WorldWideScience

Sample records for orbital angular momentum

  1. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  2. Optical orbital angular momentum

    Science.gov (United States)

    Barnett, Stephen M.; Babiker, Mohamed; Padgett, Miles J.

    2017-02-01

    We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue 'Optical orbital angular momentum'.

  3. Optical orbital angular momentum

    Science.gov (United States)

    Barnett, Stephen M.; Babiker, Mohamed; Padgett, Miles J.

    2017-01-01

    We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069775

  4. Orbital angular momentum microlaser

    Science.gov (United States)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang

    2016-07-01

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.

  5. Phonons with orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Ayub, M. K. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Mendonca, J. T. [IPFN, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2011-10-15

    Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

  6. The difficulty of measuring orbital angular momentum

    Directory of Open Access Journals (Sweden)

    D. Preece

    2011-09-01

    Full Text Available Light can carry angular momentum as well as energy and momentum; the transfer of this angular momentum to an object results in an optical torque. The development of a rotational analogue to the force measurement capability of optical tweezers is hampered by the difficulty of optical measurement of orbital angular momentum. We present an experiment with encouraging results, but emphasise the difficulty of the task.

  7. The Orbital Angular Momentum Sum Rule

    Science.gov (United States)

    Aslan, Fatma; Burkardt, Matthias

    2015-10-01

    As an alternative to the Ji sum rule for the quark angular momentum, a sum rule for the quark orbital angular momentum, based on a twist-3 generalized parton distribution, has been suggested. We study the validity of this sum rule in the context of scalar Yukawa interactions as well as in QED for an electron.

  8. Novel Detection of Optical Orbital Angular Momentum

    Science.gov (United States)

    2014-11-16

    Spreeuw, J. P . Woerdman, “ Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A, 45(11), 8185-8189...AFRL-RD-PS- AFRL-RD-PS TR-2014-0045 TR-2014-0045 Novel Detection of Optical Orbital Angular Momentum David Voelz Klipsch... Orbital Angular Momentum FA9451-13-1-0261 GR0004113 David Voelz Klipsch School of ECE New Mexico State University MSC 3-O, PO Box 30001 Las Cruces, NM

  9. Wigner Functions and Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Mukherjee Asmita

    2015-01-01

    Full Text Available Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs and transverse momentum dependent parton distributions (TMDs. We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.

  10. Gravitational waves carrying orbital angular momentum

    CERN Document Server

    Bialynicki-Birula, Iwo

    2015-01-01

    Spinorial formalism is used to map every electromagnetic wave into the gravitational wave (within the linearized gravity). In this way we can obtain the gravitational counterparts of Bessel, Laguerre-Gauss, and other light beams carrying orbital angular momentum.

  11. Amplitude damping channel for orbital angular momentum

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2010-03-01

    Full Text Available Since the pioneering work on the entanglement of the orbital angular momentum (OAM) states of light, much attention has been devoted to the subject, with particular attention into the quantum aspects of information processing using OAM. Furthermore...

  12. Accelerated rotation with orbital angular momentum modes

    CSIR Research Space (South Africa)

    Schulze, C

    2015-04-01

    Full Text Available A 91, 043821 (2015) Accelerated rotation with orbital angular momentum modes Christian Schulze, Filippus S. Roux, Angela Dudley, Ronald Rop, Michael Duparr´e, and Andrew Forbes Abstract: We introduce a class of light field that angularly...

  13. An orbital angular momentum spectrometer for electrons

    Science.gov (United States)

    Harvey, Tyler; Grillo, Vincenzo; McMorran, Benjamin

    2016-05-01

    With the advent of techniques for preparation of free-electron and neutron orbital angular momentum (OAM) states, a basic follow-up question emerges: how do we measure the orbital angular momentum state distribution in matter waves? Control of both the energy and helicity of light has produced a range of spectroscopic applications, including molecular fingerprinting and magnetization mapping. Realization of an analogous dual energy-OAM spectroscopy with matter waves demands control of both initial and final energy and orbital angular momentum states: unlike for photons, final state post-selection is necessary for particles that cannot be annihilated. We propose a magnetic field-based mechanism for quantum non-demolition measurement of electron OAM. We show that OAM-dependent lensing is produced by an operator of form U =exp iLzρ2/ℏb2 where ρ =√{x2 +y2 } is the radial position operator, Lz is the orbital angular momentum operator along z, and b is the OAM dispersion length. We can physically realize this operator as a term in the time evolution of an electron in magnetic round lens. We discuss prospects and practical challenges for implementation of a lensing orbital angular momentum measurement. This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under the Early Career Research Program Award # DE-SC0010466.

  14. Ghost Imaging Using Orbital Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    赵生妹; 丁建; 董小亮; 郑宝玉

    2011-01-01

    We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum. In the signal arm, object spatial information is encoded as a phase matrix. For an N-grey-scale object, different phase matrices, varying from 0 to K with increment n/N, are used for different greyscales, and then they are modulated to a signal beam by a spatial light modulator. According to the conservation of the orbital angular momentum in the ghost imaging system, these changes will give different coincidence rates in measurement, and hence the object information can be extracted in the idler arm. By simulations and experiments, the results show that our scheme can improve the resolution of the image effectively. Compared with another encoding method using orbital angular momentum, our scheme has a better performance for both characters and the image object.%We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum.In the signal arm,object spatial information is encoded as a phase matrix.For an N-grey-scale object,different phase matrices,varying from 0 to π with increment π/N,are used for different greyscales,and then they are modulated to a signal beam by a spatial light modulator.According to the conservation of the orbital angular momentum in the ghost imaging system,these changes will give different coincidence rates in measurement,and hence the object information can be extracted in the idler arm.By simulations and experiments,the results show that our scheme can improve the resolution of the image effectively.Compared with another encoding method using orbital angular momentum,our scheme has a better performance for both characters and the image object.

  15. Orbital angular momentum in the nucleons

    CERN Document Server

    Lorcé, Cédric

    2014-01-01

    In the last decade, it has been realized that the orbital angular momentum of partons inside the nucleon plays a major role. It contributes significantly to nucleon properties and is at the origin of many asymmetries observed in spin physics. It is therefore of paramount importance to determine this quantity if we want to understand the nucleon internal structure and experimental observables. This triggered numerous discussions and controversies about the proper definition of orbital angular momentum and its extraction from experimental data. We summarize the present situation and discuss recent developments in this field.

  16. Sorting and quantifying orbital angular momentum of laser beams

    CSIR Research Space (South Africa)

    Schulze, C

    2013-10-01

    Full Text Available We present a novel tool for sorting the orbital angular momentum and to determine the orbital angular momentum density of laser beams, which is based on the use of correlation filters....

  17. Electron vortices: Beams with orbital angular momentum

    Science.gov (United States)

    Lloyd, S. M.; Babiker, M.; Thirunavukkarasu, G.; Yuan, J.

    2017-07-01

    The recent prediction and subsequent creation of electron vortex beams in a number of laboratories occurred after almost 20 years had elapsed since the recognition of the physical significance and potential for applications of the orbital angular momentum carried by optical vortex beams. A rapid growth in interest in electron vortex beams followed, with swift theoretical and experimental developments. Much of the rapid progress can be attributed in part to the clear similarities between electron optics and photonics arising from the functional equivalence between the Helmholtz equations governing the free-space propagation of optical beams and the time-independent Schrödinger equation governing freely propagating electron vortex beams. There are, however, key differences in the properties of the two kinds of vortex beams. This review is primarily concerned with the electron type, with specific emphasis on the distinguishing vortex features: notably the spin, electric charge, current and magnetic moment, the spatial distribution, and the associated electric and magnetic fields. The physical consequences and potential applications of such properties are pointed out and analyzed, including nanoparticle manipulation and the mechanisms of orbital angular momentum transfer in the electron vortex interaction with matter.

  18. High Orbital Angular Momentum Harmonic Generation

    Science.gov (United States)

    Vieira, J.; Trines, R. M. G. M.; Alves, E. P.; Fonseca, R. A.; Mendonça, J. T.; Bingham, R.; Norreys, P.; Silva, L. O.

    2016-12-01

    We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the high OAM harmonics generation in a plasma using several examples including the generation of prime OAM harmonics. The process can also be realized in any nonlinear optical Kerr media supporting three-wave interactions.

  19. Arbitrary orbital angular momentum of photons

    CERN Document Server

    Pan, Yue; Ren, Zhi-Cheng; Wang, Xi-Lin; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2015-01-01

    Orbital angular momentum (OAM) of photons, as a new fundamental degree of freedom, has excited a great diversity of interest, because of a variety of emerging applications. Arbitrarily tunable OAM has gained much attention, but its creation remains still a tremendous challenge. We demonstrate the realization of well-controlled arbitrary OAM in both theory and experiment. We present the concept of general OAM, which extends the OAM carried by the scalar vortex field to the OAM carried by the azimuthally varying polarized vector field. The arbitrary OAM has the same characteristics as the well-defined integer OAM: intrinsic OAM, uniform local OAM and intensity ring, and propagation stability. The arbitrary OAM has unique natures: it is allowed to be flexibly tailored and the radius of the focusing ring can have various choices for a desired OAM, which are of great significance to the benefit of surprising applications of the arbitrary OAM.

  20. High orbital angular momentum harmonic generation

    CERN Document Server

    Vieira, J; Alves, E P; Fonseca, R A; Mendonça, J T; Bingham, R; Norreys, P; Silva, L O

    2016-01-01

    We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the high OAM harmonics generation in a plasma using several examples including the generation of prime OAM harmonics. The process can also be realised in any nonlinear optical Kerr media supporting three-wave interactions.

  1. Orbital angular momentum photonic quantum interface

    CERN Document Server

    Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2014-01-01

    High dimensional orbital angular momentum (OAM) light states are very important in enhancing the information carrying capacity in optical communications and quantum key distributions. Light at wavelengths of fiber communication windows or free space communication windows are suitable for long distance quantum communication, but most quantum processing tasks are performed in the visible wavelength ranges. The interface to bridge the wavelength gap of single photon with Gaussian shape has been realized, however, to create such interface for OAM-carrying light is a great challenge. We report the demonstration of such an interface to frequency up-conversion of herald single photon OAM state from 1560nm to 525nm with high efficiency by using nonlinear crystal in an external cavity. We show that different single photon OAM light shapes are observed directly by using single photon counting camera and the single photon entangled property is retained in the conversion process.

  2. Orbital angular momentum photonic quantum interface

    Institute of Scientific and Technical Information of China (English)

    Zhi-Yuan Zhou; Yan Li; Dong-Sheng Ding; Wei Zhang; Shuai Shi; Bao-Sen Shi; Guang-Can Guo

    2016-01-01

    Light-carrying orbital angular momentum (OAM) has great potential in enhancing the information channel capacity in both classical and quantum optical communications.Long distance optical communication requires the wavelengths of light are situated in the low-loss communication windows,but most quantum memories currently being developed for use in a quantum repeater work at different wavelengths,so a quantum interface to bridge the wavelength gap is necessary.So far,such an interface for OAM-carried light has not been realized yet.Here,we report the first experimental realization of a quantum interface for a heralded single photon carrying OAM using a nonlinear crystal in an optical cavity.The spatial structures of input and output photons exhibit strong similarity.More importantly,single-photon coherence is preserved during up-conversion as demonstrated.

  3. Orbital angular momentum-entanglement frequency transducer

    CERN Document Server

    Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-01-01

    Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photons orbital angular momentum OAM degrees of freedom is preferred in harnessing the information carrying capacity of a single photon because of its unlimited dimensions. A quantum transducer, which operates at wavelengths from 1558.3 nm to 525 nm for OAM qubits, OAMpolarization hybrid entangled states, and OAM entangled states, is reported for the first time. Nonclassical properties and entanglements are demonstrated following the conversion process by performing quantum tomography, interference, and Bell inequality measurements. Our results demonstrate the capability to create an entanglement link betwe...

  4. Four-photon orbital angular momentum entanglement

    CERN Document Server

    Hiesmayr, B C; Löffler, W

    2015-01-01

    Quantum entanglement shared between more than two particles is essential to foundational questions in quantum mechanics, and upcoming quantum information technologies. So far, up to 14 two-dimensional qubits have been entangled, and an open question remains if one can also demonstrate entanglement of higher-dimensional discrete properties of more than two particles. A promising route is the use of the photon orbital angular momentum (OAM), which enables implementation of novel quantum information protocols, and the study of fundamentally new quantum states. To date, only two of such multidimensional particles have been entangled albeit with ever increasing dimensionality. Here we use pulsed spontaneous parametric downconversion (SPDC) to produce photon quadruplets that are entangled in their OAM, or transverse-mode degrees of freedom; and witness genuine multipartite Dicke-type entanglement. Apart from addressing foundational questions, this could find applications in quantum metrology, imaging, and secret sh...

  5. Optical communication beyond orbital angular momentum

    Science.gov (United States)

    Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-06-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks.

  6. Creating high-harmonic beams with controlled orbital angular momentum.

    Science.gov (United States)

    Gariepy, Genevieve; Leach, Jonathan; Kim, Kyung Taec; Hammond, T J; Frumker, E; Boyd, Robert W; Corkum, P B

    2014-10-10

    A beam with an angular-dependant phase Φ = ℓϕ about the beam axis carries an orbital angular momentum of ℓℏ per photon. Such beams are exploited to provide superresolution in microscopy. Creating extreme ultraviolet or soft-x-ray beams with controllable orbital angular momentum is a critical step towards extending superresolution to much higher spatial resolution. We show that orbital angular momentum is conserved during high-harmonic generation. Experimentally, we use a fundamental beam with |ℓ| = 1 and interferometrically determine that the harmonics each have orbital angular momentum equal to their harmonic number. Theoretically, we show how any small value of orbital angular momentum can be coupled to any harmonic in a controlled manner. Our results open a route to microscopy on the molecular, or even submolecular, scale.

  7. Fundamental methods to measure the orbital angular momentum of light

    NARCIS (Netherlands)

    Berkhout, Gregorius Cornelis Gerardus (Joris)

    2011-01-01

    Light is a ubiquitous carrier of information. This information can be encoded in the intensity, direction, frequency and polarisation of the light and, which was described more recently, in its orbital angular momentum. Although creating light beams with orbital angular momentum is relatively easy,

  8. Orbital angular momentum divider of light

    CERN Document Server

    Dong, Hailong Zhou Jianji; Cai, Xinlun; Yu, SiYuan; Zhang, Xinliang

    2016-01-01

    Manipulation of orbital angular momentum (OAM) of light is essential in OAM-based optical systems. Especially, OAM divider, which can convert the incoming OAM mode into one or several new smaller modes in proportion at different spatial paths, is very useful in OAM-based optical networks. However, this useful tool was never reported yet. For the first time, we put forward a passive OAM divider based on coordinate transformation. The device consists of a Cartesian to log-polar coordinate converter and an inverse converter. The first converter converts the OAM light into a rectangular-shaped plane light with a transverse phase gradient. And the second converter converts the plane light into multiple diffracted light. The OAM of zeroth-order diffracted light is the product of the input OAM and the scaling parameter. The residual light is output from other diffracted orders. Furthermore, we extend the scheme to realize equal N-dividing of OAM and arbitrary dividing of OAM. The ability of dividing OAM shows huge p...

  9. Orbital Angular Momentum-Entanglement Frequency Transducer

    Science.gov (United States)

    Zhou, Zhi-Yuan; Liu, Shi-Long; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-09-01

    Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology, and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photon's orbital angular momentum (OAM) degrees of freedom is preferred in harnessing the information-carrying capacity of a single photon because of its unlimited dimensions. A quantum transducer, which operates at wavelengths from 1558.3 to 525 nm for OAM qubits, OAM-polarization hybrid-entangled states, and OAM-entangled states, is reported for the first time. Nonclassical properties and entanglements are demonstrated following the conversion process by performing quantum tomography, interference, and Bell inequality measurements. Our results demonstrate the capability to create an entanglement link between different quantum systems operating in a photon's OAM degrees of freedom, which will be of great importance in building a high-capacity OAM quantum network.

  10. Millimetre Wave with Rotational Orbital Angular Momentum

    Science.gov (United States)

    Zhang, Chao; Ma, Lu

    2016-01-01

    Orbital angular momentum (OAM) has been widely studied in fibre and short-range communications. The implementation of millimetre waves with OAM is expected to increase the communication capacity. Most experiments demonstrate the distinction of OAM modes by receiving all of the energy in the surface vertical to the radiation axis in space. However, the reception of OAM is difficult in free space due to the non-zero beam angle and divergence of energy. The reception of OAM in the space domain in a manner similar to that in optical fibres (i.e., receiving all of the energy rings vertical to the radiation axis) is impractical, especially for long-distance transmission. Here, we fabricate a prototype of the antenna and demonstrate that rather than in the space domain, the OAM can be well received in the time domain via a single antenna by rotating the OAM wave at the transmitter, i.e., the radio wave with rotational OAM. The phase and frequency measured in the experiment reveal that for different OAM modes, the received signals act as a commonly used orthogonal frequency division multiplexing (OFDM) signal in the time domain. This phase rotation has promising prospects for use in the practical reception of different OAMs of millimetre waves in long-distance transmission. PMID:27596746

  11. Optical communications beyond orbital angular momentum

    Science.gov (United States)

    Rosales-Guzmán, Carmelo; Trichili, Abderrahmen; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-09-01

    Current optical communication technologies are predicted to face a bandwidth capacity limit in the near future. The nature of the limitation is fundamental rather than technological and is set by nonlinearities in optical fibers. One solution, suggested over 30 years ago, comprises the use of spatial modes of light as information carriers. Along this direction, light beams endowed with orbital angular momentum (OAM) have been demonstrated as potential information carriers in both, free space and fibres. However, recent studies suggest that purely OAM modes does not increase the bandwidth of optical communication systems. In fact, in all work to date, only the azimuthal component of transverse spatial modes has been used. Crucially, all transverse spatial modes require two degrees of freedom to be described; in the context of Laguerre-Gaussian (LGp`) beams these are azimuthal (l) and radial (p), the former responsible for OAM. Here, we demonstrate a technique where both degrees of freedom of LG modes are used as information carrier over free space. We transfer images encoded using 100 spatial modes in three wavelengths as our basis, and employ a spatial demultiplexing scheme that detects all 100 modes simultaneously. Our scheme is a hybrid of MIMO and SMM, and serves as a proof-of-principle demonstration. The cross-talk between the modes is small and independent of whether OAM modes are used or not.

  12. Cyclic transformation of orbital angular momentum modes

    CERN Document Server

    Schlederer, Florian; Fickler, Robert; Malik, Mehul; Zeilinger, Anton

    2015-01-01

    The spatial modes of photons are one realization of a QuDit, a quantum system that is described in a D-dimensional Hilbert space. In order to perform quantum information tasks with QuDits, a general class of D-dimensional unitary transformations is needed. Among these, cyclic transformations are an important special case required in many high-dimensional quantum communication protocols. In this paper, we experimentally demonstrate a cyclic transformation in the high-dimensional space of photonic orbital angular momentum (OAM). Using simple linear optical components, we show a successful four-fold cyclic transformation of OAM modes. Interestingly, our experimental setup was found by a computer algorithm. In addition to the four-cyclic transformation, the algorithm also found extensions to higher-dimensional cycles in a hybrid space of OAM and polarization. Besides being useful for quantum cryptography with QuDits, cyclic transformations are key for the experimental production of high-dimensional maximally enta...

  13. Cyclic transformation of orbital angular momentum modes

    Science.gov (United States)

    Schlederer, Florian; Krenn, Mario; Fickler, Robert; Malik, Mehul; Zeilinger, Anton

    2016-04-01

    The spatial modes of photons are one realization of a QuDit, a quantum system that is described in a D-dimensional Hilbert space. In order to perform quantum information tasks with QuDits, a general class of D-dimensional unitary transformations is needed. Among these, cyclic transformations are an important special case required in many high-dimensional quantum communication protocols. In this paper, we experimentally demonstrate a cyclic transformation in the high-dimensional space of photonic orbital angular momentum (OAM). Using simple linear optical components, we show a successful four-fold cyclic transformation of OAM modes. Interestingly, our experimental setup was found by a computer algorithm. In addition to the four-cyclic transformation, the algorithm also found extensions to higher-dimensional cycles in a hybrid space of OAM and polarization. Besides being useful for quantum cryptography with QuDits, cyclic transformations are key for the experimental production of high-dimensional maximally entangled Bell-states.

  14. Millimetre Wave with Rotational Orbital Angular Momentum

    Science.gov (United States)

    Zhang, Chao; Ma, Lu

    2016-09-01

    Orbital angular momentum (OAM) has been widely studied in fibre and short-range communications. The implementation of millimetre waves with OAM is expected to increase the communication capacity. Most experiments demonstrate the distinction of OAM modes by receiving all of the energy in the surface vertical to the radiation axis in space. However, the reception of OAM is difficult in free space due to the non-zero beam angle and divergence of energy. The reception of OAM in the space domain in a manner similar to that in optical fibres (i.e., receiving all of the energy rings vertical to the radiation axis) is impractical, especially for long-distance transmission. Here, we fabricate a prototype of the antenna and demonstrate that rather than in the space domain, the OAM can be well received in the time domain via a single antenna by rotating the OAM wave at the transmitter, i.e., the radio wave with rotational OAM. The phase and frequency measured in the experiment reveal that for different OAM modes, the received signals act as a commonly used orthogonal frequency division multiplexing (OFDM) signal in the time domain. This phase rotation has promising prospects for use in the practical reception of different OAMs of millimetre waves in long-distance transmission.

  15. Generation and detection of orbital angular momentum via metasurface.

    Science.gov (United States)

    Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang

    2016-04-07

    Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes array is designed to generate reference beam as a reference light. This approach may provide a new way for the generation and detection of orbital angular momentum in a compact device.

  16. Orbital angular momentum in optical fibers

    Science.gov (United States)

    Bozinovic, Nenad

    Internet data traffic capacity is rapidly reaching limits imposed by nonlinear effects of single mode fibers currently used in optical communications. Having almost exhausted available degrees of freedom to orthogonally multiplex data in optical fibers, researchers are now exploring the possibility of using the spatial dimension of fibers, via multicore and multimode fibers, to address the forthcoming capacity crunch. While multicore fibers require complex manufacturing, conventional multi-mode fibers suffer from mode coupling, caused by random perturbations in fibers and modal (de)multiplexers. Methods that have been developed to address the problem of mode coupling so far, have been dependent on computationally intensive digital signal processing algorithms using adaptive optics feedback or complex multiple-input multiple-output algorithms. Here we study the possibility of using the orbital angular momentum (OAM), or helicity, of light, as a means of increasing capacity of future optical fiber communication links. We first introduce a class of specialty fibers designed to minimize mode coupling and show their potential for OAM mode generation in fibers using numerical analysis. We then experimentally confirm the existence of OAM states in these fibers using methods based on fiber gratings and spatial light modulators. In order to quantify the purity of created OAM states, we developed two methods based on mode-image analysis, showing purity of OAM states to be 90% after 1km in these fibers. Finally, in order to demonstrate data transmission using OAM states, we developed a 4-mode multiplexing and demultiplexing systems based on free-space optics and spatial light modulators. Using simple coherent detection methods, we successfully transmit data at 400Gbit/s using four OAM modes at a single wavelength, over 1.1 km of fiber. Furthermore, we achieve data transmission at 1.6Tbit/s using 10 wavelengths and two OAM modes. Our study indicates that OAM light can exist

  17. Orbital angular momentum in optical waves propagating through distributed turbulence.

    Science.gov (United States)

    Sanchez, Darryl J; Oesch, Denis W

    2011-11-21

    This is the second of two papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. In the companion paper, it is shown that propagation through atmospheric turbulence can create non-trivial angular momentum. Here, we extend the result and demonstrate that this momentum is, at least in part, orbital angular momentum. Specifically, we demonstrate that branch points (in the language of the adaptive optic community) indicate the presence of photons with non-zero OAM. Furthermore, the conditions required to create photons with non-zero orbital angular momentum are ubiquitous. The repercussions of this statement are wide ranging and these are cursorily enumerated.

  18. Quantum correlations in optical angle-orbital angular momentum variables.

    Science.gov (United States)

    Leach, Jonathan; Jack, Barry; Romero, Jacqui; Jha, Anand K; Yao, Alison M; Franke-Arnold, Sonja; Ireland, David G; Boyd, Robert W; Barnett, Stephen M; Padgett, Miles J

    2010-08-06

    Entanglement of the properties of two separated particles constitutes a fundamental signature of quantum mechanics and is a key resource for quantum information science. We demonstrate strong Einstein, Podolsky, and Rosen correlations between the angular position and orbital angular momentum of two photons created by the nonlinear optical process of spontaneous parametric down-conversion. The discrete nature of orbital angular momentum and the continuous but periodic nature of angular position give rise to a special sort of entanglement between these two variables. The resulting correlations are found to be an order of magnitude stronger than those allowed by the uncertainty principle for independent (nonentangled) particles. Our results suggest that angular position and orbital angular momentum may find important applications in quantum information science.

  19. Detection of a spinning object using light's orbital angular momentum.

    Science.gov (United States)

    Lavery, Martin P J; Speirits, Fiona C; Barnett, Stephen M; Padgett, Miles J

    2013-08-01

    The linear Doppler shift is widely used to infer the velocity of approaching objects, but this shift does not detect rotation. By analyzing the orbital angular momentum of the light scattered from a spinning object, we observed a frequency shift proportional to product of the rotation frequency of the object and the orbital angular momentum of the light. This rotational frequency shift was still present when the angular momentum vector was parallel to the observation direction. The multiplicative enhancement of the frequency shift may have applications for the remote detection of rotating bodies in both terrestrial and astronomical settings.

  20. Accelerated rotation with orbital angular momentum modes

    CSIR Research Space (South Africa)

    Schulze, C

    2015-01-01

    Full Text Available during propagation for selected values of the morphology parameter θ are shown 043821-3 CHRISTIAN SCHULZE et al. PHYSICAL REVIEW A 91, 043821 (2015) FIG. 3. (Color online) The intensity images in the top rows of (a) and (b) show the petal rotation at a... a z-dependent orientation, given by Eqs. (17) and (18) for the sum and difference terms, 043821-4 ACCELERATED ROTATION WITH ORBITAL ANGULAR . . . PHYSICAL REVIEW A 91, 043821 (2015) (a) (b) θ θ π θ π θ π θ θ π θ π θ π FIG. 4. (Color online...

  1. Spin-Orbit Coupling and the Conservation of Angular Momentum

    Science.gov (United States)

    Hnizdo, V.

    2012-01-01

    In nonrelativistic quantum mechanics, the total (i.e. orbital plus spin) angular momentum of a charged particle with spin that moves in a Coulomb plus spin-orbit-coupling potential is conserved. In a classical nonrelativistic treatment of this problem, in which the Lagrange equations determine the orbital motion and the Thomas equation yields the…

  2. Coherent detection of orbital angular momentum in radio

    CERN Document Server

    Daldorff, L K S; Bergman, J E S; Isham, B; Al-Nuaimi, M K T; Forozesh, K; Carozzi, T D

    2015-01-01

    The angular momentum propagated by a beam of radiation has two contributions: spin angular momentum (SAM) and orbital angular momentum (OAM). SAM corresponds to wave polarisation, while OAM-carrying beams are characterized by a phase which is a function of azimuth. We demonstrate experimentally that radio beams propagating OAM can be generated and coherently detected using ordinary electric dipole antennas. The results presented here could pave the way for novel radio OAM applications in technology and science, including radio communication, passive remote sensing, and new types of active (continuous or pulsed transmission) electromagnetic measurements.

  3. Valley-contrasting orbital angular momentum in photonic valley crystals

    CERN Document Server

    Chen, Xiaodong; Dong, Jianwen

    2016-01-01

    Valley, as a degree of freedom, has been exploited to realize valley-selective Hall transport and circular dichroism in two-dimensional layered materials. On the other hand, orbital angular momentum of light with helical phase distribution has attracted great attention for its unprecedented opportunity to optical communicagtions, atom trapping, and even nontrivial topology engineering. Here, we reveal valley-contrasting orbital angular momentum in all-dielectric photonic valley crystals. Selective excitation of valley chiral bulk states is realized by sources carrying orbital angular momentum with proper chirality. Valley dependent edge states, predictable by nonzero valley Chern number, enable to suppress the inter-valley scattering along zigzag boundary, leading to broadband robust transmission in Z-shape bend without corner morphological optimization. Our work may open up a new door towards the discovery of novel quantum states and the manipulation of spin-orbit interaction of light in nanophotonics.

  4. Continuous Variable Entanglement and Squeezing of Orbital Angular Momentum States

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Leuchs, Gerd; Andersen, Ulrik Lund

    2009-01-01

    We report the first experimental characterization of the first-order continuous variable orbital angular momentum states. Using a spatially nondegenerate optical parametric oscillator (OPO) we produce quadrature entanglement between the two first-order Laguerre-Gauss modes. The family of orbital...

  5. Polarization control of single photon quantum orbital angular momentum states.

    Science.gov (United States)

    Nagali, E; Sciarrino, F; De Martini, F; Piccirillo, B; Karimi, E; Marrucci, L; Santamato, E

    2009-10-12

    The orbital angular momentum of photons, being defined in an infinite-dimensional discrete Hilbert space, offers a promising resource for high-dimensional quantum information protocols in quantum optics. The biggest obstacle to its wider use is presently represented by the limited set of tools available for its control and manipulation. Here, we introduce and test experimentally a series of simple optical schemes for the coherent transfer of quantum information from the polarization to the orbital angular momentum of single photons and vice versa. All our schemes exploit a newly developed optical device, the so-called "q-plate", which enables the manipulation of the photon orbital angular momentum driven by the polarization degree of freedom. By stacking several q-plates in a suitable sequence, one can also have access to higher-order angular momentum subspaces. In particular, we demonstrate the control of the orbital angular momentum m degree of freedom within the subspaces of |m| = 2h and |m| = 4h per photon.

  6. Transfer of orbital angular momentum through sub-wavelength waveguides.

    Science.gov (United States)

    Wang, Yanqin; Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Huang, Cheng; Pan, Wenbo; Zhao, Bo; Cui, Jianhua; Luo, Xiangang

    2015-02-01

    Data capacity of optical communication is achieving its limit owing to the non-linear effect of optical fiber. As an effective alternative, light carrying orbital angular momentum can greatly increase the capacity for its unprecedented degree of freedom. We demonstrate the propagation of orbital angular momentum with topological charge of 1 and 2 in plasmonic circular waveguide with sub-wavelength diameter with little propagation loss of 2.73 dB/μm, which has never been observed in optical fibers with sub-wavelength diameter. We also confirm that lights carrying orbital angular momentum can be maintained in sharp bended sub-wavelength waveguide. This plasmonic waveguide may serve as a key component in on-chip systems involving OAM.

  7. Origins and demonstrations of electrons with orbital angular momentum

    Science.gov (United States)

    McMorran, Benjamin J.; Agrawal, Amit; Ercius, Peter A.; Grillo, Vincenzo; Herzing, Andrew A.; Harvey, Tyler R.; Linck, Martin; Pierce, Jordan S.

    2017-02-01

    The surprising message of Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)) was that photons could possess orbital angular momentum in free space, which subsequently launched advancements in optical manipulation, microscopy, quantum optics, communications, many more fields. It has recently been shown that this result also applies to quantum mechanical wave functions describing massive particles (matter waves). This article discusses how electron wave functions can be imprinted with quantized phase vortices in analogous ways to twisted light, demonstrating that charged particles with non-zero rest mass can possess orbital angular momentum in free space. With Allen et al. as a bridge, connections are made between this recent work in electron vortex wave functions and much earlier works, extending a 175 year old tradition in matter wave vortices. This article is part of the themed issue 'Optical orbital angular momentum'.

  8. Efficient Sorting of Free Electron Orbital Angular Momentum

    CERN Document Server

    McMorran, Benjamin J; Lavery, Martin P J

    2016-01-01

    We propose a method for sorting electrons by orbital angular momentum (OAM). Several methods now exist to prepare electron wavefunctions in OAM states, but no technique has been developed for efficient, parallel measurement of pure and mixed electron OAM states. The proposed technique draws inspiration from the recent demonstration of the sorting of OAM through modal transformation. We show that the same transformation can be performed with electrostatic electron optical elements. Specifically, we show that a charged needle and an array of electrodes perform the transformation and phase correction necessary to sort orbital angular momentum states. This device may enable the analysis of the spatial mode distribution of inelastically scattered electrons.

  9. Generation of the Stigmatic Beam with Orbital Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    高春清; 魏光辉; Horst WEBER

    2001-01-01

    The stigmatic beam with orbital angular momentum is generated by transforming the Hermite-Gaussian beamof a diode-pumped Nd:YAG laser through a rotated cylindrical optical system. Behind the transformation optics,the output beam has an intensity distribution of ring shape and a twist phase. The beam transformation istheoretically calculated and the result has been confirmed in the experiments.

  10. Quantitative measurement of the orbital angular momentum density of light

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-03-01

    Full Text Available In this work we derive expressions for the orbital angular momentum (OAM) density of light, for both symmetric and nonsymmetric optical fields, that allow a direct comparison between theory and experiment. We present a simple method for measuring...

  11. Quantitatively measuring the orbital angular momentum density of light : Presentation

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2013-08-01

    Full Text Available Although many techniques are efficient at measuring optical orbital angular momentum (OAM), they do not allow one to obtain a quantitative measurement for the OAM density across an optical field and instead only measure its global OAM. Numerous...

  12. Holographic toolkit for optical communication beyond orbital angular momentum

    CSIR Research Space (South Africa)

    Rosales-Guzman, C

    2016-09-01

    Full Text Available , suggested over 30 years ago, comprises the use of spatial modes of light as information carriers. Along this direction, light beams endowed with orbital angular momentum (OAM) have been demonstrated as potential information carriers in both, free space...

  13. Dichroism for Orbital Angular Momentum using Stimulated Parametric Down Conversion

    CERN Document Server

    Lowney, Joseph; Faccio, Daniele; Wright, Ewan M

    2014-01-01

    We theoretically analyze stimulated parametric down conversion as a means to produce dichroism based on the orbital angular momentum (OAM) of an incident signal field. The nonlinear interaction is shown to provide differential gain between signal states of differing OAM, the peak gain occurring at half the OAM of the pump field.

  14. Effect of Orbital Angular Momentum on Nondiffracting Ultrashort Optical Pulses.

    Science.gov (United States)

    Ornigotti, Marco; Conti, Claudio; Szameit, Alexander

    2015-09-01

    We introduce a new class of nondiffracting optical pulses possessing orbital angular momentum. By generalizing the X-wave solution of the Maxwell equation, we discover the coupling between angular momentum and the temporal degrees of freedom of ultrashort pulses. The spatial twist of propagation invariant light pulse turns out to be directly related to the number of optical cycles. Our results may trigger the development of novel multilevel classical and quantum transmission channels free of dispersion and diffraction. They may also find application in the manipulation of nanostructured objects by ultrashort pulses and for novel approaches to the spatiotemporal measurements in ultrafast photonics.

  15. Transfer of optical orbital angular momentum to a bound electron

    Science.gov (United States)

    Schmiegelow, Christian T.; Schulz, Jonas; Kaufmann, Henning; Ruster, Thomas; Poschinger, Ulrich G.; Schmidt-Kaler, Ferdinand

    2016-10-01

    Photons can carry angular momentum, not only due to their spin, but also due to their spatial structure. This extra twist has been used, for example, to drive circular motion of microscopic particles in optical tweezers as well as to create vortices in quantum gases. Here we excite an atomic transition with a vortex laser beam and demonstrate the transfer of optical orbital angular momentum to the valence electron of a single trapped ion. We observe strongly modified selection rules showing that an atom can absorb two quanta of angular momentum from a single photon: one from the spin and another from the spatial structure of the beam. Furthermore, we show that parasitic ac-Stark shifts from off-resonant transitions are suppressed in the dark centre of vortex beams. These results show how light's spatial structure can determine the characteristics of light-matter interaction and pave the way for its application and observation in other systems.

  16. Orbital angular momentum of scalar field generated by gravitational scatterings

    CERN Document Server

    Nishikawa, Ryusuke; Masuda, Atsuki; Nambu, Yasusada; Ishihara, Hideki

    2016-01-01

    It has been expected that astronomical observations to detect the orbital angular momenta of electromagnetic waves may give us a new insight into astrophysics. Previous works pointed out the possibility that a rotating black hole can produce orbital angular momenta of electromagnetic waves through gravitational scattering, and the spin parameter of the black hole can be measured by observing them. However, the mechanism how the orbital angular momentum of the electromagnetic wave is generated by the gravitational scattering has not been clarified sufficiently. In this paper, in order to understand it from a point of view of gravitational lensing effects, we consider an emitter which radiates a spherical wave of the real massless scalar field and study the deformation of the scalar wave by the gravitational scattering due to a black hole by invoking the geometrical optics approximation. We show that the frame dragging caused by the rotating black hole is not a necessary condition for generating the orbital ang...

  17. Quark Orbital Angular Momentum in the MIT Bag Model

    CERN Document Server

    Courtoy, A

    2016-01-01

    We present the results for the Generalized Transverse Momentum Distribution related to quark Orbital Angular Momentum, {\\it i.e.} $F_{14}$, in the MIT bag model. This model has been modified to include the Peierls--Yoccoz projection to restore translational invariance. Such a modification allows to fulfill more satisfactorily basic sum rules, that would otherwise be less elegantly carried out with the original version. Using the same model, we have calculated the twist-$3$ GPD that corresponds to Orbital Angular Momentum \\`a la Ji, through the Penttinen--Polyakov--Shuvaev--Strikman sum rule. Recently, a new relation between the two definitions of the quark Orbital Angular Momentum at the density level has been proposed, which we illustrate here within the model. The sum rule is fulfilled. Still within the framework of the MIT bag model, we analyze the Wandzura--Wilczek expression for the GPD of interest. The genuine quark-gluon contribution is evaluated directly thanks to the equation of motion of the bag, wh...

  18. Conservation of orbital angular momentum in air core optical fibers

    CERN Document Server

    Gregg, P; Ramachandran, S

    2014-01-01

    Light's orbital angular momentum (OAM) is a conserved quantity in cylindrically symmetric media; however, it is easily destroyed by free-space turbulence or fiber bends, because anisotropic perturbations impart angular momentum. We observe the conservations of OAM even in the presence of strong bend perturbations, with fibers featuring air cores that appropriately sculpt the modal density of states. In analogy to the classical reasoning for the enhanced stability of spinning tops with increasing angular velocity, these states' lifetimes with OAM magnitude. Consequently, contrary to convention wisdom that ground states of systems are the most stable, OAM longevity in air-core fiber increases with mode order. Aided by conservation of this fundamental quantity, we demonstrate fiber propagation of 12 distinct higher-order OAM modes, of which 8 remain low-loss and >98% pure from near-degenerate coupling after km-length propagation. The first realization of long-lived higher-order OAM states, thus far posited to ex...

  19. Superpositions of light fields carrying orbital angular momentum

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-01-01

    Full Text Available OF LIGHT FIELDS CARRYING ORBITAL ANGULAR MOMENTUM By Angela Dudley A thesis submitted in fulfilment of the academic requirements for the PhD degree of Science in the School of Chemistry and Physics, University of KwaZulu-Natal, Durban... this dissertation for submission. _________________________________ Prof Andrew Forbes On this_______day of____________________________2012 iv Declaration 2 - Plagiarism I, ???????????????. declare that 1...

  20. Effects of Turbulent Aberrations on Probability Distribution of Orbital Angular Momentum for Optical Communication

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi-Xin; CANG Ji

    2009-01-01

    Effects of atmospheric turbulence tilt, defocus, astigmatism and coma aberrations on the orbital angular mo-mentum measurement probability of photons propagating in weak turbulent regime are modeled with Rytov approximation. By considering the resulting wave as a superposition of angular momentum eigenstates, the or-bital angular momentum measurement probabilities of the transmitted digit axe presented. Our results show that the effect of turbulent tilt aberration on the orbital angular momentum measurement probabilities of photons is the maximum among these four kinds of aberrations. As the aberration order increases, the effects of turbulence aberrations on the measurement probabilities of orbital angular momentum generally decrease, whereas the effect of turbulence defoens can be ignored. For tilt aberration, as the difference between the measured orbital angular momentum and the original orbital angular momentum increases, the orbital angular momentum measurement probabifity decreases.

  1. Orbit classification of low and high angular momentum stars

    CERN Document Server

    Zotos, Euaggelos E

    2014-01-01

    We determine the character of orbits of stars moving in the meridional plane $(R,z)$ of an axially symmetric time-independent disk galaxy model with a spherical central nucleus. In particular, we try to reveal the influence of the value of the angular momentum on the different families of orbits of stars, by monitoring how the percentage of chaotic orbits, as well as the percentages of orbits of the main regular resonant families evolve when angular momentum varies. The smaller alignment index (SALI) was computed by numerically integrating the equations of motion as well as the variational equations to extensive samples of orbits in order to distinguish safely between ordered and chaotic motion. In addition, a method based on the concept of spectral dynamics that utilizes the Fourier transform of the time series of each coordinate is used to identify the various families of regular orbits and also to recognize the secondary resonances that bifurcate from them. Our investigation takes place both in the physica...

  2. Topological Angular Momentum and Radiative Heat Transport in Closed Orbits

    CERN Document Server

    Silveirinha, Mario G

    2016-01-01

    Here, we study the role of topological edge states of light in the transport of thermally generated radiation in a closed cavity at a thermodynamic equilibrium. It is shown that even in the zero temperature limit - when the field fluctuations are purely quantum mechanical - there is a persistent flow of electromagnetic momentum in the cavity in closed orbits, deeply rooted in the emergence of spatially separated unidirectional edge state channels. It is highlighted the electromagnetic orbital angular momentum of the system is nontrivial, and that the energy circulation is towards the same direction as that determined by incomplete cyclotron orbits near the cavity walls. Our findings open new inroads in topological photonics and suggest that topological states of light can determine novel paradigms in the context of radiative heat transport.

  3. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects.

    Science.gov (United States)

    Berkhout, Gregorius C G; Beijersbergen, Marco W

    2008-09-05

    We present an efficient method for probing the orbital angular momentum of optical vortices of arbitrary sizes. This method, based on a multipoint interferometer, has its most important application in measuring the orbital angular momentum of light from astronomical sources, opening the way to interesting new astrophysics. We demonstrate its viability by measuring the orbital angular momentum of Laguerre-Gaussian laser beams.

  4. Scalable orbital-angular-momentum sorting without destroying photon states

    CERN Document Server

    Wang, Fang-Xiang; Yin, Zhen-Qiang; Wang, Shuang; Guo, Guang-Can; Han, Zheng-Fu

    2016-01-01

    Single photons with orbital angular momentum (OAM) have attracted substantial attention from researchers. A single photon can carry infinite OAM values theoretically. Thus, OAM photon states have been widely used in quantum information and fundamental quantum mechanics. Although there have been many methods for sorting quantum states with different OAM values, the nondestructive and efficient sorter of high-dimensional OAM remains a fundamental challenge. Here, we propose a scalable OAM sorter which can categorize different OAM states simultaneously, meanwhile, preserving both OAM and spin angular momentum. Fundamental elements of the sorter are composed of symmetric multiport beam splitters (BSs) and Dove prisms with cascading structure, which in principle can be flexibly and effectively combined to sort arbitrarily high-dimensional OAM photons. The scalable structures proposed here greatly reduce the number of BSs required for sorting high-dimensional OAMstates. In view of the nondestructive and extensible ...

  5. Photonic-phononic orbital angular momentum in Brillouin parametric conversion

    CERN Document Server

    Zhu, Zhihan; Mu, Chunyuan; Li, Hongwei

    2014-01-01

    Orbital angular momentum (OAM) is a fundamental photonic degree of freedom, showed by Allen and co-workers. Its most attractive feature is an inherently infinite dimensionality, which in recent years has obtained several ground-breaking demonstrations for high information-density communication and processing, both in classical and quantum. Here, by seeking the reason for photonic OAM non-conservation in stimulated Brillouin amplification, we report the first demonstration of the evolution law for OAM in Brillouin process. The parameter of OAM can conveniently transfer between the phonons and different polarized photons due to the photonic spin angular momentum conservation. Our results have revealed a parametric conversion mechanism of Brillouin process for Photonic-phononic OAM, demonstrated the role of phononic OAM and the vortex acoustic wave in this process, and suggested this mechanism may find important applications in OAM-based information communication and processing.

  6. Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light.

    Science.gov (United States)

    Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Han, Shuo; Yang, Haifang; Xu, Xiangang; Wang, Zhengping; Petrov, V; Wang, Jiyang

    2013-11-12

    We demonstrate the optical orbital angular momentum conservation during the transfer process from subwavelength plasmonic vortex lens (PVLs) to light and the generating process of surface plasmon polaritons (SPPs). Illuminating plasmonic vortex lenses with beams carrying optical orbital angular momentum, the SP vortices with orbital angular momentum were generated and inherit the optical angular momentum of light beams and PVLs. The angular momentum of twisting SP electromagnetic field is tunable by the twisted metal/dielectric interfaces of PVLs and angular momentum of illuminating singular light. This work may open the door for several possible applications of SP vortices in subwavelength region.

  7. Engineering of orbital angular momentum supermodes in coupled optical waveguides

    CERN Document Server

    Turpin, A; Polo, J; Mompart, J; Ahufinger, V

    2016-01-01

    In this work we demonstrate the existence of orbital angular momentum (OAM) bright and dark supermodes in a three-evanescent coupled cylindrical waveguides system. Bright and dark supermodes are characterized by its coupling and decoupling from one of the waveguides, respectively. In addition, we demonstrate that complex couplings between modes of different waveguides appear naturally due to the characteristic spiral phase-front of OAM modes in two-dimensional configurations where the waveguides are arranged forming a triangle. Finally, by adding dissipation to the waveguide uncoupled to the dark supermode, we are able to filter it out, allowing for the design of OAM mode clonners and inverters.

  8. Supermode fiber for orbital angular momentum (OAM) transmission.

    Science.gov (United States)

    Li, Shuhui; Wang, Jian

    2015-07-13

    We present a multi-orbital-angular-momentum (OAM) multi-core supermode fiber (MOMCSF) to transmit OAM modes. The MOMCSF consists of equally-spaced and circularly-arranged multiple cores, in which the core pitch is small enough to support strong coupling OAM supermodes. The characteristics of OAM modes in MOMCSFs with different core pitches and core numbers are analyzed. The performances of mode coupling and nonlinearity are optimized by designing multiple degrees of freedom of the supermode fiber. The obtained results show that the designed MOMCSF can transmit multiple OAM modes with favorable performance of low mode coupling, low nonlinearity, and low modal dependent loss.

  9. Photons, phonons, and plasmons with orbital angular momentum in plasmas

    CERN Document Server

    Chen, Qiang; Liu, Jian

    2016-01-01

    Exact eigen modes with orbital angular momentum (OAM) in the complex media of unmagnetized homogeneous plasma are studied. Three exact eigen modes with OAM are discovered, i.e., photons, phonons, and plasmons. It is found that an OAM photon can be excited by two familiar Bessel modes without OAM. For the phonons and plasmons, their OAM are carried by the electrons and ions. The OAM modes in plasmas and their characteristics can be explored for various potential applications in plasma physics and accelerator physics.

  10. Radio pumping of ionospheric plasma with orbital angular momentum.

    Science.gov (United States)

    Leyser, T B; Norin, L; McCarrick, M; Pedersen, T R; Gustavsson, B

    2009-02-13

    Experimental results are presented of pumping ionospheric plasma with a radio wave carrying orbital angular momentum (OAM), using the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Optical emissions from the pumped plasma turbulence exhibit the characteristic ring-shaped morphology when the pump beam carries OAM. Features of stimulated electromagnetic emissions (SEE) that are attributed to cascading Langmuir turbulence are well developed for a regular beam but are significantly weaker for a ring-shaped OAM beam in which case upper hybrid turbulence dominates the SEE.

  11. Manipulating atomic states via optical orbital angular-momentum

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Optical orbital angular-momentum(OAM)has more complex mechanics than the spin degree of photons,and may have a broad range of application.Manipulating atomic states via OAM has become an interesting topic.In this paper,we first review the general theory of generating adiabatic gauge field in ultracold atomic systems by coupling atoms to external optical fields with OAM,and point out the applications of the generated adiabatic gauge field.Then,we review our work in this field,including the generation of macroscopic superposition of vortex-antivortex states and spin Hall effect(SHE)in cold atoms.

  12. Measuring the Orbital Angular Momentum of Electron Beams

    CERN Document Server

    Guzzinati, Giulio; Béché, Armand; Verbeeck, Jo

    2014-01-01

    The recent demonstration of electron vortex beams has opened up the new possibility of studying orbital angular momentum (OAM) in the interaction between electron beams and matter. To this aim, methods to analyze the OAM of an electron beam are fundamentally important and a necessary next step. We demonstrate the measurement of electron beam OAM through a variety of techniques. The use of forked holographic masks, diffraction from geometric apertures, diffraction from a knife-edge and the application of an astigmatic lens are all experimentally demonstrated. The viability and limitations of each are discussed with supporting numerical simulations.

  13. Light beams with orbital angular momentum for free space optics

    Institute of Scientific and Technical Information of China (English)

    Wu Jing-Zhi; Li Yang-Jun

    2007-01-01

    The light's orbital angular momentum (OAM) is a consequence of the spiral flow of the electromagnetic energy. In this paper, an analysis of light beams with OAM used for free space optics (FSO) is conducted. The basic description and conception of light's OAM are reviewed. Both encoding information into OAM states of single light beam and encoding information into spatial structure of the mixed optical vortex with OAM are discussed, and feasibility to improve the FSO's performance of security and obstruction of line of sight is examined.

  14. Photons, phonons, and plasmons with orbital angular momentum in plasmas

    Science.gov (United States)

    Chen, Qiang; Qin, Hong; Liu, Jian

    2017-01-01

    Exact eigen modes with orbital angular momentum (OAM) in the complex media of unmagnetized homogeneous plasmas are studied. Three exact eigen modes with OAM are derived, i.e., photons, phonons, and plasmons. The OAM of different plasma components are closely related to the charge polarities. For photons, the OAM of electrons and ions are of the same magnitude but opposite direction, and the total OAM is carried by the field. For the phonons and plasmons, their OAM are carried by the electrons and ions. The OAM modes in plasmas and their characteristics can be explored for potential applications in plasma physics and accelerator physics. PMID:28164998

  15. Multiple orbital angular momentum generated by dielectric hybrid phase element

    Science.gov (United States)

    Wang, Xuewen; Kuchmizhak, Aleksandr; Hu, Dejiao; Li, Xiangping

    2017-09-01

    Vortex beam carrying multiple orbital angular momentum provides a new degree of freedom to manipulate light leading to the various exciting applications as trapping, quantum optics, information multiplexing, etc. Helical wavefront can be generated either via the geometric or the dynamic phase arising from a space-variant birefringence (q-plate) or from phase accumulation through propagation (spiral-phase-plate), respectively. Using fast direct laser writing technique we fabricate and characterize novel hybrid q-plate generating vortex beam simultaneously carrying two different high-order topological charges, which arise from the spin-orbital conversion and the azimuthal height variation of the recorded structures. We approve the versatile concept to generate multiple-OAM vortex beams combining the spin-orbital interaction and the phase accumulation in a single micro-scale device, a hybrid dielectric phase plate.

