WorldWideScience

Sample records for orange county aquifer

  1. Hydrogeology of the Ramapo River-Woodbury Creek valley-fill aquifer system and adjacent areas in eastern Orange County, New York

    Science.gov (United States)

    Heisig, Paul M.

    2015-01-01

    The hydrogeology of the valley-fill aquifer system and surrounding watershed areas was investigated within a 23-mile long, fault-controlled valley in eastern Orange County, New York. Glacial deposits form a divide within the valley that is drained to the north by Woodbury Creek and is drained to the south by the Ramapo River. Surficial geology, extent and saturated thickness of sand and gravel aquifers, extent of confining units, bedrock-surface elevation beneath valleys, major lineaments, and the locations of wells for which records are available were delineated on an interactive map.

  2. Trouble Brewing in Orange County. Policy Brief

    Science.gov (United States)

    Buck, Stuart

    2010-01-01

    Orange County will soon face enormous budgetary pressures from the growing deficits in public pensions, both at a state and local level. In this policy brief, the author estimates that Orange County faces a total $41.2 billion liability for retiree benefits that are underfunded--including $9.4 billion for the county pension system and an estimated…

  3. Orange County Photovoltaic Project & Educational COmponent

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Renee [Orange County Government, FL (United States)

    2016-02-12

    The purpose of this report is to discuss the projects implemented, utilizing Department of Energy grant funds, to support the use and understanding of renewable energy in Orange County, Florida and the Greater Orlando Area. Orange County is located in the State of Florida and is most popularly referred to as Orlando. The greater Orlando area’s current population is 1,225,267 and in 2015 was the first destination to surpass 60 million visitors. Orange County utilized grant funds to add to the growing demand for access to charging stations by installing one level 2 dual NovaCharge CT4021 electric vehicle charging station at the Orange County/University of Florida Cooperative Extension Center. The charging station is considered a “smart” charger connected to a central network operated by a third party. Data collected includes the number of charging sessions, session start and end times, the electricity usage, greenhouse gases saved and other pertinent data used for reporting purposes. Orange County continues to support the use of electric vehicles in Metro Orlando and this project continues to bring awareness to our public regarding using alternative vehicles. Additionally, we offer all visitors to the Orange County/University of Florida Cooperative Extension Center free charges for their electric vehicles 24 hours a day. Since the operation of the charging station there have been 52 unique driver users, a total of 532.2258 kg of greenhouse gas savings and 159.03 gallons of gasoline savings. The installation of the additional electric vehicle charging station is part of a county-wide goal of promoting implementation of renewable energy technologies as well as supporting the use of electric vehicles including the Drive Electric Orlando & Florida programs. http://driveelectricorlando.com/ & ; http://www.driveelectricflorida.org/ . Grant funds were also used for Outreach and Educational efforts. Educational efforts about renewable energy were accomplished through

  4. Aerial Photography and Imagery, Ortho-Corrected - 2012 Digital Orthophotos - Orange County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This metadata describes the digital orthoimagery covering Orange County, FL. This orthoimagery was collected under contract to the Orange County Property Appraiser...

  5. Unconsolidated Aquifers in Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2000-01-01

    Unconsolidated aquifers consisting of saturated sand and gravel are capable of supplying large quantities of good-quality water to wells in Tompkins County, but little published geohydrologic inform ation on such aquifers is available. In 1986, the U.S.Geological Survey (USGS) began collecting geohydrologic information and well data to construct an aquifer map showing the extent of unconsolidated aquifers in Tompkins county. Data sources included (1) water-well drillers. logs; (2) highway and other construction test-boring logs; (3) well data gathered by the Tompkins County Department of Health, (4) test-well logs from geohydrologic consultants that conducted projects for site-specific studies, and (5) well data that had been collected during past investigations by the USGS and entered into the National Water Information System (NWIS) database. In 1999, the USGS, in cooperation with the Tompkins County Department of Planning, compiled these data to construct this map. More than 600 well records were entered into the NWIS database in 1999 to supplement the 350 well records already in the database; this provided a total of 950 well records. The data were digitized and imported into a geographic information system (GIS) coverage so that well locations could be plotted on a map, and well data could be tabulated in a digital data base through ARC/INFO software. Data on the surficial geology were used with geohydrologic data from well records and previous studies to delineate the extent of aquifers on this map. This map depicts (1) the extent of unconsolidated aquifers in Tompkins County, and (2) locations of wells whose records were entered into the USGS NWIS database and made into a GIS digital coverage. The hydrologic information presented here is generalized and is not intended for detailed site evaluations. Precise locations of geohydrologic-unit boundaries, and a description of the hydrologic conditions within the units, would require additional detailed, site

  6. Orange County Government Solar Demonstration and Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Renee [Orange County Florida, Orlando, Florida (United States); Cunniff, Lori [Orange County Florida, Orlando, Florida (United States)

    2015-05-12

    Orange County Florida completed the construction of a 20 kilowatt Solar Demonstration and Research Facility in March 2015. The system was constructed at the Orange County/University of Florida Cooperative Extension Center whose electric service address is 6021 South Conway Road, Orlando, Florida 32802. The Solar Demonstration and Research Facility is comprised of 72 polycrystalline photovoltaic modules and 3 inverters which convert direct current from the solar panels to alternating current electricity. Each module produces 270 watts of direct current power, for a total canopy production of just under 20,000 watts. The solar modules were installed with a fixed tilt of 5 degrees and face south, toward the equator to maximize the amount of sunlight captures. Each year, the electricity generated by the solar array will help eliminate 20 metric tons of carbon dioxide emissions as well as provide covered parking for staff and visitors vehicles. The solar array is expected to generate 27,000 kilowatt hours of electricity annually equating to an estimated $266 savings in the monthly electric bill, or $3,180 annually for the Orange County/University of Florida Cooperative Extension Center. In addition to reducing the electric bill for the Extension Center, Orange County’s solar array also takes advantage of a rebate incentive offered by the local utility, Orlando Utility Commission, which provided a meter that measures the amount of power produced by the solar array. The local utility company’s Solar Photovoltaic Production Incentive will pay Orange County $0.05 per kilowatt hour for the power that is produced by the solar array. This incentive is provided in addition to Net Metering benefits, which is an effort to promote the use of clean, renewable energy on the electric grid. The Photovoltaic Solar Demonstration and Research Facility also serves an educational tool to the public; the solar array is tied directly into a data logger that provides real time power

  7. 76 FR 30754 - Notice of Availability of the Draft Environmental Impact Statement: Riverside and Orange Counties...

    Science.gov (United States)

    2011-05-26

    ... Environmental Impact Statement: Riverside and Orange Counties, CA AGENCY: Federal Highway Administration (FHWA... Riverside and Orange Counties, California. DATES: The comment period for the State Route 91 Corridor... in Riverside and Orange Counties. The State Route 91 Corridor Improvement Project proposes to widen...

  8. 2009 St. Johns River Water Management District (SJRWMD) Lidar: Portions of Orange and Seminole Counties, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The project area covers 318 square miles in the eastern half of Seminole County plus portions of north central and northeast Orange County in the state of Florida....

  9. 77 FR 3326 - Cancellation of Environmental Impact Statement in Orange County, NC

    Science.gov (United States)

    2012-01-23

    ... DEPARTMENT OF TRANSPORTATION Federal Highway Administration Cancellation of Environmental Impact Statement in Orange County, NC AGENCY: Federal Highway Administration (FHWA), North Carolina Department of... US 70 Business and US 70 Bypass in Orange County, North Carolina. The project is now cancelled...

  10. 75 FR 20874 - Union Pacific Railroad Company-Abandonment Exemption-in Orange County, CA

    Science.gov (United States)

    2010-04-21

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [STB Docket No. AB-33 (Sub-No. 281X)] Union Pacific Railroad Company--Abandonment Exemption--in Orange County, CA Union Pacific Railroad....65 near the City of Brea, in Orange County, CA. The line traverses United States Postal Service Zip...

  11. 78 FR 729 - Ellman Battery Superfund Site; Orlando, Orange County, FL; Notice of Settlement

    Science.gov (United States)

    2013-01-04

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9767-6; CERCLA-04-2012-3780] Ellman Battery Superfund Site; Orlando, Orange County, FL; Notice of Settlement AGENCY: Environmental Protection Agency (EPA). ACTION... Action at the Ellman Battery Superfund Site located in Orlando, Orange County, Florida. DATES: The Agency...

  12. 75 FR 29727 - Reorganization of Foreign-Trade Zone 37 Under Alternative Site Framework Orange County, NY

    Science.gov (United States)

    2010-05-27

    ... Zone 37 Under Alternative Site Framework Orange County, NY Pursuant to its authority under the Foreign... reorganization of general-purpose zones; Whereas, Orange County, New York, grantee of Foreign-Trade Zone 37... under the ASF with a service area of Orange County, New York, adjacent to the New York/Newark Customs...

  13. Hydrogeology and simulation of the effects of reclaimed-water application in west Orange and southeast Lake counties, Florida

    Science.gov (United States)

    O'Reilly, Andrew M.

    1998-01-01

    Wastewater reclamation and reuse has become increasingly popular as water agencies search for alternative water-supply and wastewater-disposal options. Several governmental agencies in central Florida currently use the land-based application of reclaimed water (wastewater that has been treated beyond secondary treatment) as a management alternative to surface-water disposal of wastewater. Water Conserv II, a water reuse project developed jointly by Orange County and the City of Orlando, began operation in December 1986. In 1995, the Water Conserv II facility distributed approximately 28 Mgal/d of reclaimed water for discharge to rapid-infiltration basins (RIBs) and for use as agricultural irrigation. The Reedy Creek Improvement District (RCID) began operation of RIBs in September 1990, and in 1995 these RIBs received approximately 6.7 Mgal/d of reclaimed water. Analyses of existing data and data collected during the course of this study were combined with ground-water flow modeling and particle-tracking analyses to develop a process-oriented evaluation of the regional effects of reclaimed water applied by Water Conserv II and the RCID RIBs on the hydrology of west Orange and southeast Lake Counties. The ground-water flow system beneath the study area is a multi-aquifer system that consists of a thick sequence of highly permeable carbonate rocks overlain by unconsolidated sediments. The hydrogeologic units are the unconfined surficial aquifer system, the intermediate confining unit, and the confined Floridan aquifer system, which consists of two major permeable zones, the Upper and Lower Floridan aquifers, separated by the less permeable middle semiconfining unit. Flow in the surficial aquifer system is dominated regionally by diffuse downward leakage to the Floridan aquifer system and is affected locally by lateral flow systems produced by streams, lakes, and spatial variations in recharge. Ground water generally flows laterally through the Upper Floridan aquifer

  14. Bedrock aquifers of eastern San Juan County, Utah

    Science.gov (United States)

    Avery, Charles

    1986-01-01

    This study is one of a series of studies appraising the waterbearing properties of the Navajo Sandstone and associated formations in southern Utah.  The study area is about 4,600 square miles, extending from the Utah-Arizona State line northward to the San Juan-Grand County line and westward from the Utah-Colorado State line to the longitude of about 109°50'.Some of the water-yielding formations are grouped into aquifer systems. The C aquifer is comprised of the DeChelly Sandstone Member of the Cutler Formation.  The P aquifer is comprised of the Cedar Mesa Member of the Cutler Formation and the undifferentiated Cutler Formation. The N aquifer is comprised of the sedimentary section that includes the Wingate Sandstone, Kayenta Formation, Navajo Sandstone, Carmel Formation, and Entrada sandstone.  The M aquifer is comprised of the Bluff Sandstone Member and other sandstone units of the Morrison Formation.  The D aquifer is comprised of the Burro Canyon Formation and Dakota Sandstone.  Discharge from the ground-water reservoir to the San Juan River between gaging stations at Four Corners and Mexican Hat is about 66 cubic feet per second.The N aquifer is the main aquifer in the study area. Recharge by infiltration of precipitation is estimated to be 25,000 acre-feet per year.  A major ground-water divide exists under the broad area east of Monticello.  The thickness of the N aquifer, where the sedimentary section is fully preserved and saturated, generally is 750 to 1,250 feet.   Hydraulic conductivity values obtained from aquifer tests range from 0.02 to 0.34 foot per day.  The total volume of water in transient storage is about 11 million acre-feet. Well discharge somewhat exceeded 2,340 acre-feet during 1981.  Discharge to the San Juan River from the N aquifer is estimated to be 6.9 cubic feet per second. Water quality ranges from a calcium bicarbonate to sodium chloride type water

  15. Heavy metals in navel orange orchards of Xinfeng County and their transfer from soils to navel oranges.

    Science.gov (United States)

    Cheng, Jinjin; Ding, Changfeng; Li, Xiaogang; Zhang, Taolin; Wang, Xingxiang

    2015-12-01

    This study investigated heavy metal concentrations in soils and navel oranges of Xinfeng County, a well-known navel orange producing area of China. The results showed that the average concentrations of lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As) and mercury (Hg) in orchard soils all increased compared to the regional background values, especially for Cd, which increased by 422%. When compared to the Chinese Environmental Quality Standard for soil (GB15618-1995), Pb, Cr and Hg concentrations in all orchard soil samples were below the limit standards, but Cd concentrations in 24 soil samples (21%) and As concentrations in 8 soil samples (7%) exceeded the limit standards. However, concentrations of all heavy metals in navel orange pulps were within the National Food Safety Standard of China (GB 2762-2012). Dietary risk assessment also showed that the exposure to these five heavy metals by consumption of navel oranges could hardly pose adverse health effects on adults and children. Since the range and degree of soil Cd pollution was widest and the most severe of all, Cd was taken as an example to reveal the transfer characteristics of heavy metals in soil-navel orange system. Cd concentrations in different organs of navel orange trees decreased in the following order: root>leaf>peel>pulp. That navel oranges planted in the Cd contaminated soils were within the national food safety standard was mainly due to the low transfer factor for Cd from soil to pulp (TFpulp). Further studies showed that TFpulp was significantly negatively correlated with soil pH, organic carbon (OC) and cation exchange capacity (CEC). Based on these soil properties, a prediction equation for TFpulp was established, which indicated that the risk for Cd concentration of navel orange pulp exceeding the national food limit is generally low, when soil Cd concentration is below 7.30 mg/kg. If appropriate actions are taken to increase soil pH, OC and CEC, Cd concentrations in navel orange pulps

  16. Hydrogeology and Analysis of Aquifer Characteristics in West-Central Pinellas County, Florida

    National Research Council Canada - National Science Library

    Broska, James C; Barnette, Holly L

    1999-01-01

    The U.S. Geological Survey, in cooperation with Pinellas County, Florida, conducted an investigation to describe the hydrogeology and analyze the aquifer characteristics in west-central Pinellas County...

  17. Characterization of the sediments overlying the Floridan aquifer system in Alachua County, Florida

    OpenAIRE

    Green, Richard; Duncan, Joel; Seal, Thomas; Weinberg, J. Michael; Rupert, Frank

    1989-01-01

    The primary purpose of this project is to attempt to improve the existing hydrogeologic information through lithologic and hydrogeologic characterizations of the sediments overlying the Floridan aquifer system in Alachua County. These sediments locally comprise both the intermediate aquifer system and associated confining beds and the surficial aquifer system. (PDF has 119 pages.)

  18. Origin and destination survey results for the Orlando-Orange County Expressway Authority

    Science.gov (United States)

    2000-09-01

    This report describes the design, administration, and analysis of the Origin/Destination survey of users of the Orlando-Orange County Expressway System. The basic survey form consisted of a letter-sized paper with the questionnaire on one side and a ...

  19. Capturing the Change. The Impact of Indochinese Refugees in Orange County; Challenges and Opportunities.

    Science.gov (United States)

    Baldwin, C. Beth

    This study was conducted to determine the effects of the influx of 56,000 Indochinese refugees into Orange County, California between 1975 and 1982 and to make recommendations for integrating these people into the local labor force. In order to identify employer needs, characteristics of the refugee population, and the perceptions of both the…

  20. Ground-water levels in aquifers used for residential supply, Campton Township, Kane County, Illinois

    Science.gov (United States)

    Kay, Robert T.; Kraske, Kurt A.

    1996-01-01

    The U.S. Geological Survey, in cooperation with the Campton Township Board of Trustees, measured water levels in the aquifers used for residential supply in Campton Township, Kane County, Illinois. Aquifers used for residential supply are the shallow and deep aquifers in the glacial drift, composed of unconsolidated sand and gravels; the Alexandrian-Maquoketa aquifer, composed of dolomite and shale of the Alexandrian Series and the Maquoketa Group; the Galena-Platteville aquifer, composed of dolomite of the Platteville and Galena Groups; and the Ancell aquifer, composed of sandstones of the Glenwood Formation and the St. Peter Sanstone. Water-level altitudes in the shallow drift aquifers generally follow surface topography. Analysis of water-level data does not clearly indicate overutilization of these aquifers. Water-level altitudes in the deep drift aquifers decrease from west to east. Comparison of historical depth to water measurements with current (1995) measurements indicates large decreases in water levels in some areas. The deep drift aquifers may be overutilized at these locations. Water-level altitudes in the Alexandrian-Maquoketa aquifer generally decrease from west to east. The potentiometric surface of the aquifer follows the bedrock-surface topography in some locations. Localized low water-level altitudes and large decreases in water levels indicate the Alexandrian-Maquoketa aquifer is overutilized in several areas. Water-level altitudes in the wells finished in the Galena- Platteville aquifer vary by more than 300 feet. Large decreases in water levels in wells finished in the Galena-Platteville aquifer indicate the Galena-Platteville and Alexandrian-Maquoketa aquifers are overutilized in the northern part of the township. Water-level altitudes in the wells finished in the Ancell aquifer are also highly variable. There is no indication that the Ancell aquifer is overutilized.

  1. Ground-water quality of the surficial aquifer system and the upper Floridan Aquifer, Ocala National Forest and Lake County, Florida, 1990-99

    Science.gov (United States)

    Adamski, J.C.; Knowles, Leel

    2001-01-01

    Data from 217 ground-water samples were statistically analyzed to assess the water quality of the surficial aquifer system and Upper Floridan aquifer in the Ocala National Forest and Lake County, Florida. Samples were collected from 49 wells tapping the surficial aquifer system, 141 wells tapping the Upper Floridan aquifer, and from 27 springs that discharge water from the Upper Floridan aquifer. A total of 136 samples was collected by the U.S. Geological Survey from 1995 through 1999. These data were supplemented with 81 samples collected by the St. Johns River Water Management District and Lake County Water Resources Management from 1990 through 1998. In general, the surficial aquifer system has low concentrations of total dissolved solids (median was 41 milligrams per liter) and major ions. Water quality of the surficial aquifer system, however, is not homogeneous throughout the study area. Concentrations of total dissolved solids, many major ions, and nutrients are greater in samples from Lake County outside the Ocala National Forest than in samples from within the Forest. These results indicate that the surficial aquifer system in Lake County outside the Ocala National Forest probably is being affected by agricultural and (or) urban land-use practices. High concentrations of dissolved oxygen (less than 0.1 to 8.2 milligrams per liter) in the surficial aquifer system underlying the Ocala National Forest indicate that the aquifer is readily recharged by precipitation and is susceptible to surface contamination. Concentrations of total dissolved solids were significantly greater in the Upper Floridan aquifer (median was 182 milligrams per liter) than in the surficial aquifer system. In general, water quality of the Upper Floridan aquifer was homogeneous, primarily being a calcium or calciummagnesium- bicarbonate water type. Near the St. Johns River, the water type of the Upper Floridan aquifer is sodium-chloride, corresponding to an increase in total dissolved

  2. Investigation of Ground-Water Availability and Quality in Orange County, North Carolina

    Science.gov (United States)

    Cunningham, William L.; Daniel, Charles C.

    2001-01-01

    A countywide inventory was conducted of 649 wells in nine hydrogeologic units in Orange County, North Carolina. As a result of this inventory, estimates of ground-water availability and use were calculated, and water-quality results were obtained from 51 wells sampled throughout the County from December 1998 through January 1999. The typical well in Orange County has an average depth of 208 feet, an average casing length of 53.6 feet, a static water level of 26.6 feet, a yield of 17.6 gallons per minute, and a well casing diameter of 6.25 inches. The saturated thickness of the regolith averages 27.0 feet and the yield per foot of total well depth averages 0.119 gallon per minute per foot. Two areas of the County are more favorable for high-yield wells—a west-southwest to east-northeast trending area in the northwestern part of the County, and a southwest to northeast trending area in the southwestern part of the County. Well yields in Orange County show little correlation with topographic or hydrogeologic setting.Fifty-one sampling locations were selected based on (a) countywide areal distribution, (b) weighted distribution among hydrogeologic units, and (c) permission from homeowners. The list of analytes for the sampling program consisted of common anions and cations, metals and trace elements, nutrients, organic compounds, and radon. Samples were screened for the presence of fuel compounds and pesticides by using immuno-assay techniques. Dissolved oxygen, pH, temperature, specific conductance, and alkalinity were measured in the field. The median pH was 6.9, which is nearly neutral, and the median hardness was 75 milligrams per liter calcium carbonate. The median dissolved solids concentration was 125 milligrams per liter, and the median specific conductance was 175 microsiemens per centimeter at 25 degrees Celsius. Orange County ground water is classified as a calcium-bicarbonate type.High nutrient concentrations were not found in samples collected for this

  3. 76 FR 19373 - The 14th Annual Food and Drug Administration-Orange County Regulatory Affairs Educational...

    Science.gov (United States)

    2011-04-07

    ... Orange County Regulatory Affairs Discussion Group, Attention to Detail, 5319 University Dr., suite 641... verified the Web site address, but FDA is not responsible for any subsequent changes to the Web site after.../ Students.* After May 1, 2011, $725.00 for members, $775.00 for non- members, and $475.00 for FDA/Government...

  4. ANAEROBIC DEGRADATION OF MTBE TO TBA IN GROUND WATER AT GASOLINE SPILL SITES IN ORANGE COUNTY, CALIFORNIA

    Science.gov (United States)

    Although tert-Butyl Alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared to the concentrations of the conventional fuel oxygenate Methyl tert-Butyl Ether (MTBE). In t...

  5. IDENTIFYING THE CAUSE OF HIGH CONCENTRATIONS OF TBA IN GROUNDWATER AT GASOLINE SPIILL SITES IN ORANGE COUNTY, CALIFORNIA

    Science.gov (United States)

    Monitoring at gasoline spills in Orange County, California has revealed that TBA (tertiary butyl alcohol) is often present at high concentrations in ground water. To manage the hazard associated with the presence of TBA, staff of the UST Local Oversight Program (LOP) of the Oran...

  6. Elevated levels of radioactivity in water wells in Los Angeles and Orange Counties, California

    International Nuclear Information System (INIS)

    Weigand, J.; Yamamoto, G.; Gaston, W.

    1987-01-01

    Levels of gross alpha particle radioactivity nearly three times the maximum contamination levels (MCL) have been detected for several years in well waters and related surface waters in Los Angeles and Orange Counties, California. A few elevated levels of uranium have also been recorded. The affected wells and related surface waters represent only a minor fraction of the water sampled and tested in this area. None of the excessive radioactivity is believed to persist in the municipal waters sold to the public, due to the customary blending of waters from several wells or sources which water purveyors practice. This papers is a preliminary survey of the occurrence, possible sources, fate, and implications of these elevated radioactivity levels

  7. Access to Firearms Among Orange County Youth: A School-based Study

    Directory of Open Access Journals (Sweden)

    Gorchynski, Julie

    2006-08-01

    Full Text Available Objective: School-associated firearm violence among children and adolescents is a national public concern. The objective of this study was to determine the accessibility of firearms, methods of firearm access and firearm safety knowledge among middle and high school students in Orange County, California. Methods: After permission from school officials and parents was obtained, a 24-question survey was distributed to 176 students in grades 6 through 12 at four schools in Orange County. Data was collected over a 12-month period beginning in February 2003. Data analysis was presented in proportions. In addition, cross tabulations were performed to determine which factors were associated with access to guns, having fired a gun, and firearm possession at school. Results: The mean age of participants was 16.1 years. Seventy-seven (45% were male, 121 (69% Hispanic, and 171 (94% were of middle income. Four participants (2.3% admitted to gang involvement, 47 (26.7% had fired a gun. Those more likely to have fired a gun appeared to be non-Hispanic males (p= 0.001. Seventy-five (43% reported access to a gun. Older students and those in grades 9 to 12 were more likely to have access to a gun (p= 0.01, which they stated could be obtained from their homes, friends or relatives (4.5% to 22%. No students admitted to bringing a gun to school. Two (1.1% students stated that they had thought of using a gun at school. One hundred one students (62% were taught firearm safety by their parent(s. Conclusion: Almost half of the students in this study acknowledged that they could gain access to a gun and two students had thought about using a gun at school. Firearm education, safety and counseling are of paramount importance to ensure safety among school youths.

  8. Hydrogeology and simulation of ground-water flow in the Silurian-Devonian aquifer system, Johnson County, Iowa

    Science.gov (United States)

    Tucci, Patrick; McKay, Robert M.

    2006-01-01

    Bedrock of Silurian and Devonian age (termed the “Silurian-Devonian aquifer system”) is the primary source of ground water for Johnson County in east-central Iowa. Population growth within municipal and suburban areas of the county has resulted in increased amounts of water withdrawn from this aquifer and water-level declines in some areas. A 3-year study of the hydrogeology of the Silurian-Devonian aquifer system in Johnson County was undertaken to provide a quantitative assessment of ground water resources and to construct a ground-water flow model that can be used by local governmental agencies as a management tool.

  9. Hydrogeology of Valley-Fill Aquifers and Adjacent Areas in Eastern Chemung County, New York

    Science.gov (United States)

    Heisig, Paul M.

    2015-10-19

    The extent, hydrogeologic framework, and potential well yields of valley-fill aquifers within a 151-square-mile area of eastern Chemung County, New York, were investigated, and the upland distribution of till thickness over bedrock was characterized. The hydrogeologic framework of these valleyfill aquifers was interpreted from multiple sources of surficial and subsurface data and an interpretation of the origin of the glacial deposits, particularly during retreat of glacial ice from the region. Potential yields of screened wells are based on the hydrogeologic framework interpretation and existing well-yield data, most of which are from wells finished with open-ended well casing.

  10. Spatial and temporal distribution of mosquitoes in underground storm drain systems in Orange County, California.

    Science.gov (United States)

    Su, Tianyun; Webb, James P; Meyer, Richard P; Mulla, Mir S

    2003-06-01

    Underground storm drain systems in urban areas of Orange County include thousands of miles of gutters and underground pipelines, plus hundreds of thousands of catch basins and manhole chambers, all of which drain runoff water from residential, business and commercial establishments as well as highways and streets. These systems serve as major developmental and resting sites for anthropophilic and zoophilic mosquitoes. Investigations on spatial and temporal distribution of mosquitoes in these systems were conducted during November 1999 to October 2001. Immature mosquitoes were sampled by dipper or dipping net and adult mosquitoes by non-attractive CDC traps in manhole chambers, catch basins and a large drain. Culex quinquefasciatus Say prevailed at all 15 structures of the study in 4 cities of Orange County as the predominant species (> 99.9%). Larvae and pupae were present from April to October, peaking from May to September. The population density of adults was the lowest in February with 2 peaks of abundance occurring from May to July and from September to October. Manhole chambers and catch basins harbored more mosquitoes than did the large drain. Minimum and maximum temperatures during a 24 h sampling period was an important factor influencing adult mosquito activity and catches; more mosquitoes were caught in traps when it was warmer, especially when the minimum temperatures were higher. The proportion of females to males in general increased during winter and early spring an ddeclined during summer. The proportion of gravid females to empty females was higher during the winter than in summer. Other dipteran taxa such as psychodid moth flies and chironomid midges exhibited somewhat similar seasonal patterns as did mosquito populations. Average water temperature was relatively stable throughout the year, and water quality in underground drain systems was characterized by low dissolved oxygen, coupled with above normal electrical conductivity and salinity levels

  11. Hydrogeologic framework and salinity distribution of the Floridan aquifer system of Broward County, Florida

    Science.gov (United States)

    Reese, Ronald S.; Cunningham, Kevin J.

    2014-01-01

    Concerns about water-level decline and seawater intrusion in the surficial Biscayne aquifer, currently the principal source of water supply to Broward County, prompted a study to refine the hydrogeologic framework of the underlying Floridan aquifer system to evaluate its potential as an alternative source of supply. This report presents cross sections that illustrate the stratigraphy and hydrogeology in eastern Broward County; maps of the upper surfaces and thicknesses of several geologic formations or units within the Floridan aquifer system; and maps of two of the potentially productive water-bearing zones within the system, the Upper Floridan aquifer and the Avon Park permeable zone. An analysis of data on rock depositional textures, associated pore networks, and flow zones in the Floridan aquifer system shows that groundwater moves through the system in two ways. These data support a conceptual, dual-porosity model of the system wherein groundwater moves either as concentrated flow in discrete, thin bedding-plane vugs or zones of vuggy megaporosity, or as diffuse flow through rocks with primarily interparticle and moldic-particle porosity. Because considerable exchange of groundwater may occur between the zones of vuggy and matrix-dominated porosity, understanding the distribution of that porosity and flow zone types is important to evaluating the suitability of the several units within the Floridan aquifer system for managing the water through practices such as aquifer storage and recovery (ASR). The salinity of the water in the Floridan aquifer system is highest in the central part of the study area, and lower toward the north and south. Although salinity generally increases with depth, in the western part of the study area a zone of relatively high saline water is perched above water of lower salinity in the underlying Avon Park permeable zone. Overall, the areas of highest salinity in the aquifer system coincide with those with the lowest estimated

  12. Hydrogeology and water quality of the Shell Valley Aquifer, Rolette County, North Dakota

    Science.gov (United States)

    Strobel, M.L.

