvous mission can be observed in the history of Soviet manned space program. For an advanced Russian human rated spacecraft the short phasing strategy is recommended, which can be considered as a combination between the direct and two-day rendezvous missions. The following state of the art technologies are assumed available: onboard accurate navigation; onboard computations of phasing maneuvers; launch vehicle with high accuracy injection orbit, etc. Some operational requirements and constraints for the strategies are briefly discussed. In order to provide acceptable phase angles for possible launch dates the experience of the ISS altitude profile control can be used. As examples of the short phasing strategies, the following rendezvous missions are considered: direct ascent, short mission with the phasing during 3-7 orbits depending on the launch date (nominal or backup). For each option statistical modeling of the rendezvous mission is fulfilled, as well as an admissible phase angle range, accuracy of target state vector and addition fuel consumption coming out of emergency is defined. In this paper an estimation of pros and cons of all options is conducted.

  10. Shuttle Orbiter Active Thermal Control Subsystem design and flight experience

    Science.gov (United States)

    Bond, Timothy A.; Metcalf, Jordan L.; Asuncion, Carmelo

    1991-01-01

    The paper examines the design of the Space Shuttle Orbiter Active Thermal Control Subsystem (ATCS) constructed for providing the vehicle and payload cooling during all phases of a mission and during ground turnaround operations. The operation of the Shuttle ATCS and some of the problems encountered during the first 39 flights of the Shuttle program are described, with special attention given to the major problems encountered with the degradation of the Freon flow rate on the Orbiter Columbia, the Flash Evaporator Subsystem mission anomalies which occurred on STS-26 and STS-34, and problems encountered with the Ammonia Boiler Subsystem. The causes and the resolutions of these problems are discussed.

  11. Centralized mission planning and scheduling system for the Landsat Data Continuity Mission

    Science.gov (United States)

    Kavelaars, Alicia; Barnoy, Assaf M.; Gregory, Shawna; Garcia, Gonzalo; Talon, Cesar; Greer, Gregory; Williams, Jason; Dulski, Vicki

    2014-01-01

    Satellites in Low Earth Orbit provide missions with closer range for studying aspects such as geography and topography, but often require efficient utilization of space and ground assets. Optimizing schedules for these satellites amounts to a complex planning puzzle since it requires operators to face issues such as discontinuous ground contacts, limited onboard memory storage, constrained downlink margin, and shared ground antenna resources. To solve this issue for the Landsat Data Continuity Mission (LDCM, Landsat 8), all the scheduling exchanges for science data request, ground/space station contact, and spacecraft maintenance and control will be coordinated through a centralized Mission Planning and Scheduling (MPS) engine, based upon GMV’s scheduling system flexplan9 . The synchronization between all operational functions must be strictly maintained to ensure efficient mission utilization of ground and spacecraft activities while working within the bounds of the space and ground resources, such as Solid State Recorder (SSR) and available antennas. This paper outlines the functionalities that the centralized planning and scheduling system has in its operational control and management of the Landsat 8 spacecraft.

  12. Peripheral orbit model

    CERN Document Server

    Hara, Yasuo

    1975-01-01

    Peripheral orbit model, in which an incoming hadron is assumed to revolve in a peripheral orbit around a target hadron, is discussed. The non-diffractive parts of two-body reaction amplitudes of hadrons are expressed in terms of the radius, width an absorptivity of the orbit. The radius of the orbit is about 1 fm and the width of the orbit is determined by the range of the interaction between the hadrons. The model reproduces all available experimental data on differential cross-sections and polarizations of $K^{-}p\\to K^{-}p$ and $\\bar K^{\\circ}n$ reactions for all angles successfully. This contribution is not included in the proceedings since it will appear in Progress of Theoretical Physics Vol. 51 (1974) No 2. Any person interested in the subject may apply for reprints to the author.

  13. The Solar Probe Plus Mission: Humanity's First Visit to Our Star

    Science.gov (United States)

    Fox, N. J.; Velli, M. C.; Bale, S. D.; Decker, R.; Driesman, A.; Howard, R. A.; Kasper, J. C.; Kinnison, J.; Kusterer, M.; Lario, D.; hide

    2015-01-01

    Solar Probe Plus (SPP) will be the first spacecraft to fly into the low solar corona. SPPs main science goal is to determine the structure and dynamics of the Suns coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Understanding these fundamental phenomena has been a top-priority science goal for over five decades, dating back to the 1958 Simpson Committee Report. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The mission design and the technology and engineering developments enable SPP to meet its science objectives to: (1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; (2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and (3) Explore mechanisms that accelerate and transport energetic particles. The SPP mission was confirmed in March 2014 and is under development as a part of NASAs Living with a Star (LWS) Program. SPP is scheduled for launch in mid-2018, and will perform 24 orbits over a 7-year nominal mission duration. Seven Venus gravity assists gradually reduce SPPs perihelion from 35 solar radii (RS) for the first orbit to less than 10 RS for the final three orbits. In this paper we present the science, mission concept and the baseline vehicle for SPP, and examine how the mission will address the key science questions.

  14. Analysis for orbital rendezvous of Chang'E-5 using SBI technique

    Science.gov (United States)

    Huang, Y.; Shan, Q.; Li, P.

    2016-12-01

    Chang'E-5 will be launched in later 2017/early 2018 using a new generation rocket from Wenchang satellite launch center, Hainan, China. It is a lunar sampling return mission, and it is the first time for China to carry out orbital rendezvous and docking in the Moon. How to achieve orbital rendezvous successfully in the Moon is very important in Chang'E-5 mission. Orbital rendezvous will be implemented between an orbiter and an ascender 200 km above the Moon. The ground tracking techniques include range, Doppler and VLBI, and they will be used to track the orbiter and the ascender when the ascender is about 70 km farther away from the orbiter. Later the ascender will approach the orbiter automatically. As a successful example, in Chang'E-3, the differential phase delay (delta delay) data between the rover and the lander are obtained with a random error of about 1 ps, and the relative position of the rover is determined with an accuracy of several meters by using same beam VLBI (SBI) technique. Here the application of the SBI technique for Chang'E-5 orbital rendezvous is discussed. SBI technique can be used to track the orbiter and the ascender simultaneously when they are in the same beam. Delta delay of the two probes can be derived, and the measurement accuracy is much higher than that of the traditional VLBI data because of the cancelation of common errors. Theoretically it can result in a more accurate relative orbit between the two probes. In the simulation, different strategies are discussed to analyze the contribution of SBI data to the orbit accuracy improvement especially relative orbit between the orbiter and ascender. The simulation results show that the relative position accuracy of the orbiter and ascender can reach about 1 m with delta delay data of 10 ps.

  15. Moon Search Algorithms for NASA's Dawn Mission to Asteroid Vesta

    Science.gov (United States)

    Memarsadeghi, Nargess; Mcfadden, Lucy A.; Skillman, David R.; McLean, Brian; Mutchler, Max; Carsenty, Uri; Palmer, Eric E.

    2012-01-01

    A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, searches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it approaches or orbits a planetary body. If a satellite of a celestial body is found, the mass of that body can also be calculated once its orbit is determined. Ensuring the Dawn spacecraft's safety on its mission to the asteroid Vesta primarily motivated the work of Dawn's Satellite Working Group (SWG) in summer of 2011. Dawn mission scientists and engineers utilized various computational tools and techniques for Vesta's satellite search. The objectives of this paper are to 1) introduce the natural satellite search problem, 2) present the computational challenges, approaches, and tools used when addressing this problem, and 3) describe applications of various image processing and computational algorithms for performing satellite searches to the electronic imaging and computer science community. Furthermore, we hope that this communication would enable Dawn mission scientists to improve their satellite search algorithms and tools and be better prepared for performing the same investigation in 2015, when the spacecraft is scheduled to approach and orbit the dwarf planet Ceres.

  16. Mercury Orbiter: Report of the Science Working Team

    Science.gov (United States)

    Belcher, John W.; Slavin, James A.; Armstrong, Thomas P.; Farquhar, Robert W.; Akasofu, Syun I.; Baker, Daniel N.; Cattell, Cynthia A.; Cheng, Andrew F.; Chupp, Edward L.; Clark, Pamela E.

    1991-01-01

    The results are presented of the Mercury Orbiter Science Working Team which held three workshops in 1988 to 1989 under the auspices of the Space Physics and Planetary Exploration Divisions of NASA Headquarters. Spacecraft engineering and mission design studies at the Jet Propulsion Lab were conducted in parallel with this effort and are detailed elsewhere. The findings of the engineering study, summarized herein, indicate that spin stabilized spacecraft carrying comprehensive particles and fields experiments and key planetology instruments in high elliptical orbits can survive and function in Mercury orbit without costly sun shields and active cooling systems.

  17. In-Orbit Operation of the ASTRO-H SXS

    Science.gov (United States)

    Tsujimoto, Masahiro; Mitsuda, Kazuhisa; Kelley, Richard L.; den Herder, Jan-Willem A.; Akamatsu, Hiroki; Bialas, Thomas G.; Boyce, Kevin R.; Brown, Gregory V.; Chiao, Meng P.; Costantini, Elisa; hide

    2016-01-01

    We summarize all of the in-orbit operations of the soft x-ray spectrometer (SXS) onboard the ASTROH (Hitomi) satellite. The satellite was launched on February 17, 2016, and the communication with the satellite ceased on March 26, 2016. The SXS was still in the commissioning phase, in which the set-ups were progressively changed. This paper is intended to serve as a concise reference of the events in orbit in order to properly interpret the SXS data taken during its short lifetime and as a test case for planning the in-orbit operation for future microcalorimeter missions.

  18. Getting a Crew into Orbit

    Science.gov (United States)

    Riddle, Bob

    2011-01-01

    Despite the temporary setback in our country's crewed space exploration program, there will continue to be missions requiring crews to orbit Earth and beyond. Under the NASA Authorization Act of 2010, NASA should have its own heavy launch rocket and crew vehicle developed by 2016. Private companies will continue to explore space, as well. At the…

  19. Jupiter Icy Moons Explorer (JUICE) : Science Objectives, Mission and Instruments (abstract)

    NARCIS (Netherlands)

    Gurvits, L.; Plaut, J.J.; Barabash, S.; Bruzzone, L.; Dougherty, M.; Erd, C.; Fletcher, L.; Gladstone, R.; Grasset, O.; Hartogh, P.; Hussmann, H.; Iess, L.; Jaumann, R.; Langevin, Y.; Palumbo, P.; Piccioni, G.; Titov, D.; Wahlund, J.E.

    2014-01-01

    The JUpiter ICy Moons Explorer (JUICE) is a European Space Agency mission that will fly by and observe the Galilean satellites Europa, Ganymede and Callisto, characterize the Jovian system in a lengthy Jupiter-orbit phase, and ultimately orbit Ganymede for in-depth studies of habitability, evolution

  20. A satellite constellation optimization for a regional GNSS remote sensing mission

    Science.gov (United States)

    Gavili Kilaneh, Narin; Mashhadi Hossainali, Masoud

    2017-04-01

    Due to the recent advances in the Global Navigation Satellite System Remote sensing (GNSS¬R) applications, optimization of a satellite orbit to investigate the Earth's properties seems significant. The comparison of the GNSS direct and reflected signals received by a Low Earth Orbit (LEO) satellite introduces a new technique to remotely sense the Earth. Several GNSS¬R missions including Cyclone Global Navigation Satellite System (CYGNSS) have been proposed for different applications such as the ocean wind speed and height monitoring. The geometric optimization of the satellite orbit before starting the mission is a key step for every space mission. Since satellite constellation design varies depending on the application, we have focused on the required geometric criteria for oceanography applications in a specified region. Here, the total number of specular points, their spatial distribution and the accuracy of their position are assumed to be sufficient for oceanography applications. Gleason's method is used to determine the position of specular points. We considered the 2-D lattice and 3-D lattice theory of flower constellation to survey whether a circular orbit or an elliptical one is suitable to improve the solution. Genetic algorithm is implemented to solve the problem. To check the visibility condition between the LEO and GPS satellites, the satellite initial state is propagated by a variable step size numerical integration method. Constellation orbit parameters achieved by optimization provide a better resolution and precession for the specular points in the study area of this research.

  1. Analysis of orbit determination from Earth-based tracking for relay satellites in a perturbed areostationary orbit

    Science.gov (United States)

    Romero, P.; Pablos, B.; Barderas, G.

    2017-07-01

    Areostationary satellites are considered a high interest group of satellites to satisfy the telecommunications needs of the foreseen missions to Mars. An areostationary satellite, in an areoequatorial circular orbit with a period of 1 Martian sidereal day, would orbit Mars remaining at a fixed location over the Martian surface, analogous to a geostationary satellite around the Earth. This work addresses an analysis of the perturbed orbital motion of an areostationary satellite as well as a preliminary analysis of the aerostationary orbit estimation accuracy based on Earth tracking observations. First, the models for the perturbations due to the Mars gravitational field, the gravitational attraction of the Sun and the Martian moons, Phobos and Deimos, and solar radiation pressure are described. Then, the observability from Earth including possible occultations by Mars of an areostationary satellite in a perturbed areosynchronous motion is analyzed. The results show that continuous Earth-based tracking is achievable using observations from the three NASA Deep Space Network Complexes in Madrid, Goldstone and Canberra in an occultation-free scenario. Finally, an analysis of the orbit determination accuracy is addressed considering several scenarios including discontinuous tracking schedules for different epochs and different areoestationary satellites. Simulations also allow to quantify the aerostationary orbit estimation accuracy for various tracking series durations and observed orbit arc-lengths.

  2. STS-26 MS Lounge in fixed based (FB) shuttle mission simulator (SMS)

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) John M. Lounge, wearing comunications kit assembly headset and crouched on the aft flight deck, performs checklist inspection during training session. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  3. Turbulent Wing-Leading-Edge Correlation Assessment for the Shuttle Orbiter

    Science.gov (United States)

    King, Rudolph A.; Vaughan, Matthew P.

    2009-01-01

    This study was conducted in support of the Orbiter damage assessment activity that takes place for each Shuttle mission since STS-107 (STS - Space Transportation System). As part of the damage assessment activity, the state of boundary layer (laminar or turbulent) during reentry needs to be estimated in order to define the aerothermal environment on the Orbiter. Premature turbulence on the wing leading edge (WLE) is possible if a surface irregularity promotes early transition and the resulting turbulent wedge flow contaminates the WLE flow. The objective of this analysis is to develop a criterion to determine if and when the flow along the WLE experiences turbulent heating given an incoming turbulent boundary layer that contaminates the attachment line. The data to be analyzed were all obtained as part of the MH-13 Space Shuttle Orbiter Aerothermodynamic Test conducted on a 1.8%-scale Orbiter model at Calspan/University of Buffalo Research Center in the Large Energy National Shock Tunnels facility. A rational framework was used to develop a means to assess the state of the WLE flow on the Orbiter during reentry given a contaminated attachment-line flow. Evidence of turbulent flow on the WLE has been recently documented for a few STS missions during the Orbiter s flight history, albeit late in the reentry trajectory. The criterion developed herein will be compared to these flight results.

  4. Human spaceflight and an asteroid redirect mission: Why?

    Science.gov (United States)

    Burchell, M. J.

    2014-08-01

    The planning of human spaceflight programmes is an exercise in careful rationing of a scarce and expensive resource. Current NASA plans are to develop the new capability for human-rated launch into space to replace the Space Transportation System (STS), more commonly known as the Space Shuttle, combined with a heavy lift capability, and followed by an eventual Mars mission. As an intermediate step towards Mars, NASA proposes to venture beyond Low Earth Orbit to cis-lunar space to visit a small asteroid which will be captured and moved to lunar orbit by a separate robotic mission. The rationale for this and how to garner support from the scientific community for such an asteroid mission are discussed. Key points that emerge are that a programme usually has greater legitimacy when it emerges from public debate, mostly via a Presidential Commission, a report by the National Research Council or a Decadal Review of science goals etc. Also, human spaceflight missions need to have support from a wide range of interested communities. Accordingly, an outline scientific case for a human visit to an asteroid is made. Further, it is argued here that the scientific interest in an asteroid mission needs to be included early in the planning stages, so that the appropriate capabilities (here the need for drilling cores and carrying equipment to, and returning samples from, the asteroid) can be included.

  5. The Bering small vehicle asteroid mission concept

    DEFF Research Database (Denmark)

    Michelsen, Rene; Andersen, Anja; Haack, Henning

    2004-01-01

    targets. The dilemma obviously being the resolution versus distance and the statistics versus DeltaV requirements. Using advanced instrumentation and onboard autonomy, we have developed a space mission concept whose goal is to map the flux, size, and taxonomy distributions of asteroids. The main focus....... Although the telescope based research offers precise orbital information, it is limited to the brighter, larger objects, and taxonomy as well as morphology resolution is limited. Conversely, dedicated missions offer detailed surface mapping in radar, visual, and prompt gamma, but only for a few selected......The study of asteroids is traditionally performed by means of large Earth based telescopes, by means of which orbital elements and spectral properties are acquired. Space borne research, has so far been limited to a few occasional flybys and a couple of dedicated flights to a single selected target...

  6. GPS Navigation Above 76,000 km for the MMS Mission

    Science.gov (United States)

    Winternitz, Luke; Bamford, Bill; Price, Samuel; Long, Anne; Farahmand, Mitra; Carpenter, Russell

    2016-01-01

    NASA's MMS mission, launched in March of 2015,consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12and 25 Earth radii in the first and second phases of the mission. Navigation for MMS is achieved independently onboard each spacecraft by processing GPS observables using NASA GSFC's Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents the culmination of over a decade of high-altitude GPS navigation research and development at NASA GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data. We extrapolate these results to predict performance in the Phase 2b mission orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  7. Launch and Assembly Reliability Analysis for Human Space Exploration Missions

    Science.gov (United States)

    Cates, Grant; Gelito, Justin; Stromgren, Chel; Cirillo, William; Goodliff, Kandyce

    2012-01-01

    NASA's future human space exploration strategy includes single and multi-launch missions to various destinations including cis-lunar space, near Earth objects such as asteroids, and ultimately Mars. Each campaign is being defined by Design Reference Missions (DRMs). Many of these missions are complex, requiring multiple launches and assembly of vehicles in orbit. Certain missions also have constrained departure windows to the destination. These factors raise concerns regarding the reliability of launching and assembling all required elements in time to support planned departure. This paper describes an integrated methodology for analyzing launch and assembly reliability in any single DRM or set of DRMs starting with flight hardware manufacturing and ending with final departure to the destination. A discrete event simulation is built for each DRM that includes the pertinent risk factors including, but not limited to: manufacturing completion; ground transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to trans-destination-injection. Each reliability factor can be selectively activated or deactivated so that the most critical risk factors can be identified. This enables NASA to prioritize mitigation actions so as to improve mission success.

  8. Lunar Exploration Missions Since 2006

    Science.gov (United States)

    Lawrence, S. J. (Editor); Gaddis, L. R.; Joy, K. H.; Petro, N. E.

    2017-01-01

    The announcement of the Vision for Space Exploration in 2004 sparked a resurgence in lunar missions worldwide. Since the publication of the first "New Views of the Moon" volume, as of 2017 there have been 11 science-focused missions to the Moon. Each of these missions explored different aspects of the Moon's geology, environment, and resource potential. The results from this flotilla of missions have revolutionized lunar science, and resulted in a profoundly new emerging understanding of the Moon. The New Views of the Moon II initiative itself, which is designed to engage the large and vibrant lunar science community to integrate the results of these missions into new consensus viewpoints, is a direct outcome of this impressive array of missions. The "Lunar Exploration Missions Since 2006" chapter will "set the stage" for the rest of the volume, introducing the planetary community at large to the diverse array of missions that have explored the Moon in the last decade. Content: This chapter will encompass the following missions: Kaguya; ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun); Chang’e-1; Chandrayaan-1; Moon Impact Probe; Lunar Reconnaissance Orbiter (LRO); Lunar Crater Observation Sensing Satellite (LCROSS); Chang’e-2; Gravity Recovery and Interior Laboratory (GRAIL); Lunar Atmosphere and Dust Environment Explorer (LADEE); Chang’e-3.

  9. STS-26 MS Nelson on fixed based (FB) shuttle mission simulator (SMS) middeck

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson trains on the middeck of the fixed based (FB) shuttle mission simulator (SMS). Nelson, wearing communications assembly headset, adjusts camera mounting bracket.

  10. Low-cost autonomous orbit control about Mars: Initial simulation results

    Science.gov (United States)

    Dawson, S. D.; Early, L. W.; Potterveld, C. W.; Königsmann, H. J.