  16. A Stern-Gerlach-like approach to electron orbital angular momentum measurement

    CERN Document Server

    Harvey, Tyler R

    2016-01-01

    Many methods now exist to prepare free electrons into orbital angular momentum states, and the predicted applications of these electron states as probes of materials and scattering processes are numerous. The development of electron orbital angular momentum measurement techniques has lagged behind. We show that coupling between electron orbital angular momentum and a spatially varying magnetic field produces an angular momentum-dependent focusing effect. We propose a design for an orbital angular momentum measurement device built on this principle. As the method of measurement is non-interferometric, the device works equally well for mixed, superposed and pure final orbital angular momentum states. The energy and orbital angular momentum distributions of inelastically scattered electrons may be simultaneously measurable with this technique.

  17. Squeezing of X waves with orbital angular momentum

    CERN Document Server

    Ornigotti, Marco; Szameit, Alexander; Conti, Claudio

    2016-01-01

    Multi-level quantum protocols may potentially supersede standard quantum optical polarization-encoded protocols in terms of amount of information transmission and security. However, for free space telecomunications, we do not have tools for limiting loss due to diffraction and perturbations, as for example turbulence in air. Here we study propagation invariant quantum X-waves with angular momentum; this representation expresses the electromagnetic field as a quantum gas of weakly interacting bosons. The resulting spatio-temporal quantized light pulses are not subject to diffraction and dispersion, and are intrinsically resilient to disturbances in propagation. We show that spontaneous down-conversion generates squeezed X-waves useful for quantum protocols. Surprisingly the orbital angural momentum affects the squeezing angle, and we predict the existence of a characteristic axicon aperture for maximal squeezing. There results may boost the applications in free space of quantum optical transmission and multi-l...

  18. Accessing the quark orbital angular momentum with Wigner distributions

    CERN Document Server

    Cedric, Lorce

    2012-01-01

    The quark orbital angular momentum (OAM) has been recognized as an important piece of the proton spin puzzle. A lot of effort has been invested in trying to extract it quantitatively from the generalized parton distributions (GPDs) and the transverse-momentum dependent parton distributions (TMDs), which are accessed in high-energy processes and provide three-dimensional pictures of the nucleon. Recently, we have shown that it is more natural to access the quark OAM from the phase-space or Wigner distributions. We discuss the concept of Wigner distributions in the context of quantum field theory and show how they are related to the GPDs and the TMDs. We summarize the different definitions discussed in the literature for the quark OAM and show how they can in principle be extracted from the Wigner distributions.

  19. Efficient separation of the orbital angular momentum eigenstates of light.

    Science.gov (United States)

    Mirhosseini, Mohammad; Malik, Mehul; Shi, Zhimin; Boyd, Robert W

    2013-01-01

    Orbital angular momentum (OAM) of light is an attractive degree of freedom for fundamental studies in quantum mechanics. In addition, the discrete unbounded state-space of OAM has been used to enhance classical and quantum communications. Unambiguous measurement of OAM is a key part of all such experiments. However, state-of-the-art methods for separating single photons carrying a large number of different OAM values are limited to a theoretical separation efficiency of about 77%. Here we demonstrate a method which uses a series of unitary optical transformations to enable the measurement of light's OAM with an experimental separation efficiency of >92%. Furthermore, we demonstrate the separation of modes in the angular position basis, which is mutually unbiased with respect to the OAM basis. The high degree of certainty achieved by our method makes it particularly attractive for enhancing the information capacity of multi-level quantum cryptography systems.

  20. Exploring the orbital angular momentum of betatron radiation

    Science.gov (United States)

    Martins, Joana; Hehmann, Guenda; Fonseca, Ricardo; Silva, Luis; Vieira, Jorge

    2016-10-01

    Betatron radiation from laser-wakefield accelerators (LWFA) can be used as a broadband X-ray source. Betatron x-rays have attracted great interest and have applications in biological imaging which have been demonstrated experimentally (see for instance). Endowing betatron radiation with well defined states of orbital angular momentum (OAM), a fundamental property of light by which its wave fronts become twisted, could further enhance the imaging spatial resolution. However, the conditions for the generation of betatron x-rays with OAM, and the fundamental mechanisms underlying the transfer of OAM from electron trajectories to the radiation they emit, remain outstanding open questions. To explore these exciting open challenges, we investigate the OAM spectral content of betatron x-rays in LWFA. We explore the conditions and laser driver characteristics (with/without orbital and spin angular momentum) that can enable the emission of OAM x-rays. We support our studies by 3D numerical modelling, using the particle-in-cell code Osiris and using the post processing radiation code jRad. also at DCTI/ISCTE Instituto Universitario de Lisboa, Lisboa, Portugal.

  1. Orbital angular momentum of the laser beam and the second order intensity moments

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    From the wave equation of a generalized beam the orbital angular momentum is studied. It is shown that the orbital angular momentum exists not only in the Laguerre_Gaussian beam,but in any beam with an angular_dependent structure. By calculating the second order intensity moments of the beam the relation between the orbital angular momentum and the second order moments 〈xθy〉, 〈yθx〉 is given. As an example the orbital angular momentum of the general astigmatic Gaussian beam is studied.

  2. Orbital angular momentum of the laser beam and the second order intensity moments

    Institute of Scientific and Technical Information of China (English)

    高春清[1; 魏光辉[2; HorstWeber[3

    2000-01-01

    From the wave equation of a generalized beam the orbital angular momentum is studied. It is shown that the orbital angular momentum exists not only in the Laguerre-Gaussian beam, but in any beam with an angular-dependent structure. By calculating the second order intensity moments of the beam the relation between the orbital angular momentum and the second order moments 〈xθy〉, 〈yθx〉 is given. As an example the orbital angular momentum of the general astigmatic Gaussian beam is studied.

  3. Squeezing of X waves with orbital angular momentum

    Science.gov (United States)

    Ornigotti, Marco; Villari, Leone Di Mauro; Szameit, Alexander; Conti, Claudio

    2017-01-01

    Multilevel quantum protocols may potentially supersede standard quantum optical polarization-encoded protocols in terms of amount of information transmission and security. However, for free-space telecommunications, we do not have tools for limiting loss due to diffraction and perturbations, as, for example, turbulence in air. Here we study propagation invariant quantum X waves with angular momentum; this representation expresses the electromagnetic field as a quantum gas of weakly interacting bosons. The resulting spatiotemporal quantized light pulses are not subject to diffraction and dispersion, and are intrinsically resilient to disturbances in propagation. We show that spontaneous down-conversion generates squeezed X waves useful for quantum protocols. Surprisingly, the orbital angular momentum affects the squeezing angle, and we predict the existence of a characteristic axicon aperture for maximal squeezing. These results may boost the applications in free space of quantum optical transmission and multilevel quantum protocols, and may also be relevant for novel kinds of interferometers, such as satellite-based gravitational wave detectors.

  4. Ultra-sensitive and super-resolving angular rotation measurement based on photon orbital angular momentum using parity measurement.

    Science.gov (United States)

    Zhang, Zijing; Qiao, Tianyuan; Ma, Kun; Cen, Longzhu; Zhang, Jiandong; Wang, Feng; Zhao, Yuan

    2016-08-15

    Photon orbital angular momentum has led to many novel insights and applications in quantum measurement. Photon orbital angular momentum can increase the resolution and sensitivity of angular rotation measurement. However, quantum measurement strategy can further surpass this limit and improve the resolution of angular rotation measurement. This Letter proposes and demonstrates a parity measurement method in angular rotation measurement scheme for the first time. Parity measurement can make the resolution superior to the limit of the existing method. The sensitivity can be improved with higher orbital angular momentum photons. Moreover, this Letter gives a detailed discussion of the change of resolution and sensitivity in the presence of photon loss.

  5. Weak measurements with orbital-angular-momentum pointer states.

    Science.gov (United States)

    Puentes, G; Hermosa, N; Torres, J P

    2012-07-27

    Weak measurements are a unique tool for accessing information about weakly interacting quantum systems with minimal back action. Joint weak measurements of single-particle operators with pointer states characterized by a two-dimensional Gaussian distribution can provide, in turn, key information about quantum correlations that can be relevant for quantum information applications. Here we demonstrate that by employing two-dimensional pointer states endowed with orbital angular momentum (OAM), it is possible to extract weak values of the higher order moments of single-particle operators, an inaccessible quantity with Gaussian pointer states only. We provide a specific example that illustrates the advantages of our method both in terms of signal enhancement and information retrieval.

  6. Measuring an electron beam's orbital angular momentum spectrum

    CERN Document Server

    Grillo, incenzo; Venturi, Federico; Larocque, Hugo; Balboni, Roberto; Gazzadi, Gian Carlo; Frabboni, Stefano; Lu, Peng-Han; Mafakheri, Erfan; Bouchard, Frédéric; Dunin-Borkowski, Rafal E; Boyd, Robert W; Lavery, Martin P J; Padgett, Miles J; Karimi, Ebrahim

    2016-01-01

    Quantum complementarity states that particles, e.g. electrons, can exhibit wave-like properties such as diffraction and interference upon propagation. \\textit{Electron waves} defined by a helical wavefront are referred to as twisted electrons~\\cite{uchida:10,verbeeck:10,mcmorran:11}. These electrons are also characterised by a quantized and unbounded magnetic dipole moment parallel to their propagation direction, as they possess a net charge of $-|e|$~\\cite{bliokh:07}. When interacting with magnetic materials, the wavefunctions of twisted electrons are inherently modified~\\cite{lloyd:12b,schattschneider:14a,asenjo:14}. Such variations therefore motivate the need to analyze electron wavefunctions, especially their wavefronts, in order to obtain information regarding the material's structure~\\cite{harris:15}. Here, we propose, design, and demonstrate the performance of a device for measuring an electron's azimuthal wavefunction, i.e. its orbital angular momentum (OAM) content. Our device consists of nanoscale h...

  7. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  8. Chip-Scale Continuously Tunable Optical Orbital Angular Momentum Generator

    CERN Document Server

    Sun, Jie; Moresco, Michele; Coolbaugh, Douglas; Watts, Michael R

    2014-01-01

    Light carrying orbital angular momentum (OAM) has potential to impact a wide variety of applications ranging from optical communications to quantum information and optical forces for the excitation and manipulation of atoms, molecules, and micro-particles. The unique advantage of utilizing OAM in these applications relies, to a large extent, on the use of multiple different OAM states. Therefore, it is desirable to have a device that is able to gen- erate light with freely adjustable OAM states in an integrated form for large- scale integration. We propose and demonstrate a compact silicon photonic integrated circuit to generate a free-space optical beam with OAM state con- tinuously tuned from a single electrical input signal, realizing both integer and non-integer OAM states. The compactness and flexibility of the device and its compatibility with complementary metal-oxide-semiconductor (CMOS) pro- cessing hold promise for integration with other silicon photonic components for wide-ranging applications.

  9. Rapid generation of light beams carrying orbital angular momentum.

    Science.gov (United States)

    Mirhosseini, Mohammad; Magaña-Loaiza, Omar S; Chen, Changchen; Rodenburg, Brandon; Malik, Mehul; Boyd, Robert W

    2013-12-16

    We report a technique for encoding both amplitude and phase variations onto a laser beam using a single digital micro-mirror device (DMD). Using this technique, we generate Laguerre-Gaussian and vortex orbital-angular-momentum (OAM) modes, along with modes in a set that is mutually unbiased with respect to the OAM basis. Additionally, we have demonstrated rapid switching among the generated modes at a speed of 4 kHz, which is much faster than the speed regularly achieved by phase-only spatial light modulators (SLMs). The dynamic control of both phase and amplitude of a laser beam is an enabling technology for classical communication and quantum key distribution (QKD) systems that employ spatial mode encoding.

  10. Nondestructive Measurement of Orbital Angular Momentum for an Electron Beam

    Science.gov (United States)

    Larocque, Hugo; Bouchard, Frédéric; Grillo, Vincenzo; Sit, Alicia; Frabboni, Stefano; Dunin-Borkowski, Rafal E.; Padgett, Miles J.; Boyd, Robert W.; Karimi, Ebrahim

    2016-10-01

    Free electrons with a helical phase front, referred to as "twisted" electrons, possess an orbital angular momentum (OAM) and, hence, a quantized magnetic dipole moment along their propagation direction. This intrinsic magnetic moment can be used to probe material properties. Twisted electrons thus have numerous potential applications in materials science. Measuring this quantity often relies on a series of projective measurements that subsequently change the OAM carried by the electrons. In this Letter, we propose a nondestructive way of measuring an electron beam's OAM through the interaction of this associated magnetic dipole with a conductive loop. Such an interaction results in the generation of induced currents within the loop, which are found to be directly proportional to the electron's OAM value. Moreover, the electron experiences no OAM variations and only minimal energy losses upon the measurement, and, hence, the nondestructive nature of the proposed technique.

  11. Encoding Orbital Angular Momentum of Lights in Magnets

    CERN Document Server

    Fujita, Hiroyuki

    2016-01-01

    Breaking the diffraction limit and focusing laser beams to nanometre-scale are becoming possible with the help of recent developments in plasmonics. This allows us to explore nano-scale physics induced by laser beams with complex spatial profiles like optical vortex, or laser carrying orbital angular momentum (OAM). On the basis of numerical calculations using Landau-Lifshitz-Gilbert equation, here we propose two OAM-dependent phenomena induced by optical vortex, spin waves with multipolar and spiral wave fronts, and ultrafast generation of various kinds of topological defects in chiral magnets. We show that by using Tera Hz optical vortex, we can generate skyrmionic defects with timescale orders of magnitude shorter than by other known schemes.

  12. Creating High-Harmonic Beams with Controlled Orbital Angular Momentum

    Science.gov (United States)

    Boyd, Robert W.

    A beam of light with an angle-dependent phase Φ = lϕ , where ϕ is the azimuthal coordinate, about the beam axis carries an orbital angular momentum (OAM) of lℏ per photon. Such beams have been exploited to provide superresolution in visible-light microscopy. The ability to create extreme ultraviolet or soft-x-ray beams with controllable OAM would be a critical step towards extending superresolution methods to extremely small feature size. Here we show that OAM is conserved during the process of high-harmonic generation (HHG). Experimentally, we use a fundamental beam with l = 1 and interferometrically determine that the q-th harmonic has an OAM quantum number l equal to its harmonic order q. We also show theoretically how to couple an arbitrary low value of the OAM quantum number l to any harmonic order q in a controlled manner. Our results open a route to microscopy on the molecular, or even submolecular, scale.

  13. Detection of orbital angular momentum using a photonic integrated circuit.

    Science.gov (United States)

    Rui, Guanghao; Gu, Bing; Cui, Yiping; Zhan, Qiwen

    2016-06-20

    Orbital angular momentum (OAM) state of photons offer an attractive additional degree of freedom that has found a variety of applications. Measurement of OAM state, which is a critical task of these applications, demands photonic integrated devices for improved fidelity, miniaturization, and reconfiguration. Here we report the design of a silicon-integrated OAM receiver that is capable of detecting distinct and variable OAM states. Furthermore, the reconfiguration capability of the detector is achieved by applying voltage to the GeSe film to form gratings with alternate states. The resonant wavelength for arbitrary OAM state is demonstrated to be tunable in a quasi-linear manner through adjusting the duty cycle of the gratings. This work provides a viable approach for the realization of a compact integrated OAM detection device with enhanced functionality that may find important applications in optical communications and information processing with OAM states.

  14. Observation of Four-Photon Orbital Angular Momentum Entanglement

    Science.gov (United States)

    Hiesmayr, B. C.; de Dood, M. J. A.; Löffler, W.

    2016-02-01

    We demonstrate genuine multipartite quantum entanglement of four photons in their orbital angular momentum degrees of freedom, where a high-dimensional discrete Hilbert space is attached to each photon. This can encode more quantum information compared to the qubit case, but it is a long-standing problem to entangle more than two such photons. In our experiment we use pulsed spontaneous parametric down-conversion to produce the photon quadruplets, which allows us to detect about one four-photon event per second. By means of quantum state reconstruction and a suitable witness operator we find that the photon quadruplets form a genuine multipartite entangled symmetric Dicke state. This opens a new tool for addressing foundational questions in quantum mechanics, and for exploration of novel high-dimensional multiparty quantum information applications such as secret sharing.

  15. Capacity of arbitrary-order orbital angular momentum multiplexing system

    Science.gov (United States)

    Zhao, Yaqin; Zhong, Xin; Ren, Guanghui; He, Shengyang; Wu, Zhilu

    2017-03-01

    Arbitrary-order orbital angular momentum multiplexing (AOAMM) systems utilize OAM modes with both integer and fractional topological charges which are non-orthogonal. In this paper, the transmission matrix and the capacity per unit bandwidth, i.e., the spectral efficiency (SE) of an AOAMM system is derived based on the spatial cross correlations of the OAM submodes under different aperture conditions. The results show that in limited apertures, the SEs of AOAMM systems increase dramatically as the interval of two adjacent OAM submodes decreases by losing orthogonality. AOAMM systems are effective choices for satisfying the explosive growth of the communication requirements. This paper provides insight into the selection of spatially multiplexing approaches and the design of interference mitigation techniques for AOAMM systems with increased SEs.

  16. Weak measurements with orbital angular momentum pointer states

    CERN Document Server

    Puentes, G; Torres, J P

    2012-01-01

    Weak measurements are a unique tool for accessing information about weakly interacting quantum systems with minimal back-action. Joint weak measurements of single-particle operators with pointer states characterized by a two-dimensional Gaussian distribution can provide, in turn, key information about quantum correlations which can be of relevance for quantum information applications. In this paper, we demonstrate that by employing two-dimensional pointer states endowed with orbital angular momentum (OAM), it is possible to extract second-order weak values of single particle operators, an unaccessible quantity with Gaussian pointer states only. An important application of the results presented here is in the non-destructive measurement of single-particle operator weak variances, via two-dimensional pointer displacements.

  17. Holographic tool kit for optical communication beyond orbital angular momentum

    CERN Document Server

    Trichili, Abderrahmen; Dudley, Angela; Ndagano, Bienvenu; Salem, Amine Ben; Zghal, Mourad; Forbes, Andrew

    2016-01-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realising higher bit rates for next generation optical networks.

  18. Tighter spots of light with superposed orbital angular momentum beams

    CERN Document Server

    Woźniak, Paweł; Bouchard, Frédéric; Karimi, Ebrahim; Leuchs, Gerd; Boyd, Robert W

    2016-01-01

    The possibility of focusing light to an ever tighter spot has important implications for many applications and fields of optics research, such as nano-optics and plasmonics, laser-scanning microscopy, optical data storage and many more. The size of lateral features of the field at the focus depends on several parameters, including the numerical aperture of the focusing system, but also the wavelength and polarization, phase and intensity distribution of the input beam. Here, we study the smallest achievable focal feature sizes of coherent superpositions of two co-propagating beams carrying opposite orbital angular momentum. We investigate the feature sizes for this class of beams not only in the scalar limit, but also use a fully vectorial treatment to discuss the case of tight focusing. Both our numerical simulations and our experimental results confirm that lateral feature sizes considerably smaller than those of a tightly focused Gaussian light beam can be observed. These findings may pave the way for impr...

  19. Pluto Moons exhibit Orbital Angular Momentum Quantization per Mass

    Directory of Open Access Journals (Sweden)

    Potter F.

    2012-10-01

    Full Text Available The Pluto satellite system of the planet plus five moons is shown to obey the quan- tum celestial mechanics (QCM angular momentum per mass quantization condition predicted for any gravitationally bound system.

  20. Numerical Solution of the Evolution Equation for Orbital Angular Momentum of Partons in the Nucleon

    CERN Document Server

    Martin, O; Schäfer, A

    1999-01-01

    The evolution of orbital angular momentum distributions within the radiative parton model is studied. We use different scenarios for the helicity weighted parton distributions and consider a broad range of input distributions for orbital angular momentum. In all cases we are lead to the conclusion that the absolute value of the average angular momentum per parton peaks at relatively large $x\\approx 0.1$ for perturbatively accessible scales. Furthermore, in all scenarios considered here the average orbital angular momentum per parton is several times larger for gluons than for quarks which favours gluon initiated reactions to measure orbital angular momentum. The large gluon polarization typically obtained in NLO-fits to DIS data is primarily canceled by the gluon orbital angular momentum.

  1. On the natures of the spin and orbital parts of optical angular momentum

    Science.gov (United States)

    Barnett, Stephen M.; Allen, L.; Cameron, Robert P.; Gilson, Claire R.; Padgett, Miles J.; Speirits, Fiona C.; Yao, Alison M.

    2016-06-01

    The modern field of optical angular momentum began with the realisation by Allen et al in 1992 that, in addition to the spin associated with polarisation, light beams with helical phase fronts carry orbital angular momentum. There has been much confusion and debate, however, surrounding the intricacies of the field and, in particular, the separation of the angular momentum into its spin and orbital parts. Here we take the opportunity to state the current position as we understand it, which we present as six perspectives: (i) we start with a reprise of the 1992 paper in which it was pointed out that the Laguerre-Gaussian modes, familiar from laser physics, carry orbital angular momentum. (ii) The total angular momentum may be separated into spin and orbital parts, but neither alone is a true angular momentum. (iii) The spin and orbital parts, although not themselves true angular momenta, are distinct and physically meaningful, as has been demonstrated clearly in a range of experiments. (iv) The orbital part of the angular momentum in the direction of propagation of a beam is not simply the azimuthal component of the linear momentum. (v) The component of spin in the direction of propagation is not the helicity, although these are related quantities. (vi) Finally, the spin and orbital parts of the angular momentum correspond to distinct symmetries of the free electromagnetic field and hence are separately conserved quantities.

  2. On the transformations generated by the electromagnetic spin and orbital angular momentum operators

    CERN Document Server

    Fernandez-Corbaton, Ivan; Molina-Terriza, Gabriel

    2013-01-01

    We present a study of the properties of the transversal "spin angular momentum" and "orbital angular momentum" operators. We show that the "spin angular momentum" operators are generators of spatial translations which depend on helicity and frequency and that the "orbital angular momentum" operators generate transformations which are a sequence of this kind of translations and rotations. We give some examples of the use of these operators in light matter interaction problems. Their relationship with the helicity operator allows to involve the electromagnetic duality symmetry in the analysis. We also find that simultaneous eigenstates of the three "spin" operators and parity define a kind of standing modes which have been recently singled out for the interaction of light with chiral molecules. With respect to the relationship between "spin angular momentum", polarization, and total angular momentum, we show that, except for the case of a single plane wave, the total angular momentum of a beam is decoupled from...

  3. Galaxy S-Stars Exhibit Orbital Angular Momentum Quantization per Unit Mass

    Directory of Open Access Journals (Sweden)

    Potter F.

    2012-10-01

    Full Text Available The innermost stars of our Galaxy, called S-stars, are in Keplerian orbits. Quantum celestial mechanics (QCM predicts orbital angular momentum quantization per unit mass for each of them. I determine the quantization integers for the 27 well-measured S-stars and the total angular momentum of this nearly isolated QCM system within the Galactic bulge.

  4. High-capacity millimetre-wave communications with orbital angular momentum multiplexing.

    Science.gov (United States)

    Yan, Yan; Xie, Guodong; Lavery, Martin P J; Huang, Hao; Ahmed, Nisar; Bao, Changjing; Ren, Yongxiong; Cao, Yinwen; Li, Long; Zhao, Zhe; Molisch, Andreas F; Tur, Moshe; Padgett, Miles J; Willner, Alan E

    2014-09-16

    One property of electromagnetic waves that has been recently explored is the ability to multiplex multiple beams, such that each beam has a unique helical phase front. The amount of phase front 'twisting' indicates the orbital angular momentum state number, and beams with different orbital angular momentum are orthogonal. Such orbital angular momentum based multiplexing can potentially increase the system capacity and spectral efficiency of millimetre-wave wireless communication links with a single aperture pair by transmitting multiple coaxial data streams. Here we demonstrate a 32-Gbit s(-1) millimetre-wave link over 2.5 metres with a spectral efficiency of ~16 bit s(-1) Hz(-1) using four independent orbital-angular momentum beams on each of two polarizations. All eight orbital angular momentum channels are recovered with bit-error rates below 3.8 × 10(-3). In addition, we demonstrate a millimetre-wave orbital angular momentum mode demultiplexer to demultiplex four orbital angular momentum channels with crosstalk less than -12.5 dB and show an 8-Gbit s(-1) link containing two orbital angular momentum beams on each of two polarizations.

  5. Management of the orbital angular momentum of vortex beams in a quadratic nonlinear interaction

    CERN Document Server

    Bovino, Fabio A; Bertolotti, Mario; Sibilia, Concita

    2011-01-01

    Light intensity control of the orbital angular momentum of the fundamental beam in a quadratic nonlinear process is theoretically and numerically presented. In particular we analyzed a seeded second harmonic generation process in presence of orbital angular momentum of the interacting beams due both to on axis and off axis optical vortices. Examples are proposed and discussed.

  6. Ghost imaging with entangled photons and orbital angular momentum

    Science.gov (United States)

    Padgett, Miles

    We utilise the position and orbital angular momentum (OAM) correlations between the signal and idler photons generated in the down-conversion process to obtain ghost images of a phase object. By using an OAM phase filter, which is non-local with respect to the object, the ghost images exhibit isotropic edge-enhancement. The strong spatial correlations between the signal and idler photons generated by spontaneous parametric downconversion have been widely utilised in many different imaging systems. The use of a scanning single element detector to recover the spatial information in the signal and idler beams fundamentally limits the detection efficiency of the imaging system to a maximum of 1/N where N is the number of pixels in the image. Our approach overcomes this limitation by replacing the scanning detector by an intensified CCD camera, therefore detecting all photons irrespective of their position within the image. Using a camera in this way, coupled with the OAM edge-enhancement and image reconstruction techniques allows us to obtain images of phase objects with an average of fewer than one photon per image pixel.

  7. A QUANTUM MULTIPLE ACCESS COMMUNICATIONS SCHEME USING ORBITAL ANGULAR MOMENTUM

    Institute of Scientific and Technical Information of China (English)

    Dong Xiaoliang; Zhao Shengmei; Zheng Baoyu

    2013-01-01

    We propose a quantum multiple access communications scheme using Orbital Angular Momentum (OAM) sector states in the paper.In the scheme,each user has an individual modified Poincare Bloch sphere and encodes his information with his own corresponding sector OAM states.A prepared entangled photon pairs are separated at transmitter and receiver.At the transmitter,each user encodes his information with the sector OAM states on the photons and the superposition of the different sector OAM states is carried by the photons.Then the photons are transmitted through quantum noiseless channel to the receiver.At the receiver,each user could retrieve his information by coincidently measuring the transmitted photons with the receiver side photons which are modulated by a special prepared measurement basis.The theoretical analysis and the numerical simulations show that each user could get his information from the superposition state without error.It seems that this scheme provides a novel method for quantum multiple users communications.

  8. Radar imaging using electromagnetic wave carrying orbital angular momentum

    Science.gov (United States)

    Yuan, Tiezhu; Cheng, Yongqiang; Wang, Hongqiang; Qin, Yuliang; Fan, Bo

    2017-03-01

    The concept of radar imaging based on orbital angular momentum (OAM) modulation, which has the ability of azimuthal resolution without relative motion, has recently been proposed. We investigate this imaging technique further in greater detail. We first analyze the principle of the technique, accounting for its resolving ability physically. The phase and intensity distributions of the OAM-carrying fields produced by phased uniform circular array antenna, which have significant effects on the imaging results, are investigated. The imaging model shows that the received signal has the form of inverse discrete Fourier transform with the use of OAM and frequency diversities. The two-dimensional Fourier transform is employed to reconstruct the target images in the case of large and small elevation angles. Due to the peculiar phase and intensity characteristics, the small elevation is more suitable for practical application than the large one. The minimum elevation angle is then obtained given the array parameters. The imaging capability is analyzed by means of the point spread function. All results are verified through numerical simulations. The proposed staring imaging technique can achieve extremely high azimuthal resolution with the use of plentiful OAM modes.

  9. Entanglement of the orbital angular momentum states of photons.

    Science.gov (United States)

    Mair, A; Vaziri, A; Weihs, G; Zeilinger, A

    2001-07-19

    Entangled quantum states are not separable, regardless of the spatial separation of their components. This is a manifestation of an aspect of quantum mechanics known as quantum non-locality. An important consequence of this is that the measurement of the state of one particle in a two-particle entangled state defines the state of the second particle instantaneously, whereas neither particle possesses its own well-defined state before the measurement. Experimental realizations of entanglement have hitherto been restricted to two-state quantum systems, involving, for example, the two orthogonal polarization states of photons. Here we demonstrate entanglement involving the spatial modes of the electromagnetic field carrying orbital angular momentum. As these modes can be used to define an infinitely dimensional discrete Hilbert space, this approach provides a practical route to entanglement that involves many orthogonal quantum states, rather than just two Multi-dimensional entangled states could be of considerable importance in the field of quantum information, enabling, for example, more efficient use of communication channels in quantum cryptography.

  10. Excitation of high orbital angular momentum Rydberg states with Laguerre-Gauss beams

    CERN Document Server

    Rodrigues, J D; Mendonça, J T

    2015-01-01

    We consider the excitation of Rydberg states through photons carrying an intrinsic orbital angular momentum degree of freedom. Laguerre-Gauss modes, with a helical wave-front structure, correspond to such a set of laser beams, which carry some units of orbital angular momentum in their propagation direction. We demonstrate that, in a proper geometrical setting, this orbital angular momentum can be transferred to the internal degrees of freedom of the atoms, thus violating the standard dipolar selection rules. Higher orbital angular momentum states become accessible through a single photon excitation process. We investigate how the spacial structure of the Laguerre-Gauss beam affects the radial coupling strength, assuming the simplest case of hydrogen-like wavefunctions. Finally we discuss a generalization of the angular momentum coupling, in order to include the effects of the fine and hyperfine splitting, in the context of the Wigner-Eckart theorem.

  11. Circumbinary disk, an efficient medium extracting orbital angular momentum in close binaries

    Institute of Scientific and Technical Information of China (English)

    CHEN WenCong; ZENG QingGuo

    2009-01-01

    The loss of orbital angular momentum plays an important role in the mass transfer and orbital evolution of close binaries. The traditional mechanisms of orbital angular momentum loss consist of gravitational wave radiation, mass loss and magnetic braking. However, a small fraction of the mass outflow may form a thin circumbinary disk (CB disk) located in the orbital plane of the binary during mass exchange. The tide torques caused by the gravitational interaction between a CB disk and a binary system brake binary effectively, and extract the orbital angular momentum from the binary system. In this study, numerical calculations for the evolution of the white dwarf binary show that a CB disk is an efficient medium extracting orbital angular momentum even if the mass loss is very small. Finally, some theo-retical research and observational progress on CB disks are presented.

  12. Single beam optical vortex tweezers with tunable orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Gecevičius, Mindaugas; Drevinskas, Rokas, E-mail: rd1c12@orc.soton.ac.uk; Beresna, Martynas; Kazansky, Peter G. [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2014-06-09

    We propose a single beam method for generating optical vortices with tunable optical angular momentum without altering the intensity distribution. With the initial polarization state varying from linear to circular, we gradually control the torque transferred to the trapped non-absorbing and non-birefringent silica beads. The continuous transition from the maximum rotation speed to zero without changing the trapping potential gives a way to study the complex tribological interactions.

  13. Angular Momentum

    Science.gov (United States)

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  14. Wigner functions for the pair angle and orbital angular momentum

    Science.gov (United States)

    Kastrup, H. A.

    2016-12-01

    The problem of constructing physically and mathematically well-defined Wigner functions for the canonical pair angle θ and angular momentum p is solved. While a key element for the construction of Wigner functions for the planar phase space {(q ,p ) ∈R2} is the Heisenberg-Weyl group, the corresponding group for the cylindrical phase space {(θ ,p ) ∈S1×R } is the Euclidean group E (2 ) of the plane and its unitary representations. Here the angle θ is replaced by the pair (cosθ ,sinθ ) , which corresponds uniquely to the points on the unit circle. The main structural properties of the Wigner functions for the planar and the cylindrical phase spaces are strikingly similar. A crucial role is played by the s i n c function, which provides the interpolation for the discontinuous quantized angular momenta in terms of the continuous classical ones, in accordance with the famous Whittaker cardinal function well known from interpolation and sampling theories. The quantum mechanical marginal distributions for the angle (continuous) and angular momentum (discontinuous) are, as usual, uniquely obtained by appropriate integrations of the (θ ,p ) Wigner function. Among the examples discussed is an elementary system of simple cat states.

  15. Statistical mechanics of collisionless orbits. IV. Distribution of angular momentum

    CERN Document Server

    Williams, Liliya L R; Wojtak, Radoslaw

    2014-01-01

    It has been shown in previous work that DARKexp, which is a theoretically derived, maximum entropy, one shape parameter model for isotropic collisionless systems, provides very good fits to simulated and observed dark-matter halos. Specifically, it fits the energy distribution, N(E), and the density profiles, including the central cusp. Here, we extend DARKexp N(E) to include the distribution in angular momentum, L^2, for spherically symmetric systems. First, we argue, based on theoretical, semi-analytical, and simulation results, that while dark-matter halos are relaxed in energy, they are not nearly as relaxed in angular momentum, which precludes using maximum entropy to uniquely derive N(E,L^2). Instead, we require that when integrating N(E,L^2) over squared angular momenta one retrieves the DARKexp N(E). Starting with a general expression for N(E,L^2) we show how the distribution of particles in L^2 is related to the shape of the velocity distribution function, VDF, and velocity anisotropy profile, \\beta(...

  16. Modal decomposition for measuring the orbital angular momentum density of light

    CSIR Research Space (South Africa)

    Schulze, C

    2013-02-01

    Full Text Available We present a novel technique to measure the orbital angular momentum (OAM) density of light. The technique is based on modal decomposition, enabling the complete reconstruction of optical fields, including the reconstruction of the beams Poynting...

  17. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters.

    Science.gov (United States)

    Strain, Michael J; Cai, Xinlun; Wang, Jianwei; Zhu, Jiangbo; Phillips, David B; Chen, Lifeng; Lopez-Garcia, Martin; O'Brien, Jeremy L; Thompson, Mark G; Sorel, Marc; Yu, Siyuan

    2014-09-17

    The ability to rapidly switch between orbital angular momentum modes of light has important implications for future classical and quantum systems. In general, orbital angular momentum beams are generated using free-space bulk optical components where the fastest reconfiguration of such systems is around a millisecond using spatial light modulators. In this work, an extremely compact optical vortex emitter is demonstrated with the ability to actively tune between different orbital angular momentum modes. The emitter is tuned using a single electrically contacted thermo-optical control, maintaining device simplicity and micron scale footprint. On-off keying and orbital angular momentum mode switching are achieved at rates of 10 μs and 20 μs respectively.

  18. Parameter dependence of the decoherence of orbital angular momentum entanglement in atmospheric turbulence

    CSIR Research Space (South Africa)

    Hamadou Ibrahim, A

    2011-08-01

    Full Text Available he orbital angular momentum (OAM) state of light can potentially be used to implement higher dimensional entangled systems for quantum communication. Unfortunately, optical fibers in use today support only modes with zero OAM values. Free...

  19. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases

    CSIR Research Space (South Africa)

    Mafu, M

    2013-09-01

    Full Text Available We present an experimental study of higher-dimensional quantum key distribution protocols based on mutually unbiased bases, implemented by means of photons carrying orbital angular momentum. We perform (d + 1) mutually unbiased measurements in a...

  20. Large Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum

    CERN Document Server

    Altman, A; Corndorf, E; Kumar, P; Barbosa, G A; Altman, Adam R.; K\\"{o}pr\\"{u}l\\"{u}, Kahraman G.; Corndorf, Eric; Kumar, Prem; Barbosa, Geraldo A.

    2004-01-01

    Through scanned coincidence counting, we probe the quantum image produced by parametric down conversion with a pump beam carrying orbital angular momentum. Nonlocal spatial correlations are manifested through splitting of the coincidence spot into two.

  1. Poynting vector and orbital angular momentum density of superpositions of Bessel beams

    CSIR Research Space (South Africa)

    Litvin, IA

    2011-08-01

    Full Text Available The authors study theoretically the orbital angular momentum (OAM) density in arbitrary scalar optical fields, and outline a simple approach using only a spatial light modulator to measure this density. They demonstrate the theory in the laboratory...

  2. Observation of Interaction of Spin and Intrinsic Orbital Angular Momentum of Light

    CERN Document Server

    Vitullo, Dashiell L P; Gregg, Patrick; Smith, Roger A; Reddy, Dileep V; Ramachandran, Siddharth; Raymer, Michael G

    2016-01-01

    Spin and intrinsic orbital angular momentum interaction of light is observed, as evidenced by length-dependent rotations of both spatial patterns and optical polarization in an isotropic optical fiber. The distinction between intrinsic and extrinsic orbital angular momentum (as seen in helically coiled fiber) is made clear by controllable excitation of a small number of optical modes in a straight, few-mode fiber.

  3. Bell's measure and implementing quantum Fourier transform with orbital angular momentum of classical light.

    Science.gov (United States)

    Song, Xinbing; Sun, Yifan; Li, Pengyun; Qin, Hongwei; Zhang, Xiangdong

    2015-09-15

    We perform Bell's measurement for the non-separable correlation between polarization and orbital angular momentum from the same classical vortex beam. The violation of Bell's inequality for such a non-separable classical correlation has been demonstrated experimentally. Based on the classical vortex beam and non-quantum entanglement between the polarization and the orbital angular momentum, the Hadamard gates and conditional phase gates have been designed. Furthermore, a quantum Fourier transform has been implemented experimentally.

  4. Subwave spikes of the orbital angular momentum of the vortex-beams in a uniaxial crystal

    CERN Document Server

    Fadeyeva, T; Rubass, A; Zinov'ev, A; Konovalenko, V; Volyar, A

    2011-01-01

    We have theoretically predicted the gigantic spikes of the orbital angular momentum caused by the conversion processes of the centered optical vortex in the circularly polarized components of the elliptic vortex beam propagating perpendicular to the crystal optical axis. We have experimentally observed the conversion process inside the subwave deviations of the crystal length. We have found that the total orbital angular momentum of the wave beam is conserved.

  5. Study of the propagation and detection of the orbital angular momentum of light for astrophysical applications

    OpenAIRE

    Sponselli, Anna

    2013-01-01

    The aim of this work is to study the propagation of orbital angular momentum (OAM) of light for astrophysical applications and a method for OAM detection with optical telescopes. The thesis deals with the study of the orbital angular momentum (OAM) as a new observable for astronomers, which could give additional information with respect to those already inferred from the analysis of the intensity, frequency and polarization of light. Indeed, the main purpose of this work is to highlight th...

  6. Subwave spikes of the orbital angular momentum of the vortex beams in a uniaxial crystal

    Science.gov (United States)

    Fadeyeva, T.; Alexeyev, C.; Rubass, A.; Zinov'Ev, A.; Konovalenko, V.; Volyar, A.

    2011-11-01

    We have theoretically predicted the gigantic spikes of the orbital angular momentum caused by the conversion processes of the centered optical vortex in the circularly polarized components of the elliptic vortex beam propagating perpendicular to the crystal optical axis. We have experimentally observed the conversion process inside the subwave deviations of the crystal length. We have found that the total orbital angular momentum of the wave beam is conserved.

  7. Orbital Angular Momentum in Noncollinear Second Harmonic Generation by off-axis vortex beams

    CERN Document Server

    Bovino, Fabio Antonio; Giardina, Maurizio; Sibilia, Concita

    2011-01-01

    We experimentally study the behavior of orbital angular momentum (OAM) of light in a noncollinear second harmonic generation (SHG) process. The experiment is performed by using a type I BBO crystal under phase matching conditions with femtosecond pumping fields at 830 nm. Two specular off-axis vortex beams carrying fractional orbital angular momentum at the fundamental frequency (FF) are used. We analyze the behavior of the OAM of the SH signal when the optical vortex of each input field at the FF is displaced from the beam's axis. We obtain different spatial configurations of the SH field, always carrying the same zero angular momentum.

  8. Spin-to-Orbital Angular Momentum Conversion and Spin-Polarization Filtering in Electron Beams

    CERN Document Server

    Karimi, Ebrahim; Grillo, Vincenzo; Santamato, Enrico; 10.1103/PhysRevLett.108.044801

    2012-01-01

    We propose the design of a space-variant Wien filter for electron beams that induces a spin half-turn and converts the corresponding spin angular momentum variation into orbital angular momentum of the beam itself by exploiting a geometrical phase arising in the spin manipulation. When applied to a spatially coherent input spin-polarized electron beam, such a device can generate an electron vortex beam, carrying orbital angular momentum. When applied to an unpolarized input beam, the proposed device, in combination with a suitable diffraction element, can act as a very effective spin-polarization filter. The same approach can also be applied to neutron or atom beams.

  9. Spin and orbital angular momentum and their conversion in cylindrical vector vortices.

    Science.gov (United States)

    Zhu, Jiangbo; Chen, Yujie; Zhang, Yanfeng; Cai, Xinlun; Yu, Siyuan

    2014-08-01

    The generation of light beams carrying orbital angular momentum (OAM) has been greatly advanced with the emergence of the recently reported integrated optical vortex emitters. Generally, optical vortices emitted by these devices possess cylindrically symmetric states of polarization and spiral phase fronts, and they can be defined as cylindrical vector vortices (CVVs). Using the radiation of angularly arranged dipoles to model the CVVs, these beams as hybrid modes of two circularly polarized scalar vortices are theoretically demonstrated to own well-defined total angular momentum. Moreover, the effect of spin-orbit interactions of angular momentum is identified in the CVVs when the size of the emitting structure varies. This effect results in the diminishing spin component of angular momentum and purer OAM states at large structure radii.

  10. Quark orbital angular momentum: can we learn about it from GPDs and TMDs?

    CERN Document Server

    Avakian, H; Schweitzer, P; Teryaev, O V; Zavada, P

    2010-01-01

    It is known how to access information on quark orbital angular momentum from generalized parton distribution functions, in a certain specified framework. It is intuitively expected, that such information can be accessed also through transverse momentum dependent distribution functions, but not known how. Now quark models provide promising hints. Recent results are reviewed.

  11. Gauge-Invariant Spin and Orbital Angular Momentum of Laguerre-Gaussian Laser

    Institute of Scientific and Technical Information of China (English)

    LIANG Wen-Feng; WU Ming; LIU Hui; CHEN Xiang-Song

    2008-01-01

    @@ We adopt a gauge-invariant definition to calculate the spin and orbital angular momenta of a so-called Ith order Laguerre-Gaussian laser.The results reveal that photons on the axis of the beam may carry an orbital angular momentum of (l - 1)h besides lh per photon.For the spin, we obtain a more reasonable expression proportional to the beam intensity instead of the gradient of the intensity as previously derived.We also discuss how to experimentally discriminate the angular momentum expressions given here and those commonly accepted in the literature.

  12. Cavity modes with optical orbital angular momentum in a metamaterial ring based on transformation optics.

    Science.gov (United States)

    Wu, H W; Wang, F; Dong, Y Q; Shu, F Z; Zhang, K; Peng, R W; Xiong, X; Wang, Mu

    2015-12-14

    In this work, we theoretically study the cavity modes with transverse orbital angular momentum in metamaterial ring based on transformation optics. The metamaterial ring is designed to transform the straight trajectory of light into the circulating one by enlarging the azimuthal angle, effectively presenting the modes with transverse orbital angular momentum. The simulation results confirm the theoretical predictions, which state that the transverse orbital angular momentum of the mode not only depends on the frequency of the incident light, but also depends on the transformation scale of the azimuthal angle. Because energy dissipation inevitably reduces the field amplitude of the modes, the confined electromagnetic energy and the quality factor of the modes inside the ring are also studied in order to evaluate the stability of those cavity modes. The results show that the metamaterial ring can effectively confine light with a high quality factor and maintain steady modes with the orbital angular momentum, even if the dimension of the ring is much smaller than the wavelength of the incident light. This technique for exploiting the modes with optical transverse orbital angular momentum may provides a unique platform for applications related to micromanipulation.

  13. Resonant mixing of optical orbital and spin angular momentum by using chiral silicon nanosphere clusters.

    Science.gov (United States)

    Al-Jarro, Ahmed; Biris, Claudiu G; Panoiu, Nicolae C

    2016-04-01

    We present an in-depth analysis of the resonant intermixing between optical orbital and spin angular momentum of Laguerre-Gaussian (LG) beams, mediated by chiral clusters made of silicon nanospheres. In particular, we establish a relationship between the spin and orbital quantum numbers characterizing the LG beam and the order q of the rotation symmetry group q of the cluster of nanospheres for which resonantly enhanced coupling between the two components of the optical angular momentum is observed. Thus, similar to the case of diffraction grating-mediated transfer of linear momentum between optical beams, we demonstrate that clusters of nanospheres that are invariant to specific rotation transformations can efficiently transfer optical angular momentum between LG beams with different quantum numbers. We also discuss the conditions in which the resonant interaction between LG beams and a chiral cluster of nanospheres leads to the generation of superchiral light.

  14. Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array

    Energy Technology Data Exchange (ETDEWEB)

    Alexeyev, C. N.; Volyar, A. V. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Yavorsky, M. A. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Universite Bordeaux and CNRS, LOMA, UMR 5798, FR-33400 Talence (France)

    2011-12-15

    We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.

  15. Spatio-temporal light springs: extended encoding of orbital angular momentum in ultrashort pulses.

    Science.gov (United States)

    Pariente, G; Quéré, F

    2015-05-01

    We introduce a new class of spatio-temporally coupled ultrashort laser beams, which are obtained by superimposing Laguerre-Gauss beams whose azimuthal mode index is correlated to their frequency. These beams are characterized by helical structures for their phase and intensity profiles, which both encode the orbital angular momentum carried by the light. They can easily be engineered in the optical range, and are naturally produced at shorter wavelengths when attosecond pulses are generated by intense femtosecond Laguerre-Gauss laser beams. These spatio-temporal "light springs" will allow for the transfer of the orbital angular momentum to matter by stimulated Raman scattering.

  16. Efficient generation and control of different order orbital angular momentum states for communication links

    CERN Document Server

    Slussarenko, Sergei; Piccirillo, Bruno; Marrucci, Lorenzo; Santamato, Enrico

    2010-01-01

    We present a novel optical device to encode and decode two bits of information into different Orbital Angular Momentum (OAM) states of a paraxial optical beam. Our device generates the four angular momentum states of order $\\pm 2$ and $\\pm4$ by Spin-To-Orbital angular momentum Conversion (STOC) in a triangular optical loop arrangement. The switching among the four OAM states is obtained by changing the polarization state of the circulating beam by two quarter wave plates and the two-bit information is transferred to the beam OAM exploiting a single $q$-plate. The polarization of the exit beam is left free for additional one bit of information. The transmission bandwidth of the device may be as large as several megahertz if electro-optical switches are used to change the beam polarization. This may be particularly useful in communication system based on light OAM.

  17. Vector correlation analysis for inelastic and reactive collisions between partners possessing spin and orbital angular momentum.

    Science.gov (United States)

    Balint-Kurti, Gabriel G; Vasyutinskii, Oleg S

    2009-12-31

    A general reactive collision of the type A + B --> C + D is considered where both the collision partners (A and B) or the products (C and D) may possess internal, i.e., spin, orbital or rotational, angular momenta. Compact expressions are derived using a rigorous quantum mechanical analysis for the angular momentum anisotropy of either of the products (C or D) arising from an initially polarized distribution of the reactant angular momentum. The angular momentum distribution of the product is expressed in terms of canonical spherical tensors multiplied by anisotropy-transforming coefficients c(K(i)q(k))(K)(K(r),L). These coefficients act as transformation coefficients between the angular momentum anisotropy of the reactants and that of the product. They are independent of scattering angle but depend on the details of the scattering dynamics. The relationship between the coefficients c(K(i)q(k))(K)(K(r),L) and the body-fixed scattering S matrix is given and the methodology for the quantum mechanical calculation of the anisotropy-transforming coefficients is clearly laid out. The anisotropy-transforming coefficients are amenable to direct experimental measurement in a similar manner to vector correlation and alignment parameters in photodissociation processes. A key aspect of the theory is the use of projections of both reactant and product angular momenta onto the product recoil vector direction. An important new conservation rule is revealed through the analysis, namely that if the state multipole for reactant angular momentum distribution has a projection q(k) onto the product recoil vector the state multipoles for the product angular momentum distribution all have this same projection. Expressions are also presented for the distribution of the product angular momentum when its components are evaluated relative to the space-fixed Z-axis. Notes with detailed derivations of all the formulas are available as Supporting Information.

  18. A demonstration of the conservation of the orbital angular momentum of Earth

    Science.gov (United States)

    Pellizza, Leonardo J.; Mayochi, Mariano G.; Ciocci Brazzano, Ligia; Pedrosa, Susana E.

    2015-12-01

    We describe a simple but quantitative experiment to demonstrate the conservation of angular momentum. We measure the correlation of the apparent radius and angular velocity of the Sun with respect to the stars, due to the conservation of the angular momentum of Earth in its orbit. We also determine the direction of Earth's angular momentum vector and show that it is conserved. The experiment can be performed using a small telescope and a digital camera. It is conceptually simple, allowing students to get direct physical insight from the data. The observations are performed near the resolution limit imposed by the atmosphere, and in the presence of strong competing effects. These effects necessitate a careful experimental setup and allow students to improve their skills in experimentation.

  19. Spin-to-orbit conversion at acousto-optic diffraction of light: conservation of optical angular momentum.

    Science.gov (United States)

    Skab, Ihor; Vlokh, Rostyslav

    2012-04-01

    Acousto-optic diffraction of light in optically active cubic crystals is analyzed from the viewpoint of conservation of optical angular momentum. It is shown that the availability of angular momentum in the diffracted optical beam can be necessarily inferred from the requirements of angular momentum conservation law. As follows from our analysis, a circularly polarized diffracted wave should bear an orbital angular momentum. The efficiency of the spin-to-orbit momentum conversion is governed by the efficiency of acousto-optic diffraction.

  20. Simultaneous wavelength and orbital angular momentum demultiplexing using tunable MEMS-based Fabry-Perot filter

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir; Porfirev, Alexey P.; Gurbatov, Stanislav O.

    2017-01-01

    In this paper, we experimentally demonstrate simultaneous wavelength and orbital angular momentum (OAM) multiplexing/demultiplexing of 10 Gbit/s data streams using a new on-chip micro-component-tunable MEMS-based Fabry-Perot filter integrated with a spiral phase plate. In the experiment, two...

  1. Invited Paper: Optical fibers for the transmission of orbital angular momentum modes

    Science.gov (United States)

    Brunet, Charles; Rusch, Leslie A.