    1997-01-01

    The Shell Valley aquifer is the sole source of water for the city of Belcourt and the primary source of water for most of the Turtle Mountain Indian Reservation. The Turtle Mountain Band of Chippewa Indians is concerned about the quantity and quality of water in the Shell Valley aquifer, which underlies about 56 square miles in central Rolette County and has an average saturated thickness of about 35 feet. Water levels across most of the Shell Valley aquifer fluctuate with variations in precipitation but generally are stable. Withdrawals from the north well field decreased slightly during 1976-95, but withdrawals from the south well field increased during 1983-95. Water levels in the south well field declined as withdrawals increased. The average decline during the last 8 years was about 1.75 feet per year. The water level has reached the well screen in at least one of the production wells. Most of the water in the aquifer is a bicarbonate type and has dissolved-solids concentrations ranging from 479 to 1,510 milligrams per liter. None of the samples analyzed had detectable concentrations of pesticides, but hydrocarbons were detected in both ground- and surfacewater samples. Polycyclic aromatic hydrocarbons (PAH) were the most frequently detected hydrocarbons. Benzene, toluene, ethylbenzene, and xylene (BTEX), polychlorinated biphenyls (PCB), and pentachlorophenol (PCP) also were detected.Generally, the Shell Valley aquifer is an adequate source of water for current needs, but evaluation of withdrawals in relation to a knowledge of aquifer hydrology would be important in quantifying sustainable water supplies. Water quality in the aquifer generally is good; the Turtle Mountain Band of Chippewa Indians filters the water to reduce concentrations of dissolved constituents. Hydrocarbons, although present in the aquifer, have not been quantified and may not pose a general health risk. Further analysis of the quantity and distribution of the hydrocarbons would be useful

  13. Rickettsial Infections among Ctenocephalides felis and Host Animals during a Flea-Borne Rickettsioses Outbreak in Orange County, California

    Science.gov (United States)

    Fogarty, Carrie; Krueger, Laura; Macaluso, Kevin R.; Odhiambo, Antony; Nguyen, Kiet; Farris, Christina M.; Luce-Fedrow, Alison; Bennett, Stephen; Jiang, Ju; Sun, Sokanary; Cummings, Robert F.; Richards, Allen L.

    2016-01-01

    Due to a resurgence of flea-borne rickettsioses in Orange County, California, we investigated the etiologies of rickettsial infections of Ctenocephalides felis, the predominant fleas species obtained from opossums (Didelphis virginiana) and domestic cats (Felis catus), collected from case exposure sites and other areas in Orange County. In addition, we assessed the prevalence of IgG antibodies against spotted fever group (SFGR) and typhus group (TGR) rickettsiae in opossum sera. Of the 597 flea specimens collected from opossums and cats, 37.2% tested positive for Rickettsia. PCR and sequencing of rickettsial genes obtained from C. felis flea DNA preparations revealed the presence of R. typhi (1.3%), R. felis (28.0%) and R. felis-like organisms (7.5%). Sera from opossums contained TGR-specific (40.84%), but not SFGR-specific antibodies. The detection of R. felis and R. typhi in the C. felis fleas in Orange County highlights the potential risk for human infection with either of these pathogens, and underscores the need for further investigations incorporating specimens from humans, animal hosts, and invertebrate vectors in endemic areas. Such studies will be essential for establishing a link in the ongoing flea-borne rickettsioses outbreaks. PMID:27537367

  14. Geohydrology and water quality of the North Platte River alluvial aquifer, Garden County, Western Nebraska

    Science.gov (United States)

    Steele, Gregory V.; Cannia, James C.

    1995-01-01

    In 1993, a 3-year study was begun to describe the geohydrology and water quality of the North Platte River alluvial aquifer near Oshkosh, Garden County, Nebraska. The study's objectives are to evaluate the geohydrologic characteristics of the alluvial aquifer and to establish a network of observation wells for long-term monitoring of temporal variations and spatial distributions of nitrate and major-ion concentrations. Monitor wells were installed at 11 sites near Oshkosh. The geohydrology of the aquifer was characterized based on water-level measurements and two short-term aquifer tests. Bimonthly water samples were collected and analyzed for pH, specific conductivity, water temperature, dissolved oxygen, and nutrients that included dissolved nitrate. Concentrations of major ions were defined from analyses of semiannual water samples. Analyses of the geohydrologic and water-quality data indicate that the aquifer is vulnerable to nitrate contamination. These data also show that nitrate concentrations in ground water flowing into and out of the study area are less than the U.S. Environmental Protection Agency's Maximum Concentration Level of 10 milligrams per liter for drinking water. Ground water from Lost Creek Valley may be mixing with ground water in the North Platte River Valley, somewhat moderating nitrate concentrations near Oshkosh.

  15. Social Diffusion of Water Conservation: A Study of Residential Turf Rebate Programs in Orange County, California

    Science.gov (United States)

    Duong, K.; Grant, S. B.; Rippy, M.; Feldman, D.

    2017-12-01

    From 2011 to 2017, the combination of record low precipitation and extreme warm temperatures resulted in the most severe drought in California's written history. In April 2015, Governor Jerry Brown issued an executive order mandating a statewide 25% reduction in potable urban water usage. Under such circumstances, outdoor watering is an obvious target for restriction, because it can account for a large fraction of total domestic water usage, up to 50% in the arid southwest [Syme et. al 2004, Cameron et. al 2012]. In this study we analyzed one such effort, in which the Irvine Ranch Water District (IRWD) in Orange County (California) offered a financial incentive through a turf rebate program to encourage Irvine residents to replace turf grass with drought tolerant landscaping. We focused specifically on the number of residents who applied to the turf rebate program. Our hypothesis was that the observed application rate (number of applicants per month) is influenced by a combination of (a) financial incentives issued by IRWD, (b) drought awareness, and (c) the fraction of neighbors that have already applied to the program (a phenomenon that can be described quantitatively through models of social contagion or social diffusion [Karsai et. al 2014]). Our preliminary results indicate that applications to the program occurred in geographic "hot spots", consistent with the idea that early adopters may have influenced neighbors to retrofit their lawns. We are currently evaluating the geographic, demographic, and temporal drivers that influence the rate of spontaneous adoption, the rate of adoption under influence, and the total size of the susceptible population. Overall, our goal is to identify the key factors that contribute to early rapid uptake of conservation behavior, and the rapid diffusion of that behavior through the community.

  16. Simulation of groundwater flow in the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Clark, Brian R.; Bumgarner, Johnathan R.; Houston, Natalie A.; Foster, Adam L.

    2014-01-01

    The Edwards-Trinity aquifer is a vital groundwater resource for agricultural, industrial, and public supply uses in the Pecos County region of western Texas. The U.S. Geological Survey completed a comprehensive, integrated analysis of available hydrogeologic data to develop a numerical groundwater-flow model of the Edwards-Trinity and related aquifers in the study area in parts of Brewster, Jeff Davis, Pecos, and Reeves Counties. The active model area covers about 3,400 square miles of the Pecos County region of Texas west of the Pecos River, and its boundaries were defined to include the saturated areas of the Edwards-Trinity aquifer. The model is a five-layer representation of the Pecos Valley, Edwards-Trinity, Dockum, and Rustler aquifers. The Pecos Valley aquifer is referred to as the alluvial layer, and the Edwards-Trinity aquifer is divided into layers representing the Edwards part of the Edwards-Trinity aquifer and the Trinity part of the Edwards-Trinity aquifer, respectively. The calibration period of the simulation extends from 1940 to 2010. Simulated hydraulic heads generally were in good agreement with observed values; 1,684 out of 2,860 (59 percent) of the simulated values were within 25 feet of the observed value. The average root mean square error value of hydraulic head for the Edwards-Trinity aquifer was 34.2 feet, which was approximately 4 percent of the average total observed change in groundwater-level altitude (groundwater level). Simulated spring flow representing Comanche Springs exhibits a pattern similar to observed spring flow. Independent geochemical modeling corroborates results of simulated groundwater flow that indicates groundwater in the Edwards-Trinity aquifer in the Leon-Belding and Fort Stockton areas is a mixture of recharge from the Barilla and Davis Mountains and groundwater that has upwelled from the Rustler aquifer.

  17. Simulated effects of groundwater withdrawals from the Kirkwood-Cohansey aquifer system and Piney Point aquifer, Maurice and Cohansey River Basins, Cumberland County and vicinity, New Jersey

    Science.gov (United States)

    Gordon, Alison D.; Buxton, Debra E.

    2018-05-10

    The U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection, conducted a study to simulate the effects of withdrawals from the Kirkwood-Cohansey aquifer system on streamflow and groundwater flow and from the Piney Point aquifer on water levels in the Cohansey and Maurice River Basins in Cumberland County and surrounding areas. The aquifer system consists of gravel, sand, silt, and clay sediments of the Cohansey Sand and Kirkwood Formation that dip and thicken to the southeast. The aquifer system is generally an unconfined aquifer, but semi-confined and confined conditions exist within the Cumberland County study area. The Kirkwood-Cohansey aquifer system is present throughout Cumberland County and is the principal source of groundwater for public, domestic, agricultural-irrigation, industrial, and commercial water uses. In 2008, reported groundwater withdrawals from the Kirkwood-Cohansey aquifer system in the study area totaled about 21,700 million gallons—about 36 percent for public supply; about 49 percent for agricultural irrigation; and about 15 percent for industrial, commercial, mining by sand and gravel companies, and non-agricultural irrigation uses. A transient numerical groundwater-flow model of the Kirkwood-Cohansey aquifer system was developed and calibrated by incorporating monthly recharge, base-flow estimates, water-level data, surface-water diversions and discharges, and groundwater withdrawals from 1998 to 2008.The groundwater-flow model was used to simulate five withdrawal scenarios to observe the effects of additional groundwater withdrawals on the Kirkwood-Cohansey aquifer system and streams. These scenarios include (1) average 1998 to 2008 monthly groundwater withdrawals (baseline scenario); (2) monthly full-allocation groundwater withdrawals, but agricultural-irrigation withdrawals were decreased for October through March; (3) monthly full-allocation groundwater withdrawals; (4) estimated monthly

  18. Hydrogeology and water quality of the Floridan aquifer system and effect of Lower Floridan aquifer withdrawals on the Upper Floridan aquifer at Barbour Pointe Community, Chatham County, Georgia, 2013

    Science.gov (United States)

    Gonthier, Gerard; Clarke, John S.

    2016-06-02

    Two test wells were completed at the Barbour Pointe community in western Chatham County, near Savannah, Georgia, in 2013 to investigate the potential of using the Lower Floridan aquifer as a source of municipal water supply. One well was completed in the Lower Floridan aquifer at a depth of 1,080 feet (ft) below land surface; the other well was completed in the Upper Floridan aquifer at a depth of 440 ft below land surface. At the Barbour Pointe test site, the U.S. Geological Survey completed electromagnetic (EM) flowmeter surveys, collected and analyzed water samples from discrete depths, and completed a 72-hour aquifer test of the Floridan aquifer system withdrawing from the Lower Floridan aquifer.Based on drill cuttings, geophysical logs, and borehole EM flowmeter surveys collected at the Barbour Pointe test site, the Upper Floridan aquifer extends 369 to 567 ft below land surface, the middle semiconfining unit, separating the two aquifers, extends 567 to 714 ft below land surface, and the Lower Floridan aquifer extends 714 to 1,056 ft below land surface.A borehole EM flowmeter survey indicates that the Upper Floridan and Lower Floridan aquifers each contain four water-bearing zones. The EM flowmeter logs of the test hole open to the entire Floridan aquifer system indicated that the Upper Floridan aquifer contributed 91 percent of the total flow rate of 1,000 gallons per minute; the Lower Floridan aquifer contributed about 8 percent. Based on the transmissivity of the middle semiconfining unit and the Floridan aquifer system, the middle semiconfining unit probably contributed on the order of 1 percent of the total flow.Hydraulic properties of the Upper Floridan and Lower Floridan aquifers were estimated based on results of the EM flowmeter survey and a 72-hour aquifer test completed in Lower Floridan aquifer well 36Q398. The EM flowmeter data were analyzed using an AnalyzeHOLE-generated model to simulate upward borehole flow and determine the transmissivity of

  19. Geohydrology of the valley-fill aquifer in the Jamestown area, Chautauqua County, New York

    Science.gov (United States)

    Anderson, H.R.; Stelz, W.G.; Belli, J.L.; Allen, R.V.

    1982-01-01

    This report is the sixth in a series of 11 map sets depicting geohydrologic conditions in selected aquifers in upstate New York. Geohydrologic data are compiled on six maps at 1:24,000 scale. Together, the maps provide a comprehensive overview of a major valley-fill aquifer in southeastern Chautauqua County. The maps include surficial geology, geologic sections, water-infiltration potential of soil zone, aquifer thickness, potentiometric-surface elevations and land use. The valley-fill deposits consist of alluvial silt and sand, glacial-outwash (sand and gravel), ice-contact sand and gravel, till, and lacustrine silt and clay. The sand and gravel beds have relatively high permeabilities whereas the till, silt and clay deposits have relatively low permeabilities. Water-table conditions prevail in u nconfined sand and gravel beds along the valley margin. Artesian conditions prevail in confined sand and gravel buried under silt and clay in the middle of the valley. Recharge occurs mainly along the margin of the valley, where the land surface is highly permeable and runoff from the hillsides is concentrated. The use of land overlying the aquifer is predominantly agricultural and residential with lesser amounts of commercial and industrial uses. (USGS)

  20. Geohydrology of the valley-fill aquifer in the Corning area, Steuben County, New York

    Science.gov (United States)

    Miller, Todd S.; Belli, J.L.; Allen, R.V.

    1982-01-01

    This report is the seventh in a series of 11 map sets depicting geohydrologic conditions in selected aquifers in upstate New York. Geohydrologic data are compiled on six maps at 1:24,000 scale. Together, the maps provide a comprehensive overview of a major valley-fill aquifer in southeastern Steuben County. The maps include surficial geology, geologic sections, water-infiltration potential of soil zone, aquifer thickness, potentiometric-surface elevations, and land use. The valley-fill deposits consist of alluvial silt, sand, and gravel, glacial-outwash (sand and gravel), till, and lacustrine silt and clay. The sand and gravel beds have relatively high permeabilities, whereas the till and silt deposits have relatively low permeabilities. Water-table conditions prevail in unconfined sand and gravel along the valley margin. Artesian conditions are found locally in sand and gravel confined under silt and clay in the middle of the valley. Recharge occurs nearly everywhere on the valley floor, but principally along the margin of the valley, where highly permeable land surface conditions exist, and runoff from the hillsides is concentrated. The use of land overlying the aquifer is a mixture of residential, commercial, agricultural, and industrial uses. (USGS)

  1. Map Showing Geology and Hydrostratigraphy of the Edwards Aquifer Catchment Area, Northern Bexar County, South-Central Texas

    Science.gov (United States)

    Clark, Amy R.; Blome, Charles D.; Faith, Jason R.

    2009-01-01

    Rock units forming the Edwards and Trinity aquifers in northern Bexar County, Texas, are exposed within all or parts of seven 7.5-minute quadrangles: Bulverde, Camp Bullis, Castle Hills, Helotes, Jack Mountain, San Geronimo, and Van Raub. The Edwards aquifer is the most prolific ground-water source in Bexar County, whereas the Trinity aquifer supplies water for residential, commercial, and industrial uses for areas north of the San Antonio. The geologic map of northern Bexar County shows the distribution of informal hydrostratigraphic members of the Edwards Group and the underlying upper member of the Glen Rose Limestone. Exposures of the Glen Rose Limestone, which forms the Trinity aquifer alone, cover approximately 467 km2 in the county. This study also describes and names five informal hydrostratigraphic members that constitute the upper member of the Glen Rose Limestone; these include, in descending order, the Caverness, Camp Bullis, Upper evaporite, Fossiliferous, and Lower evaporite members. This study improves our understanding of the hydrogeologic connection between the two aquifers as it describes the geology that controls the infiltration of surface water and subsurface flow of ground water from the catchment area (outcropping Trinity aquifer rocks) to the Edwards water-bearing exposures.

  2. Mapping saltwater intrusion in the Biscayne Aquifer, Miami-Dade County, Florida using transient electromagnetic sounding

    Science.gov (United States)

    Fitterman, David V.

    2014-01-01

    Saltwater intrusion in southern Florida poses a potential threat to the public drinking-water supply that is typically monitored using water samples and electromagnetic induction logs collected from a network of wells. Transient electromagnetic (TEM) soundings are a complementary addition to the monitoring program because of their ease of use, low cost, and ability to fill in data gaps between wells. TEM soundings have been used to map saltwater intrusion in the Biscayne aquifer over a large part of south Florida including eastern Miami-Dade County and the Everglades. These two areas are very different with one being urban and the other undeveloped. Each poses different conditions that affect data collection and data quality. In the developed areas, finding sites large enough to make soundings is difficult. The presence of underground pipes further restricts useable locations. Electromagnetic noise, which reduces data quality, is also an issue. In the Everglades, access to field sites is difficult and working in water-covered terrain is challenging. Nonetheless, TEM soundings are an effective tool for mapping saltwater intrusion. Direct estimates of water quality can be obtained from the inverted TEM data using a formation factor determined for the Biscayne aquifer. This formation factor is remarkably constant over Miami-Dade County owing to the uniformity of the aquifer and the absence of clay. Thirty-six TEM soundings were collected in the Model Land area of southeast Miami-Dade County to aid in calibration of a helicopter electromagnetic (HEM) survey. The soundings and HEM survey revealed an area of saltwater intrusion aligned with canals and drainage ditches along U.S. Highway 1 and the Card Sound Road. These canals and ditches likely reduced freshwater levels through unregulated drainage and provided pathways for seawater to flow at least 12.4 km inland.

  3. Ground-water conditions in the Triassic aquifer in Deaf Smith and Swisher Counties

    International Nuclear Information System (INIS)

    Duffin, G.L.

    1984-12-01

    In April 1984, the Director of the Nuclear Waste Programs of the Governor's Office requested a study be undertaken by the Texas Department of Water Resources on the ground-water conditions in the Triassic aquifer in Deaf Smith and Swisher Counties. The need for the study was prompted by the U.S. Department of Energy's (DOE) announcement that consideration was being given to locating high-level nuclear waste repository sites in these counties and by the concern over what impacts operation of such sites might have on the ground-water resources in the area. The results of the study, including a discussion of the occurrence of ground water and a tabulation of basic data obtained during the investigation are presented in this report

  4. Iron in the aquifer system of Suffolk County, New York, 1990–98

    Science.gov (United States)

    Brown, Craig J.; Walter, Donald A.; Colabufo, Steven

    1999-01-01

    High concentrations of dissolved iron in ground water contribute to the biofouling of public-supply wells, and the treatment and remediation of biofouling are costly. Water companies on Long Island, N.Y., spend several million dollars annually to recondition, redevelop, and replace supply wells and distribution lines; treat dissolved iron with sequestering agents or by filtration; and respond to iron-related complaints by customers. This report summarizes the results of studies done by the U.S. Geological Survey, in cooperation with the Suffolk County Water Authority, to characterize the geochemistry and microbiology of iron in the aquifer system of Suffolk County. This information should be helpful for the siting and operation of supply wells.Concentrations of dissolved iron in Long Island's ground water, and the frequency of iron biofouling of wells, are highest in ground-water-discharge zones, particularly near the south shore. Ground water along a deep north-south flowpath of the Magothy aquifer in southwestern Suffolk County becomes anaerobic (oxygen deficient) and Fe(III) reducing at a distance of 8 to 10 kilometers south of the ground-water divide, and this change coincides with the downgradient increase in dissolved iron concentrations. The distribution of organic carbon, and the distribution and local variations in reactivity of Fe(III), in Magothy aquifer sediments have resulted in localized differences in redox microenvironments. For example, Fe(III)-reducing zones are associated with anaerobic conditions, where relatively large amounts of Fe(III) oxyhydroxide grain coatings are present, whereas sulfate-reducing zones are associated with lignite-rich lenses of silt and clay and appear to have developed in response to the depletion of available Fe(III) oxyhydroxides. The sulfate-reducing zones are characterized by relatively low concentrations of dissolved iron (resulting from iron-disulfide precipitation) and may be large enough to warrant water

  5. Geologic and hydrogeologic frameworks of the Biscayne aquifer in central Miami-Dade County, Florida

    Science.gov (United States)

    Wacker, Michael A.; Cunningham, Kevin J.; Williams, John H.

    2014-01-01

    Evaluations of the lithostratigraphy, lithofacies, paleontology, ichnology, depositional environments, and cyclostratigraphy from 11 test coreholes were linked to geophysical interpretations, and to results of hydraulic slug tests of six test coreholes at the Snapper Creek Well Field (SCWF), to construct geologic and hydrogeologic frameworks for the study area in central Miami-Dade County, Florida. The resulting geologic and hydrogeologic frameworks are consistent with those recently described for the Biscayne aquifer in the nearby Lake Belt area in Miami-Dade County and link the Lake Belt area frameworks with those developed for the SCWF study area. The hydrogeologic framework is characterized by a triple-porosity pore system of (1) matrix porosity (mainly mesoporous interparticle porosity, moldic porosity, and mesoporous to megaporous separate vugs), which under dynamic conditions, produces limited flow; (2) megaporous, touching-vug porosity that commonly forms stratiform groundwater passageways; and (3) conduit porosity, including bedding-plane vugs, decimeter-scale diameter vertical solution pipes, and meter-scale cavernous vugs. The various pore types and associated permeabilities generally have a predictable vertical spatial distribution related to the cyclostratigraphy. The Biscayne aquifer within the study area can be described as two major flow units separated by a single middle semiconfining unit. The upper Biscayne aquifer flow unit is present mainly within the Miami Limestone at the top of the aquifer and has the greatest hydraulic conductivity values, with a mean of 8,200 feet per day. The middle semiconfining unit, mainly within the upper Fort Thompson Formation, comprises continuous to discontinuous zones with (1) matrix porosity; (2) leaky, low permeability layers that may have up to centimeter-scale vuggy porosity with higher vertical permeability than horizontal permeability; and (3) stratiform flow zones composed of fossil moldic porosity, burrow

  6. Hydrogeology of Two Areas of the Tug Hill Glacial-Drift Aquifer, Oswego County, New York

    Science.gov (United States)

    Miller, Todd S.; Bugliosi, Edward F.; Hetcher-Aguila, Kari K.; Eckhardt, David A.

    2007-01-01

    Two water-production systems, one for the Village of Pulaski and the other for the Villages of Sandy Creek and Lacona in Oswego County, New York, withdraw water from the Tug Hill glacial-drift aquifer, a regional sand and gravel aquifer along the western flank of the Tug Hill Plateau, and provide the sole source of water for these villages. As a result of concerns about contamination of the aquifer, two studies were conducted during 2001 to 2004, one for each water-production system, to refine the understanding of ground-water flow surrounding these water-production systems. Also, these studies were conducted to determine the cause of the discrepancy between ground-water ages estimated from previously constructed numerical ground-water-flow models for the Pulaski and Sandy Creek/Lacona well fields and the apparent ground-water ages determined using concentrations of tritium and chlorofluorocarbons. The Village of Pulaski withdrew 650,000 gallons per day in 2000 from four shallow, large-diameter, dug wells finished in glaciolacustrine deposits consisting of sand with some gravelly lenses 3 miles east of the village. Four 2-inch diameter test wells were installed upgradient from each production well, hydraulic heads were measured, and water samples collected and analyzed for physical properties, inorganic constituents, nutrients, bacteria, tritium, dissolved gases, and chlorofluorocarbons. Recharge to the Tug Hill glacial-drift aquifer is from precipitation directly over the aquifer and from upland sources in the eastern part of the recharge area, including (1) unchannelized runoff from till and bedrock hills east of the aquifer, (2) seepage to the aquifer from streams that drain the Tug Hill Plateau, (3) ground-water inflow from the till and bedrock on the adjoining Tug Hill Plateau. Water-quality data collected from four piezometers near the production wells in November 2003 indicated that the water is a calcium-bicarbonate type with iron concentrations that

  7. Ground-Water Flow Model for the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Hsieh, Paul A.; Barber, Michael E.; Contor, Bryce A.; Hossain, Md. Akram; Johnson, Gary S.; Jones, Joseph L.; Wylie, Allan H.

    2007-01-01

    This report presents a computer model of ground-water flow in the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in Spokane County, Washington, and Bonner and Kootenai Counties, Idaho. The aquifer is the sole source of drinking water for more than 500,000 residents in the area. In response to the concerns about the impacts of increased ground-water withdrawals resulting from recent and projected urban growth, a comprehensive study was initiated by the Idaho Department of Water Resources, the Washington Department of Ecology, and the U.S. Geological Survey to improve the understanding of ground-water flow in the aquifer and of the interaction between ground water and surface water. The ground-water flow model presented in this report is one component of this comprehensive study. The primary purpose of the model is to serve as a tool for analyzing aquifer inflows and outflows, simulating the effects of future changes in ground-water withdrawals from the aquifer, and evaluating aquifer management strategies. The scale of the model and the level of detail are intended for analysis of aquifer-wide water-supply issues. The SVRP aquifer model was developed by the Modeling Team formed within the comprehensive study. The Modeling Team consisted of staff and personnel working under contract with the Idaho Department of Water Resources, personnel working under contract with the Washington Department of Ecology, and staff of the U.S. Geological Survey. To arrive at a final model that has the endorsement of all team members, decisions on modeling approach, methodology, assumptions, and interpretations were reached by consensus. The ground-water flow model MODFLOW-2000 was used to simulate ground-water flow in the SVPR aquifer. The finite-difference model grid consists of 172 rows, 256 columns, and 3 layers. Ground-water flow was simulated from September 1990 through September 2005 using 181 stress periods of 1 month each. The areal extent of the model encompasses an area of

  8. Hydrogeology and water quality of the Dublin and Midville aquifer systems at Waynesboro, Burke County, Georgia, 2011

    Science.gov (United States)

    Gonthier, Gerard

    2013-01-01

    The hydrogeology and water quality of the Dublin and Midville aquifer systems were characterized in the City of Waynesboro area in Burke County, Georgia, based on geophysical and drillers’ logs, flowmeter surveys, a 24-houraquifer test, and the collection and chemical analysis of water samples in a newly constructed well. At the test site, the Dublin aquifer system consists of interlayered sands and clays between depths of 396 and 691 feet, and the Midville aquifer system consists of a sandy clay layer overlying a sand and gravel layer between depths of 728 and 936 feet. The new well was constructed with three screened intervals in the Dublin aquifer system and four screened intervals in the Midville aquifer system. Wellbore-flowmeter testing at a pumping rate of 1,000 gallons per minute indicated that 52.2 percent of the total flow was from the shallower Dublin aquifer system with the remaining 47.8 percent from the deeper Midville aquifer system. The lower part of the lower Midville aquifer (900 to 930 feet deep), contributed only 0.1 percent of the total flow. Hydraulic properties of the two aquifer systems were estimated using data from two wellbore-flowmeter surveys and a 24-hour aquifer test. Estimated values of transmissivity for the Dublin and Midville aquifer systems were 2,000 and 1,000 feet squared per day, respectively. The upper and lower Dublin aquifers have a combined thickness of about 150 feet and the horizontal hydraulic conductivity of the Dublin aquifer system averages 10 feet per day. The upper Midville aquifer, lower Midville confining unit, and lower Midville aquifer have a combined thickness of about 210 feet, and the horizontal hydraulic conductivity of the Midville aquifer system averages 6 feet per day. Storage coefficient of the Dublin aquifer system, computed using the Theis method on water-level data from one observation well, was estimated to be 0.0003. With a thickness of about 150 feet, the specific storage of the Dublin aquifer

  9. Aquifers

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This map layer contains the shallowest principal aquifers of the conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands, portrayed as polygons....

  10. Water resources of Rockland County, New York, 2005-07, with emphasis on the Newark Basin Bedrock Aquifer

    Science.gov (United States)

    Heisig, Paul M.

    2011-01-01

    Concerns over the state of water resources in Rockland County, NY, prompted an assessment of current (2005-07) conditions. The investigation included a review of all water resources but centered on the Newark basin aquifer, a fractured-bedrock aquifer over which nearly 300,000 people reside. Most concern has been focused on this aquifer because of (1) high summer pumping rates, with occasional entrained-air problems and an unexplained water-level decline at a monitoring well, (2) annual withdrawals that have approached or even exceeded previous estimates of aquifer recharge, and (3) numerous contamination problems that have caused temporary or long-term shutdown of production wells. Public water supply in Rockland County uses three sources of water in roughly equal parts: (1) the Newark basin sedimentary bedrock aquifer, (2) alluvial aquifers along the Ramapo and Mahwah Rivers, and (3) surface waters from Lake DeForest Reservoir and a smaller, new reservoir supply in the Highlands part of the county. Water withdrawals from the alluvial aquifer in the Ramapo River valley and the Lake DeForest Reservoir are subject to water-supply application permits that stipulate minimum flows that must be maintained downstream into New Jersey. There is a need, therefore, at a minimum, to prevent any loss of the bedrock-aquifer resource--to maintain it in terms of both sustainable use and water-quality protection. The framework of the Newark basin bedrock aquifer included characterization of (1) the structure and fracture occurrence associated with the Newark basin strata, (2) the texture and thickness of overlying glacial and alluvial deposits, (3) the presence of the Palisades sill and associated basaltic units on or within the Newark basin strata, and (4) the streams that drain the aquifer system. The greatest concern regarding sustainability of groundwater resources is the aquifer response to the seasonal increase in pumping rates from May through October (an average increase

  11. Geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers within northern Bexar and Comal Counties, Texas

    Science.gov (United States)

    Clark, Allan K.; Golab, James A.; Morris, Robert R.

    2016-11-28

    During 2014–16, the U.S. Geological Survey, in cooperation with the Edwards Aquifer Authority, documented the geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers within northern Bexar and Comal Counties, Texas. The Edwards and Trinity aquifers are major sources of water for agriculture, industry, and urban and rural communities in south-central Texas. Both the Edwards and Trinity are classified as major aquifers by the State of Texas.The purpose of this report is to present the geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers within northern Bexar and Comal Counties, Tex. The report includes a detailed 1:24,000-scale hydrostratigraphic map, names, and descriptions of the geology and hydrostratigraphic units (HSUs) in the study area.The scope of the report is focused on geologic framework and hydrostratigraphy of the outcrops and hydrostratigraphy of the Edwards and Trinity aquifers within northern Bexar and Comal Counties, Tex. In addition, parts of the adjacent upper confining unit to the Edwards aquifer are included.The study area, approximately 866 square miles, is within the outcrops of the Edwards and Trinity aquifers and overlying confining units (Washita, Eagle Ford, Austin, and Taylor Groups) in northern Bexar and Comal Counties, Tex. The rocks within the study area are sedimentary and range in age from Early to Late Cretaceous. The Miocene-age Balcones fault zone is the primary structural feature within the study area. The fault zone is an extensional system of faults that generally trends southwest to northeast in south-central Texas. The faults have normal throw, are en echelon, and are mostly downthrown to the southeast.The Early Cretaceous Edwards Group rocks were deposited in an open marine to supratidal flats environment during two marine transgressions. The Edwards Group is composed of the Kainer and Person Formations. Following tectonic uplift, subaerial exposure, and erosion near the end of

  12. Hydrogeologic assessment of shallow clastic and carbonate rock aquifers in Hendry and Collier counties, southwestern Florida

    Science.gov (United States)

    Brown, C. Erwin; Krulikas, R.K.; Brendle, D.L.