    1999-11-01

    Interest in studying the possibility of extraterrestrial life has led to the re-emergence of the Red Planet as a major target of planetary exploration. Currently proposed missions in the post-2000 period are routinely calling for rendezvous with ascent craft, long-term orbiting of, and sample-return from Mars. Such missions would benefit greatly from autonomous orbit control as a means to reduce operations costs and enable contact with Mars ground stations out of view of the Earth. This paper present results from initial simulations of autonomously controlled orbits around Mars, and points out possible uses of the technology and areas of routine Mars operations where such cost-conscious and robust autonomy could prove most effective. These simulations have validated the approach and control philosophies used in the development of this autonomous orbit controller. Future work will refine the controller, accounting for systematic and random errors in the navigation of the spacecraft from the sensor suite, and will produce prototype flight code for inclusion on future missions. A modified version of Microcosm's commercially available High Precision Orbit Propagator (HPOP) was used in the preparation of these results due to its high accuracy and speed of operation. Control laws were developed to allow an autonomously controlled spacecraft to continuously control to a pre-defined orbit about Mars with near-optimal propellant usage. The control laws were implemented as an adjunct to HPOP. The GSFC-produced 50 × 50 field model of the Martian gravitational potential was used in all simulations. The Martian atmospheric drag was modeled using an exponentially decaying atmosphere based on data from the Mars-GRAM NASA Ames model. It is hoped that the simple atmosphere model that was implemented can be significantly improved in the future so as to approach the fidelity of the Mars-GRAM model in its predictions of atmospheric density at orbital altitudes. Such additional work

  11. Nuclear space power systems for orbit raising and maneuvering

    International Nuclear Information System (INIS)

    Buden, D.; Sullivan, J.A.

    1984-01-01

    Reference is made to recent studies which have shown that direct thrust nuclear rockets for routine orbit raising and near-earth space tug missions are probably not cost-effective. The need for additional trade-off studies and comparisons of direct-thrust nuclear systems with chemical systems to clarify the role of nuclear rockets in missions requiring rapid orbit maneuvering is stressed. Attention is confined here to nuclear electric propulsion considerations. Low-mass nuclear power plants are constructed to optimize nuclear electric propulsion systems. Electric power levels from 100 kilowatts to as much as several megawatts are desirable. The goals for the power plant specific mass are 20-30 kg/kW at the lower powers to 2-4 kg/kW at the higher powers

  12. MACSAT - A Near Equatorial Earth Observation Mission

    Science.gov (United States)

    Kim, B. J.; Park, S.; Kim, E.-E.; Park, W.; Chang, H.; Seon, J.

    MACSAT mission was initiated by Malaysia to launch a high-resolution remote sensing satellite into Near Equatorial Orbit (NEO). Due to its geographical location, Malaysia can have large benefits from NEO satellite operation. From the baseline circular orbit of 685 km altitude with 7 degrees of inclination, the neighboring regions around Malaysian territory can be frequently monitored. The equatorial environment around the globe can also be regularly observed with unique revisit characteristics. The primary mission objective of MACSAT program is to develop and validate technologies for a near equatorial orbit remote sensing satellite system. MACSAT is optimally designed to accommodate an electro-optic Earth observation payload, Medium-sized Aperture Camera (MAC). Malaysian and Korean joint engineering teams are formed for the effective implementation of the satellite system. An integrated team approach is adopted for the joint development for MACSAT. MAC is a pushbroom type camera with 2.5 m of Ground Sampling Distance (GSD) in panchromatic band and 5 m of GSD in four multi-spectral bands. The satellite platform is a mini-class satellite. Including MAC payload, the satellite weighs under 200 kg. Spacecraft bus is designed optimally to support payload operations during 3 years of mission life. The payload has 20 km of swath width with +/- 30 o of tilting capability. 32 Gbits of solid state recorder is implemented as the mass image storage. The ground element is an integrated ground station for mission control and payload operation. It is equipped with S- band up/down link for commanding and telemetry reception as well as 30 Mbps class X-band down link for image reception and processing. The MACSAT system is capable of generating 1:25,000-scale image maps. It is also anticipated to have capability for cross-track stereo imaging for Digital elevation Model (DEM) generation.

  13. Return to Venus of AKATSUKI, the Japanese Venus Orbiter

    Science.gov (United States)

    Nakamura, M.; Iwagami, N.; Satoh, T.; Taguchi, M.; Watanabe, S.; Takahashi, Y.; Imamura, T.; Suzuki, M.; Ueno, M.; Yamazaki, A.; Fukuhara, T.; Yamada, M.; Ishii, N.; Ogohara, K.

    2011-12-01

    Japanese Venus Climate Orbiter 'AKATSUKI' (PLANET-C) was proposed in 2001 with strong support by international Venus science community and approved as an ISAS mission soon after the proposal. AKATSUKI and ESA's Venus Express complement each other in Venus climate study. Various coordinated observations using the two spacecraft have been planned. Also participating scientists from US have been selected. Its science target is to understand the climate of Venus. The mission life we expected was more than 2 Earth years in Venus orbit. AKATSUKI was successfully launched at 06:58:22JST on May 21, by H-IIA F17. After the separation from H-IIA, the telemetry from AKATSUKI was normally detected by DSN Goldstone station (10:00JST) and the solar cell paddles' expansion was confirmed. AKATSUKI was put into the 3-axis stabilized mode in the initial operation from Uchinoura station and the critical operation was finished at 20:00JST on the same day. The malfunction, which happened during the Venus Orbit Insertion (VOI) on7 Dec, 2010 is as follows. We set all commands on Dec. 5. Attitude control for Venus orbit insertion (VOI) was automatically done on Dec. 6. Orbital maneuver engine (OME) was fired 08:49 JST on Dec. 7. 1min. after firing the spacecraft went into the occultation region and we had no telemetry, but we expected to continuous firing for 12min. Recording on the spacecraft told us later that, unfortunately the firing continued just 152sec. and stopped. The reason of the malfunction of the OME was the blocking of check valve of the gas pressure line to push the fuel to the engine. We failed to make the spacecraft the Venus orbiter, and it is rotating the sun with the orbital period of 203 days. As the Venus orbit the sun with the period of 225 days, AKATSUKI has a chance to meet Venus again in 5 or 6 years depending on the orbit correction plan. Let us summarize the present situation of AKATSUKI. Most of the fuel still remains. But the condition of the propulsion

  14. In-Flight Operation of the Dawn Ion Propulsion System Through Survey Science Orbit at Ceres

    Science.gov (United States)

    Garner, Charles E.; Rayman, Marc D.

    2015-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt objects, Vesta and Ceres. The Dawn spacecraft was launched from the Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H- 9.5 (Delta-II Heavy) rocket that placed the 1218-kg spacecraft onto an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) developed at the Jet Propulsion Laboratory which will provide a total delta V of 11 km/s for the heliocentric transfer to Vesta, orbit capture at Vesta, transfer between Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer between Ceres science orbits. Full-power thrusting from December 2007 through October 2008 was used to successfully target a Mars gravity assist flyby in February 2009 that provided an additional delta V of 2.6 km/s. Deterministic thrusting for the heliocentric transfer to Vesta resumed in June 2009 and concluded with orbit capture at Vesta on July 16, 2011. From July 2011 through September 2012 the IPS was used to transfer to all the different science orbits at Vesta and to escape from Vesta orbit. Cruise for a rendezvous with Ceres began in September 2012 and concluded with the start of the approach to Ceres phase on December 26, 2015, leading to orbit capture on March 6, 2015. Deterministic thrusting continued during approach to place the spacecraft in its first science orbit, called RC3, which was achieved on April 23, 2015. Following science operations at RC3 ion thrusting was resumed for twenty-five days leading to arrival to the next science orbit, called survey orbit, on June 3, 2015. The IPS will be used for all subsequent orbit transfers and trajectory correction maneuvers until completion of the primary mission in approximately June 2016. To date the IPS has been operated for over 46,774 hours, consumed approximately 393 kg of xenon, and provided

  15. Asteroid Kinetic Impactor Missions

    Science.gov (United States)

    Chesley, Steven

    2015-08-01

    Asteroid impact missions can be carried out as a relatively low-cost add-ons to most asteroid rendezvous missions and such impact experiments have tremendous potential, both scientifically and in the arena of planetary defense.The science returns from an impactor demonstration begin with the documentation of the global effects of the impact, such as changes in orbit and rotation state, the creation and dissipation of an ejecta plume and debris disk, and morphological changes across the body due to the transmission of seismic waves, which might induce landslides and toppling of boulders, etc. At a local level, an inspection of the impact crater and ejecta blanket reveals critical material strength information, as well as spectral differences between the surface and subsurface material.From the planetary defense perspective, an impact demonstration will prove humankind’s capacity to alter the orbit of a potentially threatening asteroid. This technological leap comes in two parts. First, terminal guidance systems that can deliver an impactor with small errors relative to the ~100-200 meter size of a likely impactor have yet to be demonstrated in a deep space environment. Second, the response of an asteroid to such an impact is only understood theoretically due to the potentially significant dependence on the momentum carried by escaping ejecta, which would tend to enhance the deflection by tens of percent and perhaps as much as a factor of a few. A lack of validated understanding of momentum enhancement is a significant obstacle in properly sizing a real-world impactor deflection mission.This presentation will describe the drivers for asteroid impact demonstrations and cover the range of such concepts, starting with ESA’s pioneering Don Quijote mission concept and leading to a brief description of concepts under study at the present time, including the OSIRIS-REx/ISIS, BASiX/KIX and AIM/DART (AIDA) concepts.

  16. STS-114: Multi-Cut Profiles and Mission Overviews

    Science.gov (United States)

    2005-01-01

    Profiles of the seven crewmembers of the STS-114 Discovery are shown. Eileen Collins, Commander, talks about her fascination with flying as a young child and her eagerness to have someone teach her to fly at age 19. Her eagerness and hard work earned her a master's in operations research from Stanford University in 1986 and a master's in space systems management from Webster University in 1989. Jim Kelly, Pilot, talks about his desire to become an astronaut at a very young age. Charles Camarda, Mission Specialist, always wanted to become an astronaut and earned a Bachelor's degree in aerospace engineering from Polytechnic Institute of Brooklyn in 1974, a Master's in engineering Science from George Washington University in 1980 and a doctorate in aerospace engineering from Virginia Polytechnic Institute and State University in 1990. Wendy Lawrence, Mission Specialist decided that she wanted to become an astronaut when she saw the first man to walk on the moon. Soichi Noguchi, Mission Specialist from JAXA expresses that people like scientists, doctors and engineers could fly and he also wanted to venture into spaceflight. Steve Robinson, Mission Specialist says that he was fascinated with things that flew as a child and wanted to make things fly. Australian born Andrew Thomas, Mission Specialist wanted to become an astronaut as a young boy but never realized that he would fulfill his dream. The crewmember profiles end with an overview of the STS-114 Discovery mission. Paul Hill, Lead Flight Director talks about the main goal of the STS-114 mission which is to demonstrate that changes to the Orbiter and flight procedures are good and the second goal is to finish construction of the International Space Station. Sergei Krikalev, Commander talks about increasing the capability of the International Space Station, Jim Kelly discusses the work that is being performed in the external tank, Andy Thomas talks about procedures done to stop foam release and Soichi Noguchi

  17. Radio Occultation Experiments with Venus Express and Mars Express using the Planetary Radio Interferometry and Doppler Experiment (PRIDE) Technique

    Science.gov (United States)

    Bocanegra Bahamon, T.; Gurvits, L.; Molera Calves, G.; Cimo, G.; Duev, D.; Pogrebenko, S.; Dirkx, D.; Rosenblatt, P.

    2017-12-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that can be used to enhance multiple radio science experiments of planetary missions. By 'eavesdropping' on the spacecraft signal using radio telescopes from different VLBI networks around the world, the PRIDE technique provides precise open-loop Doppler and VLBI observables to able to reconstruct the spacecraft's orbit. The application of this technique for atmospheric studies has been assessed by observing ESA's Venus Express (VEX) and Mars Express (MEX) during multiple Venus and Mars occultation events between 2012 and 2014. From these observing sessions density, temperature and pressure profiles of Venus and Mars neutral atmosphere and ionosphere have been retrieved. We present an error propagation analysis where the uncertainties of the atmospheric properties measured with this technique have been derived. These activities serve as demonstration of the applicability of the PRIDE technique for radio occultation studies, and provides a benchmark against the traditional Doppler tracking provided by the NASA's DSN and ESA's Estrack networks for these same purposes, in the framework of the upcoming ESA JUICE mission to the Jovian system.

  18. Low cost manned Mars mission based on indigenous propellant production

    Science.gov (United States)

    Bruckner, A. P.; Cinnamon, M.; Hamling, S.; Mahn, K.; Phillips, J.; Westmark, V.

    1993-01-01

    The paper describes a low-cost approach to the manned exploration of Mars (which involves an unmanned mission followed two years later by a manned mission) based on near-term technologies and in situ propellant production. Particular attention is given to the basic mission architecture and its major components, including the orbital analysis, the unmanned segment, the Earth Return Vehicle, the aerobrake design, life sciences, guidance, communications, power, propellant production, the surface rovers, and Mars science. Also discussed are the cost per mission over an assumed 8-yr initiative.

  19. Kepler: NASA's First Mission Capable of Finding Earth-Size Planets

    Science.gov (United States)

    Borucki, William J.

    2009-01-01

    Kepler, a NASA Discovery mission, is a spaceborne telescope designed to search a nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is that region around a start where the temperature permits water to be liquid on the surface of a planet. Liquid water is considered essential forth existence of life. Mission Phases: Six mission phases have been defined to describe the different periods of activity during Kepler's mission. These are: launch; commissioning; early science operations, science operations: and decommissioning

  20. Proceedings from the 2nd International Symposium on Formation Flying Missions and Technologies

    Science.gov (United States)

    2004-01-01

    Topics discussed include: The Stellar Imager (SI) "Vision Mission"; First Formation Flying Demonstration Mission Including on Flight Nulling; Formation Flying X-ray Telescope in L2 Orbit; SPECS: The Kilometer-baseline Far-IR Interferometer in NASA's Space Science Roadmap Presentation; A Tight Formation for Along-track SAR Interferometry; Realization of the Solar Power Satellite using the Formation Flying Solar Reflector; SIMBOL-X : Formation Flying for High-Energy Astrophysics; High Precision Optical Metrology for DARWIN; Close Formation Flight of Micro-Satellites for SAR Interferometry; Station-Keeping Requirements for Astronomical Imaging with Constellations of Free-Flying Collectors; Closed-Loop Control of Formation Flying Satellites; Formation Control for the MAXIM Mission; Precision Formation Keeping at L2 Using the Autonomous Formation Flying Sensor; Robust Control of Multiple Spacecraft Formation Flying; Virtual Rigid Body (VRB) Satellite Formation Control: Stable Mode-Switching and Cross-Coupling; Electromagnetic Formation Flight (EMFF) System Design, Mission Capabilities, and Testbed Development; Navigation Algorithms for Formation Flying Missions; Use of Formation Flying Small Satellites Incorporating OISL's in a Tandem Cluster Mission; Semimajor Axis Estimation Strategies; Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers; Analysis of Formation Flying in Eccentric Orbits Using Linearized Equations of Relative Motion; Conservative Analytical Collision Probabilities for Orbital Formation Flying; Equations of Motion and Stability of Two Spacecraft in Formation at the Earth/Moon Triangular Libration Points; Formations Near the Libration Points: Design Strategies Using Natural and Non-Natural Ares; An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer; GVE-Based Dynamics and Control for Formation Flying Spacecraft; GNC System Design for a New Concept of X

  1. Model expressions for the spin-orbit interaction and phonon-mediated spin dynamics in quantum dots

    Science.gov (United States)

    Vaughan, M. P.; Rorison, J. M.

    2018-01-01

    Model expressions for the spin-orbit interaction in a quantum dot are obtained. The resulting form does not neglect cubic terms and allows for a generalized structural inversion asymmetry. We also obtain analytical expressions for the coupling between states for the electron-phonon interaction and use these to derive spin-relaxation rates, which are found to be qualitatively similar to those derived elsewhere in the literature. We find that, due to the inclusion of cubic terms, the Dresselhaus contribution to the ground state spin relaxation disappears for spherical dots. A comparison with previous theory and existing experimental results shows good agreement thereby presenting a clear analytical formalism for future developments. Comparative calculations for potential materials are presented.

  2. The Mercury Thermal Environment As A Design Driver and A Scientific Objective of The Bepicolombo Mission

    Science.gov (United States)

    Perotto, V.; Malosti, T.; Martino, R.; Briccarello, M.; Anselmi, A.

    The thermal environment of Mercury is extremely severe and a strong design driver for any mission to the planet. The main factors are the large amount of energy both di- rectly received from the sun and reflected/re-emitted from the planet, and the variation of such energy with time. The total thermal flux received by an object in orbit or on the surface of Mercury is a combination of the above-mentioned contributions, weighted according to the orbit characteristics, or the morphology of the surface. For a lander mission, the problems are compounded by the uncertainty in the a-priori knowledge of the surface properties and morphology. The thermal design of the orbiting and land- ing elements of the BepiColombo mission has a major role in the Definition Study being carried out under ESA contract by a team led by Alenia Spazio. The project en- compasses a spacecraft in low, near-circular, polar orbit (Mercury Planetary Orbiter, MPO), a spacecraft in high-eccentricity, polar orbit (Mercury Magnetospheric Orbiter, MMO, provided by ISAS, Japan) and a lander (Mercury Surface Element, MSE). The approach to a feasible mission design must rely on several provisions. For the orbiting elements, the orientation of the orbit plane with respect to the line of apsides of the or- bit of Mercury is found to have a major effect on the achievable orbiter temperatures. The spacecraft configuration, and its attitude with respect to the planet and the sun, drive the accommodation of the scientific instruments. Once the optimal orientation, attitude and configuration are determined, specific thermal control solutions must be elaborated, to maintain all components including the instruments in the required tem- perature range. The objective is maximizing the scientific return under constraints such as the available on-board resources and the project budget. A major outcome of the study so far has been the specification of requirements for improved thermal con- trol technologies, which are

  3. On-orbit test results from the EO-1 Advanced Land Imager

    Science.gov (United States)

    Evans, Jenifer B.; Digenis, Constantine J.; Gibbs, Margaret D.; Hearn, David R.; Lencioni, Donald E.; Mendenhall, Jeffrey A.; Welsh, Ralph D.

    2002-01-01

    The Advanced Land Imager (ALI) is the primary instrument flown on the first Earth Observing mission (EO-1), launched on November 21, 2000. It was developed under NASA's New Millennium Program (NMP). The NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass, and schedule for future, Landsat-like, Earth Science Enterprise instruments. ALI contains a number of innovative features designed to achieve this objective. These include the basic instrument architecture which employs a push-broom data collection mode, a wide field of view optical design, compact multi-spectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. During the first ninety days on orbit, the instrument performance was evaluated by collecting several Earth scenes and comparing them to identical scenes obtained by Landsat7. In addition, various on-orbit calibration techniques were exercised. This paper will present an overview of the EO-1 mission activities during the first ninety days on-orbit, details of the ALI instrument performance and a comparison with the ground calibration measurements.

  4. Venus Express en route to probe the planet's hidden mysteries

    Science.gov (United States)

    2005-11-01

    reduced to once daily. If needed, trajectory correction manoeuvres can go ahead at the half-way stage in January. When making its closest approach, Venus Express will face far tougher conditions than those encountered by Mars Express on nearing the Red Planet. For while Venus's size is indeed similar to that of the Earth, its mass is 7.6 times that of Mars, with gravitational attraction to match. To resist this greater gravitational pull, the spacecraft will have to ignite its main engine for 53 minutes in order to achieve 1.3 km/second deceleration and place itself into a highly elliptical orbit around the planet. Most of its 570 kg of propellant will be used for this manoeuvre. A second engine firing will be necessary in order to reach final operational orbit: a polar elliptical orbit with 12-hour crossings. This will enable the probe to make approaches to within 250 km of the planet's surface and withdraw to distances of up to 66 000 km, so as to carry out close-up observations and also get an overall perspective. Exploring other planets to better understand planet Earth "The launch of Venus Express is a further illustration of Europe's determination to study the various bodies in our solar system", stressed Professor David Southwood, the Director of ESA's science programmes. "We started in 2003 with the launch of Mars Express to the Red Planet and Smart-1 to the Moon and both these missions have amply exceeded our expectations. Venus Express marks a further step forward, with a view to eventually rounding off our initial overview of our immediate planetary neighbours with the BepiColombo mission to Mercury to be launched in 2013." "With Venus Express, we fully intend to demonstrate yet again that studying the planets is of vital importance for life here on Earth", said Jean Jacques Dordain, ESA Director General. "To understand climate change on Earth and all the contributing factors, we cannot make do with solely observing our own planet. We need to decipher the

  5. PFERD Mission: Pluto Flyby Exploration/Research Design

    Science.gov (United States)

    Lemke, Gary; Zayed, Husni; Herring, Jason; Fuehne, Doug; Sutton, Kevin; Sharkey, Mike

    1990-01-01

    The Pluto Flyby Exploration/Research Design (PFERD) mission will consist of a flyby spacecraft to Pluto and its satellite, Charon. The mission lifetime is expected to be 18 years. The Titan 4 with a Centaur upper stage will be utilized to launch the craft into the transfer orbit. The proposal was divided into six main subsystems: (1) scientific instrumentation; (2) command, communications, and control: (3) altitude and articulation control; (4) power and propulsion; (5) structures and thermal control; and (6) mission management and costing. Tradeoff studies were performed to optimize all factors of design, including survivability, performance, cost, and weight. Problems encountered in the design are also presented.