    2016-09-01

    Orbital angular momentum (OAM) of light is a promising means for exploiting the spatial dimension of light to increase the capacity of optical fiber links. We summarize how OAM enables efficient mode multiplexing for optical communications, with emphasis on the design of OAM fibers.

  2. Measurement of the orbital angular momentum density of light by modal decomposition

    CSIR Research Space (South Africa)

    Schulze, C

    2013-07-01

    Full Text Available We demonstrate a versatile method for the measurement of the orbital angular momentum (OAM) density of an optical field. By performing a modal decomposition with digital holograms, we reconstruct the full optical field from a small set of single...

  3. Orbital angular momentum correlations with a phase-flipped Gaussian mode pump beam

    CSIR Research Space (South Africa)

    Romero, J

    2012-08-01

    Full Text Available of Stellenbosch, Stellenbosch 7602, South Africa 5 Department of Physics and Astronomy, Colgate University, NY 13346, USA E-mail: jacq.romero@gmail.com (http://iopscience.iop.org/2040-8986/14/8/085401) Abstract We report orbital angular momentum (OAM...

  4. Measuring the orbital angular momentum density for a superposition of Bessel beams

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-01-01

    Full Text Available To measure the Orbital Angular Momentum (OAM) density of superposition fields two steps are needed: generation and measurement. An azimuthally-varying phase (bounded by a ring-slit) placed in the spatial frequency domain produces a higher...

  5. Propagation of orbital angular momentum carrying beams through a perturbing medium

    CSIR Research Space (South Africa)

    Chaibi, A

    2013-09-01

    Full Text Available The orbital angular momentum of light has been suggested as a means of information transfer over free-space, yet the detected optical vortex is known to be sensitive to perturbation. Such effects have been studied theoretically, in particular...

  6. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  7. Creating optical near-field orbital angular momentum in a gold metasurface.

    Science.gov (United States)

    Chen, Ching-Fu; Ku, Chen-Ta; Tai, Yi-Hsin; Wei, Pei-Kuen; Lin, Heh-Nan; Huang, Chen-Bin

    2015-04-01

    Nanocavities inscribed in a gold thin film are optimized and designed to form a metasurface. We demonstrate both numerically and experimentally the creation of surface plasmon (SP) vortex carrying orbital angular momentum in the metasurface under linearly polarized optical excitation that carries no optical angular momentum. Moreover, depending on the orientation of the exciting linearly polarized light, we show that the metasurface is capable of providing dynamic switching between SP vortex formation or SP subwavelength focusing. The resulting SP intensities are experimentally measured using a near-field scanning optical microscope and are found in excellent quantitative agreements as compared to the numerical results.

  8. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges

    Energy Technology Data Exchange (ETDEWEB)

    Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim, E-mail: ekarimi@uottawa.ca [Department of Physics, University of Ottawa, 25 Templeton, Ottawa, Ontario K1N 6N5 Canada (Canada); Boyd, Robert W. [Department of Physics, University of Ottawa, 25 Templeton, Ottawa, Ontario K1N 6N5 Canada (Canada); Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

    2014-09-08

    Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.

  9. Polarization singularities and orbital angular momentum sidebands from rotational symmetry broken by the Pockels effect.

    Science.gov (United States)

    Lu, Xiancong; Wu, Ziwen; Zhang, Wuhong; Chen, Lixiang

    2014-05-02

    The law of angular momentum conservation is naturally linked to the rotational symmetry of the involved system. Here we demonstrate theoretically how to break the rotational symmetry of a uniaxial crystal via the electro-optic Pockels effect. By numerical method based on asymptotic expansion, we discover the 3D structure of polarization singularities in terms of C lines and L surfaces embedded in the emerging light. We visualize the controllable dynamics evolution of polarization singularities when undergoing the Pockels effect, which behaves just like the binary fission of a prokaryotic cell, i.e., the splitting of C points and fission of L lines are animated in analogy with the cleavage of nucleus and division of cytoplasm. We reveal the connection of polarization singularity dynamics with the accompanying generation of orbital angular momentum sidebands. It is unexpected that although the total angular momentum of light is not conserved, the total topological index of C points is conserved.

  10. Conversion of orbital angular momentum of light in chiral fiber gratings.

    Science.gov (United States)

    Xu, Huaxing; Yang, Li

    2013-06-01

    We examine mode couplings in chiral fiber grating (CFG) with N-fold rotation symmetry in the cross section and show how the angular momentum matching condition in couplings determines the generation and conversion of orbital angular momentum (OAM) beams. Then we discuss interactions of OAM and spin angular momentum in single- and double-helix long-period CFGs excited by the fundamental core modes. Subsequently, taking right-handed elliptic-core long-period CFGs as example, we demonstrate a dual-OAM converter generating OAM beams with charge +2 and charge +4 at dual wavelengths, both with a conversion efficiency greater than 97%, as well as a broadband converter based on adiabatic coupling, with a bandwidth about 10 nm for a conversion efficiency greater than 95%.

  11. A key role of transversality condition in quantization of photon orbital angular momentum

    CERN Document Server

    Li, Chun-Fang

    2016-01-01

    The effect of the constraint of transversality condition on the quantization of the photon orbital angular momentum is studied. From the point of view of quantum mechanics, the constraint expresses an entanglement between the intrinsic canonical variable, the polarization, and the extrinsic canonical variables. More importantly, its invariance under the rotation transformation of the vector wavefunction about the momentum turns out to mean the existence of degree of freedom of the Berry gauge, which appears as a constant unit vector. Because in each Berry-gauge representation, a two-component representation, the polarization is represented independently of the extrinsic canonical variables, the Berry-gauge degree of freedom has observable quantum effects. When the Berry-gauge degree of freedom of a paraxial beam is perpendicular to the propagation direction, the orbital angular momentum about the origin of the laboratory reference system reduces to its canonical part. Since the constraint together with the Sc...

  12. Anharmonic propagation of two-dimensional beams carrying orbital angular momentum in a harmonic potential.

    Science.gov (United States)

    Zhang, Yiqi; Liu, Xing; Belić, Milivoj R; Zhong, Weiping; Wen, Feng; Zhang, Yanpeng

    2015-08-15

    We analytically and numerically investigate an anharmonic propagation of two-dimensional beams in a harmonic potential. We pick noncentrosymmetric beams of common interest that carry orbital angular momentum. The examples studied include superposed Bessel-Gauss (BG), Laguerre-Gauss (LG), and circular Airy (CA) beams. For the BG beams, periodic inversion, phase transition, and rotation with periodic angular velocity are demonstrated during propagation. For the LG and CA beams, periodic inversion and variable rotation are still there but not the phase transition. On the whole, the "center of mass" and the orbital angular momentum of a beam exhibit harmonic motion, but the motion of the beam intensity distribution in detail is subject to external and internal torques and forces, causing it to be anharmonic. Our results are applicable to other superpositions of finite circularly asymmetric beams.

  13. Suppression of angular momentum transfer in cold collisions of transition metal atoms in ground States with nonzero orbital angular momentum.

    Science.gov (United States)

    Hancox, Cindy I; Doret, S Charles; Hummon, Matthew T; Krems, Roman V; Doyle, John M

    2005-01-14

    The Zeeman relaxation rate in cold collisions of Ti(3d(2)4s(2) 3F2) with He is measured. We find that collisional transfer of angular momentum is dramatically suppressed due to the presence of the filled 4s(2) shell. The degree of electronic interaction anisotropy, which is responsible for Zeeman relaxation, is estimated to be about 200 times smaller in the Ti-He complex than in He complexes with typical non-S-state atoms.

  14. On the Coupling of Photon Spin to Electron Orbital Angular Momentum

    CERN Document Server

    Fischer, Ulrich C; Fuchs, Harald; Salut, Roland; Lefier, Yannick; Grosjean, Thierry

    2016-01-01

    Partially gold coated 90 degree glass wedges and a semi - infinite slit in a thin film of gold ending in a conducting nano-junction serve as samples to investigate the transfer of photon spin to electron orbital angular momentum. These structures were specifically designed as samples where an incident beam of light is retroreflected. Since in the process of retroreflection the turning sense of a circularly polarized beam of light does not change and the direction of propagation is inverted, the photon spin is inverted. Due to conservation of angular momentum a transfer of photon spin to electron orbital angular momentum of conduction electrons occurs. In the structures a circular movement of electrons is blocked and therefore the transfered spin can be detected as a photovoltage due to an electromotive force which is induced by the transfer of angular momentum. Depending on the polarization of the incident beam, a maximum photovoltage of about 0,2 micro V was measured for both structures. The results are inte...

  15. Controlling light's helicity at the source: orbital angular momentum states from lasers

    Science.gov (United States)

    Forbes, Andrew

    2017-02-01

    Optical modes that carry orbital angular momentum (OAM) are routinely produced external to the laser cavity and have found a variety of applications, thus increasing the demand for integrated solutions for their production. Yet such modes are notoriously difficult to produce from lasers due to the strict symmetry requirements for their creation, together with the need to break the degeneracy in helicity. Here, we review the progress made since 1992 in producing such twisted light modes directly at the source, from gas to solid-state lasers, bulk to integrated on-chip solutions, through to generic devices for on-demand OAM in both scalar and vector forms. This article is part of the themed issue 'Optical orbital angular momentum'.

  16. Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes

    CERN Document Server

    Krenn, Mario; Erhard, Manuel; Zeilinger, Anton

    2016-01-01

    The identification of orbital angular momentum (OAM) of light nearly 25 years ago has stimulated a lot of excitement, as it allows for encoding of large amounts of information. Interestingly, this is possible even at the single photon level, which makes this degree an ideal candidate for the investigation of complex quantum phenomena and their applications. Here we explain the intuition that led to the first quantum experiment with photonic OAM 15 years ago. We continue by reviewing some key experiments investigating fundamental questions in quantum physics and the first steps into applying OAM in novel quantum protocols. In the end, we identify several interesting open questions which could form the subject of future investigations with orbital angular momentum.

  17. Proposal for the generation of photon pairs with nonzero orbital angular momentum in a ring fiber.

    Science.gov (United States)

    Javůrek, D; Svozilík, J; Peřina, J

    2014-09-22

    We present a method for the generation of correlated photon pairs in desired orbital-angular-momentum states using a non-linear silica ring fiber and spontaneous parametric down-conversion. Photon-pair emission under quasi-phase-matching conditions with quantum conversion efficiency 6 × 10(-11) is found in a 1-m long fiber with a thermally induced χ(2) nonlinearity in a ring-shaped core.

  18. Coding/decoding two-dimensional images with orbital angular momentum of light.

    Science.gov (United States)

    Chu, Jiaqi; Li, Xuefeng; Smithwick, Quinn; Chu, Daping

    2016-04-01

    We investigate encoding and decoding of two-dimensional information using the orbital angular momentum (OAM) of light. Spiral phase plates and phase-only spatial light modulators are used in encoding and decoding of OAM states, respectively. We show that off-axis points and spatial variables encoded with a given OAM state can be recovered through decoding with the corresponding complimentary OAM state.

  19. Demonstration of reconfigurable joint orbital angular momentum mode and space switching

    OpenAIRE

    Jun Liu; Jian Wang

    2016-01-01

    We propose and demonstrate space-selective switch functions employing orbital angular momentum (OAM) modes in the space domain for switching network. One is the switching among different OAM modes having different spatial phase structures, called OAM mode switching. The other is the switching among different space locations, called space switching. The switching operation mechanism relies on linear optics. Reconfigurable 4 × 4 OAM mode switching, space switching, and joint OAM mode and space ...

  20. Circular dichroism of cholesteric polymers and the orbital angular momentum of light

    CERN Document Server

    Löffler, W; Woerdman, J P

    2011-01-01

    We explore experimentally if the light's orbital angular momentum (OAM) interacts with chiral nematic polymer films. Specifically, we measure the circular dichroism of such a material using light beams with different OAM. We investigate the case of strongly focussed, non-paraxial light beams, where the spatial and polarization degrees of freedom are coupled. Within the experimental accuracy, we cannot find any influence of the OAM on the circular dichroism of the cholesteric polymer.

  1. Orbital angular momentum of helical necklace beams in colloid-based nonlinear optical metamaterials (Conference Presentation)

    Science.gov (United States)

    Walasik, Wiktor T.; Silahli, Salih Z.; Litchinitser, Natalia M.

    2016-09-01

    Colloidal metamaterials are a robust and flexible platform for engineering of optical nonlinearities and studies of light filamentation. To date, nonlinear propagation and modulation instability of Gaussian beams and optical vortices carrying orbital angular momentum were studied in such media. Here, we investigate the propagation of necklace beams and the conservation of the orbital angular momentum in colloidal media with saturable nonlinearity. We study various scenarios leading to generation of helical necklace beams or twisted beams, depending on the radius, power, and charge of the input vortex beam. Helical beams are build of two separate solitary beams with circular cross-sections that spiral around their center of mass as a result of the equilibrium between the attraction force of in-phase solitons and the centrifugal force associated with the rotational movement. A twisted beam is a single beam with an elliptical cross-section that rotates around it's own axis. We show that the orbital angular momentum is converted into the rotational motion at different rates for helical and twisted beams. While earlier studies reported that solitary beams are expelled form the initial vortex ring along straight trajectories tangent to the vortex ring, we show that depending on the charge and the power of the initial beam, these trajectories can diverge from the tangential direction and may be curvilinear. These results provide a detailed description of necklace beam dynamics in saturable nonlinear media and may be useful in studies of light filamentation in liquids and light propagation in highly scattering colloids and biological samples.

  2. Can sea quark asymmetry shed light on the orbital angular momentum of the proton?

    CERN Document Server

    Nocera, Emanuele R

    2016-01-01

    A striking prediction of several extensions of the constituent quark model, including the unquenched quark model, the pion cloud model and the chiral quark model, is a proportionality relationship between the quark sea asymmetry and the orbital angular momentum of the proton. We investigate to which extent a relationship of this kind is corroborated by the experiment, through a systematic comparison between expectations based on models and predictions obtained from a global analysis of hard-scattering data in perturbative Quantum Chromodynamics. We find that the data allows the angular momentum of the proton to be proportional to its sea asymmetry, though with a rather large range of the optimal values of the proportionality coefficient. Typical values do not enable us to discriminate among expectations based on different models. In order to make our comparison conclusive, the extrapolation uncertainties on the proportionality coefficient should be reduced, hopefully by means of accurate measurements in the r...

  3. High harmonic generation in underdense plasmas by intense laser pulses with orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, J. T., E-mail: josetitomend@gmail.com [IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal and Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, SP (Brazil); Vieira, J., E-mail: jorge.vieira@ist.utl.pt [GoLP, IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2015-12-15

    We study high harmonic generation produced by twisted laser pulses, with orbital angular momentum in the relativistic regime, for pulse propagation in underdense plasma. We consider fast time scale processes associated with an ultra-short pulse, where the ion motion can be neglected. We use both analytical models and numerical simulations using a relativistic particle-in-cell code. The present description is valid for relativistic laser intensities, when the normalized field amplitude is much larger than one, a ≫ 1. We also discuss two distinct processes associated with linear and circular polarization. Using both analytical solutions and particle-in-cell simulations, we are able to show that, for laser pulses in a well defined Laguerre-Gauss mode, angular momentum conservation is observed during the process of harmonic generation. Intensity modulation of the harmonic spectrum is also verified, as imposed by the nonlinear time-scale for energy transfer between different harmonics.

  4. Quantum Router for Single Photons Carrying Spin and Orbital Angular Momentum

    Science.gov (United States)

    Chen, Yuanyuan; Jiang, Dong; Xie, Ling; Chen, Lijun

    2016-01-01

    Quantum router is an essential element in the quantum network. Here, we present a fully quantum router based on interaction free measurement and quantum dots. The signal photonic qubit can be routed to different output ports according to one control electronic qubit. Besides, our scheme is an interferometric method capable of routing single photons carrying either spin angular momentum (SAM) or orbital angular momentum (OAM), or simultaneously carrying SAM and OAM. Then we describe a cascaded multi-level quantum router to construct a one-to-many quantum router. Subsequently we analyze the success probability by using a tunable controlled phase gate. The implementation issues are also discussed to show that this scheme is feasible. PMID:27256772

  5. Quantum Router for Single Photons Carrying Spin and Orbital Angular Momentum.

    Science.gov (United States)

    Chen, Yuanyuan; Jiang, Dong; Xie, Ling; Chen, Lijun

    2016-06-03

    Quantum router is an essential element in the quantum network. Here, we present a fully quantum router based on interaction free measurement and quantum dots. The signal photonic qubit can be routed to different output ports according to one control electronic qubit. Besides, our scheme is an interferometric method capable of routing single photons carrying either spin angular momentum (SAM) or orbital angular momentum (OAM), or simultaneously carrying SAM and OAM. Then we describe a cascaded multi-level quantum router to construct a one-to-many quantum router. Subsequently we analyze the success probability by using a tunable controlled phase gate. The implementation issues are also discussed to show that this scheme is feasible.

  6. Incompleteness of Spin and Orbital Angular Momentum Separation for Light Beams

    CERN Document Server

    Ornigotti, Marco

    2013-01-01

    The spin of a circularly polarized beam of light in vacuo is calculated and compared with the value of the spin of a wave packet of light. While the latter has a finite longitudinal and transverse extent, the beam virtually extends indefinitely along the direction of propagation. This fact makes incomplete the textbook calculation of the separation between the spin part and the orbital part of the total angular momentum of a beam of light. Such a calculation contains a three-dimensional integration over the whole space and assumes that the light wave has a finite extent along any direction. This condition is clearly violated by a beam-like wave. Remarkably, this violation yields to an additional observable spin-like part of the angular momentum of the beam. We report an explicit calculation of this novel contribution for both a Gaussian and a Bessel beam, and discuss diverse fundamental facets of this issue.

  7. Stray, swing and scatter: angular momentum evolution of orbits and streams in aspherical potentials

    CERN Document Server

    Erkal, Denis; Belokurov, Vasily

    2016-01-01

    In aspherical potentials orbital planes continuously evolve. The gravitational torques impel the angular momentum vector to precess, that is to slowly stray around the symmetry axis, and nutate, i.e. swing up and down periodically in the perpendicular direction. This familiar orbital pole motion - if detected and measured - can reveal the shape of the underlying gravitational potential, the quantity only crudely gauged in the Galaxy so far. Here we demonstrate that the debris poles of stellar tidal streams show a very similar straying and swinging behavior, and give analytic expressions to link the amplitude and the frequency of the pole evolution to the flattening of the dark matter distribution. Most importantly, we explain how the differential orbital plane precession leads to the broadening of the stream and show that streams on polar orbits ought to scatter faster. We provide expressions for the stream width evolution as a function of the axisymmetric potential flattening and the angle from the symmetry ...

  8. Energy loss spectroscopy of Buckminster C60 with twisted electrons: Influence of orbital angular momentum transfer on plasmon generation

    CERN Document Server

    Schüler, M

    2016-01-01

    Recent experimental progress in creating and controlling singular electron beams that carry orbital angular momentum allows for new types of local spectroscopies. We theoretically investigate the twisted-electron energy loss spectroscopy (EELS) from the C60 fullerene. Of particular interest are the strong multipolar collective excitations and their selective response to the orbital angular momentum of the impinging electron beam. Based on ab-initio calculations for the collective response we compute EELS signals with twisted electron beams and uncover the interplay between the plasmon polarity and the amount of angular momentum transfer.

  9. Heralded phase-contrast imaging using an orbital angular momentum phase-filter

    Science.gov (United States)

    Aspden, Reuben S.; Morris, Peter A.; He, Ruiqing; Chen, Qian; Padgett, Miles J.

    2016-05-01

    We utilise the position and orbital angular momentum (OAM) correlations between the signal and idler photons generated in the down-conversion process to obtain ghost images of a phase object. By using an OAM phase filter, which is non-local with respect to the object, the images exhibit isotropic edge-enhancement. This imaging technique is the first demonstration of a full-field, phase-contrast imaging system with non-local edge enhancement, and enables imaging of phase objects using significantly fewer photons than standard phase-contrast imaging techniques.

  10. Effect of Coma Aberration on Orbital Angular Momentum Spectrum of Vortex Beams

    Institute of Scientific and Technical Information of China (English)

    CHEN Zi-Yang; PU Ji-Xiong

    2009-01-01

    Spiral spectra of vortex beams with coma aberration are studied.It is shown that the orbital angular momentum (OAM) states of vortex beams with coma aberration are different from those aberration-free vortex beams.Spiral spectra of beams with coma aberration are spreading.It is found that in the presence of coma aberration,the vortex beams contain not only the original OAM component but also other components.A larger coma aberration coefficient and/or a larger beam waist will lead to a wider spreading of the spiral spectrum. The results may have potential applications in information encoding and transmittance.

  11. Coherent transfer of optical orbital angular momentum in multi-order Raman sideband generation

    CERN Document Server

    Strohaber, J; Sokolov, A V; Kolomenskii, A A; Paulus, G G; Schuessler, H A

    2012-01-01

    Experimental results from the generation of Raman sidebands using optical vortices are presented. By generating two sets of sidebands originating from different locations in a Raman active crystal, one set containing optical orbital angular momentum and the other serving as a reference, a Young's double slit experiment was simultaneously realized for each sideband. The interference between the two sets of sidebands was used to determine the helicity and topological charge in each order. Topological charges in all orders were found to be discrete and follow selection rules predicted by a cascaded Raman process.

  12. Coherent transfer of optical orbital angular momentum in multi-order Raman sideband generation.

    Science.gov (United States)

    Strohaber, J; Zhi, M; Sokolov, A V; Kolomenskii, A A; Paulus, G G; Schuessler, H A

    2012-08-15

    Experimental results from the generation of Raman sidebands using optical vortices are presented. By generating two sets of sidebands originating from different locations in a Raman-active crystal, one set containing optical orbital angular momentum and the other serving as a reference, Young's double slit experiment was simultaneously realized for each sideband. The interference between the two sets of sidebands was used to determine the helicity and topological charge in each order. Topological charges in all orders were found to be discrete and follow selection rules predicted by a cascaded Raman process.

  13. Modeling channel interference in an orbital angular momentum-multiplexed laser link

    Science.gov (United States)

    Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.

    2009-08-01

    We study the effects of optical turbulence on the energy crosstalk among constituent orbital angular momentum (OAM) states in a vortex-based multi-channel laser communication link and determine channel interference in terms of turbulence strength and OAM state separation. We characterize the channel interference as a function of C2n and transmit OAM state, and propose probability models to predict the random fluctuations in the received signals for such architecture. Simulations indicate that turbulence-induced channel interference is mutually correlated across receive channels.

  14. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    Science.gov (United States)

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

  15. Orbital angular momentum (OAM) multiplexing in free-space optical data transfer

    Science.gov (United States)

    Lin, Jiao; Yuan, Xiao-Cong; Tao, Shaohua

    2006-08-01

    In the optical wireless communication systems proposed by Gibson, et al, the information is encoded as states of orbital angular momentum (OAM) of light and the transmitter unit can produce laser beam with single OAM-state in a time-slot. Recently we have proved that it is possible to generate multiple OAM-states simultaneously by single spatial light modulator. This method is adopted in our free-space optical wireless communication system and these OAM-states can be detected in the receiving unit by a computer-generated hologram. Hence, the transmission capacity is enhanced significantly without increasing the complexity of system.

  16. Time-division multiplexing of the orbital angular momentum of light

    CERN Document Server

    Karimi, Ebrahim; de Lisio, Corrado; Santamato, Enrico; 10.1364/OL.37.000127

    2012-01-01

    We present an optical setup for generating a sequence of light pulses in which the orbital angular momentum (OAM) degree of freedom is correlated with the temporal one. The setup is based on a single $q$-plate within a ring optical resonator. By this approach, we demonstrate the generation of a train of pulses carrying increasing values of OAM, or, alternatively, of a controlled temporal sequence of pulses having prescribed OAM superposition states. Finally, we exhibit an "OAM-to-time conversion" apparatus dividing different input OAM states into different time-bins. The latter application provides a simple approach to digital spiral spectroscopy of pulsed light.

  17. Dynamic control of coherent orbital-angular-momentum beams in turbid environments

    Science.gov (United States)

    Morgan, K. S.; Miller, J. K.; Cochenour, B. M.; Johnson, E. G.

    2016-05-01

    This work examines the propagation properties of two superimposed coherent orbital angular momentum (OAM) modes for use in underwater systems as an alternative to amplitude modulation. An OAM mode of l=+2 is interfered with OAM mode l=-1 from a λ = 540 nm laser source. These OAM modes are superimposed using a Mach-Zehnder (MZ) interferometer combined with diffractive optical elements. By manipulating the optical path length of one of the MZ legs, the interference of these beams can be temporally controlled. The spatial profile is maintained in a turbid environment up through 4.9 attenuation lengths for both cases.

  18. Vortex-MEMS filters for wavelength-selective orbital-angular-momentum beam generation

    DEFF Research Database (Denmark)

    Paul, Sujoy; Lyubopytov, Vladimir; Schumann, Martin F.

    2017-01-01

    In this paper an on-chip device capable of wavelength-selective generation of vortex beams is demonstrated. The device is realized by integrating a spiral phase-plate onto a MEMS tunable Fabry-Perot filter. This vortex-MEMS filter, being capable of functioning simultaneously in wavelength...... and orbital angular momentum (OAM) domains at around 1550 nm, is considered as a compact, robust and cost-effective solution for simultaneous OAM- and WDM optical communications. Experimental spectra for azimuthal orders 1, 2 and 3 show OAM state purity >92% across 30 nm wavelength range. A demonstration...

  19. Coherent control of optical spin-to-orbital angular momentum conversion in metasurface

    CERN Document Server

    Zhang, Huifang; Zhang, Xueqian; Guo, Wengao; Lu, Changgui; Li, Yanfeng; Zhang, Weili; Han, Jiaguang

    2016-01-01

    We propose and experimentally demonstrate that a metasurface consisting of Pancharatnam-Berry phase optical elements can enable the full control of optical spin-to-orbital angular momentum conversion. Our approach relies on the critical interference between the transmission and reflection upon the metasurfaceto create actively tunable and controllable conversion with a high output via coherent control of the two incident beams. The introduced control methodology is general and could be an important step toward the development of functional optical devices for practical applications.

  20. 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Tatarczak, Anna; Lu, Xiaofeng;

    2015-01-01

    Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO...... modes can be seen as an efficient solution to increase the capacity and the security in the link. In this paper, we discuss an experimental demonstration of a proposal for next generation FSO communication system where a light beam carrying different OAM modes and affected by M turbulence is coupled...

  1. Topological charge transfer in frequency doubling of fractional orbital angular momentum state

    Science.gov (United States)

    Ni, R.; Niu, Y. F.; Du, L.; Hu, X. P.; Zhang, Y.; Zhu, S. N.

    2016-10-01

    Nonlinear frequency conversion is promising for manipulating photons with orbital angular momentum (OAM). In this letter, we investigate the second harmonic generation (SHG) of light beams carrying fractional OAM. By measuring the OAM components of the generated second harmonic (SH) waves, we find that the integer components of the fundamental beam will interact with each other during the nonlinear optical process; thus, we figure out the law for topological charge transfer in frequency doubling of the fractional OAM state. Theoretical predictions by solving the nonlinear coupled wave equations are consistent with the experimental results.

  2. Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface

    Science.gov (United States)

    Yang, Kunpeng; Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Luo, Jun; Gao, Hui; Luo, Xiangang

    2016-06-01

    Nanoapertures with space-variant geometries are designed in a gold thin film to construct an ultrathin plasmonic metasurface, which has been demonstrated both numerically and experimentally to selectively generate and focus orbital angular momentum (OAM) beams with different topological charges at the wavelengths of 930 nm and 766 nm, respectively. Moreover, the interference patterns between the different circularly polarized transmission light were used to confirm the topological charges unambiguously. The agreement between the simulated and measured results suggests that the metasurface of wavelength-selective OAM modes may have potential applications in future optical communication systems.

  3. First observation of photons carrying orbital angular momentum in undulator radiation.

    Science.gov (United States)

    Bahrdt, J; Holldack, K; Kuske, P; Müller, R; Scheer, M; Schmid, P

    2013-07-19

    Photon beams of 99 eV energy carrying orbital angular momentum (OAM) have been observed in the 2nd harmonic off-axis radiation of a helical undulator at the 3rd generation synchrotron radiation light source BESSY II. For detection, the OAM carrying photon beam was superimposed with a reference beam without OAM. The interference pattern, a spiral intensity distribution, was recorded in a plane perpendicular to the propagation direction. The orientation of the observed spiral structure is related to the helicity of the undulator radiation. Excellent agreement between measurements and simulations has been found.

  4. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer.

    Science.gov (United States)

    Liu, Changming; Wei, Xuli; Niu, Liting; Wang, Kejia; Yang, Zhengang; Liu, Jinsong

    2016-06-13

    We present an efficient method to discriminate orbital angular momentum (OAM) of the terahertz (THz) vortex beam using a diffractive mode transformer. The mode transformer performs a log-polar coordinate transformation of the input THz vortex beam, which consists of two 3D-printed diffractive elements. A following lens separates each transformed OAM mode to a different lateral position in its focal plane. This method enables a simultaneous measurement over multiple OAM modes of the THz vortex beam. We experimentally demonstrate the measurement of seven individual OAM modes and two multiplexed OAM modes, which is in good agreement with simulations.

  5. Nonlinear Transformation of Orbital Angular Momentum through Quasi-phase Matching

    CERN Document Server

    Shao, Guang-hao; Chen, Jin-hui; Xu, Fei; Lu, Yan-qing

    2013-01-01

    We propose and investigate the quasi-phase matched (QPM) nonlinear optical frequency conversion of optical vortices in periodically poled Lithium Niobate (PPLN). Laguerre-Gaussian (LG) modes are used to represent the orbital angular momentum (OAM) states, characterized with the azimuthal and radial indices. Typical three-wave nonlinear interactions among the involved OAM modes are studied with the help of coupling wave equations. Being different from normal QPM process where the energy and quasi-momentum conservations are satisfied, both of the azimuthal and radial indices of the OAM states keep constant in most of the cases. However, abnormal change of the radial index is observed when there is asynchronous nonlinear conversion in different parts of the beams. The QPM nonlinear evolution of fractional OAM states is also discussed showing some interesting properties. In comparison with the traditional birefringent phase matching (BPM), the QPM technique avoids the undesired walk-off effect to reserve high-qua...

  6. Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement

    CERN Document Server

    Romero, J; Franke-Anold, S; Barnett, S M; Padgett, M J

    2012-01-01

    Any practical experiment utilising the innate D-dimensional entanglement of the orbital angular momentum (OAM) state space of photons is subject to the modal capacity of the detection system. We show that given such a constraint, the number of measured, entangled OAM modes in photon pairs generated by spontaneous parametric down-conversion (SPDC) can be maximised by tuning the phase-matching conditions in the SPDC process. We demonstrate a factor of 2 increase on the half-width of the OAM-correlation spectrum, from 10 to 20, the latter implying \\approx 50 -dimensional two-photon OAM entanglement. Exploiting correlations in the conjugate variable, angular position, we measure concurrence values 0.96 and 0.90 for two phase-matching conditions, indicating bipartite, D-dimensional entanglement where D is tuneable.

  7. Single-shot measurement of the orbital-angular-momentum spectrum of partially coherent fields

    CERN Document Server

    Kulkarni, Girish; Magana-Loaiza, Omar S; Boyd, Robert W; Jha, Anand K

    2016-01-01

    We propose an image inversion-based interferometric technique for measuring the orbital-angular- momentum (OAM) spectrum of a field that is an incoherent mixture of OAM eigenstates. The tech- nique directly encodes the angular correlation function of the input field in the azimuthal intensity profile of the output interferogram. We show that for an input field with a symmetric spectrum, a single-shot acquisition of this interferogram is sufficient to measure its OAM spectrum. We first present a proof-of-concept experimental demonstration of this technique for laboratory-produced partially coherent fields with known OAM spectra. We then use this technique to measure the intrinsic OAM spectrum of the signal-idler field from parametric down-conversion over an unprece- dented range of more than 150 modes. This technique therefore surpasses all other existing mea- surement schemes in terms of efficiency and spectral range, and can have significant implications for high-dimensional optical information processing pr...

  8. Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination

    Energy Technology Data Exchange (ETDEWEB)

    Barada, Daisuke [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya 321-8585 (Japan); Juman, Guzhaliayi; Yoshida, Itsuki [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Miyamoto, Katsuhiko; Omatsu, Takashige, E-mail: omatsu@faculty.chiba-u.jp [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Molecular Chirality Research Center, Chiba University, Chiba 263-8522 (Japan); Kawata, Shigeo [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Ohno, Seigo [Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan)

    2016-02-01

    It was discovered that optical vortices twist isotropic and homogenous materials, e.g., azo-polymer films to form spiral structures on a nano- or micro-scale. However, the formation mechanism has not yet been established theoretically. To understand the mechanism of the spiral surface relief formation in the azo-polymer film, we theoretically investigate the optical radiation force induced in an isotropic and homogeneous material under irradiation using a continuous-wave optical vortex with arbitrary topological charge and polarization. It is revealed that the spiral surface relief formation in azo-polymer films requires the irradiation of optical vortices with a positive (negative) spin angular momentum and a positive (negative) orbital angular momentum (constructive spin-orbital angular momentum coupling), i.e., the degeneracy among the optical vortices with the same total angular momentum is resolved.

  9. A Mach-Zehnder interferometer based on orbital angular momentum for improved vortex coronagraph efficiency

    CERN Document Server

    Piron, P; Huby, E; Mawet, D; Ruane, M Karlsson ad G; Habraken, S; Absil, O; Surdej, J

    2016-01-01

    The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a telescope element provides a continuous helical phase ramp for an on axis sources, which creates the orbital angular momentum. Thanks to that phase, the intensity of the central source is canceled by a down-stream pupil stop, while the off axis sources are not affected. However due to experimental conditions the nulling is hardly perfect. To improve the null, a Mach-Zehnder interferometer containing Dove prisms differently oriented can be proposed to sort out light based on its orbital angular momentum (OAM). Thanks to the differential rotation of the beam, a {\\pi} phase shift is achieved for the on axis light affected by a non zero OAM. Therefore the contrast between the star and its faint companion is enhanced. Nevertheless, due the Dove prisms birefringence, the performance of the interferometer is relativ...

  10. Generation and excitation of different orbital angular momentum states in a tunable microstructure optical fiber.

    Science.gov (United States)

    Huang, Wei; Liu, Yan-ge; Wang, Zhi; Zhang, Wanchen; Luo, Mingming; Liu, Xiaoqi; Guo, Junqi; Liu, Bo; Lin, Lie

    2015-12-28

    A tunable microstructure optical fiber for different orbital angular momentum states generation is proposed and investigated by simulation. The microstructure optical fiber is composed of a high refractive index ring and a hollow core surrounded by four small air holes. The background material of the microstructure fiber is pure silica. The hollow core and the surrounded four small air holes are infiltrated by optical functional material whose refractive index can be modulated via physical parameters, leading to the conversion between circular polarized fundamental mode and different orbital angular momentum states at tunable operating wavelengths. A theoretical model is established and the coupling mechanism is systematically analyzed and investigated based on coupled mode theory. The fiber length can be designed specifically to reach the maximum coupling efficiency for every OAM mode respectively, and can also be fixed at a certain value for several OAM modes generation under tunable refractive index conditions. The proposed fiber coupler is flexible and compact, making it a good candidate for tunable OAM generation and sensing systems.

  11. Quantum information with even and odd states of orbital angular momentum of light

    Energy Technology Data Exchange (ETDEWEB)

    Perumangatt, Chithrabhanu, E-mail: chithrabhanu@prl.res.in [Physical Research laboratory, Navarangpura, Ahmedabad, 380009 (India); Lal, Nijil [Physical Research laboratory, Navarangpura, Ahmedabad, 380009 (India); IIT Gandhinagar, Palaj, Ahmedabad, 382355 (India); Anwar, Ali [Physical Research laboratory, Navarangpura, Ahmedabad, 380009 (India); Gangi Reddy, Salla [University of Electro-communications, Chofu, Tokyo, 1828585 (Japan); Singh, R.P. [Physical Research laboratory, Navarangpura, Ahmedabad, 380009 (India)

    2017-06-15

    We address the possibility of using even/odd states of orbital angular momentum (OAM) of photons for the quantum information tasks. Single photon qubit states and two photon entangled states in even/odd basis of OAM are considered. We present a method for the tomography and general projective measurement in even/odd basis. With the general projective measurement, we show the Bell violation and quantum cryptography with Bell's inequality. We also describe hyper and hybrid entanglement of even/odd OAM states along with polarization, which can be applied in the implementation of quantum protocols like super dense coding. - Highlights: • We propose to use even and odd states of orbital angular momentum (OAM) of light for quantum information tasks. • We describe the OAM qubits and entangled states in even/odd basis and the corresponding projective operators. • We present a method for the tomography and the Bell's inequality violation for photons entangled in even/odd OAM states. • We also describe hyper and hybrid entanglement of even/odd OAM states along with polarization and their applications.

  12. Secular precessing compact binary dynamics, spin and orbital angular momentum flip-flops

    CERN Document Server

    Tápai, Márton; Gergely, László Árpád

    2016-01-01

    We derive the conservative secular evolution of precessing compact binaries to second post-Newtonian order accuracy, with leading-order spin-orbit, spin-spin and mass quadrupole-monopole contributions included. The emerging closed system of first-order differential equations evolves the pairs of polar and azimuthal angles of the spin and orbital angular momentum vectors together with the periastron angle. In contrast with the instantaneous dynamics, the secular dynamics is autonomous. This secular dynamics reliably characterizes the system over timescales starting from a few times the radial period to several precessional periods, but less than the radiation reaction timescale. We numerically compare the instantaneous and secular evolutions and estimate the number of periods for which dissipation has no significant effect, e.g. the conservative timescale. We apply the analytic equations to study the spin flip-flop effect, recently found by numerical relativity methods. Our investigations show that the effect ...

  13. Constraining the angular momentum of the Sun with planetary orbital motions and general relativity

    CERN Document Server

    Iorio, Lorenzo

    2011-01-01

    The angular momentum of a star is an important astrophysical quantity related to its internal structure, formation and evolution. On average, helioseismology yields S = 1.92 10^41 kg m^2 s^-1 for the angular momentum of the Sun. We constrain it in a model-independent, dynamical way by using the gravitomagnetic Lense-Thirring effect predicted by general relativity for the orbit of a test particle moving around a central rotating body. The correction to the standard Einsteinian/Newtonian precession of the longitude of the perihelion $ of Mercury, recently inferred by a team of astronomers from a fit of dynamical models of the forces acting on the planets of the solar system to a long data record, amounts to 0.4 +/- 0.6 mas cty^-1. The modeled forces did not include the Lense-Thirring effect itself, which is expected to be as large as -2.0 mas cty^-1 for the perihelion of Mercury from helioseismological values of S?. By assuming the validity of general relativity, from its theoretical prediction for the gravitom...

  14. Ultra-intense high orbital angular momentum harmonic generation in plasmas

    Science.gov (United States)

    Vieira, Jorge; Trines, R.; Alves, E. P.; Mendonca, J. T.; Fonseca, R. A.; Norreys, P.; Bigham, R.; Silva, L. O.

    2016-10-01

    As an independent degree of freedom, it is in principle possible to manipulate the orbital angular momentum (OAM) independently of any other laser property. The OAM therefore stands in equal foot to any other fundamental property of light, such as its frequency. There are, however, many open questions regarding the ability to control the OAM as an independent degree of freedom. A striking example is high harmonic generation, for which there is no OAM counterpart. Here we investigate a high OAM harmonics technique to generate and amplify high OAM harmonics while preserving the laser frequency. The scheme, based on simulated Raman backscattering, employs a linearly polarised long pump containing more than one OAM level, and a counter-propagating linearly polarised signal beam. The high OAM harmonics result from angular momentum cascading from modes with lower OAM to the modes with higher OAM. The OAM harmonics spectrum can be tailored according to the OAM contents of the pump. We illustrate the scheme with the generation of prime OAM harmonics, an all-optical realisation of the Green-Tao theorem. We support our theoretical findings with 3D particle-in-cell (PIC) simulations using Osiris.

  15. Orbital angular momentum complex spectrum analyzer for vortex light based on rotational Doppler Effect

    CERN Document Server

    Zhou, Hailong; Dong, Jianji; Zhang, Pei; Chen, Dongxu; Cai, Xinlun; Li, Fuli; Zhang, Xinliang

    2016-01-01

    The function to measure orbital angular momentum (OAM) distribution of vortex light is essential for OAM applications. Although there are lots of works to measure OAM modes, it is difficult to measure the power distribution of different OAM modes quantitatively and instantaneously, let alone measure the phase distribution among them. In this work, we demonstrate an OAM complex spectrum analyzer, which enables to measure the power and phase distribution of OAM modes simultaneously by employing rotational Doppler Effect. The original OAM mode distribution is mapped to electrical spectrum of beating signals with a photodetector. The power distribution and phase distribution of superimposed OAM beams are successfully retrieved by analyzing the electrical spectrum. We also extend the measurement to other spatial modes, such as linear polarization modes. These results represent a new landmark of spatial mode analysis and show great potentials in optical communication and OAM quantum state tomography.

  16. WGM resonators for studying orbital angular momentum of a photon, and methods

    Science.gov (United States)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy A. (Inventor); Maleki, Lute (Inventor); Strekalov, Dmitry V. (Inventor)

    2009-01-01

    An optical system, device, and method that are capable of generating high-order Bessel beams and determining the orbital angular momentum of at least one of the photons of a Bessel beam are provided. The optical system and device include a tapered waveguide having an outer surface defined by a diameter that varies along a longitudinal axis of the waveguide from a first end to an opposing second end. The optical system and device include a resonator that is arranged in optical communication with the first end of the tapered waveguide such that an evanescent field emitted from (i) the waveguide can be coupled with the resonator, or (ii) the resonator can be coupled with the waveguide.

  17. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams

    Science.gov (United States)

    Yuan, Yangsheng; Lei, Ting; Li, Zhaohui; Li, Yangjin; Gao, Shecheng; Xie, Zhenwei; Yuan, Xiaocong

    2017-02-01

    Optical beam wander is one of the most important issues for free-space optical (FSO) communication. We theoretically derive a beam wander model for Bessel beams propagating in turbulent atmosphere. The calculated beam wander of high order Bessel beams with different turbulence strengths are consistent with experimental measurements. Both theoretical and experimental results reveal that high order Bessel beams are less influenced by the turbulent atmosphere. We also demonstrate the Bessel beams based orbital angular momentum (OAM) multiplexing/demultiplexing in FSO communication with atmospheric turbulence. Under the same atmospheric turbulence condition, the bit error rates of transmitted signals carried by high order Bessel beams show smaller values and fluctuations, which indicates that the high order Bessel beams have an advantage of mitigating the beam wander in OAM multiplexing FSO communication.

  18. Storage and retrieval of electromagnetic waves with orbital angular momentum via plasmon-induced transparency.

    Science.gov (United States)

    Bai, Zhengyang; Xu, Datang; Huang, Guoxiang

    2017-01-23

    We propose a scheme to realize the storage and retrieval of high-dimensional electromagnetic waves with orbital angular momentum (OAM) via plasmon-induced transparency (PIT) in a metamaterial, which consists of an array of meta-atoms constructed by a metallic structure loaded with two varactors. We show that due to PIT effect the system allows the existence of shape-preserving dark-mode plasmonic polaritons, which are mixture of electromagnetic-wave modes and dark oscillatory modes of the meta-atoms and may carry various OAMs. We demonstrate that the slowdown, storage and retrieval of multi-mode electromagnetic waves with OAMs can be achieved through the active manipulation of a control field. Our work raises the possibility for realizing PIT-based spatial multi-mode memory of electromagnetic waves and is promising for practical application of information processing with large capacity by using room-temperature metamaterials.

  19. Beaming photons with spin and orbital angular momentum via a dipole-coupled plasmonic spiral antenna.

    Science.gov (United States)

    Rui, Guanghao; Nelson, Robert L; Zhan, Qiwen

    2012-08-13

    We analytically and numerically study the emission properties of an electric dipole coupled to a plasmonic spiral structure with different pitch. As a transmitting antenna, the spiral structure couples the radiation from the electric dipole into circularly polarized emitted photons in the far field. The spin carried by the emitted photons is determined by the handedness of the spiral antenna. By increasing the spiral pitch in the unit of surface plasmon wavelength, these circularly polarized photons also gain orbital angular momentum with different topological charges. This phenomenon is attributed to the presence of a geometric phase arising from the interaction of light from point source with the anisotropic spiral structure. The circularly polarized vortex emission from such optically coupled spiral antenna also has high directivity, which may find important applications in quantum optical information, single molecule sensing, and integrated photonic circuits.

  20. Optimal quantum cloning of orbital angular momentum photon qubits via Hong-Ou-Mandel coalescence

    CERN Document Server

    Nagali, Eleonora; Sciarrino, Fabio; De Martini, Francesco; Marrucci, Lorenzo; Piccirillo, Bruno; Karimi, Ebrahim; Santamato, Enrico; 10.1038/nphoton.2009.214

    2010-01-01

    The orbital angular momentum (OAM) of light, associated with a helical structure of the wavefunction, has a great potential for quantum photonics, as it allows attaching a higher dimensional quantum space to each photon. Hitherto, however, the use of OAM has been hindered by its difficult manipulation. Here, exploiting the recently demonstrated spin-OAM information transfer tools, we report the first observation of the Hong-Ou-Mandel coalescence of two incoming photons having nonzero OAM into the same outgoing mode of a beam-splitter. The coalescence can be switched on and off by varying the input OAM state of the photons. Such effect has been then exploited to carry out the 1 \\rightarrow 2 universal optimal quantum cloning of OAM-encoded qubits, using the symmetrization technique already developed for polarization. These results are finally shown to be scalable to quantum spaces of arbitrary dimension, even combining different degrees of freedom of the photons.

  1. High efficiency SHG of orbital angular momentum light in an external cavity

    CERN Document Server

    Zhou, Zhi-Yuan; Ding, Dong-Sheng; Jiang, Yun-Kun; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2014-01-01

    Traditional methods for generating orbital angular momentum (OAM) light include holographic diffraction gratings, vortex phase plate and spatial light modulator. In this article, we report a new method for high efficient OAM light generation. By pumping an external cavity contains a quasi phase matching nonlinear crystal with a fundamental OAM carrying light and properly aligning the cavity, mode matching between the pump light and the cavitys higher order Laguerre-Gaussian (LG) mode is achieved, conversion efficiency up to 10.3 percentage have been obtained. We have demonstrated that the cavity can stably operate at its higher order LG mode just as Gaussian mode for the first time. The SHG light possesses a doubled OAM value with respect to the pump light. The parameters that affect the beam quality and conversion efficiency are discussed in detail. Our work opens a brand new field in laser optics, and makes the first step toward high efficiency OAM light processing.

  2. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams.

    Science.gov (United States)

    Yuan, Yangsheng; Lei, Ting; Li, Zhaohui; Li, Yangjin; Gao, Shecheng; Xie, Zhenwei; Yuan, Xiaocong

    2017-02-10

    Optical beam wander is one of the most important issues for free-space optical (FSO) communication. We theoretically derive a beam wander model for Bessel beams propagating in turbulent atmosphere. The calculated beam wander of high order Bessel beams with different turbulence strengths are consistent with experimental measurements. Both theoretical and experimental results reveal that high order Bessel beams are less influenced by the turbulent atmosphere. We also demonstrate the Bessel beams based orbital angular momentum (OAM) multiplexing/demultiplexing in FSO communication with atmospheric turbulence. Under the same atmospheric turbulence condition, the bit error rates of transmitted signals carried by high order Bessel beams show smaller values and fluctuations, which indicates that the high order Bessel beams have an advantage of mitigating the beam wander in OAM multiplexing FSO communication.

  3. Controlling plasmonic orbital angular momentum by combining geometric and dynamic phases

    CERN Document Server

    Tan, Qilong; Liu, Hongchao; Huang, Xuguang; Zhang, Shuang

    2016-01-01

    Tunable orbit angular momentum (OAM) of surface plasmon polaritons (SPPs) is theoretically studied with appropriately designed metasurfaces. By controlling both the orientation angle and spatial position of nano aperture array on an ultrathin gold film, the field distributions of the surface waves can be engineered to contain both spin dependent and independent OAM components. Simultaneous control over the geometric phase and optical path difference induced phase (dynamic phase) provides extra degrees of freedom for manipulating OAM of SPPs. We show that arbitrary combination of OAM numbers can be realized for the SPPs excited by incident light of different circular polarizations. The results provides powerful control over the OAM of SPPs, which will have potential applications on optical trapping, imaging, communications and quantum information processing.

  4. Demonstration of reconfigurable joint orbital angular momentum mode and space switching.

    Science.gov (United States)

    Liu, Jun; Wang, Jian

    2016-11-21

    We propose and demonstrate space-selective switch functions employing orbital angular momentum (OAM) modes in the space domain for switching network. One is the switching among different OAM modes having different spatial phase structures, called OAM mode switching. The other is the switching among different space locations, called space switching. The switching operation mechanism relies on linear optics. Reconfigurable 4 × 4 OAM mode switching, space switching, and joint OAM mode and space switching fabric using a single spatial light modulator (SLM) are all demonstrated in the experiment. In addition, the presented OAM-incorporated space-selective switch might be further extended to N × N joint OAM mode and space switching with fast response, scalability, cascading ability and compability to facilitate robust switching applications.

  5. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light

    Science.gov (United States)

    Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei

    2017-07-01

    All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.

  6. Nondestructive on-chip detection of optical orbital angular momentum through a single plasmonic nanohole

    CERN Document Server

    Wei, Dunzhao; Liu, Dongmei; Zhu, Yunzhi; Zhong, Weihao; Fang, Xinyuan; Zhang, Yong; Xiao, Min

    2016-01-01

    Optical orbital angular momentum (OAM) provides an additional dimension for photons to carry information in high-capacity optical communication. Although the practical needs have intrigued the generations of miniaturized devices to manipulate the OAM modes in various integrated platforms, the on-chip OAM detection is still challenging to match the newly-developed compact OAM emitter and OAM transmission fiber. Here, we demonstrate an ultra-compact device, i.e., a single plasmonic nanohole, to efficiently measure an optical beam's OAM state in a nondestructive way. The device size is reduced down to a few hundreds of nanometers, which can be easily fabricated and installed in the current OAM devices. It is a flexible and robust way for in-situ OAM monitoring and detection in optical fiber networks and long-distance optical communication systems. With proper optimization of the nanohole parameters, this approach could be further extended to discriminate the OAM information multiplexed in multiple wavelengths an...