    1996-01-01

    Direct-current electrical resistivity data were collected from 109 vertical electrical sounding sites in Hendry and Collier Counties, southwestern Florida. Selected direct-current electrical resistivity surveys, together with available borehole geologic and geophysical data, were used to determine the approximate areal extent of the shallow clastic aquifers composed of thick sands and carbonate lithologies. Results indicated that a complex pattern of shallow sands, clays, and carbonate lithologies occur throughout the area. Buried channel sands were found as deep as 50 meters below land surface in some places. The channels contain unconsolidated fine- to medium-grained quartz sand interbedded with sandy limestone, shell fragments, and gray-green sandy clay. Both surface and borehole geophysical techniques with lithologic data were necessary to approximately locate and define layers that might behave as confining layers and to locate and define the extent of any buried sand aquifers. The borehole geophysical data were used to analyze the zones of higher resistivity. Direct-current electrical resistivity data indicated the approximate location of certain layer boundaries. The conjunctive use of natural gamma and short- and long-normal resistivity logs was helpful in determining lithologic effects. Geohydrologic sections were prepared to identify potential locations of buried channels and carbonates containing freshwater. Buried channel sands and carbonate rock sections were identified in the subsurface that potentially may contain freshwater supplies.

  13. A Feasibility Study for An Integrated Approach to Fall Prevention in Community Care: Stay Up and Active in Orange County

    Directory of Open Access Journals (Sweden)

    Spencer Lindgren

    2016-08-01

    Full Text Available Introduction: Falls amongst persons over 60 present significant risks for serious injury or debility. Falls place burdens on Emergency Medical Services (EMS, hospitals, and the adults themselves. Recognizing a need to provide interventions to minimize risk, Orange County Emergency Services (OCES, the Orange County Department on Aging (OCDoA, and the University of North Carolina at Chapel Hill (UNC partnered to create the Stay Up and Active Program (SUAA. Methods: A streamlined workflow algorithm between the OCES and OCDoA was created and employed to provide falls risk assessment and necessary services. Qualitative techniques were used to assess the need for such a program and its potential impact. A subset of individuals were interviewed three months after the intervention to assess the impact of the intervention on their fall risk. Results: In the first seven months, 478 instances of individuals who called OCES screened positive for falls risk. Of the 478 positive screenings, 55 individuals were identified as having received more than one positive fall screen due to multiple calls. The maximum number of positive screenings by one individual was 14. More women (61.3% than men screened positive for fall risk. Individuals 88 years of age (6.9% represented the mode of the individuals with positive screens. Nineteen (4.0% people who called OCES and received the intervention completed a three month follow up survey. Of the nineteen, 86% (n=16 reported no recurrent fall.Conclusion: The number of individuals who screened positive supports the need for early identification and intervention through EMS. This program identified several challenges connecting older adults with services already available to keep them independent which provided insight to all stakeholders regarding factors that inhibit the program’s success. The program evaluation should continue to provide suggestions for improvement and ensure sustainability.

  14. VT Data - Lidar DSM (0.7m) 2016, Essex, Caledonia, Orange, and Windsor Counties

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Middle CT River subbasin 2016 0.7m; Eastern VT 2014 0.7m; Rutland/GI Counties 2013...

  15. The Effects of Spatial and Temporal Decisions on Orange Marketing in Babol County

    Directory of Open Access Journals (Sweden)

    H. Najafi Alamdarlo

    2016-10-01

    Full Text Available Introduction: Due to the fact that farmers are in the surrounding factors such as cultural, social and economic environment, these factors can influence the attitudes and decisions to accept or reject the innovation. Farmer`s opinion over time, also, have a significant role in making new decisions. Therefore, absent a model which would assess the temporal and spatial factors in the decision - making process by growing citrus is strongly needed. This study aims to identify and measure the factors affecting the sales channel chosen by farmers and considers the impact of neighboring on farmers’ decisions using the spatial probit model and finally provides some strategies to improve and increase the efficiency of distribution channels in the product market. One of the aims of this research is to assess the effects of accumulated decisions in the minds of farmers on the choosing of marketing channel. Another innovation of this study is evaluating the spatial factors on orange marketing which examines the effects of diffusive decisions in adjacent villages. Materials and Methods: The data used in this study were collected by questionnaire form 99 gardeners in 9 villages in Babol in 1391-92. In this paper, three distribution channels including retail, sales to middle man and sales to whole sale are evaluated at Babol County. For testing these three channels, probit panel data and spatial approach were used. Therefore, in this model the effects of age, experience, education, amount of sales, price, spatial and temporal effects variables have been modeled. To get the spatial effects, the weighted contiguity matrix was used. Results and Discussion: Age has a positive effect on wholesale approach. In sales to middleman approach, age has also positive effect, but its effect is more than wholesale and retail, because as the age increased, risk acceptance decreased. In retail, this variable (age has a negative effect. In this way, due to higher marketing

  16. Chemical constituents in the Peedee and Castle Hayne aquifers: Porters Neck area, New Hanover County, North Carolina

    Science.gov (United States)

    Roberts, T.L.; Harris, W.B.

    2004-01-01

    Concerns about overuse and potential contamination of major aquifers in the southeastern part of North Carolina resulted in the initiation of a subsurface water quality study in February 2001. The focus of this study was to examine variations in nutrients (NO3-, TRP, SO42- Cl-, NH4+) and total dissolved Fe in the Cretaceous Peedee and Tertiary Castle Hayne Limestone aquifers of northeastern New Hanover County. Water samples were collected monthly for one year from sixteen wells located in the Porters Neck area (west of the Intracoastal Waterway and south of Futch Creek) and four springs located on the south side of Futch Creek. Variations in selective nutrient concentrations were measured between and within each aquifer. Concentrations of NH4+ and Fe increased in the Peedee sandstone aquifer during the warmer summer and early fall months. In late summer to early fall, Fe, NO 3-, NH4+, and TRP concentrations in the Castle Hayne Limestone aquifer were significantly higher than in the spring and winter months. Chloride and SO 42- concentrations for the Castle Hayne Limestone aquifer both increased during the warmer months, probably as a result of saltwater intrusion. Factors considered for nutrient and Fe variance include: temperature variation, anaerobic conditions, subsurface stratigraphy/structure, recharge locations, site location and surface fertilization. The shallower Castle Hayne Limestone aquifer showed seasonal variability in the study area, whereas the Peedee sandstone aquifer showed little to no seasonal variability. Increases in NO3- and TRP lagged slightly behind periods of high fertilization and were more prevalent down-dip of a major golf course. Nutrient content and seasonal variation of Futch Creek springs indicated that they originate from the Castle Hayne Limestone aquifer.

  17. Ambient water quality in aquifers used for drinking-water supplies, Gem County, southwestern Idaho, 2015

    Science.gov (United States)

    Bartolino, James R.; Hopkins, Candice B.

    2016-12-20

    In recent years, the rapid population growth in Gem County, Idaho, has been similar to other counties in southwestern Idaho, increasing about 54 percent from 1990 to 2015. Because the entire population of the study area depends on groundwater for drinking water supply (either from self-supplied domestic, community, or municipal-supply wells), this population growth, along with changes in land use (including potential petroleum exploration and development), indicated to the public and local officials the need to assess the quality of groundwater used for human consumption. To this end, the U.S. Geological Survey, in cooperation with Gem County and the Idaho Department of Environmental Quality, assessed the quality of groundwater from freshwater aquifers used for domestic supply in Gem County. A total of 47 domestic or municipal wells, 1 spring, and 2 surface-water sites on the Payette River were sampled during September 8–November 19, 2015. The sampled water was analyzed for a variety of constituents, including major ions, trace elements, nutrients, bacteria, radionuclides, dissolved gasses, stable isotopes of water and methane, and either volatile organic compounds (VOCs) or pesticides.To better understand analytical results, a conceptual hydrogeologic framework was developed in which three hydrogeologic units were described: Quaternary-Tertiary deposits (QTd), Tertiary Idaho Group rocks (Tig), and Tertiary-Cretaceous igneous rocks (TKi). Water levels were measured in 30 wells during sampling, and a groundwater-level altitude map was constructed for the QTd and Tig units showing groundwater flow toward the Emmett Valley and Payette River.Analytical results indicate that groundwater in Gem County is generally of good quality. Samples collected from two wells contained water with fluoride concentrations greater than the U.S. Environmental Protection Agency (EPA) Maximum Contaminant Level (MCL) of 4 milligrams per liter (mg/L), six wells contained arsenic at

  18. A Feasibility Study for an Integrated Approach to Fall Prevention in Community Care: Stay Up and Active in Orange County.

    Science.gov (United States)

    Lindgren, Spencer W; Kwaschyn, Katie; Roberts, Ellen; Busby-Whitehead, Jan; Evarts, Lori A; Shubert, Tiffany

    2016-01-01

    Falls among persons over 60 present significant risks for serious injury or debility. Falls place burdens on Emergency Medical Services (EMS), hospitals, and the adults themselves. Recognizing a need to provide interventions to minimize risk, Orange County Emergency Services (OCES), the Orange County Department on Aging (OCDoA), and the University of North Carolina at Chapel Hill (UNC) partnered to create the Stay Up and Active Program (SUAA). The purpose of this study was to determine if SUAA was a feasible program to implement in the community. A streamlined workflow algorithm between the OCES and OCDoA was created and employed to provide falls risk assessment and necessary services. Qualitative techniques were used to assess the need for such a program and its potential impact. A subset of individuals was interviewed 3 months after the intervention to assess the impact of the intervention on their fall risk. Formal stakeholder interviews were not conducted, but anecdotal information from EMS providers was obtained and reported. In the first 7 months, 478 instances of individuals who called OCES screened positive for falls risk. Of the 478 positive screenings, 55 individuals were identified as having received more than one positive fall screen due to multiple calls. The maximum number of positive screenings by one individual was 14. More women (61.3%) than men screened positive for fall risk. Individuals 88 years of age (6.9%) represented the highest number of individuals with positive screens. Nineteen (4.0%) people who called OCES and received the intervention completed a 3-month follow-up survey. Of the 19, 86% (n = 16) reported no recurrent fall. The number of individuals who screened positive supports the need for early identification and intervention through SUAA. This program identified several challenges connecting older adults with services already available to keep them independent, which provided insight to all stakeholders regarding factors

  19. Geohydrology of the valley-fill aquifer in the Endicott-Johnson City area, Broome County, New York

    Science.gov (United States)

    Holecek, Thomas J.; Randall, A.D.; Belli, J.L.; Allen, R.V.

    1982-01-01

    This report is the tenth in a series of 11 map sets depicting geohydrologic conditions in selected aquifers in upstate New York. Geohydrologic data are compiled on five maps at 1:24,000 scale. Together, the maps provide a comprehensive overview of a major valley-fill aquifer in southwestern Broome County. The maps include surficial geology, geologic sections, aquifer thickness, water-infiltration potential of soil zone, potentiometric-surface altitude, and land use. The valley-fill deposits consist of alluvial silt and sand, glacial outwash (sand and gravel), ice-contact sand and gravel, till, and lacustrine silt and clay. The sand and gravel beds have relatively high permeabilities whereas the till, silt, and clay deposits have relatively low permeabilities. Water-table conditions are found in unconfined sand and gravel, whereas artesian conditions prevail within sand and gravel confined by silty deposits. Recharge occurs over the entire surface of the aquifer, due to permeable land-surface conditions, but is greatest along the margin of the valley, where runoff from the hillsides is concentrated, and near streams. The use of land overlying the aquifer is predominantly commercial and residential with lesser amounts of agricultural and industrial uses. (USGS)

  20. Geohydrology of the valley-fill aquifer in the South Fallsburgh-Woodbourne area, Sullivan County, New York

    Science.gov (United States)

    Anderson, H.R.; Dineen, R.J.; Stelz, W.G.; Belli, J.L.

    1982-01-01

    This report is the ninth in a series of map sets depicting geohydrologic conditions in selected aquifers in upstate New York. Geohydrologic data are compiled on six maps at 1:24,000 scale. Together the maps provide a comprehensive overview of a major valley-fill aquifer in southeastern Sullivan County. The maps include surficial geology, geologic sections, aquifer thickness, water-infiltration potential of soil zone, potentiometric surface elevations, well yields, and land use. The valley-fill deposits consist of alluvial silt and sand, glacial outwash (sand and gravel), ice-contact sand and gravel, till, and lacustrine silt and clay. The sand and gravel beds have relatively high permeabilities whereas the till, silt, and clay deposits have relatively low permeabilities. Water-table conditions prevail in unconfined sand and gravel whereas artesian conditions prevail within sand and gravel confined by silty deposits. The aquifer is recharged throughout, where the land surface is most permeable and is greatest along the margin of the valley, where runoff from the hillsides is concentrated. The use of land overlying the aquifer is predominantly commercial, agricultural, and residential with lesser industrial uses. (USGS)

  1. Geohydrology of the valley-fill aquifer in the Ramapo and Mahwah rivers area, Rockland County, New York

    Science.gov (United States)

    Moore, Richard Bridge; Cadwell, D.H.; Stelz, W.G.; Belli, J.L.

    1982-01-01

    This report is the eighth in a series of 11 map sets depicting geohydrologic conditions in selected aquifers in upstate New York. Geohydrologic data are compiled on six maps at 1:24,000 scale. Together, the maps provide a comprehensive overview of a major valley-fill aquifer in southeastern Rockland County. The maps include surficial geology, geologic sections, water-infiltration potential of soil zone, aquifer thickness, water-table elevations, well yields, and land use. The valley-fill deposits consists of alluvial silt and sand, glacial outwash (sand and gravel), ice-contact sand and gravel, till, and lacustrine silt and clay. The sand and gravel beds have relatively high permeabilities, whereas the till, silt, and clay deposits have relatively low permeabilities. Water-table conditions prevail in unconfined sand and gravel along the Ramapo River valley and much of the Mahwah River valley. Artesian conditions prevail in confined sand and gravel buried under silt and clay and till in parts of the Mahway valley. The aquifer is recharged throughout, where the land surface is most permeable and is greatest along the margin of the valley, where runoff from the hillsides is concentrated. The use of land overlying the aquifer is predominantly commercial, agricultural and residential, with lesser industrial uses. (USGS)

  2. Chemical and microbiological monitoring of a sole-source aquifer intended for artificial recharge, Nassau County, New York

    Science.gov (United States)

    Katz, Brian G.; Mallard, Gail E.

    1980-01-01

    In late 1980, approximately 4 million gallons per day of highly treated wastewater will be used to recharge the groundwater reservoir in central Nassau County through a system of 10 recharge basins and 5 shallow injection wells. To evaluate the impact of large-scale recharge with reclaimed water on groundwater quality, the U.S. Geological Survey has collected hydrologic and water-quality data from a 1-square-mile area around the recharge site to provide a basis for future comparison. Extensive chemical and microbiological analyses are being made on samples from 48 wells screened in the upper glacial (water-table) aquifer and the upper part of the underlying Magothy (public-supply) aquifer. Preliminary results indicate that water from the upper glacial aquifer contains significant concentrations of nitrate and low-molecular-weight chlorinated hydrocarbons and detectable concentrations of organochlorine insecticides and polychlorinated biphenyls. At present, no fecal contamination is evident in either aquifer in the area studied. In the few samples containing fecal indicator bacteria, the numbers were low. Nonpoint sources provide significant loads of organic and inorganic compounds; major sources include cesspool and septic-tank effluent, cesspool and septic-tank cleaners and other over-the-counter domestic organic solvents, fertilizers, insecticides for termite and other pest control, and stormwater runoff to recharge basins. The water-table aquifer is composed mainly of stratified, well-sorted sand and gravel and, as a result, is highly permeable. In the 1-square-mile area studied, some contaminants seem to have traveled 200 feet downward to the bottom of the water-table aquifer and into the upper part of the public-supply aquifer. (USGS)

  3. Geophysical investigation of sentinel lakes in Lake, Seminole, Orange, and Volusia Counties, Florida

    Science.gov (United States)

    Reich, Christopher; Flocks, James; Davis, Jeffrey

    2012-01-01

    This study was initiated in cooperation with the St. Johns River Water Management District (SJRWMD) to investigate groundwater and surface-water interaction in designated sentinel lakes in central Florida. Sentinel lakes are a SJRWMD established set of priority water bodies (lakes) for which minimum flows and levels (MFLs) are determined. Understanding both the structure and lithology beneath these lakes can ultimately lead to a better understanding of the MFLs and why water levels fluctuate in certain lakes more so than in other lakes. These sentinel lakes have become important water bodies to use as water-fluctuation indicators in the SJRWMD Minimum Flows and Levels program and will be used to define long-term hydrologic and ecologic performance measures. Geologic control on lake hydrology remains poorly understood in this study area. Therefore, the U.S. Geological Survey investigated 16 of the 21 water bodies on the SJRWMD priority list. Geologic information was obtained by the tandem use of high-resolution seismic profiling (HRSP) and direct-current (DC) resistivity profiling to isolate both the geologic framework (structure) and composition (lithology). Previous HRSP surveys from various lakes in the study area have been successful in identifying karst features, such as subsidence sinkholes. However, by using this method only, it is difficult to image highly irregular or chaotic surfaces, such as collapse sinkholes. Resistivity profiling was used to complement HRSP by detecting porosity change within fractured or collapsed structures and increase the ability to fully characterize the subsurface. Lake Saunders (Lake County) is an example of a lake composed of a series of north-south-trending sinkholes that have joined to form one lake body. HRSP shows surface depressions and deformation in the substrate. Resistivity data likewise show areas in the southern part of the lake where resistivity shifts abruptly from approximately 400 ohm meters (ohm-m) along the

  4. Assessment of managed aquifer recharge at Sand Hollow Reservoir, Washington County, Utah, updated to conditions through 2014

    Science.gov (United States)

    Marston, Thomas M.; Heilweil, Victor M.

    2016-09-08

    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily for managed aquifer recharge by the Washington County Water Conservancy District. From 2002 through 2014, diversions of about 216,000 acre-feet from the Virgin River to Sand Hollow Reservoir have allowed the reservoir to remain nearly full since 2006. Groundwater levels in monitoring wells near the reservoir rose through 2006 and have fluctuated more recently because of variations in reservoir stage and nearby pumping from production wells. Between 2004 and 2014, about 29,000 acre-feet of groundwater was withdrawn by these wells for municipal supply. In addition, about 31,000 acre-feet of shallow seepage was captured by French drains adjacent to the North and West Dams and used for municipal supply, irrigation, or returned to the reservoir. From 2002 through 2014, about 127,000 acre-feet of water seeped beneath the reservoir to recharge the underlying Navajo Sandstone aquifer.Water quality continued to be monitored at various wells in Sand Hollow during 2013–14 to evaluate the timing and location of reservoir recharge as it moved through the aquifer. Changing geochemical conditions at monitoring wells WD 4 and WD 12 indicate rising groundwater levels and mobilization of vadose-zone salts, which could be a precursor to the arrival of reservoir recharge.

  5. Assessment of managed aquifer recharge from Sand Hollow Reservoir, Washington County, Utah, updated to conditions in 2010

    Science.gov (United States)

    Heilweil, Victor M.; Marston, Thomas M.

    2011-01-01

    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily for managed aquifer recharge by the Washington County Water Conservancy District. From 2002 through 2009, total surface-water diversions of about 154,000 acre-feet to Sand Hollow Reservoir have allowed it to remain nearly full since 2006. Groundwater levels in monitoring wells near the reservoir rose through 2006 and have fluctuated more recently because of variations in reservoir water-level altitude and nearby pumping from production wells. Between 2004 and 2009, a total of about 13,000 acre-feet of groundwater has been withdrawn by these wells for municipal supply. In addition, a total of about 14,000 acre-feet of shallow seepage was captured by French drains adjacent to the North and West Dams and used for municipal supply, irrigation, or returned to the reservoir.From 2002 through 2009, about 86,000 acre-feet of water seeped beneath the reservoir to recharge the underlying Navajo Sandstone aquifer. Water-quality sampling was conducted at various monitoring wells in Sand Hollow to evaluate the timing and location of reservoir recharge moving through the aquifer. Tracers of reservoir recharge include major and minor dissolved inorganic ions, tritium, dissolved organic carbon, chlorofluorocarbons, sulfur hexafluoride, and noble gases. By 2010, this recharge arrived at monitoring wells within about 1,000 feet of the reservoir.

  6. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Santiago Fire, Orange County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Santiago Fire in Orange County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  7. Geochemical Characteristics of TP3 Mine Wastes at the Elizabeth Copper Mine Superfund Site, Orange County, Vermont

    Science.gov (United States)

    Hammarstrom, Jane M.; Piatak, Nadine M.; Seal, Robert R.; Briggs, Paul H.; Meier, Allen L.; Muzik, Timothy L.

    2003-01-01

    Remediation of the Elizabeth mine Superfund site in the Vermont copper belt poses challenges for balancing environmental restoration goals with issues of historic preservation while adopting cost-effective strategies for site cleanup and long-term maintenance. The waste-rock pile known as TP3, at the headwaters of Copperas Brook, is especially noteworthy in this regard because it is the worst source of surface- and ground-water contamination identified to date, while also being the area of greatest historical significance. The U.S. Geological Survey (USGS) conducted a study of the historic mine-waste piles known as TP3 at the Elizabeth mine Superfund site near South Strafford, Orange County, VT. TP3 is a 12.3-acre (49,780 m2) subarea of the Elizabeth mine site. It is a focus area for historic preservation because it encompasses an early 19th century copperas works as well as waste from late 19th- and 20th century copper mining (Kierstead, 2001). Surface runoff and seeps from TP3 form the headwaters of Copperas Brook. The stream flows down a valley onto flotation tailings from 20th century copper mining operations and enters the West Branch of the Ompompanoosuc River approximately 1 kilometer downstream from the mine site. Shallow drinking water wells down gradient from TP3 exceed drinking water standards for copper and cadmium (Hathaway and others, 2001). The Elizabeth mine was listed as a Superfund site in 2001, mainly because of impacts of acid-mine drainage on the Ompompanoosuc River.

  8. Bedrock geology and hydrostratigraphy of the Edwards and Trinity aquifers within the Driftwood and Wimberley 7.5-minute quadrangles, Hays and Comal Counties, Texas

    Science.gov (United States)

    Clark, Allan K.; Morris, Robert R.

    2017-11-16

    The Edwards and Trinity aquifers are major sources of water in south-central Texas and are both classified as major aquifers by the State of Texas. The population in Hays and Comal Counties is rapidly growing, increasing demands on the area’s water resources. To help effectively manage the water resources in the area, refined maps and descriptions of the geologic structures and hydrostratigraphic units of the aquifers are needed. This report presents the detailed 1:24,000-scale bedrock hydrostratigraphic map as well as names and descriptions of the geologic and hydrostratigraphic units of the Driftwood and Wimberley 7.5-minute quadrangles in Hays and Comal Counties, Tex.Hydrostratigraphically, the rocks exposed in the study area represent a section of the upper confining unit to the Edwards aquifer, the Edwards aquifer, the upper zone of the Trinity aquifer, and the middle zone of the Trinity aquifer. In the study area, the Edwards aquifer is composed of the Georgetown Formation and the rocks forming the Edwards Group. The Trinity aquifer is composed of the rocks forming the Trinity Group. The Edwards and Trinity aquifers are karstic with high secondary porosity along bedding and fractures. The Del Rio Clay is a confining unit above the Edwards aquifer and does not supply appreciable amounts of water to wells in the study area.The hydrologic connection between the Edwards and Trinity aquifers and the various hydrostratigraphic units is complex because the aquifer system is a combination of the original Cretaceous depositional environment, bioturbation, primary and secondary porosity, diagenesis, and fracturing of the area from Miocene faulting. All of these factors have resulted in development of modified porosity, permeability, and transmissivity within and between the aquifers. Faulting produced highly fractured areas which allowed for rapid infiltration of water and subsequently formed solutionally enhanced fractures, bedding planes, channels, and caves that

  9. Simulated effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Rincon, Effingham County, Georgia

    Science.gov (United States)

    Cherry, Gregory S.; Clarke, John S.

    2015-01-01

    Steady-state simulations using a revised regional groundwater-flow model based on MODFLOW were run to assess the potential long-term effects on the Upper Floridan aquifer (UFA) of pumping the Lower Floridan aquifer (LFA) at well (36S048) near the City of Rincon in coastal Georgia near Savannah. Simulated pumping of well 36S048 at a rate of 1,000 gallons per minute (gal/min; or 1.44 million gallons per day [Mgal/d]) indicated a maximum drawdown of about 6.8 feet (ft) in the UFA directly above the pumped well and at least 1 ft of drawdown within a nearly 400-square-mile area (scenario A). Induced vertical leakage from the UFA provided about 99 percent of the water to the pumped well. Simulated pumping of well 36S048 indicated increased downward leakage in all layers above the LFA, decreased upward leakage in all layers above the LFA, increased inflow to and decreased outflow from lateral specified-head boundaries in the UFA and LFA, and an increase in the volume of induced inflow from the general-head boundary representing outcrop units. Water budgets for scenario A indicated that changes in inflows and outflows through general-head boundaries would compose about 72 percent of the simulated pumpage from well 36S048, with the remaining 28 percent of the pumped water derived from flow across lateral specified-head boundaries.

  10. Contamination of wells completed in the Roubidoux aquifer by abandoned zinc and lead mines, Ottawa County, Oklahoma

    Science.gov (United States)

    Christenson, Scott C.

    1995-01-01

    The Roubidoux aquifer in Ottawa County Oklahoma is used extensively as a source of water for public supplies, commerce, industry, and rural water districts. Water in the Roubidoux aquifer in eastern Ottawa County has relatively low dissolved-solids concentrations (less than 200 mg/L) with calcium, magnesium, and bicarbonate as the major ions. The Boone Formation is stratigraphically above the Roubidoux aquifer and is the host rock for zinc and lead sulfide ores, with the richest deposits located in the vicinity of the City of Picher. Mining in what became known as the Picher mining district began in the early 1900's and continued until about 1970. The water in the abandoned zinc and lead mines contains high concentrations of calcium, magnesium, bicarbonate, sulfate, fluoride, cadmium, copper, iron, lead, manganese, nickel, and zinc. Water from the abandoned mines is a potential source of contamination to the Roubidoux aquifer and to wells completed in the Roubidoux aquifer. Water samples were collected from wells completed in the Roubidoux aquifer in the Picher mining district and from wells outside the mining district to determine if 10 public supply wells in the mining district are contaminated. The chemical analyses indicate that at least 7 of the 10 public supply wells in the Picher mining district are contaminated by mine water. Application of the Mann-Whitney test indicated that the concentrations of some chemical constituents that are indicators of mine-water contamination are different in water samples from wells in the mining area as compared to wells outside the mining area. Application of the Wilcoxon signed-rank test showed that the concentrations of some chemical constituents that are indicators of mine-water contamination were higher in current (1992-93) data than in historic (1981-83) data, except for pH, which was lower in current than in historic data. pH and sulfate, alkalinity, bicarbonate, magnesium, iron, and tritium concentrations consistently

  11. Numerical simulation of groundwater movement and managed aquifer recharge from Sand Hollow Reservoir, Hurricane Bench area, Washington County, Utah

    Science.gov (United States)

    Marston, Thomas M.; Heilweil, Victor M.

    2012-01-01

    The Hurricane Bench area of Washington County, Utah, is a 70 square-mile area extending south from the Virgin River and encompassing Sand Hollow basin. Sand Hollow Reservoir, located on Hurricane Bench, was completed in March 2002 and is operated primarily as a managed aquifer recharge project by the Washington County Water Conservancy District. The reservoir is situated on a thick sequence of the Navajo Sandstone and Kayenta Formation. Total recharge to the underlying Navajo aquifer from the reservoir was about 86,000 acre-feet from 2002 to 2009. Natural recharge as infiltration of precipitation was approximately 2,100 acre-feet per year for the same period. Discharge occurs as seepage to the Virgin River, municipal and irrigation well withdrawals, and seepage to drains at the base of reservoir dams. Within the Hurricane Bench area, unconfined groundwater-flow conditions generally exist throughout the Navajo Sandstone. Navajo Sandstone hydraulic-conductivity values from regional aquifer testing range from 0.8 to 32 feet per day. The large variability in hydraulic conductivity is attributed to bedrock fractures that trend north-northeast across the study area.A numerical groundwater-flow model was developed to simulate groundwater movement in the Hurricane Bench area and to simulate the movement of managed aquifer recharge from Sand Hollow Reservoir through the groundwater system. The model was calibrated to combined steady- and transient-state conditions. The steady-state portion of the simulation was developed and calibrated by using hydrologic data that represented average conditions for 1975. The transient-state portion of the simulation was developed and calibrated by using hydrologic data collected from 1976 to 2009. Areally, the model grid was 98 rows by 76 columns with a variable cell size ranging from about 1.5 to 25 acres. Smaller cells were used to represent the reservoir to accurately simulate the reservoir bathymetry and nearby monitoring wells; larger

  12. Groundwater availability in the Crouch Branch and McQueen Branch aquifers, Chesterfield County, South Carolina, 1900-2012

    Science.gov (United States)

    Campbell, Bruce G.; Landmeyer, James E.