  6. Kepler Mission: a Discovery-Class Mission Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-Like Stars

    Science.gov (United States)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Caldwell, Douglas; Kondo, Yoji; hide

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 in aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. Extending the mission to six years doubles the expected number of Earth-size planets in the HZ. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current Doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  7. A comprehensive mission to planet Earth: Woods Hole Space Science and Applications Advisory Committee Planning Workshop

    Science.gov (United States)

    1991-01-01

    The NASA program Mission to Planet Earth (MTPE) is described in this set of visuals presented in Massachusetts on July 29, 1991. The problem presented in this document is that the earth system is changing and that human activity accelerates the rate of change resulting in increased greenhouse gases, decreasing levels of stratospheric ozone, acid rain, deforestation, decreasing biodiversity, and overpopulation. Various national and international organizations are coordinating global change research. The complementary space observations for this activity are sun-synchronous polar orbits, low-inclination, low altitude orbits, geostationary orbits, and ground measurements. The Geostationary Earth Observatory is the major proposed mission of MTPE. Other proposed missions are EOS Synthetic Aperture Radar, ARISTOTELES Magnetic Field Experiment, and the Global Topography Mission. Use of the NASA DC-8 aircraft is outlined as carrying out the Airborne Science and Applications Program. Approved Earth Probes Program include the Total Ozone Mapping Spectrometer (TOMS). Other packages for earth observation are described.

  8. Flight Path Control Design for the Cassini Solstice Mission

    Science.gov (United States)

    Ballard, Christopher G.; Ionasescu, Rodica

    2011-01-01

    The Cassini spacecraft has been in orbit around Saturn for just over 7 years, with a planned 7-year extension, called the Solstice Mission, which started on September 27, 2010. The Solstice Mission includes 205 maneuvers and 70 flybys which consist of the moons Titan, Enceladus, Dione, and Rhea. This mission is designed to use all available propellant with a statistical margin averaging 0.6 m/s per encounter, and the work done to prove and ensure the viability of this margin is highlighted in this paper.

  9. Mars mission performance enhancement with hybrid nuclear propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, J. E. [Pacific Northwest Lab., Richland, WA (United States); Noffsinger, K. E. [Pacific Northwest Lab., Richland, WA (United States); Segna, D. R. [USDOE Richland Operations Office, WA (United States)

    1992-01-01

    Nuclear electric propulsion (NEP), compared with chemical and nuclear thermal propulsion (NTP), can effectively deliver the same mass to Mars using much less propellant, consequently requiring less mass delivered to Earth orbit. The lower thrust of NEP requires a spiral trajectory near planetary bodies, which significantly increases the travel time. Although the total travel time is long, the portion of the flight time spent during interplanetary transfer is shorter, because the vehicle is thrusting for much longer periods of time. This has led to the supposition that NEP, although very attractive for cargo missions, is not suitable for piloted missions to Mars. However, with the application of a hybrid application of a hybrid approach to propulsion, the benefits of NEP can be utilized while drastically reducing the overall travel time required. Development of a dual-mode system, which utilizes high-thrust NTP to propel the spacecraft from the planetary gravitational influence and low-thrust NEP to accelerate in interplanetary space, eliminates the spiral trajectory and results in a much faster transit time than could be obtained by either NEP or NTP alone. This results in a mission profile with a lower initial mass in low Earth orbit. In addition, the propulsion system would have the capability to provide electrical power for mission applications.

  10. To orbit and back again how the space shuttle flew in space

    CERN Document Server

    Sivolella, Davide

    2014-01-01

    The question may be simple, but the answer is not as easy to give. This book describes the structures and systems used each time the Shuttle was launched, and then follows an imaginary mission, explaining how those structures and systems were used in orbital operations and the return to Earth. Details of how anomalous events were dealt with on individual missions are also provided, as are the recollections of those who built and flew the Shuttle. Highly illustrated with many diagrams, photographs and technical drawings, To Orbit and Back Again • focuses on the engineering aspects of the Shuttle • describes the systems and subsystems in clear, non-technical terms • brings to the fore the design work behind the Space Shuttle and the mission itself.    .

  11. Potential Operating Orbits for the SAFE-400

    International Nuclear Information System (INIS)

    Houts, Mike; Kos, Larry; Poston, David

    2002-01-01

    Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp > 3000 s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially non-radioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into nonradioactive isotopes. Operational constraints required to ensure safety can thus be quantified. (authors)

  12. Stable orbits for lunar landing assistance

    Science.gov (United States)

    Condoleo, Ennio; Cinelli, Marco; Ortore, Emiliano; Circi, Christian

    2017-10-01

    To improve lunar landing performances in terms of mission costs, trajectory determination and visibility the use of a single probe located over an assistance orbit around the Moon has been taken into consideration. To this end, the properties of two quasi-circular orbits characterised by a stable behaviour of semi-major axis, eccentricity and inclination have been investigated. The analysis has demonstrated the possibility of using an assistance probe, located over one of these orbits, as a relay satellite between lander and Earth, even in the case of landings on the far side of the Moon. A comparison about the accuracy in retrieving the lander's state with respect to the use of a probe located in the Lagrangian point L2 of the Earth-Moon system has also been carried out.

  13. The Ocean Surface Topography Sentinel-6/Jason-CS Mission

    Science.gov (United States)

    Giulicchi, L.; Cullen, R.; Donlon, C.; Vuilleumier@esa int, P.

    2016-12-01

    The Sentinel-6/Jason-CS mission consists of two identical satellites flying in sequence and designed to provide operational measurements of sea surface height significant wave high and wind speed to support operational oceanography and climate monitoring. The mission will be the latest in a series of ocean surface topography missions that will span nearly three decades. They follow the altimeters on- board TOPEX/Poseidon through to Jason-3 (launched in January 2016). Jason-CS will continue to fulfil objectives of the reference series whilst introducing a major enhancement in capability providing the operational and science oceanographic community with the state of the art in terms of spacecraft, measurement instrumentation design thus securing optimal operational and science data return. As a secondary objective the mission will also include Radio Occultation user services. Each satellite will be launched sequentially into the Jason orbit (up to 66 latitude) respectively in 2020 and 2025. The principle payload instrument is a high precision Ku/C band radar altimeter with retrieval of geophysical parameters (surface elevation, wind speed and SWH) from the altimeter data require supporting measurements: a DORIS receiver for Precise Orbit Determination; The Climate Quality Advanced Microwave Radiometer (AMR-C) for high stability path delay correction. Orbit tracking data are also provided by GPS & LRA. An additional GPS receiver will be dedicated to radio-occultation measurements. The programme is a part of the European Community Copernicus initiative, whose objective is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. The Sentinel-6/Jason-CS in particular is a cooperative mission with contributions from NASA, NOAA, EUMETSAT, ESA, CNES and the European Union.

  14. Modeling low-thrust transfers between periodic orbits about five libration points: Manifolds and hierarchical design

    Science.gov (United States)

    Zeng, Hao; Zhang, Jingrui

    2018-04-01

    The low-thrust version of the fuel-optimal transfers between periodic orbits with different energies in the vicinity of five libration points is exploited deeply in the Circular Restricted Three-Body Problem. Indirect optimization technique incorporated with constraint gradients is employed to further improve the computational efficiency and accuracy of the algorithm. The required optimal thrust magnitude and direction can be determined to create the bridging trajectory that connects the invariant manifolds. A hierarchical design strategy dividing the constraint set is proposed to seek the optimal solution when the problem cannot be solved directly. Meanwhile, the solution procedure and the value ranges of used variables are summarized. To highlight the effectivity of the transfer scheme and aim at different types of libration point orbits, transfer trajectories between some sample orbits, including Lyapunov orbits, planar orbits, halo orbits, axial orbits, vertical orbits and butterfly orbits for collinear and triangular libration points, are investigated with various time of flight. Numerical results show that the fuel consumption varies from a few kilograms to tens of kilograms, related to the locations and the types of mission orbits as well as the corresponding invariant manifold structures, and indicates that the low-thrust transfers may be a beneficial option for the extended science missions around different libration points.

  15. Measurement requirements for a Near-Earth Asteroid impact mitigation demonstration mission

    Science.gov (United States)

    Wolters, Stephen D.; Ball, Andrew J.; Wells, Nigel; Saunders, Christopher; McBride, Neil

    2011-10-01

    A concept for an Impact Mitigation Preparation Mission, called Don Quijote, is to send two spacecrafts to a Near-Earth Asteroid (NEA): an Orbiter and an Impactor. The Impactor collides with the asteroid while the Orbiter measures the resulting change in the asteroid's orbit, by means of a Radio Science Experiment (RSE) carried out before and after the impact. Three parallel Phase A studies on Don Quijote were carried out for the European Space Agency: the research presented here reflects the outcomes of the study by QinetiQ. We discuss the mission objectives with regard to the prioritisation of payload instruments, with emphasis on the interpretation of the impact. The Radio Science Experiment is described and it is examined how solar radiation pressure may increase the uncertainty in measuring the orbit of the target asteroid. It is determined that to measure the change in orbit accurately a thermal IR spectrometer is mandatory, to measure the Yarkovsky effect. The advantages of having a laser altimeter are discussed. The advantages of a dedicated wide-angle impact camera are discussed and the field-of-view is initially sized through a simple model of the impact.

  16. Lifetime predictions for the Solar Maximum Mission (SMM) and San Marco spacecraft

    Science.gov (United States)

    Smith, E. A.; Ward, D. T.; Schmitt, M. W.; Phenneger, M. C.; Vaughn, F. J.; Lupisella, M. L.

    1989-01-01

    Lifetime prediction techniques developed by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) are described. These techniques were developed to predict the Solar Maximum Mission (SMM) spacecraft orbit, which is decaying due to atmospheric drag, with reentry predicted to occur before the end of 1989. Lifetime predictions were also performed for the Long Duration Exposure Facility (LDEF), which was deployed on the 1984 SMM repair mission and is scheduled for retrieval on another Space Transportation System (STS) mission later this year. Concepts used in the lifetime predictions were tested on the San Marco spacecraft, which reentered the Earth's atmosphere on December 6, 1988. Ephemerides predicting the orbit evolution of the San Marco spacecraft until reentry were generated over the final 90 days of the mission when the altitude was less than 380 kilometers. The errors in the predicted ephemerides are due to errors in the prediction of atmospheric density variations over the lifetime of the satellite. To model the time dependence of the atmospheric densities, predictions of the solar flux at the 10.7-centimeter wavelength were used in conjunction with Harris-Priester (HP) atmospheric density tables. Orbital state vectors, together with the spacecraft mass and area, are used as input to the Goddard Trajectory Determination System (GTDS). Propagations proceed in monthly segments, with the nominal atmospheric drag model scaled for each month according to the predicted monthly average value of F10.7. Calibration propagations are performed over a period of known orbital decay to obtain the effective ballistic coefficient. Progagations using plus or minus 2 sigma solar flux predictions are also generated to estimate the despersion in expected reentry dates. Definitive orbits are compared with these predictions as time expases. As updated vectors are received, these are also propagated to reentryto continually update the lifetime predictions.

  17. Simulation of the Chang'E-5 mission contribution in lunar long wavelength gravity field improvement

    Science.gov (United States)

    Yan, Jianguo; Yang, Xuan; Ping, Jinsong; Ye, Mao; Liu, Shanhong; Jin, Weitong; Li, Fei; Barriot, Jean-Pierre

    2018-06-01

    The precision of lunar gravity field estimation has improved by means of three to five orders of magnitude since the successful GRAIL lunar mission. There are still discrepancies however, in the low degree coefficients and long wavelength components of the solutions developed by two space research centers (JPL and GSFC). These discrepancies hint at the possibilities for improving the accuracy in the long wavelength part of the lunar gravity field. In the near future, China will launch the Chang'E-5 lunar mission. In this sample-return mission, there will be a chance to do KBRR measurements between an ascending module and an orbiting module. These two modules will fly around lunar at an inclination of ˜49 degrees, with an orbital height of 100 km and an inter-satellite distance of 200 km. In our research, we simulated the contribution of the KBRR tracking mode for different GRAIL orbital geometries. This analysis indicated possible deficiencies in the low degree coefficient solutions for the polar satellite-to-satellite tracking mode at various orbital heights. We also investigated the potential contributions of the KBRR to the Chang'E-5 mission goal of lunar gravity field recovery, especially in the long wavelength component. Potential improvements were assessed using various power spectrums of the lunar gravity field models. In addition, we also investigated possible improvements in solving lunar tidal Love number K2. These results may assist the implementation of the Chang'E-5 mission.

  18. STS-26 MS Hilmers on fixed based (FB) shuttle mission simulator (SMS) middeck

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers prepares to ascend a ladder representing the interdeck access hatch from the shuttle middeck to the flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  19. Spin-orbit torques from interfacial spin-orbit coupling for various interfaces

    Science.gov (United States)

    Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M. D.

    2017-09-01

    We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal-metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism.

  20. Overview: Solar Electric Propulsion Concept Designs for SEP Technology Demonstration Mission

    Science.gov (United States)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David; Herman, Daniel

    2014-01-01

    JPC presentation of the Concept designs for NASA Solar Electric Propulsion Technology Demonstration mission paper. Multiple Solar Electric Propulsion Technology Demonstration Missions were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kg spacecraft capable of delivering 4000 kg of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kg spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload.

  1. Coupling of the Magnetosphere-Ionosphere/Thermosphere and Oxygen Outflow-- MIT Mission

    Science.gov (United States)

    Fu, S.

    2017-12-01

    The goal of the MIT mission is to understand the coupling of the magnetosphere and ionosphere from the prospective of particles. It will focus on the outflow of the ionosphere particles (mainly oxygen ions) from the Earth, including the acceleration mechanisms of oxygen ions and their relative importance in different regions, the importance of these ions while transferred into the magnetosphere and the roles they played in magnetosphere activities. A constellation of four satellites orbiting at three elliptical orbits will provide the unique opportunities to observed there ions at three different altitude with temporal changes of the flux of these particles and the magnetic field environments. The conceptual design of the spacecraft and a summary of the payload will be presented. The MIT mission was selected as one of the five candidates for the upcoming mission plan in China.

  2. An Overview of Current and Future Stratospheric Balloon Mission Capabilities

    Science.gov (United States)

    Smith, Michael

    The modern stratospheric balloon has been used for a variety of missions since the late 1940's. Capabilities of these vehicles to carry larger payloads, fly to higher altitudes, and fly for longer periods of time have increased dramatically over this time. In addition to these basic performance metrics, reliability statistics for balloons have reached unprecedented levels in recent years. Balloon technology developed in the United States in the last decade has the potential to open a new era in economical space science using balloons. As always, the advantage of the balloon platform is the fact that missions can be carried out at a fraction of the cost and schedule of orbital missions. A secondary advantage is the fact that instruments can be re-flown numerous times while upgrading sensor and data processing technologies from year to year. New mission capabilities now have the potential for enabling ground breaking observations using balloons as the primary platform as opposed to a stepping stone to eventual orbital observatories. The limit of very high altitude balloon missions will be explored with respect to the current state of the art of balloon materials and fabrication. The same technological enablers will also be applied to possibilities for long duration missions at mid latitudes with payloads of several tons. The balloon types and their corresponding mission profiles will be presented in a performance matrix that will be useful for potential scientific users in planning future research programs.

  3. Nuclear reactor power for an electrically powered orbital transfer vehicle

    Science.gov (United States)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  4. Nuclear reactor power for an electrically powered orbital transfer vehicle

    International Nuclear Information System (INIS)

    Jaffe, L.; Beatty, R.; Bhandari, P.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low Earth orbit (LEO) and geosynchronous Earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to Earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant

  5. Cost-effective and robust mitigation of space debris in low earth orbit

    Science.gov (United States)

    Walker, R.; Martin, C.

    It is predicted that the space debris population in low Earth orbit (LEO) will continue to grow and in an exponential manner in the long-term due to an increasing rate of collisions between large objects, unless internationally-accepted space debris mitigation measures are adopted soon. Such measures are aimed at avoiding the future generation of space debris objects and primarily need to be effective in preventing significant long-term growth in the debris population, even in the potential scenario of an increase in future space activity. It is also important that mitigation measures can limit future debris population levels, and therefore the underlying collision risk to space missions, to the lowest extent possible. However, for their wide acceptance, the cost of implementation associated with mitigation measures needs to be minimised as far as possible. Generally, a lower collision risk will cost more to achieve and vice versa, so it is necessary to strike a balance between cost and risk in order to find a cost-effective set of mitigation measures. In this paper, clear criteria are established in order to assess the cost-effectiveness of space debris mitigation measures. A full cost-risk-benefit trade-off analysis of numerous mitigation scenarios is presented. These scenarios consider explosion prevention and post-mission disposal of space systems, including de-orbiting to limited lifetime orbits and re-orbiting above the LEO region. The ESA DELTA model is used to provide long-term debris environment projections for these scenarios as input to the benefit and risk parts of the trade-off analysis. Manoeuvre requirements for the different post-mission disposal scenarios were also calculated in order to define the cost-related element. A 25-year post-mission lifetime de-orbit policy, combined with explosion prevention and mission-related object limitation, was found to be the most cost-effective solution to the space debris problem in LEO. This package would also

  6. Recent Hydrologic Developments in the SWOT Mission

    Science.gov (United States)

    Alsdorf, D. E.; Mognard, N. M.; Cretaux, J.; Calmant, S.; Lettenmaier, D. P.; Rodriguez, E.

    2012-12-01

    The Surface Water and Ocean Topography satellite mission (SWOT) is designed to measure the elevations of the world's water surfaces including both terrestrial surface waters and the oceans. CNES, NASA, and the CSA are partners in the mission as are hydrologists, oceanographers, and an international engineering team. Recent hydrologic and mission related advances include the following. (1) An airborne version of SWOT called AirSWOT has been developed to provide calibration and validation for the mission when on orbit as well as to support science and technology during mission development. AirSWOT flights are in the planning stage. (2) In early 2012, NASA and CNES issued calls for proposals to participate in the forthcoming SWOT Science Definition Team. Results are expected in time for a Fall 2012 start of the SDT. (3) A workshop held in June 2012 addressed the problem of estimating river discharge from SWOT measurements. SWOT discharge estimates will be developed for river reaches rather than individual cross-sections. Errors will result from algorithm unknowns of bathymetry and roughness, from errors in SWOT measurements of water surface height and inundation, from the incomplete temporal record dictated by the SWOT orbit, and from fluvial features such as unmeasured inflows and outflows within the reach used to estimate discharge. To overcome these issues, in-situ and airborne field data are required in order to validate and refine algorithms. (4) Two modeling methods are using the Amazon Basin as a test case for demonstrating the utility of SWOT observables for constraining water balances. In one case, parameters used to minimize differences between SWOT and model water surface elevations should be adjusted locally in space and time. In the other case, using actual altimetry data as a proxy for SWOT's water surface elevations, it was determined that model water surface elevations were less than 1.6m different from the altimetry measurements: a considerable match

  7. ICARUS Mission, Next Step of Coronal Exploration after Solar Orbiter and Solar Probe Plus

    Science.gov (United States)

    Krasnoselskikh, V.; Tsurutani, B.; Velli, M.; Maksimovic, M.; Balikhin, M. A.; Dudok de Wit, T.; Kretzschmar, M.