  7. Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals

    CERN Document Server

    Zhou, Zhi-Yuan; Jiang, Yun-Kun; Li, Yan; Shi, Shuai; Wang, Xi-Shi; Shi, Bao-Sen; Guo, Guang-Can

    2014-01-01

    Light with helical phase structures, carrying quantized orbital angular momentum (OAM), has many applications in both classical and quantum optics, such as high-capacity optical communications and quantum information processing. Frequency conversion is a basic technique to expand the frequency range of fundamental light. The frequency conversion of OAM-carrying light gives rise to new physics and applications such as up-conversion detection of images and high dimensional OAM entanglements. Quasi-phase matching (QPM) nonlinear crystals are good candidates for frequency conversion, particularly for their high-valued effective nonlinear coefficients and no walk-off effect. Here we report the first experimental second-harmonic generation (SHG) of OAM light with a QPM crystal, where a UV light with OAM of 100 is generated. OAM conservation is verified using a specially designed interferometer. With a pump beam carrying an OAM superposition of opposite sign, we observed interesting interference phenomena in the SHG...

  8. Dynamics of Finite Energy Airy Beams Carrying Orbital Angular Momentum in Multilevel Atomic Vapors

    Science.gov (United States)

    Wu, Zhenkun; Wang, Shun; Hu, Weifei; Gu, Yuzong

    2016-10-01

    We numerically investigate the dynamics of inward circular finite-energy Airy beams carrying different orbital angular momentum (OAM) numbers in a close-Λ three-level atomic vapor with the electromagnetically induced transparency (EIT) window. We report that due to the EIT induced by the microwave field, the transverse intensity distribution properties of Airy beam can be feasibly manipulated and modulated through adjusting OAM numbers l and the frequency detuning, as well as the propagation distance, in the multi-level atomic systems. What's more, the rotation of the beam also can be observed with different positions in atomic ensembles. The investigation may provide a useful tool for studying particle manipulation, signal processing and propagation in graded-index (GRIN) fibers.

  9. Magnetic-field-induced rotation of light with orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Shuai; Ding, Dong-Sheng, E-mail: dds@ustc.edu.cn; Zhou, Zhi-Yuan; Li, Yan; Zhang, Wei; Shi, Bao-Sen, E-mail: drshi@ustc.edu.cn [Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-06-29

    Light carrying orbital angular momentum (OAM) has attractive applications in the fields of precise optical measurements and high capacity optical communications. We study the rotation of a light beam propagating in warm {sup 87}Rb atomic vapor using a method based on magnetic-field-induced circular birefringence. The dependence of the rotation angle on the magnetic field makes it appropriate for weak magnetic field measurements. We quote a detailed theoretical description that agrees well with the experimental observations. The experiment shown here provides a method to measure the magnetic field intensity precisely and expands the application of OAM-carrying light. This technique has advantage in measurement of magnetic field weaker than 0.5 G, and the precision we achieved is 0.8 mG.

  10. Orbital angular momentum mode division filtering for photon-phonon coupling

    Science.gov (United States)

    Zhu, Zhi-Han; Sheng, Li-Wen; Lv, Zhi-Wei; He, Wei-Ming; Gao, Wei

    2017-01-01

    Stimulated Brillouin scattering (SBS), a fundamental nonlinear interaction between light and acoustic waves occurring in any transparency material, has been broadly studied for several decades and gained rapid progress in integrated photonics recently. However, the SBS noise arising from the unwanted coupling between photons and spontaneous non-coherent phonons in media is inevitable. Here, we propose and experimentally demonstrate this obstacle can be overcome via a method called orbital angular momentum mode division filtering. Owing to the introduction of a new distinguishable degree-of-freedom, even extremely weak signals can be discriminated and separated from a strong noise produced in SBS processes. The mechanism demonstrated in this proof-of-principle work provides a practical way for quasi-noise-free photonic-phononic operation, which is still valid in waveguides supporting multi-orthogonal spatial modes, permits more flexibility and robustness for future SBS devices. PMID:28071736

  11. Analytical light scattering and orbital angular momentum spectra of arbitrary Vogel spirals.

    Science.gov (United States)

    Dal Negro, Luca; Lawrence, Nate; Trevino, Jacob

    2012-07-30

    In this paper, we present a general analytical model for light scattering by arbitrary Vogel spiral arrays of circular apertures illuminated at normal incidence. This model suffices to unveil the fundamental mathematical structure of their complex Fraunhofer diffraction patterns and enables the engineering of optical beams carrying multiple values of orbital angular momentum (OAM). By performing analytical Fourier-Hankel decomposition of spiral arrays and far field patterns, we rigorously demonstrate the ability to encode specific numerical sequences onto the OAM values of diffracted optical beams. In particular, we show that these OAM values are determined by the rational approximations (i.e., the convergents) of the continued fraction expansions of the irrational angles utilized to generate Vogel spirals. These findings open novel and exciting opportunities for the manipulation of complex OAM spectra using dielectric and plasmonic aperiodic spiral arrays for a number of emerging engineering applications in singular optics, secure communication, optical cryptography, and optical sensing.

  12. Hollow-core photonic bandgap fibers for orbital angular momentum applications

    Science.gov (United States)

    Li, H.; Ren, G.; Gao, Y.; Zhu, B.; Wang, J.; Yin, B.; Jian, S.

    2017-04-01

    We present a study on the potential and challenges of guiding orbital angular momentum (OAM) modes in hollow-core photonic bandgap fibers (HC-PBGFs). Two 19-cell HC-PBGFs with different structural parameters are comparably investigated. The OAM mode properties in a 37-cell HC-PBGF are also discussed to explore the scalability of OAM states. Characteristics of vector modes and OAM modes are comprehensively analyzed with numerical simulations. The results show HC-PBGF with a larger core could effectively support more OAM modes with lower confinement loss and a larger effective area. In addition, HC-PBGF with a deeper and wider photonic bandgap is advantageous for achieving low crosstalk OAM transmission over a broader band-width. 19-cell HC-PBGFs could support OAM modes with purity beyond 0.9, and the value can be further improved by exploiting the 37-cell HC-PBGF.

  13. Performance Analyses of the Radio Orbital Angular Momentum Steering Technique Based on Ka-Band Antenna

    Directory of Open Access Journals (Sweden)

    Mingtuan Lin

    2017-01-01

    Full Text Available The misalignment in the orbital angular momentum- (OAM- based system would distort the radiation patterns of twisted beams carrying OAM, consequently making the OAM-based communication infeasible. To tackle the misalignment problem, a radio OAM steering technique based on a uniform circular array (UCA is illustrated. Subsequently, simulations are conducted to explore the influence of the OAM steering on the OAM mode quality and transmission performance. Furthermore, UCAs working at Ka-band with formulated feeding networks are designed and fabricated to analyze the performance of the OAM steering. The influences of OAM steering on mode quality and orthogonality are then evaluated in the experiment. Overall, the analyses of OAM steering technique are beneficial for the development of radio OAM study.

  14. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital angular momentum

    Science.gov (United States)

    Chaitanya, N. Apurv; Jabir, M. V.; Banerji, J.; Samanta, G. K.

    2016-09-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.

  15. Quantum state tomography of orbital angular momentum photonics qubits via a projection-based technique

    CERN Document Server

    Nicolas, Adrien; Giacobino, Elisabeth; Maxein, Dominik; Laurat, Julien

    2014-01-01

    While measuring the orbital angular momentum state of bright light beams can be performed using imaging techniques, a full characterization at the single-photon level is challenging. For applications to quantum optics and quantum information science, such characterization is an essential capability. Here, we present a setup to perform the quantum state tomography of photonic qubits encoded in this degree of freedom. The method is based on a projective technique using spatial mode projection via fork holograms and single-mode fibers inserted into an interferometer. The alignment and calibration of the device is detailed as well as the measurement sequence to reconstruct the associated density matrix. Possible extensions to higher-dimensional spaces are discussed.

  16. Antenna Gain and Link Budget for Waves Carrying Orbital Angular Momentum (OAM)

    CERN Document Server

    Nguyen, Duy Kevin; Sokoloff, Jérôme; Chabory, Alexandre; Palacin, Baptiste; Capet, Nicolas

    2015-01-01

    This paper addresses the RF link budget of a communication system using unusual waves carrying an orbital angular momentum (OAM) in order to clearly analyse the fundamental changes for telecommunication applications. The study is based on a typical configuration using circular array antennas to transmit and receive OAM waves. For any value of the OAM mode order, an original asymptotic formulation of the link budget is proposed in which equivalent antenna gains and free-space losses appear. The formulations are then validated with the results of a commercial electromagnetic simulation software. By this way, we also show how our formula can help to design a system capable of superimposing several channels on the same bandwidth and the same polarisation, based on the orthogonality of the OAM. Additional losses due to the use of this degree of freedom are notably clearly calculated to quantify the benefit and drawback according to the case.

  17. Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies

    CERN Document Server

    Chen, Menglin L N; Sha, Wei E I

    2016-01-01

    Electromagnetic (EM) waves with helical wavefront carry orbital angular momentum (OAM), which is associated with the azimuthal phase of the complex electric field. OAM is a new degree of freedom in EM waves and is promising for channel multiplexing in communication system. Although the OAM-carrying EM wave attracts more and more attention, the method of OAM generation at microwave frequencies still faces challenges, such as efficiency and simulation time. In this work, by using the circuit theory and equivalence principle, we build two simplified models, one for a single scatter and one for the whole metasurface to predict their EM responses. Both of the models significantly simplify the design procedure and reduce the simulation time. In this paper, we propose an ultrathin complementary metasurface that converts a left-handed (right-handed) circularly polarized plane wave without OAM to a right-handed (left-handed) circularly polarized wave with OAM of arbitrary orders and a high transmission efficiency can ...

  18. Superposition of two optical vortices with opposite integer or non-integer orbital angular momentum

    Directory of Open Access Journals (Sweden)

    Carlos Fernando Díaz Meza

    2016-04-01

    Full Text Available This work develops a brief proposal to achieve the superposition of two opposite vortex beams, both with integer or non-integer mean value of the orbital angular momentum. The first part is about the generation of this kind of spatial light distributions through a modified Brown and Lohmann’s hologram. The inclusion of a simple mathematical expression into the pixelated grid’s transmittance function, based in Fourier domain properties, shifts the diffraction orders counterclockwise and clockwise to the same point and allows the addition of different modes. The strategy is theoretically and experimentally validated for the case of two opposite rotation helical wavefronts.

  19. Optical fiber design with orbital angular momentum light purity higher than 99.9.

    Science.gov (United States)

    Zhang, Zhishen; Gan, Jiulin; Heng, Xiaobo; Wu, Yuqing; Li, Qingyu; Qian, Qi; Chen, Dongdan; Yang, Zhongmin

    2015-11-16

    The purity of the synthesized orbital-angular-momentum (OAM) light in the fiber is inversely proportional to channel crosstalk level in the OAM optical fiber communication system. Here the relationship between the fiber structure and the purity is firstly demonstrated in theory. The graded-index optical fiber is proposed and designed for the OAM light propagation with the purity higher than 99.9%. 16 fiber modes (10 OAM modes) have been supported by a specific designed graded-index optical fiber with dispersion less than 35 ps/(km∙nm). Such fiber design has suppressed the intrinsic crosstalk to be lower than -30 dB, and can be potentially used for the long distance OAM optical communication system.

  20. Constraining the Angular Momentum of the Sun with Planetary Orbital Motions and General Relativity

    Science.gov (United States)

    Iorio, L.

    2012-12-01

    The angular momentum of a star is an important astrophysical quantity related to its internal structure, formation, and evolution. Helioseismology yields S_{⊙}= 1.92×10^{41} kg m^{2 s^{-1}} for the angular momentum of the Sun. We show how it should be possible to constrain it in a near future by using the gravitomagnetic Lense-Thirring effect predicted by General Relativity for the orbit of a test particle moving around a central rotating body. We also discuss the present-day situation in view of the latest determinations of the supplementary perihelion precession [InlineEquation not available: see fulltext.] of Mercury. A fit by Fienga et al. ( Celestial Mech. Dynamical Astron. 111, 363, 2011) of the dynamical models of several standard forces acting on the planets of the solar system to a long data record yielded [InlineEquation not available: see fulltext.] milliarcseconds per century. The modeled forces did not include the Lense-Thirring effect itself, which is expected to be as large as [InlineEquation not available: see fulltext.] from helioseismology-based values of S ⊙. By assuming the validity of General Relativity, from its theoretical prediction for the gravitomagnetic perihelion precession of Mercury, one can straightforwardly infer S_{⊙}≤0.95×10^{41} kg m^{2 s^{-1}}. It disagrees with the currently available values from helioseismology. Possible sources for the present discrepancy are examined. Given the current level of accuracy in the Mercury ephemerides, the gravitomagnetic force of the Sun should be included in their force models. MESSENGER, in orbit around Mercury since March 2011, will collect science data until 2013, while BepiColombo, to be launched in 2015, should reach Mercury in 2022 for a year-long science phase: the analysis of their data will be important in effectively constraining S ⊙ in about a decade or, perhaps, even less.

  1. Dephasing of Single-Photon Orbital Angular Momentum Qudit States in Fiber: Limits to Correction via Dynamical Decoupling

    Science.gov (United States)

    Gupta, Manish K.; Dowling, Jonathan P.

    2016-06-01

    We analytically derive a decoherence model for orbital angular momentum states of a photon in a multimode optical fiber and show that the rate of decoherence scales approximately exponentially with l2, where l is the azimuthal mode order. We also show numerically that for large values of l the orbital angular momentum photon state completely dephases. However, for lower values of l the decoherence can be minimized by using dynamical decoupling to allow for qudit high-bandwidth quantum communication and similar applications.

  2. On Angular Momentum

    Science.gov (United States)

    Schwinger, J.

    1952-01-26

    The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.

  3. Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.

    Science.gov (United States)

    Shukla, P K; Eliasson, B; Stenflo, L

    2012-07-01

    We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent.

  4. Design challenges and guidelines for free-space optical communication links using orbital-angular-momentum multiplexing of multiple beams

    Science.gov (United States)

    Willner, Alan E.; Xie, Guodong; Li, Long; Ren, Yongxiong; Yan, Yan; Ahmed, Nisar; Zhao, Zhe; Wang, Zhe; Liu, Cong; Willner, Asher J.; Ashrafi, Nima; Ashrafi, Solyman; Tur, Moshe; Molisch, Andreas F.

    2016-07-01

    In this paper, recent studies on the potential challenges for an orbital angular momentum (OAM) multiplexing system were reviewed. The design guideline for a practical OAM multiplexing system were investigated in term of (i) the power loss due to the beam divergence and limited-size receiver, and (ii) the channel crosstalk due to the misalignment between the transmitter and receiver.

  5. Injection of Orbital Angular Momentum and Storage of Quantized Vortices in Polariton Superfluids.

    Science.gov (United States)

    Boulier, T; Cancellieri, E; Sangouard, N D; Glorieux, Q; Kavokin, A V; Whittaker, D M; Giacobino, E; Bramati, A

    2016-03-18

    We report the experimental investigation and theoretical modeling of a rotating polariton superfluid relying on an innovative method for the injection of angular momentum. This novel, multipump injection method uses four coherent lasers arranged in a square, resonantly creating four polariton populations propagating inwards. The control available over the direction of propagation of the superflows allows injecting a controllable nonquantized amount of optical angular momentum. When the density at the center is low enough to neglect polariton-polariton interactions, optical singularities, associated with an interference pattern, are visible in the phase. In the superfluid regime resulting from the strong nonlinear polariton-polariton interaction, the interference pattern disappears and only vortices with the same sign are persisting in the system. Remarkably, the number of vortices inside the superfluid region can be controlled by controlling the angular momentum injected by the pumps.

  6. Poynting vector, orbital and spin momentum and angular momentum versus optical force and torque on arbitrary particle in generic optical fields

    CERN Document Server

    Jiang, Yikun; Chen, Jun; Ng, Jack; Lin, Zhifang

    2015-01-01

    We study optical force and torque on a general particle immersed in generic monochromatic free-space optical field. It is rigorously proved that the optical force can be written as a difference between the surface integrals of the orbital momentum density of light in the presence and in the absence of the particle, while the optical torque is described by the surface integral of total angular momentum (AM) density, viz the sum of the orbital and spin AM densities. It is therefore physically understood that only the orbital part of the optical momentum is responsible for the optical force, whereas the optical torque originates from both the orbital and the spin AM, clarifying in generic case the long-standing controversy about whether the orbital AM can induce a spinning torque.

  7. Quantum numbers of the $X(3872)$ state and orbital angular momentum in its $\\rho^0 J/\\psi$ decays

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casanova Mohr, Raimon; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gastaldi, Ugo; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Geraci, Angelo; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Ninci, Daniele; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Sterpka, Christopher Francis; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wiedner, Dirk; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang

    2015-01-01

    Angular correlations in $B^+\\to X(3872) K^+$ decays, with $X(3872)\\to \\rho^0 J/\\psi$, $\\rho^0\\to\\pi^+\\pi^-$ and $J/\\psi \\to\\mu^+\\mu^-$, are used to measure orbital angular momentum contributions and to determine the $J^{PC}$ value of the $X(3872)$ meson. The data correspond to an integrated luminosity of 3.0 fb$^{-1}$ of proton-proton collisions collected with the LHCb detector. This determination, for the first time performed without assuming a value for the orbital angular momentum, confirms the quantum numbers to be $J^{PC}=1^{++}$. The $X(3872)$ is found to decay predominantly through S wave and an upper limit of $4\\%$ at $95\\%$ C.L. is set on the fraction of D wave.

  8. The Capacity Gain of Orbital Angular Momentum Based Multiple-Input-Multiple-Output System

    Science.gov (United States)

    Zhang, Zhuofan; Zheng, Shilie; Chen, Yiling; Jin, Xiaofeng; Chi, Hao; Zhang, Xianmin

    2016-05-01

    Wireless communication using electromagnetic wave carrying orbital angular momentum (OAM) has attracted increasing interest in recent years, and its potential to increase channel capacity has been explored widely. In this paper, we compare the technique of using uniform linear array consist of circular traveling-wave OAM antennas for multiplexing with the conventional multiple-in-multiple-out (MIMO) communication method, and numerical results show that the OAM based MIMO system can increase channel capacity while communication distance is long enough. An equivalent model is proposed to illustrate that the OAM multiplexing system is equivalent to a conventional MIMO system with a larger element spacing, which means OAM waves could decrease the spatial correlation of MIMO channel. In addition, the effects of some system parameters, such as OAM state interval and element spacing, on the capacity advantage of OAM based MIMO are also investigated. Our results reveal that OAM waves are complementary with MIMO method. OAM waves multiplexing is suitable for long-distance line-of-sight (LoS) communications or communications in open area where the multi-path effect is weak and can be used in massive MIMO systems as well.

  9. Simultaneous and spatially separated detection of multiple orbital angular momentum states

    Science.gov (United States)

    Tudor, R.; Mihailescu, M.; Kusko, C.; Paun, I. A.; Nan, A. E.; Kusko, M.

    2016-06-01

    We present a method for spatially separated detection of multiple orbital angular momentum (OAM) states, simultaneous. The starting point is the generation of axially superposed Laguerre-Gauss beams, carrying multiple OAM states using a single computer generated hologram. The information contained in the OAM superposition is transferred to the first diffraction order and is detected at the receiver with a reading mask, which contains two perpendicular superposed fork-like holograms, ensuring the spatial separation of the OAM states. The dynamic of the process is studied in terms of the number of generated OAM states and the constructive parameters values. The experimental investigations use an optical arrangement based on a spatial light modulator in the transmitter unit and an amplitude mask in the receiver unit. This proof of concept experiment demonstrates the possibility of simultaneously detection of multiple OAM states in points located at different coordinates, controlled through the design of the holograms and shows the capability of our proposed method to increase the capacity of free-space optical communication channels.

  10. Orbital angular momentum in electron diffraction and its use to determine chiral crystal symmetries

    CERN Document Server

    Juchtmans, Roeland

    2015-01-01

    In this work we present an alternative way to look at electron diffraction in a transmission electron microscope. In stead of writing the scattering amplitude in Fourier space as a set of plane waves, we use the cylindrical Fourier transform to describe the scattering amplitude in a basis of orbital angular momentum (OAM) eigenstates. We show how working in this framework can be very convenient when investigating e.g. rotation and screw axis symmetries. For the latter we find selection rules on the OAM-coefficients that unambiguously reveal the handedness of the screw axis. Detecting the OAM-coefficients of the scattering amplitude thus offers the possibility to detect the handedness of crystals without the need for dynamical simulations, the thickness of the sample nor the exact crystal structure. We propose an experimental setup to measure the OAM-components where an image of the crystal is taken after inserting a spiral phase plate in the diffraction plane and perform mulsti-slice simulations on $\\alpha$-q...

  11. Orbital angular momentum in electron diffraction and its use to determine chiral crystal symmetries

    Science.gov (United States)

    Juchtmans, Roeland; Verbeeck, Jo

    2015-10-01

    In this work we present an alternative way to look at electron diffraction in a transmission electron microscope. Instead of writing the scattering amplitude in Fourier space as a set of plane waves, we use the cylindrical Fourier transform to describe the scattering amplitude in a basis of orbital angular momentum (OAM) eigenstates. We show how working in this framework can be very convenient when investigating, e.g., rotation and screw-axis symmetries. For the latter we find selection rules on the OAM coefficients that unambiguously reveal the handedness of the screw axis. Detecting the OAM coefficients of the scattering amplitude thus offers the possibility to detect the handedness of crystals without the need for dynamical simulations, the thickness of the sample, nor the exact crystal structure. We propose an experimental setup to measure the OAM components where an image of the crystal is taken after inserting a spiral phase plate in the diffraction plane and perform multislice simulations on α quartz to demonstrate how the method indeed reveals the chirality. The experimental feasibility of the technique is discussed together with its main advantages with respect to chirality determination of screw axes. The method shows how the use of a spiral phase plate can be extended from a simple phase imaging technique to a tool to measure the local OAM decomposition of an electron wave, widening the field of interest well beyond chiral space group determination.

  12. Gaussian and Airy wave-packets of massive particles with orbital angular momentum

    CERN Document Server

    Karlovets, Dmitry V

    2014-01-01

    While wave-packet solutions for relativistic wave equations are oftentimes thought to be approximate (paraxial), we demonstrate that there is a family of such solutions, which are exact, by employing a null-plane (light-cone) variables formalism. A scalar Gaussian wave-packet in transverse plane is generalized so that it acquires a well-defined z-component of the orbital angular momentum (OAM), while may not acquire a typical "doughnut" spatial profile. Such quantum states and beams, in contrast to the Bessel ones, may have an azimuthal-angle-dependent probability density and finite quantum uncertainty of the OAM, which is determined by the packet's width. We construct a well-normalized Airy wave-packet, which can be interpreted as a one-particle state for relativistic massive boson, show that its center moves along the same quasi-classical straight path and, what is more important, spreads with time and distance exactly as a Gaussian wave-packet does, in accordance with the uncertainty principle. It is expla...

  13. Multipath Effects in Millimetre-Wave Wireless Communication using Orbital Angular Momentum Multiplexing

    Science.gov (United States)

    Yan, Yan; Li, Long; Xie, Guodong; Bao, Changjing; Liao, Peicheng; Huang, Hao; Ren, Yongxiong; Ahmed, Nisar; Zhao, Zhe; Wang, Zhe; Ashrafi, Nima; Ashrafi, Solyman; Talwar, Shilpa; Sajuyigbe, Soji; Tur, Moshe; Molisch, Andreas F.; Willner, Alan E.

    2016-01-01

    Electromagnetic waves carrying orbital angular momentum (OAM) have been used for mode division multiplexing in free-space communication systems to increase both the capacity and the spectral efficiency. In the case of conventional wireless communication links using non-OAM beams, multipath effects caused by beam spreading and reflection from the surrounding objects affect the system performance. This paper presents the results of analysis, simulations, and measurements of multipath effects in a millimetre-wave communication link using OAM multiplexing at 28 GHz. Multipath-induced intra- and inter-channel crosstalk, which are caused by specular reflection from a plane parallel to the propagation path, are analysed and measured. Both the simulation and the experimental results show that an OAM channel with a high OAM number ℓ tends to suffer from both strong intra-channel crosstalk and strong inter-channel crosstalk with other OAM channels. Results of the analysis show that this observation can be explained on the basis of both the properties of OAM beam divergence and the filtering effect at the receiver, which is associated with the spiral wavefront of OAM beams. PMID:27658443

  14. Multiplexed Millimeter Wave Communication with Dual Orbital Angular Momentum (OAM) Mode Antennas.

    Science.gov (United States)

    Hui, Xiaonan; Zheng, Shilie; Chen, Yiling; Hu, Yiping; Jin, Xiaofeng; Chi, Hao; Zhang, Xianmin

    2015-05-19

    Communications using the orbital angular momentum (OAM) of radio waves have attracted much attention in recent years. In this paper, a novel millimeter-wave dual OAM mode antenna is cleverly designed, using which a 60 GHz wireless communication link with two separate OAM channels is experimentally demonstrated. The main body of the dual OAM antenna is a traveling-wave ring resonator using two feeding ports fed by a 90° hybrid coupler. A parabolic reflector is used to focus the beams. All the antenna components are fabricated by 3D printing technique and the electro-less copper plating surface treatment process. The performances of the antenna, such as S-parameters, near-fields, directivity, and isolation between the two OAM modes are measured. Experimental results show that this antenna can radiate two coaxially propagating OAM modes beams simultaneously. The multiplexing and de-multiplexing are easily realized in the antennas themselves. The two OAM mode channels have good isolation of more than 20 dB, thus ensuring the reliable transmission links at the same time.

  15. Local orbital angular momentum revealed by spiral phase plate imaging in transmission electron microscopy

    CERN Document Server

    Juchtmans, Roeland

    2015-01-01

    The orbital angular momentum (OAM) of light and matter waves is a parameter that is getting increasingly more attention over the past couple of years. Beams with a well defined OAM, the so-called vortex beams, are applied already in e.g. telecommunication, astrophysics, nanomanipulation and chiral measurements in optics and electron microscopy. Also the OAM of a wave induced by the interaction with a sample, shows great potential of interest. In all these experiments it is crucial to measure the exact (local) OAM content of the wave, whether it is an incoming vortex beam or an exit wave after interacting with a sample. In this work we investigate the use of spiral phase plates as an alternative to the programmable phase plates used in optics to measure OAM. We derive analytically how these can be used to study the local OAM components of any wave function. By means of numerical simulations we illustrate how the OAM of a pure vortex beam can be measured. We also look at a sum of misaligned vortex beams and sho...

  16. Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications

    Science.gov (United States)

    Ren, Yongxiong; Li, Long; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J.; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E.

    2016-09-01

    To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing.

  17. 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes.

    Science.gov (United States)

    Jurado-Navas, Antonio; Tatarczak, Anna; Lu, Xiaofeng; Olmos, Juan José Vegas; Garrido-Balsells, José María; Monroy, Idelfonso Tafur

    2015-12-28

    Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO communications are considered as an alternative and promising mean complementing the traditional optical communications in many applications where the use of fiber cable is not justified. This next generation FSO communication systems have attracted much interest recently, and the inclusion of beams carrying OAM modes can be seen as an efficient solution to increase the capacity and the security in the link. In this paper, we discuss an experimental demonstration of a proposal for next generation FSO communication system where a light beam carrying different OAM modes and affected by ℳ turbulence is coupled to the multimode fiber link. In addition, we report a better and more robust behavior of higher order OAM modes when the intermodal dispersion is dominant in the fiber after exceeding its maximum range of operation.

  18. Multifocal array with controllable orbital angular momentum modes by tight focusing

    Science.gov (United States)

    Deng, Duo; Li, Yan; Han, Yanhua; Ye, Jingfu; Guo, Zhongyi; Qu, Shiliang

    2017-01-01

    Multifocal spots arrays with controllable three-dimensional (3D) position, orbital angular momentum (OAM) and the number of focal planes along longitudinal direction have been proposed and investigated by using a special designed phase-only multi-zone plate at the back aperture of a high numerical aperture (NA) objective. By using Debye diffraction integral, the focusing field could be rewritten as a fast Fourier transform (FFT), which is the theory and principle for generating the controllable OAM-modes focusing spots. According to this theory, a hybrid multi-zone plate at the back aperture of a high NA objective is designed for the illuminations of the radially polarized Bessel-Gaussian beam. Each focusing spot in the focal plane is generated by independent parts, so the multiplexing OAM-modes could be realized by focusing two or more spots at the same position with different orthogonal eigenstates. It is a practical and flexible OAM multi-focus technique with dynamically controllable 3D position, number of focal planes, corresponding topological charges and focal lengths to meet different requirements, such as 3D optical data storage, air-core fiber coupler and parallel optical manipulation.

  19. Deep learning as a tool to distinguish between high orbital angular momentum optical modes

    Science.gov (United States)

    Knutson, E. M.; Lohani, Sanjaya; Danaci, Onur; Huver, Sean D.; Glasser, Ryan T.

    2016-09-01

    The generation of light containing large degrees of orbital angular momentum (OAM) has recently been demon- strated in both the classical and quantum regimes. Since there is no fundamental limit to how many quanta of OAM a single photon can carry, optical states with an arbitrarily high difference in this quantum number may, in principle, be entangled. This opens the door to investigations into high-dimensional entanglement shared between states in superpositions of nonzero OAM. Additionally, making use of non-zero OAM states can allow for a dramatic increase in the amount of information carried by a single photon, thus increasing the information capacity of a communication channel. In practice, however, it is difficult to differentiate between states with high OAM numbers with high precision. Here we investigate the ability of deep neural networks to differentiate between states that contain large values of OAM. We show that such networks may be used to differentiate be- tween nearby OAM states that contain realistic amounts of noise, with OAM values of up to 100. Additionally, we examine how the classification accuracy scales with the signal-to-noise ratio of images that are used to train the network, as well as those being tested. Finally, we demonstrate the simultaneous classification of < 100 OAM states with greater than 70 % accuracy. We intend to verify our system with experimentally-produced classi- cal OAM states, as well as investigate possibilities that would allow this technique to work in the few-photon quantum regime.

  20. A classical to quantum optical network link for orbital angular momentum carrying light

    CERN Document Server

    Zhou, Zhi-Yuan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2015-01-01

    Light with orbital angular momentum (OAM) has great potentials in both classical and quantum optical communications such as enhancing the transmission capacity of a single communication channel because of its unlimited dimensions. Based on OAM conservation in second order nonlinear interaction processes, we create a classical to quantum optical network link in OAM degree of freedoms of light via sum frequency generation (SFG) following by a spontaneous parametric down conversion (SPDC). A coherent OAM-carrying beams at telecom wavelength 1550nm is up-converted to 525.5nm OAM-carrying beams in the first crystal, then up-converted OAM-carrying beam is used to pump a second crystal to generate non-degenerate OAM entangled photon pairs at 795nm and 1550nm. By switching the OAM carries by the classical party, the OAM correlation in the quantum party is shifted. High OAM entanglements in two dimensional subspaces are verified. This primary study enables to build a hybrid optical communication network contains both ...

  1. Blue-light digital communication in underwater environments utilizing orbital angular momentum

    Science.gov (United States)

    Baghdady, Joshua; Miller, Keith; Osler, Sean; Morgan, Kaitlyn; Li, Wenzhe; Johnson, Eric; Cochenour, Brandon

    2016-05-01

    Underwater optical communication has recently become the topic of much investigation as the demands for underwater data transmission have rapidly grown in recent years. The need for reliable, high-speed, secure underwater communication has turned increasingly to blue-light optical solutions. The blue-green visible wavelength window provides an attractive solution to the problem of underwater data transmission thanks to its low attenuation, where traditional RF solutions used in free-space communications collapse. Beginning with GaN laser diodes as the optical source, this work explores the encoding and transmission of digital data across underwater environments of varying turbidities. Given the challenges present in an underwater environment, such as the mechanical and optical turbulences that make proper alignment difficult to maintain, it is desirable to achieve extremely high data rates in order to allow the time window of alignment between the transmitter and receiver to be as small as possible. In this paper, work is done to increase underwater data rates through the use of orbital angular momentum. Results are shown for a range of data rates across a variety of channel types ranging in turbidity from that of a clear ocean to a dirty harbor.

  2. The Capacity Gain of Orbital Angular Momentum Based Multiple-Input-Multiple-Output System.

    Science.gov (United States)

    Zhang, Zhuofan; Zheng, Shilie; Chen, Yiling; Jin, Xiaofeng; Chi, Hao; Zhang, Xianmin

    2016-01-01

    Wireless communication using electromagnetic wave carrying orbital angular momentum (OAM) has attracted increasing interest in recent years, and its potential to increase channel capacity has been explored widely. In this paper, we compare the technique of using uniform linear array consist of circular traveling-wave OAM antennas for multiplexing with the conventional multiple-in-multiple-out (MIMO) communication method, and numerical results show that the OAM based MIMO system can increase channel capacity while communication distance is long enough. An equivalent model is proposed to illustrate that the OAM multiplexing system is equivalent to a conventional MIMO system with a larger element spacing, which means OAM waves could decrease the spatial correlation of MIMO channel. In addition, the effects of some system parameters, such as OAM state interval and element spacing, on the capacity advantage of OAM based MIMO are also investigated. Our results reveal that OAM waves are complementary with MIMO method. OAM waves multiplexing is suitable for long-distance line-of-sight (LoS) communications or communications in open area where the multi-path effect is weak and can be used in massive MIMO systems as well.

  3. Three-Dimensional Simultaneous Arbitrary-Way Orbital Angular Momentum Generator Based on Transformation Optics

    Science.gov (United States)

    Zhang, Chen; Deng, Li; Hong, Wei Jun; Jiang, Wei Xiang; Zhu, Jian Feng; Zhou, Mi; Wang, Ling; Li, Shu Fang; Peng, Biao

    2016-12-01

    In wireless communications, people utilize the technology of diversity against multipath fading, so as to improve the reliability of communication equipment. One of the long-standing problems in diversity antennas is the limited number of diversity in a certain space. In this paper, we provide a solution to this issue by a three-dimensional (3D) simultaneous arbitrary-way orbital angular momentum (OAM) generator (3D SAWOG) based on transformation optics. The proposed 3D SAWOG consists of a metamaterial block and a group of transformation cylinders, by which arbitrary-way planar wavefronts can be converted to helical wavefronts with various topological charges simultaneously. The 2D four-way OAM generator and the 3D SAWOG are analyzed, designed, and simulated. The simulation results validate the performance of a 3D SAWOG successfully, indicating that the proposed model possess a high mode purity and expansibility. The SAWOG can be used as a novel diversity antenna array due to the orthogonal property among different modes, which could provide more degrees of freedom than traditional dual-polarization antennas, further improving the reliability of the communication systems.

  4. Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications

    CERN Document Server

    Ren, Yongxiong; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E

    2016-01-01

    To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we multiplex and transmit four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam, we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the higher-rate link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the lower rates, a green laser diode is directly modulated. Finally, we s...

  5. Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications

    Science.gov (United States)

    Ren, Yongxiong; Li, Long; Wang, Zhe; Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Zhao, Zhe; Xie, Guodong; Cao, Yinwen; Ahmed, Nisar; Yan, Yan; Liu, Cong; Willner, Asher J.; Ashrafi, Solyman; Tur, Moshe; Faraon, Andrei; Willner, Alan E.

    2016-01-01

    To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing. PMID:27615808

  6. Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes

    Science.gov (United States)

    Byun, Woo Jin; Kim, Kwang Seon; Kim, Bong Su; Lee, Young Seung; Song, Myung Sun; Choi, Hyung Do; Cho, Yong Heui

    2016-06-01

    A multiplexed Cassegrain reflector antenna with a 2 × 2 open-ended rectangular waveguide (OERW) matrix feed and an orbital angular momentum (OAM) mode mux is proposed for the simultaneous generation of three OAM modes (l = 0, ±1). The OAM mode mux (OMM) was designed using sequential combinations of quadrature hybrids, crossovers, and phase shifters to multiplex and demultiplex three OAM modes at the same time. The 2 × 2 OERW matrix feed and the OMM were separately measured and their performances were verified according to proposed theories. A near-field antenna measurement for a multiplexed Cassegrain reflector antenna was conducted to obtain the far-field magnitude and phase patterns around polar elevation angle θ and azimuthal angle ϕ, thus confirming that our antenna can produce three OAM modes simultaneously. We also measured the communication link characteristics of two identical multiplexed antennas. The measurement results show that the channel isolation of three OAM modes is more than 12.7 [dB] and 17 [dB] for fixed and compensated receiver positions, respectively, indicating that the proposed antenna system can be used for independent communication links with the same frequency and polarisation.

  7. An Orbital Angular Momentum (OAM) Mode Reconfigurable Antenna for Channel Capacity Improvement and Digital Data Encoding.

    Science.gov (United States)

    Liu, Baiyang; Lin, Guoying; Cui, Yuehui; Li, RongLin

    2017-08-29

    For purpose of utilizing orbital angular momentum (OAM) mode diversity, multiple OAM beams should be generated preferably by a single antenna. In this paper, an OAM mode reconfigurable antenna is proposed. Different from the existed OAM antennas with multiple ports for multiple OAM modes transmitting, the proposed antenna with only a single port, but it can be used to transmit mode 1 or mode -1 OAM beams arbitrary by controlling the PIN diodes on the feeding network through a programmable microcontroller which control by a remote controller. Simulation and measurement results such as return loss, near-field and far-field radiation patterns of two operating states for mode 1 and mode -1, and OAM mode orthogonality are given. The proposed antenna can serve as a candidate for utilizing OAM diversity, namely phase diversity to increase channel capacity at 2.4 GHz. Moreover, an OAM-mode based encoding method is experimentally carried out by the proposed OAM mode reconfigurable antenna, the digital data are encoded and decoded by different OAM modes. At the transmitter, the proposed OAM mode reconfigurable antenna is used to encode the digital data, data symbol 0 and 1 are mapped to OAM mode 1 and mode -1, respectively. At the receiver, the data symbols are decoded by phase gradient method.

  8. Multipath Effects in Millimetre-Wave Wireless Communication using Orbital Angular Momentum Multiplexing.

    Science.gov (United States)

    Yan, Yan; Li, Long; Xie, Guodong; Bao, Changjing; Liao, Peicheng; Huang, Hao; Ren, Yongxiong; Ahmed, Nisar; Zhao, Zhe; Wang, Zhe; Ashrafi, Nima; Ashrafi, Solyman; Talwar, Shilpa; Sajuyigbe, Soji; Tur, Moshe; Molisch, Andreas F; Willner, Alan E

    2016-09-23

    Electromagnetic waves carrying orbital angular momentum (OAM) have been used for mode division multiplexing in free-space communication systems to increase both the capacity and the spectral efficiency. In the case of conventional wireless communication links using non-OAM beams, multipath effects caused by beam spreading and reflection from the surrounding objects affect the system performance. This paper presents the results of analysis, simulations, and measurements of multipath effects in a millimetre-wave communication link using OAM multiplexing at 28 GHz. Multipath-induced intra- and inter-channel crosstalk, which are caused by specular reflection from a plane parallel to the propagation path, are analysed and measured. Both the simulation and the experimental results show that an OAM channel with a high OAM number ℓ tends to suffer from both strong intra-channel crosstalk and strong inter-channel crosstalk with other OAM channels. Results of the analysis show that this observation can be explained on the basis of both the properties of OAM beam divergence and the filtering effect at the receiver, which is associated with the spiral wavefront of OAM beams.

  9. Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation.

    Science.gov (United States)

    Djordjevic, Ivan B

    2011-07-18

    In order to achieve multi-gigabit transmission (projected for 2020) for the use in interplanetary communications, the usage of large number of time slots in pulse-position modulation (PPM), typically used in deep-space applications, is needed, which imposes stringent requirements on system design and implementation. As an alternative satisfying high-bandwidth demands of future interplanetary communications, while keeping the system cost and power consumption reasonably low, in this paper, we describe the use of orbital angular momentum (OAM) as an additional degree of freedom. The OAM is associated with azimuthal phase of the complex electric field. Because OAM eigenstates are orthogonal the can be used as basis functions for N-dimensional signaling. The OAM modulation and multiplexing can, therefore, be used, in combination with other degrees of freedom, to solve the high-bandwidth requirements of future deep-space and near-Earth optical communications. The main challenge for OAM deep-space communication represents the link between a spacecraft probe and the Earth station because in the presence of atmospheric turbulence the orthogonality between OAM states is no longer preserved. We will show that in combination with LDPC codes, the OAM-based modulation schemes can operate even under strong atmospheric turbulence regime. In addition, the spectral efficiency of proposed scheme is N2/log2N times better than that of PPM.

  10. Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes.

    Science.gov (United States)

    Byun, Woo Jin; Kim, Kwang Seon; Kim, Bong Su; Lee, Young Seung; Song, Myung Sun; Choi, Hyung Do; Cho, Yong Heui

    2016-06-02

    A multiplexed Cassegrain reflector antenna with a 2 × 2 open-ended rectangular waveguide (OERW) matrix feed and an orbital angular momentum (OAM) mode mux is proposed for the simultaneous generation of three OAM modes (l = 0, ±1). The OAM mode mux (OMM) was designed using sequential combinations of quadrature hybrids, crossovers, and phase shifters to multiplex and demultiplex three OAM modes at the same time. The 2 × 2 OERW matrix feed and the OMM were separately measured and their performances were verified according to proposed theories. A near-field antenna measurement for a multiplexed Cassegrain reflector antenna was conducted to obtain the far-field magnitude and phase patterns around polar elevation angle θ and azimuthal angle ϕ, thus confirming that our antenna can produce three OAM modes simultaneously. We also measured the communication link characteristics of two identical multiplexed antennas. The measurement results show that the channel isolation of three OAM modes is more than 12.7 [dB] and 17 [dB] for fixed and compensated receiver positions, respectively, indicating that the proposed antenna system can be used for independent communication links with the same frequency and polarisation.

  11. Effect of orbital angular momentum on electron acoustic waves in double-Kappa plasma

    Science.gov (United States)

    Rehman, Aman-ur; Shan, S. Ali; Hamza, M. Yousaf; Lee, J. K.

    2017-02-01

    Kinetic theory of electron acoustic waves (EAWs) in the presence of wave angular momentum has been derived to study the effect of wave angular momentum on the propagation of EAWs in a non-Maxwellian plasma. Both types of electrons (hot and cool) are modeled as Kappa-distributed velocity distribution functions. The theory is also applied to Saturn's magnetosphere where these kinds of distribution functions are commonly found. It is seen that the presence of wave angular momentum in the model has a significant effect on the existence of the regions where EAWs are weakly damped. The effect of wave angular momentum on EAWs is studied by defining a parameter η = k/(lqθ), which is the ratio of the planar wave number to the azimuthal wave number. The wave is purely planar if η→∞. The weakly damped region of EAWs depends strongly on this parameter in addition to other parameters such as hot electron spectral index κh, cool electron spectral index κc, the fraction of hot electrons, and hot to cool electrons temperature ratio. The results also show the effect of η on the propagation of EAWs in various regions of Saturn's magnetosphere.

  12. The use of orbital angular momentum of light beams for optical data storage

    NARCIS (Netherlands)

    Voogd, R.J.; Singh, M.; Braat, J.J.M.

    2004-01-01

    We present a method to optically store multiple information in one location by having angular momentum imparted to the scanning beam by optical phase objects that make up the information areas on a surface. We show that the light beam thus perturbed carries an optical vortex, the rotation of which c

  13. Optical angular momentum in classical electrodynamics

    Science.gov (United States)

    Mansuripur, Masud

    2017-06-01

    Invoking Maxwell’s classical equations in conjunction with expressions for the electromagnetic (EM) energy, momentum, force, and torque, we use a few simple examples to demonstrate the nature of the EM angular momentum. The energy and the angular momentum of an EM field will be shown to have an intimate relationship; a source radiating EM angular momentum will, of necessity, pick up an equal but opposite amount of mechanical angular momentum; and the spin and orbital angular momenta of the EM field, when absorbed by a small particle, will be seen to elicit different responses from the particle.

  14. Orbital angular momentum generation and mode transformation with high efficiency using forked polarization gratings.

    Science.gov (United States)

    Li, Yanming; Kim, Jihwan; Escuti, Michael J

    2012-12-01

    We present a novel optical element that efficiently generates orbital angular momentum (OAM) of light and transforms light between OAM modes based on a polarization grating with a fork-shaped singularity. This forked polarization grating (FPG) is composed of liquid crystalline materials, and can be made either static or switchable with high diffraction efficiency (i.e., 100% theoretically) into a single order. By spatially varying the Pancharatnam-Berry phase, FPGs shape the wavefront and thus control the OAM mode. We demonstrate theoretically and empirically that a charge l(g) FPG creates helical modes with OAM charge ±l(g) when a gaussian beam is input, and more generally, transforms the incident helical mode with OAM charge l(in) into output modes with OAM charge l(in)±l(g). We also show for the first time that this conversion into a single mode can be very efficient (i.e., ∼95% experimentally) at visible wavelengths, and the relative power between the two possible output modes is polarization-controllable from 0% to ∼100%. We developed a fabrication method that substantially improves FPG quality and efficiency over prior work. We also successfully fabricated switchable FPGs, which can be electrically switched between an OAM generating/transforming state and a transmissive state. Our experimental results showed >92% conversion efficiency for both configurations at 633 nm. These holographically fabricated elements are compact (i.e., thin glass plates), lightweight, and easily optimized for nearly any wavelength from ultraviolet to infrared, for a wide range of OAM charge, and for large or small clear apertures. They are ideal elements for enhanced control of OAM, e.g., in optical trapping and high-capacity information.

  15. SEE Observations of Ionospheric Heating from HAARP Using Orbital Angular Momentum

    Science.gov (United States)

    Briczinski, S. J.; Bernhardt, P. A.; Siefring, C. L.

    2013-12-01

    High power HF radio waves exciting the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaksa is the world's largest heating facility, providing effective radiated powers in the gigawatt range. Experiments performed at HAARP have allowed researchers to study many non-linear effects of wave-plasma interactions. Stimulated Electromagnetic Emission (SEE) is of interest to the ionospheric community for its diagnostic purposes. Typical SEE experiments at HAARP have focused on characterizing the parametric decay of the electromagnetic pump wave into several different wave modes such as upper and lower hybrid, ion acoustic, ion-Bernstein and electron-Bernstein. These production modes have been extensively studied at HAARP using traditional beam heating patterns and SEE detection. New results are present from HAARP experiments using an excitation mode that attempts to impart orbital angular momentum (OAM) into the heating region. This OAM mode is also referred to as a 'twisted beam.' Previous analysis of twisted beam heating shows that the SEE results obtained are nearly identical to the modes without OAM. Recent twisted beam heating experiments have produced SEE modes not previously characterized. These new modes are presented and discussed. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional 'solid spot' region. The ring heating pattern may be more conducive to the creation of artificial ionization clouds. The results of these runs include artificial ionization creation and evolution as pertaining to the twisted beam pattern.

  16. Third post-Newtonian angular momentum flux and the secular evolution of orbital elements for inspiralling compact binaries in quasi-elliptical orbits

    CERN Document Server

    Arun, K G; Iyer, Bala R; Sinha, Siddhartha

    2009-01-01

    The angular momentum flux from an inspiralling binary system of compact objects moving in quasi-elliptical orbits is computed at the third post-Newtonian (3PN) order using the multipolar post-Minkowskian wave generation formalism. The 3PN angular momentum flux involves the instantaneous, tail, and tail-of-tails contributions as for the 3PN energy flux, and in addition a contribution due to non-linear memory. We average the angular momentum flux over the binary's orbit using the 3PN quasi-Keplerian representation of elliptical orbits. The averaged angular momentum flux provides the final input needed for gravitational wave phasing of binaries moving in quasi-elliptical orbits. We obtain the evolution of orbital elements under 3PN gravitational radiation reaction in the quasi-elliptic case. For small eccentricities, we give simpler limiting expressions relevant for phasing up to order $e^2$. This work is important for the construction of templates for quasi-eccentric binaries, and for the comparison of post-New...

  17. Induced Angular Momentum

    Science.gov (United States)

    Parker, G. W.

    1978-01-01

    Discusses, classically and quantum mechanically, the angular momentum induced in the bound motion of an electron by an external magnetic field. Calculates the current density and its magnetic moment, and then uses two methods to solve the first-order perturbation theory equation for the required eigenfunction. (Author/GA)

  18. Does high harmonic generation conserve angular momentum?

    CERN Document Server

    Fleischer, Avner; Diskin, Tzvi; Sidorenko, Pavel; Cohen, Oren

    2013-01-01

    High harmonic generation (HHG) is a unique and useful process in which infrared or visible radiation is frequency up converted into the extreme ultraviolet and x ray spectral regions. As a parametric process, high harmonic generation should conserve the radiation energy, momentum and angular momentum. Indeed, conservation of energy and momentum have been demonstrated. Angular momentum of optical beams can be divided into two components: orbital and spin (polarization). Orbital angular momentum is assumed to be conserved and recently observed deviations were attributed to propagation effects. On the other hand, conservation of spin angular momentum has thus far never been studied, neither experimentally nor theoretically. Here, we present the first study on the role of spin angular momentum in extreme nonlinear optics by experimentally generating high harmonics of bi chromatic elliptically polarized pump beams that interact with isotropic media. While observing that the selection rules qualitatively correspond...

  19. Chirality and the angular momentum of light

    Science.gov (United States)

    Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.; Yao, Alison M.

    2017-02-01

    Chirality is exhibited by objects that cannot be rotated into their mirror images. It is far from obvious that this has anything to do with the angular momentum of light, which owes its existence to rotational symmetries. There is nevertheless a subtle connection between chirality and the angular momentum of light. We demonstrate this connection and, in particular, its significance in the context of chiral light-matter interactions. This article is part of the themed issue 'Optical orbital angular momentum'.

  20. Orbital angular momentum eigenfunctions for fast and numerically stable evaluations of closed-form pseudopotential matrix elements

    Science.gov (United States)

    Hu, Anguang; Chan, Nora W. C.; Dunlap, Brett I.

    2017-08-01

    The computation of s-type Gaussian pseudopotential matrix elements involving low powers of the distance from the pseudopotential center using Gaussian orbitals can be reduced to familiar integrals. They may be directly expressed as either simple three-center overlap integrals for even powers of the radial distance from the pseudopotential center or related to the three-center nuclear integrals of a Gaussian charge distribution for odd powers. Orbital angular momentum about each atom is added to these integrals by solid-harmonic differentiation with respect to its center. The solid-harmonic addition theorem allows all the integrals to be factored into products of invariant one-dimensional integrals involving the Gaussian exponents and angular factors that contain the azimuthal quantum numbers but are independent of all Gaussian exponents. Precomputing the angular factors allow looping over all Gaussian exponents about the three centers. The fact that solid harmonics are eigenstates of angular momentum removes the singularities seen in previous treatments of pseudopotential matrix elements.

  1. Angular Momentum Distribution in the Transverse Plane

    CERN Document Server

    Adhikari, Lekha

    2016-01-01

    Several possibilities to relate the $t$-dependence of Generalized Parton Distributions (GPDs) to the distribution of angular momentum in the transverse plane are discussed. Using a simple spectator model we demonstrate that non of them correctly describes the orbital angular momentum distribution that for a longitudinally polarized nucleon obtained directly from light-front wavefunctions.