    2014-01-01

    Chesterfield County is located in the northeastern part of South Carolina along the southern border of North Carolina and is primarily underlain by unconsolidated sediments of Late Cretaceous age and younger of the Atlantic Coastal Plain. Approximately 20 percent of Chesterfield County is in the Piedmont Physiographic Province, and this area of the county is not included in this study. These Atlantic Coastal Plain sediments compose two productive aquifers: the Crouch Branch aquifer that is present at land surface across most of the county and the deeper, semi-confined McQueen Branch aquifer. Most of the potable water supplied to residents of Chesterfield County is produced from the Crouch Branch and McQueen Branch aquifers by a well field located near McBee, South Carolina, in the southwestern part of the county. Overall, groundwater availability is good to very good in most of Chesterfield County, especially the area around and to the south of McBee, South Carolina. The eastern part of Chesterfield County does not have as abundant groundwater resources but resources are generally adequate for domestic purposes. The primary purpose of this study was to determine groundwater-flow rates, flow directions, and changes in water budgets over time for the Crouch Branch and McQueen Branch aquifers in the Chesterfield County area. This goal was accomplished by using the U.S. Geological Survey finite-difference MODFLOW groundwater-flow code to construct and calibrate a groundwater-flow model of the Atlantic Coastal Plain of Chesterfield County. The model was created with a uniform grid size of 300 by 300 feet to facilitate a more accurate simulation of groundwater-surface-water interactions. The model consists of 617 rows from north to south extending about 35 miles and 884 columns from west to east extending about 50 miles, yielding a total area of about 1,750 square miles. However, the active part of the modeled area, or the part where groundwater flow is simulated

  13. Hydrogeologic and Hydraulic Characterization of the Surficial Aquifer System, and Origin of High Salinity Groundwater, Palm Beach County, Florida

    Science.gov (United States)

    Reese, Ronald S.; Wacker, Michael A.

    2009-01-01

    Previous studies of the hydrogeology of the surficial aquifer system in Palm Beach County, Florida, have focused mostly on the eastern one-half to one-third of the county in the more densely populated coastal areas. These studies have not placed the hydrogeology in a framework in which stratigraphic units in this complex aquifer system are defined and correlated between wells. Interest in the surficial aquifer system has increased because of population growth, westward expansion of urbanized areas, and increased utilization of surface-water resources in the central and western areas of the county. In 2004, the U.S. Geological Survey, in cooperation with the South Florida Water Management District, initiated an investigation to delineate the hydrogeologic framework of the surficial aquifer system in Palm Beach County, based on a lithostratigraphic framework, and to evaluate hydraulic properties and characteristics of units and permeable zones within this framework. A lithostratigraphic framework was delineated by correlating markers between all wells with data available based primarily on borehole natural gamma-ray geophysical log signatures and secondarily, lithologic characteristics. These correlation markers approximately correspond to important lithostratigraphic unit boundaries. Using the markers as guides to their boundaries, the surficial aquifer system was divided into three main permeable zones or subaquifers, which are designated, from shallowest to deepest, zones 1, 2, and 3. Zone 1 is above the Tamiami Formation in the Anastasia and Fort Thompson Formations. Zone 2 primarily is in the upper part or Pinecrest Sand Member of the Tamiami Formation, and zone 3 is in the Ochopee Limestone Member of the Tamiami Formation or its correlative equivalent. Differences in the lithologic character exist between these three zones, and these differences commonly include differences in the nature of the pore space. Zone 1 attains its greatest thickness (50 feet or more

  14. Simulated effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Barbour Pointe, Chatham County, Georgia

    Science.gov (United States)

    Cherry, Gregory S.; Clarke, John S.

    2017-10-26

    Steady-state simulations using a revised regional groundwater-flow model based on MODFLOW were run to assess the potential long-term effects on the Upper Floridan aquifer (UFA) of pumping the Lower Floridan aquifer (LFA) at well 36Q398, located at Barbour Pointe in coastal Georgia near Savannah. Simulated pumping of well 36Q398 at a rate of 750 gallons per minute (gal/min; or 1.08 million gallons per day [Mgal/d]) indicated a maximum drawdown of about 2.19 feet (ft) in the UFA directly above the pumped well and at least 1 ft of drawdown within a nearly 190-square-mile area (scenario A). Induced vertical leakage from the UFA provided about 98 percent of the water to the pumped well. Simulated pumping of well 36Q398 caused increased downward leakage in all layers above the LFA, decreased upward leakage in all layers above the LFA, increased inflow to and decreased outflow from lateral specified-head boundaries in the UFA and LFA, and an increase in the volume of induced inflow from the general-head boundary representing outcrop units. Water budgets for scenario A indicated that changes in inflows and outflows through general-head boundaries would compose about 45 percent of the simulated pumpage from well 36Q398, with the remaining 55 percent of the pumped water derived from flow across lateral specified-head boundaries.Additional steady-state simulations were run to evaluate a pumping rate in the UFA of 240 gal/min (0.346 Mgal/d), which would produce an equivalent maximum drawdown in the UFA as pumping from well 36Q398 in the LFA at a rate of 750 gal/min (called the “drawdown offset”; scenario B). Simulated pumping in the UFA for the drawdown offset produced about 2.18 ft of drawdown, comparable to 2.19 ft of drawdown in the UFA simulated in scenario A. Water budgets for scenario B also provided favorable comparisons with scenario A, indicating that 42 percent of the drawdown-offset pumpage (0.346 Mgal/d) in the UFA originates as increased inflow and decreased

  15. Hydrogeology in the area of a freshwater lens in the Floridan aquifer system, northeast Seminole County, Florida

    Science.gov (United States)

    Phelps, G.G.; Rohrer, K.P.

    1987-01-01

    Northeast Seminole County, Florida, contains an isolated recharge area of the Floridan aquifer system that forms a freshwater lens completely surrounded by saline water. The freshwater lens covers an area of about 22 sq mi surrounding the town of Geneva, and generally is enclosed by the 25 ft land surface altitude contour. Thickness of the lens is about 350 ft in the center of the recharge area. The geohydrologic units in descending order consist of the post-Miocene sand and shell of the surficial aquifer; Miocene clay, sand, clay, and shell that form a leaky confining bed; and permeable Eocene limestones of the Floridan aquifer system. The freshwater lens is the result of local rainfall flushing ancient seawater from the Floridan aquifer system. Sufficient quantities of water for domestic and small public supply systems are available from the Floridan aquifer system in the Geneva area. The limiting factor for water supply in the area is the chemical quality of the water. Chloride concentrations range from recharge area to about 5,100 mg/L near the St. Johns River southeast of Geneva. Constituents analyzed included sulfate (range 1 to 800 mg/L), hardness (range 89 to 2,076 mg/L), and iron (range 34 to 6,600 mg/L). Because the freshwater lens results entirely from local recharge, the long-term sustained freshwater yield of the aquifer in the Geneva area depends on the local recharge rate. In 1982, recharge was about 13 inches (13.8 million gal/day). Average recharge for 1941 through 1970 was estimated to be about 11 inches (11.3 million gal/day). Freshwater that recharges the aquifer in the Geneva area is either pumped out or flows north and northeast to discharge near or in the St. Johns River. Average annual outflow from the lens is about 10 in/yr. No measurable change in the size or location of the freshwater lens has occurred since studies in the early 1950's. (Lantz-PTT)

  16. Hydrogeology and water quality of the stratified-drift aquifer in the Pony Hollow Creek Valley, Tompkins County, New York

    Science.gov (United States)

    Bugliosi, Edward F.; Miller, Todd S.; Reynolds, Richard J.

    2014-01-01

    The lithology, areal extent, and the water-table configuration in stratified-drift aquifers in the northern part of the Pony Hollow Creek valley in the Town of Newfield, New York, were mapped as part of an ongoing aquifer mapping program in Tompkins County. Surficial geologic and soil maps, well and test-boring records, light detection and ranging (lidar) data, water-level measurements, and passive-seismic surveys were used to map the aquifer geometry, construct geologic sections, and determine the depth to bedrock at selected locations throughout the valley. Additionally, water-quality samples were collected from selected streams and wells to characterize the quality of surface and groundwater in the study area. Sedimentary bedrock underlies the study area and is overlain by unstratified drift (till), stratified drift (glaciolacustrine and glaciofluvial deposits), and recent post glacial alluvium. The major type of unconsolidated, water-yielding material in the study area is stratified drift, which consists of glaciofluvial sand and gravel, and is present in sufficient amounts in most places to form an extensive unconfined aquifer throughout the study area, which is the source of water for most residents, farms, and businesses in the valleys. A map of the water table in the unconfined aquifer was constructed by using (1) measurements made between the mid-1960s through 2010, (2) control on the altitudes of perennial streams at 10-foot contour intervals from lidar data collected by Tompkins County, and (3) water surfaces of ponds and wetlands that are hydraulically connected to the unconfined aquifer. Water-table contours indicate that the direction of groundwater flow within the stratified-drift aquifer is predominantly from the valley walls toward the streams and ponds in the central part of the valley where groundwater then flows southwestward (down valley) toward the confluence with the Cayuta Creek valley. Locally, the direction of groundwater flow is radially

  17. Groundwater levels and water quality during a 96-hour aquifer test in Pickaway County, Ohio, 2012

    Science.gov (United States)

    Haefner, Ralph J.; Runkle, Donna L.; Mailot, Brian E.

    2014-01-01

    During October–November 2012, a 96-hour aquifer test was performed at a proposed well field in northern Pickaway County, Ohio, to investigate groundwater with elevated nitrate concentrations. Earlier sampling done by the City of Columbus revealed that some wells had concentrations of nitrate that approached 10 milligrams per liter (mg/L), whereas other wells and the nearby Scioto River had concentrations from 2 to 6 mg/L. The purpose of the current test was to examine potential changes in water quality that may be expected if the site was developed into a public water-supply source; therefore, water-transmitting properties determined during a previous test were not determined a second time. Before and during the test, water-level data and water-quality samples were obtained from observation wells while a test production well was pumped at 1,300 gallons per minute. Before the test, local groundwater levels indicated that groundwater was being discharged to the nearby Scioto River, but during the test, the stream was losing streamflow owing to infiltration. Water levels declined in the pumping well, in adjacent observation wells, and in a nearby streambed piezometer as pumping commenced. The maximum drawdown in the pumping well was 29.75 feet, measured about 95 hours after pumping began. Water-quality data, including analyses for field parameters, major and trace elements, nutrients, and stable isotopes of oxygen and nitrogen in nitrate, demonstrated only small variations before and during the test. Concentrations of nitrate in five samples from the pumping well ranged from about 5.10 to 5.42 mg/L before and during the test, whereas concentrations of nitrate in five samples on or about the same sampling dates and times at a monitoring site on the Scioto River adjacent to the pumping well ranged from 3.46 to 4.97 mg/L. Water from two nearby observation wells had nitrate concentrations approaching 10 mg/L, which is the U.S. Environmental Protection Agency’s Maximum

  18. Preliminary stratigraphic and hydrogeologic cross sections and seismic profile of the Floridan aquifer system of Broward County, Florida

    Science.gov (United States)

    Reese, Ronald S.; Cunningham, Kevin J.

    2013-01-01

    To help water-resource managers evaluate the Floridan aquifer system (FAS) as an alternative water supply, the U.S. Geological Survey initiated a study, in cooperation with the Broward County Environmental Protection and Growth Management Department, to refine the hydrogeologic framework of the FAS in the eastern part of Broward County. This report presents three preliminary cross sections illustrating stratigraphy and hydrogeology in eastern Broward County as well as an interpreted seismic profile along one of the cross sections. Marker horizons were identified using borehole geophysical data and were initially used to perform well-to-well correlation. Core sample data were integrated with the borehole geophysical data to support stratigraphic and hydrogeologic interpretations of marker horizons. Stratigraphic and hydrogeologic units were correlated across the county using borehole geophysical data from multiple wells. Seismic-reflection data were collected along the Hillsboro Canal. Borehole geophysical data were used to identify and correlate hydrogeologic units in the seismic-reflection profile. Faults and collapse structures that intersect hydrogeologic units were also identified in the seismic profile. The information provided in the cross sections and the seismic profile is preliminary and subject to revision.

  19. Simulated effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Pooler, Chatham County, Georgia

    Science.gov (United States)

    Cherry, Gregory S.; Clarke, John S.

    2013-01-01

    A revised regional groundwater-flow model was used to assess the potential effects on the Upper Floridan aquifer (UFA) of pumping the Lower Floridan aquifer (LFA) from a new well (35Q069) located at the City of Pooler in coastal Georgia near Savannah. The spatial resolution of the original regional, steady-state, groundwater-flow model was increased to incorporate detailed hydrogeologic information resulting from field investigations at Pooler and existing wells in the area. Simulation results using the U.S. Geological Survey finite-difference code MODFLOW indicated that long-term pumping at a rate of 780 gallons per minute (gal/min) from the LFA well 35Q069 would cause a maximum drawdown of about 2.52 feet (ft) in the UFA (scenario A). This maximum drawdown in the UFA was greater than the observed draw-down of 0.9 ft in the 72-hour aquifer test, but this is expected because the steady-state simulated drawdown represents long-term pumping conditions. Model results for scenario A indicate that drawdown in the UFA exceeded 1 ft over a 163-square-mile (mi2) area. Induced vertical leakage from the UFA provided about 98 percent of the water to the LFA; the area within 1 mile of the pumped well contributed about 81 percent of the water pumped. Simulated pumping changed regional water-budget components slightly and redistributed flow among model layers, namely increasing downward leakage in all layers, decreasing upward leakage in all layers above the LFA, increasing inflow to and decreasing outflow from lateral specified-head boundaries in the UA and LFA, and increasing the volume of induced recharge from the general head boundary to outcrop units. An additional two groundwater-pumping scenarios were run to establish that a linear relation exists between pumping rates of the LFA well 35Q069 (varied from 390 to 1,042 gal/min) and amount of drawdown in the UFA and LFA. Three groundwater-pumping scenarios were run to evaluate the amount of UFA pumping (128 to 340 gal

  20. Assessment of managed aquifer recharge at Sand Hollow Reservoir, Washington County, Utah, updated to conditions in 2012

    Science.gov (United States)

    Marston, Thomas M.; Heilweil, Victor M.

    2013-01-01

    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily for managed aquifer recharge by the Washington County Water Conservancy District. From 2002 through 2011, surface-water diversions of about 199,000 acre-feet to Sand Hollow Reservoir have allowed the reservoir to remain nearly full since 2006. Groundwater levels in monitoring wells near the reservoir rose through 2006 and have fluctuated more recently because of variations in reservoir altitude and nearby pumping from production wells. Between 2004 and 2011, a total of about 19,000 acre-feet of groundwater was withdrawn by these wells for municipal supply. In addition, a total of about 21,000 acre-feet of shallow seepage was captured by French drains adjacent to the North and West Dams and used for municipal supply, irrigation, or returned to the reservoir. From 2002 through 2011, about 106,000 acre-feet of water seeped beneath the reservoir to recharge the underlying Navajo Sandstone aquifer. Water quality was sampled at various monitoring wells in Sand Hollow to evaluate the timing and location of reservoir recharge as it moved through the aquifer. Tracers of reservoir recharge include major and minor dissolved inorganic ions, tritium, dissolved organic carbon, chlorofluorocarbons, sulfur hexafluoride, and noble gases. By 2012, this recharge arrived at four monitoring wells located within about 1,000 feet of the reservoir. Changing geochemical conditions at five other monitoring wells could indicate other processes, such as changing groundwater levels and mobilization of vadose-zone salts, rather than arrival of reservoir recharge.

  1. Hydrogeology, hydraulic characteristics, and water-quality conditions in the surficial, Castle Hayne and Peedee aquifers of the greater New Hanover County area, North Carolina, 2012-13

    Science.gov (United States)

    McSwain, Kristen Bukowski; Gurley, Laura N.; Antolino, Dominick J.

    2014-01-01

    A major issue facing the greater New Hanover County, North Carolina, area is the increased demand for drinking water resources as a result of rapid growth. The principal sources of freshwater supply in the greater New Hanover County area are withdrawals of surface water from the Cape Fear River and groundwater from the underlying Castle Hayne and Peedee aquifers. Industrial, mining, irrigation, and aquaculture groundwater withdrawals increasingly compete with public-supply utilities for freshwater resources. Future population growth and economic expansion will require increased dependence on high-quality sources of fresh groundwater. An evaluation of the hydrogeology and water-quality conditions in the surficial, Castle Hayne, and Peedee aquifers was conducted in New Hanover, eastern Brunswick, and southern Pender Counties, North Carolina. A hydrogeologic framework was delineated by using a description of the geologic and hydrogeologic units that compose aquifers and their confining units. Current and historic water-level, water-quality, and water-isotope data were used to approximate the present boundary between freshwater and brackish water in the study area. Water-level data collected during August–September 2012 and March 2013 in the Castle Hayne aquifer show that recharge areas with the highest groundwater altitudes are located in central New Hanover County, and the lowest are located in a discharge area along the Atlantic Ocean. Between 1964 and 2012, groundwater levels in the Castle Hayne aquifer in central New Hanover County have rebounded by about 10 feet, but in the Pages Creek area groundwater levels declined in excess of 20 feet. In the Peedee aquifer, the August–September 2012 groundwater levels were affected by industrial withdrawals in north-central New Hanover County. Groundwater levels in the Peedee aquifer declined more than 20 feet between 1964 and 2012 in northeastern New Hanover County because of increased withdrawals. Vertical gradients

  2. Health assessment for US Radium-West Orange, Orange, Essex County, New Jersey, Region 2. CERCLIS No. NJD980654172. Preliminary report

    International Nuclear Information System (INIS)

    1989-01-01

    The U.S. Radium-West Orange site is on the National Priorities List. The two-acre site was the site of the former U.S. Radium processing facility where radium extraction, production, application, and distribution may have taken place. The principal environmental contamination at the site and the vicinity consists of isotopes of radon, radon daughters, and radium-226. The site is considered to be of public health concern, ranging from potential to imminent, depending on the individual area in question, because of the risk to human health caused by exposure to radioactive materials via inhalation of contaminated particulate and gaseous radiation, ingestion of contaminated particulate, and external exposure to gamma radiation

  3. Estimation of the groundwater resources of the bedrock aquifers at the Kettle Moraine Springs State Fish Hatchery, Sheboygan County, Wisconsin

    Science.gov (United States)

    Dunning, Charles; Feinstein, Daniel T.; Buchwald, Cheryl A.; Hunt, Randall J.; Haserodt, Megan J.

    2017-10-12

    Groundwater resources information was needed to understand regional aquifer systems and water available to wells and springs for rearing important Lake Michigan fish species at the Kettle Moraine Springs State Fish Hatchery in Sheboygan County, Wisconsin. As a basis for estimating the groundwater resources available, an existing groundwater-flow model was refined, and new groundwater-flow models were developed for the Kettle Moraine Springs State Fish Hatchery area using the U.S. Geological Survey (USGS) finite-difference code MODFLOW. This report describes the origin and construction of these groundwater-flow models and their use in testing conceptual models and simulating the hydrogeologic system.The study area is in the Eastern Ridges and Lowlands geographical province of Wisconsin, and the hatchery property is situated on the southeastern edge of the Kettle Moraine, a north-south trending topographic high of glacial origin. The bedrock units underlying the study area consist of Cambrian, Ordovician, and Silurian units of carbonate and siliciclastic lithology. In the Sheboygan County area, the sedimentary bedrock sequence reaches a thickness of as much as about 1,600 feet (ft).Two aquifer systems are present at the Kettle Moraine Springs State Fish Hatchery. A shallow system is made up of Silurian bedrock, consisting chiefly of dolomite, overlain by unconsolidated Quaternary-age glacial deposits. The glacial deposits of this aquifer system are the typical source of water to local springs, including the springs that have historically supplied the hatchery. The shallow aquifer system, therefore, consists of the unconsolidated glacial aquifer and the underlying bedrock Silurian aquifer. Most residential wells in the area draw from the Silurian aquifer. A deeper confined aquifer system is made up of Cambrian- and Ordovician-age bedrock units including sandstone formations. Because of its depth, very few wells are completed in the Cambrian-Ordovician aquifer system

  4. Quality of groundwater at and near an aquifer storage and recovery site, Bexar, Atascosa, and Wilson Counties, Texas, June 2004-August 2008

    Science.gov (United States)

    Otero, Cassi L.; Petri, Brian L.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the San Antonio Water System, did a study during 2004-08 to characterize the quality of native groundwater from the Edwards aquifer and pre- and post-injection water from the Carrizo aquifer at and near an aquifer storage and recovery (ASR) site in Bexar, Atascosa, and Wilson Counties, Texas. Groundwater samples were collected and analyzed for selected physical properties and constituents to characterize the quality of native groundwater from the Edwards aquifer and pre- and post-injection water from the Carrizo aquifer at and near the ASR site. Geochemical and isotope data indicated no substantial changes in major-ion, trace-element, and isotope chemistry occurred as the water from the Edwards aquifer was transferred through a 38-mile pipeline to the aquifer storage and recovery site. The samples collected from the four ASR recovery wells were similar in major-ion and stable isotope chemistry compared to the samples collected from the Edwards aquifer source wells and the ASR injection well. The similarity could indicate that as Edwards aquifer water was injected, it displaced native Carrizo aquifer water, or, alternatively, if mixing of Edwards and Carrizo aquifer waters was occurring, the major-ion and stable isotope signatures for the Carrizo aquifer water might have been obscured by the signatures of the injected Edwards aquifer water. Differences in the dissolved iron and dissolved manganese concentrations indicate that either minor amounts of mixing occurred between the waters from the two aquifers, or as Edwards aquifer water displaced Carrizo aquifer water it dissolved the iron and manganese directly from the Carrizo Sand. Concentrations of radium-226 in the samples collected at the ASR recovery wells were smaller than the concentrations in samples collected from the Edwards aquifer source wells and from the ASR injection well. The smaller radium-226 concentrations in the samples collected from the ASR

  5. A conceptual hydrogeologic model for the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Thomas, Jonathan V.; Stanton, Gregory P.; Bumgarner, Johnathan R.; Pearson, Daniel K.; Teeple, Andrew; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn

    2013-01-01

    The Edwards-Trinity aquifer is a vital groundwater resource for agricultural, industrial, and municipal uses in the Trans-Pecos region of west Texas. A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system in the 4,700 square-mile study area was developed by the U.S. Geological Survey (USGS) in cooperation with the Middle Pecos Groundwater Conservation District, Pecos County, City of Fort Stockton, Brewster County, and Pecos County Water Control and Improvement District No. 1. The model was developed to gain a better understanding of the groundwater system and to establish a scientific foundation for resource-management decisions. Data and information were collected or obtained from various sources to develop the model. Lithologic information obtained from well reports and geophysical data were used to describe the hydrostratigraphy and structural features of the groundwater system, and aquifer-test data were used to estimate aquifer hydraulic properties. Groundwater-quality data were used to evaluate groundwater-flow paths, water and rock interaction, aquifer interaction, and the mixing of water from different sources. Groundwater-level data also were used to evaluate aquifer interaction as well as to develop a potentiometric-surface map, delineate regional groundwater divides, and describe regional groundwater-flow paths.

  6. Assessment of managed aquifer recharge at Sand Hollow Reservoir, Washington County, Utah, updated to conditions through 2007

    Science.gov (United States)

    Heilweil, Victor M.; Ortiz, Gema; Susong, David D.

    2009-01-01

    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily as an aquifer storage and recovery project by the Washington County Water Conservancy District (WCWCD). Since its inception in 2002 through 2007, surface-water diversions of about 126,000 acre-feet to Sand Hollow Reservoir have resulted in a generally rising reservoir stage and surface area. Large volumes of runoff during spring 2005-06 allowed the WCWCD to fill the reservoir to a total storage capacity of more than 50,000 acre-feet, with a corresponding surface area of about 1,300 acres and reservoir stage of about 3,060 feet during 2006. During 2007, reservoir stage generally decreased to about 3,040 feet with a surface-water storage volume of about 30,000 acre-feet. Water temperature in the reservoir shows large seasonal variation and has ranged from about 3 to 30 deg C from 2003 through 2007. Except for anomalously high recharge rates during the first year when the vadose zone beneath the reservoir was becoming saturated, estimated ground-water recharge rates have ranged from 0.01 to 0.09 feet per day. Estimated recharge volumes have ranged from about 200 to 3,500 acre-feet per month from March 2002 through December 2007. Total ground-water recharge during the same period is estimated to have been about 69,000 acre-feet. Estimated evaporation rates have varied from 0.04 to 0.97 feet per month, resulting in evaporation losses of 20 to 1,200 acre-feet per month. Total evaporation from March 2002 through December 2007 is estimated to have been about 25,000 acre-feet. Results of water-quality sampling at monitoring wells indicate that by 2007, managed aquifer recharge had arrived at sites 37 and 36, located 60 and 160 feet from the reservoir, respectively. However, different peak arrival dates for specific conductance, chloride, chloride/bromide ratios, dissolved oxygen, and total dissolved-gas pressures at each monitoring well indicate the complicated nature of

  7. Inventory of drainage wells and potential sources of contaminants to drainage-well inflow in Southwest Orlando, Orange County, Florida

    Science.gov (United States)

    Taylor, George Fred

    1993-01-01

    Potential sources of contaminants that could pose a threat to drainage-well inflow and to water in the Floridan aquifer system in southwest Orlando, Florida, were studied between October and December 1990. Drainage wells and public-supply wells were inventoried in a 14-square-mile area, and available data on land use and activities within each drainage well basin were tabulated. Three public-supply wells (tapping the Lower Floridan aquifer) and 38 drainage wells (open to the Upper Floridan aquifer) were located in 17 drainage basins within the study area. The primary sources of drainage-well inflow are lake overflow, street runoff, seepage from the surficial aquifer system, and process-wastewater disposal. Drainage-well inflow from a variety of ares, including resi- dential, commercial, undeveloped, paved, and industrial areas, are potential sources of con- taminants. The four general types of possible contaminants to drainage-well inflow are inorganic chemicals, organic compounds, turbidity, and microbiological contaminants. Potential contami- nant sources include plant nurseries, citrus groves, parking lots, plating companies, auto- motive repair shops, and most commonly, lake- overflow water. Drainage wells provide a pathway for contaminants to enter the Upper Floridan aquifer and there is a potential for contaminants to move downward from the Upper Floridan to the Lower Floridan aquifer.

  8. Estimated rates of groundwater recharge to the Chicot, Evangeline and Jasper aquifers by using environmental tracers in Montgomery and adjacent counties, Texas, 2008 and 2011

    Science.gov (United States)

    Oden, Timothy D.; Truini, Margot

    2013-01-01

    Montgomery County is in the northern part of the Houston, Texas, metropolitan area, the fourth most populous metropolitan area in the United States. As populations have increased since the 1980s, groundwater has become an important resource for public-water supply and industry in the rapidly growing area of Montgomery County. Groundwater availability from the Gulf Coast aquifer system is a primary concern for water managers and community planners in Montgomery County and requires a better understanding of the rate of recharge to the system. The Gulf Coast aquifer system in Montgomery County consists of the Chicot, Evangeline, and Jasper aquifers, the Burkeville confining unit, and underlying Catahoula confining system. The individual sand and clay sequences of the aquifers composing the Gulf Coast aquifer system are not laterally or vertically continuous on a regional scale; however, on a local scale, individual sand and clay lenses can extend over several miles. The U.S. Geological Survey, in cooperation with the Lone Star Groundwater Conservation District, collected groundwater-quality samples from selected wells within or near Montgomery County in 2008 and analyzed these samples for concentrations of chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), tritium (3H), helium-3/tritium (3He/3H), helium-4 (4He), and dissolved gases (DG) that include argon, carbon dioxide, methane, nitrogen and oxygen. Groundwater ages, or apparent age, representing residence times since time of recharge, were determined by using the assumption of a piston-flow transport model. Most of the environmental tracer data indicated the groundwater was recharged prior to the 1950s, limiting the usefulness of CFCs, SF6, and 3H concentrations as tracers. In many cases, no tracer was usable at a well for the purpose of estimating an apparent age. Wells not usable for estimating an apparent age were resampled in 2011 and analyzed for concentrations of major ions and carbon-14 (14C). At six of

  9. Hydrogeology, water quality, and simulated effects of ground-water withdrawals from the Floridan aquifer system, Seminole County and vicinity, Florida

    Science.gov (United States)

    Spechler, Rick M.; Halford, Keith J.

    2001-01-01

    The hydrogeology and ground-water quality of Seminole County in east-central Florida was evaluated. A ground-water flow model was developed to simulate the effects of both present day (September 1996 through August 1997) and projected 2020 ground-water withdrawals on the water levels in the surficial aquifer system and the potentiometric surface of the Upper and Lower Floridan aquifers in Seminole County and vicinity. The Floridan aquifer system is the major source of ground water in the study area. In 1965, ground-water withdrawals from the Floridan aquifer system in Seminole County were about 11 million gallons per day. In 1995, withdrawals totaled about 69 million gallons per day. Of the total ground water used in 1995, 74 percent was for public supply, 12 percent for domestic self-supplied, 10 percent for agriculture self-supplied, and 4 percent for recreational irrigation. The principal water-bearing units in Seminole County are the surficial aquifer system and the Floridan aquifer system. The two aquifer systems are separated by the intermediate confining unit, which contains beds of lower permeability sediments that confine the water in the Floridan aquifer system. The Floridan aquifer system has two major water-bearing zones (the Upper Floridan aquifer and the Lower Floridan aquifer), which are separated by a less-permeable semiconfining unit. Upper Floridan aquifer water levels and spring flows have been affected by ground-water development. Long-term hydrographs of four wells tapping the Upper Floridan aquifer show a general downward trend from the early 1950's until 1990. The declines in water levels are caused predominantly by increased pumpage and below average annual rainfall. From 1991 to 1998, water levels rose slightly, a trend that can be explained by an increase in average annual rainfall. Long-term declines in the potentiometric surface varied throughout the area, ranging from about 3 to 12 feet. Decreases in spring discharge also have been

  10. Hydrogeologic appraisal of a stratified-drift aquifer near Smyrna, Chenango County, New York

    Science.gov (United States)

    Reynolds, R.J.; Brown, G.A.

    1984-01-01

    A broad, Y-shaped valley near Smyrna, New York, contains extensive water-table and confined aquifers that are largely hydraulically separated from the nearby Chenango River to the east. Accordingly, ground-water withdrawals from this valley would not appreciably decrease streamflow in the Chenango River by induced infiltration and could be used for specialized needs. The aquifers in the valley are capable of sustaining a long-term total withdrawal of about 12.7 million gallons per day during prolonged drought conditions. Larger withdrawals could be made on a short-term basis or during periods of normal or above-normal precipitation. Saturated thickness of undifferentiated stratified-drift deposits in the valley ranges from 20 feet in the northwestern part of the valley to more than 300 feet at its southern end. Direct areal recharge accounts for about 56 percent of the total recharge to the valley aquifer infiltration from streams accounts for 24 percent, and runoff from the adjacent till-mantled hillsides accounts for 20 percent. The water-table and confined aquifers within the valley hold at least 19.6 billion gallons of usable ground water in storage. (USGS)

  11. Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge.