    2017-12-01

    The primary scientific goal of ICARUS, a mother-daughter satellite mission, will be to determine how the magnetic field and plasma dynamics in the outer solar atmosphere give rise to the corona, the solar wind and the heliosphere. Reaching this goal will be a Rosetta-stone step, with results broadly applicable in the fields of space plasma and astrophysics. Within ESA's Cosmic Vision roadmap, these goals address Theme 2: How does the solar system work ?" Investigating basic processes occurring from the Sun to the edge of the Solar System". ICARUS will not only advance our understanding of the plasma environment around the Sun, but also of the numerous magnetically active stars with hot plasma coronae. ICARUS I will perform the firstever direct in situ measurements of electromagnetic fields, particle acceleration, wave activity, energy distribution and flows directly in the regions where the solar wind emerges from the coronal plasma. ICARUS I will have a perihelion at 1 Solar radius from its surface, it will cross the region where the major energy deposition occurs. The polar orbit of ICARUS I will enable crossing the regions where both the fast and slow wind are generated. It will probe local characteristics of the plasma and provide unique information about the processes involved in the creation of the solar wind. ICARUS II will observe this region using remote-sensing instruments, providing simultaneous information about regions crossed by ICARUS I and the solar atmosphere below as observed by solar telescopes. It will provide bridges for understanding the magnetic links between heliosphere and solar atmosphere. Such information is crucial to understanding of the physics and electrodynamics of the solar atmosphere. ICARUS II will also play an important relay role, enabling the radio-link with ICARUS I. It will receive, collect and store information transmitted from ICARUS I during its closest approach to the Sun. It will perform preliminary data processing and

  8. Resumes of the Bird mission

    Science.gov (United States)

    Lorenz, E.; Borwald, W.; Briess, K.; Kayal, H.; Schneller, M.; Wuensten, Herbert

    2004-11-01

    The DLR micro satellite BIRD (Bi-spectral Infra Red Detection) was piggy- back launched with the Indian Polar Satellite Launch Vehicle PSLV-C3 into a 570 km circular sun-synchronous orbit on 22 October 2001. The BIRD mission, fully funded by the DLR, answers topical technological and scientific questions related to the operation of a compact infra- red push-broom sensor system on board of a micro satellite and demonstrates new spacecraft bus technologies. BIRD mission control is conducted by DLR / GSOC in Oberpfaffenhofen. Commanding, data reception and data processing is performed via ground stations in Weilheim and Neustrelitz (Germany). The BIRD mission is a demonstrator for small satellite projects dedicated to the hazard detection and monitoring. In the year 2003 BIRD has been used in the ESA project FUEGOSAT to demonstrate the utilisation of innovative space technologies for fire risk management.

  9. STS-36 crewmembers train in JSC's FB shuttle mission simulator (SMS)

    Science.gov (United States)

    1989-01-01

    STS-36 Mission Specialist (MS) David C. Hilmers, seated on the aft flight deck, discusses procedures with Commander John O. Creighton (left) and Pilot John H. Casper during a simulation in JSC's Fixed Based (FB) Shuttle Mission Simulator (SMS). Casper reviews a checklist at the pilots station on the forward flight deck. The crewmembers are rehearsing crew cabin activities for their upcoming Department of Defense (DOD) mission aboard Atlantis, Orbiter Vehicle (OV) 104.

  10. EOS Aura Mission Status at Earth Science Constellation MOWG Meeting @ LASP (Boulder, CO) April 13, 2016

    Science.gov (United States)

    Guit, William J.; Fisher, Dominic

    2016-01-01

    Presentation reflects EOS Aura mission status, spacecraft subsystems summary, recent and planned activities, inclination adjust maneuvers, propellant usage, orbit maintenance maneuvers, conjunction assessment events, orbital parameters trends and predictions.

  11. A Lean, Fast Mars Round-trip Mission Architecture: Using Current Technologies for a Human Mission in the 2030s

    Science.gov (United States)

    Bailey, Lora; Folta, David; Barbee, Brent W.; Vaughn, Frank; Kirchman, Frank; Englander, Jacob; Campbell, Bruce; Thronson, Harley; Lin, Tzu Yu

    2013-01-01

    We present a lean fast-transfer architecture concept for a first human mission to Mars that utilizes current technologies and two pivotal parameters: an end-to-end Mars mission duration of approximately one year, and a deep space habitat of approximately 50 metric tons. These parameters were formulated by a 2012 deep space habitat study conducted at the NASA Johnson Space Center (JSC) that focused on a subset of recognized high- engineering-risk factors that may otherwise limit space travel to destinations such as Mars or near-Earth asteroid (NEA)s. With these constraints, we model and promote Mars mission opportunities in the 2030s enabled by a combination of on-orbit staging, mission element pre-positioning, and unique round-trip trajectories identified by state-of-the-art astrodynamics algorithms.

  12. The Space Launch System -The Biggest, Most Capable Rocket Ever Built, for Entirely New Human Exploration Missions Beyond Earth's Orbit

    Science.gov (United States)

    Shivers, C. Herb

    2012-01-01

    NASA is developing the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new capability for human exploration beyond Earth's orbit. The Space Launch System will provide a safe, affordable and sustainable means of reaching beyond our current limits and opening up new discoveries from the unique vantage point of space. The first developmental flight, or mission, is targeted for the end of 2017. The Space Launch System, or SLS, will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a backup for commercial and international partner transportation services to the International Space Station. The SLS rocket will incorporate technological investments from the Space Shuttle Program and the Constellation Program in order to take advantage of proven hardware and cutting-edge tooling and manufacturing technology that will significantly reduce development and operations costs. The rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25D/E from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage. SLS will also use solid rocket boosters for the initial development flights, while follow-on boosters will be competed based on performance requirements and affordability considerations.

  13. Galileo and Ulysses missions safety analysis and launch readiness status

    International Nuclear Information System (INIS)

    Cork, M.J.; Turi, J.A.

    1989-01-01

    The Galileo spacecraft will explore the Jupiter system and Ulysses will fly by Jupiter en route to a polar orbit of the sun. Both spacecraft are powered by general purpose heat source radioisotope thermoelectric generators (RTGs). As a result of the Challenger accident and subsequent mission reprogramming, the Galileo and Ulysses missions' safety analysis had to be repeated. In addition to presenting an overview of the safety analysis status for the missions, this paper presents a brief review of the missions' objectives and design approaches, RTG design characteristics and development history, and a description of the safety analysis process. (author)

  14. Status of the Megha-Tropiques Mission

    Science.gov (United States)

    Gosset, M.; Roca, R.; French Megha-Tropiques Science Team

    2011-12-01

    The Megha-Tropiques mission is an Indo-French mission built by the Centre National d'Études Spatiales and the Indian Space Research Organisation due to launch in September 2011. Megha means cloud in Sanskrit and Tropiques is the French for tropics. The major innovation of MT is to bring together a suite of complementary instruments on a dedicated orbit that strongly improves the sampling of the water cycle elements. Indeed the low inclination on the equator (20°) combined to the elevated height of the orbit (865km) provides unique observing capabilities with up to 6 over-passes per day. The scientific objective of the mission concerns i) Atmospheric energy budget in the inter-tropical zone and at system scale (radiation, latent heat, . . . ) ii) Life cycle of Mesoscale Convective Complexes in the Tropics (over Oceans and Continents) and iii) Monitoring and assimilation for Cyclones, Monsoons, Meso-scale Convective Systems forecasting. These scientific objectives are achieved thanks to the following payload: SCARAB : wide band instrument for inferring longwave and shortwave outgoing fluxes at the top of the atmosphere (cross track scanning, 40 km resolution at nadir); SAPHIR: microwave sounder for water vapour sounding: 6 channels in the WV absorption band at 183.31 GHz. (cross track, 10 km) and MADRAS: microwave imager for precipitation: channels at 18, 23, 37, 89 and 157 GHz, H and V polarisations. (conical swath,<10 km to 40 km). In this presentation, a rapid overview of the Mission will be given as well as a first status depending on the actual launch of the satellite.

  15. Benefits to the Europa Clipper Mission Provided by the Space Launch System

    Science.gov (United States)

    Creech, Stephen D.; Patel, Keyur

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) proposed Europa Clipper mission would provide an unprecedented look at the icy Jovian moon, and investigate its environment to determine the possibility that it hosts life. Focused on exploring the water, chemistry, and energy conditions on the moon, the spacecraft would examine Europa's ocean, ice shell, composition and geology by performing 32 low-altitude flybys of Europa from Jupiter orbit over 2.3 years, allowing detailed investigations of globally distributed regions of Europa. In hopes of expediting the scientific program, mission planners at NASA's Jet Propulsion Laboratory are working with the Space Launch System (SLS) program, managed at Marshall Space Flight Center. Designed to be the most powerful launch vehicle ever flown, SLS is making progress toward delivering a new capability for exploration beyond Earth orbit. The SLS rocket will offer an initial low-Earth-orbit lift capability of 70 metric tons (t) beginning with a first launch in 2017 and will then evolve into a 130 t Block 2 version. While the primary focus of the development of the initial version of SLS is on enabling human exploration missions beyond low Earth orbit using the Orion Multi-Purpose Crew Vehicle, the rocket offers unique benefits to robotic planetary exploration missions, thanks to the high characteristic energy it provides. This paper will provide an overview of both the proposed Europa Clipper mission and the Space Launch System vehicle, and explore options provided to the Europa Clipper mission for a launch within a decade by a 70 t version of SLS with a commercially available 5-meter payload fairing, through comparison with a baseline of current Evolved Expendable Launch Vehicle (EELV) capabilities. Compared to that baseline, a mission to the Jovian system could reduce transit times to less than half, or increase mass to more than double, among other benefits. In addition to these primary benefits, the paper will

  16. Mars Express Lithium Ion Batteries Performance Analysis

    Directory of Open Access Journals (Sweden)

    Dudley G.

    2017-01-01

    Full Text Available Now more than 12 years in orbit, Mars Express battery telemetry during some of the deepest discharge cycles has been analysed with the help of the ESTEC lithium ion cell model. The best-fitting model parameter sets were then used to predict the energy that is expected to be available before the battery voltage drops below the minimum value that can support the power bus. This allows mission planners to determine what future power profiles could be supported without risk of entering safe mode. It also gives some more insights into the ageing properties of these batteries.

  17. TRMM On-Orbit Performance Reassessed After Control Change

    Science.gov (United States)

    Bilanow, Stephen

    2006-01-01

    The Tropical Rainfall Measuring Mission (TRMM) spacecraft, a joint mission between the U.S. and Japan, launched onboard an H-I1 rocket on November 27, 1997, and transitioned in August, 2001, from an average operating altitude of 350 kilometers to 402.5 kilometers. Due to problems using the Earth Sensor Assembly (ESA) at the higher altitude, TRMM switched to a backup attitude control mode. Prior to the orbit boost TRMM controlled pitch and roll to the local vertical using ESA measurements while using gyro data to propagate yaw attitude between yaw updates from the Sun sensors. After the orbit boost, a Kalman filter used 3-axis gyro data with Sun sensor and magnetometers to estimate onboard attitude. While originally intended to meet a degraded attitude accuracy of 0.7 degrees, the new control mode met the original 0.2 degree attitude accuracy requirement after improving onboard ephemeris prediction and adjusting the magnetometer calibration onboard. Independent roll attitude checks using a science instrument, the Precipitation Radar (PR) which was built in Japan, provided a novel insight into the pointing performance. The PR data helped identify the pointing errors after the orbit boost, track the performance improvements, and show subtle effects from ephemeris errors and gyro bias errors. It also helped identify average bias trends throughout the mission. Roll errors tracked by the PR from sample orbits pre-boost and post-boost are shown in Figure 1. Prior to the orbit boost, the largest attitude errors were due to occasional interference in the ESA. These errors were sometime larger than 0.2 degrees in pitch and roll, but usually less, as estimated from a comprehensive review of the attitude excursions using gyro data. Sudden jumps in the onboard roll show up as spikes in the reported attitude since the control responds within tens of seconds to null the pointing error. The PR estimated roll tracks well with an estimate of the roll history propagated using gyro

  18. Coatings for the NuSTAR mission

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Jakobsen, Anders Clemen; Brejnholt, Nicolai

    2011-01-01

    The NuSTAR mission will be the first mission to carry a hard X-ray(5-80 keV) focusing telescope to orbit. The optics are based on the use of multilayer coated thin slumped glass. Two different material combinations were used for the flight optics, namely W/Si and Pt/C. In this paper we describe...... the entire coating effort including the final coating design that was used for the two flight optics. We also present data on the performance verification of the coatings both on Si witness samples as well as on individual flight mirrors....

  19. Concept design and alternate arrangements of orbiter mid-deck habitability features

    Science.gov (United States)

    Church, R. A.; Ciciora, J. A.; Porter, K. L.; Stevenson, G. E.

    1976-01-01

    The evaluations and recommendations for habitability features in the space shuttle orbiter mid-deck are summarized. The orbiter mission plans, the mid-deck dimensions and baseline arrangements along with crew compliments and typical activities were defined. Female and male anthropometric data based on zero-g operations were also defined. Evaluations of baseline and alternate feasible concepts provided several recommendations which are discussed.

  20. Cassini Attitude and Articulation Control Subsystem Fault Protection Challenges During Saturn Proximal Orbits

    Science.gov (United States)

    Bates, David M.

    2015-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. As the first spacecraft to achieve orbit at Saturn, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for a first and second extended mission through 2017. As part of the final extended mission, Cassini will begin an aggressive and exciting campaign of high inclination low altitude flybys within the inner most rings of Saturn, skimming Saturn's outer atmosphere, until the spacecraft is finally disposed of via planned impact with the planet. This final campaign, known as the proximal orbits, presents unique fault protection related challenges, the details of which are discussed in this paper.

  1. Overview of Mercury Magnetospheric Orbiter (MMO) for BepiColombo

    Science.gov (United States)

    Murakami, G.; Hayakawa, H.; Fujimoto, M.; BepiColombo Project Team

    2018-05-01

    The next Mercury exploration mission BepiColombo will be launched in October 2018 and will arrive at Mercury in December 2025. We present the current status, science goals, and observation plans of JAXA's Mercury Magnetospheric Orbiter (MMO).

  2. EOS Aqua Mission Status at Earth Science Constellation MOWG Meeting @ LASP April 13, 2016

    Science.gov (United States)

    Guit, William J.

    2016-01-01

    This presentation reflects the EOS Aqua mission status, spacecraft subsystem summary, recent and planned activities, inclination adjust maneuvers, propellant usage and lifetime estimate, orbital maintenance maneuvers, conjunction assessment high interest events, ground track error, spacecraft orbital parameters trends and predictions.

  3. Present Status and Near Term Activities for the ExoMars Trace Gas Orbiter.

    Science.gov (United States)

    Svedhem, H.; Vago, J. L.

    2017-12-01

    The ExoMars 2016 mission was launched on a Proton rocket from Baikonur, Kazakhstan, on 14 March 2016 and arrived at Mars on 19 October 2016. The spacecraft is now performing aerobraking to reduce its orbital period from initial post-insertion orbital period of one Sol to the final science orbit with a 2 hours period. The orbital inclination will be 74 degrees. During the aerobraking a wealth of data has been acquired on the state of the atmosphere along the tracks between 140km and the lowest altitude at about 105 km. These data are now being analysed and compared with existing models. In average TGO measures a lower atmospheric density than predicted, but the numbers lay within the expected variability. ExoMars is a joint programme of the European Space Agency (ESA) and Roscosmos, Russia. It consists of the ExoMars 2016 mission with the Trace Gas Orbiter, TGO, and the Entry Descent and Landing Demonstrator, EDM, named Schiaparelli, and the ExoMars 2020 mission, which carries a lander and a rover. The TGO scientific payload consists of four instruments: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector to search for subsurface hydrogen (as proxy for water ice and hydrated minerals). The launch mass of the TGO was 3700 kg, including fuel. In addition to its scientific measurements TGO will act as a relay orbiter for NASA's landers on Mars and as from 2021 for the ESA-Roscosmos Rover and Surface Station.

  4. STS-49 crew in JSC's FB Shuttle Mission Simulator (SMS) during simulation

    Science.gov (United States)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, crewmembers participate in a simulation in JSC's Fixed Base (FB) Shuttle Mission Simulator (SMS) located in the Mission Simulation and Training Facility Bldg 5. Wearing launch and entry suits (LESs) and launch and entry helmets (LEH) and seated on the FB-SMS middeck are (left to right) Mission Specialist (MS) Thomas D. Akers, MS Kathryn C. Thornton, and MS Pierre J. Thuot.

  5. Conceptual study of on orbit production of cryogenic propellants by water electrolysis

    Science.gov (United States)

    Moran, Matthew E.

    1991-01-01

    The feasibility is assessed of producing cryogenic propellants on orbit by water electrolysis in support of NASA's proposed Space Exploration Initiative (SEI) missions. Using this method, water launched into low earth orbit (LEO) would be split into gaseous hydrogen and oxygen by electrolysis in an orbiting propellant processor spacecraft. The resulting gases would then be liquified and stored in cryogenic tanks. Supplying liquid hydrogen and oxygen fuel to space vehicles by this technique has some possible advantages over conventional methods. The potential benefits are derived from the characteristics of water as a payload, and include reduced ground handling and launch risk, denser packaging, and reduced tankage and piping requirements. A conceptual design of a water processor was generated based on related previous studies, and contemporary or near term technologies required. Extensive development efforts would be required to adapt the various subsystems needed for the propellant processor for use in space. Based on the cumulative results, propellant production by on orbit water electrolysis for support of SEI missions is not recommended.

  6. Numerical Algorithms for Precise and Efficient Orbit Propagation and Positioning

    Science.gov (United States)

    Bradley, Ben K.

    Motivated by the growing space catalog and the demands for precise orbit determination with shorter latency for science and reconnaissance missions, this research improves the computational performance of orbit propagation through more efficient and precise numerical integration and frame transformation implementations. Propagation of satellite orbits is required for astrodynamics applications including mission design, orbit determination in support of operations and payload data analysis, and conjunction assessment. Each of these applications has somewhat different requirements in terms of accuracy, precision, latency, and computational load. This dissertation develops procedures to achieve various levels of accuracy while minimizing computational cost for diverse orbit determination applications. This is done by addressing two aspects of orbit determination: (1) numerical integration used for orbit propagation and (2) precise frame transformations necessary for force model evaluation and station coordinate rotations. This dissertation describes a recently developed method for numerical integration, dubbed Bandlimited Collocation Implicit Runge-Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. It requires significantly fewer force function evaluations than explicit Runge-Kutta schemes and approaches the efficiency of the 8th-order Gauss-Jackson multistep method. Converting between the Geocentric Celestial Reference System (GCRS) and International Terrestrial Reference System (ITRS) is necessary for many applications in astrodynamics, such as orbit propagation, orbit determination, and analyzing geoscience data from satellite missions. This dissertation provides simplifications to the Celestial Intermediate Origin (CIO) transformation scheme and Earth orientation parameter (EOP) storage for use in positioning and

  7. CubeSat quantum communications mission

    Energy Technology Data Exchange (ETDEWEB)

    Oi, Daniel K.L. [University of Strathclyde, SUPA Department of Physics, Glasgow (United Kingdom); University of Strathclyde, Strathclyde Space Institute, Glasgow (United Kingdom); Ling, Alex [National University of Singapore, Centre for Quantum Technologies, Singapore (Singapore); National University of Singapore, Dept. of Physics, Singapore (Singapore); Vallone, Giuseppe; Villoresi, Paolo [Universita degli Studi di Padova, Dipartimento di Ingegneria dell' Informazione, Padova (Italy); Greenland, Steve; Kerr, Emma [University of Strathclyde, Advanced Space Concepts Laboratory, Mechanical and Aerospace Engineering, Glasgow (United Kingdom); Macdonald, Malcolm [Technology and Innovation Centre, Scottish Centre of Excellence in Satellite Applications, Glasgow (United Kingdom); Weinfurter, Harald [Ludwig-Maximilians-Universitaet, Department fuer Physik, Munich (Germany); Kuiper, Hans [Delft University of Technology, Space Systems Engineering, Aerospace Engineering, Delft (Netherlands); Charbon, Edoardo [AQUA, EPFL, Lausanne (Switzerland); Delft University of Technology, Delft (Netherlands); Ursin, Rupert [Vienna Austrian Academy of Sciences, Institute for Quantum Optics and Quantum Information, Vienna (Austria)

    2017-12-15

    Quantum communication is a prime space technology application and offers near-term possibilities for long-distance quantum key distribution (QKD) and experimental tests of quantum entanglement. However, there exists considerable developmental risks and subsequent costs and time required to raise the technological readiness level of terrestrial quantum technologies and to adapt them for space operations. The small-space revolution is a promising route by which synergistic advances in miniaturization of both satellite systems and quantum technologies can be combined to leap-frog conventional space systems development. Here, we outline a recent proposal to perform orbit-to-ground transmission of entanglement and QKD using a CubeSat platform deployed from the International Space Station (ISS). This ambitious mission exploits advances in nanosatellite attitude determination and control systems (ADCS), miniaturised target acquisition and tracking sensors, compact and robust sources of single and entangled photons, and high-speed classical communications systems, all to be incorporated within a 10 kg 6 litre mass-volume envelope. The CubeSat Quantum Communications Mission (CQuCoM) would be a pathfinder for advanced nanosatellite payloads and operations, and would establish the basis for a constellation of low-Earth orbit trusted-nodes for QKD service provision. (orig.)