  2. Quantum Heuristics of Angular Momentum

    Science.gov (United States)

    Levy-Leblond, Jean-Marc

    1976-01-01

    Discusses the quantization of angular momentum components, Heisenberg-type inequalities for their spectral dispersions, and the quantization of the angular momentum modulus, without using operators or commutation relations. (MLH)

  3. Angular momentum of sound pulses.

    Science.gov (United States)

    Lekner, John

    2006-07-05

    Three-dimensionally localized acoustic pulses in an isotropic fluid medium necessarily have transverse components of momentum density. Those with an azimuthal component of momentum density can carry angular momentum. The component of total pulse angular momentum along the direction of the total momentum is an invariant (constant in time and independent of choice of origin). The pulse energy, momentum and angular momentum are evaluated analytically for a family of localized solutions of the wave equation. In the limit where the pulses have many oscillations within their spatial extent ([Formula: see text], where k is the wavenumber and a determines the size of a pulse), the energy, momentum and angular momentum are consistent with a multiphonon representation of the pulse, each phonon having energy [Formula: see text], momentum [Formula: see text] and angular momentum [Formula: see text] (with integer m).

  4. Random wandering of laser beams with orbital angular momentum during propagation through atmospheric turbulence.

    Science.gov (United States)

    Aksenov, Valerii P; Kolosov, Valeriy V; Pogutsa, Cheslav E

    2014-06-10

    The propagation of laser beams having orbital angular momenta (OAM) in the turbulent atmosphere is studied numerically. The variance of random wandering of these beams is investigated with the use of the Monte Carlo technique. It is found that, among various types of vortex laser beams, such as the Laguerre-Gaussian (LG) beam, modified Bessel-Gaussian beam, and hypergeometric Gaussian beam, having identical initial effective radii and OAM, the LG beam occupying the largest effective volume in space is the most stable one.

  5. Laser-induced radial birefringence and spin-to-orbital optical angular momentum conversion in silver-doped glasses

    CERN Document Server

    Amjad, Jafar Mostafavi; Slussarenko, Sergei; Karimi, Ebrahim; Marrucci, Lorenzo; Santamato, Enrico; 10.1063/1.3610474

    2012-01-01

    Samples of Ag$^+$/Na$^{+}$ ion-exchanged glass that have been subject to intense laser irradiation may develop novel optical properties, as a consequence of the formation of patterns of silver nanoparticles and other structures. Here, we report the observation of a laser-induced permanent transverse birefringence, with the optical axis forming a radial pattern, as revealed by the spin-to-orbital angular momentum conversion occurring in a probe light beam. The birefringence pattern can be modeled well as resulting from thermally-induced stresses arising in the silver-doped glass during laser exposure, although the actual mechanism leading to the permanent anisotropy is probably more complex.

  6. Laser-induced radial birefringence and spin-to-orbital optical angular momentum conversion in silver-doped glasses

    Science.gov (United States)

    Amjad, Jafar Mostafavi; Khalesifard, Hamid Reza; Slussarenko, Sergei; Karimi, Ebrahim; Marrucci, Lorenzo; Santamato, Enrico

    2011-07-01

    Samples of Ag+/Na+ ion-exchanged glass that have been subject to intense laser irradiation may develop novel optical properties, as a consequence of the formation of patterns of silver nanoparticles and other structures. Here, we report the observation of a laser-induced permanent transverse birefringence, with the optical axis forming a radial pattern, as revealed by the spin-to-orbital angular momentum conversion occurring in a probe light beam. The birefringence pattern can be modeled well as resulting from thermally-induced stresses arising in the silver-doped glass during laser exposure, although the actual mechanism leading to the permanent anisotropy is probably more complex.

  7. Efficient Identification of Objects Carrying Elements of High-Order Symmetry By Using Correlated Orbital Angular Momentum (OAM States

    Directory of Open Access Journals (Sweden)

    Sergienko Alexander V.

    2014-01-01

    The potential for efficient identification of objects carrying elements of high-order symmetry using correlated orbital angular momentum (OAM states is demonstrated. The enhanced information capacity of this approach allows the recognition of specific spatial symmetry signatures present in objects with the use of fewer resources than in a conventional pixel-by-pixel imaging, representing the first demonstration of compressive sensing using OAM states. This approach demonstrates the capability to quickly evaluate multiple Fourier coefficients directly linked with the symmetry features of the object. The results suggest further application in small-scale biological contexts where symmetry and small numbers of noninvasive measurements are important.

  8. Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface

    Science.gov (United States)

    Yu, Shixing; Li, Long; Shi, Guangming

    2016-08-01

    A metasurface, which is composed of printed cross-dipole elements with different arm lengths, is designed, fabricated, and experimentally demonstrated to generate orbital angular momentum (OAM) vortex waves of dual polarizations and dual modes in the radio frequency domain simultaneously. The prototype of a practical metasurface is fabricated and measured to validate the results of theoretical analysis and design at 5.8 GHz. Numerical and experimental results verify that vortex waves with dual OAM modes and dual polarizations can be flexibly generated by using a reflective metasurface. The proposed method paves a way to generate diverse OAM vortex waves for radio frequency and microwave wireless communication applications.

  9. Self-recovery effect of orbital angular momentum mode of circular beam in weak non-Kolmogorov turbulence.

    Science.gov (United States)

    Zhang, Tao; Liu, Yi-Dong; Wang, Jiandong; Liu, Pusheng; Yang, Yuanjie

    2016-09-01

    It is generally true that the orbital angular momentum (OAM) mode persistently degenerate when a vortex beam propagates in the atmospheric turbulence. Here, however, we unveil an interesting self-recovery effect of OAM mode of the circular beam (CiB) in weak non-Kolmogorov turbulence. We show that the CiB displays the self-focusing effect and has clear focus in the weak non-Kolmogorov turbulence if we choose proper complex parameters, and the detection probability of the original OAM mode reaches the maximum at the focus. Our study proposes a method to alleviate the turbulent effects on OAM-based communication.

  10. Diffraction pattern by nanometric thin films under illumination of an orbital angular momentum beam with integer topological charge

    Science.gov (United States)

    Mendoza, J. H.; Díaz, C. F.; Acevedo, C. H.; Torres, Y.

    2016-02-01

    The orbital angular momentum of light has a big contribution in many engineering applications like optical communications, because this physical property allows eigenstates characteristic of the wavefront rotation when the beam is propagated. The nature of these eigenstates allows that information can be encoded and gives immunity to electromagnetic interference, allowing an increase of bandwidth, cadence and capacity of the communication channel. This work shown the methodology using nanometric thin films like Titanium based (TiO2) grown over strontium titanate (SrTiO3) support, to distinguish and discriminate a well- defined integer value of the topological charge of an OAM beam.

  11. Off-axis retrieval of orbital angular momentum of light stored in cold atoms

    CERN Document Server

    de Oliveira, R A; Barbosa, P S; Martins, W S; Barreiro, S; Felinto, D; Bloch, D; Tabosa, J W R

    2014-01-01

    We report on the storage of orbital angu- lar momentum (OAM) of light of a Laguerre-Gaussian mode in an ensemble of cold cesium atoms and its re- trieval along an axis different from the incident light beam. We employed a time-delayed four-wave mixing configuration to demonstrate that at small angle (2o), after storage, the retrieved beam carries the same OAM as the one encoded in the input beam. A calculation based on mode decomposition of the retrieved beam over the Laguerre-Gaussian basis is in agreement with the experimental observations done at small angle values. However, the calculation shows that the OAM retrieving would get lost at larger angles, reducing the fidelity of such storing-retrieving process. In addition, we have also observed that by applying an external magnetic field to the atomic ensemble the retrieved OAM presents Larmor oscillations, demonstrating the possibility of its manipulation and off-axis retrieval.

  12. Transfer efficiency of angular momentum in sum-frequency generation and control of its spin and orbital parts by varying polarization and frequency of fundamental beams

    Science.gov (United States)

    Perezhogin, I. A.; Grigoriev, K. S.; Potravkin, N. N.; Cherepetskaya, E. B.; Makarov, V. A.

    2017-08-01

    Considering sum-frequency generation in an isotropic chiral nonlinear medium, we analyze the transfer of the spin angular momentum of fundamental elliptically polarized Gaussian light beams to the signal beam, which appears as the superposition of two Laguerre-Gaussian modes with both spin and orbital angular momentum. Only for the circular polarization of the fundamental radiation is its angular momentum fully transferred to the sum-frequency beam; otherwise, part of it can be transferred to the medium. Its value, as well as the ratio of spin and orbital contributions in the signal beam, depends on the fundamental frequency ratio and the polarization of the incident beams. Higher energy conversion efficiency in sum-frequency generation does not always correspond to higher angular momentum conversion efficiency.

  13. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing

    Science.gov (United States)

    Willner, Alan E.; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F.; Ashrafi, Solyman

    2017-02-01

    There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects. This article is part of the themed issue 'Optical orbital angular momentum'.

  14. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing.

    Science.gov (United States)

    Willner, Alan E; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F; Ashrafi, Solyman

    2017-02-28

    There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  15. Quantum field theory treatment of magnetic effects on the spin and orbital angular momentum of a free electron

    Energy Technology Data Exchange (ETDEWEB)

    Kurian, P., E-mail: pkurian@gmx.com [National Human Genome Center, Howard University, College of Medicine, Washington, DC (United States); Verzegnassi, C. [Department of Chemistry and Environmental Physics, University of Udine, Udine (Italy); Association for Medicine and Complexity (AMeC), Trieste (Italy)

    2016-01-28

    We consider in a quantum field theory framework the effects of a classical magnetic field on the spin and orbital angular momentum (OAM) of a free electron. We derive formulae for the changes in the spin and OAM due to the introduction of a general classical background field. We consider then a constant magnetic field, in which case the relevant expressions of the effects become much simpler and conversions between spin and OAM become readily apparent. An estimate of the expectation values for a realistic electron state is also given. Our findings may be of interest to researchers in spintronics and the field of quantum biology, where electron spin has been implicated on macroscopic time and energy scales. - Highlights: • We present the first field theory treatment of magnetic changes in electron spin. • Changes in spin and orbital angular momentum (OAM) are correlated and calculated. • Expectation values of spin–OAM changes for a realistic electron state are computed. • Earth's magnetic field produces non-negligible changes in spin of a few percent. • Results apply to spin–OAM conversion in electron vortex beams and quantum biology.

  16. Precise Measurements of DVCS at JLab and Quark Orbital Angular Momentum

    Science.gov (United States)

    Pisano, Silvia

    2016-08-01

    Deeply-virtual Compton scattering provides the cleanest access to the 3D imaging of the nucleon structure encoded in the generalized parton distributions, that correlate the fraction of the total nucleon momentum carried by a constituent to its position in the transverse plane. Besides the information on the spatial imaging of the nucleon, GPDs provide an access, through the Ji relation, to the contribution of the angular momentum of quarks to proton spin. An accurate estimate of such a contribution will lead to a better understanding of the origin of the proton spin. Jefferson Lab has been an ideal environment for the study of exclusive processes, thanks to the combination of the high-intensity and high-polarization electron beam provided by the CEBAF, with the complementary equipments of the three experimental halls. This has allowed high-precision measurements of the DVCS observables in a wide kinematic region, with focus on those observable s that provide access to the GPDs entering the Ji relation. These studies will be further widened by the projected data from the 12-GeV era, which will improve the existing measurements both in terms of precision and phase-space coverage. The important results on the proton DVCS obtained during the 6-GeV era will be discussed, together with the upcoming experiments approved for the 12-GeV upgrade, that foresees measurements with both proton and quasi-free neutron targets and that, when combined, will lead to the extraction of the Compton Form Factors for separate quark flavors.

  17. Vector Laguerre-Gauss beams with polarization-orbital angular momentum entanglement in a graded-index medium.

    Science.gov (United States)

    Petrov, Nikolai I

    2016-07-01

    It is shown that the vector-vortex Laguerre-Gauss modes with polarization-orbital angular momentum (OAM) entanglement are the vector solutions of the Maxwell equations in a graded-index medium. Focusing of linearly and circularly polarized vortex light beams with nonzero azimuthal and radial indices in a cylindrical graded-index waveguide is investigated. The wave shape variation with distance taking into account the spin-orbit and nonparaxial effects is analyzed. The effect of long-term periodic revival of wave packets due to mode interference in a graded-index cylindrical optical waveguide is demonstrated. High efficiency transfer of a strongly focused spot through an optical waveguide over large distances takes place with a period of revival.

  18. Physical Angular Momentum Separation for QED

    CERN Document Server

    Sun, Weimin

    2016-01-01

    We study the non-uniqueness problem of the gauge-invariant angular momentum separation for the case of QED, which stems from the recent controversy concerning the proper definitions of the orbital angular momentum and spin operator of the individual parts of a gauge field system. For the free quantum electrodynamics without matter, we show that the basic requirement of Euclidean symmetry selects a unique physical angular momentum separation scheme from the multitude of the possible angular momentum separation schemes constructed using the various Gauge Invariant Extentions. Based on these results, we propose a set of natural angular momentum separation schemes for the case of interacting QED by invoking the formalism of asymptotic fields. Some perspectives on such a problem for the case of QCD are briefly discussed.

  19. Optical Momentum, Spin, and Angular Momentum in Dispersive Media

    Science.gov (United States)

    Bliokh, Konstantin Y.; Bekshaev, Aleksandr Y.; Nori, Franco

    2017-08-01

    We examine the momentum, spin, and orbital angular momentum of structured monochromatic optical fields in dispersive inhomogeneous isotropic media. There are two bifurcations in this general problem: the Abraham-Minkowski dilemma and the kinetic (Poynting-like) versus canonical (spin-orbital) pictures. We show that the kinetic Abraham momentum describes the energy flux and group velocity of the wave in the medium. At the same time, we introduce novel canonical Minkowski-type momentum, spin, and orbital angular momentum densities of the field. These quantities exhibit fairly natural forms, analogous to the Brillouin energy density, as well as multiple advantages as compared with previously considered formalisms. As an example, we apply this general theory to inhomogeneous surface plasmon-polariton (SPP) waves at a metal-vacuum interface and show that SPPs carry a "supermomentum," proportional to the wave vector kp>ω /c , and a transverse spin, which can change its sign depending on the frequency ω .

  20. Lorentz-covariant quantum 4-potential and orbital angular momentum for the transverse confinement of matter waves

    Science.gov (United States)

    Ducharme, R.; da Paz, I. G.

    2016-08-01

    In two recent papers exact Hermite-Gaussian solutions to relativistic wave equations were obtained for both electromagnetic and particle beams. The solutions for particle beams correspond to those of the Schrödinger equation in the nonrelativistic limit. Here, it will be shown that each beam particle has additional 4-momentum resulting from transverse localization compared to a free particle traveling in the same direction as the beam with the same speed. This will be referred to as the quantum 4-potential term since it will be shown to play an analogous role in relativistic Hamiltonian quantum mechanics as the Bohm potential in the nonrelativistic quantum Hamilton-Jacobi equation. Low-order localization effects include orbital angular momentum, Gouy phase, and beam spreading. Toward a more systematic approach for calculating localization effects at all orders, it will be shown that both the electromagnetic and quantum 4-potentials couple into the canonical 4-momentum of a particle in a similar way. This offers the prospect that traditional methods used to calculate the affect of an electromagnetic field on a particle can now be adapted to take localization effects into account. The prospects for measuring higher order quantum 4-potential related effects experimentally are also discussed alongside some questions to challenge the quantum information and quantum field theorists.

  1. The proton electromagnetic form factor 2 and quark orbital angular momentum

    Indian Academy of Sciences (India)

    Pankaj Jain; John P Ralston

    2003-11-01

    We analyse the proton electromagnetic form factor ratio (2)= 2(2)/1(2) as a function of momentum transfer 2 within perturbative QCD. We find that the prediction for (2) at large momentum transfer depends on the exclusive quark wave functions, which are unknown. For a wide range of wave functions we find that 2/1∼ const. at large momentum transfer, which is in agreement with recent JLAB data.

  2. Intrinsic Angular Momentum of Light.

    Science.gov (United States)

    Santarelli, Vincent

    1979-01-01

    Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)

  3. Cascaded frequency conversion of orbital angular momentum states in periodically poled LiTaO3 crystal

    CERN Document Server

    Fang, Xinyuan; Wei, Dunzhao; Wei, Dan; Ni, Rui; Hu, Xiaopeng; Zhang, Yong; Zhu, S N; Xiao, Min

    2015-01-01

    We report that the optical orbital angular momentum (OAM) is conserved in the two-step cascaded nonlinear processes through quasi-phase-matched (QPM) in a dual-structure periodically poled LiTaO!(PPLT) crystal. Because of the different reciprocal vectors provided by the different structures in the crystal, collinear second harmonic (SH) beam with an OAM of l2 and third harmonic (TH) beam with an OAM of l3 are simultaneously generated by the input fundamental beam with an OAM of l1. The OAM conversion law (l2 = 2l1, l3 = 3l1) holds well in this nonlinear process. Our results provide an effective way to obtain three beams (fundamental beam, SH beam, TH beam) with different OAMs at the same time, which can be used to enhance the capacity of optical communication.

  4. Turbulence Mitigation Scheme for Optical Communications using Orbital Angular Momentum Multiplexing Based on Channel Coding and Wavefront Correction

    CERN Document Server

    Zhao, Shengmei; Zhou, Li; Gong, Longyan; Cheng, Wenwen; Sheng, Yubo; Zheng, Baoyu

    2014-01-01

    The free-space optical (FSO) communication links with orbital angular momentum (OAM) multiplexing have been demonstrated that they can largely enhance the systems' capacity without a corresponding increase in spectral bandwidth, but the performance of the system is unavoidably disturbed by atmospheric turbulence (AT). Different from the existed AT disturbance, the OAM-multiplexed systems will cause both the burst and random errors for a single OAM state carrier and the `crosstalk' interference between the different OAM states carriers. In this paper, we propose a turbulence mitigation method to improve AT tolerance of OAM-multiplexed FSO communication links. In the proposed scheme, we use channel codes to correct the burst and random errors caused by AT for a single OAM state carrier; And we use wavefront correction method to correct the `crosstalk' interference between the different OAM states carriers. The improvements of AT tolerance are discussed by comparing the performance of OAM-multiplexed FSO communi...

  5. Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography

    Science.gov (United States)

    Mafakheri, E.; Tavabi, A. H.; Lu, P.-H.; Balboni, R.; Venturi, F.; Menozzi, C.; Gazzadi, G. C.; Frabboni, S.; Sit, A.; Dunin-Borkowski, R. E.; Karimi, E.; Grillo, V.

    2017-02-01

    Free electron beams that carry high values of orbital angular momentum (OAM) possess large magnetic moments along the propagation direction. This makes them an ideal probe for measuring the electronic and magnetic properties of materials, as well as for fundamental experiments in magnetism. However, their generation requires the use of complex diffractive elements, which usually take the form of nano-fabricated holograms. Here, we show how the limitations of the current fabrication of such holograms can be overcome by using electron beam lithography. We demonstrate experimentally the realization of an electron vortex beam with the largest OAM value that has yet been reported to the first diffraction order (L = 1000 ℏ), paving the way for even more demanding demonstrations and applications of electron beam shaping.

  6. Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m.

    Science.gov (United States)

    Ren, Yongxiong; Wang, Zhe; Liao, Peicheng; Li, Long; Xie, Guodong; Huang, Hao; Zhao, Zhe; Yan, Yan; Ahmed, Nisar; Willner, Asher; Lavery, Martin P J; Ashrafi, Nima; Ashrafi, Solyman; Bock, Robert; Tur, Moshe; Djordjevic, Ivan B; Neifeld, Mark A; Willner, Alan E

    2016-02-01

    We experimentally demonstrate and characterize the performance of a 400-Gbit/s orbital angular momentum (OAM) multiplexed free-space optical link over 120 m on the roof of a building. Four OAM beams, each carrying a 100-Gbit/s quadrature-phase-shift-keyed channel are multiplexed and transmitted. We investigate the influence of channel impairments on the received power, intermodal crosstalk among channels, and system power penalties. Without laser tracking and compensation systems, the measured received power and crosstalk among OAM channels fluctuate by 4.5 dB and 5 dB, respectively, over 180 s. For a beam displacement of 2 mm that corresponds to a pointing error less than 16.7 μrad, the link bit error rates are below the forward error correction threshold of 3.8×10(-3) for all channels. Both experimental and simulation results show that power penalties increase rapidly when the displacement increases.

  7. Free-space optical communications using orbital-angular-momentum multiplexing combined with MIMO-based spatial multiplexing.

    Science.gov (United States)

    Ren, Yongxiong; Wang, Zhe; Xie, Guodong; Li, Long; Cao, Yinwen; Liu, Cong; Liao, Peicheng; Yan, Yan; Ahmed, Nisar; Zhao, Zhe; Willner, Asher; Ashrafi, Nima; Ashrafi, Solyman; Linquist, Roger D; Bock, Robert; Tur, Moshe; Molisch, Andreas F; Willner, Alan E

    2015-09-15

    We explore the potential of combining the advantages of multiple-input multiple-output (MIMO)-based spatial multiplexing with those of orbital angular momentum (OAM) multiplexing to increase the capacity of free-space optical (FSO) communications. We experimentally demonstrate an 80 Gbit/s FSO system with a 2×2 aperture architecture, in which each transmitter aperture contains two multiplexed data-carrying OAM modes. Inter-channel crosstalk effects are minimized by the OAM beams' inherent orthogonality and by the use of 4×4 MIMO signal processing. Our experimental results show that the bit-error rates can reach below the forward error correction limit of 3.8×10(-3) and the power penalties are less than 3.6 dB for all channels after MIMO processing. This indicates that OAM and MIMO-based spatial multiplexing could be simultaneously utilized, thereby providing the potential to enhance system performance.

  8. Trapping neutral particles endowed with a magnetic moment by an electromagnetic wave carrying orbital angular momentum: Semiclassical theory

    CERN Document Server

    Bialynicki-Birula, Iwo

    2016-01-01

    The motion of a neutral atom endowed with a magnetic moment interacting with the magnetic field is determined from the Ehrenfest-like equations of motion. These equations for the average values of the translational and spin degrees of freedom are derived from the Schr\\"odinger-Pauli wave equation and they form a set of nine coupled nonlinear evolution equations. The numerical and analytic solutions of these equations are obtained for the combination of the rotating magnetic field of a wave carrying orbital angular momentum and a static magnetic field. The running wave traps the atom only in the transverse direction while the standing wave traps the atom also in the direction of the beam.

  9. Localization of angular momentum in optical waves propagating through turbulence.

    Science.gov (United States)

    Sanchez, Darryl J; Oesch, Denis W

    2011-12-01

    This is the first in a series of papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. The scope of this first paper is much narrower. Here, we demonstrate that atmospheric turbulence can impart non-trivial angular momentum to beams and that this non-trivial angular momentum is highly localized. Furthermore, creation of this angular momentum is a normal part of propagation through atmospheric turbulence.

  10. Demonstration of orbital angular momentum (OAM) modes emission from a silicon photonic integrated device for 20 Gbit/s QPSK carrying data transmission in few-mode fiber

    DEFF Research Database (Denmark)

    Liu, Jun; Li, Shimao; Ding, Yunhong

    2016-01-01

    We experimentally demonstrate orbital angular momentum (OAM) mode emission from a high emission efficiency OAM emitter for 20 Gbit/s QPSK carrying data transmission in few-mode fiber (FMF). Two modes propagate through a 3.6km three-mode FMF with measured OSNR penalties less than 4 dB at a BER of 2e...

  11. Angular momentum in human walking.

    Science.gov (United States)

    Herr, Hugh; Popovic, Marko

    2008-02-01

    Angular momentum is a conserved physical quantity for isolated systems where no external moments act about a body's center of mass (CM). However, in the case of legged locomotion, where the body interacts with the environment (ground reaction forces), there is no a priori reason for this relationship to hold. A key hypothesis in this paper is that angular momentum is highly regulated throughout the walking cycle about all three spatial directions [|Lt| approximately 0], and therefore horizontal ground reaction forces and the center of pressure trajectory can be explained predominantly through an analysis that assumes zero net moment about the body's CM. Using a 16-segment human model and gait data for 10 study participants, we found that calculated zero-moment forces closely match experimental values (Rx2=0.91; Ry2=0.90). Additionally, the centroidal moment pivot (point where a line parallel to the ground reaction force, passing through the CM, intersects the ground) never leaves the ground support base, highlighting how closely the body regulates angular momentum. Principal component analysis was used to examine segmental contributions to whole-body angular momentum. We found that whole-body angular momentum is small, despite substantial segmental momenta, indicating large segment-to-segment cancellations ( approximately 95% medio-lateral, approximately 70% anterior-posterior and approximately 80% vertical). Specifically, we show that adjacent leg-segment momenta are balanced in the medio-lateral direction (left foot momentum cancels right foot momentum, etc.). Further, pelvis and abdomen momenta are balanced by leg, chest and head momenta in the anterior-posterior direction, and leg momentum is balanced by upper-body momentum in the vertical direction. Finally, we discuss the determinants of gait in the context of these segment-to-segment cancellations of angular momentum.

  12. Reflection of Laguerre-Gaussian beams carrying orbital angular momentum: a full Taylor expanded solution.

    Science.gov (United States)

    Ou, Jun; Jiang, Yuesong; Zhang, Jiahua; He, Yuntao

    2013-12-01

    Partial reflection of linearly polarized Laguerre-Gaussian beams incident at a dielectric interface are studied beyond the paraxial regime. Based on the angular spectrum method and Taylor series expansion, we derive exact analytical expressions for the reflected electric field. This result holds in both the paraxial and nonparaxial regimes. The result is then extended to beams of arbitrary polarization and used to analytically calculate the transverse and longitudinal shifts of the beams' center of gravity. Finally, several numerical examples are performed to verify the analytical formulas we derived near the Brewster angle.

  13. Localizing the Angular Momentum of Linear Gravity

    CERN Document Server

    Butcher, Luke M; Hobson, Michael; 10.1103/PhysRevD.86.084012

    2012-01-01

    In a previous article [Phys. Rev. D 82 104040 (2010)], we derived an energy-momentum tensor for linear gravity that exhibited positive energy density and causal energy flux. Here we extend this framework by localizing the angular momentum of the linearized gravitational field, deriving a gravitational spin tensor which possesses similarly desirable properties. By examining the local exchange of angular momentum (between matter and gravity) we find that gravitational intrinsic spin is localized, separately from orbital angular momentum, in terms of a gravitational spin tensor. This spin tensor is then uniquely determined by requiring that it obey two simple physically motivated algebraic conditions. Firstly, the spin of an arbitrary (harmonic-gauge) gravitational plane wave is required to flow in the direction of propagation of the wave. Secondly, the spin tensor of any transverse-traceless gravitational field is required to be traceless. (The second condition ensures that local field redefinitions suffice to ...

  14. Optical angular momentum conversion in a nanoslit

    NARCIS (Netherlands)

    Chimento, P.F.; Alkemade, P.F.A.; T Hooft, G.W.; Eliel, E.R.

    2012-01-01

    We demonstrate partial conversion of circularly polarized light into orbital angular momentum-carrying vortex light with opposite-handed circular polarization. This conversion is accomplished in a novel manner using the birefringent properties of a circular subwavelength slit in a thin metal film. O

  15. Spiral phase plates with radial discontinuities for the generation of multiring orbital angular momentum beams: fabrication, characterization, and application

    Science.gov (United States)

    Ruffato, Gianluca; Massari, Michele; Carli, Marta; Romanato, Filippo

    2015-11-01

    A design of spiral phase plates for the generation of multiring beams carrying orbital angular momentum (OAM) is presented. Besides the usual helical profile, these phase plates present radial π-discontinuities in correspondence of the zeros of the associated Laguerre polynomials. Samples were fabricated by electron beam lithography over glass substrates coated with a polymethylmethacrylate resist layer. The optical response was analyzed and the purity of the generated beams was investigated in terms of Laguerre-Gaussian modes contributions. The far-field intensity pattern was compared with theoretical models and numerical simulations, while the expected phase features were confirmed by interferometric analysis with a Mach-Zehnder setup. The high quality of the output beams confirms the applicability of these phase plates for the generation of high-order OAM beams with nonzero radial index. An application consisting of the design of computer-generated holograms encoding information for light beams carrying phase singularities is presented and described. A numerical code based on an iterative Fourier transform algorithm has been developed for the computation of phase-only diffractive optical element for illumination under OAM beams. Numerical analysis and preliminary experimental results confirm the applicability of these devices as high-security optical elements for anticounterfeiting applications.

  16. Both channel coding and wavefront correction on the turbulence mitigation of optical communications using orbital angular momentum multiplexing

    Science.gov (United States)

    Zhao, Shengmei; Wang, Le; Zou, Li; Gong, Longyan; Cheng, Weiwen; Zheng, Baoyu; Chen, Hanwu

    2016-10-01

    A free-space optical (FSO) communication link with multiplexed orbital angular momentum (OAM) modes has been demonstrated to largely enhance the system capacity without a corresponding increase in spectral bandwidth, but the performance of the link is unavoidably degraded by atmospheric turbulence (AT). In this paper, we propose a turbulence mitigation scheme to improve AT tolerance of the OAM-multiplexed FSO communication link using both channel coding and wavefront correction. In the scheme, we utilize a wavefront correction method to mitigate the phase distortion first, and then we use a channel code to further correct the errors in each OAM mode. The improvement of AT tolerance is discussed over the performance of the link with or without channel coding/wavefront correction. The results show that the bit error rate performance has been improved greatly. The detrimental effect of AT on the OAM-multiplexed FSO communication link could be removed by the proposed scheme even in the relatively strong turbulence regime, such as Cn2 = 3.6 ×10-14m - 2 / 3.

  17. Compositing orbital angular momentum beams in Bi4Ge3O12 crystal for magnetic field sensing

    Science.gov (United States)

    Yu, Shuangfeng; Pang, Fufei; Liu, Huanhuan; Li, Xianjin; Yang, Junfeng; Wang, Tingyun

    2017-08-01

    The polarization states and orbital angular momentum (OAM) properties of light are of considerable importance for several aspects of high-precision optical measurements. In this work, we have investigated the properties of composited OAM beams propagating in a Bi4Ge3O12 crystal under an applied magnetic field and have demonstrated a magnetic field sensing method based on compositing of OAM beams using a Sagnac configuration. The polarization rotation can be projected into petal-like patterns by the rotation of the OAM beams. However, the accurate measurement of the rotation angles of the petal-like patterns of OAM beams remains challenging. Therefore, an image processing technique based on the Radon transform is explored to enable the accurate calculation of the rotation angle of the petal-like patterns of composite OAM beams under different magnetic fields. The rotation angle of these petal-like patterns is found to have a linear dependence on the magnetic field intensity, which means that the proposed system is appropriate for magnetic field sensing applications. Using this method, a magnetic field sensitivity of 28°/T has been achieved experimentally with a measurement error of 0.0123 T in a high-intensity magnetic field ranging from 191 to 3322 G for OAM beams with topological charge (TC) l =±1 .

  18. Orbital angular momentum in four channel spatial domain multiplexing system for multi-terabit per second communication architectures

    Science.gov (United States)

    Murshid, Syed H.; Muralikrishnan, Hari P.; Kozaitis, Samuel P.

    2012-06-01

    Bandwidth increase has always been an important area of research in communications. A novel multiplexing technique known as Spatial Domain Multiplexing (SDM) has been developed at the Optronics Laboratory of Florida Institute of Technology to increase the bandwidth to T-bits/s range. In this technique, space inside the fiber is used effectively to transmit up to four channels of same wavelength at the same time. Experimental and theoretical analysis shows that these channels follow independent helical paths inside the fiber without interfering with each other. Multiple pigtail laser sources of exactly the same wavelength are used to launch light into a single carrier fiber in a fashion that resulting channels follow independent helical trajectories. These helically propagating light beams form optical vortices inside the fiber and carry their own Orbital Angular Momentum (OAM). The outputs of these beams appear as concentric donut shaped rings when projected on a screen. This endeavor presents the experimental outputs and simulated results for a four channel spatially multiplexed system effectively increasing the system bandwidth by a factor of four.

  19. Probability density of the orbital angular momentum mode of Hankel-Bessel beams in an atmospheric turbulence.

    Science.gov (United States)

    Zhu, Yu; Liu, Xiaojun; Gao, Jie; Zhang, Yixin; Zhao, Fengsheng

    2014-04-07

    We develop a novel model of the probability density of the orbital angular momentum (OAM) modes for Hankel-Bessel beams in paraxial turbulence channel based on the Rytov approximation. The results show that there are multi-peaks of the mode probability density along the radial direction. The peak position of the mode probability density moves to beam center with the increasing of non-Kolmogorov turbulence-parameters and the generalized refractive-index structure parameters and with the decreasing of OAM quantum number, propagation distance and wavelength of the beams. Additionally, larger OAM quantum number and smaller non-Kolmogorov turbulence-parameter can be selected in order to obtain larger mode probability density. The probability density of the OAM mode crosstalk is increasing with the decreasing of the quantum number deviation and the wavelength. Because of the focusing properties of Hankel-Bessel beams in turbulence channel, compared with the Laguerre-Gaussian beams, Hankel-Bessel beams are a good light source for weakening turbulence spreading of the beams and mitigating the effects of turbulence on the probability density of the OAM mode.

  20. An orbital angular momentum radio communication system optimized by intensity controlled masks effectively: Theoretical design and experimental verification

    Science.gov (United States)

    Gao, Xinlu; Huang, Shanguo; Wei, Yongfeng; Zhai, Wensheng; Xu, Wenjing; Yin, Shan; Zhou, Jing; Gu, Wanyi

    2014-12-01

    A system of generating and receiving orbital angular momentum (OAM) radio beams, which are collectively formed by two circular array antennas (CAAs) and effectively optimized by two intensity controlled masks, is proposed and experimentally investigated. The scheme is effective in blocking of the unwanted OAM modes and enhancing the power of received radio signals, which results in the capacity gain of system and extended transmission distance of the OAM radio beams. The operation principle of the intensity controlled masks, which can be regarded as both collimator and filter, is feasible and simple to realize. Numerical simulations of intensity and phase distributions at each key cross-sectional plane of the radio beams demonstrate the collimated results. The experimental results match well with the theoretical analysis and the receive distance of the OAM radio beam at radio frequency (RF) 20 GHz is extended up to 200 times of the wavelength of the RF signals, the measured distance is 5 times of the original measured distance. The presented proof-of-concept experiment demonstrates the feasibility of the system.

  1. Turbulent effects of strong irradiance fluctuations on the orbital angular momentum mode of fractional Bessel Gauss beams.

    Science.gov (United States)

    Gao, Jie; Zhang, Yixin; Dan, Weiyi; Hu, Zhengda

    2015-06-29

    The turbulent effects of strong irradiance fluctuations on the probability densities and the normalized powers of the orbital angular momentum (OAM) modes are modeled for fractional Bessel Gauss beams in paraxial turbulence channel. We find that the probability density of signal OAM modes is a function of position deviation from the beam center, and the farther away from the beam center the detection position is, the smaller the probability density is. For fractional OAM quantum numbers, the average probability densities of signal/crosstalk modes oscillate along the beam radius except the half-integer. When the beam waist of source decreases or the irradiance fluctuation increases, the average probability density of the signal OAM mode drops. The peak of the average probability density of crosstalk modes shifts to outward of the beam center as beam waist gets larger. In the nearby region of beam center, the larger the quantum number deviation of OAM, the smaller the beam waist and the turbulence fluctuations are, the lower average probability densities of crosstalk OAM modes are. Especially, the increase of turbulence fluctuations can make the crosstalk stronger and more concentrated. Lower irradiance fluctuation can give rise to higher the normalized powers of the signal OAM modes, which is opposite to the crosstalk normalized powers.

  2. SUGGEL: A Program Suggesting the Orbital Angular Momentum of a Neutron Resonance from the Magnitude of its Neutron Width

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S.Y.

    2001-02-02

    The SUGGEL computer code has been developed to suggest a value for the orbital angular momentum of a neutron resonance that is consistent with the magnitude of its neutron width. The suggestion is based on the probability that a resonance having a certain value of g{Gamma}{sub n} is an l-wave resonance. The probability is calculated by using Bayes' theorem on the conditional probability. The probability density functions (pdf's) of g{Gamma}{sub n} for up to d-wave (l=2) have been derived from the {chi}{sup 2} distribution of Porter and Thomas. The pdf's take two possible channel spins into account. This code is a tool which evaluators will use to construct resonance parameters and help to assign resonance spin. The use of this tool is expected to reduce time and effort in the evaluation procedure, since the number of repeated runs of the fitting code (e.g., SAMMY) may be reduced.

  3. Evolution equations for higher moments of angular momentum distributions

    CERN Document Server

    Hägler, P

    1998-01-01

    Based on a sumrule for the nucleon spin we expand quark and gluon orbital angular momentum operators and derive an evolution matrix for higher moments of the corresponding distributions. In combination with the spin-dependent DGLAP-matrix we find a complete set of spin and orbital angular momentum evolution equations.

  4. Surface angular momentum of light beams.

    Science.gov (United States)

    Ornigotti, Marco; Aiello, Andrea

    2014-03-24

    Traditionally, the angular momentum of light is calculated for "bullet-like" electromagnetic wave packets, although in actual optical experiments "pencil-like" beams of light are more commonly used. The fact that a wave packet is bounded transversely and longitudinally while a beam has, in principle, an infinite extent along the direction of propagation, renders incomplete the textbook calculation of the spin/orbital separation of the angular momentum of a light beam. In this work we demonstrate that a novel, extra surface part must be added in order to preserve the gauge invariance of the optical angular momentum per unit length. The impact of this extra term is quantified by means of two examples: a Laguerre-Gaussian and a Bessel beam, both circularly polarized.

  5. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya; Maksimyak, P. P.

    2012-01-01

    The internal energy flow in a light beam can be divided into the "orbital" and "spin" parts, associated with the spatial and polarization degrees of freedom of light. In contrast to the orbital one, experimental observation of the spin flow seems problematic because it is converted into an orbital...... particles within a field where the transverse energy circulation is associated exclusively with the spin flow. This result can be treated as the first demonstration of mechanical action of the spin flow of a light field....

  6. Rotational symmetry of classical orbits, arbitrary quantization of angular momentum and the role of the gauge field in two-dimensional space

    Science.gov (United States)

    Xin, Jun-Li; Liang, Jiu-Qing

    2012-04-01

    We study quantum—classical correspondence in terms of the coherent wave functions of a charged particle in two-dimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level space of angular momentum being greater or less than ħ is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily 2π-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The well-known quantum mechanical anyon model becomes a special case of the arbitrary quantization, where the classical orbits are 2π-periodic.

  7. Rotational symmetry of classical orbits, arbitrary quantization of angular momentum and the role of the gauge field in two-dimensional space

    Institute of Scientific and Technical Information of China (English)

    Xin Jun-Li; Liang Jiu-Qing

    2012-01-01

    We study quantum-classical correspondence in terms of the coherent wave functions of a charged particle in twodimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits.For both closed and open classical orbits,the non-integer angular-momentum quantization with the level space of angular momentum being greater or less than h is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions,which is not necessarily 2π-periodic.The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value,which results in a common topological phase for all wave functions in the given model.The well-known quantum mechanical anyon model becomes a special case of the arbitrary quantization,where the classical orbits are 2π-periodic.

  8. A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics

    Science.gov (United States)

    Sun, Wenbo; Hu, Yongxiang; Weimer, Carl; Ayers, Kirk; Baize, Rosemary R.; Lee, Tsengdar

    2017-02-01

    Electromagnetic (EM) beams with orbital angular momentum (OAM) may have great potential applications in communication technology and in remote sensing of the Earth-atmosphere system and outer planets. Study of their interaction with optical lenses and dielectric or metallic objects, or scattering of them by particles in the Earth-atmosphere system, is a necessary step to explore the advantage of the OAM EM beams. In this study, the 3-dimensional (3D) scattered-field (SF) finite-difference time domain (FDTD) technique with the convolutional perfectly matched layer (CPML) absorbing boundary conditions (ABC) is applied to calculate the scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre-Gaussian (LG) beams with the OAM by dielectric particles. We found that for OAM beam's interaction with dielectric particles, the forward-scattering peak in the conventional phase function (P11) disappears, and light scattering peak occurs at a scattering angle of 15° to 45°. The disappearance of forward-scattering peak means that, in laser communications most of the particle-scattered noise cannot enter the receiver, thus the received light is optimally the original OAM-encoded signal. This feature of the OAM beam also implies that in lidar remote sensing of the atmospheric particulates, most of the multiple-scattering energy will be off lidar sensors, and this may result in an accurate profiling of particle layers in the atmosphere or in the oceans by lidar, or even in the ground when a ground penetration radar (GPR) with the OAM is applied. This far-field characteristics of the scattered OAM light also imply that the optical theorem, which is derived from plane-parallel wave scattering case and relates the forward scattering amplitude to the total cross section of the scatterer, is invalid for the scattering of OAM beams by dielectric particles.

  9. Rotational Symmetry of Classical Orbits, Arbitrary Quantization of Angular Momentum and the Role of Gauge Field in Two-Dimensional Space

    CERN Document Server

    Xin, Jun-Li

    2010-01-01

    We study the quantum-classical correspondence in terms of coherent wave functions of a charged particle in two-dimensional central-scalar-potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level-space of angular momentum being greater or less than $\\hbar$ is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily $2\\pi$-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The quantum mechanical model of anyon proposed by Wilczek (Phys. Rev. Lette. 48, 1144) becomes a special case of th...

  10. Ultrafast angular momentum transfer in multisublattice ferrimagnets.

    Science.gov (United States)

    Bergeard, N; López-Flores, V; Halté, V; Hehn, M; Stamm, C; Pontius, N; Beaurepaire, E; Boeglin, C

    2014-03-11

    Femtosecond laser pulses can be used to induce ultrafast changes of the magnetization in magnetic materials. However, one of the unsolved questions is that of conservation of the total angular momentum during the ultrafast demagnetization. Here we report the ultrafast transfer of angular momentum during the first hundred femtoseconds in ferrimagnetic Co0.8Gd0.2 and Co0.74Tb0.26 films. Using time-resolved X-ray magnetic circular dichroism allowed for time-resolved determination of spin and orbital momenta for each element. We report an ultrafast quenching of the magnetocrystalline anisotropy and show that at early times the demagnetization in ferrimagnetic alloys is driven by the local transfer of angular momenta between the two exchange-coupled sublattices while the total angular momentum stays constant. In Co0.74Tb0.26 we have observed a transfer of the total angular momentum to an external bath, which is delayed by ~150 fs.

  11. Performance Metrics and Design Parameters for a Free-space Communication Link Based on Multiplexing of Multiple Orbital-Angular-Momentum Beams

    CERN Document Server

    Xie, Guodong; Ren, Yongxiong; Huang, Hao; Yan, Yan; Ahmed, Nisar; Zhao, Zhe; Lavery, Martin P J; Ashrafi, Nima; Ashrafi, Solyman; Tur, Moshe; Molisch, Andreas F; Willner, Alan E

    2014-01-01

    We study the design parameters for an orbital angular momentum (OAM) multiplexed free-space data link. Power loss, channel crosstalk and power penalty of the link are analyzed in the case of misalignment between the transmitter and receiver (lateral displacement, receiver angular error, or transmitter pointing error). The relationship among the system power loss and link distance, transmitted beam size and receiver aperture size are discussed based on the beam divergence due to free space propagation. We also describe the trade-offs for different receiver aperture sizes and mode spacing of the transmitted OAM beams under given lateral displacements or receiver angular errors. Through simulations and some experiments, we show that (1) a system with a larger transmitted beam size and a larger receiver aperture is more tolerant to the lateral displacement but less tolerant to the receiver angular error; (2) a system with a larger mode spacing, which uses larger OAM charges, suffers more system power loss but les...

  12. Optical angular momentum in dispersive media

    CERN Document Server

    Philbin, T G

    2012-01-01

    The angular momentum density and flux of light in a dispersive, rotationally symmetric medium are derived from Noether's theorem. Optical angular momentum in a dispersive medium has no simple relation to optical linear momentum, even if the medium is homogeneous. A circularly polarized monochromatic beam in a homogeneous, dispersive medium carries a spin angular momentum per unit energy of $\\pm\\omega^{-1}$, as in vacuum. This result demonstrates the non-trivial interplay of dispersive contributions to optical angular momentum and energy.

  13. Turbulence mitigation scheme based on multiple-user detection in an orbital-angular-momentum multiplexed system

    Science.gov (United States)

    Zou, Li; Wang, Le; Zhao, Sheng-Mei; Chen, Han-Wu

    2016-11-01

    Atmospheric turbulence (AT) induced crosstalk can significantly impair the performance of a free-space optical (FSO) communication link using orbital angular momentum (OAM) multiplexing. In this paper, we propose a multiple-user detection (MUD) turbulence mitigation scheme in an OAM-multiplexed FSO communication link. First, we present a MUD equivalent communication model for an OAM-multiplexed FSO communication link under AT. In the equivalent model, each input bit stream represents one user’s information. The deformed OAM spatial modes caused by AT, instead of the pure OAM spatial modes, are used as information carriers, and the overlapping between the deformed OAM spatial modes are computed as the correlation coefficients between the users. Then, we present a turbulence mitigation scheme based on MUD idea to enhance AT tolerance of the OAM-multiplexed FSO communication link. In the proposed scheme, the crosstalk caused by AT is used as a useful component to deduce users’ information. The numerical results show that the performance of the OAM-multiplexed communication link has greatly improved by the proposed scheme. When the turbulence strength is 1 × 10-15 m-2/3, the transmission distance is 1000 m and the channel signal-to-noise ratio (SNR) is 26 dB, the bit-error-rate (BER) performance of four spatial multiplexed OAM modes lm = +1,+2,+3,+4 are all close to 10-5, and there is a 2-3 fold increase in the BER performance in comparison with those results without the proposed scheme. In addition, the proposed scheme is more effective for an OAM-multiplexed FSO communication link with a larger OAM mode topological charge interval. The proposed scheme is a promising direction for compensating the interference caused by AT in the OAM-multiplexed FSO communication link. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network

  14. Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum

    Science.gov (United States)

    Wang, Le; Zhao, Sheng-Mei; Gong, Long-Yan; Cheng, Wei-Wen

    2015-12-01

    In this paper, we propose a measurement-device-independent quantum-key-distribution (MDI-QKD) protocol using orbital angular momentum (OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol, the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie’s successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover, the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence (AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123223110003), the Natural Science Research Foundation for Universities of Jiangsu Province of China (Grant No. 11KJA510002), the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, China (Grant No. NYKL2015011), and the

  15. Angular momentum in QGP holography

    Directory of Open Access Journals (Sweden)

    Brett McInnes

    2014-10-01

    Full Text Available The quark chemical potential is one of the fundamental parameters describing the quark–gluon plasma produced by sufficiently energetic heavy-ion collisions. It is not large at the extremely high temperatures probed by the LHC, but it plays a key role in discussions of the beam energy scan programmes at the RHIC and other facilities. On the other hand, collisions at such energies typically (that is, in peripheral collisions give rise to very high values of the angular momentum density. Here we explain that holographic estimates of the quark chemical potential of a rotating sample of plasma can be very considerably improved by taking the angular momentum into account.

  16. Vortex Laser based on III-V semiconductor metasurface: direct generation of coherent Laguerre-Gauss modes carrying controlled orbital angular momentum.

    Science.gov (United States)

    Seghilani, Mohamed S; Myara, Mikhael; Sellahi, Mohamed; Legratiet, Luc; Sagnes, Isabelle; Beaudoin, Grégoire; Lalanne, Philippe; Garnache, Arnaud

    2016-12-05

    The generation of a coherent state, supporting a large photon number, with controlled orbital-angular-momentum L = ħl (of charge l per photon) presents both fundamental and technological challenges: we demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis. We use a first order phase perturbation to lift orbital degeneracy of wavefunctions, by introducing a weak anisotropy called here "orbital birefringence", based on a dielectric metasurface. The azimuthal symmetry breakdown and non-linear laser dynamics create "orbital gain dichroism" allowing selecting vortex handedness. This coherent photonic device was characterized and studied, experimentally and theoretically. It exhibits a low divergence (50 dB vortex purity), and single frequency operation in a stable low noise regime (0.1% rms). Such high performance laser opens the path to widespread new photonic applications.

  17. Plate tectonics conserves angular momentum

    Directory of Open Access Journals (Sweden)

    C. Bowin

    2009-03-01

    Full Text Available A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4 E+27 kgm2s−1. Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates. Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth. The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant velocity on the crests of convection cells driven by rising heat. These results imply that spreading centers are primarily passive reactive

  18. Electromagnetic Angular Momentum and Relativity

    CERN Document Server

    Milton, Kimball A

    2012-01-01

    Recently there have been suggestions that the Lorentz force law is inconsistent with special relativity. This is difficult to understand, since Einstein invented relativity in order to reconcile electrodynamics with mechanics. Here we investigate the momentum of an electric charge and a magnetic dipole in the frame in which both are at rest, and in an infinitesimally boosted frame in which both have a common velocity. We show that for a dipole composed of a magnetic monopole-antimonopole pair the torque is zero in both frames, while if the dipole is a point dipole, the torque is not zero, but is balanced by the rate of change of the angular momentum of the electromagnetic field, so there is no mechanical torque on the dipole.

  19. Experimental characterization of a 400  Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m

    OpenAIRE

    Ren, Yongxiong; WANG Zhe; Liao, Peicheng; Li, Long; Xie, Guodong; Huang, Hao; Zhao, Zhe; Yan, Yan; Ahmed, Nisar; Willner, Asher; Lavery, Martin P. J.; Ashrafi, Nima; Ashrafi, Solyman; Bock, Robert; Tur, Moshe

    2016-01-01

    We experimentally demonstrate and characterize the\\ud performance of a 400-Gbit/s orbital angular momentum\\ud (OAM) multiplexed free-space optical link over 120-\\ud meters on the roof of a building. Four OAM beams, each\\ud carrying a 100-Gbit/s QPSK channel are multiplexed and\\ud transmitted. We investigate the influence of channel\\ud impairments on the received power, inter-modal\\ud crosstalk among channels, and system power penalties.\\ud Without laser tracking and compensation systems, the\\...

  20. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit.

    Science.gov (United States)

    Guan, Binbin; Scott, Ryan P; Qin, Chuan; Fontaine, Nicolas K; Su, Tiehui; Ferrari, Carlo; Cappuzzo, Mark; Klemens, Fred; Keller, Bob; Earnshaw, Mark; Yoo, S J B

    2014-01-13

    We demonstrate free-space space-division-multiplexing (SDM) with 15 orbital angular momentum (OAM) states using a three-dimensional (3D) photonic integrated circuit (PIC). The hybrid device consists of a silica planar lightwave circuit (PLC) coupled to a 3D waveguide circuit to multiplex/demultiplex OAM states. The low excess loss hybrid device is used in individual and two simultaneous OAM states multiplexing and demultiplexing link experiments with a 20 Gb/s, 1.67 b/s/Hz quadrature phase shift keyed (QPSK) signal, which shows error-free performance for 379,960 tested bits for all OAM states.