    Science.gov (United States)

    Fakhreddine, Sarah; Dittmar, Jessica; Phipps, Don; Dadakis, Jason; Fendorf, Scott

    2015-07-07

    Mobilization of arsenic and other trace metal contaminants during managed aquifer recharge (MAR) poses a challenge to maintaining local groundwater quality and to ensuring the viability of aquifer storage and recovery techniques. Arsenic release from sediments into solution has occurred during purified recycled water recharge of shallow aquifers within Orange County, CA. Accordingly, we examine the geochemical processes controlling As desorption and mobilization from shallow, aerated sediments underlying MAR infiltration basins. Further, we conducted a series of batch and column experiments to evaluate recharge water chemistries that minimize the propensity of As desorption from the aquifer sediments. Within the shallow Orange County Groundwater Basin sediments, the divalent cations Ca(2+) and Mg(2+) are critical for limiting arsenic desorption; they promote As (as arsenate) adsorption to the phyllosilicate clay minerals of the aquifer. While native groundwater contains adequate concentrations of dissolved Ca(2+) and Mg(2+), these cations are not present at sufficient concentrations during recharge of highly purified recycled water. Subsequently, the absence of dissolved Ca(2+) and Mg(2+) displaces As from the sediments into solution. Increasing the dosages of common water treatment amendments including quicklime (Ca(OH)2) and dolomitic lime (CaO·MgO) provides recharge water with higher concentrations of Ca(2+) and Mg(2+) ions and subsequently decreases the release of As during infiltration.

  12. Groundwater-quality data from the eastern Snake River Plain Aquifer, Jerome and Gooding Counties, south-central Idaho, 2017

    Science.gov (United States)

    Skinner, Kenneth D.

    2018-05-11

    Groundwater-quality samples and water-level data were collected from 36 wells in the Jerome/Gooding County area of the eastern Snake River Plain aquifer during June 2017. The wells included 30 wells sampled for the U.S. Geological Survey’s National Water-Quality Assessment project, plus an additional 6 wells were selected to increase spatial distribution. The data provide water managers with the ability for an improved understanding of groundwater quality and flow directions in the area. Groundwater-quality samples were analyzed for nutrients, major ions, trace elements, and stable isotopes of water. Quality-assurance and quality-control measures consisted of multiple blank samples and a sequential replicate sample. All data are available online at the USGS National Water Information System.

  13. Geodatabase and characteristics of springs within and surrounding the Trinity aquifer outcrops in northern Bexar County, Texas, 2010--11

    Science.gov (United States)

    Clark, Allan K.; Pedraza, Diana E.; Morris, Robert R.; Garcia, Travis J.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Trinity Glen Rose Groundwater Conservation District, the Edwards Aquifer Authority, and the San Antonio River Authority, developed a geodatabase of springs within and surrounding the Trinity aquifer outcrops in a 331-square-mile study area in northern Bexar County, Texas. The data used to develop the geodatabase were compiled from existing reports and databases, along with spring data collected between October 2010 and September 2011. Characteristics including the location, discharge, and water-quality properties were collected for known springs and documented in the geodatabase. A total of 141 springs were located within the study area, and 46 springs were field verified. The discharge at springs with flow ranged from 0.003 to 1.46 cubic feet per second. The specific conductance of the water discharging from the springs ranged from 167 to 1,130 microsiemens per centimeter at 25 degrees Celsius with a majority of values in the range of 500 microsiemens per centimeter at 25 degrees Celsius.

  14. Iron in the Middle Devonian aquifer system and its removal at Võru County water treatment plants, Estonia

    Directory of Open Access Journals (Sweden)

    Mariina Hiiob

    2012-08-01

    Full Text Available Groundwater abstracted from the Middle Devonian aquifer system is the main source of drinking water in South Estonia. High iron and manganese concentrations in groundwater are the greatest problems in this region. The total iron concentrations up to 16 mg L–1 are mainly caused by a high Fe2+ content in water, pointing to the dominance of reducing conditions in the aquifer system. A pilot study was carried out to estimate the effectiveness of 20 groundwater purification plants with eight different water treatment systems (aeration combined with Manganese Greensand, Birm, Nevtraco, Hydrolit-Mn, Magno-Dol and quartz sand filters in Võru County. The results demonstrate that in most cases the systems with pre-aeration effectively purify groundwater from iron, but only 13 out of 20 water treatment plants achieved a reduction of iron concentration to the level fixed in drinking water requirements (0.2 mg L–1. Manganese content decreased below the maximum allowed concentration in only 25% of systems and in cases where the filter media was Birm or quartz sand and pre-oxidation was applied. The study showed that the high level of iron purification does not guarantee effective removal of manganese.

  15. Hydro-geological properties of the Savian aquifer in the county Obrenovac

    Directory of Open Access Journals (Sweden)

    Stojadinović Dušan D.

    2005-01-01

    Full Text Available The paper presents a description of hydrogeological researches of alluvial layers of the Sava River in the area of the source "Vić Bare" near Obrenovac. This source supplies groundwater to that town. The depth of these layers amounts to 25 m. With regard to collecting capacity, the most significant are gravel-sand sediments of high filtration properties. Their average depth amounts to about 13 m with the underlying layer made of Pleistocene clays. Compact aquifer is formed within these sediments and it refills partly from the Sava River at places where river cuts its channel into the gravel-sand layer. The analysis of the groundwater regime in the riparian area points out that groundwater levels follow stages of the Sava River. Such an influence lessens with the distance. Established hydraulic connection between the river and the aquifer enables its permanent replenishment. On the other hand, due to certain pollutions this river flow might bring along, it represents a potential danger. Those pollutions could enter water-bearing layer of the aquifer as well as the exploitation well of the source. Such presumptions have been confirmed in the experiment of pollution transport carried out in the water-bearing layer. Unabsorbable chloride was used as a tracer whose movement velocity through exploitation well proved that there were real possibilities of intrusion of aggressive pollutants into the water-bearing layer and into the aquifer as well. Therefore, the protection of the source must be in the function of the protection of surface waters.

  16. Electrical resistivity and porosity structure of the upper Biscayne Aquifer in Miami-Dade County, Florida

    Science.gov (United States)

    Whitman, Dean; Yeboah-Forson, Albert

    2015-12-01

    Square array electrical soundings were made at 13 sites in the Biscayne Aquifer distributed between 1 and 20 km from the shoreline. These soundings were modeled to investigate how resistivity varies spatially and with depth in the upper 15 m of the aquifer. Porosity was estimated from the modeled formation resistivity and observed pore fluid resistivity with Archie's Law. The models were used to interpolate resistivity and porosity surfaces at -2, -5, -8, and -15 m elevations. Modeled resistivity in the unsaturated zone is generally higher than 300 Ω m with the resistivity at sites with thick unsaturated zones greater than 1000 Ω m. Resistivity in the saturated zone ranges from 30 to 320 Ω m. At many sites in the western portions of the study area, resistivity is constant or increases with depth whereas sites in the center of the Atlantic Coastal Ridge exhibit a distinct low resistivity zone (ρ aquifer. The estimated porosity ranges between 14% and 71% with modal values near 25%. The porosity structure varies both with depth and spatially. Western sites exhibit a high porosity zone at shallow depths best expressed in a NE-SW trending zone of 40-50% porosity situated near the western margin of the Atlantic Coastal Ridge. This zone roughly corresponds in depth with the Q5 chronostratigraphic unit of the Miami Fm. which constitutes the upper flow unit of the Biscayne Aquifer. The highest porosity (>50%) is seen at elevations below -5 m at sites in the center of the Atlantic Coastal Ridge and likely corresponds to solution features. The general NE-SW trend of the resistivity and porosity structure suggests a causal connection with the Pleistocene paleogeography and sedimentary environments.

  17. Geohydrology and water quality of the stratified-drift aquifers in Upper Buttermilk Creek and Danby Creek Valleys, Town of Danby, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2015-11-20

    In 2006, the U.S. Geological Survey, in cooperation with the Town of Danby and the Tompkins County Planning Department, began a study of the stratified-drift aquifers in the upper Buttermilk Creek and Danby Creek valleys in the Town of Danby, Tompkins County, New York. In the northern part of the north-draining upper Buttermilk Creek valley, there is only one sand and gravel aquifer, a confined basal unit that overlies bedrock. In the southern part of upper Buttermilk Creek valley, there are as many as four sand and gravel aquifers, two are unconfined and two are confined. In the south-draining Danby Creek valley, there is an unconfined aquifer consisting of outwash and kame sand and gravel (deposited by glacial meltwaters during the late Pleistocene Epoch) and alluvial silt, sand, and gravel (deposited by streams during the Holocene Epoch). In addition, throughout the study area, there are several small local unconfined aquifers where large tributaries deposited alluvial fans in the valley.

  18. Helicopter Electromagnetic and Magnetic Surveys of the Upper and Middle Zones of the Trinity Aquifer, Uvalde and Bexar Counties, Texas

    Science.gov (United States)

    Smith, D. V.; Blome, C. D.; Smith, B. D.; Clark, A. C.

    2009-12-01

    Detailed helicopter electromagnetic and magnetic surveys (HEM) were conducted in northern Uvalde and Bexar Counties, Texas, as part of a geologic mapping and hydrologic study being conducted by the U.S. Geological Survey (USGS). The aquifers of the Lower Cretaceous Trinity Group (collectively termed the Trinity aquifer) are an important regional water source in the Hill Country of south-central Texas. Rock units comprising the middle aquifer segment are represented by the lower member of the Glen Rose Formation and the Cow Creek Limestone and Hensel Sandstone members of the Pearsall Formation. The lower Trinity hydrologic segment is composed of the Hosston and Sligo Limestones and is confined by the overlying Hammet Shale. Karst features commonly occur in the Trinity Group because of the dissolution of gypsum- and anhydrite-rich beds. Faults and fractures have not been sufficiently analyzed to evaluate the effects these structures have on inter- and intra-formational groundwater flow. The survey in the north Seco Creek area covers the recharge zone of the Edwards aquifer and part of the catchment zone composed of the upper Trinity segment. These data augment the scant geologic mapping in the area by delineating faults, collapse features, and hydrostratigraphic units. The HEM survey in northern Bexar County covered the Camp Stanley Storage Activity, the Camp Bullis Training Site, parts of the recharge zone of the Edwards aquifer south of the military bases, and part of Cibolo Creek to the north. Basic line spacing was 200 meters using six frequencies. In-fill lines were flown with a spacing of 100 meters in the central part of the study area to better resolve geologic structures and karst features. The data processing took into account high EM interference and cultural noise. Apparent resistivity (ρa) maps are used in interpretation of geologic structures, trends, and in the identification of electrical properties of lithologic units. The ρa maps show the

  19. Surface-water and karst groundwater interactions and streamflow-response simulations of the karst-influenced upper Lost River watershed, Orange County, Indiana

    Science.gov (United States)

    Bayless, E. Randall; Cinotto, Peter J.; Ulery, Randy L.; Taylor, Charles J.; McCombs, Gregory K.; Kim, Moon H.; Nelson, Hugh L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE) and the Indiana Office of Community and Rural Affairs (OCRA), conducted a study of the upper Lost River watershed in Orange County, Indiana, from 2012 to 2013. Streamflow and groundwater data were collected at 10 data-collection sites from at least October 2012 until April 2013, and a preliminary Water Availability Tool for Environmental Resources (WATER)-TOPMODEL based hydrologic model was created to increase understanding of the complex, karstic hydraulic and hydrologic system present in the upper Lost River watershed, Orange County, Ind. Statistical assessment of the optimized hydrologic-model results were promising and returned correlation coefficients for simulated and measured stream discharge of 0.58 and 0.60 and Nash-Sutcliffe efficiency values of 0.56 and 0.39 for USGS streamflow-gaging stations 03373530 (Lost River near Leipsic, Ind.), and 03373560 (Lost River near Prospect, Ind.), respectively. Additional information to refine drainage divides is needed before applying the model to the entire karst region of south-central Indiana. Surface-water and groundwater data were used to tentatively quantify the complex hydrologic processes taking place within the watershed and provide increased understanding for future modeling and management applications. The data indicate that during wet-weather periods and after certain intense storms, the hydraulic capacity of swallow holes and subsurface conduits is overwhelmed with excess water that flows onto the surface in dry-bed relic stream channels and karst paleovalleys. Analysis of discharge data collected at USGS streamflow-gaging station 03373550 (Orangeville Rise, at Orangeville, Ind.), and other ancillary data-collection sites in the watershed, indicate that a bounding condition is likely present, and drainage from the underlying karst conduit system is potentially limited to near 200 cubic feet per second. This

  20. Hydrogeology and water quality of glacial-drift aquifers in the Bemidji-Bagley area, Beltrami, Clearwater, Cass, and Hubbard counties, Minnesota

    Science.gov (United States)

    Stark, J.R.; Busch, J.P.; Deters, M.H.

    1991-01-01

    Unconfined and the upper confined aquifers in glacial drift are the primary sources of water in a 1,600 square-mile area including parts of Beltrami, Cass, Clearwater, and Hubbard Counties, Minnesota. The unconfineddrift aquifer consists of coarse sand and gravel in the center of the study area. The total area underlain by the unconfined-drift aquifer is approximately 550 square miles. The unconfined aquifer ranges in thickness from 0 to 130 feet, and is greater than 20 feet thick over an area of 280 square miles. On the basis of scant data, the transmissivity of the unconfined aquifer ranges from less than 70 feet squared per day in the south and west to greater than 8,900 feet squared per day in an area west of Bemidji. Well yields from 10 to 300 gallons per minute are possible in some areas. The unconfined and upper confined-drift aquifers are separated by a fine-grained confining unit of till or lake deposits.

  1. Simulation of the water-table altitude in the Biscayne Aquifer, southern Dade County, Florida, water years 1945-89

    Science.gov (United States)

    Merritt, M.L.

    1995-01-01

    A digital model of the flow system in the highly permeable surficial aquifer of southern Dade County, Florida, was constructed for the purposes of better understanding processes that influence the flow system and of supporting the construction of a subregional model of the transport of brackish water from a flowing artesian well. Problems that needed resolution in this endeavor included the development of methods to represent the influence of flowing surface water in seasonally inundated wetlands and the influence of a network of controlled canals developed in stages during the simulation time period (water years 1945-89). An additional problem was the general lack of natural aquifer boundaries near the boundaries of the study area. The model construction was based on a conceptual description of the Biscayne aquifer developed from the results of previous U.S. Geological Survey investigations. Modifications were made to an existing three- dimensional finite-difference simulator of ground- water flow to enable an upper layer of the grid to represent seasonally occurring overland sheetflow in a series of transient simulations of water levels from 1945 to 1989. A rewetting procedure was developed for the simulator that permitted resaturation of cells in this layer when the wet season recurred. An "equivalent hydraulic conductivity" coefficient was assigned to the overland flow layer that was analogous, subject to various approximations, to the use of the Manning equation. The surficial semiconfining peat and marl layers, levees, canals, and control structures were also represented as part of the model grid with the appropriate choices of hydraulic coefficient values. For most of the Biscayne aquifer grid cells, the value assigned to hydraulic conductivity for model calibration was 30,000 feet per day and the value assigned to porosity was 20 percent. Boundary conditions were specified near data sites having long-term records of surface-water stages or water

  2. Determining Changes in Groundwater Quality during Managed Aquifer Recharge

    Science.gov (United States)

    Gambhir, T.; Houlihan, M.; Fakhreddine, S.; Dadakis, J.; Fendorf, S. E.

    2016-12-01

    Managed aquifer recharge (MAR) is becoming an increasingly prevalent technology for improving the sustainability of freshwater supply. However, recharge water can alter the geochemical conditions of the aquifer, mobilizing contaminants native to the aquifer sediments. Geochemical alterations on deep (>300 m) injection of highly treated recycled wastewater for MAR has received limited attention. We aim to determine how residual disinfectants used in water treatment processes, specifically the strong oxidants chloramine and hydrogen peroxide, affect metal mobilization within deep injection wells of the Orange County Water District. Furthermore, as the treated recharge water has very low ionic strength (44.6 mg L-1 total dissolved solids), we tested how differing concentrations of magnesium chloride and calcium chloride affected metal mobilization within deep aquifers. Continuous flow experiments were conducted on columns dry packed with sediments from a deep injection MAR site in Orange County, CA. The effluent was analyzed for shifts in water quality, including aqueous concentrations of arsenic, uranium, and chromium. Interaction between the sediment and oxic recharge solution causes naturally-occurring arsenopyrite to repartition onto iron oxides. The stability of arsenic on the newly precipitated iron oxides is dependent on pH changes during recharge.

  3. Geology and ground-water conditions of Clark County Washington, with a description of a major alluvial aquifer along the Columbia River

    Science.gov (United States)

    Mundorff, Maurice John

    1964-01-01

    This report presents the results of an investigation of the ground-water resources of the populated parts of Clark County. Yields adequate for irrigation can be obtained from wells inmost farmed areas in Clark County, Wash. The total available supply is sufficient for all foreseeable irrigation developments. In a few local areas aquifers are fine-grained, and yields of individual wells are low. An enormous ground-water supply is available from a major alluvial aquifer underlying the flood plain of the Columbia River in the vicinity of Vancouver, Camas, and Washougal, where the aquifer is recharged, in part, by infiltration from the river. Yields of individual wells are large, ranging to as much as 4,000 gpm (gallons per minute). Clark County lies along the western flank of the Cascade Range. in the structural lowland (Willamette-Puget trough) between those mountains and the Coast Ranges to the west. The area covered by the report includes the urban, the suburban, and most of the agricultural lands in the county. These lands lie on a Series of nearly fiat plains and benches which rise steplike from the level of the Columbia River (a few feet above sea level) to about 800 feet above sea level. Clark County is-drained by the Columbia River (the trunk stream of the Pacific Northwest) and its tributaries. The Columbia River forms the southern and western boundaries of the county. Although the climate of the county is considered to be humid, the precipitation ranging from about 37 to more than 110 inches annually in various parts of the county, the unequal seasonal distribution (about 1.5 inches total for ;July and August in the agricultural area) makes irrigation highly desirable for most .crops and essential for some specialized crops. Consolidated rocks of Eocene to Miocene age, chiefly volcanic lava flows and pyroclastics but including some sedimentary strata, crop out in the foothills of the Cascades in the eastern part of the county and underlie the younger

  4. Regional potentiometric-surface map of the Great Basin carbonate and alluvial aquifer system in Snake Valley and surrounding areas, Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada

    Science.gov (United States)

    Gardner, Philip M.; Masbruch, Melissa D.; Plume, Russell W.; Buto, Susan G.

    2011-01-01

    Water-level measurements from 190 wells were used to develop a potentiometric-surface map of the east-central portion of the regional Great Basin carbonate and alluvial aquifer system in and around Snake Valley, eastern Nevada and western Utah. The map area covers approximately 9,000 square miles in Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada. Recent (2007-2010) drilling by the Utah Geological Survey and U.S. Geological Survey has provided new data for areas where water-level measurements were previously unavailable. New water-level data were used to refine mapping of the pathways of intrabasin and interbasin groundwater flow. At 20 of these locations, nested observation wells provide vertical hydraulic gradient data and information related to the degree of connection between basin-fill aquifers and consolidated-rock aquifers. Multiple-year water-level hydrographs are also presented for 32 wells to illustrate the aquifer system's response to interannual climate variations and well withdrawals.

  5. Application of a Density-Dependent Numerical Model (MODHMS) to Assess Salinity Intrusion in the Biscayne Aquifer, North Miami-Dade County, Florida

    Science.gov (United States)

    Guha, H.; Panday, S.

    2005-05-01

    Miami-Dade County is located at the Southeastern part of the State of Florida adjoining the Atlantic coast. The sole drinking water source is the Biscayne Aquifer, which is an unconfined freshwater aquifer, composed of marine limestone with intermediate sand lenses. The aquifer is highly conductive with hydraulic conductivity values ranging from 1,000 ft/day to over 100,000 ft/day in some areas. Saltwater intrusion from the coast is an immediate threat to the freshwater resources of the County. Therefore, a multilayer density-dependent transient groundwater model was developed to evaluate the saltwater intrusion characteristics of the system. The model was developed using MODHMS, a finite difference, fully coupled groundwater and surface water flow and transport model. The buoyancy term is included in the equation for unconfined flow and the flow and transport equations are coupled using an iterative scheme. The transport equation was solved using an adaptive implicit total variation diminishing (TVD) scheme and anisotropy of dispersivity was included for longitudinal, transverse, vertical transverse, and vertical longitudinal directions. The model eastern boundaries extended approximately 3.5 miles into the Atlantic Ocean while the western boundary extended approximately 27 miles inland from the coast. The northern and southern boundaries extend 6 miles into Broward County and up to the C-100 canal in Miami-Dade County respectively. Close to 2 million active nodes were simulated, with horizontal discretization of 500 feet. A total of nine different statistical analyses were conducted with observed and simulated hydraulic heads. The analysis indicates that the model simulated hydraulic heads matched closely with the observed heads across the model domain. In general, the model reasonably simulated the inland extent of saltwater intrusion within the aquifer, and matched relatively well with limited observed chloride data from monitoring wells along the coast

  6. Statistical analysis and mapping of water levels in the Biscayne aquifer, water conservation areas, and Everglades National Park, Miami-Dade County, Florida, 2000–2009

    Science.gov (United States)

    Prinos, Scott T.; Dixon, Joann F.

    2016-02-25

    Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000–2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000–2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990–1999 and 2000–2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974–2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer.

  7. Geohydrology of the stratified-drift aquifer system in the lower Sixmile Creek and Willseyville Creek trough, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.; Karig, Daniel E.

    2010-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department began a series of studies of the stratified-drift aquifers in Tompkins County to provide geohydrologic data for planners to develop a strategy to manage and protect their water resources. This aquifer study in lower Sixmile Creek and Willseyville Creek trough is the second in a series of aquifer studies in Tompkins County. The study area is within the northern area of the Appalachian Plateau and extends about 9 miles from the boundary between Tompkins County and Tioga County in the south to just south of the City of Ithaca in the north. In lower Sixmile Creek and Willseyville Creek trough, confined sand and gravel aquifers comprise the major water-bearing units while less extensive unconfined units form minor aquifers. About 600 people who live in lower Sixmile Creek and Willseyville Creek trough rely on groundwater from the stratified-drift aquifer system. In addition, water is used by non-permanent residents such as staff at commercial facilities. The estimated total groundwater withdrawn for domestic use is about 45,000 gallons per day (gal/d) or 0.07 cubic foot per second (ft3/s) based on an average water use of 75 gal/d per person for self-supplied water systems in New York. Scouring of bedrock in the preglacial lower Sixmile Creek and Willseyville Creek valleys by glaciers and subglacial meltwaters truncated hillside spurs, formed U-shaped, transverse valley profiles, smoothed valley walls, and deepened the valleys by as much as 300 feet (ft), forming a continuous trough. The unconsolidated deposits in the study area consist mostly of glacial drift, both unstratified drift (till) and stratified drift (laminated lake, deltaic, and glaciofluvial sediments), as well as some post-glacial stratified sediments (lake-bottom sediments that were deposited in reservoirs, peat and muck that were deposited in wetlands, and alluvium deposited by streams). Multiple advances and

  8. Uranium in waters and aquifer rocks at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Zielinski, R.A.; Rosholt, J.N.

    1978-01-01

    Previous chemical, geological, and hydrological information describing the physical and chemical environment of the Nevada Test Site has been combined with new radiochemical and isotope data for water and rock samples in order to explain the behavior of uranium during alteration of thick sequences of rhyolitic volcanic rocks and associated volcanielastic sediments. A model is proposed in which uranium mobility is controlled by two competing processes. Uranium is liberated from the volcanic rocks through dissolution of the glassy constituents and is carried in solution as a uranyl carbonate complex. Uranium is subsequently removed from solution by adsorption on secondary oxides of iron, titanium, and manganese, as observed in fission-track maps of aquifer rocks. The model explains the poor correlation of dissolved uranium with depth within tuffaceous sequences in which percolation of ground water is predominantly downward. Good positive correlation of dissolved uranium with dissolved Na, total dissolved solids, and total carbonate supports the glass dissolution model, while inverse correlation of dissolved uranium with 234 U/ 238 U ratios of water implies uranium is being absorbed by a relatively insoluble, surficial phase. Alpha radioactivity of Test Site water is primarily caused by high 234 U contents, and beta activity is highly correlated with dissolved K ( 40 K). Smallamounts of dissolved radium, 216 Pb, and 210 Po are present but no evidence was found for alpha activity sources related to nuclear testing (Pu, 235 U). A filtered but unacidified carbonate solution of uranium was found to be stable (+-10 percent of original U concentration) for years when stored in acid-washed polyethylene bottles. 5 tables, 2 figs

  9. Simulation of the interaction of karstic lakes Magnolia and Brooklyn with the upper Floridan Aquifer, southwestern Clay County, Florida

    Science.gov (United States)

    Merritt, M.L.

    2001-01-01

    The stage of Lake Brooklyn, in southwestern Clay County, Florida, has varied over a range of 27 feet since measurements by the U.S. Geological Survey began in July 1957. The large stage changes have been attributed to the relation between highly transient surface-water inflow to the lake and subsurface conduits of karstic origin that permit a high rate of leakage from the lake to the Upper Floridan aquifer. After the most recent and severe stage decline (1990-1994), the U.S. Geological Survey began a study that entailed the use of numerical ground-water flow models to simulate the interaction of the lake with the Upper Floridan aquifer and the large fluctuations of stage that were a part of that process. A package (set of computer programs) designed to represent lake/aquifer interaction in the U.S. Geological Survey Modular Finite-Difference Ground-Water Flow Model (MODFLOW-96) and the Three-Dimensional Method-of-Characteristics Solute-Transport Model (MOC3D) simulators was prepared as part of this study, and a demonstration of its capability was a primary objective of the study. (Although the official names are Brooklyn Lake and Magnolia Lake (Florida Geographic Names), in this report the local names, Lake Brooklyn and Lake Magnolia, are used.) In the simulator of lake/aquifer interaction used in this investigation, the stage of each lake in a simulation is updated in successive time steps by a budget process that takes into account ground-water seepage, precipitation upon and evaporation from the lake surface, stream inflows and outflows, overland runoff inflows, and augmentation or depletion by artificial means. The simulator was given the capability to simulate both the division of a lake into separate pools as lake stage falls and the coalescence of several pools into a single lake as the stage rises. This representational capability was required to simulate Lake Brooklyn, which can divide into as many as 10 separate pools at sufficiently low stage. In the

  10. Occurrence and Distribution of Mercury in the SurficialAquifer, Long Neck Peninsula, Sussex County, Delaware, 2003-04

    Science.gov (United States)

    Koterba, Michael T.; Andres, A. Scott; Vrabel, Joseph; Crilley, Dianna M.; Szabo, Zoltan; DeWild, John F.; Aiken, George R.; Reyes-Padro, Betzaida

    2006-01-01

    In January 2001, mercury (Hg) was detected (500 nanograms per liter, ng/L, or greater) in the distribution system of the Long Neck Water Company (LNWC), Pot Nets, Delaware. By April 2001, two LNWC production wells had been taken off-line because discharge concentrations of total mercury (HgT) either had exceeded or approached the Federal limit of 2,000 ng/L. From October 2003 through January 2005, the U.S. Geological Survey, Delaware Geological Survey, and Delaware Department of Natural Resources and Environmental Control conducted a cooperative study to (a) determine if the Hg contamination was widespread, (b) identify possible forms of Hg in ground water, and (c) examine Hg occurrence in relation to (geo)chemical conditions and characteristics of ground water and sediment in the surficial aquifer on the Long Neck Peninsula, Sussex County, Delaware. An initial water-quality survey conducted with samples from 22 production wells revealed that concentrations of HgT in ground water in the surficial aquifer ranged from 0.11 to 1,820 ng/L. Shallow ground water (less than 120 feet below land surface) throughout most of the peninsula, including that which contained elevated concentrations of HgT (exceeding 100 ng/L), appeared to be affected by human activities. All samples contained volatile organic compounds (VOCs) and elevated nitrate-nitrogen (NO3-N, exceeding 0.4 milligrams per liter, mg/L). Most (16 of 22) samples had elevated specific conductance (SC, in excess of 100 microsiemens per centimeter at 25 degrees Celsius). Elevated concentrations of HgT, however, only occurred in five production wells in the Pot Nets Bayside and Lakeside communities. The vertical distribution of HgT in shallow ground water (less than 80 feet below land surface) was determined with samples collected at 5 to 6 vertical-nest short-screened (2 - 5-foot length) monitoring wells installed near Bayside and Lakeside production wells with the highest HgT concentrations (exceeding 1,000 ng

  11. A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Bumgarner, Johnathan R.; Stanton, Gregory P.; Teeple, Andrew; Thomas, Jonathan V.; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn

    2012-01-01

    A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers, which include the Pecos Valley, Igneous, Dockum, Rustler, and Capitan Reef aquifers, was developed as the second phase of a groundwater availability study in the Pecos County region in west Texas. The first phase of the study was to collect and compile groundwater, surface-water, water-quality, geophysical, and geologic data in the area. The third phase of the study involves a numerical groundwater-flow model of the Edwards-Trinity aquifer in order to simulate groundwater conditions based on various groundwater-withdrawal scenarios. Resource managers plan to use the results of the study to establish management strategies for the groundwater system. The hydrogeologic framework is composed of the hydrostratigraphy, structural features, and hydraulic properties of the groundwater system. Well and geophysical logs were interpreted to define the top and base surfaces of the Edwards-Trinity aquifer units. Elevations of the top and base of the Edwards-Trinity aquifer generally decrease from the southwestern part of the study area to the northeast. The thicknesses of the Edwards-Trinity aquifer units were calculated using the interpolated top and base surfaces of the hydrostratigraphic units. Some of the thinnest sections of the aquifer were in the eastern part of the study area and some of the thickest sections were in the Pecos, Monument Draw, and Belding-Coyanosa trough areas. Normal-fault zones, which formed as growth and collapse features as sediments were deposited along the margins of more resistant rocks and as overlying sediments collapsed into the voids created by the dissolution of Permian-age evaporite deposits, were delineated based on the interpretation of hydrostratigraphic cross sections. The lowest aquifer transmissivity values were measured in the eastern part of the study area; the highest transmissivity values were

  12. Potential effects of alterations to the hydrologic system on the distribution of salinity in the Biscayne aquifer in Broward County, Florida

    Science.gov (United States)

    Hughes, Joseph D.; Sifuentes, Dorothy F.; White, Jeremy T.