  8. CubeSat quantum communications mission

    International Nuclear Information System (INIS)

    Oi, Daniel K.L.; Ling, Alex; Vallone, Giuseppe; Villoresi, Paolo; Greenland, Steve; Kerr, Emma; Macdonald, Malcolm; Weinfurter, Harald; Kuiper, Hans; Charbon, Edoardo; Ursin, Rupert

    2017-01-01

    Quantum communication is a prime space technology application and offers near-term possibilities for long-distance quantum key distribution (QKD) and experimental tests of quantum entanglement. However, there exists considerable developmental risks and subsequent costs and time required to raise the technological readiness level of terrestrial quantum technologies and to adapt them for space operations. The small-space revolution is a promising route by which synergistic advances in miniaturization of both satellite systems and quantum technologies can be combined to leap-frog conventional space systems development. Here, we outline a recent proposal to perform orbit-to-ground transmission of entanglement and QKD using a CubeSat platform deployed from the International Space Station (ISS). This ambitious mission exploits advances in nanosatellite attitude determination and control systems (ADCS), miniaturised target acquisition and tracking sensors, compact and robust sources of single and entangled photons, and high-speed classical communications systems, all to be incorporated within a 10 kg 6 litre mass-volume envelope. The CubeSat Quantum Communications Mission (CQuCoM) would be a pathfinder for advanced nanosatellite payloads and operations, and would establish the basis for a constellation of low-Earth orbit trusted-nodes for QKD service provision. (orig.)

  9. Teamwork Reasoning and Multi-Satellite Missions

    Science.gov (United States)

    Marsella, Stacy C.; Plaunt, Christian (Technical Monitor)

    2002-01-01

    NASA is rapidly moving towards the use of spatially distributed multiple satellites operating in near Earth orbit and Deep Space. Effective operation of such multi-satellite constellations raises many key research issues. In particular, the satellites will be required to cooperate with each other as a team that must achieve common objectives with a high degree of autonomy from ground based operations. The multi-agent research community has made considerable progress in investigating the challenges of realizing such teamwork. In this report, we discuss some of the teamwork issues that will be faced by multi-satellite operations. The basis of the discussion is a particular proposed mission, the Magnetospheric MultiScale mission to explore Earth's magnetosphere. We describe this mission and then consider how multi-agent technologies might be applied in the design and operation of these missions. We consider the potential benefits of these technologies as well as the research challenges that will be raised in applying them to NASA multi-satellite missions. We conclude with some recommendations for future work.

  10. Long-term evaluation of orbital dynamics in the Sun-planet system considering axial-tilt

    Science.gov (United States)

    Bakhtiari, Majid; Daneshjou, Kamran

    2018-05-01

    In this paper, the axial-tilt (obliquity) effect of planets on the motion of planets’ orbiter in prolonged space missions has been investigated in the presence of the Sun gravity. The proposed model is based on non-simplified perturbed dynamic equations of planetary orbiter motion. From a new point of view, in this work, the dynamic equations regarding a disturbing body in elliptic inclined three-dimensional orbit are derived. The accuracy of this non-simplified method is validated with dual-averaged method employed on a generalized Earth-Moon system. It is shown that the neglected short-time oscillations in dual-averaged technique can accumulate and propel to remarkable errors in the prolonged evolution. After validation, the effects of the planet’s axial-tilt on eccentricity, inclination and right ascension of the ascending node of the orbiter are investigated. Moreover, a generalized model is provided to study the effects of third-body inclination and eccentricity on orbit characteristics. It is shown that the planet’s axial-tilt is the key to facilitating some significant changes in orbital elements in long-term mission and short-time oscillations must be considered in accurate prolonged evaluation.

  11. Generating precise and homogeneous orbits for Jason-1 and Jason-2

    Science.gov (United States)

    Flohrer, Claudia; Otten, Michiel; Springer, Tim; Dow, John M.

    Driven by the GMES (Global Monitoring for Environment and Security) and GGOS (Global Geodetic Observing System) initiatives the user community has a strong demand for high-quality altimetry products. In order to derive such high-quality altimetry products, precise orbits for the altimetry satellites are needed. Satellite altimetry missions meanwhile span over three decades, in which our understanding of the Earth has increased significantly. As also the models used for precise orbit determination (POD) have improved, the satellite orbits of the altimetry satellites are not available in an uniform reference system. Homogeneously determined orbits referring to the same global reference system are, however, needed to improve our understanding of the Earth system. With the launch of the TOPEX/Poseidon (T/P) mission in 1992 a still ongoing time series of high-altimetry measurements of ocean topography started. In 2001 the altimetry mission Jason-1 took over and in 2009 the follow-on program Jason-2/OSTM started. All three satellites follow the same ground-track by flying in the same orbit, thus ensuring a continuous time-series of centimetre-level ocean topography observations. Therefore a reprocessing of the orbit determination for these altimetry satellites would be highly beneficial for altimetry applications. The Navigation Support Office at ESA/ESOC has enhanced the GNSS processing capabilities of its NAPEOS software. Thus it is now in the unique position to do orbit determination by combining different types of data, and by using one single software system for different satellite types, including the most recent improvements in orbit and observation modelling and IERS conventions. Our presentation focuses on the re-processing efforts carried out by ESA/ESOC for the gener-ation of precise and homogeneous orbits referring to the same reference frame for the altimetry satellites Jason-1 and Jason-2. At the same time ESOC carried out a re-processing of the com

  12. DETECTION OF KOI-13.01 USING THE PHOTOMETRIC ORBIT

    International Nuclear Information System (INIS)

    Shporer, Avi; Jenkins, Jon M.; Seader, Shawn E.; Smith, Jeffrey C.; Thompson, Susan E.; Twicken, Joseph D.; Rowe, Jason F.; Sanderfer, Dwight T.; Still, Martin D.; Welsh, William F.

    2011-01-01

    We use the KOI-13 transiting star-planet system as a test case for the recently developed BEER algorithm, aimed at identifying non-transiting low-mass companions by detecting the photometric variability induced by the companion along its orbit. Such photometric variability is generated by three mechanisms: the beaming effect, tidal ellipsoidal distortion, and reflection/heating. We use data from three Kepler quarters, from the first year of the mission, while ignoring measurements within the transit and occultation, and show that the planet's ephemeris is clearly detected. We fit for the amplitude of each of the three effects and use the beaming effect amplitude to estimate the planet's minimum mass, which results in M p sin i = 9.2 ± 1.1 M J (assuming the host star parameters derived by Szabo et al.). Our results show that non-transiting star-planet systems similar to KOI-13.01 can be detected in Kepler data, including a measurement of the orbital ephemeris and the planet's minimum mass. Moreover, we derive a realistic estimate of the amplitudes uncertainties, and use it to show that data obtained during the entire lifetime of the Kepler mission of 3.5 years will allow detecting non-transiting close-in low-mass companions orbiting bright stars, down to the few Jupiter mass level. Data from the Kepler Extended Mission, if funded by NASA, will further improve the detection capabilities.

  13. Korean Mars Mission Design Using KSLV-III

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2006-12-01

    Full Text Available Mission opportunities and trajectory characteristics for the future Korean Mars mission have designed and analyzed using KSLV-III(Korea Space Launch Vehicle-III. Korea's first space center, ``NARO space center'' is selected as a launch site. For launch opportunities, year 2033 is investigated under considering the date of space center's completion with KSLV series development status. Optimal magnitude of various maneuvers, Trans Mars Injection (TMI maneuver, Trajectory Correction Maneuver (TCM, Mars Orbit Insertion (MOI maneuver and Orbit Trim Maneuver (OTM, which are required during the every Mars mission phases are computed with the formulation of nonlinear optimization problems using NPSOL software. Finally, mass budgets for upper stage (launcher for KSLV-III and spacecraft are derived using various optimized maneuver magnitudes. For results, daily launch window from NARO space center for successful Korean Mars mission is avaliable for next 27 minutes starting from Apr. 16. 2033. 12:17:26 (UTC. Maximum spacecraft gross mass which can delivered to Mars is about 206 kg, with propellant mass of 109 kg and structure mass of 97 kg, when on board spacecraft thruster's Isp is assumed to have 290 sec. For upper stage, having structure ratio of 0.15 and Isp value of 280 sec, gross mass is about 1293 kg with propellant mass of 1099 kg and structure mass of 194 kg. However, including 10% margins to computed optimal maneuver values, spacecraft gross mass is reduced to about 148 kg with upper stage's mass of 1352 kg. This work will give various insights, requiring performances to developing of KSLV-III and spacecraft design for future Korean Mars missions.

  14. NanoSail - D Orbital and Attitude Dynamics

    Science.gov (United States)

    Heaton, Andrew F.; Faller, Brent F.; Katan, Chelsea K.

    2013-01-01

    NanoSail-D unfurled January 20th, 2011 and successfully demonstrated the deployment and deorbit capability of a solar sail in low Earth orbit. The orbit was strongly perturbed by solar radiation pressure, aerodynamic drag, and oblate gravity which were modeled using STK HPOP. A comparison of the ballistic coefficient history to the orbit parameters exhibits a strong relationship between orbital lighting, the decay rate of the mean semi-major axis and mean eccentricity. A similar comparison of mean solar area using the STK HPOP solar radiation pressure model exhibits a strong correlation of solar radiation pressure to mean eccentricity and mean argument of perigee. NanoSail-D was not actively controlled and had no capability on-board for attitude or orbit determination. To estimate attitude dynamics we created a 3-DOF attitude dynamics simulation that incorporated highly realistic estimates of perturbing forces into NanoSail-D torque models. By comparing the results of this simulation to the orbital behavior and ground observations of NanoSail-D, we conclude that there is a coupling between the orbit and attitude dynamics as well as establish approximate limits on the location of the NanoSail-D solar center of pressure. Both of these observations contribute valuable data for future solar sail designs and missions.

  15. Friendship 7 the epic orbital flight of John H. Glenn, Jr.

    CERN Document Server

    Burgess, Colin

    2015-01-01

    In this spellbinding account of an historic but troubled orbital mission, noted space historian Colin Burgess takes us back to an electrifying time in American history, when intrepid pioneers were launched atop notoriously unreliable rockets at the very dawn of human space exploration.   A nation proudly and collectively came to a standstill on the day this mission flew; a day that will be forever enshrined in American spaceflight history. On the morning of February 20, 1962, following months of frustrating delays, a Marine Corps war hero and test pilot named John Glenn finally blazed a path into orbit aboard a compact capsule named Friendship 7.   The book’s tension-filled narrative faithfully unfolds through contemporary reports and the personal recollections of astronaut John Glenn, along with those closest to the Friendship 7 story, revealing previously unknown facts behind one of America’s most ambitious and memorable pioneering space missions.

  16. The Lunar Scout Program: An international program to survey the Moon from orbit for geochemistry, mineralogy, imagery, geodesy, and gravity

    Science.gov (United States)

    Morrison, Donald A. (Editor)

    1994-01-01

    The Lunar Scout Program was one of a series of attempts by NASA to develop and fly an orbiting mission to the moon to collect geochemical, geological, and gravity data. Predecessors included the Lunar Observer, the Lunar Geochemical Orbiter, and the Lunar Polar Orbiter - missions studied under the auspices of the Office of Space Science. The Lunar Scout Program, however, was an initiative of the Office of Exploration. It was begun in late 1991 and was transferred to the Office of Space Science after the Office of Exploration was disbanded in 1993. Most of the work was done by a small group of civil servants at the Johnson Space Center; other groups also responsible for mission planning included personnel from the Charles Stark Draper Laboratories, the Lawrence Livermore National Laboratory, Boeing, and Martin Marietta. The Lunar Scout Program failed to achieve new start funding in FY 93 and FY 94 as a result of budget downturns, the de-emphasis of the Space Exploration Initiative, and the fact that lunar science did not rate as high a priority as other planned planetary missions, and was cancelled. The work done on the Lunar Scout Program and other lunar orbiter studies, however, represents assets that will be useful in developing new approaches to lunar orbit science.

  17. Cassini ISS Observation of Saturn from Grand Finale Orbits

    Science.gov (United States)

    Blalock, J. J.; Sayanagi, K. M.; Ingersoll, A. P.; Dyudina, U.; Ewald, S. P.; McCabe, R. M.; Garland, J.; Gunnarson, J.; Gallego, A.

    2017-12-01

    We present images captured during Cassini's Grand Finale orbits, and their preliminary analyses. During the final 22 orbits of the mission, the spacecraft is in orbits that have 6.5 day period at an inclination of 62 degrees, apoapsis altitude of about 1,272,000 km, and periapsis altitudes of about 2,500 km. Images captured during periapsis passes show Saturn's atmosphere at unprecedented spatial resolution. We present preliminary analyses of these images, including the final images captured before the end of the mission when the spacecraft enters Saturn's atmosphere on September 15th, 2017. Prominent features captured during the final orbits include the north polar vortex and other vortices as well as very detailed views of the "popcorn clouds" that reside between the Hexagon and the north pole. In the cloud field between zonal jets, clouds either resemble linear streaks suggestive of cirrus-like clouds or round shapes suggestive of vortices or cumulus anvil. The presence of linear streaks that follow lines of constant latitudes suggests that meridional mixing is inhibited at those latitudes. The size of vortices may reflect latitudinal variation in the atmospheric deformation radius. We also compare the new images to those captured earlier in the Cassini mission to characterize the temporal evolution such as changes in the zonal jet speeds, and prevalence and colors of vortices. A particular focus of our interest is the long-term change in the color of the hexagon, the evolution of the wind speeds in the jetstream that blows eastward at the boundary of the hexagon, and the morphology of the north polar vortex. Our work has been supported by NASA PATM NNX14AK07G, NSF AAG 1212216, and NASA NESSF NNX15AQ70H.

  18. Multimission nuclear electric propulsion system for outer planet exploration missions

    International Nuclear Information System (INIS)

    Mondt, J.F.

    1981-01-01

    A 100-kW reactor power system with a specific mass of 15 to 30 kg/kW/sub e/ and an electric thrust system with a specific mass of 5 to 10 kg/kW/sub e/ can be combined into a nuclear electric propulsion system. The system can be used for outer planet missions as well as earth orbital transfer vehicle missions. 5 refs

  19. The Extended Duration Sounding Rocket (EDSR): Low Cost Science and Technology Missions

    Science.gov (United States)

    Cruddace, R. G.; Chakrabarti, S.; Cash, W.; Eberspeaker, P.; Figer, D.; Figueroa, O.; Harris, W.; Kowalski, M.; Maddox, R.; Martin, C.; McCammon, D.; Nordsieck, K.; Polidan, R.; Sanders, W.; Wilkinson, E.; Asrat

    2011-12-01

    The 50-year old NASA sounding rocket (SR) program has been successful in launching scientific payloads into space frequently and at low cost with a 85% success rate. In 2008 the NASA Astrophysics Sounding Rocket Assessment Team (ASRAT), set up to review the future course of the SR program, made four major recommendations, one of which now called Extended Duration Sounding Rocket (EDSR). ASRAT recommended a system capable of launching science payloads (up to 420 kg) into low Earth orbit frequently (1/yr) at low cost, with a mission duration of approximately 30 days. Payload selection would be based on meritorious high-value science that can be performed by migrating sub-orbital payloads to orbit. Establishment of this capability is a essential for NASA as it strives to advance technical readiness and lower costs for risk averse Explorers and flagship missions in its pursuit of a balanced and sustainable program and achieve big science goals within a limited fiscal environment. The development of a new generation of small, low-cost launch vehicles (SLV), primarily the SpaceX Falcon 1 and the Orbital Sciences Minotaur I has made this concept conceivable. The NASA Wallops Flight Facility (WFF)conducted a detailed engineering concept study, aimed at defining the technical characteristics of all phases of a mission, from design, procurement, assembly, test, integration and mission operations. The work was led by Dr. Raymond Cruddace, a veteran of the SR program and the prime mover of the EDSR concept. The team investigated details such as, the "FAA licensed contract" for launch service procurement, with WFF and NASA SMD being responsible for mission assurance which results in a factor of two cost savings over the current approach. These and other creative solutions resulted in a proof-of-concept Class D mission design that could have a sustained launch rate of at least 1/yr, a mission duration of up to about 3 months, and a total cost of $25-30 million for each mission

  20. NASA Safety Standard: Guidelines and Assessment Procedures for Limiting Orbital Debris

    Science.gov (United States)

    1995-01-01

    Collision with orbital debris is a hazard of growing concern as historically accepted practices and procedures have allowed man-made objects to accumulate in orbit. To limit future debris generation, NASA Management Instruction (NMI) 1700.8, 'Policy to Limit Orbital Debris Generation,' was issued in April of 1993. The NMI requires each program to conduct a formal assessment of the potential to generate orbital debris. This document serves as a companion to NMI 1700.08 and provides each NASA program with specific guidelines and assessment methods to assure compliance with the NMI. Each main debris assessment issue (e.g., Post Mission Disposal) is developed in a separate chapter.

  1. THE SYNERGY OF DIRECT IMAGING AND ASTROMETRY FOR ORBIT DETERMINATION OF EXO-EARTHS

    International Nuclear Information System (INIS)

    Shao, Michael; Catanzarite, Joseph; Pan Xiaopei

    2010-01-01

    The holy grail of exoplanet searches is an exo-Earth, an Earth mass planet in the habitable zone (HZ) around a nearby star. Mass is one of the most important characteristics of a planet and can only be measured by observing the motion of the star around the planet-star center of gravity. The planet's orbit can be measured either by imaging the planet at multiple epochs or by measuring the position of the star at multiple epochs by space-based astrometry. The measurement of an exoplanet's orbit by direct imaging is complicated by a number of factors. One is the inner working angle (IWA). A space coronagraph or interferometer imaging an exo-Earth can separate the light from the planet from the light from the star only when the star-planet separation is larger than the IWA. Second, the apparent brightness of a planet depends on the orbital phase. A single image of a planet cannot tell us whether the planet is in the HZ or distinguish whether it is an exo-Earth or a Neptune-mass planet. Third is the confusion that may arise from the presence of multiple planets. With two images of a multiple planet system, it is not possible to assign a dot to a planet based only on the photometry and color of the planet. Finally, the planet-star contrast must exceed a certain minimum value in order for the planet to be detected. The planet may be unobservable even when it is outside the IWA, such as when the bright side of the planet is facing away from us in a 'crescent' phase. In this paper we address the question: 'Can a prior astrometric mission that can identify which stars have Earth-like planets significantly improve the science yield of a mission to image exo-Earths?' In the case of the Occulting Ozone Observatory, a small external occulter mission that cannot measure spectra, we find that the occulter mission could confirm the orbits of ∼4 to ∼5 times as many exo-Earths if an astrometric mission preceded it to identify which stars had such planets. In the case of an

  2. Modeling the Exo-Brake and the Development of Strategies for De-Orbit Drag Modulation

    Science.gov (United States)

    Murbach, M. S.; Papadopoulos, P.; Glass, C.; Dwyer-Cianciolo, A.; Powell, R. W.; Dutta, S.; Guarneros-Luna, A.; Tanner, F. A.; Dono, A.

    2016-01-01

    The Exo-Brake is a simple, non-propulsive means of de-orbiting small payloads from orbital platforms such as the International Space Station (ISS). Two de-orbiting experiments with fixed surface area Exo-Brakes have been successfully conducted in the last two years on the TechEdSat-3 and -4 nano-satellite missions. The development of the free molecular flow aerodynamic data-base is presented in terms of angle of attack, projected front surface area variation, and altitude. Altitudes are considered ranging from the 400km ISS jettison altitude to 90km. Trajectory tools are then used to predict de-orbit/entry corridors with the inclusion of the key atmospheric and geomagnetic uncertainties. Control system strategies are discussed which will be applied to the next two planned TechEdSat-5 and -6 nano-satellite missions - thus increasing the targeting accuracy at the Von Karman altitude through the proposed drag modulation technique.

  3. Trajectory Design to Mitigate Risk on the Transiting Exoplanet Survey Satellite (TESS) Mission

    Science.gov (United States)

    Dichmann, Donald

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will employ a highly eccentric Earth orbit, in 2:1 lunar resonance, reached with a lunar flyby preceded by 3.5 phasing loops. The TESS mission has limited propellant and several orbit constraints. Based on analysis and simulation, we have designed the phasing loops to reduce delta-V and to mitigate risk due to maneuver execution errors. We have automated the trajectory design process and use distributed processing to generate and to optimize nominal trajectories, check constraint satisfaction, and finally model the effects of maneuver errors to identify trajectories that best meet the mission requirements.