  1. Experimental characterization of a 400  Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m

    OpenAIRE

    Ren, Yongxiong; Wang, Zhe; Liao, Peicheng; LI, Long; Xie, Guodong; Huang, Hao; Zhao, Zhe; Yan, Yan; Ahmed, Nisar; Willner, Asher; Lavery, Martin P. J.; Ashrafi, Nima; Ashrafi, Solyman; Bock, Robert; Tur, Moshe

    2016-01-01

    We experimentally demonstrate and characterize the\\ud performance of a 400-Gbit/s orbital angular momentum\\ud (OAM) multiplexed free-space optical link over 120-\\ud meters on the roof of a building. Four OAM beams, each\\ud carrying a 100-Gbit/s QPSK channel are multiplexed and\\ud transmitted. We investigate the influence of channel\\ud impairments on the received power, inter-modal\\ud crosstalk among channels, and system power penalties.\\ud Without laser tracking and compensation systems, the\\...

  2. 探测涡旋光束轨道角动量的新方法%Novel Method to Detect the Orbital Angular Momentum in Optical Vortex Beams

    Institute of Scientific and Technical Information of China (English)

    刘曼

    2013-01-01

    The intensity and phase distributions of speckle fields on the near-field plane generated by the scattering of Laguerre-Gaussian beam from the weak random scattering screen are simulated. It is found that the spot profiles are similar to the peacock feather in intensity distributions of speckle fields, and those spots are uniformly distributed around the central dark spots. The number of spots is related to the orbital angular momentum quantum number of the vortex beams. The orbital angular momentum quantum number is an integer or fractional, while whether it is integer or fractional, the number spots is four times of the orbital angular momentum quantum number. In the case of fractional vortex beam, there is a spot along the horizontal direction uniformly split into two petals. This method can be used to detect the orbital angular momentum quantum number of vortex beams.%模拟了拉盖尔-高斯光束照射弱随机散射屏散射后在近场形成的光强和相位的分布,发现散射光场的光强分布图中有轮廓类似于孔雀羽毛状的光斑.这些光斑均匀分布在中心黑暗区域周围,且光斑的个数与涡旋光束的轨道角动量量子数有关,无论涡旋光束的轨道角动量量子数是整数还是分数,光斑的个数恰好是涡旋光束轨道角动量量子数的4倍.只是在分数轨道角动量量子数的光强分布图中,有一条狭缝沿水平方向将光斑均匀分裂成两瓣.该方法可用于探测涡旋光束的轨道角动量量子数.

  3. A critique of the angular momentum sum rules and a new angular momentum sum rule

    CERN Document Server

    Bakker, B L G; Trueman, T L

    2004-01-01

    We show that the expressions in the literature for the tensorial structure of the hadronic matrix elements of the angular momentum operators J are incorrect. Given this disagreement with the published results, we have taken pains to derive the correct expressions in three different ways, two involving explicit physical wave packets and the third, totally independent, based upon the rotational properties of the state vectors. Surprisingly it turns out that the results are very sensitive to the type of relativistic spin state used to describe the motion of the particle i.e. whether a canonical (i.e. boost) state or a helicity state is utilized. We present results for the matrix elements of the angular momentum operators, valid in an arbitrary Lorentz frame, both for helicity states and canonical states. These results are relevant for the construction of angular momentum sum rules, relating the angular momentum of a nucleon to the spin and orbital angular momentum of its constituents. Moreover, we show that it i...

  4. Electro-optic analyzer of angular momentum hyperentanglement.

    Science.gov (United States)

    Wu, Ziwen; Chen, Lixiang

    2016-02-25

    Characterizing a high-dimensional entanglement is fundamental in quantum information applications. Here, we propose a theoretical scheme to analyze and characterize the angular momentum hyperentanglement that two photons are entangled simultaneously in spin and orbital angular momentum. Based on the electro-optic sampling with a proposed hyper-entanglement analyzer and the simple matrix operation using Cramer rule, our simulations show that it is possible to retrieve effectively both the information about the degree of polarization entanglement and the spiral spectrum of high-dimensional orbital angular momentum entanglement.

  5. Angular momentum and topological dependence of Kepler's Third Law in the Broucke-Hadjidemetriou-H\\'enon family of periodic three-body orbits

    CERN Document Server

    Janković, Marija R

    2016-01-01

    We use 57 recently found topological satellites of Broucke-Hadjidemetriou-Henon's periodic orbits with values of the topological exponent $k$ ranging from $k$ = 3 to $k$ = 58 to plot the angular momentum $L$ as a function of the period $T$, with both $L$ and $T$ rescaled to energy $E=-\\frac12$. Upon plotting $L(T/k)$ we find that all our solutions fall on a curve that is virtually indiscernible by naked eye from the $L(T)$ curve for non-satellite solutions. The standard deviation of the satellite data from the sixth-order polynomial fit to the progenitor data is $\\sigma = 0.13$. This regularity supports Henon's 1976 conjecture that the linearly stable Broucke-Hadjidemetriou-Henon orbits are also perpetually, or Kolmogorov-Arnold-Moser stable.

  6. Magnetic Modulation of Stellar Angular Momentum Loss

    CERN Document Server

    Garraffo, Cecilia; Cohen, Ofer

    2014-01-01

    Angular Momentum Loss is important for understanding astrophysical phenomena such as stellar rotation, magnetic activity, close binaries, and cataclysmic variables. Magnetic breaking is the dominant mechanism in the spin down of young late-type stars. We have studied angular momentum loss as a function of stellar magnetic activity. We argue that the complexity of the field and its latitudinal distribution are crucial for angular momentum loss rates. In this work we discuss how angular momentum is modulated by magnetic cycles, and how stellar spin down is not just a simple function of large scale magnetic field strength.

  7. Quantum simulation of 2d topological physics using orbital-angular-momentum-carrying photons in a 1d array of cavities

    CERN Document Server

    Luo, Xi-Wang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei

    2015-01-01

    Orbital angular momentum (OAM) of light is a fundamental optical degree of freedom that has recently motivated much exciting research in diverse fields ranging from optical communication to quantum information. We show for the first time that it is also a unique and valuable resource for quantum simulation, by demonstrating theoretically how \\emph{2d} topological physics can be simulated in a \\emph{1d} array of optical cavities using OAM-carrying photons. Remarkably, this newly discovered application of OAM states not only reduces required physical resources but also increases feasible scale of simulation. By showing how important topics such as edge-state transport and topological phase transition can be studied in a small simulator with just a few cavities ready for immediate experimental exploration, we demonstrate the prospect of photonic OAM for quantum simulation which can have a significant impact on the research of topological physics.

  8. Artificial Perfect Electric Conductor-Perfect Magnetic Conductor Anisotropic Metasurface for Generating Orbital Angular Momentum of Microwave with Nearly Perfect Conversion Efficiency

    CERN Document Server

    Chen, Menglin L N; Sha, Wei E I

    2016-01-01

    Orbital angular momentum (OAM) is a promising degree of freedom for fundamental studies in electromagnetics and quantum mechanics. The unlimited state space of OAM shows a great potential to enhance channel capacities of classical and quantum communications. By exploring the Pancharatnam-Berry phase concept and engineering anisotropic scatterers in a metasurface with spatially varying orientations, a plane wave with zero OAM can be converted to a vortex beam carrying nonzero OAM. In this paper, we proposed two types of novel PEC (perfect electric conductor)-PMC (perfect magnetic conductor) anisotropic metasurfaces. One is composed of azimuthally continuous loops and the other is constructed by azimuthally discontinuous dipole scatterers. Both types of metasurfaces are mounted on a mushroom-type high impedance surface. Compared to previous metasurface designs for generating OAM, the proposed ones achieve nearly perfect conversion efficiency. In view of the eliminated vertical component of electric field, the c...

  9. Superposition of orbital angular momentum of photons by a combined computer-generated hologram fabricated in silica glass with femtosecond laser pulses

    Institute of Scientific and Technical Information of China (English)

    Guo Zhong-Yi; Qu Shi-Liang; Sun Zheng-He; Liu Shu-Tian

    2008-01-01

    This paper introduces a novel method to realize the superposition of orbital angular momentum of photons by combined computer-generated hologram (CCGH) fabricated in silica glass with femtosecond laser pulses.Firstly,the two computer-generated holograms (CGH) of optical vortex were obtained and combined as a CCGH according to the design.Then the CCGH was directly written inside glass by femtosecond laser pulses induced microexplosion without any pre-or post-treatment of the material.The vortex beams with different vortex topological charges (including new topological charges) have been restructured using a collimated He-Ne laser beam incidence to the CCGH normally.A theoretical and experimental explanation has been presented for the generations of the new topological charges.

  10. Generalized Uncertainty Principle and Angular Momentum

    CERN Document Server

    Bosso, Pasquale

    2016-01-01

    Various models of quantum gravity suggest a modification of the Heisenberg's Uncertainty Principle, to the so-called Generalized Uncertainty Principle, between position and momentum. In this work we show how this modification influences the theory of angular momentum in Quantum Mechanics. In particular, we compute Planck scale corrections to angular momentum eigenvalues, the Hydrogen atom spectrum, the Stern-Gerlach experiment and the Clebsch-Gordan coefficients. We also examine effects of the Generalized Uncertainty Principle on multi-particle systems.

  11. Effects of Angular Momentum on Halo Profiles

    CERN Document Server

    Lentz, Erik W; Rosenberg, Leslie J

    2016-01-01

    The near universality of DM halo density profiles provided by N-body simulations has proven to be robust against changes in total mass density, power spectrum, and some forms of initial velocity dispersion. In this letter we study the effects of coherently spinning up an isolated DM-only progenitor on halo structure. Halos with spins within several standard deviations of the simulated mean ($\\lambda \\lesssim 0.20$) produce profiles with negligible deviations from the universal form. Only when the spin becomes quite large ($\\lambda \\gtrsim 0.20$) do departures become evident. The angular momentum distribution also exhibits a near universal form, which is also independent of halo spin up to $\\lambda \\lesssim 0.20$. A correlation between these epidemic profiles and the presence of a strong bar in the virialized halo is also observed. These bar structures bear resemblance to the radial orbit instability in the rotationless limit.

  12. Mass and Angular Momentum in General Relativity

    CERN Document Server

    Jaramillo, J L

    2010-01-01

    We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries, we focus on the discussion of energy-momentum for the gravitational field. We illustrate the difficulties rooted in the Equivalence Principle for defining a local energy-momentum density for the gravitational field. This leads to the understanding of gravitational energy-momentum and angular momentum as non-local observables that make sense, at best, for extended domains of spacetime. After introducing Komar quantities associated with spacetime symmetries, it is shown how total energy-momentum can be unambiguously defined for isolated systems, providing fundamental tests for the internal consistency of General Relativity as well as setting the conceptual basis for the understanding of energy loss by gravitational radiation. Finally, several attempts to formulate q...

  13. Geometric absorption of electromagnetic angular momentum

    Science.gov (United States)

    Konz, C.; Benford, Gregory

    2003-10-01

    Circularly polarized electromagnetic fields carry both energy and angular momentum. We investigate the conditions under which a circularly polarized wave field transfers angular momentum to a perfectly conducting macroscopic object, using exact electromagnetic wave theory in a steady-state calculation. We find that axisymmetric perfect conductors cannot absorb or radiate angular momentum when illuminated. However, any asymmetry allows absorption. A rigorous, steady-state solution of the boundary value problem for the reflection from a perfectly conducting infinite wedge shows that waves convey angular momentum at the edges of asymmetries. Conductors can also radiate angular momentum, so their geometric absorption coefficient for angular momentum can be negative. Such absorption or radiation depends solely on the specific geometry of the conductor. The geometric absorption coefficient can be as high as 0.8, and the coefficient for radiation can be -0.4, larger than typical material absorption coefficients. We apply the results to recent experiments which spun roof-shaped aluminum sheets with polarized microwave beams. Applications of geometric, instead of material, absorption can be quite varied. Though experiments testing these ideas will be simpler at microwavelengths, the ideas work for optical ones as well.

  14. Angular Momentum Eigenstates for Equivalent Electrons.

    Science.gov (United States)

    Tuttle, E. R.; Calvert, J. B.

    1981-01-01

    Simple and efficient methods for adding angular momenta and for finding angular momentum eigenstates for systems of equivalent electrons are developed. Several different common representations are used in specific examples. The material is suitable for a graduate course in quantum mechanics. (SK)

  15. Obtaining the Electron Angular Momentum Coupling Spectroscopic Terms, jj

    Science.gov (United States)

    Orofino, Hugo; Faria, Roberto B.

    2010-01-01

    A systematic procedure is developed to obtain the electron angular momentum coupling (jj) spectroscopic terms, which is based on building microstates in which each individual electron is placed in a different m[subscript j] "orbital". This approach is similar to that used to obtain the spectroscopic terms under the Russell-Saunders (LS) coupling…

  16. Optical angular momentum conversion in a nanoslit: reply

    NARCIS (Netherlands)

    Chimento, P.F.; Alkemade, P.F.A.; T Hooft, G.W.; Eliel, E.R.

    2013-01-01

    We respond to a Comment on our Letter [Opt. Lett. 37, 4946 (2012)], in which we reported on the spin-to-orbital optical angular momentum conversion of a circular nanoslit in a thin metal layer. We claimed, in an unfortunately worded sentence, that the conversion efficiency was independent of the sli

  17. Olympic Wrestling and Angular Momentum.

    Science.gov (United States)

    Carle, Mark

    1988-01-01

    Reported is the use of a wrestling photograph in a noncalculus introductory physics course. The photograph presents a maneuver that could serve as an example for a discussion on equilibrium, forces, torque, and angular motion. Provided are some qualitative thoughts as well as quantitative calculations. (YP)

  18. Mapping of focused Laguerre-Gauss beams: The interplay between spin and orbital angular momentum and its dependence on detector characteristics

    CERN Document Server

    Klimov, Vasily V; Ducloy, Martial; Leite, Jose Roberto Rios

    2012-01-01

    We show that propagating optical fields bearing an axial symmetry are not truly hollow in spite of a null electric field on-axis. The result, obtained by general arguments based upon the vectorial nature of electromagnetic fields, is of particular significance in the situation of an extreme focusing, when the paraxial approximation no longer holds. The rapid spatial variations of fields with a "complicated" spatial structure are extensively analyzed in the general case and for a Laguerre-Gauss beam 2 as well, notably for beams bearing a |l| = 2 orbital angular momentum for which a magnetic field and a gradient of the electric field are present on-axis. We thus analyze the behavior of a atomic size light-detector, sensitive as well to quadrupole electric transitions and to magnetic dipole transitions, and apply it to the case of Laguerre-Gauss beam. We detail how the mapping of such a beam depends on the nature and on the specific orientation of the detector. We show also that the interplay of mixing of polari...

  19. Combining spatial domain multiplexing and orbital angular momentum of photon-based multiplexing to increase the bandwidth of optical fiber communication systems

    Science.gov (United States)

    Murshid, Syed; Alanzi, Saud; Hridoy, Arnob; Lovell, Gregory L.; Parhar, Gurinder; Chakravarty, Abhijit; Chowdhury, Bilas

    2016-06-01

    Spatial domain multiplexing/space division multiplexing (SDM) can increase the bandwidth of existing and futuristic optical fibers by an order of magnitude or more. In the SDM technique, we launch multiple single-mode pigtail laser sources of the same wavelength into a carrier multimode fiber at different angles. The launching angles decide the output of the carrier fiber by allocating separate spatial locations for each channel. Each channel follows a helical trajectory while traversing the length of the carrier fiber, thereby allowing spatial reuse of optical frequencies. We launch light from five different single-mode pigtail laser sources (of same wavelength) at different angles (with respect to the axis of the carrier fiber) into the carrier fiber. Owing to helical propagation, five distinct concentric donut-shaped rings with negligible crosstalk at the output end of the fiber were obtained. These SDM channels also exhibit orbital angular momentum (OAM), thereby adding an extradegree of photon freedom. We present the experimental data of five spatially multiplexed channels and compare them with simulated results to show that this technique can potentially improve the data capacity of optical fibers by an order of magnitude: A factor of five using SDM and another factor of two using OAM.

  20. An order of magnitude improvement in optical fiber bandwidth using spatial domain multiplexing/space division multiplexing (SDM) in conjunction with orbital angular momentum (OAM)

    Science.gov (United States)

    Murshid, Syed; Alanzi, Saud; Hridoy, Arnob; Lovell, Greg; Parhar, Gurinder; Chakravarty, Abhijit; Chowdhury, Bilas

    2014-09-01

    Spatial Domain Multiplexing/Space Division Multiplexing (SDM) can increase the bandwidth of existing and futuristic optical fibers by an order of magnitude or more. In the SDM technique, we launch multiple single mode pigtail laser sources of same wavelength into a carrier fiber at different angles. The launching angles decide the output of the carrier fiber by allocating separate spatial locations for each channel. Each channel follows a helical trajectory while traversing the length of the carrier fiber, thereby allowing spatial reuse of optical frequencies. In this endeavor we launch light from five different single mode pigtail laser sources at different angles (with respect to the axis of the carrier fiber) into the carrier fiber. Owing to helical propagation we get five distinct concentric donut shaped rings with negligible crosstalk at the output end of the fiber. These SDM channels also exhibit Orbital Angular Momentum (OAM), thereby adding an extra degree of photon freedom. We present the experimental data of five spatially multiplexed channels and compare them with simulated results to show that this technique can potentially improve the data capacity of optical fibers by an order of magnitude: A factor of five using SDM and another factor of two using OAM.

  1. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre.

    Science.gov (United States)

    Huang, Hao; Milione, Giovanni; Lavery, Martin P J; Xie, Guodong; Ren, Yongxiong; Cao, Yinwen; Ahmed, Nisar; An Nguyen, Thien; Nolan, Daniel A; Li, Ming-Jun; Tur, Moshe; Alfano, Robert R; Willner, Alan E

    2015-10-09

    Mode division multiplexing (MDM)- using a multimode optical fiber's N spatial modes as data channels to transmit N independent data streams - has received interest as it can potentially increase optical fiber data transmission capacity N-times with respect to single mode optical fibers. Two challenges of MDM are (1) designing mode (de)multiplexers with high mode selectivity (2) designing mode (de)multiplexers without cascaded beam splitting's 1/N insertion loss. One spatial mode basis that has received interest is that of orbital angular momentum (OAM) modes. In this paper, using a device referred to as an OAM mode sorter, we show that OAM modes can be (de)multiplexed over a multimode optical fiber with higher than -15 dB mode selectivity and without cascaded beam splitting's 1/N insertion loss. As a proof of concept, the OAM modes of the LP11 mode group (OAM-1,0 and OAM+1,0), each carrying 20-Gbit/s polarization division multiplexed and quadrature phase shift keyed data streams, are transmitted 5km over a graded-index, few-mode optical fibre. Channel crosstalk is mitigated using 4 × 4 multiple-input-multiple-output digital-signal-processing with <1.5 dB power penalties at a bit-error-rate of 2 × 10(-3).

  2. Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array

    Science.gov (United States)

    Xie, Guodong; Zhao, Zhe; Yan, Yan; Li, Long; Ren, Yongxiong; Ahmed, Nisar; Cao, Yinwen; Willner, Asher J.; Bao, Changjing; Wang, Zhe; Liu, Cong; Ziyadi, Morteza; Talwar, Shilpa; Sajuyigbe, Soji; Ashrafi, Solyman; Tur, Moshe; Molisch, Andreas F.; Willner, Alan E.

    2016-11-01

    In line-of-sight communication systems, accurate alignment between the transmitter and receiver is important to guarantee sufficient signal power at the receiver. Such alignment is even more important for orbital angular momentum (OAM) multiplexing systems since misalignment between the transmitter and receiver may cause crosstalk among channels. In this paper, we demonstrate the simultaneous generation and tunable steering of two OAM beams utilising a custom-designed circular antenna array at 28 GHz. We achieve a steering angle of up to 35 degrees from the antenna array normal. We find that (i) the steering angle of the generated OAM beams is limited by the emitting angle of the antenna elements, and (ii) a larger steering angle may degrade the mode purity of the generated OAM beams as well as induce inter-symbol-interference to each of the individual channels. Moreover, we demonstrate the transmission of two 1-Gbaud quadratic phase shift keying (QPSK) signal over the two steerable OAM beams with both multiplexed channels achieved bit error rates (BERs) of <3.8 × 10-3.

  3. Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency

    Science.gov (United States)

    Chen, Menglin L. N.; Jiang, Li Jun; Sha, Wei E. I.

    2016-02-01

    Orbital angular momentum (OAM) is a promising degree of freedom for fundamental studies in electromagnetics and quantum mechanics. The unlimited state space of OAM shows a great potential to enhance channel capacities of classical and quantum communications. By exploring the Pancharatnam-Berry phase concept and engineering anisotropic scatterers in a metasurface with spatially varying orientations, a plane wave with zero OAM can be converted to a vortex beam carrying nonzero OAM. In this paper, we proposed two types of novel perfect electric conductor-perfect magnetic conductor anisotropic metasurfaces. One is composed of azimuthally continuous loops and the other is constructed by azimuthally discontinuous dipole scatterers. Both types of metasurfaces are mounted on a mushroom-type high impedance surface. Compared to previous metasurface designs for generating OAM, the proposed ones achieve nearly perfect conversion efficiency. In view of the eliminated vertical component of electric field, the continuous metasurface shows very smooth phase pattern at the near-field region, which cannot be achieved by convectional metasurfaces composed of discrete scatterers. On the other hand, the metasurface with discrete dipole scatterers shows a great flexibility to generate OAM with arbitrary topological charges. Our work is fundamentally and practically important to high-performance OAM generation.

  4. Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array.

    Science.gov (United States)

    Xie, Guodong; Zhao, Zhe; Yan, Yan; Li, Long; Ren, Yongxiong; Ahmed, Nisar; Cao, Yinwen; Willner, Asher J; Bao, Changjing; Wang, Zhe; Liu, Cong; Ziyadi, Morteza; Talwar, Shilpa; Sajuyigbe, Soji; Ashrafi, Solyman; Tur, Moshe; Molisch, Andreas F; Willner, Alan E

    2016-11-11

    In line-of-sight communication systems, accurate alignment between the transmitter and receiver is important to guarantee sufficient signal power at the receiver. Such alignment is even more important for orbital angular momentum (OAM) multiplexing systems since misalignment between the transmitter and receiver may cause crosstalk among channels. In this paper, we demonstrate the simultaneous generation and tunable steering of two OAM beams utilising a custom-designed circular antenna array at 28 GHz. We achieve a steering angle of up to 35 degrees from the antenna array normal. We find that (i) the steering angle of the generated OAM beams is limited by the emitting angle of the antenna elements, and (ii) a larger steering angle may degrade the mode purity of the generated OAM beams as well as induce inter-symbol-interference to each of the individual channels. Moreover, we demonstrate the transmission of two 1-Gbaud quadratic phase shift keying (QPSK) signal over the two steerable OAM beams with both multiplexed channels achieved bit error rates (BERs) of <3.8 × 10(-3).

  5. Chirality and angular momentum in optical radiation

    CERN Document Server

    Coles, Matt M

    2012-01-01

    This paper develops, in precise quantum electrodynamic terms, photonic attributes of the "optical chirality density", one of several measures long known to be conserved quantities for a vacuum electromagnetic field. The analysis lends insights into some recent interpretations of chiroptical experiments, in which this measure, and an associated chirality flux, have been treated as representing physically distinctive "superchiral" phenomena. In the fully quantized formalism the chirality density is promoted to operator status, whose exploration with reference to an arbitrary polarization basis reveals relationships to optical angular momentum and helicity operators. Analyzing multi-mode beams with complex wave-front structures, notably Laguerre-Gaussian modes, affords a deeper understanding of the interplay between optical chirality and optical angular momentum. By developing theory with due cognizance of the photonic character of light, it emerges that only the spin angular momentum of light is engaged in such...

  6. Angular momentum transport in protostellar discs

    CERN Document Server

    Salmeron, Roberto Aureliano; Wardle, M; Salmeron, Raquel; Konigl, Arieh; Wardle, Mark

    2006-01-01

    Angular momentum transport in protostellar discs can take place either radially, through turbulence induced by the magnetorotational instability (MRI), or vertically, through the torque exerted by a large-scale magnetic field that threads the disc. Using semi-analytic and numerical results, we construct a model of steady-state discs that includes vertical transport by a centrifugally driven wind as well as MRI-induced turbulence. We present approximate criteria for the occurrence of either one of these mechanisms in an ambipolar diffusion-dominated disc. We derive ``strong field'' solutions in which the angular momentum transport is purely vertical and ``weak field'' solutions that are the stratified-disc analogues of the previously studied MRI channel modes; the latter are transformed into accretion solutions with predominantly radial angular-momentum transport when we implement a turbulent-stress prescription based on published results of numerical simulations. We also analyze ``intermediate field strength'...

  7. Analogies between optical and quantum mechanical angular momentum

    Science.gov (United States)

    Nienhuis, Gerard

    2017-02-01

    The insight that a beam of light can carry orbital angular momentum (AM) in its propagation direction came up in 1992 as a surprise. Nevertheless, the existence of momentum and AM of an electromagnetic field has been well known since the days of Maxwell. We compare the expressions for densities of AM in general three-dimensional modes and in paraxial modes. Despite their classical nature, these expressions have a suggestive quantum mechanical appearance, in terms of linear operators acting on mode functions. In addition, paraxial wave optics has several analogies with real quantum mechanics, both with the wave function of a free quantum particle and with a quantum harmonic oscillator. We discuss how these analogies can be applied. This article is part of the themed issue 'Optical orbital angular momentum'.

  8. Angular momentum and the electromagnetic top

    Indian Academy of Sciences (India)

    GIANFRANCO SPAVIERI; GEORGE T GILLIES

    2016-08-01

    The electric charge–magnetic dipole interaction is considered. If $\\Gamma_{\\rm em}$ is the electromagnetic and $\\Gamma_{\\rm mech}$ the mechanical angular momentum, the conservation law for the total angular momentum $\\Gamma_{\\rm tot}$ holds: $\\Gamma_{\\rm tot}$ =$\\Gamma_{\\rm em}$ + $\\Gamma_{\\rm mech}$ = ${\\rm const.}$, but when the dipole moment varies with time, $\\Gamma_{\\rm mech}$ is not conserved. We show that the non-conserved $\\Gamma_{\\rm mech}$ of such a macroscopic isolated system might be experimentally observable. With advanced technology, the strength of the interaction hints to the possibility of novel applications for gyroscopes, such as the electromagnetic top.

  9. On the vector model of angular momentum

    Science.gov (United States)

    Saari, Peeter

    2016-09-01

    Instead of (or in addition to) the common vector diagram with cones, we propose to visualize the peculiarities of quantum mechanical angular momentum by a completely quantized 3D model. It spotlights the discrete eigenvalues and noncommutativity of components of angular momentum and corresponds to outcomes of measurements—real or computer-simulated. The latter can be easily realized by an interactive worksheet of a suitable program package of algebraic calculations. The proposed complementary method of visualization helps undergraduate students to better understand the counterintuitive properties of this quantum mechanical observable.

  10. Unveiling pseudospin and angular momentum in photonic graphene.

    Science.gov (United States)

    Song, Daohong; Paltoglou, Vassilis; Liu, Sheng; Zhu, Yi; Gallardo, Daniel; Tang, Liqin; Xu, Jingjun; Ablowitz, Mark; Efremidis, Nikolaos K; Chen, Zhigang

    2015-02-17

    Pseudospin, an additional degree of freedom inherent in graphene, plays a key role in understanding many fundamental phenomena such as the anomalous quantum Hall effect, electron chirality and Klein paradox. Unlike the electron spin, the pseudospin was traditionally considered as an unmeasurable quantity, immune to Stern-Gerlach-type experiments. Recently, however, it has been suggested that graphene pseudospin is a real angular momentum that might manifest itself as an observable quantity, but so far direct tests of such a momentum remained unfruitful. Here, by selective excitation of two sublattices of an artificial photonic graphene, we demonstrate pseudospin-mediated vortex generation and topological charge flipping in otherwise uniform optical beams with Bloch momentum traversing through the Dirac points. Corroborated by numerical solutions of the linear massless Dirac-Weyl equation, we show that pseudospin can turn into orbital angular momentum completely, thus upholding the belief that pseudospin is not merely for theoretical elegance but rather physically measurable.

  11. Non-Colinearity of Angular Velocity and Angular Momentum

    Science.gov (United States)

    Burr, A. F.

    1974-01-01

    Discusses the principles, construction, and operation of an apparatus which serves to demonstrate the non-colinearity of the angular velocity and momentum vectors as well as the inertial tensors. Applications of the apparatus to teaching of advanced undergraduate mechanics courses are recommended. (CC)

  12. Critical gravitational collapse with angular momentum

    CERN Document Server

    Gundlach, Carsten

    2016-01-01

    We derive a theoretical model of mass and angular momentum scaling in type-II critical collapse with rotation. We focus on the case where the critical solution has precisely one, spherically symmetric, unstable mode. We demonstrate excellent agreement with numerical results for critical collapse of a rotating radiation fluid, which falls into this case.

  13. ANGULAR MOMENTUM ACQUISITION IN GALAXY HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kyle R. [Department of Natural and Mathematical Sciences, California Baptist University, 8432 Magnolia Ave., Riverside, CA 92504 (United States); Brooks, Alyson M. [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St., Madison, WI 53706 (United States); Bullock, James S. [Center for Cosmology, Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697 (United States); Maller, Ariyeh H. [Department of Physics, New York City College of Technology, 300 Jay St., Brooklyn, NY 11201 (United States); Diemand, Juerg [Institute for Theoretical Physics, University of Zurich, 8057, Zurich (Switzerland); Wadsley, James [Department of Physics and Astronomy, McMaster University, Main Street West, Hamilton L85 4M1 (Canada); Moustakas, Leonidas A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2013-05-20

    We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with {approx}70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by {lambda} {approx} 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms ''cold flow disks.'' We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.

  14. On the quantisation of the angular momentum

    CERN Document Server

    Ho, V B

    1994-01-01

    When a hydrogen-like atom is treated as a two dimensional system whose configuration space is multiply connected, then in order to obtain the same energy spectrum as in the Bohr model the angular momentum must be half-integral.

  15. Angular and linear momentum of excited ferromagnets

    NARCIS (Netherlands)

    Yan, P.; Kamra, A.; Cao, Y.; Bauer, G.E.W.

    2013-01-01

    The angular momentum vector of a Heisenberg ferromagnet with isotropic exchange interaction is conserved, while under uniaxial crystalline anisotropy the projection of the total spin along the easy axis is a constant of motion. Using Noether's theorem, we prove that these conservation laws persist i

  16. Angular-momentum-bearing modes in fission

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L.G.; Peaslee, G.F.; Wozniak, G.J.

    1989-03-01

    The angular-momentum-bearing degrees of freedom involved in the fission process are identified and their influence on experimental observables is discussed. The excitation of these modes is treated in the ''thermal'' limit, and the resulting distributions of observables are calculated. Experiments demonstrating the role of these modes are presented and discussed. 61 refs., 12 figs.

  17. Models of Angular Momentum Input to a Circumterrestrial Swarm from Encounters with Heliocentric Planetesimals

    Science.gov (United States)

    Davis, D. R.; Greenberg, R.; Hebert, F.

    1985-01-01

    Models of lunar origin in which the Moon accretes in orbit about the Earth from material approaching the Earth from heliocentric orbits must overcome a fundamental problem: the approach orbits of such material would be, in the simplest approximation, equally likely to be prograde or retrograde about the Earth, with the result that accretion of such material adds mass but not angular momentum to circumterrestrial satellites. Satellite orbits would then decay due to the resulting drag, ultimately impacting onto the Earth. One possibility for adding both material and angular momentum to Earth orbit is investigated: imbalance in the delivered angular momentum between pro and retrograde Earth passing orbits which arises from the three body dynamics of planetesimals approaching the Earth from heliocentric space. In order to study angular momentum delivery to circumterrestrial satellites, the near Earth velocities were numerically computed as a function of distance from the Earth for a large array of orbits systematically spanning heliocentric phase space.

  18. Angular momentum transfer in incomplete fusion

    Indian Academy of Sciences (India)

    B S Tomar; K Surendra Babu; K Sudarshan; R Tripathi; A Goswami

    2005-02-01

    Isomeric cross-section ratios of evaporation residues formed in 12C+93Nb and 16O + 89Y reactions were measured by recoil catcher technique followed by off-line -ray spectrometry in the beam energy range of 55.7-77.5 MeV for 12C and 68-81 MeV for 16O. The isomeric cross-section ratios were resolved into that for complete and incomplete fusion reactions. The angular momentum of the intermediate nucleus formed in incomplete fusion was deduced from the isomeric cross-section ratio by considering the statistical de-excitation of the incompletely fused composite nucleus. The data show that incomplete fusion is associated with angular momenta slightly smaller than critical angular momentum for complete fusion, indicating the deeper interpenetration of projectile and target nuclei than that in peripheral collisions.

  19. 轨道角动量纠缠光子对联合探测概率的研究%Joint detection probability of orbital angular momentum entangled photon pairs

    Institute of Scientific and Technical Information of China (English)

    谌娟; 柯熙政; 王铁成

    2013-01-01

    研究了自发参量下转换过程产生的轨道角动量纠缠光子对的联合探测概率,在忽略光子偏振和晶体为薄晶体的情况下推导出轨道角动量纠缠光子对联合探测概率的表达式.研究结果表明:自发参量下转换过程中抽运光、信号光以及空闲光参数(束腰、轨道角动量和径向指数)的大小决定着纠缠光子的联合探测概率.%The joint detection probability of orbital angular momentum entangled photons of spontaneous parametric down conversion process was studied.In the case of ignoring the polarization of photon with a thin crystal,expression of the joint detection probability of orbital angular momentum entangled photons was derived.It's shown that in the spontaneous parametric down conversion process,choice of pump photon,signal photon and idler photon,size of their parameters (waist,orbital angular momentum and radial index)affect the joint detection probability of entangled photons.

  20. Mode-Division-Multiplexing of Multiple Bessel-Gaussian Beams Carrying Orbital-Angular-Momentum for Obstruction-Tolerant Free-Space Optical and Millimetre-Wave Communication Links.

    Science.gov (United States)

    Ahmed, Nisar; Zhao, Zhe; Li, Long; Huang, Hao; Lavery, Martin P J; Liao, Peicheng; Yan, Yan; Wang, Zhe; Xie, Guodong; Ren, Yongxiong; Almaiman, Ahmed; Willner, Asher J; Ashrafi, Solyman; Molisch, Andreas F; Tur, Moshe; Willner, Alan E

    2016-03-01

    We experimentally investigate the potential of using 'self-healing' Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively.

  1. The role of angular momentum conservation law in statistical mechanics

    Directory of Open Access Journals (Sweden)

    I.M. Dubrovskii

    2008-12-01

    Full Text Available Within the limits of Khinchin ideas [A.Y. Khinchin, Mathematical Foundation of Statistical Mechanics. NY, Ed. Dover, 1949] the importance of momentum and angular momentum conservation laws was analyzed for two cases: for uniform magnetic field and when magnetic field is absent. The law of momentum conservation does not change the density of probability distribution in both cases, just as it is assumed in the conventional theory. It is shown that in systems where the kinetic energy depends only on particle momenta canonically conjugated with Cartesian coordinates being their diagonal quadric form,the angular momentum conservation law changes the density of distribution of the system only in case the full angular momentum of a system is not equal to zero. In the gas of charged particles in a uniform magnetic field the density of distribution also varies if the angular momentum is zero [see Dubrovskii I.M., Condensed Matter Physics, 2206, 9, 23]. Two-dimensional gas of charged particles located within a section of an endless strip filled with gas in magnetic field is considered. Under such conditions the angular momentum is not conserved. Directional particle flows take place close to the strip boundaries, and, as a consequence, the phase trajectory of the considered set of particles does not remain within the limited volume of the phase space. In order to apply a statistical thermodynamics method, it was suggested to consider near-boundary trajectories relative to a reference system that moves uniformly. It was shown that if the diameter of an orbit having average thermal energy is much smaller than a strip width, the corrections to thermodynamic functions are small depending on magnetic field. Only the average velocity of near-boundary particles that form near-boundary electric currents creating the paramagnetic moment turn out to be essential.

  2. Optomechanics based on angular momentum exchange between light and matter

    Science.gov (United States)

    Shi, H.; Bhattacharya, M.

    2016-08-01

    The subject of optomechanics involves interactions between optical and mechanical degrees of freedom, and is currently of great interest as an enabler of fundamental investigations in quantum mechanics, as well as a platform for ultrasensitive measurement devices. The majority of optomechanical configurations rely on the exchange of linear momentum between light and matter. We will begin this tutorial with a brief description of such systems. Subsequently, we will introduce optomechanical systems based on angular momentum exchange. In this context, optical fields carrying polarization and orbital angular momentum will be considered, while for the mechanics, torsional and free rotational motion will be of relevance. Our overall aims will be to supply basic analyses of some of the existing theoretical proposals, to provide functional descriptions of some of the experiments conducted thus far, and to consider some directions for future research. We hope this tutorial will be useful to both theorists and experimentalists interested in the subject.

  3. Angular momentum in cluster Spherical Collapse Model

    CERN Document Server

    Cupani, Guido; Mardirossian, Fabio

    2011-01-01

    Our new formulation of the Spherical Collapse Model (SCM-L) takes into account the presence of angular momentum associated with the motion of galaxy groups infalling towards the centre of galaxy clusters. The angular momentum is responsible for an additional term in the dynamical equation which is useful to describe the evolution of the clusters in the non-equilibrium region which is investigated in the present paper. Our SCM-L can be used to predict the profiles of several strategic dynamical quantities as the radial and tangential velocities of member galaxies, and the total cluster mass. A good understanding of the non-equilibrium region is important since it is the natural scenario where to study the infall in galaxy clusters and the accretion phenomena present in these objects. Our results corroborate previous estimates and are in very good agreement with the analysis of recent observations and of simulated clusters.

  4. Angular Momentum Sharing in Dissipative Collisions

    Science.gov (United States)

    Casini, G.; Poggi, G.; Bini, M.; Calamai, S.; Maurenzig, P. R.; Olmi, A.; Pasquali, G.; Stefanini, A. A.; Taccetti, N.; Steckmeyer, J. C.; Laforest, R.; Saint-Laurent, F.

    1999-09-01

    Light charged particles emitted by the projectilelike fragment were measured in the direct and reverse collision of 93Nb and 116Sn at 25A MeV. The experimental multiplicities of hydrogen and helium particles as a function of the primary mass of the emitting fragment show evidence for a correlation with net mass transfer. The ratio of hydrogen and helium multiplicities points to a dependence of the angular momentum sharing on the net mass transfer.

  5. Angular momentum sharing in dissipative collisions

    CERN Document Server

    Casini, G; Bini, M; Calamai, S; Maurenzig, P R; Olmi, A; Pasquali, G; Stefanini, A A; Taccetti, N; Steckmeyer, J C; Laforest, R; Saint-Laurent, F

    1999-01-01

    Light charged particles emitted by the projectile-like fragment were measured in the direct and reverse collision of $^{93}$Nb and $^{116}$Sn at 25 AMeV. The experimental multiplicities of Hydrogen and Helium particles as a function of the primary mass of the emitting fragment show evidence for a correlation with net mass transfer. The ratio of Hydrogen and Helium multiplicities points to a dependence of the angular momentum sharing on the net mass transfer.

  6. New model of angular momentum transfer from the rotating central body of a two-body system into the orbital motion of this system (with application to the earth-moon system)

    CERN Document Server

    Schmutzer, E

    2005-01-01

    In a previous paper we treated within the framework of our Projective Unified Field Theory (Schmutzer 2004, Schmutzer 2005a) the 2-body system (e.g. earth-moon system) with a rotating central body in a rather abstract manner. Here a concrete model of the transfer of angular momentum from the rotating central body to the orbital motion of the whole 2-body system is presented, where particularly the transfer is caused by the inhomogeneous gravitational force of the moon acting on the oceanic waters of the earth, being modeled by a spherical shell around the solid earth. The theory is numerically tested. Key words: transfer of angular momentum from earth to moon, action of the gravitational force of the moon on the waters of the earth.

  7. Angular momentum of a brane-world model

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper we discuss the properties of the general covariant angular momentum of a fivedimensional brane-world model. Through calculating the total angular momentum of this model, we are able to analyze the properties of the total angular momentum in the inflationary RS model. We show that the space-like components of the total angular momentum of the inflationary RS model are all zero while the others are non-zero, which agrees with the results from ordinary RS model.

  8. Angular Momentum of a Brane-world Model

    CERN Document Server

    Jia, Bei; Zhang, Peng-Ming

    2008-01-01

    In this paper we discuss the properties of the general covariant angular momentum of a five-dimensional brane-world model. Through calculating the total angular momentum of this model, we are able to analyze the properties of the total angular momentum in the inflationary RS model. We show that the space-like components of the total angular momentum of are all zero while the others are non-zero, which agrees with the results from ordinary RS model.

  9. The photonic wheel: demonstration of a state of light with purely transverse angular momentum

    CERN Document Server

    Banzer, Peter; Aiello, Andrea; Marquardt, Christoph; Lindlein, Norbert; Bauer, Thomas; Leuchs, Gerd

    2012-01-01

    The concept of angular momentum is ubiquitous to many areas of physics. In classical mechanics, a system may possess an angular momentum which can be either transverse (e.g., in a spinning wheel) or longitudinal (e.g., for a fluidic vortex) to the direction of motion. Photons, however, are well-known to exhibit intrinsic angular momentum which is longitudinal only: the spin angular momentum defining the beam polarization and the orbital angular momentum associated with a spiraling phase front. Here we show that it is possible to generate a novel state of light that contains purely transverse angular momentum, the analogue of a spinning mechanical wheel. We use an optical nano-probing technique to experimentally demonstrate its occurrence in our setup. Such a state of light can provide additional rotational degree of freedom in optical tweezers and optical manipulation.

  10. Helicon modes in uniform plasmas. III. Angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2015-09-15

    Helicons are electromagnetic waves with helical phase fronts propagating in the whistler mode in magnetized plasmas and solids. They have similar properties to electromagnetic waves with angular momentum in free space. Helicons are circularly polarized waves carrying spin angular momentum and orbital angular momentum due to their propagation around the ambient magnetic field B{sub 0}. These properties have not been considered in the community of researchers working on helicon plasma sources, but are the topic of the present work. The present work focuses on the field topology of helicons in unbounded plasmas, not on helicon source physics. Helicons are excited in a large uniform laboratory plasma with a magnetic loop antenna whose dipole axis is aligned along or across B{sub 0}. The wave fields are measured in orthogonal planes and extended to three dimensions (3D) by interpolation. Since density and B{sub 0} are uniform, small amplitude waves from loops at different locations can be superimposed to generate complex antenna patterns. With a circular array of phase shifted loops, whistler modes with angular and axial wave propagation, i.e., helicons, are generated. Without boundaries radial propagation also arises. The azimuthal mode number m can be positive or negative while the field polarization remains right-hand circular. The conservation of energy and momentum implies that these field quantities are transferred to matter which causes damping or reflection. Wave-particle interactions with fast electrons are possible by Doppler shifted resonances. The transverse Doppler shift is demonstrated. Wave-wave interactions are also shown by showing collisions between different helicons. Whistler turbulence does not always have to be created by nonlinear wave-interactions but can also be a linear superposition of waves from random sources. In helicon collisions, the linear and/or orbital angular momenta can be canceled, which results in a great variety of field

  11. Energy, momentum and angular momentum conservations in de Sitter gravity

    Science.gov (United States)

    Lu, Jia-An

    2016-08-01

    In de Sitter (dS) gravity, where gravity is a gauge field introduced to realize the local dS invariance of the matter field, two kinds of conservation laws are derived. The first kind is a differential equation for a dS-covariant current, which unites the canonical energy-momentum (EM) and angular momentum (AM) tensors. The second kind presents a dS-invariant current which is conserved in the sense that its torsion-free divergence vanishes. The dS-invariant current unites the total (matter plus gravity) EM and AM currents. It is well known that the AM current contains an inherent part, called the spin current. Here it is shown that the EM tensor also contains an inherent part, which might be observed by its contribution to the deviation of the dust particle’s world line from a geodesic. All the results are compared to the ordinary Lorentz gravity.

  12. Angular momentum evolution in laser-plasma accelerators

    CERN Document Server

    Thaury, C; Corde, S; Lehe, R; Bouteiller, M Le; Phuoc, K Ta; Davoine, X; Rax, J -M; Rousse, A; Malka, V

    2013-01-01

    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extend in the phase space and the angular momentum which allows for non-planar electron trajectories. Whereas the emittance of electron beams produced in laser- plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular momentum growth and we present experimental results showing that the angular momentum content evolves during the acceleration.

  13. Angular-momentum evolution in laser-plasma accelerators.

    Science.gov (United States)

    Thaury, C; Guillaume, E; Corde, S; Lehe, R; Le Bouteiller, M; Ta Phuoc, K; Davoine, X; Rax, J M; Rousse, A; Malka, V

    2013-09-27

    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extent in the phase space and the angular momentum which allows for nonplanar electron trajectories. Whereas the emittance of electron beams produced in a laser-plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in a laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular-momentum growth and we present experimental results showing that the angular-momentum content evolves during the acceleration.

  14. Angular-Momentum Evolution in Laser-Plasma Accelerators

    CERN Document Server

    Thaury, C; Corde, S; Lehe, R; Le Bouteiller, M; Ta Phuoc, K; Davoine, X; Rax, J M; Rousse, A; Malka, V; 10.1103/PhysRevLett.111.135002

    2013-01-01

    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extent in the phase space and the angular momentum which allows for nonplanar electron trajectories. Whereas the emittance of electron beams produced in a laser-plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in a laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular-momentum growth and we present experimental results showing that the angular-momentum content evolves during the acceleration.

  15. Resolving enantiomers using the optical angular momentum of twisted light.

    Science.gov (United States)

    Brullot, Ward; Vanbel, Maarten K; Swusten, Tom; Verbiest, Thierry

    2016-03-01

    Circular dichroism and optical rotation are crucial for the characterization of chiral molecules and are of importance to the study of pharmaceutical drugs, proteins, DNA, and many others. These techniques are based on the different interactions of enantiomers with circularly polarized components of plane wave light that carries spin angular momentum (SAM). For light carrying orbital angular momentum (OAM), for example, twisted or helical light, the consensus is that it cannot engage with the chirality of a molecular system as previous studies failed to demonstrate an interaction between optical OAM and chiral molecules. Using unique nanoparticle aggregates, we prove that optical OAM can engage with materials' chirality and discriminate between enantiomers. Further, theoretical results show that compared to circular dichroism, mainly based on magnetic dipole contributions, the OAM analog helical dichroism (HD) is critically dependent on fundamentally different chiral electric quadrupole contributions. Our work opens new venues to study chirality and can find application in sensing and chiral spectroscopy.

  16. Resilience of hybrid optical angular momentum qubits to turbulence.

    Science.gov (United States)

    Farías, Osvaldo Jiménez; D'Ambrosio, Vincenzo; Taballione, Caterina; Bisesto, Fabrizio; Slussarenko, Sergei; Aolita, Leandro; Marrucci, Lorenzo; Walborn, Stephen P; Sciarrino, Fabio

    2015-02-12

    Recent schemes to encode quantum information into the total angular momentum of light, defining rotation-invariant hybrid qubits composed of the polarization and orbital angular momentum degrees of freedom, present interesting applications for quantum information technology. However, there remains the question as to how detrimental effects such as random spatial perturbations affect these encodings. Here, we demonstrate that alignment-free quantum communication through a turbulent channel based on hybrid qubits can be achieved with unit transmission fidelity. In our experiment, alignment-free qubits are produced with q-plates and sent through a homemade turbulence chamber. The decoding procedure, also realized with q-plates, relies on both degrees of freedom and renders an intrinsic error-filtering mechanism that maps errors into losses.

  17. Whole-body angular momentum during stair ascent and descent.

    Science.gov (United States)

    Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M

    2014-04-01

    The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent.

  18. CMB Anisotropies Total Angular Momentum Method

    CERN Document Server

    Hu, W; Hu, Wayne; White, Martin

    1997-01-01

    A total angular momentum representation simplifies the radiation transport problem for temperature and polarization anisotropy in the CMB. Scattering terms couple only the quadrupole moments of the distributions and each moment corresponds directly to the observable angular pattern on the sky. We develop and employ these techniques to study the general properties of anisotropy generation from scalar, vector and tensor perturbations to the metric and the matter, both in the cosmological fluids and from any seed perturbations (e.g.~defects) that may be present. The simpler, more transparent form and derivation of the Boltzmann equations brings out the geometric and model-independent aspects of temperature and polarization anisotropy formation. Large angle scalar polarization provides a robust means to distinguish between isocurvature and adiabatic models for structure formation in principle. Vector modes have the unique property that the CMB polarization is dominated by magnetic type parity at small angles and ...

  19. Angular Momentum of Dark Matter Black Holes

    CERN Document Server

    Frampton, Paul H

    2016-01-01

    The putative black holes which may constitute all the dark matter are described by a Kerr metric with only two parameters, mass M and angular momentum J. There has been little discussion of J since it plays no role in the upcoming attempt at detection by microlensing. Nevertheless J does play a central role in understanding the previous lack of detection, especially of CMB distortion. We explain why bounds previously derived from lack of CMB distortion are too strong for primordial black holes with J non-vanishing. Almost none of the dark matter black holes can be from stellar collapse, and nearly all are primordial, to avoid excessive CMB distortion.

  20. Lunar influence on equatorial atmospheric angular momentum

    Science.gov (United States)

    Bizouard, C.; Zotov, L.; Sidorenkov, N.

    2015-08-01

    This study investigates the relationship between the equatorial atmospheric angular momentum oscillation in the non-rotating frame and lunar tidal potential. Between 2 and 30 days, the corresponding equatorial component is mostly constituted of prograde circular motions, especially of a harmonic at 13.6 days, and of a weekly broad band variation. A simple equilibrium tide model explains the 13.6-day pressure term as result of the O1 lunar tide; the tidal lunar origin of the whole band from 2 to 30 days is attested by specific features, not occurring for seasonal band dominated by the solar thermal effect.

  1. Angular momentum evolution of galaxies in EAGLE

    CERN Document Server

    Lagos, Claudia del P; Stevens, Adam R H; Cortese, Luca; Padilla, Nelson D; Davis, Timothy A; Contreras, Sergio; Croton, Darren

    2016-01-01

    We use EAGLE to study the specific angular momentum of galaxies, j, at z1.2, and then increase as lstars~a. Galaxy mergers reduce lstars by a factor of 2-3. These tracks are driven by both the evolution of the total jstars but also its radial distribution. Regardless of the aperture used to measure j, two distinct channels leading to low jstars in galaxies at z=0 are identified: (i) galaxy mergers, and (ii) early formation of most of the stars.