    2016-03-15

    To address concerns about the effects of water-resource management practices and rising sea level on saltwater intrusion, the U.S. Geological Survey in cooperation with the Broward County Environmental Planning and Community Resilience Division, initiated a study to examine causes of saltwater intrusion and predict the effects of future alterations to the hydrologic system on salinity distribution in eastern Broward County, Florida. A three-dimensional, variable-density solute-transport model was calibrated to conditions from 1970 to 2012, the period for which data are most complete and reliable, and was used to simulate historical conditions from 1950 to 2012. These types of models are typically difficult to calibrate by matching to observed groundwater salinities because of spatial variability in aquifer properties that are unknown, and natural and anthropogenic processes that are complex and unknown; therefore, the primary goal was to reproduce major trends and locally generalized distributions of salinity in the Biscayne aquifer. The methods used in this study are relatively new, and results will provide transferable techniques for protecting groundwater resources and maximizing groundwater availability in coastal areas. The model was used to (1) evaluate the sensitivity of the salinity distribution in groundwater to sea-level rise and groundwater pumping, and (2) simulate the potential effects of increases in pumping, variable rates of sea-level rise, movement of a salinity control structure, and use of drainage recharge wells on the future distribution of salinity in the aquifer.

  13. Pond-aquifer flow and water availability in the vicinity of two coastal area seepage ponds, Glynn and Bulloch Counties, Georgia

    Science.gov (United States)

    Clarke, John S.; Rumman, Malek Abu

    2005-01-01

    Pond-aquifer flow and water availability at excavated seepage pond sites in Glynn County and in southern Bulloch County, Georgia, were evaluated to determine their potential as sources of water supply for irrigation. Excavated seepage ponds derive water primarily from ground water seeping into the pond, in a manner similar to a dug well completed in a surficial aquifer. The availability of water from seepage ponds is controlled by the permeability of surficial deposits, the amount of precipitation recharging the ground-water system, and the volume of water stored in the pond. The viability of seepage ponds as supplies for irrigation is limited by low seepage rates and high dependence on climatic conditions. Ponds will not refill unless there is adequate precipitation to recharge the surficial aquifer, which subsequently drains (seeps) into the pond. Ground-water seepage was estimated using a water-budget approach that utilized on-site climatic and hydrologic measurements, computing pond-volume changes during pond pumping tests, and by digital simulation using steady-state and transient ground-water flow models. From August 1999 to May 2000, the Glynn County pond was mostly losing water (as indicated by negative net seepage); whereas from October 2000 to June 2001, the Bulloch County pond was mostly gaining water. At both sites, most ground-water seepage entered the pond following major rainfall events that provided recharge to the surficial aquifer. Net ground-water seepage, estimated using water-budget analysis and simulation, ranged from -11.5 to 15 gallons per minute (gal/min) at the Glynn County pond site and from -55 to 31 gal/min at the Bulloch County pond site. Simulated values during pumping tests indicate that groundwater seepage to both ponds increases with decreased pond stage. At the Glynn County pond, simulated net ground-water seepage varied between 7.8 gal/min at the beginning of the test (high pond stage and low hydraulic gradient) and 103 gal

  14. Ground-water resources data for Baldwin County, Alabama

    Science.gov (United States)

    Robinson, James L.; Moreland, Richard S.; Clark, Amy E.

    1996-01-01

    Geologic and hydrologic data for 237 wells were collected, and water-levels in 223 wells in Baldwin and Escambia Counties were measured. Long-term water water-level data, available for many wells, indicate that ground-water levels in most of Baldwin County show no significant trends for the period of record. However, ground-water levels have declined in the general vicinity of Spanish Fort and Daphne, and ground-water levels in the Gulf Shores and Orange Beach areas are less than 5 feet above sea level in places. The quality of ground water generally is good, but problems with iron, sulfur, turbidity, and color occur. The water from most private wells in Baldwin County is used without treatment or filtration. Alabama public- health law requires that water from public-supply wells be chlorinated. Beyond that, the most common treatment of ground water by public-water suppliers in Baldwin County consists of pH adjustment, iron removal, and aeration. The transmissivity of the Miocene-Pliocene aquifer was determined at 10 locations in Baldwin County. Estimates of transmissivity ranged from 700 to 5,400 feet squared per day. In general, aquifer transmissivity was greatest in the southeastern part of the county, and least in the western part of the county near Mobile Bay. A storage coefficient of 1.5 x 10-3 was determined for the Miocene-Pliocene aquifer near Loxley.

  15. An Integrated Hydrogeologic and Geophysical Investigation to Characterize the Hydrostratigraphy of the Edwards Aquifer in an Area of Northeastern Bexar County, Texas

    Science.gov (United States)

    Shah, Sachin D.; Smith, Bruce D.; Clark, Allan K.; Payne, Jason

    2008-01-01

    In August 2007, the U.S. Geological Survey, in cooperation with the San Antonio Water System, did a hydrogeologic and geophysical investigation to characterize the hydrostratigraphy (hydrostratigraphic zones) and also the hydrogeologic features (karst features such as sinkholes and caves) of the Edwards aquifer in a 16-square-kilometer area of northeastern Bexar County, Texas, undergoing urban development. Existing hydrostratigraphic information, enhanced by local-scale geologic mapping in the area, and surface geophysics were used to associate ranges of electrical resistivities obtained from capacitively coupled (CC) resistivity surveys, frequency-domain electromagnetic (FDEM) surveys, time-domain electromagnetic (TDEM) soundings, and two-dimensional direct-current (2D-DC) resistivity surveys with each of seven hydrostratigraphic zones (equivalent to members of the Kainer and Person Formations) of the Edwards aquifer. The principal finding of this investigation is the relation between electrical resistivity and the contacts between the hydrostratigraphic zones of the Edwards aquifer and the underlying Trinity aquifer in the area. In general, the TDEM data indicate a two-layer model in which an electrical conductor underlies an electrical resistor, which is consistent with the Trinity aquifer (conductor) underlying the Edwards aquifer (resistor). TDEM data also show the plane of Bat Cave fault, a well-known fault in the area, to be associated with a local, nearly vertical zone of low resistivity that provides evidence, although not definitive, for Bat Cave fault functioning as a flow barrier, at least locally. In general, the CC resistivity, FDEM survey, and 2D-DC resistivity survey data show a sharp electrical contrast from north to south, changing from high resistivity to low resistivity across Bat Cave fault as well as possible karst features in the study area. Interpreted karst features that show relatively low resistivity within a relatively high

  16. Hydrogeology, water quality, and potential for contamination of the Upper Floridan aquifer in the Silver Springs ground-water basin, central Marion County, Florida

    Science.gov (United States)

    Phelps, G.G.

    1994-01-01

    The Upper Floridan aquifer, composed of a thick sequence of very porous limestone and dolomite, is the principal source of water supply in the Silver Springs ground-water basin of central Marion County, Florida. The karstic nature of the local geology makes the aquifer susceptible to contaminants from the land surface. Contaminants can enter the aquifer by seepage through surficial deposits and through sinkholes and drainage wells. Potential contaminants include agricultural chemicals, landfill leachates and petroleum products from leaking storage tanks and accidental spills. More than 560 sites of potential contamination sources were identified in the basin in 1990. Detailed investigation of four sites were used to define hydrologic conditions at representative sites. Ground-water flow velocities determined from dye trace studies ranged from about 1 foot per hour under natural flow conditions to about 10 feet per hour under pumping conditions, which is considerably higher than velocities estimated using Darcy's equation for steady-state flow in a porous medium. Water entering the aquifer through drainage wells contained bacteria, elevated concentrations of nutrients, manganese and zinc, and in places, low concentrations of organic compounds. On the basis of results from the sampling of 34 wells in 1989 and 1990, and from the sampling of water entering the Upper Floridan aquifer through drainage wells, there has been no widespread degradation of water quality in the study area. In an area of karst, particularly one in which fracture flow is significant, evaluating the effects from contaminants is difficult and special care is required when interpolating hydrogeologic data from regional studies to a specific. (USGS)

  17. Compilation of geologic, hydrologic, and ground-water flow modeling information for the Spokane Valley-Rathdrum Prairie aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Kahle, Sue C.; Caldwell, Rodney R.; Bartolino, James R.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources and Washington Department of Ecology compiled and described geologic, hydrologic, and ground-water flow modeling information about the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in northern Idaho and northeastern Washington. Descriptions of the hydrogeologic framework, water-budget components, ground- and surface-water interactions, computer flow models, and further data needs are provided. The SVRP aquifer, which covers about 370 square miles including the Rathdrum Prairie, Idaho and the Spokane valley and Hillyard Trough, Washington, was designated a Sole Source Aquifer by the U.S. Environmental Protection Agency in 1978. Continued growth, water management issues, and potential effects on water availability and water quality in the aquifer and in the Spokane and Little Spokane Rivers have illustrated the need to better understand and manage the region's water resources. The SVRP aquifer is composed of sand, gravel, cobbles, and boulders primarily deposited by a series of catastrophic glacial outburst floods from ancient Glacial Lake Missoula. The material deposited in this high-energy environment is coarser-grained than is typical for most basin-fill deposits, resulting in an unusually productive aquifer with well yields as high as 40,000 gallons per minute. In most places, the aquifer is bounded laterally by bedrock composed of granite, metasedimentary rocks, or basalt. The lower boundary of the aquifer is largely unknown except along the margins or in shallower parts of the aquifer where wells have penetrated its entire thickness and reached bedrock or silt and clay deposits. Based on surface geophysics, the thickness of the aquifer is about 500 ft near the Washington-Idaho state line, but more than 600 feet within the Rathdrum Prairie and more than 700 feet in the Hillyard trough based on drilling records. Depth to water in the aquifer is greatest in the northern

  18. Development of a Real-Time GPS/Seismic Displacement Meter: Applications to Civilian Infrastructure in Orange and Western Riverside Counties, California

    Science.gov (United States)

    Bock, Yehuda

    2005-01-01

    We propose a three-year applications project that will develop an Integrated Real-Time GPS/Seismic System and deploy it in Orange and Western Riverside Counties, spanning three major strike-slip faults in southern California (San Andreas, San Jacinto, and Elsinore) and significant populations and civilian infrastructure. The system relying on existing GPS and seismic networks will collect and analyze GPS and seismic data for the purpose of estimating and disseminating real-time positions and total ground displacements (dynamic, as well as static) during all phases of the seismic cycle, from fractions of seconds to years. Besides its intrinsic scientific use as a real-time displacement meter (transducer), the GPS/Seismic System will be a powerful tool for local and state decision makers for risk mitigation, disaster management, and structural monitoring (dams, bridges, and buildings). Furthermore, the GPS/Seismic System will become an integral part of California's spatial referencing and positioning infrastructure, which is complicated by tectonic motion, seismic displacements, and land subsidence. Finally, the GPS/Seismic system will also be applicable to navigation in any environment (land, sea, or air) by combining precise real-time instantaneous GPS positioning with inertial navigation systems. This development will take place under the umbrella of the California Spatial Reference Center, in partnership with local (Counties, Riverside County Flood and Water Conservation District, Metropolitan Water District), state (Caltrans), and Federal agencies (NGS, NASA, USGS), the geophysics community (SCIGN/SCEC2), and the private sector (RBF Consulting). The project will leverage considerable funding, resources, and R&D from SCIGN, CSRC and two NSF-funded IT projects at UCSD and SDSU: RoadNet (Real-Time Observatories, Applications and Data Management Network) and the High Performance Wireless Research and Education Network (HPWREN). These two projects are funded to

  19. Sources of water to wells in updip areas of the Wenonah-Mount Laurel aquifer, Gloucester and Camden Counties, New Jersey

    Science.gov (United States)

    Watt, Martha K.; Voronin, Lois M.

    2006-01-01

    Since 1996, when the New Jersey Department of Environmental Protection (NJDEP) restricted ground-water withdrawals from the Potomac-Raritan-Magothy aquifer system in the southern New Jersey Coastal Plain as a result of excessive drawdown, Coastal Plain communities have been interested in developing alternate sources of water supply for their residents. The use of ground water from areas near the updip parts of the overlying confined aquifers where withdrawals are not restricted is being considered to meet the demand for drinking water. Concerns have arisen, however, regarding the potential effects of increased withdrawals from these areas on ground-water flow to streams and wetlands as well as to the deeper, confined parts of the aquifers. Therefore, the U.S. Geological Survey, in cooperation with the NJDEP, conducted a study to investigate the sources of water to currently inactive wells in the updip part of the Wenonah-Mount Laurel aquifer in Gloucester and Camden Counties, New Jersey. Of particular interest is whether the primary source of the increased withdrawals is likely to be the aquifer outcrop or the downdip, confined part of the aquifer. The outcrop of the Wenonah-Mount Laurel aquifer covers nearly 8 mi2 (square miles), or about 46 percent of Deptford Township's 17.56-mi2 area. The Deptford Township Municipal Utilities Authority owns six currently (2005) inactive wells in the Wenonah-Mount Laurel aquifer at the southeastern boundary of Deptford Township, 1.25 mi (miles) from the outcrop. For the purposes of this study, an existing ground-water-flow model of the New Jersey Coastal Plain aquifers was used to simulate ground-water-flow conditions in Gloucester and Camden Counties in 1998. Two alternative withdrawal scenarios were superimposed on the results of the 1998 simulation. In the first (the 'full-allocation' scenario), full-allocation withdrawal rates established by the NJDEP were applied to 45 existing wells in the Deptford Township area. In the

  20. Sequence stratigraphy, seismic stratigraphy, and seismic structures of the lower intermediate confining unit and most of the Floridan aquifer system, Broward County, Florida

    Science.gov (United States)

    Cunningham, Kevin J.; Kluesner, Jared W.; Westcott, Richard L.; Robinson, Edward; Walker, Cameron; Khan, Shakira A.

    2017-12-08

    Deep well injection and disposal of treated wastewater into the highly transmissive saline Boulder Zone in the lower part of the Floridan aquifer system began in 1971. The zone of injection is a highly transmissive hydrogeologic unit, the Boulder Zone, in the lower part of the Floridan aquifer system. Since the 1990s, however, treated wastewater injection into the Boulder Zone in southeastern Florida has been detected at three treated wastewater injection utilities in the brackish upper part of the Floridan aquifer system designated for potential use as drinking water. At a time when usage of the Boulder Zone for treated wastewater disposal is increasing and the utilization of the upper part of the Floridan aquifer system for drinking water is intensifying, there is an urgency to understand the nature of cross-formational fluid flow and identify possible fluid pathways from the lower to upper zones of the Floridan aquifer system. To better understand the hydrogeologic controls on groundwater movement through the Floridan aquifer system in southeastern Florida, the U.S. Geological Survey and the Broward County Environmental Planning and Community Resilience Division conducted a 3.5-year cooperative study from July 2012 to December 2015. The study characterizes the sequence stratigraphy, seismic stratigraphy, and seismic structures of the lower part of the intermediate confining unit aquifer and most of the Floridan aquifer system.Data obtained to meet the study objective include 80 miles of high-resolution, two-dimensional (2D), seismic-reflection profiles acquired from canals in eastern Broward County. These profiles have been used to characterize the sequence stratigraphy, seismic stratigraphy, and seismic structures in a 425-square-mile study area. Horizon mapping of the seismic-reflection profiles and additional data collection from well logs and cores or cuttings from 44 wells were focused on construction of three-dimensional (3D) visualizations of eight

  1. Agent Orange

    Science.gov (United States)

    ... DOD Clinical Practice Guidelines Access and Quality Data Medical Inspector Patient Safety ... Orange was a tactical herbicide used by the U.S. military from 1962 to 1975, named for the orange band around the storage barrel. The military sprayed millions ...

  2. A reconnaissance spatial and temporal assessment of methane and inorganic constituents in groundwater in bedrock aquifers, Pike County, Pennsylvania, 2012-13

    Science.gov (United States)

    Senior, Lisa A.

    2014-01-01

    Pike County in northeastern Pennsylvania is underlain by the Devonian-age Marcellus Shale and other shales, formations that have potential for natural gas development. During 2012–13, the U.S. Geological Survey in cooperation with the Pike County Conservation District conducted a reconnaissance study to assess baseline shallow groundwater quality in bedrock aquifers prior to possible shale-gas development in the county. For the spatial component of the assessment, 20 wells were sampled in summer 2012 to provide data on the occurrence of methane and other aspects of existing groundwater quality throughout the county, including concentrations of inorganic constituents commonly present at low levels in shallow, fresh groundwater but elevated in brines. For the temporal component of the assessment, 4 of the 20 wells sampled in summer 2012 were sampled monthly from July 2012 through June 2013 to provide data on seasonal variability in groundwater quality. All water samples were analyzed for major ions, nutrients, selected inorganic trace constituents (including metals and other elements), stable isotopes of water, radon-222, gross alpha- and gross beta-particle activity, dissolved gases (methane, ethane, and ethene), and, if possible, isotopic composition of methane. Additional analyses for boron and strontium isotopes, age-dating of water, and radium-226 were done on water samples collected from six wells in June 2013.

  3. Chemistry and age of groundwater in bedrock aquifers of the Piceance and Yellow Creek watersheds, Rio Blanco County, Colorado, 2010-12

    Science.gov (United States)

    McMahon, P.B.; Thomas, J.C.; Hunt, A.G.

    2013-01-01

    Fourteen monitoring wells completed in the Uinta and Green River Formations in the Piceance Creek and Yellow Creek watersheds in Rio Blanco County, Colorado, were sampled for chemical, isotopic, and groundwater-age tracers to provide information on the overall groundwater quality, the occurrence and distribution of chemicals that could be related to the development of underlying natural-gas reservoirs, and to better understand groundwater residence times in the flow system. Methane concentrations in groundwater ranged from less than 0.0005 to 387 milligrams per liter. The methane was predominantly biogenic in origin, although the biogenic methane was mixed with thermogenic methane in water from seven wells. Three BTEX compounds (benzene, toluene, and ethylbenzene) were detected in water from six of the wells, but none of the concentrations exceeded Federal drinking-water standards. The presence of thermogenic methane in the aquifers indicates a connection and vulnerability to chemicals in deeper geologic units. Helium-4 data indicate that groundwater had ages ranging from less than 1,000 years to greater than 50,000 years. The presence of old groundwater in parts of the aquifers indicates that these aquifers may not be useful for large-scale water supply because of low recharge rates.

  4. Iron in the Middle Devonian aquifer system and its removal at Võru County water treatment plants, Estonia

    OpenAIRE

    Mariina Hiiob; Enn Karro

    2012-01-01

    Groundwater abstracted from the Middle Devonian aquifer system is the main source of drinking water in South Estonia. High iron and manganese concentrations in groundwater are the greatest problems in this region. The total iron concentrations up to 16 mg L–1 are mainly caused by a high Fe2+ content in water, pointing to the dominance of reducing conditions in the aquifer system. A pilot study was carried out to estimate the effectiveness of 20 groundwater purification plants with eight diffe...

  5. Conceptual and numerical models of groundwater flow in the Ogallala aquifer in Gregory and Tripp Counties, South Dakota, water years 1985--2009

    Science.gov (United States)

    Davis, Kyle W.; Putnam, Larry D.

    2013-01-01

    The Ogallala aquifer is an important water resource for the Rosebud Sioux Tribe in Gregory and Tripp Counties in south-central South Dakota and is used for irrigation, public supply, domestic, and stock water supplies. To better understand groundwater flow in the Ogallala aquifer, conceptual and numerical models of groundwater flow were developed for the aquifer. A conceptual model of the Ogallala aquifer was used to analyze groundwater flow and develop a numerical model to simulate groundwater flow in the aquifer. The MODFLOW–NWT model was used to simulate transient groundwater conditions for water years 1985–2009. The model was calibrated using statistical parameter estimation techniques. Potential future scenarios were simulated using the input parameters from the calibrated model for simulations of potential future drought and future increased pumping. Transient simulations were completed with the numerical model. A 200-year transient initialization period was used to establish starting conditions for the subsequent 25-year simulation of water years 1985–2009. The 25-year simulation was discretized into three seasonal stress periods per year and used to simulate transient conditions. A single-layer model was used to simulate flow and mass balance in the Ogallala aquifer with a grid of 133 rows and 282 columns and a uniform spacing of 500 meters (1,640 feet). Regional inflow and outflow were simulated along the western and southern boundaries using specified-head cells. All other boundaries were simulated using no-flow cells. Recharge to the aquifer occurs through precipitation on the outcrop area. Model calibration was accomplished using the Parameter Estimation (PEST) program that adjusted individual model input parameters and assessed the difference between estimated and model-simulated values of hydraulic head and base flow. This program was designed to estimate parameter values that are statistically the most likely set of values to result in the

  6. Pampas Grass - Orange Co. [ds351

    Data.gov (United States)

    California Natural Resource Agency — This dataset provides the known distribution of pampas grass (Cortaderia selloana) in southern Orange County. The surveys were conducted from May to June, 2007 and...

  7. Metro orange line BRT project evaluation.

    Science.gov (United States)

    2011-10-01

    In partnership with the Los Angeles County Metropolitan Transportation Authority (Metro) and the Federal Transit Administration (FTA), the National Bus Rapid Transit Institute (NBRTI) conducted an evaluation of the Metro Orange Line BRT service, whic...

  8. Orange Book

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Approved Drug Products with Therapeutic Equivalence (Orange Book or OB) is a list of drugs approved under Section 505 of the Federal Food, Drug and Cosmetic Act...

  9. Origins and delineation of saltwater intrusion in the Biscayne aquifer and changes in the distribution of saltwater in Miami-Dade County, Florida

    Science.gov (United States)

    Prinos, Scott T.; Wacker, Michael A.; Cunningham, Kevin J.; Fitterman, David V.

    2014-01-01

    Intrusion of saltwater into parts of the shallow karst Biscayne aquifer is a major concern for the 2.5 million residents of Miami-Dade County that rely on this aquifer as their primary drinking water supply. Saltwater intrusion of this aquifer began when the Everglades were drained to provide dry land for urban development and agriculture. The reduction in water levels caused by this drainage, combined with periodic droughts, allowed saltwater to flow inland along the base of the aquifer and to seep directly into the aquifer from the canals. The approximate inland extent of saltwater was last mapped in 1995. An examination of the inland extent of saltwater and the sources of saltwater in the aquifer was completed during 2008–2011 by using (1) all available salinity information, (2) time-series electromagnetic induction log datasets from 35 wells, (3) time-domain electromagnetic soundings collected at 79 locations, (4) a helicopter electromagnetic survey done during 2001 that was processed, calibrated, and published during the study, (5) cores and geophysical logs collected from 8 sites for stratigraphic analysis, (6) 8 new water-quality monitoring wells, and (7) analyses of 69 geochemical samples. The results of the study indicate that as of 2011 approximately 1,200 square kilometers (km2) of the mainland part of the Biscayne aquifer were intruded by saltwater. The saltwater front was mapped farther inland than it was in 1995 in eight areas totaling about 24.1 km2. In many of these areas, analyses indicated that saltwater had encroached along the base of the aquifer. The saltwater front was mapped closer to the coast than it was in 1995 in four areas totaling approximately 6.2 km2. The changes in the mapped extent of saltwater resulted from improved spatial information, actual movement of the saltwater front, or a combination of both. Salinity monitoring in some of the canals in Miami-Dade County between 1988 and 2010 indicated influxes of saltwater, with maximum

  10. Lithostratigraphy, petrography, biostratigraphy, and strontium-isotope stratigraphy of the surficial aquifer system of western Collier County, Florida

    Science.gov (United States)

    Edwards, L.E.; Weedman, S.D.; Simmons, R.; Scott, T.M.; Brewster-Wingard, G. L.; Ishman, S.E.; Carlin, N.M.

    1998-01-01

    In 1996, seven cores were recovered in western Collier County, southwestern Florida, to acquire subsurface geologic and hydrologic data to support ground-water modeling efforts. This report presents the lithostratigraphy, X-ray diffraction analyses, petrography, biostratigraphy, and strontium-isotope stratigraphy of these cores. The oldest unit encountered in the study cores is an unnamed formation that is late Miocene. At least four depositional sequences are present within this formation. Calculated age of the formation, based on strontium-isotope stratigraphy, ranges from 9.5 to 5.7 Ma (million years ago). An unconformity within this formation that represents a hiatus of at least 2 million years is indicated in the Old Pump Road core. In two cores, Collier-Seminole and Old Pump Road, the uppermost sediments of the unnamed formation are not dated by strontium isotopes, and, based on the fossils present, these sediments could be as young as Pliocene. In another core (Fakahatchee Strand-Ranger Station), the upper part of the unnamed formation is dated by mollusks as Pliocene. The Tamiami Formation overlies the unnamed formation throughout the study area and is represented by the Ochopee Limestone Member. The unit is Pliocene and probably includes the interval of time near the early/late Pliocene boundary. Strontium-isotope analysis indicates an early Pliocene age (calculated ages range from 5.1 to 3.5 Ma), but the margin of error includes the latest Miocene and the late Pliocene. The dinocyst assemblages in the Ochopee typically are not age-diagnostic, but, near the base of the unit in the Collier-Seminole, Jones Grade, and Fakahatchee Strand State Forest cores, they indicate an age of late Miocene or Pliocene. The molluscan assemblages indicate a Pliocene age for the Ochopee, and a distinctive assemblage of Carditimera arata and Chione cortinaria in several of the cores specifically indicates an age near the early/late Pliocene boundary. Undifferentiated sands

  11. Geohydrology of the Unconsolidated Valley-Fill Aquifer in the Meads Creek Valley, Schuyler and Steuben Counties, New York

    Science.gov (United States)

    Miller, Todd S.; Bugliosi, Edward F.; Reddy, James E.

    2008-01-01

    The Meads Creek valley encompasses 70 square miles of predominantly forested uplands in the upper Susquehanna River drainage basin. The valley, which was listed as a Priority Waterbody by the New York State Department of Environmental Conservation in 2004, is prone to periodic flooding, mostly in its downstream end, where development is occurring most rapidly. Hydraulic characteristics of the unconsolidated valley-fill aquifer were evaluated, and seepage rates in losing and gaining tributaries were calculated or estimated, in an effort to delineate the aquifer geometry and identify the factors that contribute to flooding. Results indicated that (1) Meads Creek gained about 61 cubic feet of flow per second (about 6.0 cubic feet per second per mile of stream channel) from ground-water discharge and inflow from tributaries in its 10.2-mile reach between the northernmost and southernmost measurement sites; (2) major tributaries in the northern part of the valley are not significant sources of recharge to the aquifer; and (3) major tributaries in the central and southern part of the valley provide recharge to the aquifer. The ground-water portion of streamflow in Meads Creek (excluding tributary inflow) was 11.3 cubic feet per second (ft3/s) in the central part of the valley and 17.2 ft3/s in the southern part - a total of 28.5 ft3/s. Ground-water levels were measured in 29 wells finished in unconfined deposits for construction of a potentiometric-surface map to depict directions of ground-water flow within the valley. In general, ground water flows from the edges of the valley toward Meads Creek and ultimately discharges to it. The horizontal hydraulic gradient for the entire 12-mile-long aquifer averages about 30 feet per mile, whereas the gradient in the southern fourth of the valley averages about half that - about 17 feet per mile. A water budget for the aquifer indicated that 28 percent of recharge was derived from precipitation that falls on the aquifer, 32

  12. Hydrogeologic framework, hydrology, and refined conceptual model of groundwater flow for Coastal Plain aquifers at the Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2005-12

    Science.gov (United States)

    Brayton, Michael J.; Cruz, Roberto M.; Myers, Luke; Degnan, James R.; Raffensperger, Jeff P.

    2015-01-01

    From 1966 to 2002, activities at the Standard Chlorine of Delaware chemical facility in New Castle County, Delaware resulted in the contamination of groundwater, soils, and wetland sediment. In 2005, the U.S. Geological Survey (USGS), in partnership with the U.S. Environmental Protection Agency, Region 3, and the Delaware Department of Natural Resources and Environmental Control began a multi-year investigation of the hydrogeologic framework and hydrology of the confined aquifer system. The goals of the ongoing study at the site (the Potomac Aquifer Study) are to determine the hydraulic connection between the Columbia and Potomac aquifers, determine the direction of groundwater flow in the Potomac aquifer, and identify factors affecting the fate of contaminated groundwater. This report describes progress made towards these goals based on available data collected through September 2012.

  13. Geochemistry and microbiology of iron-related well-screen encrustation and aquifer biofouling in Suffolk County, Long Island, New York

    Science.gov (United States)

    Walter, D.A.

    1997-01-01

    Iron-related well-screen encrustation and aquifer biofouling has decreased the specific capacity of several production wells in Suffolk County, N.Y., and has forced the Suffolk County Water Authority to adopt a costly well-reconditioning and replacement program. The specific-capacity declines are the result of the precipitation of iron oxyhydroxides and the growth of iron bacteria on the well screens and in the pore spaces of the surrounding formation. Mineralogic and chemical analyses indicate that the inorganic part of the encrusting material consists primarily of amorphous ferric hydroxide (Fe(OH)3 ); minor components of the material include goethite (FeOOH), hematite (Fe2 O 3 ), and quartz (SiO 2 ). The weight percent of ferric hydroxide in the material ranged from 32.3 to 98.6 percent and averaged 64.3 percent. Equilibrium modeling indicated that during pumping the well waters were supersaturated with respect to goethite, hematite, magnetite, and quartz and were under-saturated with respect to ferric hydroxide. Theoretical Eh values computed for the ferrous/ferric-iron redox couple and the oxygen/water redox couple averaged 390 millivolts and 810 millivolts, respectively, indicating that the waters were in a state of redox disequilibrium. The disequilibrium condition arises from the mixing of ground water with a low dissolved-oxygen concentration with oxygenated ground water during operation of the well. The low pH of the ground water contributes to the disequilibrium condition by slowing the rate of iron oxidation after the introduction of oxygen. Chemical and mineralogical data indicate that most of the encrusting material in the wells was deposited while the wells were shut down, probably in response to the use of treated water of higher pH to keep pump turbines wet while the wells were not in operation; the increased pH of water in the static water column increases the rate of ferrous-iron oxidation and causes the well water to become increasingly

  14. Salt-water encroachment into aquifers of the Raritan Formation in the Sayreville Area, Middlesex County, New Jersey

    Science.gov (United States)

    Appel, Charles A.