  4. The NEOTωIST mission (Near-Earth Object Transfer of angular momentum spin test)

    Science.gov (United States)

    Drube, Line; Harris, Alan W.; Engel, Kilian; Falke, Albert; Johann, Ulrich; Eggl, Siegfried; Cano, Juan L.; Ávila, Javier Martín; Schwartz, Stephen R.; Michel, Patrick

    2016-10-01

    We present a concept for a kinetic impactor demonstration mission, which intends to change the spin rate of a previously-visited asteroid, in this case 25143 Itokawa. The mission would determine the efficiency of momentum transfer during an impact, and help mature the technology required for a kinetic impactor mission, both of which are important precursors for a future space mission to deflect an asteroid by collisional means in an emergency situation. Most demonstration mission concepts to date are based on changing an asteroid's heliocentric orbit and require a reconnaissance spacecraft to measure the very small orbital perturbation due to the impact. Our concept is a low-cost alternative, requiring only a single launch. Taking Itokawa as an example, an estimate of the order of magnitude of the change in the spin period, δP, with such a mission results in δP of 4 min (0.5%), which could be detectable by Earth-based observatories. Our preliminary study found that a mission concept in which an impactor produces a change in an asteroid's spin rate could provide valuable information for the assessment of the viability of the kinetic-impactor asteroid deflection concept. Furthermore, the data gained from the mission would be of great benefit for our understanding of the collisional evolution of asteroids and the physics behind crater and ejecta-cloud development.

  5. Near-Earth Asteroid Rendezvous: mission overview

    Science.gov (United States)

    Cheng, A. F.; Santo, A. G.; Heeres, K. J.; Landshof, J. A.; Farquhar, R. W.; Gold, R. E.; Lee, S. C.

    1997-10-01

    The Near-Earth Asteroid Rendezvous (NEAR) mission, the first launch of NASA's Discovery Program, will be the first mission to orbit an asteroid. NEAR will make the first comprehensive scientific measurements of an asteroid's surface composition, geology, physical properties, and internal structure. NEAR launched successfully on February 17, 1996, aboard a Delta II-7925. It will orbit the 20-km-diameter near-Earth asteroid 433 Eros for about 1 year, at a minimum orbit radius of about 35 km from the center of the asteroid. The NEAR is a solar-powered, three-axis stabilized spacecraft with a launch mass including propellant of 805 kg. NEAR uses X band telemetry to the NASA Deep Space Network, with the data rates at Eros up to 8.8 kbits/s using a 34-m High Efficiency (HEF) dish, and up to 26.5 kbits/s using a 70-m dish. A solid-state recorder is accommodated with a memory capacity of 1.8 Gbytes. Attitude control is to 1.7 mrad, line-of-sight pointing stability is within 50 μrad over 1 s, and post processing attitude knowledge is within 50 μrad. NEAR accommodates 56 kg of instruments and provides them with 84 W. The instruments are a multispectral imager (MSI), a near-infrared spectrograph (NIS), an X ray/gamma ray spectrometer (XRS/GRS), a magnetometer (MAG), and a laser rangefinder (NLR), while a radio science (RS) investigation uses the coherent X band transponder. NEAR will make a flyby of the C-type asteroid 253 Mathilde in June 1997 and will rendezvous with 433 Eros in February 1999. It will execute an initial slow flyby of Eros, with a flyby speed of 5 m/s and a closest approach distance of 500 km. Subsequently, its orbit will be lowered to 35 km. The NEAR Mission Operations Center and the Science Data Center are at the Johns Hopkins Applied Physics Laboratory. The Science Data Center will maintain the entire NEAR data set on-line, and data from all instruments can be accessed by every member of the NEAR Science Team. Data, including images, are released over

  6. Adding a Mission to the Joint Polar Satellite System (JPSS) Common Ground System (CGS)

    Science.gov (United States)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar-orbiting Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 With this established infrastructure and existing suite of missions, the CGS

  7. Application of X-Ray Pulsar Navigation: A Characterization of the Earth Orbit Trade Space

    Science.gov (United States)

    Yu, Wayne Hong

    2016-01-01

    The potential for pulsars as a navigation source has been studied since their discovery in 1967. X-ray pulsar navigation (XNAV) is a celestial navigation system that uses the consistent timing nature of x-ray photons from millisecond pulsars (MSP) to perform space navigation. By comparing the detected arrival of x-ray photons to a reference database of expected pulsar light-curve timing models, one can infer a range and range rate measurement based on light time delay. Much of the challenge of XNAV comes from the faint signal, availability, and distant nature of pulsars. This is a study of potential pulsar XNAV measurements to measure extended Kalman filter (EKF) tracking performance with a wide trade space of bounded Earth orbits, using a simulation of existing x-ray detector space hardware. An example of an x-ray detector for XNAV is the NASA Station Explorer for X-ray Timing and Navigation (SEXTANT) mission, a technology demonstration of XNAV set to perform on the International Space Station (ISS) in late 2016early 2017. XNAV hardware implementation is driven by trajectory and environmental influences which add noise to the x-ray pulse signal. In a closed Earth orbit, the radiation environment can exponentially increase the signal noise from x-ray pulsar sources, decreasing the quality and frequency of measurements. The SEXTANT mission in particular improves on the signal to noise ratio by focusing an array of 56 x-ray silicon drift detectors at one pulsar target at a time. This reduces timing glitches and other timing noise contributions from ambient x-ray sources to within a 100 nanosecond resolution. This study also considers the SEXTANT scheduling challenges inherent in a single target observation. Finally, as the navigation sources are now relatively inertial targets, XNAV measurements are also subject to periods of occultation from various celestial bodies. This study focuses on the characterization of these drivers in closed Earth orbits and is not a

  8. DRAGONS - A Micrometeoroid and Orbital Debris Impact Sensor

    Science.gov (United States)

    Liou, J. -C.; Corsaro, R.; Giovane, F.; Anderson, C.; Sadilek, A.; Burchell, M.; Hamilton, J.

    2015-01-01

    The Debris Resistive/Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is intended to be a large area impact sensor for in situ measurements of micrometeoroids and orbital debris (MMOD) in the millimeter or smaller size regime. These MMOD particles are too small to be detected by ground-based radars and optical telescopes, but are still large enough to be a serious safety concern for human space activities and robotic missions in the low Earth orbit (LEO) region. The nominal detection area of a DRAGONS unit is 1 m2, consisting of several independently operated panels. The approach of the DRAGONS design is to combine different particle impact detection principles to maximize information that can be extracted from detected events. After more than 10 years of concept and technology development, a 1 m2 DRAGONS system has been selected for deployment on the International Space Station (ISS) in August 2016. The project team achieved a major milestone when the Preliminary Design Review (PDR) was completed in May 2015. Once deployed on the ISS, this multi-year mission will provide a unique opportunity to demonstrate the MMOD detection capability of the DRAGONS technologies and to collect data to better define the small MMOD environment at the ISS altitude.

  9. Cassini Operational Sun Sensor Risk Management During Proximal Orbit Saturn Ring Plane Crossings

    Science.gov (United States)

    Bates, David M.

    2016-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 which arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. As the first spacecraft to achieve orbit at Saturn, Cassini has collected science data throughout its four-year prime mission (2004–08), and has since been approved for a first and second extended mission through 2017. As part of the final extended missions, Cassini will begin an aggressive and exciting campaign of high inclination, low altitude flybys within the inner most rings of Saturn, skimming Saturn’s outer atmosphere, until the spacecraft is finally disposed of via planned impact with the planet. This final campaign, known as the proximal orbits, requires a strategy for managing the Sun Sensor Assembly (SSA) health, the details of which are presented in this paper.

  10. Wavefront error measurement of the concave ellipsoidal mirrors of the METIS coronagraph on ESA Solar Orbiter mission

    Science.gov (United States)

    Sandri, P.

    2017-12-01

    The paper describes the alignment technique developed for the wavefront error measurement of ellipsoidal mirrors presenting a central hole. The achievement of a good alignment with a classic setup at the finite conjugates when mirrors are uncoated cannot be based on the identification and materialization at naked eye of the retro-reflected spot by the mirror under test as the intensity of the retro-reflected spot results to be ≈1E-3 of the intensity of the injected laser beam of the interferometer. We present the technique developed for the achievement of an accurate alignment in the setup at the finite conjugate even in condition of low intensity based on the use of an autocollimator adjustable in focus position and a small polished flat surface on the rear side of the mirror. The technique for the alignment has successfully been used for the optical test of the concave ellipsoidal mirrors of the METIS coronagraph of the ESA Solar Orbiter mission. The presented method results to be advantageous in terms of precision and of time saving also when the mirrors are reflective coated and integrated into their mechanical hardware.

  11. The Ion Propulsion System for the Asteroid Redirect Robotic Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Sekerak, Michael

    2016-01-01

    The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA's future beyond-low-Earth-orbit, human-crewed exploration plans. This presentation presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.

  12. STS-74 Mission Specialists McArther and Ross in OPF

    Science.gov (United States)

    1995-01-01

    In Orbiter Processing Facility Bay 2, STS-74 Mission Specialist William 'Bill' McArthur Jr. (left) and Jerry L. Ross are reviewing the configuration of payload elements in the orbiter Atlantis' payload bay. Ross and McArthur are participating in the Crew Equipment Interface Test (CEIT), an opportunity for flight crew members to become familiar with the payload hardware they will be working with on-orbit. Located in Atlantis' payload bay are the Orbiter Docking System and the Docking Module, two pieces of flight hardware that will play a crucial role in the second docking of the Space Shuttle to the Russian Space Station Mir. STS-74 is currently targeted for an early November launch

  13. Five biomedical experiments flown in an Earth orbiting laboratory: Lessons learned from developing these experiments on the first international microgravity mission from concept to landing

    Science.gov (United States)

    Winget, C. M.; Lashbrook, J. J.; Callahan, P. X.; Schaefer, R. L.

    1993-01-01

    There are numerous problems associated with accommodating complex biological systems in microgravity in the flexible laboratory systems installed in the Orbiter cargo bay. This presentation will focus upon some of the lessons learned along the way from the University laboratory to the IML-1 Microgravity Laboratory. The First International Microgravity Laboratory (IML-1) mission contained a large number of specimens, including: 72 million nematodes, US-1; 3 billion yeast cells, US-2; 32 million mouse limb-bud cells, US-3; and 540 oat seeds (96 planted), FOTRAN. All five of the experiments had to undergo significant redevelopment effort in order to allow the investigator's ideas and objectives to be accommodated within the constraints of the IML-1 mission. Each of these experiments were proposed as unique entities rather than part of the mission, and many procedures had to be modified from the laboratory practice to meet IML-1 constraints. After a proposal is accepted by NASA for definition, an interactive process is begun between the Principal Investigator and the developer to ensure a maximum science return. The success of the five SLSPO-managed experiments was the result of successful completion of all preflight biological testing and hardware verification finalized at the KSC Life Sciences Support Facility housed in Hangar L. The ESTEC Biorack facility housed three U.S. experiments (US-1, US-2, and US-3). The U.S. Gravitational Plant Physiology Facility housed GTHRES and FOTRAN. The IML-1 mission (launched from KSC on 22 Jan. 1992, and landed at Dryden Flight Research Facility on 30 Jan. 1992) was an outstanding success--close to 100 percent of the prelaunch anticipated science return was achieved and, in some cases, greater than 100 percent was achieved (because of an extra mission day).

  14. The Lunar Space Tug: A sustainable bridge between low Earth orbits and the Cislunar Habitat

    Science.gov (United States)

    Mammarella, M.; Paissoni, C. A.; Viola, N.; Denaro, A.; Gargioli, E.; Massobrio, F.

    2017-09-01

    The International Space Station is the first space human outpost and over the last 15 years, it has represented a peculiar environment where science, technology and human innovation converge together in a unique microgravity and space research laboratory. With the International Space Station entering the second part of its life and its operations running steadily at nominal pace, the global space community is starting planning how the human exploration could move further, beyond Low-Earth-Orbit. According to the Global Exploration Roadmap, the Moon represents the next feasible path-way for advances in human exploration towards the nal goal, Mars. Based on the experience of the ISS, one of the most widespread ideas is to develop a Cislunar Station in preparation of long duration missions in a deep space environment. Cislunar space is de ned as the area of deep space under the influence of Earth-Moon system, including a set of special orbits, e.g. Earth-Moon Libration points and Lunar Retrograde Orbit. This habitat represents a suitable environment for demonstrating and testing technologies and capabilities in deep space. In order to achieve this goal, there are several crucial systems and technologies, in particular related to transportation and launch systems. The Orion Multi-Purpose Crew Vehicle is a reusable transportation capsule designed to provide crew transportation in deep space missions, whereas NASA is developing the Space Launch System, the most powerful rocket ever built, which could provide the necessary heavy-lift launch capability to support the same kind of missions. These innovations would allow quite-fast transfers from Earth to the Cislunar Station and vice versa, both for manned and unmanned missions. However, taking into account the whole Concept of Operations for both the growth and sustainability of the Cislunar Space Station, the Lunar Space Tug can be considered as an additional, new and fundamental element for the mission architecture. The

  15. STS-26 crew trains in JSC fixed-based (FB) shuttle mission simulator (SMS)

    Science.gov (United States)

    1987-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers (left to right) Commander Frederick H. Hauck, Pilot Richard O. Covey, Mission Specialist (MS) George D. Nelson, MS David C. Hilmers, and MS John M. Lounge pose on the middeck in fixed-based (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5. A simulation for their anticipated June 1988 flight began 10-20-87.

  16. Waste Management Options for Long-Duration Space Missions: When to Reject, Reuse, or Recycle

    Science.gov (United States)

    Linne, Diane L.; Palaszewski, Bryan A.; Gokoglu, Suleyman; Gallo, Christopher A.; Balasubramaniam, Ramaswamy; Hegde, Uday G.

    2014-01-01

    The amount of waste generated on long-duration space missions away from Earth orbit creates the daunting challenge of how to manage the waste through reuse, rejection, or recycle. The option to merely dispose of the solid waste through an airlock to space was studied for both Earth-moon libration point missions and crewed Mars missions. Although the unique dynamic characteristics of an orbit around L2 might allow some discarded waste to intersect the lunar surface before re-impacting the spacecraft, the large amount of waste needed to be managed and potential hazards associated with volatiles recondensing on the spacecraft surfaces make this option problematic. A second option evaluated is to process the waste into useful gases to be either vented to space or used in various propulsion systems. These propellants could then be used to provide the yearly station-keeping needs at an L2 orbit, or if processed into oxygen and methane propellants, could be used to augment science exploration by enabling lunar mini landers to the far side of the moon.

  17. Dynamics and mission design near libration points

    CERN Document Server

    Gómez, G; Simo, C; Masdemont, J

    2001-01-01

    This book studies several problems related to the analysis of planned or possible spacecraft missions. It is divided into four chapters. The first chapter is devoted to the computation of quasiperiodic solutions for the motion of a spacecraft near the equilateral points of the Earth-Moon system. The second chapter gives a complete description of the orbits near the collinear point, L 1 , between the Earth and the Sun in the restricted three-body problem (RTBP) model. In the third chapter, methods are developed to compute the nominal orbit and to design and test the control strategy for the qua

  18. NASA Mission Operations Directorate Preparations for the COTS Visiting Vehicles

    Science.gov (United States)

    Shull, Sarah A.; Peek, Kenneth E.

    2011-01-01

    With the retirement of the Space Shuttle looming, a series of new spacecraft is under development to assist in providing for the growing logistical needs of the International Space Station (ISS). Two of these vehicles are being built under a NASA initiative known as the Commercial Orbital Transportation Services (COTS) program. These visiting vehicles ; Space X s Dragon and Orbital Science Corporation s Cygnus , are to be domestically produced in the United States and designed to add to the capabilities of the Russian Progress and Soyuz workhorses, the European Automated Transfer Vehicle (ATV) and the Japanese H-2 Transfer Vehicle (HTV). Most of what is known about the COTS program has focused on the work of Orbital and SpaceX in designing, building, and testing their respective launch and cargo vehicles. However, there is also a team within the Mission Operations Directorate (MOD) at NASA s Johnson Space Center working with their operational counterparts in these companies to provide operational safety oversight and mission assurance via the development of operational scenarios and products needed for these missions. Ensuring that the operational aspect is addressed for the initial demonstration flights of these vehicles is the topic of this paper. Integrating Dragon and Cygnus into the ISS operational environment has posed a unique challenge to NASA and their partner companies. This is due in part to the short time span of the COTS program, as measured from initial contract award until first launch, as well as other factors that will be explored in the text. Operational scenarios and products developed for each COTS vehicle will be discussed based on the following categories: timelines, on-orbit checkout, ground documentation, crew procedures, software updates and training materials. Also addressed is an outline of the commonalities associated with the operations for each vehicle. It is the intent of the authors to provide their audience with a better

  19. A Mission Concept: Re-Entry Hopper-Aero-Space-Craft System on-Mars (REARM-Mars)

    Science.gov (United States)

    Davoodi, Faranak

    2013-01-01

    Future missions to Mars that would need a sophisticated lander, hopper, or rover could benefit from the REARM Architecture. The mission concept REARM Architecture is designed to provide unprecedented capabilities for future Mars exploration missions, including human exploration and possible sample-return missions, as a reusable lander, ascend/descend vehicle, refuelable hopper, multiple-location sample-return collector, laboratory, and a cargo system for assets and humans. These could all be possible by adding just a single customized Re-Entry-Hopper-Aero-Space-Craft System, called REARM-spacecraft, and a docking station at the Martian orbit, called REARM-dock. REARM could dramatically decrease the time and the expense required to launch new exploratory missions on Mars by making them less dependent on Earth and by reusing the assets already designed, built, and sent to Mars. REARM would introduce a new class of Mars exploration missions, which could explore much larger expanses of Mars in a much faster fashion and with much more sophisticated lab instruments. The proposed REARM architecture consists of the following subsystems: REARM-dock, REARM-spacecraft, sky-crane, secure-attached-compartment, sample-return container, agile rover, scalable orbital lab, and on-the-road robotic handymen.

  20. A missional perspective on funerals and bereavement counselling

    Directory of Open Access Journals (Sweden)

    Peter Kotze

    2015-08-01

    Full Text Available This article deals with the importance of a missional approach to the funeral and bereavement counselling process in congregational praxis in the midst of a context of secularisation. The creation of a missional perspective on the funeral and bereavement counselling could support the nature and praxis of a congregation in a secular society, especially if the congregation finds its relevance in the expression of the missio Dei. The basic theoretical research for missional ecclesiology, which is the systematic study directed toward greater knowledge of the fundamental aspects of missional ecclesiology (National Science Foundation 1953:38, is based on the premise that God is the source of all missions. The expression missio Dei means to join God in the mission he is already busy with in the world. As the one who sends, God the Father sends the Son, the Son sends the Holy Spirit, and the Holy Spirit sends the church. The church only participates in the mission God is already busy with. It is a mission that uses both words and deeds and brings hope in the midst of tragedy. It is the hope of the kingdom of God and the incarnation of Christ that can already be experienced and expressed in the present. It is also the hope of the transformation of everything to form a new heaven and earth. Hope and mission can therefore not be separated. The concretisation of the expression of the kingdom of Christ in the world is hope, and a strong emphasis is therefore placed on mission as action in hope. Hope must be present where tragedy reigns, and the funeral and bereavement counselling can be used as a vehicle for this hope. Hope can then become an instrument of healing. The church can thus participate in God’s mission in the midst of tragedy and make an impact on society by taking on a missional character of hope.

  1. Baseline Design and Performance Analysis of Laser Altimeter for Korean Lunar Orbiter

    Directory of Open Access Journals (Sweden)

    Hyung-Chul Lim

    2016-09-01

    Full Text Available Korea’s lunar exploration project includes the launching of an orbiter, a lander (including a rover, and an experimental orbiter (referred to as a lunar pathfinder. Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.

  2. The Van Allen Probes mission

    CERN Document Server

    Burch, James

    2014-01-01

    This collection of articles provides broad and detailed information about NASA’s Van Allen Probes (formerly known as the Radiation Belt Storm Probes) twin-spacecraft Earth-orbiting mission. The mission has the objective of achieving predictive understanding of the dynamic, intense, energetic, dangerous, and presently unpredictable belts of energetic particles that are magnetically trapped in Earth’s space environment above the atmosphere. It documents the science of the radiation belts and the societal benefits of achieving predictive understanding. Detailed information is provided about the Van Allen Probes mission design, the spacecraft, the science investigations, and the onboard instrumentation that must all work together to make unprecedented measurements within a most unforgiving environment, the core of Earth’s most intense radiation regions.
 This volume is aimed at graduate students and researchers active in space science, solar-terrestrial interactions and studies of the up...