  2. The angular momentum of a relative equilibrium

    CERN Document Server

    Chenciner, Alain

    2011-01-01

    There are two main reasons why relative equilibria of N point masses under the influence of Newton attraction are mathematically more interesting to study when space dimension is at least 4: On the one hand, in a higher dimensional space, a relative equilibrium is determined not only by the initial configuration but also by the choice of a complex structure on the space where the motion takes place; in particular, its angular momentum depends on this choice; On the other hand, relative equilibria are not necessarily periodic: if the configuration is "balanced" but not central, the motion is in general quasi-periodic. In this exploratory paper we address the following question, which touches both aspects: what are the possible frequencies of the angular momentum of a given central (or balanced) configuration and at what values of these frequencies bifurcations from periodic to quasi-periodic relative equilibria do occur ? We give a full answer for relative equilibrium motions in dimension 4 and conjecture that...

  3. Transferring orbital and spin angular momenta of light to atoms

    Energy Technology Data Exchange (ETDEWEB)

    Picon, A; Benseny, A; Mompart, J [Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Vazquez de Aldana, J R; Plaja, L [Servicio Laser, Universidad de Salamanca, E-37008 Salamanca (Spain); Calvo, G F [Mathematics Department and IMACI-Institute of Applied Mathematics in Science and Engineering, Universidad de Castilla-La Mancha, E-13071 Ciudad Real (Spain); Roso, L, E-mail: antonio.picon@uab.ca [Centro de Laseres Pulsados, CLPU, Patio de Escuelas 1, E-37008 Salamanca (Spain)

    2010-08-15

    Light beams carrying orbital angular momentum (OAM), such as Laguerre-Gaussian (LG) beams, give rise to the violation of the standard dipolar selection rules during interaction with matter, yielding, in general, an exchange of angular momentum larger than {h_bar} per absorbed photon. By means of ab initio three-dimensional (3D) numerical simulations, we investigate in detail the interaction of a hydrogen atom with intense Gaussian and LG light pulses. We analyze the dependence of the angular momentum exchange with the polarization, the OAM and the carrier-envelope phase of light, as well as with the relative position between the atom and the light vortex. In addition, a quantum-trajectory approach based on the de Broglie-Bohm formulation of quantum mechanics is used to gain physical insight into the absorption of angular momentum by the hydrogen atom.

  4. Angular momentum conservation law in light-front quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Kelly Yu-Ju; Brodsky, Stanley J.; /SLAC /Stanford U.

    2017-03-01

    We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3 , the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED and QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.

  5. The SKA as a Doorway to Angular Momentum

    CERN Document Server

    Obreschkow, D; Popping, A; Power, C; Quinn, P; Staveley-Smith, L

    2015-01-01

    Angular momentum is one of the most fundamental physical quantities governing galactic evolution. Differences in the colours, morphologies, star formation rates and gas fractions amongst galaxies of equal stellar/baryon mass M are potentially widely explained by variations in their specific stellar/baryon angular momentum j. The enormous potential of angular momentum science is only just being realised, thanks to the emergence of the first simulations of galaxies with converged spins, paralleled by a dramatic increase in kinematic observations. Such observations are still challenged by the fact that most of the stellar/baryon angular momentum resides at large radii. In fact, the radius that maximally contributes to the angular momentum of an exponential disk (3Re-4Re) is twice as large as the radius that maximally contributes to the disk mass; thus converged measurements of angular momentum require either extremely deep IFS data or, alternatively, kinematic measurements of neutral atomic hydrogen (HI), which ...

  6. Dynamical evolution of angular momentum in damped nuclear reactions (I). Accumulation of angular momentum by nucleon transfer

    Science.gov (United States)

    Døssing, Thomas; Randrup, Jørgen

    1985-02-01

    The dynamical accumulation of angular momentum in the course of a damped nuclear reaction is studied within the framework of the nucleon exchange transport model. The dinuclear spin distribution is described by the mean values and the covariances of the two prefragment spins and their orbital angular momentum overlineL. Using an intrinsic coordinate system aligned with the fluctuating direction of overlineL, the equations of motion for the spin distribution are derived and discussed. The ultimate transformation to an externally defined reference frame is also discussed. The evolution of other observables and their coupling to the spin variables are included and, by integrating conditional distributions over all impact parameters, results are obtained for differential cross sections corresponding to a specified loss of relative kinetic energy. The characteristic features of the evolution of the spin distribution is discussed in detail. First the stationary solution of the equations of motion is considered and its different appearance in the various relevant coordinate systems is exhibited. The dynamical evolution is discussed in terms of the time-dependent relaxation times associated with the six different intrinsic modes of rotation in the disphere. Due to the relative smallness of the window size the positive modes will dominate (for not too long times), resulting in a predominantly positive correlation between the fragment spin fluctuations. Illustrative applications to cases of experimental interest are made and a critical discussion is given of other models addressing angular momentum in damped nuclear reactions.

  7. Angular momentum of dark matter black holes

    Science.gov (United States)

    Frampton, Paul H.

    2017-04-01

    We provide strongly suggestive evidence that the halo constituents of dark matter are Primordial Intermediate-Mass Black Holes (PIMBHs). PIMBHs are described by a Kerr metric with two parameters, mass M and angular momentum J. There has been little discussion of J since it plays no role in the upcoming attempt at PIMBH detection by microlensing. Nevertheless J does play a central role in understanding their previous lack of detection, especially by CMB distortion. We explain why bounds previously derived from lack of CMB distortion are too strong for PIMBHs with J non-vanishing and that, provided almost no dark matter black holes originate from stellar collapse, excessive CMB distortion is avoided.

  8. Moon influence on equatorial atmospheric angular momentum

    Science.gov (United States)

    Bizouard, Christian; Zotov, Leonid; Sidorenkov, Nikolay

    2014-05-01

    The variation of the equatorial atmospheric angular momentum function, coordinated with respect to a star-fixed system, is investigated in relation with the lunar tide. We isolate the rapid fluctuations, below 30 days, where Moon motion has a possible influence. First we notice that pressure term and wind term are almost proportional, by contrast to celestial seasonal band (S1). This would mean that, in this frequency band, the torque of the atmosphere on the solid Earth mostly results from the equatorial bulge. Spectrum reveals sharp lunar tidal peaks at 13.66 days (O1 diurnal tide in the terrestrial frame) and 13.63 days, reflecting the Moon influence on meridional circulation. We also observe powerful episodic fluctuations between 5 and 8 days (up to 10 mas), possibly resulting from non linear effect of the O1 tide, or tidal waves 2Q1 (6.86 days) and σ1 (7.095 days).

  9. Untangling Galaxy Components - The Angular Momentum Parameter

    Science.gov (United States)

    Tabor, Martha; Merrifield, Michael; Aragon-Salamanca, Alfonso

    2017-06-01

    We have developed a new technique to decompose Integral Field spectral data cubes into separate bulge and disk components, allowing us to study the kinematic and stellar population properties of the individual components and how they vary with position. We present here the application of this method to a sample of fast rotator early type galaxies from the MaNGA integral field survey, and demonstrate how it can be used to explore key properties of the individual components. By extracting ages, metallicities and the angular momentum parameter lambda of the bulges and disks, we show how this method can give us new insights into the underlying structure of the galaxies and discuss what this can tell us about their evolution history.

  10. Ideal linear-chain polymers with fixed angular momentum.

    Science.gov (United States)

    Brunner, Matthew; Deutsch, J M

    2011-07-01

    The statistical mechanics of a linear noninteracting polymer chain with a large number of monomers is considered with fixed angular momentum. The radius of gyration for a linear polymer is derived exactly by functional integration. This result is then compared to simulations done with a large number of noninteracting rigid links at fixed angular momentum. The simulation agrees with the theory up to finite-size corrections. The simulations are also used to investigate the anisotropic nature of a spinning polymer. We find universal scaling of the polymer size along the direction of the angular momentum, as a function of rescaled angular momentum.

  11. Whole-body angular momentum in incline and decline walking.

    Science.gov (United States)

    Silverman, Anne K; Wilken, Jason M; Sinitski, Emily H; Neptune, Richard R

    2012-04-01

    Angular momentum is highly regulated over the gait cycle and is important for maintaining dynamic stability and control of movement. However, little is known regarding how angular momentum is regulated on irregular surfaces, such as slopes, when the risk of falling is higher. This study examined the three-dimensional whole-body angular momentum patterns of 30 healthy subjects walking over a range of incline and decline angles. The range of angular momentum was either similar or reduced on decline surfaces and increased on incline surfaces relative to level ground, with the greatest differences occurring in the frontal and sagittal planes. These results suggest that angular momentum is more tightly controlled during decline walking when the risk of falling is greater. In the frontal plane, the range of angular momentum was strongly correlated with the peak hip and knee abduction moments in early stance. In the transverse plane, the strongest correlation occurred with the knee external rotation peak in late stance. In the sagittal plane, all external moment peaks were correlated with the range of angular momentum. The peak ankle plantarflexion, knee flexion and hip extension moments were also strongly correlated with the sagittal-plane angular momentum. These results highlight how able-bodied subjects control angular momentum differently on sloped surfaces relative to level walking and provide a baseline for comparison with pathological populations that are more susceptible to falling.

  12. CMB anisotropies: Total angular momentum method

    Science.gov (United States)

    Hu, Wayne; White, Martin

    1997-07-01

    A total angular momentum representation simplifies the radiation transport problem for temperature and polarization anisotropy in the cosmic microwave background (CMB). Scattering terms couple only the quadrupole moments of the distributions and each moment corresponds directly to the observable angular pattern on the sky. We develop and employ these techniques to study the general properties of anisotropy generation from scalar, vector, and tensor perturbations to the metric and the matter, both in the cosmological fluids and from any seed perturbations (e.g., defects) that may be present. The simpler, more transparent form and derivation of the Boltzmann equations brings out the geometric and model-independent aspects of temperature and polarization anisotropy formation. Large angle scalar polarization provides a robust means to distinguish between isocurvature and adiabatic models for structure formation in principle. Vector modes have the unique property that the CMB polarization is dominated by magnetic-type parity at small angles (a factor of 6 in power compared with 0 for the scalars and 8/13 for the tensors) and hence potentially distinguishable independent of the model for the seed. The tensor modes produce a different sign from the scalars and vectors for the temperature-polarization correlations at large angles. We explore conditions under which one perturbation type may dominate over the others including a detailed treatment of the photon-baryon fluid before recombination.

  13. Angular Momentum of Twisted Radiation from an Electron in Spiral Motion

    CERN Document Server

    Katoh, M; Kawaguchi, H; Tsuchiya, K; Ohmi, K; Kaneyasu, T; Taira, Y; Hosaka, M; Mochihashi, A; Takashima, Y

    2016-01-01

    We theoretically demonstrate for the first time that a single free electron in circular/spiral motion emits twisted photons carrying well defined orbital angular momentum along the axis of the electron circulation, in adding to spin angular momentum. We show that, when the electron velocity is relativistic, the radiation field contains harmonic components and the photons of l-th harmonic carry lhbar total angular momentum for each. This work indicates that twisted photons are naturally emitted by free electrons and more ubiquitous in laboratories and in nature than ever been thought.

  14. Angular Momentum-Phase Coherent State for an Electron in Uniform Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; FAN Yue

    2001-01-01

    Based on the newly constructed state |l, r》 [Fan et al., Chin. Phys. Lett. 16(1999)706], where l is the angular momentum quantum number and r denotes the electron's orbit radius in a uniform magnetic field, we propose a new angular momentum-phase coherent state by introducing a new operator A. A and A+ are annihilation and creation operators in the |l, r》 space, respectively. The coherent state is A's eigenket and possesses non-orthonormal and overcomplete properties. It is constructed on the certain superposition of zero-angular momentum states along the radius direction.

  15. The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics

    Science.gov (United States)

    Leader, Elliot

    2016-05-01

    The claim some years ago, contrary to all textbooks, that the angular momentum of a photon (and gluon) can be split in a gauge-invariant way into an orbital and spin term, sparked a major controversy in the Particle Physics community, exacerbated by the realization that many different forms of the angular momentum operators are, in principle, possible. A further cause of upset was the realization that the gluon polarization in a nucleon, a supposedly physically meaningful quantity, corresponds only to the gauge-variant gluon spin derived from Noether's theorem, evaluated in a particular gauge. On the contrary, Laser Physicists have, for decades, been happily measuring physical quantities which correspond to photon orbital and spin angular momentum evaluated in a particular gauge. This paper reconciles the two points of view, and shows that it is the gauge invariant version of the canonical angular momentum which agrees with the results of a host of laser optics experiments.

  16. The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Leader, Elliot, E-mail: e.leader@imperial.ac.uk

    2016-05-10

    The claim some years ago, contrary to all textbooks, that the angular momentum of a photon (and gluon) can be split in a gauge-invariant way into an orbital and spin term, sparked a major controversy in the Particle Physics community, exacerbated by the realization that many different forms of the angular momentum operators are, in principle, possible. A further cause of upset was the realization that the gluon polarization in a nucleon, a supposedly physically meaningful quantity, corresponds only to the gauge-variant gluon spin derived from Noether's theorem, evaluated in a particular gauge. On the contrary, Laser Physicists have, for decades, been happily measuring physical quantities which correspond to photon orbital and spin angular momentum evaluated in a particular gauge. This paper reconciles the two points of view, and shows that it is the gauge invariant version of the canonical angular momentum which agrees with the results of a host of laser optics experiments.

  17. The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics

    Directory of Open Access Journals (Sweden)

    Elliot Leader

    2016-05-01

    Full Text Available The claim some years ago, contrary to all textbooks, that the angular momentum of a photon (and gluon can be split in a gauge-invariant way into an orbital and spin term, sparked a major controversy in the Particle Physics community, exacerbated by the realization that many different forms of the angular momentum operators are, in principle, possible. A further cause of upset was the realization that the gluon polarization in a nucleon, a supposedly physically meaningful quantity, corresponds only to the gauge-variant gluon spin derived from Noether's theorem, evaluated in a particular gauge. On the contrary, Laser Physicists have, for decades, been happily measuring physical quantities which correspond to photon orbital and spin angular momentum evaluated in a particular gauge. This paper reconciles the two points of view, and shows that it is the gauge invariant version of the canonical angular momentum which agrees with the results of a host of laser optics experiments.

  18. Study of double-slit interference experiment on the orbital angular momentum of LG beam%涡旋光束的轨道角动量双缝干涉实验研究

    Institute of Scientific and Technical Information of China (English)

    柯熙政; 谌娟; 吕宏

    2012-01-01

    Holographical amplitude binary grating on computer is employed to diffract the fundamental-mode Gaussian beam, which gives rise to Laguerre-Gaussian (LG) vortex beam with different orders. LG beam with different orders is used to make two-slit interference test. The measurement of orbital angular momentum of LG beam is made according to twisted direction and extent of selected interference strip. The measurement accuracy of orbit angular momentum of vortex beam is analyzed through ajusting experimental optical system. The result shows that proper choice of the fundamental-mode Gaussian beam width and holographical grating size will interfere the quality of LG beam. Under the assurance of the fundamental-mode Gaussian beam width, the ratio of two-slit interval to Guass light beam width is 1:1.5, the twisted effect of interference strip is dramatic and the mesurement error of orbit angular momentum of LG beam is the least.%利用计算机全息振幅二元光栅对基模高斯光束进行衍射,实验产生不同阶次拉盖尔-高斯(Laguerre-Gaussian,LG)涡旋光束,用得到的不同阶的LG光束进行双缝干涉实验,根据采集到的干涉条纹扭曲方向及条纹扭曲程度实现涡旋光束轨道角动量的测量,通过调整实验光学系统,分析了LG光束轨道角动量的测量精度.结果表明,基模高斯光束束宽与全息光栅尺寸的合理选择会影响到生成的涡旋光束质量.在确定基模高斯光束束宽的情况下,双缝间距与光束束宽的比例为1∶1.5时,双缝对生成的LG光束干涉条纹扭曲效果明显,LG光束轨道角动量测量误差最小.

  19. Catenary optics for achromatic generation of perfect optical angular momentum.

    Science.gov (United States)

    Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang

    2015-10-01

    The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a "true mathematical and mechanical form" in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer.

  20. Angular Momentum Phase State Representation for Quantum Pendulum

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; WANG Ji-Suo

    2005-01-01

    To consummate the quantum pendulum theory whose Hamiltonian takes bosonic operator formalism and manifestly exhibits its dynamic behaviour in the entangled state representation, we introduce angular momentum state representation and phase state representation. It turns out that the angular momentum state is the partial wave expansion of the entangled state.

  1. Derivation of the paraxial form of the angular momentum of the electromagnetic field from the general form

    CERN Document Server

    Stewart, A M

    2006-01-01

    It is shown how the standard forms for the spin and orbital components of the angular momentum of a paraxial wave of electromagnetic radiation are obtained from the general expressions for the angular momentum that have been derived recently. This result will enable the general expressions for angular momentum to be applied with confidence to the many configurations of electromagnetic fields that are more complicated than plane or paraxial waves.

  2. Alignment of wave functions for angular momentum projection

    CERN Document Server

    Taniguchi, Yasutaka

    2016-01-01

    Angular momentum projection is used to obtain eigen states of angular momentum from general wave functions. Multi-configuration mixing calculation with angular momentum projection is an important microscopic method in nuclear physics. For accurate multi-configuration mixing calculation with angular momentum projection, concentrated distribution of $z$ components $K$ of angular momentum in the body-fixed frame ($K$-distribution) is favored. Orientation of wave functions strongly affects $K$-distribution. Minimization of variance of $\\hat{J}_z$ is proposed as an alignment method to obtain wave functions that have concentrated $K$-distribution. Benchmark calculations are performed for $\\alpha$-$^{24}$Mg cluster structure, triaxially superdeformed states in $^{40}$Ar, and Hartree-Fock states of some nuclei. The proposed alignment method is useful and works well for various wave functions to obtain concentrated $K$-distribution.

  3. Extraordinary photons with unusual angular momentum

    Institute of Scientific and Technical Information of China (English)

    YAO ZhiXin; ZHONG JianWei; MAO BangNing; PAN BaiLiang

    2009-01-01

    A series of novel state-vector functions (SVFs), which is the general solution of the Schrodinger equation for a photon, are constructed. Each set of these functions consists of a triplet of eigen-SVFs: The triplet can be broken down into a pair of nonzero/-order functions and a single zero-order function. The photons, described with a triplet of eigen-SVFs, possess all the quantum characteristics of a photon: In addition to common attributes like energy E=hω, and momentum Pz= hk; they also exhibit different angular momenta (AM) Lz+=Ih, Lz-= Ih, and Lz0=0, where I≥1. In other words, in addition to usual eigenvalues Lz±=±h, there are unusual nonzero/-order eigenvalues Lz±=±Ih and a zero-order eigenvalue Lz0 =0 for AM of a photon. By a series of SVFs, the pattern from nonzero /-order and zero-order Laguerre-Gaussian modes of a laser beam is explained well from a quantum mechanical point of view.

  4. Axions and the Galactic Angular Momentum Distribution

    CERN Document Server

    Banik, N

    2013-01-01

    We analyze the behavior of axion dark matter before it falls into a galactic gravitational potential well. The axions thermalize sufficiently fast by gravitational self-interactions that almost all go to their lowest energy state consistent with the total angular momentum acquired from tidal torquing. That state is a state of rigid rotation on the turnaround sphere. It predicts the occurrence and detailed properties of the caustic rings of dark matter for which observational evidence had been found earlier. We show that the vortices in the axion Bose-Einstein condensate (BEC) are attractive, unlike those in superfluid $^4$He and dilute gases. We expect that a large fraction of the vortices in the axion BEC join into a single big vortex along the rotation axis of the galaxy. The resulting enhancement of caustic rings explains the typical size of the rises in the Milky Way rotation curve attributed to caustic rings. We show that baryons and ordinary cold dark matter particles are entrained by the axion BEC and ...

  5. Extraordinary photons with unusual angular momentum

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A series of novel state-vector functions (SVFs), which is the general solution of the Schrdinger equa- tion for a photon, are constructed. Each set of these functions consists of a triplet of eigen-SVFs: The triplet can be broken down into a pair of nonzero l-order functions and a single zero-order function. The photons, described with a triplet of eigen-SVFs, possess all the quantum characteristics of a photon: In addition to common attributes like energy E = hω, and momentum pz = hκ, they also exhibit different angular momenta (AM) Lz+ = lh, Lz- = lh, and Lz0 = 0, where l≥1. In other words, in addition to usual ei- genvalues Lz±= ±h, there are unusual nonzero l-order eigenvalues Lz±= ±lh and a zero-order eigenvalue Lz0 = 0 for AM of a photon. By a series of SVFs, the pattern from nonzero l-order and zero-order La- guerre-Gaussian modes of a laser beam is explained well from a quantum mechanical point of view.

  6. Nuclear Level Density with Non-zero Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    A.N. Behkami; M. Gholami; M. Kildir; M. Soltani

    2006-01-01

    The statistical properties of interacting fermions have been studied for various angular momentum with the inclusion of pairing interaction. The dependence of the critical temperature on angular momentum for several nuclei,have been studied. The yrast energy as a function of angular momentum for 28 Si and 24Mg nuclei have been calculated up to 60.0 MeV of excitation energy. The computed limiting angular momenta are compared with the experimental results for 26Al produced by 12C + 14N reaction. The relevant nuclear level densities for non-zero angular momentum have been computed for 44Ti and l36Ba nuclei. The results are compared with their corresponding values obtained from the approximateformulas.

  7. The origin of angular momentum in dark matter halos

    CERN Document Server

    Vitvitska, M; Kravtsov, A V; Bullock, J S; Wechsler, R H; Primack, Joel R

    2002-01-01

    We propose a new explanation for the origin of angular momentum in galaxies and their dark halos, in which the halos obtain their spin through the cumulative acquisition of angular momentum from satellite accretion. In our model, the build-up of angular momentum is a random walk process associated with the mass assembly history of the halo's major progenitor. We assume no correlation between the angular momenta of accreted objects. Using the extended Press-Schechter approximation, we calculate the growth of mass, angular momentum, and spin parameter $\\lambda$ for many halos. Our random walk model reproduces the key features of the angular momentum of halos found in N-body simulations: a lognormal distribution in $\\lambda$ with an average of $ \\approx 0.04$, independent of mass and redshift. The evolution of the spin parameter in individual halos in this model is quite different from the steady increase with time of angular momentum in the tidal torque picture. We find both in N-body simulations and in our ran...

  8. Ionization of oriented targets by intense circularly polarized laser pulses: Imprints of orbital angular nodes in the two-dimensional momentum distribution

    DEFF Research Database (Denmark)

    Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2010-01-01

    We solve the three-dimensional time-dependent Schrödinger equation for a few-cycle circularly polarized femtosecond laser pulse that interacts with an oriented target exemplified by an argon atom, initially in a 3px or 3py state. The photoelectron momentum distributions show distinct signatures o...

  9. Uncertainty Relation between Angular Momentum and Angle Variable.

    Science.gov (United States)

    Roy, C. L.; Sannigrahi, A. B.

    1979-01-01

    Discusses certain pitfalls regarding the uncertainty relation between angular momentum and the angle variable from a pedagogic point of view. Further, an uncertainty relation has been derived for these variables in a simple and consistant manner. (Author/HM)

  10. Effect of angular momentum conservation on hydrodynamic simulations of colloids.

    Science.gov (United States)

    Yang, Mingcheng; Theers, Mario; Hu, Jinglei; Gompper, Gerhard; Winkler, Roland G; Ripoll, Marisol

    2015-07-01

    In contrast to most real fluids, angular momentum is not a locally conserved quantity in some mesoscopic simulation methods. Here we quantify the importance of this conservation in the flow fields associated with different colloidal systems. The flow field is analytically calculated with and without angular momentum conservation for the multiparticle collision dynamics (MPC) method, and simulations are performed to verify the predictions. The flow field generated around a colloidal particle moving under an external force with slip boundary conditions depends on the conservation of angular momentum, and the amplitude of the friction force is substantially affected. Interestingly, no dependence on the angular momentum conservation is found for the flow fields generated around colloids under the influence of phoretic forces. Moreover, circular Couette flow between a no-slip and a slip cylinder is investigated, which allows us to validate one of the two existing expressions for the MPC stress tensor.

  11. "Angle" Operator Conjugate to Photon's Intrinsic Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    范洪义

    2001-01-01

    We find the correct "angle" operator conjugate to the intrinsic angular momentum of the photon by introducing a suitable representation which involves both left-handed and right-handed polarization photon operators.

  12. General covariant conservative angular momentum as internal charges

    Institute of Scientific and Technical Information of China (English)

    赵德品

    1996-01-01

    The usual approach to internal conservative charges is used to obtain the conservation laws of angular-momentum in both Einstein gravity and gravitational anyons.The results are in complete agreement with those of references.

  13. Relativistic electron ring equilibrium with angular momentum spread

    Energy Technology Data Exchange (ETDEWEB)

    Croitoru, M.; Grecu, D. (Institutul de Fizica si Inginerie Nucleara, Bucharest (Romania))

    1980-01-01

    The equilibrium properties of a relativistic electron ring are determined by solving in a consistent way the Vlasov-Maxwell equations for a distribution function with an angular momentum spread. In the thin ring approximation there have been deduced general formulae for the electron density and the current density. A general theorem concerning the sharp form in space of the electron density is also obtained for the case of a microcanonical distribution function both in energy and angular momentum.

  14. Students' Understanding of the Addition of Angular Momentum

    CERN Document Server

    Singh, Chandralekha

    2016-01-01

    We describe the difficulties advanced undergraduate and graduate students have with concepts related to the addition of angular momentum. We also describe the development and implementation of a research-based learning tool, a Quantum Interactive Learning Tutorial (QuILT), to reduce these difficulties. The preliminary evaluation shows that the QuILT on the addition of angular momentum is helpful in improving students' understanding of these concepts.

  15. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.

    Science.gov (United States)

    He, Li; Li, Huan; Li, Mo

    2016-09-01

    Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon's polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry.

  16. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    Science.gov (United States)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  17. Induced Compression of White Dwarfs by Angular Momentum Loss

    CERN Document Server

    Boshkayev, Kuantay; Ruffini, Remo; Zhami, Bakytzhan

    2016-01-01

    We investigate isolated sub- and super-Chandrasekhar white dwarfs which lose angular momentum through magnetic dipole braking. We construct constant rest mass sequences by fulfilling all stability criteria of rotating configurations and show how the main structure of white dwarfs such as the central density, mean radius and angular velocity change with time. We explicitly demonstrate that all isolated white dwarfs regardless of their masses, by angular momentum loss, shrink and increase their central density. We also analyze the effects of the structure parameters on the evolution timescale both in the case of constant magnetic field and constant magnetic flux.

  18. Relevance of angular momentum conservation in mesoscale hydrodynamics simulations.

    Science.gov (United States)

    Götze, Ingo O; Noguchi, Hiroshi; Gompper, Gerhard

    2007-10-01

    The angular momentum is conserved in fluids with a few exceptions such as ferrofluids. However, it can be violated locally in fluid simulations to reduce computational costs. The effects of this violation are investigated using a particle-based simulation method, multiparticle collision dynamics, which can switch on or off angular-momentum conservation. To this end, we study circular Couette flows between concentric and eccentric cylinders, where nonphysical torques due to the lack of the angular-momentum conservation are found whereas the velocity field is not affected. In addition, in simulations of fluids with different viscosities in contact and star polymers in solvent, incorrect angular velocities occur. These results quantitatively agree with the theoretical predictions based on the macroscopic stress tensor.

  19. Smoothed dissipative particle dynamics with angular momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Kathrin, E-mail: k.mueller@fz-juelich.de; Fedosov, Dmitry A., E-mail: d.fedosov@fz-juelich.de; Gompper, Gerhard, E-mail: g.gompper@fz-juelich.de

    2015-01-15

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  20. Angular Momentum-Radius Entanglement for an Electron in a Uniform Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    范洪义

    2002-01-01

    Noticing that the angular momentum operator Lz commutes with the square of radius operator, R2, of the orbit track of an electron in a uniform magnetic field, we reveal that a new entanglement is inherent to the common eigenvector of the operators Lz and R2.

  1. The angular momentum of baryons and dark matter halos revisited

    CERN Document Server

    Kimm, Taysun; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive mesh refinement, we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r=0.1rvir. In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/rvir>0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its ...

  2. The Origin of Angular Momentum in Dark Matter Halos

    Science.gov (United States)

    Vitvitska, Maya; Klypin, Anatoly A.; Kravtsov, Andrey V.; Wechsler, Risa H.; Primack, Joel R.; Bullock, James S.

    2002-12-01

    We propose a new explanation for the origin of angular momentum in galaxies and their dark halos, in which the halos obtain their spin through the cumulative acquisition of angular momentum from satellite accretion. In our model, the buildup of angular momentum is a random walk process associated with the mass assembly history of the halo's major progenitor. We assume no correlation between the angular momenta of accreted objects. The main role of tidal torques in this approach is to produce the random tangential velocities of merging satellites. Using the extended Press-Schechter approximation, we calculate the growth of mass, angular momentum, and spin parameter λ for many halos. Our random walk model reproduces the key features of the angular momentum of halos found in ΛCDM N-body simulations: a lognormal distribution in λ with an average of ~0.045 and dispersion σλ=0.56, independent of mass and redshift. The evolution of the spin parameter in individual halos in this model is quite different from the steady increase with time of angular momentum in the tidal torque picture. We find both in N-body simulations and in our random walk model that the value of λ changes significantly with time for a halo's major progenitor. It typically has a sharp increase due to major mergers and a steady decline during periods of gradual accretion of small satellites. The model predicts that, on average, the λ of ~1012 Msolar halos that had major mergers after redshift z=3 should be substantially larger than the λ of those that did not. Perhaps surprisingly, this suggests that halos that host later forming elliptical galaxies should rotate faster than halos of spiral galaxies.

  3. Is the angular momentum of an electron conserved in a uniform magnetic field?

    Science.gov (United States)

    Greenshields, Colin R; Stamps, Robert L; Franke-Arnold, Sonja; Barnett, Stephen M

    2014-12-12

    We show that an electron moving in a uniform magnetic field possesses a time-varying "diamagnetic" angular momentum. Surprisingly this means that the kinetic angular momentum of the electron may vary with time, despite the rotational symmetry of the system. This apparent violation of angular momentum conservation is resolved by including the angular momentum of the surrounding fields.

  4. Fractional angular momentum in cold-atom systems.

    Science.gov (United States)

    Zhang, Yuhe; Sreejith, G J; Gemelke, N D; Jain, J K

    2014-10-17

    The quantum statistics of bosons or fermions are manifest through the even or odd relative angular momentum of a pair. We show theoretically that, under certain conditions, a pair of certain test particles immersed in a fractional quantum Hall state possesses, effectively, a fractional relative angular momentum, which can be interpreted in terms of fractional braid statistics. We propose that the fractionalization of the angular momentum can be detected directly through the measurement of the pair correlation function in rotating ultracold atomic systems in the fractional quantum Hall regime. Such a measurement will also provide direct evidence for the effective magnetic field resulting from Berry phases arising from attached vortices, and of excitations with a fractional particle number, analogous to the fractional charge of the electron fractional quantum Hall effect.

  5. On-chip noninterference angular momentum multiplexing of broadband light.

    Science.gov (United States)

    Ren, Haoran; Li, Xiangping; Zhang, Qiming; Gu, Min

    2016-05-13

    Angular momentum division has emerged as a physically orthogonal multiplexing method in high-capacity optical information technologies. However, the typical bulky elements used for information retrieval from the overall diffracted field, based on the interference method, impose a fundamental limit toward realizing on-chip multiplexing. We demonstrate noninterference angular momentum multiplexing by using a mode-sorting nanoring aperture with a chip-scale footprint as small as 4.2 micrometers by 4.2 micrometers, where nanoring slits exhibit a distinctive outcoupling efficiency on tightly confined plasmonic modes. The nonresonant mode-sorting sensitivity and scalability of our approach enable on-chip parallel multiplexing over a bandwidth of 150 nanometers in the visible wavelength range. The results offer the possibility of ultrahigh-capacity and miniaturized nanophotonic devices harnessing angular momentum division.

  6. Probing angular momentum coherence in a twin-atom interferometer

    CERN Document Server

    de Carvalho, Carlos R; Impens, François; Robert, J; Medina, Aline; Zappa, F; Faria, N V de Castro

    2014-01-01

    We propose to use a double longitudinal Stern-Gerlach atom interferometer in order to investigate quantitatively the angular momentum coherence of molecular fragments. Assuming that the dissociated molecule has a null total angular momentum, we investigate the propagation of the corresponding atomic fragments in the apparatus. We show that the envisioned interferometer enables one to distinguish unambiguously a spin-coherent from a spin-incoherent dissociation, as well as to estimate the purity of the angular momentum density matrix associated with the fragments. This setup, which may be seen as an atomic analogue of a twin-photon interferometer, can be used to investigate the suitability of molecule dissociation processes -- such as the metastable hydrogen atoms H($2^2 S$)-H($2^2 S$) dissociation - for coherent twin-atom optics.

  7. Fractional Angular Momentum in Cold-Atom Systems

    Science.gov (United States)

    Zhang, Yuhe; Sreejith, G. J.; Gemelke, N. D.; Jain, J. K.

    2014-10-01

    The quantum statistics of bosons or fermions are manifest through the even or odd relative angular momentum of a pair. We show theoretically that, under certain conditions, a pair of certain test particles immersed in a fractional quantum Hall state possesses, effectively, a fractional relative angular momentum, which can be interpreted in terms of fractional braid statistics. We propose that the fractionalization of the angular momentum can be detected directly through the measurement of the pair correlation function in rotating ultracold atomic systems in the fractional quantum Hall regime. Such a measurement will also provide direct evidence for the effective magnetic field resulting from Berry phases arising from attached vortices, and of excitations with a fractional particle number, analogous to the fractional charge of the electron fractional quantum Hall effect.

  8. Energy and angular momentum densities of stationary gravity fields

    CERN Document Server

    Lynden-Bell, D; Bicak, Jiri; 10.1103/PhysRevD.75.024040

    2009-01-01

    We give physical explanations of explicit invariant expressions for the energy and angular momentum densities of gravitational fields in stationary space-times. These expressions involve non-locally defined conformal factors. In certain coordinates these become locally defined in terms of the metric. These results are derived via expressions for total gravitational potential energy from the difference between the total energy and the mechanical energy. The latter involves kinetic energy seen in the frame of static observers. When in the axially symmetric case we consider zero angular momentum observers (who move orthogonally to surfaces of constant time), we find that the angular momentum they attribute to the gravitational field is solely due to their motion.

  9. Angular momentum sensitive two-center interference.

    Science.gov (United States)

    Ilchen, M; Glaser, L; Scholz, F; Walter, P; Deinert, S; Rothkirch, A; Seltmann, J; Viefhaus, J; Decleva, P; Langer, B; Knie, A; Ehresmann, A; Al-Dossary, O M; Braune, M; Hartmann, G; Meissner, A; Tribedi, L C; AlKhaldi, M; Becker, U

    2014-01-17

    In quantum mechanics the Young-type double-slit experiment can be performed with electrons either traveling through a double slit or being coherently emitted from two inversion symmetric molecular sites. In the latter one the valence photoionization cross sections of homonuclear diatomic molecules were predicted to oscillate over kinetic energy almost 50 years ago. Beyond the direct proof of the oscillatory behavior of these photoionization cross sections σ, we show that the angular distribution of the emitted electrons reveals hitherto unexplored information on the relative phase shift between the corresponding partial waves through two-center interference patterns.

  10. Angular Momentum Sensitive Two-Center Interference

    Science.gov (United States)

    Ilchen, M.; Glaser, L.; Scholz, F.; Walter, P.; Deinert, S.; Rothkirch, A.; Seltmann, J.; Viefhaus, J.; Decleva, P.; Langer, B.; Knie, A.; Ehresmann, A.; Al-Dossary, O. M.; Braune, M.; Hartmann, G.; Meissner, A.; Tribedi, L. C.; AlKhaldi, M.; Becker, U.

    2014-01-01

    In quantum mechanics the Young-type double-slit experiment can be performed with electrons either traveling through a double slit or being coherently emitted from two inversion symmetric molecular sites. In the latter one the valence photoionization cross sections of homonuclear diatomic molecules were predicted to oscillate over kinetic energy almost 50 years ago. Beyond the direct proof of the oscillatory behavior of these photoionization cross sections σ, we show that the angular distribution of the emitted electrons reveals hitherto unexplored information on the relative phase shift between the corresponding partial waves through two-center interference patterns.

  11. Creating fractional quantum Hall states with atomic clusters using light-assisted insertion of angular momentum

    Science.gov (United States)

    Zhang, Junyi; Beugnon, Jérôme; Nascimbene, Sylvain

    2016-10-01

    We describe a protocol to prepare clusters of ultracold bosonic atoms in strongly interacting states reminiscent of fractional quantum Hall states. Our scheme consists in injecting a controlled amount of angular momentum to an atomic gas using Raman transitions carrying orbital angular momentum. By injecting one unit of angular momentum per atom, one realizes a single-vortex state, which is well described by mean-field theory for large enough particle numbers. We also present schemes to realize fractional quantum Hall states, namely, the bosonic Laughlin and Moore-Read states. We investigate the requirements for adiabatic nucleation of such topological states, in particular comparing linear Landau-Zener ramps and arbitrary ramps obtained from optimized control methods. We also show that this protocol requires excellent control over the isotropic character of the trapping potential.

  12. Chiral resolution of spin angular momentum in linearly polarized and unpolarized light.

    Science.gov (United States)

    Hernández, R J; Mazzulla, A; Provenzano, C; Pagliusi, P; Cipparrone, G

    2015-11-20

    Linearly polarized (LP) and unpolarized (UP) light are racemic entities since they can be described as superposition of opposite circularly polarized (CP) components of equal amplitude. As a consequence they do not carry spin angular momentum. Chiral resolution of a racemate, i.e. separation of their chiral components, is usually performed via asymmetric interaction with a chiral entity. In this paper we provide an experimental evidence of the chiral resolution of linearly polarized and unpolarized Gaussian beams through the transfer of spin angular momentum to chiral microparticles. Due to the interplay between linear and angular momentum exchange, basic manipulation tasks, as trapping, spinning or orbiting of micro-objects, can be performed by light with zero helicity. The results might broaden the perspectives for development of miniaturized and cost-effective devices.

  13. Charged Dilaton, Energy, Momentum and Angular-Momentum in Teleparallel Theory Equivalent to General Relativity

    CERN Document Server

    Nashed, Gamal Gergess Lamee

    2008-01-01

    We apply the energy-momentum tensor to calculate energy, momentum and angular-momentum of two different tetrad fields. This tensor is coordinate independent of the gravitational field established in the Hamiltonian structure of the teleparallel equivalent of general relativity (TEGR). The spacetime of these tetrad fields is the charged dilaton. Our results show that the energy associated with one of these tetrad fields is consistent, while the other one does not show this consistency. Therefore, we use the regularized expression of the gravitational energy-momentum tensor of the TEGR. We investigate the energy within the external event horizon using the definition of the gravitational energy-momentum.

  14. Functional phases and angular momentum characteristics of Tkatchev and Kovacs.

    Science.gov (United States)

    Irwin, Gareth; Exell, Timothy A; Manning, Michelle L; Kerwin, David G

    2017-03-01

    Understanding the technical requirements and underlying biomechanics of complex release and re-grasp skills on high bar allows coaches and scientists to develop safe and effective training programmes. The aim of this study was to examine the differences in the functional phases between the Tkatchev and Kovacs skills and to explain how the angular momentum demands are addressed. Images of 18 gymnasts performing 10 Tkatchevs and 8 Kovacs at the Olympic Games were recorded (50 Hz), digitised and reconstructed (3D Direct Linear Transformation). Orientation of the functional phase action, defined by the rapid flexion to extension of the shoulders and extension to flexion of the hips as the performer passed through the lower vertical, along with shoulder and hip angular kinematics, angular momentum and key release parameters (body angle, mass centre velocity and angular momentum about the mass centre and bar) were compared between skills. Expected differences in the release parameters of angle, angular momentum and velocity were observed and the specific mechanical requirement of each skill were highlighted. Whilst there were no differences in joint kinematics, hip and shoulder functional phase were significantly earlier in the circle for the Tkatchev. These findings highlight the importance of the orientation of the functional phase in the preceding giant swing and provide coaches with further understanding of the critical timing in this key phase.

  15. Dual electromagnetism: Helicity, spin, momentum, and angular momentum

    CERN Document Server

    Bliokh, Konstantin Y; Nori, Franco

    2012-01-01

    The dual symmetry between electric and magnetic fields is an important intrinsic property of Maxwell equations in free space. This symmetry underlies the conservation of optical helicity (chirality). However, the standard field-theory formulation of electromagnetism lacks helicity conservation because the field Lagrangian is not dual symmetric. To resolve this discrepancy between the symmetries of the Lagrangian and Maxwell equations, we put forward a dual-symmetric Lagrangian formulation of electromagnetism. This preserves the form of Maxwell equations, all fundamental conservation laws of standard electromagnetism, but recovers the helicity conservation as one of the Noether currents. Moreover, we show that the dual-symmetric electromagnetism naturally yields a meaningful separation of the spin and orbital degrees of freedom of light, in complete agreement with other recent results.

  16. Modeling Angular-Momentum History in Dark-Matter Halo

    CERN Document Server

    Maller, A H; Somerville, R S; Maller, Ariyeh H.; Dekel, Avishai; Somerville, Rachel S.

    2002-01-01

    We model the acquisition of spin by dark-matter halos in semi-analytic merger trees. We explore two different algorithms; one in which halo spin is acquired from the orbital angular momentum of merging satellites, and another in which halo spin is gained via tidal torquing on shells of material while still in the linear regime. We find that both scenarios produce the characteristic spin distribution of halos found in N-body simulations, namely, a log-normal distribution with mean ~0.04 and standard deviation ~0.5 in the log. A perfect match requires fine-tuning of two free parameters. Both algorithms also reproduce the general insensitivity of the spin distribution to halo mass, redshift and cosmology seen in N-body simulations. The spin distribution can be made strictly constant by physically motivated scalings of the free parameters. In addition, both schemes predict that halos which have had recent major mergers have systematically larger spin values. These algorithms can be implemented within semi-analyti...

  17. A Universal Angular Momentum Profile for Dark Matter Halos

    Science.gov (United States)

    Liao, Shihong; Chen, Jianxiong; Chu, M.-C.

    2017-07-01

    The angular momentum distribution in dark matter halos and galaxies is a key ingredient in understanding their formation. Specifically, the internal distribution of angular momenta is closely related to the formation of disk galaxies. In this article, we use halos identified from a high-resolution simulation, the Bolshoi simulation, to study the spatial distribution of specific angular momenta, j(r,θ ). We show that by stacking halos with similar masses to increase the signal-to-noise ratio, the profile can be fitted as a simple function, j{(r,θ )={j}s{\\sin }2{(θ /{θ }s)(r/{r}s)}2/(1+r/{r}s)}4, with three free parameters, {j}s,{r}s, and {θ }s. Specifically, j s correlates with the halo mass M vir as {j}s\\propto {M}{vir}2/3, r s has a weak dependence on the halo mass as {r}s\\propto {M}{vir}0.040, and {θ }s is independent of M vir. This profile agrees with that from a rigid shell model, though its origin is unclear. Our universal specific angular momentum profile j(r,θ ) is useful in modeling the angular momenta of halos. Furthermore, by using an empirical stellar mass-halo mass relation, we can infer the average angular momentum distribution of a dark matter halo. The specific angular momentum-stellar mass relation within a halo computed from our profile is shown to share a similar shape as that from the observed disk galaxies.

  18. Orbital-angular-momentum entanglement in turbulence

    CSIR Research Space (South Africa)

    Hamadou Ibrahim, A

    2013-06-01

    Full Text Available theory [16,17] as parametrized by the Fried parameter [18] r0 = 0.185 ( λ2 C2nz )3/5 , (1) where C2n is the refractive-index structure constant, z is the propagation distance, and λ is the wavelength. This model has also been used to simulate turbulence... atmosphere is paraxial and uniformly polarized. Moreover, the refractive- index fluctuation in a turbulent atmosphere is much smaller than the average refractive index (which is approximately equal to 1). Under these conditions the propagation of the photon...

  19. Optical communication beyond orbital angular momentum

    CSIR Research Space (South Africa)

    Trichili, A

    2016-06-01

    Full Text Available with λ1 is assigned to the lowest gray-level and the mode LG44 generated with λ3 to the highest [see Fig. 5(a)]. In this approach we are able to reach 105 different levels of gray. In a second approach, applied to color images, each pixel is first... decomposed into its three color components (red, blue and green). The level of saturation of each color is assigned to one of the 35 different spatial modes and to a specific wavelength λ1, λ2 or λ3 [see Fig. 5(b)]. In this approach only 35 levels...

  20. Angular Momentum across the Hubble sequence from the CALIFA survey

    NARCIS (Netherlands)

    Falcón-Barroso, Jesús; Lyubenova, Mariya; van de Ven, Glenn

    We investigate the stellar angular momentum of galaxies across the Hubble sequence from the CALIFA survey. The distribution of CALIFA elliptical and lenticular galaxies in the λRe - ɛe diagram is consistent with that shown by the Atlas3D survey. Our data, however, show that the location of spiral

  1. The operator method for angular momentum and SU3

    NARCIS (Netherlands)

    Eekelen, H.A.M. van; Ruijgrok, Th.W.

    1966-01-01

    It is well known how Schwinger's1) operator method can be used to construct all representations of the angular momentum operators. We give a brief account of this method and show that it is very convenient for a short derivation of the general Clebsch-Gordan coefficients. The method is then applied

  2. Influence of the angular momentum on nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Tanikawa, Masashi [Tokyo Univ. (Japan). Faculty of Science

    1996-03-01

    The effects of the angular momentum on the mechanism of nuclear fission are studied about the reaction systems of compound nucleus of {sup 210}P and {sup 239}Np by the time-of-flight (TOF) method. The reaction systems in this work are {sup 209}Bi+P, {sup 206}Pb+{alpha}, {sup 206}Po+{alpha}, {sup 198}Pt+{sup 12}C, {sup 238}U+P and {sup 232}Th+{sup 7}Li. Target was prepared by vacuum evaporating of each about 100 {mu}g/cm{sup 2} of {sup 209}Bi, {sup 206}Pb and {sup 198}Pt on 10 {mu}g/cm{sup 2} of carbon film. On compound nucleus {sup 210}Po, {sup 210}Po fissions at Ex=45McV but it fissions after 1 or 2 neutrons emission at higher excited energy (Ex=57 MeV). TKE shows almost the same values except higher value of {sup 209}Bi+P. The decreasing tendency of width of TKE distribution with increasing the angular momentum is found at the first time in this work. The effect of the angular momentum on the fission is small in the case of low angular momentum. On the compound nucleus {sup 239}Np, the effects are shown at the asymmetric fission part of the mass distribution. (S.Y.)

  3. A Historical Discussion of Angular Momentum and its Euler Equation

    CERN Document Server

    Sparavigna, Amelia Carolina

    2015-01-01

    We propose a discussion of angular momentum and its Euler equation, with the aim of giving a short outline of their history. This outline can be useful for teaching purposes too, to amend some problems that students can have in learning this important physical quantity.

  4. Low Angular Momentum in Clumpy, Turbulent Disk Galaxies

    Science.gov (United States)

    Obreschkow, Danail; Glazebrook, Karl; Bassett, Robert; Fisher, David B.; Abraham, Roberto G.; Wisnioski, Emily; Green, Andrew W.; McGregor, Peter J.; Damjanov, Ivana; Popping, Attila; Jørgensen, Inger

    2015-12-01

    We measure the stellar specific angular momentum {j}s={J}s/{M}s in four nearby (z ≈ 0.1) disk galaxies that have stellar masses {M}s near the break {M}s* of the galaxy mass function but look like typical star-forming disks at z ≈ 2 in terms of their low stability (Q ≈ 1), clumpiness, high ionized gas dispersion (40-50 {km} {{{s}}}-1), high molecular gas fraction (20%-30%), and rapid star formation (˜ 20{M}⊙ {{yr}}-1). Combining high-resolution (Keck-OSIRIS) and large-radius (Gemini-GMOS) spectroscopic maps, only available at low z, we discover that these targets have ˜ 3 times less stellar angular momentum than typical local spiral galaxies of equal stellar mass and bulge fraction. Theoretical considerations show that this deficiency in angular momentum is the main cause of their low stability, while the high gas fraction plays a complementary role. Interestingly, the low {j}s values of our targets are similar to those expected in the {M}s* population at higher z from the approximate theoretical scaling {j}s\\propto {(1+z)}-1/2 at fixed {M}s. This suggests that a change in angular momentum, driven by cosmic expansion, is the main cause for the remarkable difference between clumpy {M}s* disks at high z (which likely evolve into early-type galaxies) and mass-matched local spirals.

  5. Remarks on the Total Angular Momentum in General Relativity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao

    2003-01-01

    We verify that the total angular momentum 3-vector defined by the author [X. Zhang, Commun. Math.Phys. 206 (1999) 137] is equal to (0, 0, ma) forany time slice in both the Kerr and the Kerr-Newman spacetimes.

  6. Exact angular momentum projection based on cranked HFB solution

    Energy Technology Data Exchange (ETDEWEB)

    Enami, Kenichi; Tanabe, Kosai; Yosinaga, Naotaka [Saitama Univ., Urawa (Japan). Dept. of Physics

    1998-03-01

    Exact angular momentum projection of cranked HFB solutions is carried out. It is reconfirmed from this calculation that cranked HFB solutions reproduce the intrinsic structure of deformed nucleus. The result also indicates that the energy correction from projection is important for further investigation of nuclear structure. (author)

  7. Angular momentum projection of tilted axis rotating states

    Energy Technology Data Exchange (ETDEWEB)

    Oi, M.; Onishi, N.; Tajima, N. [Tokyo Univ. (Japan); Horibata, T.