    1962-01-01

    The principal sources of ground water in the Sayreville area are the Old Bridge Sand and Farrington Sand Members of the Raritan Formation of Late Cretaceous age. These aquifers yielded about 32.3 mgd (million gallons per day) for public and industrial water supplies in 1958; about 24.5 mgd was withdrawn from the Old Bridge Sand Member.

  15. Probability of Elevated Volatile Organic Compound (VOC) Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated volatile organic compound (VOC) concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  16. Probability of Elevated Nitrate Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated nitrate concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  17. Hydrogeology and simulation of groundwater flow in fractured-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces, Bedford County, Virginia

    Science.gov (United States)

    McCoy, Kurt J.; White, Bradley A.; Yager, Richard M.; Harlow, George E.

    2015-09-11

    An annual groundwater budget was computed as part of a hydrogeologic characterization and monitoring effort of fractured-rock aquifers in Bedford County, Virginia, a growing 764-square-mile (mi2) rural area between the cities of Roanoke and Lynchburg, Virginia. Data collection in Bedford County began in the 1930s when continuous stream gages were installed on Goose Creek and Big Otter River, the two major tributaries of the Roanoke River within the county. Between 2006 and 2014, an additional 2 stream gages, 3 groundwater monitoring wells, and 12 partial-record stream gages were operated. Hydrograph separation methods were used to compute base-flow recharge rates from the continuous data collected from the continuous stream gages. Mean annual base-flow recharge ranged from 8.3 inches per year (in/yr) for the period 1931–2012 at Goose Creek near Huddleston (drainage area 188 mi2) to 9.3 in/yr for the period 1938–2012 at Big Otter River near Evington (drainage area 315 mi2). Mean annual base-flow recharge was estimated to be 6.5 in/yr for the period 2007–2012 at Goose Creek at Route 747 near Bunker Hill (drainage area 125 mi2) and 8.9 in/yr for the period 2007–2012 at Big Otter River at Route 221 near Bedford (drainage area 114 mi2). Base-flow recharge computed from the partial-record data ranged from 5.0 in/yr in the headwaters of Goose Creek to 10.5 in/yr in the headwaters of Big Otter River.

  18. Simulated effects of projected ground-water withdrawals in the Floridan aquifer system, greater Orlando metropolitan area, east-central Florida

    Science.gov (United States)

    Murray, Louis C.; Halford, Keith J.

    1999-01-01

    Ground-water levels in the Floridan aquifer system within the greater Orlando metropolitan area are expected to decline because of a projected increase in the average pumpage rate from 410 million gallons per day in 1995 to 576 million gallons per day in 2020. The potential decline in ground-water levels and spring discharge within the area was investigated with a calibrated, steady-state, ground-water flow model. A wetter-than-average condition scenario and a drought-condition scenario were simulated to bracket the range of water-levels and springflow that may occur in 2020 under average rainfall conditions. Pumpage used to represent the drought-condition scenario totaled 865 million gallons per day, about 50 percent greater than the projected average pumpage rate in 2020. Relative to average 1995 steady-state conditions, drawdowns simulated in the Upper Floridan aquifer exceeded 10 and 25 feet for wet and dry conditions, respectively, in parts of central and southwest Orange County and in north Osceola County. In Seminole County, drawdowns of up to 20 feet were simulated for dry conditions, compared with 5 to 10 feet simulated for wet conditions. Computed springflow was reduced by 10 percent for wet conditions and by 38 percent for dry conditions, with the largest reductions (28 and 76 percent) occurring at the Sanlando Springs group. In the Lower Floridan aquifer, drawdowns simulated in southwest Orange County exceeded 20 and 40 feet for wet and dry conditions, respectively.

  19. Aquifer geometry, lithology, and water levels in the Anza–Terwilliger area—2013, Riverside and San Diego Counties, California

    Science.gov (United States)

    Landon, Matthew K.; Morita, Andrew Y.; Nawikas, Joseph M.; Christensen, Allen H.; Faunt, Claudia C.; Langenheim, Victoria E.

    2015-11-24

    The population of the Anza–Terwilliger area relies solely on groundwater pumped from the alluvial deposits and surrounding bedrock formations for water supply. The size, characteristics, and current conditions of the aquifer system in the Anza–Terwilliger area are poorly understood, however. In response to these concerns, the U.S. Geological Survey, in cooperation with the High Country Conservancy and Rancho California Water District, undertook a study to (1) improve mapping of groundwater basin geometry and lithology and (2) to resume groundwater-level monitoring last done during 2004–07 in the Anza–Terwilliger area. 

  20. Ogallala Aquifer Mapping Program

    International Nuclear Information System (INIS)

    1984-10-01

    A computerized data file has been established which can be used efficiently by the contour-plotting program SURFACE II to produce maps of the Ogallala aquifer in 17 counties of the Texas Panhandle. The data collected have been evaluated and compiled into three sets, from which SURFACE II can generate maps of well control, aquifer thickness, saturated thickness, water level, and the difference between virgin (pre-1942) and recent (1979 to 1981) water levels. 29 figures, 1 table

  1. Hydrogeology and water quality of sand and gravel aquifers in McHenry County, Illinois, 2009-14, and comparison to conditions in 1979

    Science.gov (United States)

    Gahala, Amy M.

    2017-10-26

    Baseline conditions for the sand and gravel aquifers (groundwater) in McHenry County, Illinois, were assessed using data from a countywide network of 44 monitoring wells collecting continuous water-level data from 2009–14. In 2010, water-quality data were collected from 41 of the monitoring wells, along with five additional monitoring wells available from the U.S. Geological Survey National Water Quality Assessment Program. Periodic water-quality data were collected from 2010–14 from selected monitoring wells. The continuous water-level data were used to identify the natural and anthropogenic factors that influenced the water levels at each well. The water-level responses to natural influences such as precipitation, seasonal and annual variations, barometric pressure, and geology, and to anthropogenic influences such as pumping were used to determine (1) likely hydrogeologic setting (degree of aquifer confinement and interconnections) that, in part, are related to lithostratigraphy; and (2) areas of recharge and discharge related to vertical flow directions. Water-level trends generally were determined from the 6 years of data collection (2009–14) to infer effects of weather variability (drought) on recharge.Precipitation adds an estimated 2.4 inches per year of recharge to the aquifer. Some of this recharge is subsequently discharged to streams and some is discharged to supply wells. A few areas in the eastern half of the county had higher average recharge rates, indicating a need for adequate protection of these recharge areas. Downward vertical flow gradients in upland areas indicate that recharge to the confined aquifer units occurs near upland areas. Upward vertical flow gradients in lowland areas indicate discharge at locations of surface water and groundwater interaction (wetlands, ponds, and streams).Monitoring wells were sampled for major and minor ions, metals, and nutrients and a subset of wells was sampled for trace elements, dissolved gases

  2. Map of the approximate inland extent of saltwater at the base of the Biscayne aquifer in the Model Land Area of Miami-Dade County, Florida, 2016

    Science.gov (United States)

    Prinos, Scott T.

    2017-07-11

    The inland extent of saltwater at the base of the Biscayne aquifer in the Model Land Area of Miami-Dade County, Florida, was mapped in 2011. Since that time, the saltwater interface has continued to move inland. The interface is near several active well fields; therefore, an updated approximation of the inland extent of saltwater and an improved understanding of the rate of movement of the saltwater interface are necessary. A geographic information system was used to create a map using the data collected by the organizations that monitor water salinity in this area. An average rate of saltwater interface movement of 140 meters per year was estimated by dividing the distance between two monitoring wells (TPGW-7L and Sec34-MW-02-FS) by the travel time. The travel time was determined by estimating the dates of arrival of the saltwater interface at the wells and computing the difference. This estimate assumes that the interface is traveling east to west between the two monitoring wells. Although monitoring is spatially limited in this area and some of the wells are not ideally designed for salinity monitoring, the monitoring network in this area is improving in spatial distribution and most of the new wells are well designed for salinity monitoring. The approximation of the inland extent of the saltwater interface and the estimated rate of movement of the interface are dependent on existing data. Improved estimates could be obtained by installing uniformly designed monitoring wells in systematic transects extending landward of the advancing saltwater interface.

  3. Site study plan for Upper Aquifer Hydrology Clusters, Deaf Smith County Site, Texas: Surface-based geotechnical field program: Preliminary draft

    International Nuclear Information System (INIS)

    1988-01-01

    As part of site characterization studies, at the Deaf Smith County site, Texas, 15 wells at 5 locations will be completed in the Ogallala Formation and Dockum Group. The purposes of the wells, which are called Upper Aquifer (2) establish background hydrologic and water quality conditions, (3) provide analysis, (4) monitor responses of the shallow hydrologic system to site activities and nearby pumpage for irrigation, (5) collect water samples from both saturated and unsaturated materials to help define recharge rates and ground-water flow patterns, (6) monitor variations on water quality, and (7) define ground-water resources near the site. The test wells will be installed during a 14-month period starting about 1-1/2 years after site characterization activities begin. The Technical Field Services Contractor is responsible for conducting the field program of drilling and testing. Samples and data will be handled and reported in accordance with established Salt Repository Project procedures. A quality assurance program will assure that activities affecting quality are performed correctly and that the appropriate documentation is maintained. 44 refs., 19 figs., 5 tabs

  4. The geochemical evolution of aqueous sodium in the Black Creek Aquifer, Horry and Georgetown counties, South Carolina

    Science.gov (United States)

    Zack, Allen L.; Roberts, Ivan

    1988-01-01

    The Black Creek aquifer contains dilute seawater near the North Carolina State line, probably the result of incomplete flushing of ancient seawater. Data do not indicate that the dilute seawater has migrated toward areas of fresh ground-water withdrawals. The concentration of chloride in ground-water samples ranges from 5 to 720 milligrams per liter and that of sodium from 160 to 690 milligrams per liter. Ion-exchange reactions (sodium for calcium and fluoride for hydroxyl) occur with the calcium carbonate dissolution reaction which produces calcium, bicarbonate, and hydroxyl ions. The reaction sequence and stoichiometry result in an aqueous solution in which the sum of bicarbonate and chloride equivalents per liter is equal to the equivalents per liter of sodium. Calcium ions are exchanged for sodium ions derived from sodium-rich clays upgradient of the dilute seawater. The cation-exchange reaction equilibrates at a sodium concentration of 280 milligrams per liter. Amounts of sodium greater than 280 milligrams per liter are contributed from dilute seawater. The cation-exchange reaction approaches an equilibrium which represents a mass-action limit in terms of the ratio of sodium to calcium in solution versus the ratio of exchangeable sodium to calcium on clay surfaces. Where the limit of calcium carbonate solubility is approached and dissolution ceases, some precipitation of calcite probably takes place. The dissolution of calcite exposes fossil shark teeth which release fluoride ions to the ground water through anion exchange with aqueous hydroxyl ions.

  5. Valence-associated uranium isotope fractionation of uranium enriched phosphate in a shallow aquifer, Lee County, Florida

    International Nuclear Information System (INIS)

    Weinberg, J.M.; Levine, B.R.; Cowart, J.B.

    1993-01-01

    The source of anomalously high concentrations of uranium, characterized by U-234/U-238 activity ratios significantly less than unity, in shallow groundwaters of Lee County, Florida, was investigated. Uranium in cores samples was separated into U(IV) and U(VI) oxidation state fractions, and uranium analyses were conducted by alpha spectrometry. Uranium mobility was also studied in selected leaching experiments. Results indicate that mobilization of unusually soluble uranium, present in uranium enriched phosphate of the Pliocene age Tamiami Formation at determined concentrations of up to 729 ppm, is the source for high uranium concentrations in groundwater. In leaching experiments, approximately one-third of the uranium present in the uranium enriched phosphate was mobilized into the aqueous phase. Results of previous investigations suggest that U-234, produced in rock by U-238 decay, is selectively oxidized to U(VI). The uranium enriched phosphate studied in this investigation is characterized by selective reduction of U-234, with a pattern of increasing isotopic fractionation with core depth. As a consequence, U-234/U-238 activity ratios greater than 1.0 in the U(IV) fraction, and less than 1.0 in the U(VI) fraction have developed in the rock phase. In leaching experiments, the U(VI) fraction from the rock was preferentially mobilized into the aqueous phase, suggesting that U-234/U-238 activity ratios of leaching groundwaters are strongly influenced by the isotopic characteristics of the U(VI) fraction of rock. It is suggested that preferential leaching of U(VI), present in selectivity reduced uranium enriched phosphate, is the source for low activity ratio groundwaters in Lee County

  6. Time-Domain Electromagnetic Data Collected in the U.S. Part of the Mesilla Basin/Conejos-Médanos Aquifer System in Doña Ana County, New Mexico, and El Paso County, Texas, November 2012

    Data.gov (United States)

    Department of the Interior — The transboundary Mesilla Basin/Conejos-Médanos aquifer system was identified as one of the priority transboundary aquifer systems for additional study by the United...

  7. [Orange Platform].

    Science.gov (United States)

    Toba, Kenji

    2017-07-01

    The Organized Registration for the Assessment of dementia on Nationwide General consortium toward Effective treatment in Japan (ORANGE platform) is a recently established nationwide clinical registry for dementia. This platform consists of multiple registries of patients with dementia stratified by the following clinical stages: preclinical, mild cognitive impairment, early-stage, and advanced-stage dementia. Patients will be examined in a super-longitudinal fashion, and their lifestyle, social background, genetic risk factors, and required care process will be assessed. This project is also notable because the care registry includes information on the successful, comprehensive management of patients with dementia. Therefore, this multicenter prospective cohort study will contribute participants to all clinical trials for Alzheimer's disease as well as improve the understanding of individuals with dementia.

  8. Hydrostratigraphy, soil/sediment chemistry, and water quality, Potomac-Raritan-Magothy aquifer system, Puchack Well Field Superfund site and vicinity, Pennsauken Township, Camden County, New Jersey, 1997-2001

    Science.gov (United States)

    Barringer, Julia L.; Walker, Richard L.; Jacobsen, Eric; Jankowski, Pamela

    2010-01-01

    Drinking-water supplies from the Potomac-Raritan-Magothy aquifer system at the Puchack well field in Pennsauken Township, Camden County, New Jersey, have been contaminated by hexavalent chromium-the most toxic and mobile form-at concentrations exceeding the New Jersey maximum contaminant level of 100 micrograms per liter. Also, scattered but widespread instances of volatile organic compounds (primarily trichloroethylene) at concentrations that exceed their respective maximum contaminant levels in the area's ground water have been reported. Because inorganic and organic contaminants are present in the ground water underlying the Puchack well field, no water from there has been withdrawn for public supply since 1998, when the U.S. Environmental Protection Agency (USEPA) added the area that contains the Puchack well field to the National Priorities List. As part of the USEPA's investigation of the Puchack Well Field Superfund site, the U.S. Geological Survey (USGS) conducted a study during 1997-2001 to (1) refine previous interpretations of the hydrostratigraphic framework, hydraulic gradients, and local directions of ground-water flow; (2) describe the chemistry of soils and saturated aquifer sediments; and (3) document the quality of ground water in the Potomac-Raritan-Magothy aquifer system in the area. The four major water-bearing units of the Potomac-Raritan-Magothy aquifer system-the Upper aquifer (mostly unsaturated in the study area), the Middle aquifer, the Intermediate Sand (a local but important unit), and the Lower aquifer-are separated by confining units. The confining units contain areas of cut and fill, resulting in permeable zones that permit water to pass through them. Pumping from the Puchack well field during the past 3 decades resulted in downward hydraulic gradients that moved contaminants into the Lower aquifer, in which the production wells are finished, and caused ground water to flow northeast, locally. A comparison of current (1997

  9. Water-level changes and directions of ground-water flow in the shallow aquifer, Fallon area, Churchill County, Nevada

    Science.gov (United States)

    Seiler, R.L.; Allander, K.K.

    1993-01-01

    The Truckee-Carson-Pyramid Lake Water Rights Settlement Act of 1990 directed the U.S. Fish and Wildlife Service to acquire water rights for wetland areas in the Carson Desert, Nevada. The public is concerned that htis acquisition of water rights and delivery of the water directly to wildlife areas would result in less recharge to the shallow ground water in the Fallon area and cause domestic wells to go dry. In January 1992, the U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife Service, began a study of the shallow ground-water system in the Fallon area in Churchill County, Nevada. A network of 126 wells in the study area was monitored. Between January and November 1992, water levels in most wells declined, usually less than 2 feet. The maximum measured decline over this period was 2.68 feet in a well near Stillwater Marsh. Between April and July, however, water levels rose in irrigated areas, typically 1 to 2 feet. Newlands Project water deliveries to the study area began soon after the turn of the century. Since then, water levels have risen more than 15 feet across much of the study area. Water lost from unlined irrigtiaon canals caused the stage in Big Soda Lake to rise nearly 60 feet; ground-water levels near the lake have risen 30 to 40 feet. The depth to water in most irrigated areas is now less than 10 feet. The altitude of the water table ranges from 4.025 feet above sea level 11 miles west of Fallon to 3,865 feet in the Stillwater Marsh area. Ground water flows eastward and divides; some flow goes to the northeast toward the Carson Sink and Stillwater areas, and some goes southeastward to Carson Lake.

  10. Hydrogeology of the Susquehanna River valley-fill aquifer system in the Endicott-Vestal area of southwestern Broome County, New York

    Science.gov (United States)

    Randall, Allan D.; Kappel, William M.

    2015-07-29

    The village of Endicott, New York, and the adjacent town of Vestal have historically used groundwater from the Susquehanna River valley-fill aquifer system for municipal water supply, but parts of some aquifers in this urban area suffer from legacy contamination from varied sources. Endicott would like to identify sites distant from known contamination where productive aquifers could supply municipal wells with water that would not require intensive treatment. The distribution or geometry of aquifers within the Susquehanna River valley fill in western Endicott and northwestern Vestal are delineated in this report largely on the basis of abundant borehole data that have been compiled in a table of well records.

  11. Hydrogeology and geochemistry of aquifers underlying the San Lorenzo and San Leandro areas of the East Bay Plain, Alameda County, California

    Science.gov (United States)

    Izbicki, John A.; Borchers, James W.; Leighton, David A.; Kulongoski, Justin T.; Fields, Latoya; Galloway, Devin L.; Michel, Robert L.

    2003-01-01

    The East Bay Plain, on the densely populated eastern shore of San Francisco Bay, contains an upper aquifer system to depths of 250 feet below land surface and an underlying lower aquifer system to depths of more than 650 feet. Injection and recovery of imported water has been proposed for deep aquifers at two sites within the lower aquifer system. Successful operation requires that the injected water be isolated from surface sources of poor-quality water during storage and recovery. Hydraulic, geochemical, and isotopic data were used to evaluate the isolation of deeper aquifers. Ground-water responses to tidal changes in the Bay suggest that thick clay layers present within these deposits effectively isolate the deeper aquifers in the northern part of the study area from overlying surficial deposits. These data also suggest that the areal extent of the shallow and deep aquifers beneath the Bay may be limited in the northern part of the study area. Despite its apparent hydraulic isolation, the lower aquifer system may be connected to the overlying upper aquifer system through the corroded and failed casings of abandoned wells. Water-level measurements in observation wells and downward flow measured in selected wells during nonpumped conditions suggest that water may flow through wells from the upper aquifer system into the lower aquifer system during nonpumped conditions. The chemistry of water from wells in the East Bay Plain ranges from fresh to saline; salinity is greater than seawater in shallow estuarine deposits near the Bay. Water from wells completed in the lower aquifer system has higher pH, higher sodium, chloride, and manganese concentrations, and lower calcium concentrations and alkalinity than does water from wells completed in the overlying upper aquifer system. Ground-water recharge temperatures derived from noble-gas data indicate that highly focused recharge processes from infiltration of winter streamflow and more diffuse recharge processes from

  12. Characteristics of Southern California coastal aquifer systems

    Science.gov (United States)

    Edwards, B.D.; Hanson, R.T.; Reichard, E.G.; Johnson, T.A.

    2009-01-01

    Most groundwater produced within coastal Southern California occurs within three main types of siliciclastic basins: (1) deep (>600 m), elongate basins of the Transverse Ranges Physiographic Province, where basin axes and related fluvial systems strike parallel to tectonic structure, (2) deep (>6000 m), broad basins of the Los Angeles and Orange County coastal plains in the northern part of the Peninsular Ranges Physiographic Province, where fluvial systems cut across tectonic structure at high angles, and (3) shallow (75-350 m), relatively narrow fluvial valleys of the generally mountainous southern part of the Peninsular Ranges Physiographic Province in San Diego County. Groundwater pumped for agricultural, industrial, municipal, and private use from coastal aquifers within these basins increased with population growth since the mid-1850s. Despite a significant influx of imported water into the region in recent times, groundwater, although reduced as a component of total consumption, still constitutes a significant component of water supply. Historically, overdraft from the aquifers has caused land surface subsidence, flow between water basins with related migration of groundwater contaminants, as well as seawater intrusion into many shallow coastal aquifers. Although these effects have impacted water quality, most basins, particularly those with deeper aquifer systems, meet or exceed state and national primary and secondary drinking water standards. Municipalities, academicians, and local water and governmental agencies have studied the stratigraphy of these basins intensely since the early 1900s with the goals of understanding and better managing the important groundwater resource. Lack of a coordinated effort, due in part to jurisdictional issues, combined with the application of lithostratigraphic correlation techniques (based primarily on well cuttings coupled with limited borehole geophysics) have produced an often confusing, and occasionally conflicting

  13. Integration of seismic-reflection and well data to assess the potential impact of stratigraphic and structural features on sustainable water supply from the Floridan aquifer system, Broward County, Florida

    Science.gov (United States)

    Cunningham, Kevin J.

    2014-01-01

    The U.S. Geological Survey and Broward County water managers commenced a 3.5-year cooperative study in July 2012 to refine the geologic and hydrogeologic framework of the Floridan aquifer system (FAS) in Broward County. A lack of advanced stratigraphic knowledge of the physical system and structural geologic anomalies (faults and fractures originating from tectonics and karst-collapse structures) within the FAS pose a risk to the sustainable management of the resource. The principal objective of the study is to better define the regional stratigraphic and structural setting of the FAS in Broward County. The objective will be achieved through the acquisition, processing, and interpretation of new seismic-reflection data along several canals in Broward County. The interpretation includes integration of the new seismic-reflection data with existing seismic-reflection profiles along Hillsboro Canal in Broward County and within northeast Miami-Dade County, as well as with data from nearby FAS wellbores. The scope of the study includes mapping the geologic, hydrogeologic, and seismic-reflection framework of the FAS, and identifying stratigraphic and structural characteristics that could either facilitate or preclude the sustainable use of the FAS as an alternate water supply or a treated effluent repository. In addition, the investigation offers an opportunity to: (1) improve existing groundwater flow models, (2) enhance the understanding of the sensitivity of the groundwater system to well-field development and upconing of saline fluids, and (3) support site selection for future FAS projects, such as Class I wells that would inject treated effluent into the deep Boulder Zone.

  14. ORANGE: RANGE OF BENEFITS

    OpenAIRE

    Parle Milind; Chaturvedi Dev

    2012-01-01

    No wonder that oranges are one of the most popular fruits in the world. Orange (citrus sinensis) is well known for its nutritional and medicinal properties throughout the world. From times immemorial, whole Orange plant including ripe and unripe fruits, juice, orange peels, leaves and flowers are used as a traditional medicine. Citrus sinensis belongs to the family Rutaceae. The fruit is a fleshy, indehiscent, berry that ranges widely in size from 4 cm to 12 cm. The major medicinal proper...

  15. Novel S-35 Intrinsic Tracer Method for Determining Groundwater Travel Time near Managed Aquifer Recharge Facilities

    Science.gov (United States)

    Urióstegui, S. H.; Bibby, R. K.; Esser, B. K.; Clark, J. F.

    2013-12-01

    Identifying groundwater travel times near managed aquifer recharge (MAR) facilities is a high priority for protecting public and environmental health. For MAR facilities in California that incorporate tertiary wastewater into their surface-spreading recharge practices, the target subsurface residence time is >9 months to allow for the natural inactivation and degradation of potential contaminants (less time is needed for full advanced treated water). Established intrinsic groundwater tracer techniques such as tritium/helium-3 dating are unable to resolve timescales of method using a naturally occurring radioisotope of sulfur, sulfur-35 (S-35). After its production in the atmosphere by cosmic ray interaction with argon, S-35 enters the hydrologic cycle as dissolved sulfate through precipitation The short half-life of S-35 (3 months) is ideal for investigating recharge and transport of MAR groundwater on the method, however, has not been applied to MAR operations because of the difficulty in measuring S-35 with sufficient sensitivity in high-sulfate waters. We have developed a new method and have applied it at two southern California MAR facilities where groundwater travel times have previously been characterized using deliberate tracers: 1) Rio Hondo Spreading Grounds in Los Angeles County, and 2) Orange County Groundwater Recharge Facilities in Orange County. Reasonable S-35 travel times of method also identified seasonal patterns in subsurface travel times, which may not be revealed by a deliberate tracer study that is dependent on the hydrologic conditions during the tracer injection period.

  16. Geohydrology, water quality, and simulation of groundwater flow in the stratified-drift aquifer system in Virgil Creek and Dryden Lake Valleys, Town of Dryden, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.; Bugliosi, Edward F.

    2013-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department and the Town of Dryden, New York, began a study of the stratified-drift aquifer system in the Virgil Creek and Dryden Lake Valleys in the Town of Dryden, Tompkins County. The study provided geohydrologic data needed by the town and county to develop a strategy to manage and protect their water resources. In this study area, three extensive confined sand and gravel aquifers (the upper, middle, and lower confined aquifers) compose the stratified-drift aquifer system. The Dryden Lake Valley is a glaciated valley oriented parallel to the direction of ice movement. Erosion by ice extensively widened and deepened the valley, truncated bedrock hillsides, and formed a nearly straight, U-shaped bedrock trough. The maximum thickness of the valley fill in the central part of the valley is about 400 feet (ft). The Virgil Creek Valley in the east part of the study area underwent less severe erosion by ice than the Dryden Lake Valley, and hence, it has a bedrock floor that is several hundred feet higher in altitude than that in the Dryden Lake Valley. The sources and amounts of recharge were difficult to identify in most areas because the confined aquifers are overlain by confining units. However, in the vicinity of the Virgil Creek Dam, the upper confined aquifer crops out at land surface in the floodplain of a gorge eroded by Virgil Creek, and this is where the aquifer receives large amounts of recharge from precipitation that directly falls over the aquifer and from seepage losses from Virgil Creek. The results of streamflow measurements made in Virgil Creek where it flows through the gorge indicated that the stream lost 1.2 cubic feet per second (ft3/s) or 0.78 million gallons per day (Mgal/d) of water in the reach extending from 220 ft downstream from the dam to 1,200 ft upstream from the dam. In the southern part of the study area, large amounts of recharge also replenish the

  17. Hydrology of the Claiborne aquifer and interconnection with the Upper Floridan aquifer in southwest Georgia

    Science.gov (United States)

    Gordon, Debbie W.; Gonthier, Gerard

    2017-04-24

    The U.S. Geological Survey conducted a study, in cooperation with the Georgia Environmental Protection Division, to define the hydrologic properties of the Claiborne aquifer and evaluate its connection with the Upper Floridan aquifer in southwest Georgia. The effort involved collecting and compiling hydrologic data from the aquifer in subarea 4 of southwestern Georgia. Data collected for this study include borehole geophysical logs in 7 wells, and two 72-hour aquifer tests to determine aquifer properties.The top of the Claiborne aquifer extends from an altitude of about 200 feet above the North American Vertical Datum of 1988 (NAVD 88) in Terrell County to 402 feet below NAVD 88 in Decatur County, Georgia. The base of the aquifer extends from an altitude of about 60 feet above NAVD 88 in eastern Sumter County to about 750 feet below NAVD 88 in Decatur County. Aquifer thickness ranges from about 70 feet in eastern Early County to 400 feet in Decatur County.The transmissivity of the Claiborne aquifer, determined from two 72-hour aquifer tests, was estimated to be 1,500 and 700 feet squared per day in Mitchell and Early Counties, respectively. The storage coefficient was estimated to be 0.0006 and 0.0004 for the same sites, respectively. Aquifer test data from Mitchell County indicate a small amount of leakage occurred during the test. Groundwater-flow models suggest that the source of the leakage was the underlying Clayton aquifer, which produced about 2.5 feet of drawdown in response to pumping in the Claiborne aquifer. The vertical hydraulic conductivity of the confining unit between the Claiborne and Clayton aquifers was simulated to be about 0.02 foot per day.Results from the 72-hour aquifer tests run for this study indicated no interconnection between the Claiborne and overlying Upper Floridan aquifers at the two test sites. Additional data are needed to monitor the effects that increased withdrawals from the Claiborne aquifer may have on future water resources.

  18. Alluvial Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — This coverage shows the extents of the alluvial aquifers in Kansas. The alluvial aquifers consist of unconsolidated Quaternary alluvium and contiguous terrace...