  3. Ultra-Sensitive Electrostatic Accelerometers and Future Fundamental Physics Missions

    Science.gov (United States)

    Touboul, Pierre; Christophe, Bruno; Rodrigues, M.; Marque, Jean-Pierre; Foulon, Bernard

    Ultra-sensitive electrostatic accelerometers have in the last decade demonstrated their unique performance and reliability in orbit leading to the success of the three Earth geodesy missions presently in operation. In the near future, space fundamental physics missions are in preparation and highlight the importance of this instrument for achieving new scientific objectives. Corner stone of General Relativity, the Equivalence Principle may be violated as predicted by attempts of Grand Unification. Verification experiment at a level of at least 10-15 is the objective of the CNES-ESA mission MICROSCOPE, thanks to a differential accelerometer configuration with concentric cylindrical test masses. To achieve the numerous severe requirements of the mission, the instrument is also used to control the attitude and the orbital motion of the space laboratory leading to a pure geodesic motion of the drag-free satellite. The performance of the accelerometer is a few tenth of femto-g, at the selected frequency of the test about 10-3 Hz, i.e several orbit frequencies. Another important experimental research in Gravity is the verification of the Einstein metric, in particular its dependence with the distance to the attractive body. The Gravity Advanced Package (GAP) is proposed for the future EJSM planetary mission, with the objective to verify this scale dependence of the gravitation law from Earth to Jupiter. This verification is performed, during the interplanetary cruise, by following precisely the satellite trajectory in the planet and Sun fields with an accurate measurement of the non-gravitational accelerations in order to evaluate the deviations to the geodesic motion. Accelerations at DC and very low frequency domain are concerned and the natural bias of the electrostatic accelerometer is thus compensated down to 5 10-11 m/s2 thanks to a specific bias calibration device. More ambitious, the dedicated mission Odyssey, proposed for Cosmic Vision, will fly in the Solar

  4. Embedded model control GNC for the Next Generation Gravity Mission

    Science.gov (United States)

    Colangelo, Luigi; Massotti, Luca; Canuto, Enrico; Novara, Carlo

    2017-11-01

    A Next Generation Gravity Mission (NGGM) concept for measuring the Earth's variable gravity field has been recently proposed by ESA. The mission objective consists in measuring the temporal variations of the Earth gravity field over a long-time span, with very high spatial and temporal resolutions. This paper focuses on the guidance, navigation and control (GNC) design for the science phase of the NGGM mission. NGGM will consist of a two-satellite long-distance formation like GRACE, where each satellite will be controlled to be drag-free like GOCE. Satellite-to-satellite distance variations, encoding gravity anomalies, will be measured by laser interferometry. The formation satellites, distant up to 200 km, will fly in a quasi-polar orbit at an Earth altitude between 300 and 450 km. Orbit and formation control counteract bias and drift of the residual drag-free accelerations, in order to reach orbit/formation long-term stability. Drag-free control allows the formation to fly counteracting the atmospheric drag, ideally subject only to gravity. Orbit and formation control, designed through the innovative Integrated Formation Control (IFC), have been integrated into a unique control system, aiming at stabilizing the formation triangle consisting of satellites and Earth Center of Masses. In addition, both spacecraft must align their control axis to the satellite-to-satellite line (SSL) with micro-radian accuracy. This is made possible by specific optical sensors and the inter-satellite laser interferometer, capable of materializing the SSL. Such sensors allow each satellite to pursue an autonomous alignment after a suitable acquisition procedure. Pointing control is severely constrained by the angular drag-free control, which must ideally zero the angular acceleration vector, in the science frequency band. The control unit has been designed according to the Embedded Model Control methodology and is organized in a hierarchical way, where the drag-free control plays the

  5. Future NASA mission applications of space nuclear power

    International Nuclear Information System (INIS)

    Bennett, G.L.; Mankins, J.; McConnell, D.G.; Reck, G.M.

    1990-01-01

    Recent studies sponsored by NASA show a continuing need for space nuclear power. A recently completed study considered missions such as a Jovian grand tour, a Uranus or Neptune orbiter and probe, and a Pluto flyby that can only be done with nuclear power. There are studies for missions beyond the outer boundaries of the solar system at distances of 100 to 1000 astronomical units. The NASA 90-day study on the space exploration initiative identified a need for nuclear reactors to power lunar surface bases and radioisotope power sources for use in lunar or Martian rovers, as well as considering options for advanced, nuclear propulsion systems for human missions to Mars

  6. Achieving Climate Change Absolute Accuracy in Orbit

    Science.gov (United States)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  7. Researches on the Orbit Determination and Positioning of the Chinese Lunar Exploration Program

    Science.gov (United States)

    Li, P. J.

    2015-07-01

    differences for several gravity models. It is found that for the 100 km× 100 km lunar orbit, with a degree and order expansion up to 165, the JPL's gravity model LP165P does not show noticeable improvement over Japan's SGM series models (100× 100), but for the 15 km× 100 km lunar orbit, a higher degree-order model can significantly improve the orbit accuracy. After accomplished its nominal mission, CE-2 launched its extended missions, which involving the L2 mission and the 4179 Toutatis mission. During the flight of the extended missions, the regime offers very little dynamics thus requires an extensive amount of time and tracking data in order to attain a solution. The overlap errors are computed, and it is indicated that the use of VLBI measurements is able to increase the accuracy and reduce the total amount of tracking time. An orbit determination method based on the polynomial fitting is proposed for the CE-3's planned lunar soft landing mission. In this method, spacecraft's dynamic modeling is not necessary, and its noise reduction is expected to be better than that of the point positioning method by making full use of all-arc observational data. The simulation experiments and real data processing showed that the optimal description of the CE-1's free-fall landing trajectory is a set of five-order polynomial functions for each of the position components as well as velocity components in J2000.0. The combination of the VLBI delay, the delay rate data, and the USB (united S-band) ranging data significantly improved the accuracy than the use of USB data alone. In order to determine the position for the CE-3's Lunar Lander, a kinematic statistical method is proposed. This method uses both ranging and VLBI measurements to the lander for a continuous arc, combing with precise knowledge about the motion of the moon as provided by planetary ephemeris, to estimate the lander's position on the lunar surface with high accuracy. Application of the lunar digital elevation model

  8. Earth observation from the manned low Earth orbit platforms

    Science.gov (United States)

    Guo, Huadong; Dou, Changyong; Zhang, Xiaodong; Han, Chunming; Yue, Xijuan

    2016-05-01

    The manned low Earth orbit platforms (MLEOPs), e.g., the U.S. and Russia's human space vehicles, the International Space Station (ISS) and Chinese Tiangong-1 experimental space laboratory not only provide laboratories for scientific experiments in a wide range of disciplines, but also serve as exceptional platforms for remote observation of the Earth, astronomical objects and space environment. As the early orbiting platforms, the MLEOPs provide humans with revolutionary accessibility to the regions on Earth never seen before. Earth observation from MLEOPs began in early 1960s, as a part of manned space flight programs, and will continue with the ISS and upcoming Chinese Space Station. Through a series of flight missions, various and a large amount of Earth observing datasets have been acquired using handheld cameras by crewmembers as well as automated sophisticated sensors onboard these space vehicles. Utilizing these datasets many researches have been conducted, demonstrating the importance and uniqueness of studying Earth from a vantage point of MLEOPs. For example, the first, near-global scale digital elevation model (DEM) was developed from data obtained during the shuttle radar topography mission (SRTM). This review intends to provide an overview of Earth observations from MLEOPs and present applications conducted by the datasets collected by these missions. As the ISS is the most typical representative of MLEOPs, an introduction to it, including orbital characteristics, payload accommodations, and current and proposed sensors, is emphasized. The advantages and challenges of Earth observation from MLEOPs, using the ISS as an example, is also addressed. At last, a conclusive note is drawn.

  9. Ex-PRESS glaucoma filter: an MRI compatible metallic orbital foreign body imaged at 1.5 and 3 T

    International Nuclear Information System (INIS)

    Mabray, M.C.; Uzelac, A.; Talbott, J.F.; Lin, S.C.; Gean, A.D.

    2015-01-01

    Aim: To report on the MRI compatibility of the Ex-PRESS glaucoma filtration device, a tiny metallic implant placed into the anterior chamber of the eye that is much smaller than traditional glaucoma shunts, and to educate the radiology community regarding its appearance. Materials and methods: Seven patients with Ex-PRESS glaucoma filtration devices were identified that had undergone MRI at San Francisco General Hospital/University of California San Francisco Medical Center by searching and cross-referencing the radiology reporting system and the electronic medical record. MRI images were reviewed for artefact interfering with interpretation. Ophthalmology examinations were reviewed for evidence of complications. Results: Eighteen individual MRI examinations were performed during 12 unique MRI events on these 7 patients. 13/18 individual MRI examinations and 7/12 MRI events were performed at 3 T with the others performed at 1.5 T. Mean time from Ex-PRESS implantation to MRI was 17.5 months. Mean time from MRI to first ophthalmology examination was 1.1 months and from MRI to latest ophthalmology examination was 6.6 months. Susceptibility artefact did not interfere with image interpretation and no complications related to MRI were encountered. Conclusion: The Ex-PRESS glaucoma filtration device appears to be safe for MRI at 1.5 and 3 T and does not produce significant susceptibility artefact to affect diagnostic interpretation adversely. - Highlights: • The Ex-PRESS glaucoma filtration device is a tiny metallic orbital implant. • It can simulate a metallic orbital foreign body on imaging. • There is little information in the literature about it's MRI safety. • We report 18 MRIs performed on 7 patients including the first at 3 T. • Imaging appears to be safe at 1.5 and 3 T in patients with this device

  10. What Threats to Human Health Does Space Radiation Pose in Orbit

    Science.gov (United States)

    Wu, Honglu; Semones, Eddie; Weyland, Mark; Zapp, Neal; Cucinotta, Francis A.

    2011-01-01

    The Space Shuttle program spanned more than the entire length of a solar cycle. Investigations aimed towards understanding the health risks of the astronauts from exposures to space radiation involved mostly physical measurements of the dose and the linear energy transfer (LET) spectrum. Measurement of the dose rate on the Shuttle provided invariable new data for different periods of the solar cycle, whereas measurement of the LET spectrum using the tissue equivalent proportional counter (TEPC) produced the most complete mapping of the radiation environment of the low Earth orbits (LEO). Exposures to the Shuttle astronauts were measured by the personal dosimeter worn by the crewmembers. Analysis of over 300 personal dosimeter readings indicated a dependence on the mission duration, the altitude and inclination of the orbit, and the solar cycle, with the crewmembers on the launch and repair of the Hubble telescope receiving the highest doses due to the altitude of the mission. Secondary neutrons inside the Shuttle were determined by recoil protons or with Bonner spheres, and may contribute significantly to the risks of the crewmembers. In addition, the skin dose and the doses received at different organs were compared using a human phantom onboard a Shuttle mission. A number of radiobiology investigations wer e also performed. The biological doses were determined on six astronauts/cosmonauts on long-duration Shuttle/Mir missions and on two crewmembers on a Hubble repair mission by analyzing the damages in the chromosomes of the crewmembers? white blood cells. Several experiments were also conducted to address the question of possible synergistic effects of spaceflight, microgravity in particular, on the repair of radiation-induced DNA damages. The experimental design included exposure of cells before launch, during flight, or after landing. These physical and biological studies were invaluable in predicting the health risks for astronauts on ISS and future

  11. Using a Multiobjective Approach to Balance Mission and Network Goals within a Delay Tolerant Network Topology

    Science.gov (United States)

    2009-03-01

    incorporating autonomous actions, but none appear to incorporate a cognitive aspect used to balance multiple objectives as is the focus of this work. There...routing algorithm) and/or mission type decision (orbit path change). In this component, the pseudo- cognitive aspect is implemented within the...orbit change behavior doesn’t know which orbit to choose. This is where the cognitive aspect takes over. Since the orbit change behavior doesn’t

  12. Multi-Mission Power Analysis Tool (MMPAT) Version 3

    Science.gov (United States)

    Wood, Eric G.; Chang, George W.; Chen, Fannie C.

    2012-01-01

    The Multi-Mission Power Analysis Tool (MMPAT) simulates a spacecraft power subsystem including the power source (solar array and/or radioisotope thermoelectric generator), bus-voltage control, secondary battery (lithium-ion or nickel-hydrogen), thermostatic heaters, and power-consuming equipment. It handles multiple mission types including heliocentric orbiters, planetary orbiters, and surface operations. Being parametrically driven along with its user-programmable features can reduce or even eliminate any need for software modifications when configuring it for a particular spacecraft. It provides multiple levels of fidelity, thereby fulfilling the vast majority of a project s power simulation needs throughout the lifecycle. It can operate in a stand-alone mode with a graphical user interface, in batch mode, or as a library linked with other tools. This software can simulate all major aspects of a spacecraft power subsystem. It is parametrically driven to reduce or eliminate the need for a programmer. Added flexibility is provided through user-designed state models and table-driven parameters. MMPAT is designed to be used by a variety of users, such as power subsystem engineers for sizing power subsystem components; mission planners for adjusting mission scenarios using power profiles generated by the model; system engineers for performing system- level trade studies using the results of the model during the early design phases of a spacecraft; and operations personnel for high-fidelity modeling of the essential power aspect of the planning picture.

  13. The comet rendezvous asteroid flyby mission

    International Nuclear Information System (INIS)

    Morrison, D.; Neugebauer, M.; Weissman, P.R.

    1989-01-01

    The Comet Rendezvous Asteroid Flyby (CRAF) mission is designed to answer the many questions raised by the Halley missions by exploring a cometary nucleus in detail, following it around its orbit and studying its changing activity as it moves closer to and then away from the Sun. In addition, on its way to rendezvous with the comet, CRAF will fly by a large, primitive class main belt asteroid and will return valuable data for comparison with the comet results. The selected asteroid is 449 Hamburga with a diameter of 88 km and a surface composition of carbonaceous chondrite meteorites. The expected flyby date is January, 1998. The CRAF spacecraft will continue to make measurements in orbit around the cometary nucleus as they both move closer to the Sun, until the dust and gas hazard becomes unsafe. At that point the spacecraft will move in and out between 50 and 2,500 kilometers to study the inner coma and the cometary ionosphere, and to collect dust and gas samples for onboard analysis. Following perihelion, the spacecraft will make a 50,000 km excursion down the comet's tail, further investigating the solar wind interaction with the cometary atmosphere. The spacecraft will return to the vicinity of the nucleus about four months after perihelion to observe the changes that have taken place. If the spacecraft remains healthy and adequate fuel is still onboard, an extended mission to follow the comet nucleus out to aphelion is anticipated

  14. Mitigating Aviation Communication and Satellite Orbit Operations Surprises from Adverse Space Weather

    Science.gov (United States)

    Tobiska, W. Kent

    2008-01-01

    Adverse space weather affects operational activities in aviation and satellite systems. For example, large solar flares create highly variable enhanced neutral atmosphere and ionosphere electron density regions. These regions impact aviation communication frequencies as well as precision orbit determination. The natural space environment, with its dynamic space weather variability, is additionally changed by human activity. The increase in orbital debris in low Earth orbit (LEO), combined with lower atmosphere CO2 that rises into the lower thermosphere and causes increased cooling that results in increased debris lifetime, adds to the environmental hazards of navigating in near-Earth space. This is at a time when commercial space endeavors are posed to begin more missions to LEO during the rise of the solar activity cycle toward the next maximum (2012). For satellite and aviation operators, adverse space weather results in greater expenses for orbit management, more communication outages or aviation and ground-based high frequency radio used, and an inability to effectively plan missions or service customers with space-based communication, imagery, and data transferal during time-critical activities. Examples of some revenue-impacting conditions and solutions for mitigating adverse space weather are offered.

  15. Power Subsystem Approach for the Europa Mission

    Directory of Open Access Journals (Sweden)

    Ulloa-Severino Antonio

    2017-01-01

    Full Text Available NASA is planning to launch a spacecraft on a mission to the Jovian moon Europa, in order to conduct a detailed reconnaissance and investigation of its habitability. The spacecraft would orbit Jupiter and perform a detailed science investigation of Europa, utilizing a number of science instruments including an ice-penetrating radar to determine the icy shell thickness and presence of subsurface oceans. The spacecraft would be exposed to harsh radiation and extreme temperature environments. To meet mission objectives, the spacecraft power subsystem is being architected and designed to operate efficiently, and with a high degree of reliability.

  16. Contingency plans for the ISEE-3 libration-point mission

    Science.gov (United States)

    Dunham, D. W.

    1979-01-01

    During the planning stage of the International Sun-Earth Explorer-3 (ISEE-3) mission, a recovery strategy was developed in case the Delta rocket underperformed during the launch phase. If a large underburn had occurred, the ISEE-3 spacecraft would have been allowed to complete one revolution of its highly elliptical earth orbit. The recovery plan called for a maneuver near perigee to increase the energy of the off-nominal orbit; a relatively small second maneuver would then insert the spacecraft into a new transfer trajectory toward the desired halo orbit target, and a third maneuver would place the spacecraft in the halo orbit. Results of the study showed that a large range of underburns could be corrected for a total nominal velocity deviation cost within the ISEE-3 fuel budget.

  17. STS-26 crew on fixed based (FB) shuttle mission simulator (SMS) flight deck

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck (left) and Pilot Richard O. Covey review checklists in their respective stations on the foward flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  18. Nuclear Electric Propulsion Application: RASC Mission Robotic Exploration of Venus

    Science.gov (United States)

    McGuire, Melissa L.; Borowski, Stanley K.; Packard, Thomas W.

    2004-01-01

    The following paper documents the mission and systems analysis portion of a study in which Nuclear Electric Propulsion (NEP) is used as the in-space transportation system to send a series of robotic rovers and atmospheric science airplanes to Venus in the 2020 to 2030 timeframe. As part of the NASA RASC (Revolutionary Aerospace Systems Concepts) program, this mission analysis is meant to identify future technologies and their application to far reaching NASA missions. The NEP systems and mission analysis is based largely on current technology state of the art assumptions. This study looks specifically at the performance of the NEP transfer stage when sending a series of different payload package point design options to Venus orbit.

  19. Mars Molniya Orbit Atmospheric Resource Mining

    Science.gov (United States)

    Mueller, Robert P.; Braun, Robert D.; Sibille, Laurent; Sforzo, Brandon; Gonyea, Keir; Ali, Hisham

    2016-01-01

    This NIAC (NASA Advanced Innovative Concepts) work will focus on Mars and will build on previous efforts at analyzing atmospheric mining at Earth and the outer solar system. Spacecraft systems concepts will be evaluated and traded, to assess feasibility. However the study will primarily examine the architecture and associated missions to explore the closure, constraints and critical parameters through sensitivity studies. The Mars atmosphere consists of 95.5 percent CO2 gas which can be converted to methane fuel (CH4) and Oxidizer (O2) for chemical rocket propulsion, if hydrogen is transported from electrolyzed water on the Mars surface or from Earth. By using a highly elliptical Mars Molniya style orbit, the CO2 atmosphere can be scooped, ram-compressed and stored while the spacecraft dips into the Mars atmosphere at periapsis. Successive orbits result in additional scooping of CO2 gas, which also serves to aerobrake the spacecraft, resulting in a decaying Molniya orbit.

  20. Preliminary radar systems analysis for Venus orbiter missions

    Science.gov (United States)

    Brandenburg, R. K.; Spadoni, D. J.

    1971-01-01

    A short, preliminary analysis is presented of the problems involved in mapping the surface of Venus with radar from an orbiting spacecraft. Two types of radar, the noncoherent sidelooking and the focused synthetic aperture systems, are sized to fulfill two assumed levels of Venus exploration. The two exploration levels, regional and local, assumed for this study are based on previous Astro Sciences work (Klopp 1969). The regional level is defined as 1 to 3 kilometer spatial and 0.5 to 1 km vertical resolution of 100 percent 0 of the planet's surface. The local level is defined as 100 to 200 meter spatial and 50-10 m vertical resolution of about 100 percent of the surfAce (based on the regional survey). A 10cm operating frequency was chosen for both radar systems in order to minimize the antenna size and maximize the apparent radar cross section of the surface.

  1. Ocean Surface Topography Mission (OSTM) /Jason-2: Orbital Information (NODC Accession 0044985)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains the descriptions for the OSTM/Jason-2 orbital information, which is served through the NOAA/NESDIS Comprehensive Large Array-data Stewardship...

  2. Planning for Crew Exercise for Deep Space Mission Scenarios

    Science.gov (United States)

    Moore, E. Cherice; Ryder, Jeff

    2015-01-01

    Exercise which is necessary for maintaining crew health on-orbit and preparing the crew for return to 1G can be challenging to incorporate into spaceflight vehicles. Deep space missions will require further understanding of the physiological response to microgravity, understanding appropriate mitigations, and designing the exercise systems to effectively provide mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  3. Optimization of vehicle weight for Mars excursion missions

    Science.gov (United States)

    Ferebee, Melvin J., Jr.