    1998-03-01

    We applied an exact angular momentum projection to three dimensional cranked HFB (3d-CHFB) states. Tilted axis rotating states (TAR) and principal axis rotating states (PAR) are compared. It is shown that TAR is more adequate than PAR for description of the back bending phenomena driven by tilted rotation or wobbling motion. (author)

  8. Simplified Generation of High-Angular-Momentum Light Beams

    Science.gov (United States)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Strekalov, Dmitry; Grudinin, Ivan

    2007-01-01

    A simplified method of generating a beam of light having a relatively high value of angular momentum (see figure) involves the use of a compact apparatus consisting mainly of a laser, a whispering- gallery-mode (WGM) resonator, and optical fibers. The method also can be used to generate a Bessel beam. ( Bessel beam denotes a member of a class of non-diffracting beams, so named because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have high values of angular momentum.) High-angular-momentum light beams are used in some applications in biology and nanotechnology, wherein they are known for their ability to apply torque to make microscopic objects rotate. High-angular-momentum light beams could also be used to increase bandwidths of fiber-optic communication systems. The present simplified method of generating a high-angular-momentum light beam was conceived as an alternative to prior such methods, which are complicated and require optical setups that include, variously, holograms, modulating Fabry-Perot cavities, or special microstructures. The present simplified method exploits a combination of the complex structure of the electromagnetic field inside a WGM resonator, total internal reflection in the WGM resonator, and the electromagnetic modes supported by an optical fiber. The optical fiber used to extract light from the WGM resonator is made of fused quartz. The output end of this fiber is polished flat and perpendicular to the fiber axis. The input end of this fiber is cut on a slant and placed very close to the WGM resonator at an appropriate position and orientation. To excite the resonant whispering- gallery modes, light is introduced into the WGM resonator via another optical fiber that is part of a pigtailed fiber-optic coupler. Light extracted from the WGM resonator is transformed into a high-angular- momentum beam inside the extraction optical fiber and this beam is emitted from the

  9. Nonaxisymmetric instabilities in self-gravitating disks III. Angular momentum transport

    Science.gov (United States)

    Hadley, Kathryn Z.; Dumas, William; Imamura, James N.; Keever, Erik; Tumblin, Rebecka

    2015-09-01

    We follow the development of nonaxisymmetric instabilities of self-gravitating disks from the linear regime to the nonlinear regime. Particular attention is paid to comparison of nonlinear simulation results with previous linear and quasi-linear modeling results to study the mass and angular momentum transport driven by nonaxisymmetric disk instabilities. Systems with star-to-disk mass ratios of and 5 and inner-to-outer disk radius ratios of to 0.66 are investigated. In disks where self-gravity is important, systems with small and large , Jeans-like J modes are dominant and the gravitational stress drives angular momentum transport. In disks where self-gravity is weak, systems with large and large , shear-driven P modes dominate and the Reynolds stress drives angular momentum transport. In disks where self-gravity is intermediate in strength between disks where P modes dominate and disks where J modes dominate, I modes control the evolution of the system and the Reynolds and gravitational stresses both play important roles in the angular momentum transport. In all cases, redistribution of angular momentum takes place on the characteristic disk timescale defined as the orbital period at the location of maximum density in the disk midplane. The disk susceptible to one-armed modes behaves differently than disks dominated by multi-armed spirals. Coupling between the star and the disk driven by one-armed modes leads to angular momentum transfer between the star and disk even when instability is in the linear regime. All modes drive spreading of the disk material and eventually accretion onto the star. The disks dominated by an I mode and one-armed mode do not lead to prompt fission or fragmentation. The J mode dominated disk fragments after instability develops.

  10. Transport and influence of angular momentum in collapsing dense cores

    Science.gov (United States)

    Hennebelle, P.

    2013-09-01

    Angular momentum is playing a key role during the collapse of prestellar cores since it is leading to disk formation and to some extent to binary formation. On the other hand, it has long been recognized that the stars possess a tiny fraction of the initial momentum that their parent clouds retain, an issue known as the "angular momentum problem". In these lectures, we attempt to present the most recent calculations performed to investigate the angular momentum transport and the influence angular momentum has, during the collapse of prestellar cores. After a brief introduction of the star formation context and a broad description of the important features within collapsing cores, we discuss the so-called catastrophic braking. Indeed when magnetic field and rotation axis are aligned, the magnetic braking is so efficient that the formation of early disks is completely prevented. We then present the various studies which have attempted to explore the robustness of this efficient transport including influence of non-ideal MHD, misalignment between magnetic field and rotation axis and turbulence. While the role of the first, is not entirely clear; the two other effects diminish the efficacity of the magnetic braking making the issue less severe than in the pure ideal MHD aligned configuration. Finally, we discuss the fragmentation of low and high mass cores with particular emphasis on the impact of the magnetic field. In particular, we discuss the drastic stabilization that magnetic field has on low mass cores and the possible solution to this apparent conundrum. In the context of high mass stars, its influence is much more limited reducing the number of fragments by a factor of the order of two. However when both radiative feedback and magentic field are included, the fragmentation is very significantly reduced.

  11. Effect of higher orbital angular momenta in the baryon spectrum

    CERN Document Server

    Garcilazo, H; Fernández, F

    2001-01-01

    We have performed a Faddeev calculation of the baryon spectrum for the chiral constituent quark model including higher orbital angular momentum states. We have found that the effect of these states is important, although a description of the baryon spectrum of the same quality as the one given by including only the lowest-order configurations can be obtained. We have studied the effect of the pseudoscalar quark-quark interaction on the relative position of the positive- and negative-parity excitations of the nucleon as well as the effect of varying the strength of the color-magnetic interaction.

  12. Effects of proton angular momentum alignment on the two-shears-like mechanism in 101Pd

    Science.gov (United States)

    Zhang, Zhen-Hua

    2016-09-01

    The recently observed possible antimagnetic rotation band in 101Pd is investigated by the cranked shell model with pairing correlations treated by a particle-number-conserving method, in which the blocking effects are taken into account exactly. The experimental moments of inertia and reduced B (E 2 ) transition probabilities and their variations with the rotational frequency ω are well reproduced. By analyzing the ω dependence of the occupation probability of each cranked Nilsson orbital near the Fermi surface and the contributions of valence orbitals in each major shell to the total angular momentum alignment, the upbending mechanism of ν h11 /2 in 101Pd is understood clearly. The proton angular momentum alignment and its influence on the two-shears-like mechanism are also discussed.

  13. The magnetic field generated by an electron bound in angular-momentum eigenstates

    CERN Document Server

    Ayuel, K

    1999-01-01

    The magnetic field generated by an electron bound in a spherically symmetric potential is calculated for eigenstates of the orbital and total angular momentum. General expressions are presented for the current density in such states and the magnetic field is calculated through the vector potential, which is obtained from the current density by direct integration. The method is applied to the hydrogen atom, for which we reproduce and extend known results.

  14. Angular Momentum Transport via Internal Gravity Waves in Evolving Stars

    CERN Document Server

    Fuller, Jim; Cantiello, Matteo; Brown, Ben

    2014-01-01

    Recent asteroseismic advances have allowed for direct measurements of the internal rotation rates of many sub-giant and red giant stars. Unlike the nearly rigidly rotating Sun, these evolved stars contain radiative cores that spin faster than their overlying convective envelopes, but slower than they would in the absence of internal angular momentum transport. We investigate the role of internal gravity waves in angular momentum transport in evolving low mass stars. In agreement with previous results, we find that convectively excited gravity waves can prevent the development of strong differential rotation in the radiative cores of Sun-like stars. As stars evolve into sub-giants, however, low frequency gravity waves become strongly attenuated and cannot propagate below the hydrogen burning shell, allowing the spin of the core to decouple from the convective envelope. This decoupling occurs at the base of the sub-giant branch when stars have surface temperatures of roughly 5500 K. However, gravity waves can s...

  15. Angular momentum and torque described with the complex octonion

    CERN Document Server

    Weng, Zi-Hua

    2015-01-01

    The paper aims to adopt the complex octonion to formulate the angular momentum, torque, and force etc in the electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition of angular momentum (or torque, force) to combine some physics contents, which were considered to be independent of each other in the past. J. C. Maxwell used simultaneously two methods, the vector terminology and quaternion analysis, to depict the electromagnetic theory. It motivates the paper to introduce the quaternion space into the field theory, describing the physical feature of electromagnetic and gravitational fields. The spaces of two fields can be chosen as the quaternion spaces, while the coordinate component of quaternion space is able to be the complex number. The quaternion space of electromagnetic field is independent of that of gravitational field. These two quaternion spaces may compose one octonion space. Contrarily, one octonion space can be separated into two subspaces, the...

  16. Efficient polarization of high-angular-momentum systems

    CERN Document Server

    Rochester, Simon; Raizen, Mark; Pustelny, Szymon; Auzinsh, Marcis; Budker, Dmitry

    2016-01-01

    We propose methods of optical pumping that are applicable to open, high-angular-momentum transitions in atoms and molecules, for which conventional optical pumping would lead to significant population loss. Instead of applying circularly polarized cw light, as in conventional optical pumping, we propose to use techniques for coherent population transfer (e.g., adiabatic fast passage) to arrange the atoms so as to increase the entropy removed from the system with each spontaneous decay from the upper state. This minimizes the number of spontaneous-emission events required to produce a stretched state, thus reducing the population loss due to decay to other states. To produce a stretched state in a manifold with angular momentum J, conventional optical pumping requires about 2J spontaneous decays per atom; one of our proposed methods reduces this to about log_2(2J), while another of the methods reduces it to about one spontaneous decay, independent of J.

  17. Atmosphere-earth angular momentum exchange and ENSO cycle

    Institute of Scientific and Technical Information of China (English)

    钱维宏; 丑纪范

    1996-01-01

    The time series of the earth’s rotation rate, eastern equatorial Pacific sea surface temperature (Tss), sea level pressure (Psl) and atmospheric angular momentum (Maa) during 1976 -1989 are used to study the relation between atmosphere-earth angular momentum exchange and ENSO cycle. The result shows that (i) there are synergetic relationships among the variations of solid earth’s rotation, eastern equatorial Pacific T,, Psl, different latitude zonal Maa and global Maa; (ii) local atmosphere-ocean interaction over low-latitude area can form ENSO-like cycle through Hadley circulation; (iii) the solid earth and global atmosphere-ocean interaction can form some aperiodic behavior and asynchronous oscillations by mountain torque and earth spin anomalous friction torque acting on each component of solid earth-ocean-atmosphere system; and (iv) actual ENSO cycle is a phenomenon reflecting in Pacific basin through interaction among solid earth, global ocean and the atmosphere.

  18. Radial transport of toroidal angular momentum in tokamaks

    CERN Document Server

    Calvo, Ivan

    2014-01-01

    The radial flux of toroidal angular momentum is needed to determine tokamak intrinsic rotation profiles. Its computation requires knowledge of the gyrokinetic distribution functions and turbulent electrostatic potential to second-order in $\\epsilon = \\rho/L$, where $\\rho$ is the ion Larmor radius and $L$ is the variation length of the magnetic field. In this article, a complete set of equations to calculate the radial transport of toroidal angular momentum in any tokamak is presented. In particular, the $O(\\epsilon^2)$ equations for the turbulent components of the distribution functions and electrostatic potential are given for the first time without assuming that the poloidal magnetic field over the magnetic field strength is small.

  19. MRI-driven angular momentum transport in protoplanetary disks

    CERN Document Server

    Fromang, Sebastien

    2013-01-01

    Angular momentum transport in accretion disk has been the focus of intense research in theoretical astrophysics for many decades. In the past twenty years, MHD turbulence driven by the magnetorotational instability has emerged as an efficient mechanism to achieve that goal. Yet, many questions and uncertainties remain, among which the saturation level of the turbulence. The consequences of the magnetorotational instability for planet formation models are still being investigated. This lecture, given in September 2012 at the school "Role and mechanisms of angular momentum transport in the formation and early evolution of stars" in Aussois (France), aims at introducing the historical developments, current status and outstanding questions related to the magnetorotational instability that are currently at the forefront of academic research.

  20. MRI-driven angular momentum transport in protoplanetary disks

    Science.gov (United States)

    Fromang, S.

    2013-09-01

    Angular momentum transport in accretion disk has been the focus of intense research in theoretical astrophysics for many decades. In the past twenty years, MHD turbulence driven by the magnetorotational instability has emerged as an efficient mechanism to achieve that goal. Yet, many questions and uncertainties remain, among which the saturation level of the turbulence. The consequences of the magnetorotational instability for planet formation models are still being investigated. This lecture, given in September 2012 at the school "Role and mechanisms of angular momentum transport in the formation and early evolution of stars" in Aussois (France), aims at introducing the historical developments, current status and outstanding questions related to the magnetorotational instability that are currently at the forefront of academic research.

  1. Photokinetic analysis of the forces and torques exerted by optical tweezers carrying angular momentum

    Science.gov (United States)

    Yevick, Aaron; Evans, Daniel J.; Grier, David G.

    2017-02-01

    The theory of photokinetic effects expresses the forces and torques exerted by a beam of light in terms of experimentally accessible amplitude and phase profiles. We use this formalism to develop an intuitive explanation for the performance of optical tweezers operating in the Rayleigh regime, including effects arising from the influence of light's angular momentum. First-order dipole contributions reveal how a focused beam can trap small objects, and what features limit the trap's stability. The first-order force separates naturally into a conservative intensity-gradient term that forms a trap and a non-conservative solenoidal term that drives the system out of thermodynamic equilibrium. Neither term depends on the light's polarization; light's spin angular momentum plays no role at dipole order. Polarization-dependent effects, such as trap-strength anisotropy and spin-curl forces, are captured by the second-order dipole-interference contribution to the photokinetic force. The photokinetic expansion thus illuminates how light's angular momentum can be harnessed for optical micromanipulation, even in the most basic optical traps. This article is part of the themed issue 'Optical orbital angular momentum'.

  2. Shape evolution with angular momentum in Lu isotopes

    Science.gov (United States)

    Kardan, Azam; Sayyah, Sepideh

    2016-06-01

    The nuclear potential energies of Lu isotopes with neutron number N = 90 - 98 up to high spins are computed within the framework of the unpaired cranked Nilsson-Strutinsky method. The potential and the macroscopic Lublin-Strasbourg drop (LSD) energy-surface diagrams are analyzed in terms of quadrupole deformation and triaxiality parameter. The shape evolution of these isotopes with respect to angular momentum, as well as the neutron number is studied.

  3. Low Angular Momentum in Clumpy, Turbulent Disk Galaxies

    CERN Document Server

    Obreschkow, Danail; Bassett, Robert; Fisher, David B; Abraham, Roberto G; Wisnioski, Emily; Green, Andrew W; McGregor, Peter J; Damjanov, Ivana; Popping, Attila; Jorgensen, Inger

    2015-01-01

    We measure the stellar specific angular momentum jstar=Jstar/Mstar in four nearby (redshift z~0.1) disk galaxies that have stellar masses Mstar near the break M* of the galaxy mass function, but look like typical star-forming disks at z~2 in terms of their low stability (Q~1), clumpiness, high ionized gas dispersion (40-50 km/s), high molecular gas fraction (20-30%) and rapid star formation (~20 Msun/yr). Combining high-resolution (Keck-OSIRIS) and large-radius (Gemini-GMOS) spectroscopic maps, only available at low z, we discover that these targets have ~3 times less stellar angular momentum than typical local spiral galaxies of equal stellar mass and bulge fraction. Theoretical considerations show that this deficiency in angular momentum is the main cause of their low stability, while the high gas fraction plays a complementary role. Interestingly, the low jstar values of our targets are similar to those expected in the M*-population at higher z from the approximate theoretical scaling jstar~(1+z)^(-1/2) at...

  4. Angular Momentum in the Formation of Disk Galaxies

    Institute of Scientific and Technical Information of China (English)

    LUO Zhi-Jian; SHU Cheng-Gang

    2004-01-01

    @@ Within the current framework of disk galaxy formation, we discuss the resulted surface-density profiles according to the theoretical angular momentum distributions (AMDs) presented by Bullock et al. [Astrophys. J.555 (2001) 240(B01)] for the ACDM cosmology in both spherical and cylindric coordinates. It is found that the derived surface density distribution of a disk in the outer region is in general similar to an exponential disk for both the theoretical AMDs. In the central region, the results from both the theoretical AMDs are inconsistent with observations whatever the disk bar-instability is taken into account or not. The cylindric form of the theoretical AMD leads to the bar-instability more easily for a give galaxy than that for spherical AMD, which could result in a more massive bulge. After comparing the model predictions with our Milky Way galaxy, we find that the theoretical AMDs predict larger mass fractions of baryons with low angular momentum than the observed ones, which would lead to the disk sizes to be smaller. Two possible processes which could solve the angular momentum problem are discussed.

  5. Angular Momentum Constraints on GMC formation in M33

    Science.gov (United States)

    Rosolowsky, E.; Engargiola, G.; Plambeck, R.; Blitz, L.

    2001-12-01

    We present the results of the complete CO 12CO(1-> 0) survey of the molecular gas in M33. These observations represent the first survey of all of the GMCs in a spiral galaxy; CO surveys of the Milky Way are too severely blended in some regions to separate the GMCs from one another. These observations show that individual molecular clouds share many properties with those found in the Milky Way although the most massive GMC in M33 has a mass of only 7x 105 Msun and is not associated with an Hii region. Moreover, the specific angular momentum of the GMCs is more than an order of magnitude smaller than expected for basic formation scenarios. The observational campaign consists of two parts: 1) a complete survey of the star forming disk which represents a complete census of GMCs down to the Taurus cloud mass at low spatial resolution and high surface brightness sensitivity and 2) high resolution follow-up observations which spatially resolve the molecular clouds providing information on rotation properties, virial masses, and morphology. From the latter, we estimate the angular momentum imparted through galactic shear by Jeans collapse, the Toomre instability and the Parker instability, all of which impart much more angular momentum to the clouds than is observed. We propose the magnetic fields that thread the molecular clouds and connect to the diffuse interstellar medium brake the spin-up of the progenitor gas, suggesting that the formation of GMCs is a magnetohydrodynamic process.

  6. Combined calculi for photon orbital and spin angular momenta

    Science.gov (United States)

    Elias, N. M.

    2014-08-01

    Context. Wavelength, photon spin angular momentum (PSAM), and photon orbital angular momentum (POAM), completely describe the state of a photon or an electric field (an ensemble of photons). Wavelength relates directly to energy and linear momentum, the corresponding kinetic quantities. PSAM and POAM, themselves kinetic quantities, are colloquially known as polarization and optical vortices, respectively. Astrophysical sources emit photons that carry this information. Aims: PSAM characteristics of an electric field (intensity) are compactly described by the Jones (Stokes/Mueller) calculus. Similarly, I created calculi to represent POAM characteristics of electric fields and intensities in an astrophysical context. Adding wavelength dependence to all of these calculi is trivial. The next logical steps are to 1) form photon total angular momentum (PTAM = POAM + PSAM) calculi; 2) prove their validity using operators and expectation values; and 3) show that instrumental PSAM can affect measured POAM values for certain types of electric fields. Methods: I derive the PTAM calculi of electric fields and intensities by combining the POAM and PSAM calculi. I show how these quantities propagate from celestial sphere to image plane. I also form the PTAM operator (the sum of the POAM and PSAM operators), with and without instrumental PSAM, and calculate the corresponding expectation values. Results: Apart from the vector, matrix, dot product, and direct product symbols, the PTAM and POAM calculi appear superficially identical. I provide tables with all possible forms of PTAM calculi. I prove that PTAM expectation values are correct for instruments with and without instrumental PSAM. I also show that POAM measurements of "unfactored" PTAM electric fields passing through non-zero instrumental circular PSAM can be biased. Conclusions: The combined PTAM calculi provide insight into mathematically modeling PTAM sources and calibrating POAM- and PSAM-induced measurement errors.

  7. Effects of proton angular momentum alignment on the two-shears-like mechanism in $^{101}$Pd

    CERN Document Server

    Zhang, Zhen-Hua

    2016-01-01

    The recently observed possible antimagnetic rotation band in $^{101}$Pd is investigated by the cranked shell model with pairing correlations treated by a particle-number conserving method, in which the blocking effects are taken into account exactly. The experimental moments of inertia and reduced $B(E2)$ transition probabilities and their variations with the rotational frequency $\\omega$ are well reproduced. By analyzing the $\\omega$-dependence of the occupation probability of each cranked Nilsson orbital near the Fermi surface and the contributions of valence orbitals in each major shell to the total angular momentum alignment, the upbending mechanism of $\

  8. Energy, momentum and angular momentum in the dyadosphere of a charged spacetime in teleparallel equivalent of general relativity

    Institute of Scientific and Technical Information of China (English)

    Gamal G.L.Nashed

    2012-01-01

    We apply the energy momentum and angular momentum tensor to a tetrad field,with two unknown functions of radial coordinate,in the framework of a teleparallel equivalent of general relativity (TEGR).The definition of the gravitational energy is used to investigate the energy within the external event horizon of the dyadosphere region for the Reissner-Nordstr(o)m black hole.We also calculate the spatial momentum and angular momentum.

  9. Detection of a dearth of stars with zero angular momentum in the solar neighbourhood

    CERN Document Server

    Hunt, Jason A S; Carlberg, Raymond G

    2016-01-01

    We report on the detection in the combined $Gaia$-DR1/RAVE data of a lack of disk stars in the solar neighbourhood with velocities close to zero angular momentum. We propose that this may be caused by the scattering of stars with very low angular momentum onto chaotic, halo-type orbits when they pass through the Galactic nucleus. We model the effect in a Milky-Way like potential and fit the resulting model directly to the data, finding a likelihood ($\\sim2.7\\sigma$) of a dip in the distribution. Using this effect, we can make a dynamical measurement of the Solar rotation velocity around the Galactic center: $v_{\\odot}=239\\pm9$ km s$^{-1}$. Combined with the measured proper motion of Sgr A$^*$, this measurement gives a measurement of the distance to the Galactic centre: $R_0=7.9\\pm0.3$ kpc.

  10. Spin, angular momentum and spin-statistics for a relativistic quantum many body system

    CERN Document Server

    Horwitz, Lawrence

    2012-01-01

    The adaptation of Wigner's induced representation for a relativistic quantum theory making possible the construction of wavepackets and admitting covariant expectation values for the coordinate operator x^\\mu introduces a foliation on the Hilbert space of states. The spin-statistics relation for fermions and bosons implies the universality of the parametrization of orbits of the induced representation, implying that all particles within the identical particle sets transform under the same SU(2) subgroup of the Lorentz group, and therefore their spins and angular momentum states can be computed using the usual Clebsch-Gordon coefficients associated with angular momentum. Important consequences, such as entanglement for subsystems at unequal times, covariant statistical correlations in many body systems, and the construction of relativistic boson and fermion statistical ensembles, as well as implications for the foliation of the Fock space and for quantum field theory are discussed.

  11. Tides and angular momentum redistribution inside low-mass stars hosting planets: a first dynamical model

    CERN Document Server

    Lanza, A F

    2016-01-01

    We introduce a general mathematical framework to model the internal transport of angular momentum in a star hosting a close-in planetary/stellar companion. By assuming that the tidal and rotational distortions are small and that the deposit/extraction of angular momentum induced by stellar winds and tidal torques are redistributed solely by an effective eddy-viscosity that depends on the radial coordinate, we can formulate the model in a completely analytic way. It allows us to compute simultaneously the evolution of the orbit of the companion and of the spin and the radial differential rotation of the star. An illustrative application to the case of an F-type main-sequence star hosting a hot Jupiter is presented. The general relevance of our model to test more sophisticated numerical dynamical models and to study the internal rotation profile of exoplanet hosts, submitted to the combined effects of tides and stellar winds, by means of asteroseismology are discussed.

  12. Tides and angular momentum redistribution inside low-mass stars hosting planets: a first dynamical model

    Science.gov (United States)

    Lanza, A. F.; Mathis, S.

    2016-11-01

    We introduce a general mathematical framework to model the internal transport of angular momentum in a star hosting a close-in planetary/stellar companion. By assuming that the tidal and rotational distortions are small and that the deposit/extraction of angular momentum induced by stellar winds and tidal torques are redistributed solely by an effective eddy-viscosity that depends on the radial coordinate, we can formulate the model in a completely analytic way. It allows us to compute simultaneously the evolution of the orbit of the companion and of the spin and the radial differential rotation of the star. An illustrative application to the case of an F-type main-sequence star hosting a hot Jupiter is presented. The general relevance of our model to test more sophisticated numerical dynamical models and to study the internal rotation profile of exoplanet hosts, submitted to the combined effects of tides and stellar winds, by means of asteroseismology are discussed.

  13. The Centroid Shifts of Light Beams Reflected from Multi-Layers and the Effects of Angular Momentum Manifestations

    CERN Document Server

    Lusk, Mark T; Quinteiro, Guillermo F

    2016-01-01

    Laguerre-Gaussian (LG) beams reflected from a multi-layered dielectric experience a shift in their centroid that is different than that from a single interface. This has been previously investigated for linearly polarized beams and, to a much lesser extent, beams with spin angular momentum. Here a combination of perturbation and computational analyses is used to provide a unified quantification of these shifts in layered dielectrics with two parallel interfaces. The approach is then extended to consider the qualitatively new behavior that results when the light is endowed with an intrinsic orbital angular momentum--i.e. vortex beams. Destructive interference causes singular lateral shifts in the centroid of the reflected vortex beam for which spin alone produces only a mild modulation. In the case of total internal reflection, both spin and intrinsic orbital angular momentum contribute to an enhancement of these lateral shifts as the interlayer thickness is decreased. This is just the opposite of the trend as...

  14. CONSTRAINING THE ANGULAR MOMENTUM EVOLUTION OF V455 ANDROMEDAE

    Energy Technology Data Exchange (ETDEWEB)

    Mukadam, Anjum S.; Szkody, Paula [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Pyrzas, Stylianos [Qatar Environment and Energy Research Institute (QEERI), HBKU, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Townsley, D. M. [Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, AL 35487 (United States); Gänsicke, B. T. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Hermes, J. J. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States); Kemp, Jonathan [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States); Patterson, J.; Ding, Claire; Wolf, Katie; Gemma, Marina; Karamehmetoglu, Emir [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Rock, John [CBA-Wilts, 2 Spa Close, Highworth, Swindon, Wilts SN6 7PJ (United Kingdom)

    2016-04-10

    Time-series photometry on the cataclysmic variable V455 Andromedae (hereafter V455 And, HS 2331+3905) reveals a rotation period shorter than the orbital period, implying the presence of a magnetic field. We expect that this magnetic field channels the accreted matter from the disk toward the white dwarf poles, classifying it as an Intermediate Polar. The two polar spinning emission areas are visible in the lightcurves at the rotation period of 67.61970396 ± 0.00000072 s, and its harmonic. Using photometric observations of V455 And obtained from 2007 October to 2015, we derive 3σ upper limits to the rate of change of the spin harmonic (SH) with time to be dP{sub SH}/dt ≤ −7.5 × 10{sup −15} s s{sup −1} employing the O–C method, and −5.4 × 10{sup −15} s s{sup −1} with a direct nonlinear least squares fit. There is no significant detection of a changing spin period for the duration of 2007 October–2015. The 3σ upper limit for the rate of change of spin period with time is dP{sub spin}/dt ≤ −10.8 × 10{sup −15} s s{sup −1} or −0.34 μs yr{sup −1}. V455 And underwent a large-amplitude dwarf nova outburst in 2007 September. The pre-outburst data reflect a period 4.8 ± 2.2 μs longer than the best-fit post-outburst spin period. The angular momentum gained by the white dwarf from matter accreted during outburst and its slight subsequent shrinking should both cause the star to spin slightly faster after the outburst. We estimate that the change in spin period due to the outburst should be 5 μs, consistent with the empirical determination of 4.8 ± 2.2 μs (3σ upper limit of 11.4 μs)

  15. Energy and Angular Momentum Deposition During Common Envelope Evolution

    OpenAIRE

    2003-01-01

    Tomo en consideraci on tres procesos que incrementan la tasa de p erdida de masa de la envolvente com un de una gigante de la secuencia principal o de una compa~nera enana blanca que se precipita en espiral dentro de su envolvente. Considero el dep osito de energ a orbital y momento angular orbital en la envolvente de la gigante y la formaci on de \\jets" por la compa~nera acreciente que se propagan dentro de la envolvente. Encuentro que en muchos casos el dep osito del momento an...

  16. The vorticity and angular momentum budgets of Asian summer monsoon

    Indian Academy of Sciences (India)

    P L S Rao; U C Mohanty; P V S Raju; M A Arain

    2004-09-01

    The study delineates the vorticity and angular momentum balances of Asian summer monsoon during the evolution and established phases. It also elucidates the differences between these balances in the National Centre for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) reanalysis and the National Centre for Medium Range Weather Forecasts (NCM- RWF) analysis fields. The NCEP/NCAR reanalysis for a 40 year period (1958-97) and the NCM- RWF analysis for a three year (1994-96) period are made use of for the purpose. The time mean summer monsoon circulation is bifurcated into stable mean and transient eddy components and the mean component is elucidated. The generation of vorticity due to stretching of isobars balances most of the vorticity transported out of the monsoon domain during the evolution period. However, during the established period, the transportation by the relative and planetary vorticity components exceeds the generation due to stretching. The effective balancing mechanism is provided by vorticity generation due to sub-grid scale processes. The flux convergence of omega and relative momenta over the monsoon domain is effectively balanced by pressure torque during the evolution and established phases. Nevertheless, the balance is stronger during the established period due to the increase in the strength of circulation. Both the NCMRWF and NCEP fields indicate the mean features related to vorticity and angular momentum budgets realistically. Apart from the oceanic bias (strong circulation over oceans rather than continents), the summer monsoon circulation indicated by the NCEP is feeble compared to NCMRWF. The significant terms in the large-scale budgets of vorticity and angular momentum enunciate this aspect.

  17. An angular momentum conserving Affine-Particle-In-Cell method

    CERN Document Server

    Jiang, Chenfanfu; Teran, Joseph

    2016-01-01

    We present a new technique for transferring momentum and velocity between particles and grid with Particle-In-Cell (PIC) calculations which we call Affine-Particle-In-Cell (APIC). APIC represents particle velocities as locally affine, rather than locally constant as in traditional PIC. We show that this representation allows APIC to conserve linear and angular momentum across transfers while also dramatically reducing numerical diffusion usually associated with PIC. Notably, conservation is achieved with lumped mass, as opposed to the more commonly used Fluid Implicit Particle (FLIP) transfers which require a 'full' mass matrix for exact conservation. Furthermore, unlike FLIP, APIC retains a filtering property of the original PIC and thus does not accumulate velocity modes on particles as FLIP does. In particular, we demonstrate that APIC does not experience velocity instabilities that are characteristic of FLIP in a number of Material Point Method (MPM) hyperelasticity calculations. Lastly, we demonstrate th...

  18. Angular Momentum Transport in Quasi-Keplerian Accretion Disks

    Indian Academy of Sciences (India)

    Prasad Subramanian; B. S. Pujari; Peter A. Becker

    2004-03-01

    We reexamine arguments advanced by Hayashi & Matsuda (2001), who claim that several simple, physically motivated derivations based on mean free path theory for calculating the viscous torque in a quasi-Keplerian accretion disk yield results that are inconsistent with the generally accepted model. If correct, the ideas proposed by Hayashi & Matsuda would radically alter our understanding of the nature of the angular momentum transport in the disk, which is a central feature of accretion disk theory. However, in this paper we point out several fallacies in their arguments and show that there indeed exists a simple derivation based on mean free path theory that yields an expression for the viscous torque that is proportional to the radial derivative of the angular velocity in the accretion disk, as expected. The derivation is based on the analysis of the epicyclic motion of gas parcels in adjacent eddies in the disk.

  19. Energy-momentum and angular momentum densities in gauge theories of gravity

    OpenAIRE

    Kawai, Toshiharu

    2000-01-01

    In the $\\bar{\\mbox{\\rm Poincar\\'{e}}}$ gauge theory of gravity, which has been formulated on the basis of a principal fiber bundle over the space-time manifold having the covering group of the proper orthochronous Poincar\\'{e} group as the structure group, we examine the tensorial properties of the dynamical energy-momentum density ${}^{G}{\\mathbf T}_{k}{}^{\\mu}$ and the ` ` spin" angular momentum density ${}^{G}{\\mathbf S}_{kl}{}^{\\mu}$ of the gravitational field. They are both space-time ve...

  20. Area-angular-momentum inequality for axisymmetric black holes.

    Science.gov (United States)

    Dain, Sergio; Reiris, Martin

    2011-07-29

    We prove the local inequality A≥8π|J|, where A and J are the area and angular momentum of any axially symmetric closed stable minimal surface in an axially symmetric maximal initial data. From this theorem it is proved that the inequality is satisfied for any surface on complete asymptotically flat maximal axisymmetric data. In particular it holds for marginal or event horizons of black holes. Hence, we prove the validity of this inequality for all dynamical (not necessarily near equilibrium) axially symmetric black holes.

  1. Energy and angular momentum sharing in dissipative collisions

    CERN Document Server

    Casini, G; Calamai, S; Laforest, R; Maurenzig, P R; Olmi, A; Pasquali, G; Piantelli, S; Poggi, G; Saint-Laurent, F; Steckmeyer, J C; Stefanini, A A; Taccetti, N

    2000-01-01

    Primary and secondary masses of heavy reaction products have been deduced from kinematics and E-ToF measurements, respectively, for the direct and reverse collisions of 93Nb and 116Sn at 25 AMeV. Light charged particles have also been measured in coincidence with the heavy fragments. Direct experimental evidence of the correlation of energy-sharing with net mass transfer has been found using the information from both the heavy fragments and the light charged particles. The ratio of Hydrogen and Helium multiplicities points to a further correlation of angular momentum sharing with net mass transfer.

  2. Energy and angular momentum sharing in dissipative collisions

    Science.gov (United States)

    Casini, G.; Bini, M.; Calamai, S.; Laforest, R.; Maurenzig, P. R.; Olmi, A.; Pasquali, G.; Piantelli, S.; Poggi, G.; Saint-Laurent, F.; Steckmeyer, J. C.; Stefanini, A. A.; Taccetti, N.

    Primary and secondary masses of heavy reaction products have been deduced from kinematics and E-ToF measurements, respectively, for the direct and reverse collisions of 93Nb and 116Sn at 25 AMeV. Light charged particles have also been measured in coincidence with the heavy fragments. Direct experimental evidence of the correlation of energy-sharing with net mass transfer has been found using information from both the heavy fragments and the light charged particles. The ratio of hydrogen and helium multiplicities points to a further correlation of angular momentum sharing with net mass transfer.

  3. Energy and angular momentum sharing in dissipative collisions

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Bini, M.; Calamai, S.; Maurenzig, P.R.; Olmi, A.; Pasquali, G.; Piantelli, S.; Poggi, G.; Stefanini, A.A.; Taccetti, N. [Istituto Nazionale di Fisica Nucleare, Florence (Italy); Laforest, R.; Steckmeyer, J.C. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Saint-Laurent, F. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)

    2000-12-01

    Primary and secondary masses of heavy reaction products have been deduced from kinematics and E-ToF measurements, respectively, for the direct and reverse collisions of {sup 93}Nb and {sup 116}Sn at 25 AMeV. Light charged particles have also been measured in coincidence with the heavy fragments. Direct experimental evidence of the correlation of energy-sharing with net mass transfer has been found using information from both the heavy fragments and the light charged particles. The ratio of hydrogen and helium multiplicities points to a further correlation of angular momentum sharing with net mass transfer. (orig.)

  4. Energy and angular momentum deposition during Common envelope evolution

    Directory of Open Access Journals (Sweden)

    Noam Soker

    2004-01-01

    Full Text Available Tomo en consideraci on tres procesos que incrementan la tasa de p erdida de masa de la envolvente com un de una gigante de la secuencia principal o de una compa~nera enana blanca que se precipita en espiral dentro de su envolvente. Considero el dep osito de energ a orbital y momento angular orbital en la envolvente de la gigante y la formaci on de \\jets" por la compa~nera acreciente que se propagan dentro de la envolvente. Encuentro que en muchos casos el dep osito del momento angular en la envolvente puede ser m as importante para el proceso de p erdida de masa que el dep osito de energ a orbital. En etapas tempranas de la evoluci on com un de la envolvente los "jets" que son expulsados por una compa~nera acreciente, en particular una enana blanca que orbita dentro de las regiones exteriores de la envolvente de la gigante, tambi en pueden dominar sobre el dep osito de energ a. Esto implica que los estudios que ignoran el dep osito del momento angular dentro de la envolvente y los efectos de la compa~nera acreciente pueden llegar a conclusiones err oneas.

  5. High orbital angular momentum quantum numbers in the electronic ground states of Fe$_2^+$ and Co$_2^+$ as determined by x-ray absorption and x-ray magnetic circular dichroism spectroscopy

    CERN Document Server

    Zamudio-Bayer, V; Langenberg, A; Lawicki, A; Terasaki, A; Issendorff, B v; Lau, J T

    2015-01-01

    The $^6\\Delta$ electronic ground state of the Co$_2^+$ diatomic molecular cation has been assigned experimentally by x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap. Three candidates, $^6\\Phi$, $^6\\Gamma$, and $^8\\Gamma$, for the electronic ground state of Fe$_2^+$ have been identified. These states carry sizable ground-state orbital angular momenta that disagree with theoretical predictions from multireference configuration interaction and density functional theory. Our results show that the ground states of neutral and cationic diatomic molecules of $3d$ elements cannot be assumed to be connected by a one-electron process.

  6. 对角动量算符的讨论——对自旋的讨论之三%Discussion of the angular momentum operator——discussion 3 about spin

    Institute of Scientific and Technical Information of China (English)

    许方官; 高春媛

    2001-01-01

    It is proved from the formation of operator J(J=L+S) that the total angular momentum is the relativistic orbit angular momentum. L is the non relativistic orbit angular momentum, and spin S is a part of relativistic orbit angular momentum.%从算符 的构成上证明,所谓的总角动量J实质上是相对论性的轨道角动量,自旋是相对论性轨道角动量的一个组成部分.

  7. Galactic disc profiles and a universal angular momentum distribution from statistical physics

    Science.gov (United States)

    Herpich, Jakob; Tremaine, Scott; Rix, Hans-Walter

    2017-06-01

    We show that the stellar surface brightness profiles in disc galaxies - observed to be approximately exponential - can be explained if radial migration efficiently scrambles the individual stars' angular momenta while conserving the circularity of the orbits and the total mass and angular momentum. In this case, the disc's distribution of specific angular momenta j should be near a maximum entropy state and therefore approximately exponential, dN ∝ \\exp (-j/rotation curve v∞(R) and R_e({R})≡ < j\\rangle /v_c (R). We show that such a profile matches the observed surface brightness profiles of disc-dominated galaxies just as well as the empirical exponential profile. Disc galaxies that exhibit population gradients cannot have fully reached a maximum-entropy state but appear to be close enough that their surface brightness profiles are well fit by this idealized model.

  8. Identification of trunk and pelvis movement compensations in patients with transtibial amputation using angular momentum separation.

    Science.gov (United States)

    Gaffney, Brecca M; Murray, Amanda M; Christiansen, Cory L; Davidson, Bradley S

    2016-03-01

    Patients with unilateral dysvascular transtibial amputation (TTA) have a higher risk of developing low back pain than their healthy counterparts, which may be related to movement compensations used in the absence of ankle function. Assessing components of segmental angular momentum provides a unique framework to identify and interpret these movement compensations alongside traditional observational analyses. Angular momentum separation indicates two components of total angular momentum: (1) transfer momentum and (2) rotational momentum. The objective of this investigation was to assess movement compensations in patients with dysvascular TTA, patients with diabetes mellitus (DM), and healthy controls (HC) by examining patterns of generating and arresting trunk and pelvis segmental angular momenta during gait. We hypothesized that all groups would demonstrate similar patterns of generating/arresting total momentum and transfer momentum in the trunk and pelvis in reference to the groups (patients with DM and HC). We also hypothesized that patients with amputation would demonstrate different (larger) patterns of generating/arresting rotational angular momentum in the trunk. Patients with amputation demonstrated differences in trunk and pelvis transfer angular momentum in the sagittal and transverse planes in comparison to the reference groups, which indicates postural compensations adopted during walking. However, patients with amputation demonstrated larger patterns of generating and arresting of trunk and pelvis rotational angular momentum in comparison to the reference groups. These segmental rotational angular momentum patterns correspond with high eccentric muscle demands needed to arrest the angular momentum, and may lead to consequential long-term effects such as low back pain.

  9. Extraordinary Light-Induced Local Angular Momentum near Metallic Nanoparticles.

    Science.gov (United States)

    Alabastri, Alessandro; Yang, Xiao; Manjavacas, Alejandro; Everitt, Henry O; Nordlander, Peter

    2016-04-26

    The intense local field induced near metallic nanostructures provides strong enhancements for surface-enhanced spectroscopies, a major focus of plasmonics research over the past decade. Here we consider that plasmonic nanoparticles can also induce remarkably large electromagnetic field gradients near their surfaces. Sizeable field gradients can excite dipole-forbidden transitions in nearby atoms or molecules and provide unique spectroscopic fingerprinting for chemical and bimolecular sensing. Specifically, we investigate how the local field gradients near metallic nanostructures depend on geometry, polarization, and wavelength. We introduce the concept of the local angular momentum (LAM) vector as a useful figure of merit for the design of nanostructures that provide large field gradients. This quantity, based on integrated fields rather than field gradients, is particularly well-suited for optimization using numerical grid-based full wave electromagnetic simulations. The LAM vector has a more compact structure than the gradient matrix and can be straightforwardly associated with the angular momentum of the electromagnetic field incident on the plasmonic structures.

  10. Angular momentum transport and evolution of lopsided galaxies

    CERN Document Server

    Saha, Kanak

    2014-01-01

    The surface brightness distribution in the majority of stellar galactic discs falls off exponentially. Often what lies beyond such a stellar disc is the neutral hydrogen gas whose distribution also follows a nearly exponential profile at least for a number of nearby disc galaxies. Both the stars and gas are commonly known to host lopsided asymmetry especially in the outer parts of a galaxy. The role of such asymmetry in the dynamical evolution of a galaxy has not been explored so far. Following Lindblad's original idea of kinematic density waves, we show that the outer part of an exponential disc is ideally suitable for hosting lopsided asymmetry. Further, we compute the transport of angular momentum in the combined stars and gas disc embedded in a dark matter halo. We show that in a pure star and gas disc, there is a transition point where the free precession frequency of a lopsided mode, $\\Omega -\\kappa $, changes from retrograde to prograde and this in turn reverses the direction of angular momentum flow i...

  11. Angular momentum of disc galaxies with a lognormal density distribution

    CERN Document Server

    Marr, John Herbert

    2015-01-01

    Whilst most galaxy properties scale with galaxy mass, similar scaling relations for angular momentum are harder to demonstrate. A lognormal (LN) density distribution for disc mass provides a good overall fit to the observational data for disc rotation curves for a wide variety of galaxy types and luminosities. In this paper, the total angular momentum J and energy $\\vert{}$E$\\vert{}$ were computed for 38 disc galaxies from the published rotation curves and plotted against the derived disc masses, with best fit slopes of 1.683$\\pm{}$0.018 and 1.643$\\pm{}$0.038 respectively, using a theoretical model with a LN density profile. The derived mean disc spin parameter was $\\lambda{}$=0.423$\\pm{}$0.014. Using the rotation curve parameters V$_{max}$ and R$_{max}$ as surrogates for the virial velocity and radius, the virial mass estimator $M_{disc}\\propto{}R_{max}V_{max}^2$ was also generated, with a log-log slope of 1.024$\\pm{}$0.014 for the 38 galaxies, and a proportionality constant ${\\lambda{}}^*=1.47\\pm{}0.20\\time...

  12. Angular-momentum transfer due to postcollision interaction in atomic inner n s2 -shell photoionization

    Science.gov (United States)

    Gerchikov, L.; Guillemin, R.; Simon, M.; Sheinerman, S.

    2017-06-01

    A concrete mechanism of angular-momentum transfer in photoionization process is proposed for electron photoemission from deep inner atomic shells. It is demonstrated that the leading contribution to angular-momentum transfer is provided by postcollision interaction of the photoelectrons and Auger electrons. The standard theoretical approach to postcollision interaction has been considerably improved by taking into account angular-momentum transfer. The theory developed is applied to the photoionization of 1 s2 shell in Ar. Calculations show the noticeable influence of angular-momentum transfer on the photoelectron angular distribution.

  13. Is angular momentum in the horizontal plane during gait a controlled variable?

    Science.gov (United States)

    Thielemans, Valerie; Meyns, Pieter; Bruijn, Sjoerd M

    2014-04-01

    It has been suggested that angular momentum in the horizontal plane during human gait is controlled (i.e., kept minimal). However, this has not been explored in conditions when angular momentum of different segments is manipulated explicitly. In order to examine the behavior of angular momentum, 12 participants walked in 17 conditions in which angular momentum of either the arms or legs was manipulated. Subjects walked at different step lengths, different speeds and with an additional weight on either the wrist or ankle. Angular momentum of total body, arms and legs was calculated from gait kinematics. Increasing step length increased total body and leg angular momentum. When weight was added to the limbs, arm and leg angular momentum were affected and counteracted each other, so that total body angular momentum did not change. Moreover, increasing walking speed increased arm, leg and total body angular momentum. Thus, it may be concluded that if angular momentum is controlled (which only seems to be the case for conditions when weights are added), it is not strictly controlled in all gait conditions (as it may increase by walking faster/with larger steps).

  14. A universal angular momentum profile for dark matter haloes

    CERN Document Server

    Liao, Shihong; Chu, M -C

    2016-01-01

    The angular momentum distribution in dark matter haloes and galaxies is a key ingredient in understanding their formation. Especially, the internal distribution of angular momenta is closely related to the formation of disk galaxies. In this article, we use haloes identified from a high-resolution simulation, the Bolshoi simulation, to study the spatial distribution of specific angular momenta, $j(r,\\theta)$. We show that by stacking haloes with similar masses to increase the signal-to-noise ratio, the profile can be fitted as a simple function, $j(r,\\theta)=j_s \\sin^2(\\theta/\\theta_s) (r/r_s)^2/(1+r/r_s)^4 $, with three free parameters, $j_s, r_s$, and $\\theta_s$. Specifically, $j_s$ correlates with the halo mass $M_\\mathrm{vir}$ as $j_s\\propto M_\\mathrm{vir}^{2/3}$, $r_s$ has a weak dependence on the halo mass as $r_s \\propto M_\\mathrm{vir}^{0.040}$, and $\\theta_s$ is independent of $M_\\mathrm{vir}$. This profile agrees with that from a rigid shell model, though its origin is unclear. Our universal specific...

  15. Pancharatnam-Berry optical element sorter of full angular momentum eigenstate.

    Science.gov (United States)

    Walsh, Gary F

    2016-03-21

    We propose and numerically demonstrate a Pancharatnam-Berry optical element (PBOE) device that simultaneously sorts spin (SAM) and orbital (OAM) angular momentum. This device exploits the circular polarization selective properties of PBOEs to modulate independently the orthogonal SAM eigenstates within a geometric optical transformation that sorts OAM, enabling single measurement characterization of the full angular momentum eigenstate. This expands the available state space for OAM communication and enables characterization of the eigenmode composition of structured polarization beams. We define the two-dimensional orientation patterns of the transversely varying half-waveplate PBOEs that implement the angular momentum sorter. We show that the device discriminates the OAM and SAM eigenstates of optical beams including laser cavity modes such as Laguerre-Gaussian OAM eigenmodes, Hermite-Gaussian modes, and hybrid modes with complex structured polarization. We also demonstrate that it can determine the m parameter of higher order LGml Laguerre-Gaussian modes. The ability of this device to decode information from spatially structured optical phase has potential for applications in communication, encryption, modal characterization, and scientific measurements.

  16. Spin and Orbital Angular Momenta of Light Reflected from a Cone

    CERN Document Server

    Mansuripur, Masud; Wright, Ewan M; 10.1103/PhysRevA.84.033813

    2012-01-01

    We examine several retro-reflecting optical elements, each involving two reflections. In the case of a hollow metallic cone having an apex angle of 90\\degree, a circularly-polarized incident beam acquires, upon reflection, the opposite spin angular momentum. However, no angular momentum is transferred to the cone, because the reflected beam picks up an orbital angular momentum that is twice as large but opposite in direction to that of its spin. A 90\\degree cone made of a transparent material in which the incident light suffers two total internal reflections before returning, may be designed to endow the retro-reflected beam with different mixtures of orbital and spin angular momenta. Under no circumstances, however, is it possible to transfer angular momentum from the light beam to the cone without either allowing absorption or breaking the axial symmetry of the cone. A simple example of broken symmetry is provided by a wedge-shaped metallic reflector having an apex angle of 90\\degree, which picks up angular...

  17. The measurable distinction between the spin and orbital angular momenta of electromagnetic radiation

    Directory of Open Access Journals (Sweden)

    James H. Crichton

    2000-07-01

    Full Text Available We show how the angular momentum of electromagnetic radiation may be decomposed into spin and orbital parts, of which the spin part is measurable in terms of Stokes parameters, thereby providing an unambiguous, gauge-invariant, distinction between the two parts.

  18. Viscous hydrodynamics simulations of circumbinary accretion discs: variability, quasi-steady state and angular momentum transfer

    Science.gov (United States)

    Miranda, Ryan; Muñoz, Diego J.; Lai, Dong

    2017-04-01

    We carry out numerical simulations of circumbinary discs, solving the viscous hydrodynamics equations on a polar grid covering an extended disc outside the binary co-orbital region. We use carefully controlled outer boundary conditions and long-term integrations to ensure that the disc reaches a quasi-steady state, in which the time-averaged mass accretion rate on to the binary, , matches the mass supply rate at the outer disc. We focus on binaries with comparable masses and a wide range of eccentricities (eB). For eB ≲ 0.05, the mass accretion rate of the binary is modulated at about five times the binary period; otherwise, it is modulated at the binary period. The inner part of the circumbinary disc (r ≲ 6aB) generally becomes coherently eccentric. For low and high eB, the disc line of apsides precesses around the binary, but for intermediate eB (0.2-0.4), it instead becomes locked with that of the binary. By considering the balance of angular momentum transport through the disc by advection, viscous stress and gravitational torque, we determine the time-averaged net angular momentum transfer rate to the binary, . The specific angular momentum, l_0 = /, depends non-monotonically on eB. Contrary to previous claims, we find that l0 is positive for most eB, implying that the binary receives net angular momentum, which may cause its separation to grow with time. The minimum l0 occurs at intermediate eB (0.2-0.4), corresponding to the regime where the inner eccentric disc is apsidally aligned with the binary.

  19. Measurement of the total optical angular momentum transfer in optical tweezers

    CERN Document Server

    Parkin, S; Knoener, G; Nieminen, T A; Rubinsztein-Dunlop, H; Heckenberg, Norman R.; Knoener, Gregor; Nieminen, Timo A.; Parkin, Simon; Rubinsztein-Dunlop, Halina

    2006-01-01

    We describe a way to determine the total angular momentum, both spin and orbital, transferred to a particle trapped in optical tweezers. As an example an LG02 mode of a laser beam with varying degrees of circular polarisation is used to trap and rotate an elongated particle with a well defined geometry. The method successfully estimates the total optical torque applied to the particle. For this technique, there is no need to measure the viscous drag on the particle, as it is an optical measurement. Therefore, knowledge of the particle's size and shape, as well as the fluid's viscosity, is not required.

  20. Many-Body Theory of Ultrafast Demagnetization and Angular Momentum Transfer in Ferromagnetic Transition Metals.

    Science.gov (United States)

    Töws, W; Pastor, G M

    2015-11-20

    Exact calculated time evolutions in the framework of a many-electron model of itinerant magnetism provide new insights into the laser-induced ultrafast demagnetization observed in ferromagnetic (FM) transition metal thin films. The interplay between local spin-orbit interactions and interatomic hopping is shown to be at the origin of the observed postexcitation breakdown of FM correlations between highly stable local magnetic moments. The mechanism behind spin- and angular-momentum transfer is revealed from a microscopic perspective by rigorously complying with all fundamental conservation laws. An energy-resolved analysis of the time evolution shows that the efficiency of the demagnetization process reaches almost 100% in the excited states.