    1991-01-01

    The excursion class mission to Mars is defined as a mission with one year durations coupled with a stay time of up to 30 days. The fuel budget for such a mission is investigated. The overall figure of merit in such an assessment is the vehicle weight ratio, the ratio between the wet vehicle weight to the dry vehicle weight. It is necessary to minimize the overall fuel budget for the mission in order to maximize the benefits that could be obtained by sending humans to Mars. Assumptions used in the analysis are: each mission will depart and terminate in low-earth-orbit (LEO) (500 km circular) and the maximum stay time at Mars is 30 days. The maximum mission duration is one year (355-375 days). The mass returned to LEO is 135,000 kg, the dropoff mass left at Mars is 168,000 kg. Three propulsive techniques for atmospheric interface are investigated: aerobraking, all-chemical propulsion, and nuclear thermal propulsion. By defining the fuel requirements, the space transfer vehicle's configuration is defined.

  4. A Dynamical Systems Approach to the Design of the Science Orbit Around Europa

    Science.gov (United States)

    Gomez, Gerard; Lara, Martin; Russell, Ryan P.

    2006-01-01

    The science orbit for a future mission to Europa requires low eccentricity, low altitude, and high inclination. However, high inclination orbits around planetary satellites are unstable due to third-body perturbations. Without control, the orbiter impacts Europa after few weeks. To minimize control, a tour over the stable-unstable, averaged manifolds of unstable frozen orbits has been suggested. We proceed with the unaveraged equations and study the manifolds of unstable orbits that are periodic in a rotating frame attached to Europa. Massive numerical computation helps in understanding the unstable dynamics close to Europa, and, thus, in selecting long lifetime high inclination orbits. A final test of a selected set of initial conditions on a high fidelity, ephemeris model, validate the results.

  5. STS-57 crewmembers train in JSC's FB Shuttle Mission Simulator (SMS)

    Science.gov (United States)

    1993-01-01

    STS-57 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist 2 (MS2) Nancy J. Sherlock, holding computer diskettes and procedural checklist, discusses equipment operation with Commander Ronald J. Grabe on the middeck of JSC's fixed based (FB) shuttle mission simulator (SMS). Payload Commander (PLC) G. David Low points to a forward locker location as MS3 Peter J.K. Wisoff switches controls on overhead panels MO42F and MO58F, and MS4 Janice E. Voss looks on. The FB-SMS is located in the Mission Simulation and Training Facility Bldg 5.

  6. Kepler Mission: A Mission to Find Earth-size Planets in the Habitable Zone

    Science.gov (United States)

    Borucki, W. J.

    2003-01-01

    The Kepler Mission is a Discovery-class mission designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. It is a wide field of view photometer Schmidt-type telescope with an array of 42 CCDs. It has a 0.95 m aperture and 1.4 m primary and is designed to attain a photometric precision of 2 parts in 10(exp 5) for 12th magnitude solar-like stars for a 6 hr transit duration. It will continuously observe 100,000 main-sequence stars from 9th to 14th magnitude in the Cygnus constellation for a period of four years with a cadence of 4/hour. An additional 250 stars can be monitored at a cadence of l/minute to do astro-seismology of stars brighter than 11.5 mv. The photometer is scheduled to be launched into heliocentric orbit in 2007. When combined with ground-based spectrometric observations of these stars, the positions of the planets relative to the habitable zone can be found. The spectra of the stars are also used to determine the relationships between the characteristics of terrestrial planets and the characteristics of the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler-velocity discoveries, over a thousand giant planets will also be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of Earth-size planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ are very rare and that life might also be quite rare.

  7. MPGT - THE MISSION PLANNING GRAPHICAL TOOL

    Science.gov (United States)

    Jeletic, J. F.

    1994-01-01

    The Mission Planning Graphical Tool (MPGT) provides mission analysts with a mouse driven graphical representation of the spacecraft and environment data used in spaceflight planning. Developed by the Flight Dynamics Division at NASA's Goddard Space Flight Center, MPGT is designed to be a generic tool that can be configured to analyze any specified earth orbiting spacecraft mission. The data is presented as a series of overlays on top of a 2-dimensional or 3-dimensional projection of the earth. Up to six spacecraft orbit tracks can be drawn at one time. Position data can be obtained by either an analytical process or by use of ephemeris files. If the user chooses to propagate the spacecraft orbit using an ephemeris file, then Goddard Trajectory Determination System (GTDS) formatted ephemeris files must be supplied. The MPGT User's Guide provides a complete description of the GTDS ephemeris file format so that users can create their own. Other overlays included are ground station antenna masks, solar and lunar ephemeris, Tracking Data and Relay Satellite System (TDRSS) coverage, a field-of-view swath, and orbit number. From these graphical representations an analyst can determine such spacecraft-related constraints as communication coverage, interference zone infringement, sunlight availability, and instrument target visibility. The presentation of time and geometric data as graphical overlays on a world map makes possible quick analyses of trends and time-oriented parameters. For instance, MPGT can display the propagation of the position of the Sun and Moon over time, shadowing of sunrise/sunset terminators to indicate spacecraft and Earth day/night, and color coding of the spacecraft orbit tracks to indicate spacecraft day/night. With the 3-dimensional display, the user specifies a vector that represents the position in the universe from which the user wishes to view the earth. From these "viewpoint" parameters the user can zoom in on or rotate around the earth

  8. Sigma 7 the six Mercury orbits of Walter M. Schirra, Jr

    CERN Document Server

    Burgess, Colin

    2016-01-01

    Colin Burgess offers a comprehensive yet personal look at the 1962 orbital mission of Wally Schirra aboard the spacecraft Sigma 7, the first book about this popular pioneering astronaut which explores his entire life and accomplishments. This continues the author's attempt to fully document the record of Project Mercury's pioneering early phase of the Space Age.   Schirra’s pre-NASA life is examined, as well as his training as a NASA astronaut and for his Mercury MA-8 flight. The 6-orbit flight of Sigma 7 is fully covered from its origins through to the spacecraft’s safe recovery from the ocean after a highly successful Mercury mission. Schirra’s participation on the Gemini 6 and Apollo 7 missions is also told, but in brief, and the book also relates his post-NASA life and activities through to his passing in 2007. The Mercury Seven occupy a unique spot in the history of human spaceflight, and Schirra is at last given his due as one of the contributing astronauts in this painstakingly researched...

  9. Results from On-Orbit Testing of the Fram Memory Test Experiment on the Fastsat Micro-Satellite

    Science.gov (United States)

    MacLeod, Todd C.; Sims, W. Herb; Varnavas, Kosta A.; Ho, Fat D.

    2011-01-01

    NASA is planning on going beyond Low Earth orbit with manned exploration missions. The radiation environment for most Low Earth orbit missions is harsher than at the Earth's surface but much less harsh than deep space. Development of new electronics is needed to meet the requirements of high performance, radiation tolerance, and reliability. The need for both Volatile and Non-volatile memory has been identified. Emerging Non-volatile memory technologies (FRAM, C-RAM,M-RAM, R-RAM, Radiation Tolerant FLASH, SONOS, etc.) need to be investigated for use in Space missions. An opportunity arose to fly a small memory experiment on a high inclination satellite (FASTSAT). An off-the-shelf 512K Ramtron FRAM was chosen to be tested in the experiment.

  10. Discrete symmetries in periodic-orbit theory

    International Nuclear Information System (INIS)

    Robbins, J.M.

    1989-01-01

    The application of periodic-orbit theory to systems which possess a discrete symmetry is considered. A semiclassical expression for the symmetry-projected Green's function is obtained; it involves a sum over classical periodic orbits on a symmetry-reduced phase space, weighted by characters of the symmetry group. These periodic orbits correspond to trajectories on the full phase space which are not necessarily periodic, but whose end points are related by symmetry. If the symmetry-projected Green's functions are summed, the contributions of the unperiodic orbits cancel, and one recovers the usual periodic-orbit sum for the full Green's function. Several examples are considered, including the stadium billiard, a particle in a periodic potential, the Sinai billiard, the quartic oscillator, and the rotational spectrum of SF 6

  11. Design, qualification and operation of nuclear rockets for safe Mars missions

    International Nuclear Information System (INIS)

    Buden, D.; Madsen, W.W.; Olson, T.S.; Redd, L.R.

    1993-01-01

    Nuclear thermal propulsion modules planned for use on crew missions to Mars improve mission reliability and overall safety of the mission. This, as well as all other systems, are greatly enhanced if the system specifications take into account safety from design initiation, and operational considerations are well thought through and applied. For instance, the use of multiple engines in the propulsion module can lead to very high system safety and reliability. Operational safety enhancements may include: the use of multiple perigee burns, thus allowing time to ensure that all systems are functioning properly prior to departure from Earth orbit; the ability to perform all other parts of the mission in a degraded mode with little or no degradation of the mission; and the safe disposal of the nuclear propulsion module in a heliocentric orbit out of the ecliptic plane. The standards used to qualify nuclear rockets are one of the main cost drivers of the program. Concepts and systems that minimize cost and risk will rely on use of the element and component levels to demonstrate technology readiness and validation. Subsystem or systems testing then is only needed for verification of performance. Also, these will be the safest concepts because they will be more thoroughly understood and the safety margins will be well established and confirmed by tests

  12. Deep Interior Mission: Imaging the Interior of Near-Earth Asteroids Using Radio Reflection Tomography

    Science.gov (United States)

    Safaeinili, A.; Asphaug, E.; Belton, M.; Klaasen, K.; Ostro, S.; Plaut, J.; Yeomans, D.

    2004-12-01

    Near-Earth asteroids are important exploration targets since they provide clues to the evolution of the solar system. They are also of interest since they present a clear danger to Earth in the future. Our mission objective is to image the internal structure of two NEOs using radio reflection tomography (RRT), in order to explore the record of asteroid origin and impact evolution, and to test the fundamental hypothesis that these important members of the solar system are rubble piles rather than consolidated bodies. Our mission's RRT technique is analogous to doing a ``CAT scan" of the asteroid from orbit. Closely sampled radar echoes are processed to yield volumetric maps of mechanical and compositional boundaries, and measure interior material dielectric properties. The RRT instrument is a radar that operates at 5 and 15 MHz with two 30-m (tip-to-tip) dipole antennas that are used in a cross-dipole configuration. The radar transmitter and receiver electronics have heritage from JPL's MARSIS contribution to Mars Express, and the antenna is similar to systems used in IMAGE and LACE missions. The 5-MHz channel is designed to penetrate >1 km of basaltic rock, and 15-MHz penetrates a few hundred meters or more. In addition to RRT volumetric imaging, we use a redundant color cameras to explore the surface expressions of unit boundaries, in order to relate interior radar imaging to what is observable from spacecraft imaging and from Earth. The camera also yields stereo color imaging for geology and RRT-related compositional analysis. Gravity and high fidelity geodesy are used to explore how interior structure is expressed in shape, density, mass distribution and spin. Deep interior has two targets (S-type 1999 ND43 and V-type Nyx ) whose composition bracket the diversity of solar system materials that we are likely to encounter, and are richly complementary.

  13. ACADEMIC MISSION - FROM AUTOCRACY TO BUREAUCRACY

    Directory of Open Access Journals (Sweden)

    LIVIU NEAMŢU

    2015-12-01

    Full Text Available The mission is generic expression of reason for the existence of an organization. Organizational mission ensure continuity of existence beyond the objectives and targets of activities. It is the expression of an organization's responsibilities towards the environment in which it belongs. As the organization grows and its activities or environmental conditions change, managers adapt their strategies, but stated mission will remain valid for a period of time or unchanged throughout the life of the organization. All managerial elements of the organization are aligned with stated mission, starting from the organization structure, management behavior or specific business processes. The focus of the mission of an higher education institution on a need or several integrated needs, on customers who manifest this need and on how they can be met, that really means defining of its strategic domanin, as a sphere of influence of the organization in their environment. In this sphere of influence, three components integrate on three levels of the mission: to establish needs; identify the customer type to which an organization adress and key competencies that differentiate it from the rest competitors. To that context identifies four specific forms of academic institutions starting from their mission and strategic area: autocratic academic institutions, meritocrate academic institutions, democratic academic institutions, bureaucrats academic institutions.

  14. Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

    Directory of Open Access Journals (Sweden)

    Sangwook Park

    2009-12-01

    Full Text Available This paper describes the Flight Dynamics Automation (FDA system for COMS Flight Dynamics System (FDS and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator’s tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system’s quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

  15. Man-Made Debris In and From Lunar Orbit

    Science.gov (United States)

    Johnson, Nicholas L.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    During 1966-1976, as part of the first phase of lunar exploration, 29 manned and robotic missions placed more than 40 objects into lunar orbit. Whereas several vehicles later successfully landed on the Moon and/or returned to Earth, others were either abandoned in orbit or intentionally sent to their destruction on the lunar surface. The former now constitute a small population of lunar orbital debris; the latter, including four Lunar Orbiters and four Lunar Module ascent stages, have contributed to nearly 50 lunar sites of man's refuse. Other lunar satellites are known or suspected of having fallen from orbit. Unlike Earth satellite orbital decays and deorbits, lunar satellites impact the lunar surface unscathed by atmospheric burning or melting. Fragmentations of lunar satellites, which would produce clouds of numerous orbital debris, have not yet been detected. The return to lunar orbit in the 1990's by the Hagoromo, Hiten, Clementine, and Lunar Prospector spacecraft and plans for increased lunar exploration early in the 21st century, raise questions of how best to minimize and to dispose of lunar orbital debris. Some of the lessons learned from more than 40 years of Earth orbit exploitation can be applied to the lunar orbital environment. For the near-term, perhaps the most important of these is postmission passivation. Unique solutions, e.g., lunar equatorial dumps, may also prove attractive. However, as with Earth satellites, debris mitigation measures are most effectively adopted early in the concept and design phase, and prevention is less costly than remediation.

  16. On Orbit and Beyond Psychological Perspectives on Human Spaceflight

    CERN Document Server

    2013-01-01

    As we stand poised on the verge of a new era of spaceflight, we must rethink every element, including the human dimension. This book explores some of the contributions of psychology to yesterday’s great space race, today’s orbiter and International Space Station missions, and tomorrow’s journeys beyond Earth’s orbit. Early missions into space were typically brief, and crews were small, often drawn from a single nation. As international cooperation in space exploration has increased over the decades, the challenges of communicating across cultural boundaries and dealing with interpersonal conflicts have become all the more important, requiring different coping skills and sensibilities than “the right stuff” expected of early astronauts. As astronauts travel to asteroids or establish a permanent colony on the Moon, with the eventual goal of reaching Mars, the duration of expeditions will increase markedly, as will the psychosocial stresses. Away from their home planet for extended times, future spac...

  17. Spacecraft on-orbit deployment anomalies - What can be done?

    Science.gov (United States)

    Freeman, Michael T.

    1993-04-01

    Modern communications satellites rely heavily upon deployable appendage (i.e. solar arrays, communications antennas, etc.) to perform vital functions that enable the spacecraft to effectively conduct mission objectives. Communications and telemetry antennas provide the radiofrequency link between the spacecraft and the earth ground station, permitting data to be transmitted and received from the satellite. Solar arrays serve as the principle source of electrical energy to the satellite, and recharge internal batteries during operation. However, since satellites cannot carry backup systems, if a solar array fails to deploy, the mission is lost. This article examines the subject of on-orbit anomalies related to the deployment of spacecraft appendage, and possible causes of such failures. Topics discussed shall include mechanical launch loading, on-orbit thermal and solar concerns, reliability of spacecraft pyrotechnics, and practical limitations of ground-based deployment testing. Of particular significance, the article will feature an in-depth look at the lessons learned from the successful recovery of the Telesat Canada Anik-E2 satellite in 1991.

  18. Nano-Satellite Secondary Spacecraft on Deep Space Missions

    Science.gov (United States)

    Klesh, Andrew T.; Castillo-Rogez, Julie C.

    2012-01-01

    NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. They have also been used on interplanetary missions, but these missions have used one-off components and architectures so that the return on investment has been limited. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone,but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are investigated, primarily for high risk/high return science areas. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.

  19. Laser propulsion for orbit transfer - Laser technology issues

    Science.gov (United States)

    Horvath, J. C.; Frisbee, R. H.

    1985-01-01

    Using reasonable near-term mission traffic models (1991-2000 being the assumed operational time of the system) and the most current unclassified laser and laser thruster information available, it was found that space-based laser propulsion orbit transfer vehicles (OTVs) can outperform the aerobraked chemical OTV over a 10-year life-cycle. The conservative traffic models used resulted in an optimum laser power of about 1 MW per laser. This is significantly lower than the power levels considered in other studies. Trip time was taken into account only to the extent that the system was sized to accomplish the mission schedule.

  20. Dawn Mission Update

    Science.gov (United States)

    Sykes, M. V.; Russell, C. T.; Coradini, A.; Christensen, U.; de Sanctis, M. C.; Feldman, W. C.; Jaumann, R.; Keller, U.; Konopliv, A. S.; McCord, T. B.; McFadden, L. A.; McSween, H. Y.; Mottola, S.; Neukum, G.; Pieters, C. M.; Prettyman, T. H.; Raymond, C. A.; Smith, D. E.; Williams, B. G.; Wise, J.; Zuber, M. T.

    2004-11-01

    Dawn, the ninth Discovery mission, will be the first spacecraft to rendezvous with two solar system bodies, the main belt asteroids Vesta and Ceres. This is made possible by utilizing ion propulsion to reach its targets and to maneuver into (and depart) orbits about these bodies. Vesta and Ceres are two terrestrial protoplanets that have survived since the earliest epoch of the solar system and will provide important insights into planet building processes and their evolution under very different circumstances, with and without water. Dawn carries a double framing camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron detector. At Vesta our studies will include the volcanic emplacement of basalts, its differentiation, the possible exposure of its interior near the south pole. At Ceres our studies will include the role of water in its evolution, hydration processes on its surface, and the possible existence of a subsurface ocean. The mission has passed its critical design review and is scheduled to be launched in June 2006 with arrival at Vesta in 2011 and Ceres in 2015. Operation strategies will be presented. Groundbased observations of Vesta, Ceres, and Vesta family members over broad wavelengths, periods and phases will play an important role in detailed mission planning.

  1. Unveiling Mercury's Mysteries with BepiColombo - an ESA/JAXA Mission to Explore the Innermost Planet of our Solar System

    Science.gov (United States)

    Benkhoff, J.

    2017-12-01

    NASA's MESSENGER mission has fundamentally changed our view of the innermost planet. Mercury is in many ways a very different planet from what we were expecting. Now BepiColombo has to follow up on answering the fundamental questions that MESSENGER raised and go beyond. BepiColombo is a joint project between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA). The Mission consists of two orbiters, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). The mission scenario foresees a launch of both spacecraft with an ARIANE V in October 2018 and an arrival at Mercury in 2025. From their dedicated orbits the two spacecraft will be studying the planet and its environment. BepiColombo will study and understand the composition, geophysics, atmosphere, magnetosphere and history of Mercury, the least explored planet in the inner Solar System. In addition, the BepiColombo mission will provide a rare opportunity to collect multi-point measurements in a planetary environment. This will be particularly important at Mercury because of short temporal and spatial scales in the Mercury's environment. The foreseen orbits of the MPO and MMO will allow close encounters of the two spacecrafts throughout the mission. The MPO scientific payload comprises eleven instruments/instrument packages; The MMO comprises 5 instruments/instrument packages to the the study of the environment. The MPO will focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere and magnetosphere. In addition, it will be testing Einstein's theory of general relativity. Together, the scientific payload of both spacecraft will provide the detailed information necessary to understand Mercury and its magnetospheric environment and to find clues to the origin and evolution of a planet close to its parent star. The BepiColombo mission will complement and follow up the work of NASA's MESSENGER mission by

  2. BinCat: a Catalog of Nearby Binary Stars with Tools for Calculating Light-Leakage for Direct Imaging Missions

    Science.gov (United States)

    Holte, Elias Peter; Sirbu, Dan; Belikov, Ruslan

    2018-01-01

    Binary stars have been largely left out of direct imaging surveys for exoplanets, specifically for earth-sized planets in their star's habitable zone. Utilizing new direct imaging techniques brings us closer to being able to detect earth-like exoplanets around binary stars. In preparation for the upcoming WFIRST mission and other direct imaging-capable missions (HabEx, LUVIOR) it is important to understand the expected science yield resulting from the implementation of these imaging techniques. BinCat is a catalog of binary systems within 30 parsecs to be used as a target list for future direct imaging missions. There is a non-static component along with BinCat that allows researchers to predict the expected light-leakage between a binary component and its off-axis companion (a value critical to the aforementioned techniques) at any epoch. This is accomplished by using orbital elements from the Sixth Orbital