  19. Geohydrology and Water Quality of the Valley-Fill Aquifer System in the Upper Sixmile Creek and West Branch Owego Creek Valleys in the Town of Caroline, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2009-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Town of Caroline and Tompkins County Planning Department, began a study of the valley-fill aquifer system in upper Sixmile Creek and headwaters of West Branch Owego Creek valleys in the Town of Caroline, NY. The purpose of the study is to provide geohydrologic data to county and town planners as they develop a strategy to manage and protect their water resources. The first aquifer reach investigated in this series is in the Town of Caroline and includes the upper Sixmile Creek valley and part of West Branch Owego Creek valley. The portions of the valley-fill aquifer system that are comprised of saturated coarse-grained sediments including medium to coarse sand and sandy gravel form the major aquifers. Confined sand and gravel units form the major aquifers in the western and central portions of the upper Sixmile Creek valley, and an unconfined sand and gravel unit forms the major aquifer in the eastern portion of the upper Sixmile Creek valley and in the headwaters of the West Branch Owego Creek valley. The valley-fill deposits are thinnest near the edges of the valley where they pinch out along the till-mantled bedrock valley walls. The thickness of the valley fill in the deepest part of the valley, at the western end of the study area, is about 100 feet (ft); the thickness is greater than 165 ft on top of the Valley Heads Moraine in the central part of the valley. An estimated 750 people live over and rely on groundwater from the valley-fill aquifers in upper Sixmile Creek and West Branch Owego Creek valleys. Most groundwater withdrawn from the valley-fill aquifers is pumped from wells with open-ended 6-inch diameter casings; the remaining withdrawals are from shallow dug wells or cisterns that collect groundwater that discharges to springs (especially in the Brooktondale area). The valley-fill aquifers are the sources of water for about 200 households, several apartment complexes, two mobile home parks

  20. Effects of two stormwater management methods on the quality of water in the upper Biscayne aquifer at two commercial areas in Dade County, Florida

    Science.gov (United States)

    McKenzie, D.J.; Irwin, G.A.

    1988-01-01

    This study is part of a continued effort to assess the effects of urban stormwater recharge on the water quality of the Biscayne aquifer in southeast Florida. In this report, the water-quality effects on shallow ground water resulting from stormwater disposal by exfiltration trench and grassy swale were investigated at two small commercial areas in Dade County, Florida. One study area (airport ) was located near the Miami International Airport and had a drainage area of about 10 acres overlying a sandy soil; the other study area ( free zone ) was located at the Miami International Free Trade Zone and had a drainage area of about 20 acres overlying limestone. The monitoring design for each study area consisted of seven sites and included water-quality sampling of the stormwater in the catch basin of the exfiltration trench, ground water from two wells 1 foot from the trench (trench wells), two wells 20 feet from the trench, and ground water from two wells at the swale from April 1985 through May 1986. Eleven water-quality variables (target variables) commonly found in high levels in urban stormwater runoff were used as tracers to estimate possible changes in ground-water quality that may have been caused by stormwater recharge. Comparison of the distribution of target variables indicated that the concentrations tended to be greater in the stormwater in the exfiltration trench than in water from the two wells 1 foot from the trench at both study areas. The concentration difference for several target variables was statistically significant at the 5-percent level. Lead, for example, had median concentrations of 23 and 4 micrograms per liter, respectively, in stormwater and water from the two trench wells at the airport study area, and 38 and 2 micrograms per liter, respectively, in stormwater and groundwater at the free zone. Similar reductions in concentrations between stormwater and water from the two trench wells were indicated for zinc at both study areas and also

  1. Soil chemistry and ground-water quality of the water-table zone of the surficial aquifer, Naval Submarine Base Kings Bay, Camden County, Georgia, 1998 and 1999

    Science.gov (United States)

    Leeth, David C.

    2002-01-01

    In 1998, the U.S. Geological Survey, in cooperation with the U.S. Department of the Navy, began an investigation to determine background ground-water quality of the water-table zone of the surficial aquifer and soil chemistry at Naval Submarine Base Kings Bay, Camden County, Georgia, and to compare these data to two abandoned solid- waste disposal areas (referred to by the U.S. Navy as Sites 5 and 16). The quality of water in the water-table zone generally is within the U.S. Environmental Protection Agency (USEPA) drinking-water regulation. The pH of ground water in the study area ranged from 4.0 to 7.6 standard units, with a median value of 5.4. Water from 29 wells is above the pH range and 3 wells are within the range of the USEPA secondary drinking-water regulation (formerly known as the Secondary Maximum Contaminant Level or SMCL) of 6.5 to 8.5 standard units. Also, water from one well at Site 5 had a chloride concentration of 570 milligrams per liter (mg/L,), which is above the USEPA secondary drinking-water regulation of 250 mg/L. Sulfate concentrations in water from two wells at Site 5 are above the USEPA secondary drinking-water regulation of 250 mg/L. Of 22 soil-sampling locations for this study, 4 locations had concentrations above the detection limit for either volatile organic compounds (VOCs), base-neutral acids (BNAs), or pesticides. VOCs detected in the study area include toluene in one background sample; and acetone in one background sample and one sample from Site 16--however, detection of these two compounds may be a laboratory artifact. Pesticides detected in soil at the Submarine Base include two degradates of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT): 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (4,4'-DDD) in one background sample, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethene (4,4'-DDE) in one background sample and one sample from Site 16; and dibenzofuran in one sample from Site 16. BNAs were detected in one background sample and in two

  2. Hydrogeologic characteristics and water quality of a confined sand unit in the surficial aquifer system, Hunter Army Airfield, Chatham County, Georgia

    Science.gov (United States)

    Gonthier, Gerard

    2012-01-01

    An 80-foot-deep well (36Q397, U.S. Geological Survey site identification 320146081073701) was constructed at Hunter Army Airfield to assess the potential of using the surficial aquifer system as a water source to irrigate a ballfield complex. A 300-foot-deep test hole was drilled beneath the ballfield complex to characterize the lithology and water-bearing characteristics of sediments above the Upper Floridan aquifer. The test hole was then completed as well 36Q397 open to a 19-foot-thick shallow, confined sand unit contained within the surficial aquifer system. A single-well, 24-hour aquifer test was performed by pumping well 36Q397 at a rate of 50 gallons per minute during July 13-14, 2011, to characterize the hydrologic properties of the shallow, confined sand unit. Two pumping events prior to the aquifer test affected water levels. Drawdown during all three pumping events and residual drawdown during recovery periods were simulated using the Theis formula on multiple changes in discharge rate. Simulated drawdown and residual drawdown match well with measured drawdown and residual drawdown using values of horizontal hydraulic conductivity and specific storage, which are typical for a confined sand aquifer. Based on the hydrologic parameters used to match simulated drawdown and residual drawdown to measured drawdown and residual drawdown, the transmissivity of the sand was determined to be about 400 feet squared per day. The horizontal hydraulic conductivity of the sand was determined to be about 20 feet per day. Analysis of a water-quality sample indicated that the water is suitable for irrigation. Sample analysis indicated a calcium-carbonate type water having a total dissolved solids concentration of 39 milligrams per liter. Specific conductance and concentrations of all analyzed constituents were below those that would be a concern for irrigation, and were below primary and secondary water-quality criteria levels.

  3. Estimating hydraulic properties of the Floridan Aquifer System by analysis of earth-tide, ocean-tide, and barometric effects, Collier and Hendry Counties, Florida

    Science.gov (United States)

    Merritt, Michael L.

    2004-01-01

    Aquifers are subjected to mechanical stresses from natural, non-anthropogenic, processes such as pressure loading or mechanical forcing of the aquifer by ocean tides, earth tides, and pressure fluctuations in the atmosphere. The resulting head fluctuations are evident even in deep confined aquifers. The present study was conducted for the purpose of reviewing the research that has been done on the use of these phenomena for estimating the values of aquifer properties, and determining which of the analytical techniques might be useful for estimating hydraulic properties in the dissolved-carbonate hydrologic environment of southern Florida. Fifteen techniques are discussed in this report, of which four were applied.An analytical solution for head oscillations in a well near enough to the ocean to be influenced by ocean tides was applied to data from monitor zones in a well near Naples, Florida. The solution assumes a completely non-leaky confining unit of infinite extent. Resulting values of transmissivity are in general agreement with the results of aquifer performance tests performed by the South Florida Water Management District. There seems to be an inconsistency between results of the amplitude ratio analysis and independent estimates of loading efficiency. A more general analytical solution that takes leakage through the confining layer into account yielded estimates that were lower than those obtained using the non-leaky method, and closer to the South Florida Water Management District estimates. A numerical model with a cross-sectional grid design was applied to explore additional aspects of the problem.A relation between specific storage and the head oscillation observed in a well provided estimates of specific storage that were considered reasonable. Porosity estimates based on the specific storage estimates were consistent with values obtained from measurements on core samples. Methods are described for determining aquifer diffusivity by comparing the time

  4. Map showing minimum depth to water in shallow aquifers (1963-72) in the Sugar House quadrangle, Salt Lake County, Utah

    Science.gov (United States)

    Mower, R.W.; Van Horn, Richard

    1973-01-01

    The depth to ground water in shallow aquifers in the Sugar Horse quadrangle ranges from zero in areas of springs and seeps to more than 10 feet beneath most of the area shown on the map. The depth to water differs from place to place because of irregular topography, and the varying capability of different rock materials to transmit water. Ground water also occurs under unconfined and confined conditions in deep aquifers beneath the Sugar Horse quadrangle, as shown by the block diagram and as described by Hely, Mower, and Harr (1971a, p. 17-111).

  5. Carbonate aquifers

    Science.gov (United States)

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  6. 2011 USGS Lidar: Orange County (CA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR (Light Detection and Ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format....

  7. Seismic-sequence stratigraphy and geologic structure of the Floridan aquifer system near "Boulder Zone" deep wells in Miami-Dade County, Florida

    Science.gov (United States)

    Cunningham, Kevin J.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the Miami-Dade Water and Sewer Department, acquired, processed, and interpreted seismic-reflection data near the North and South District “Boulder Zone” Well Fields to determine if geologic factors may contribute to the upward migration of injected effluent into that upper part of the Floridan aquifer system designated by the U.S. Environmental Protection Agency as an underground source of drinking water. The depth of the Boulder Zone at the North and South District “Boulder Zone” Well Fields ranges from about 2,750 to 3,300 feet below land surface (ft bls), whereas overlying permeable zones used as alternative drinking water supply range in depth from about 825 to 1,580 ft bls at the North and South District “Boulder Zone” Well Fields. Seismic-sequence stratigraphy and geologic structures imaged on seismic-reflection profiles created for the study describe the part of the Floridan aquifer system overlying and within the Boulder Zone. Features of the Floridan aquifer system underlying the Boulder Zone were not studied because seismic-reflection profiles acquired near the North and South District “Boulder Zone” Well Fields lacked adequate resolution at such depths.

  8. Probability of Unmixed Young Groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of unmixed young groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps were developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  9. Potentiometric surfaces, summer 2013 and winter 2015, and select hydrographs for the Southern High Plains aquifer, Cannon Air Force Base, Curry County, New Mexico

    Science.gov (United States)

    Collison, Jake

    2016-04-07

    Cannon Air Force Base (Cannon AFB) is located in the High Plains physiographic region of east-central New Mexico, about 5 miles west of Clovis, New Mexico. The area surrounding Cannon AFB is primarily used for agriculture, including irrigated cropland and dairies. The Southern High Plains aquifer is the principal source of water for Cannon AFB, for the nearby town of Clovis, and for local agriculture and dairies. The Southern High Plains aquifer in the vicinity of Cannon AFB consists of three subsurface geological formations: the Chinle Formation of Triassic age, the Ogallala Formation of Tertiary age, and the Blackwater Draw Formation of Quaternary age. The Ogallala Formation is the main water-yielding formation of the Southern High Plains aquifer. Groundwater-supplied, center-pivot irrigation dominates pumping from the Southern High Plains aquifer in the area surrounding Cannon AFB, where the irrigation season typically extends from early March through October. The U.S. Geological Survey has been monitoring groundwater levels in the vicinity of Cannon AFB since 1954 and has developed general potentiometric-surface maps that show groundwater flow from northwest to southeast in the study area. While previous potentiometric-surface maps show the general direction of groundwater flow, a denser well network is needed to show details of groundwater flow at a local scale. Groundwater levels were measured in 93 wells during summer 2013 and 100 wells during winter 2015.The summer and winter potentiometric-surface maps display the presence of what is interpreted to be a groundwater trough trending from the northwest to the southeast through the study area. This groundwater trough may be the hydraulic expression of a Tertiary-age paleochannel. Groundwater north of the trough flows in a southerly direction into the trough, and groundwater south of the trough flows in an easterly direction into the trough.During the 18-month period between summer 2013 and winter 2015, changes

  10. Effect of reduced industrial pumpage on the migration of dissolved nitrogen in an outwash aquifer at Olean, Cattaraugus County, New York

    Science.gov (United States)

    Bergeron, M.P.

    1987-01-01

    A quasi-three-dimensional digital groundwater flow model of a shallow outwash aquifer system at Olean, New York, was developed to study the effects of several pumping alternatives on groundwater flow and stream seepage. Nitrogen compounds have contaminated the aquifer in an industrial park in North Olean. Pumping from seven industrial production wells and a purge well has created a cone of depression within which all nitrogen compounds are contained, thus preventing their migration to nearby private, municipal, and industrial-supply wells. A simulated total shutdown of an industrial well field and the purge well indicates that groundwater flowing laterally southward to southwestward from the area of contamination would require about 5 yr to reach a municipal well field along the Allegheny River. Simulation of a partial shutdown with only three main production wells and the purge well or just the three production wells indicate that all nitrogen-bearing groundwater would be captured. Pumping from only the purge well would allow contaminated groundwater along the southwestern edge of the site to escape and, in 8 to 9 yr, reach the municipal well field. (USGS)

  11. Sequence-Stratigraphic Analysis of the Regional Observation Monitoring Program (ROMP) 29A Test Corehole and Its Relation to Carbonate Porosity and Regional Transmissivity in the Floridan Aquifer System, Highlands County, Florida

    Science.gov (United States)

    Ward, W. C.; Cunningham, K.J.; Renken, R.A.; Wacker, M.A.; Carlson, J.I.

    2003-01-01

    An analysis was made to describe and interpret the lithology of a part of the Upper Floridan aquifer penetrated by the Regional Observation Monitoring Program (ROMP) 29A test corehole in Highlands County, Florida. This information was integrated into a one-dimensional hydrostratigraphic model that delineates candidate flow zones and confining units in the context of sequence stratigraphy. Results from this test corehole will serve as a starting point to build a robust three-dimensional sequence-stratigraphic framework of the Floridan aquifer system. The ROMP 29A test corehole penetrated the Avon Park Formation, Ocala Limestone, Suwannee Limestone, and Hawthorn Group of middle Eocene to Pliocene age. The part of the Avon Park Formation penetrated in the ROMP 29A test corehole contains two composite depositional sequences. A transgressive systems tract and a highstand systems tract were interpreted for the upper composite sequence; however, only a highstand systems tract was interpreted for the lower composite sequence of the deeper Avon Park stratigraphic section. The composite depositional sequences are composed of at least five high-frequency depositional sequences. These sequences contain high-frequency cycle sets that are an amalgamation of vertically stacked high-frequency cycles. Three types of high-frequency cycles have been identified in the Avon Park Formation: peritidal, shallow subtidal, and deeper subtidal high-frequency cycles. The vertical distribution of carbonate-rock diffuse flow zones within the Avon Park Formation is heterogeneous. Porous vuggy intervals are less than 10 feet, and most are much thinner. The volumetric arrangement of the diffuse flow zones shows that most occur in the highstand systems tract of the lower composite sequence of the Avon Park Formation as compared to the upper composite sequence, which contains both a backstepping transgressive systems tract and a prograding highstand systems tract. Although the porous and permeable

  12. Ozark Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — These digital maps contain information on the altitude of the base and top, the extent, and the potentiometric surface of the Ozark aquifer in Kansas. The Ozark...

  13. Using state-of-the-art technology to evaluate saltwater intrusion in the Biscayne aquifer of Miami-Dade County, Florida

    Science.gov (United States)

    Prinos, Scott T.

    2014-01-01

    The fresh groundwater supplies of many communities have been adversely affected or limited by saltwater intrusion. An insufficient understanding of the origin of intruded saltwater may lead to inefficient or ineffective water-resource management. A 2008–2012 cooperative U.S. Geological Survey (USGS) and Miami-Dade County study of saltwater intrusion describes state-of-the art technology used to evaluate the origin and distribution of this saltwater.

  14. Reservoir characterization and final pre-test analysis in support of the compressed-air-energy-storage Pittsfield aquifer field test in Pike County, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; McCann, R.A.

    1983-06-01

    The work reported is part of a field experimental program to demonstrate and evaluate compressed air energy storage in a porous media aquifer reservoir near Pittsfield, Illinois. The reservoir is described. Numerical modeling of the reservoir was performed concurrently with site development. The numerical models were applied to predict the thermohydraulic performance of the porous media reservoir. This reservoir characterization and pre-test analysis made use of evaluation of bubble development, water coning, thermal development, and near-wellbore desaturation. The work was undertaken to define the time required to develop an air storage bubble of adequate size, to assess the specification of instrumentation and above-ground equipment, and to develop and evaluate operational strategies for air cycling. A parametric analysis was performed for the field test reservoir. (LEW)

  15. Hydrogeology of the Dakota Group aquifer with emphasis on the radium-226 content of its contained ground water, Canon City Embayment, Fremont and Pueblo Counties, Colorado

    International Nuclear Information System (INIS)

    Vinckier, T.A.

    1982-01-01

    The Dakota Group aquifer of the Canon City embayment comprises two primary water-bearing units, the Lytle Sandstone Member at the base and the Dakota Sandstone at the top, separated by the semiconfining, arenaceous Glencairn Shale Member. The ground water in this area probably represents a mixture of some or all of the following genetic types: (1) ground water connate to the Dakota Group; (2) ground water, connate or otherwise, entering the aquifer as leakage from adjacent semiconfining strata; (3) deeply circulated meteoric ground water; and (4) hydrothermal fluids (magmatic or metamorphic ground water) purged from the crystalline basement complex underlying the embayment. The contents of the radium-226 in ground water from 117 wells completed in part or all of the Dakota Group were determined by the dissolved radon-222 emanation method. Sixty-seven percent of the ground water samples have radium-226 activities greater than 5.0 picocuries per liter of water (5.0 pCi/1), the recommended maximum permissible concentration of radium-226 in drinking water established by the Environmental Protection Agency in 1973. Inspection of gamma-ray logs of about 20 wells revealed the presence of moderate to extremely high gamma radiation in strata of the Dakota Group, the Morrison Formation, the Fountain Formation, and in the crystalline basement rocks. High levels of radium-226 in drinking water supplies pose potentially serious health hazards to the users. Owners of wells producing such water supplies are advised to (1) install, at the homesite, ion exchange (filtering units) capable of removing 226 Ra 2 + ions and other aqueous radium species from the water or (2) effectively case out those stratigraphic intervals in the bore hole showing high gamma radiation preventing possible radium-rich ground water within these intervals from entering the well

  16. PSIKOLOGI KORUPSI NOVEL ORANG-ORANG PROYEK KARYA AHMAD TOHARI

    OpenAIRE

    Farid Faruq; Saiful Anam

    2017-01-01

    This study aimed to obtain a description of personality (nature) can affect the behavior of corruption in the novel Orang-Orang Proyek. This research is a descriptive qualitative study using a novel approach to analyze the psychology of corruption. The data in this study are words, phrases, and sentences contained in the novel Orang-Orang Proyek. The main data sources are novel by Ahmad Tohari. Data collection method used in this research is to read the text repeatedly novel Orang-Orang Proye...

  17. Hydrogeology and groundwater quality of Highlands County, Florida

    Science.gov (United States)

    Spechler, Rick M.

    2010-01-01

    Groundwater is the main source of water supply in Highlands County, Florida. As the demand for water in the county increases, additional information about local groundwater resources is needed to manage and develop the water supply effectively. To address the need for additional data, a study was conducted to evaluate the hydrogeology and groundwater quality of Highlands County. Total groundwater use in Highlands County has increased steadily since 1965. Total groundwater withdrawals increased from about 37 million gallons per day in 1965 to about 107 million gallons per day in 2005. Much of this increase in water use is related to agricultural activities, especially citrus cultivation, which increased more than 300 percent from 1965 to 2005. Highlands County is underlain by three principal hydrogeologic units. The uppermost water-bearing unit is the surficial aquifer, which is underlain by the intermediate aquifer system/intermediate confining unit. The lowermost hydrogeologic unit is the Floridan aquifer system, which consists of the Upper Floridan aquifer, as many as three middle confining units, and the Lower Floridan aquifer. The surficial aquifer consists primarily of fine-to-medium grained quartz sand with varying amounts of clay and silt. The aquifer system is unconfined and underlies the entire county. The thickness of the surficial aquifer is highly variable, ranging from less than 50 to more than 300 feet. Groundwater in the surficial aquifer is recharged primarily by precipitation, but also by septic tanks, irrigation from wells, seepage from lakes and streams, and the lateral groundwater inflow from adjacent areas. The intermediate aquifer system/intermediate confining unit acts as a confining layer (except where breached by sinkholes) that restricts the vertical movement of water between the surficial aquifer and the underlying Upper Floridan aquifer. The sediments have varying degrees of permeability and consist of permeable limestone, dolostone, or

  18. Guarani aquifer

    International Nuclear Information System (INIS)

    2007-01-01

    The environmental protection and sustain ability develop project of Guarani Aquifer System is a join work from Argentina, Brazil, Paraguay and Uruguay with a purpose to increase the knowledge resource and propose technical legal and organizational framework for sustainable management between countries.The Universities funds were created as regional universities support in promotion, training and academic research activities related to environmental al social aspects of the Guarani Aquifer System.The aim of the project is the management and protection of the underground waters resources taking advantage and assesment for nowadays and future generations

  19. Operation Orange Street Resurfacing 2016

    Data.gov (United States)

    City of Jackson, Mississippi — Track Operation Orange Cone projects for 2016. “Operation Orange Cone” is an initiative launched in 2015 as part of the Yarber Administration’s push to address the...

  20. The Orange Feeling

    DEFF Research Database (Denmark)

    Kiib, Hans; Kiib, Birgitte Marling; Jespersen, Line Marie Bruun

    2017-01-01

    on the specific atmosphere and on how the designs support this. It concludes that the culture of laughter is the atmospheric glue that keeps Roskilde Festival together, and it is the performative and relational designs together with the culture of laughter that create the basis for ‘The Orange Feeling’....

  1. 21 CFR 146.135 - Orange juice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Orange juice. 146.135 Section 146.135 Food and....135 Orange juice. (a) Orange juice is the unfermented juice obtained from mature oranges of the... name of the food is “orange juice”. The name “orange juice” may be preceded on the label by the...

  2. Geochemistry of fluoride in the Black Creek aquifer system of Horry and Georgetown Counties, South Carolina--and its physiological implications

    Science.gov (United States)

    Zack, Allen L.

    1980-01-01

    High concentrations of fluoride in ground-water supplies in certain areas of Horry and Georgetown Counties, S.C., have been the cause of dental fluorosis (tooth mottling) among persons who have lived in these areas and have ingested the water as children. Geochemical evidence and laboratory experiments demonstrate that fluorapatite in the form of fossil shark teeth is the source of fluoride, and that the fluoride ions are liberated to the ground-water system through anion exchange, rather than by dissolution. Calcite-cemented quartz sand in the upper third of the Black Creek Formation of Late Cretaceous age contains the fossil shark teeth. As ground water progresses downdip, the calcite matrix dissolves and hydrolyzes, releasing bicarbonate, hydroxyl, and calcium ions. The calcium ions are immediately exchanged for sodium ions adsorbed on sodium-rich clays, and the bicarbonate ions accumulate. As the shark teeth are exposed, the hydroxyl ions in solution exchange with fluoride ions on fluorapatite surfaces. Experiments using fossil shark teeth show that sodium chloride in solution inhibits the rate of exchange of fluoride ions from tooth surfaces for hydroxyl ions in solution. The amount of fluoride removed from water and exchanged for hydroxyl ions in the presence of pure hydroxylapatite (hog teeth) was greater in saline water than in freshwater.

  3. 75 FR 1010 - CSX Transportation, Inc.-Discontinuance of Service Exemption-in Clark, Floyd, Lawrence, Orange...

    Science.gov (United States)

    2010-01-07

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [STB Docket No. AB-55 (Sub-No. 698X)] CSX Transportation, Inc.--Discontinuance of Service Exemption--in Clark, Floyd, Lawrence, Orange, and..., Orange, and Washington Counties, IN.\\1\\ The line traverses United States Postal Service Zip Codes 47150...

  4. Review of Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer in Southern Florida

    Science.gov (United States)

    Reese, Ronald S.

    2006-01-01

    Introduction: Interest and activity in aquifer storage and recovery (ASR) in southern Florida has increased greatly during the past 10 to 15 years. ASR wells have been drilled to the carbonate Floridan aquifer system at 30 sites in southern Florida, mostly by local municipalities or counties located in coastal areas. The primary storage zone at these sites is contained within the brackish to saline Upper Floridan aquifer of the Floridan aquifer system. The strategy for use of ASR in southern Florida is to store excess freshwater available during the wet season in an aquifer and recover it during the dry season when needed for supplemental water supply. Each ASR cycle is defined by three periods: recharge, storage, and recovery. This fact sheet summarizes some of the findings of a second phase retrospective assessment of existing ASR facilities and sites.

  5. 2014 USGS Lidar: Central Virginia Seismic (Louisa County)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Laser Mapping Specialist, Inc (LMSI) collected 230 square miles in the Virginia counties of Fluvanna, Orange, Louisa, and Spotsylvania. The nominal pulse spacing for...

  6. County Spending

    Data.gov (United States)

    Montgomery County of Maryland — This dataset includes County spending data for Montgomery County government. It does not include agency spending. Data considered sensitive or confidential and will...

  7. Hydrogeology of Cibola County, New Mexico

    Science.gov (United States)

    Baldwin, J.A.; Rankin, D.R.

    1995-01-01

    The hydrogeology of Cibola County, New Mexico, was evaluated to determine the occurrence, availability, and quality of ground-water resources. Rocks of Precambrian through Quaternary age are present in Cibola County. Most rocks are sedimentary in origin except for Precambrian igneous and metamorphic rocks exposed in the Zuni Uplift and Tertiary and Quaternary basalts in northern and central parts of the county. The most productive aquifers in the county include (youngest to oldest) Quaternary deposits, sandstones in the Mesaverde Group, the Dakota-Zuni-Bluff aquifer, the Westwater Canyon aquifer, the Todilto- Entrada aquifer, sandstone beds in the Chinle Formation, and the San Andres-Glorieta aquifer. Unconsolidated sand, silt, and gravel form a mantle ranging from a few inches to 150 to 200 feet over much of the bedrock in Cibola County. Well yields range from 5 to 1,110 gallons per minute. Dissolved-solids concentrations of ground water range from 200 to more than 5,200 milligrams per liter. Calcium, magnesium, bicarbonate, and sulfate are the predominant ions in ground water in alluvial material. The Mesaverde Group mainly occurs in three areas of the county. Well yields range from less than 1 to 12 gallons per minute. The predominant ions in water from wells in the Mesaverde Group are calcium, sodium, and bicarbonate. The transition from calcium-predominant to sodium-predominant water in the southwestern part of the county likely is a result of ion exchange. Wells completed in the Dakota-Zuni-Bluff aquifer yield from 1 to 30 gallons per minute. Dissolved-solids concentrations range from 220 to 2,000 milligrams per liter in water from 34 wells in the western part of the county. Predominant ions in the ground water include calcium, sodium, sulfate, and bicarbonate. Calcium predominates in areas where the aquifer is exposed at the surface or is overlain with alluvium. Sandstones in the Chinle Formation yield from 10 to 300 gallons per minute to wells in the Grants

  8. Geology and ground-water resources of Outagamie County, Wisconsin

    Science.gov (United States)

    LeRoux, E.F.

    1957-01-01

    Outagamie County is in east-central Wisconsin. It has no serious groundwater problem at present, but the county is important as a recharge area for the principal aquifers supplying water to Brown County and industrial Green Bay to the east.

  9. Shallow ground-water conditions, Tom Green County, Texas

    Science.gov (United States)

    Lee, J.N.

    1986-01-01

    Most of the water needs of Tom Green County, Texas, are supplied by ground water; however, the city of San Angelo is supplied by surface water. Groundwater withdrawals during 1980 (latest year for which data are available) in Tom Green County totaled about 15,300 acre-feet, all derived from shallow aquifers. Shallow aquifers in this report refer to the ground-water system generally less than 400 feet deep that contains water with less than a 10,000 milligrams per liter concentration of dissolved solids; aquifers comprising this system include: The Leona, Comanche Peak, Trinity, Blaine, San Angelo, Choza, Bullwagon, Vale, Standpipe, and Arroyo aquifers.

  10. PSIKOLOGI KORUPSI NOVEL ORANG-ORANG PROYEK KARYA AHMAD TOHARI

    Directory of Open Access Journals (Sweden)

    Farid Faruq

    2017-08-01

    Full Text Available This study aimed to obtain a description of personality (nature can affect the behavior of corruption in the novel Orang-Orang Proyek. This research is a descriptive qualitative study using a novel approach to analyze the psychology of corruption. The data in this study are words, phrases, and sentences contained in the novel Orang-Orang Proyek. The main data sources are novel by Ahmad Tohari. Data collection method used in this research is to read the text repeatedly novel Orang-Orang Proyek, collect any data relating to the focus of the study, after carrying out the classification. Data analysis technique is done by data identification, data reduction, data display, data interpretation, describe the results of the analysis, and draw conclusions. While the results of this study are as followsdescription of personalitycovetousness/greed and consumptive lifestyles nature conducted by figures such novel Dalkijo and their families can lead to corruption. This means that there is influence, greed / avarice as well as the nature of the consumer lifestyle on corruption.

  11. 21 CFR 74.250 - Orange B.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Orange B. 74.250 Section 74.250 Food and Drugs... ADDITIVES SUBJECT TO CERTIFICATION Foods § 74.250 Orange B. (a) Identity. (1) The color additive Orange B is.... (2) The diluents in color additive mixtures for food use containing Orange B are limited to those...

  12. Peripheral Neuropathy and Agent Orange

    Science.gov (United States)

    ... Enter ZIP code here Enter ZIP code here Peripheral Neuropathy and Agent Orange VA presumes Veterans' early-onset ... 10 percent disabling by VA's rating regulations. About peripheral neuropathy Peripheral neuropathy is a condition of the peripheral ...

  13. Quantifying Apparent Groundwater Ages near Managed Aquifer Recharge Operations Using Radio-Sulfur (35S as an Intrinsic Tracer

    Directory of Open Access Journals (Sweden)

    Jordan F. Clark

    2016-10-01

    Full Text Available The application of the cosmogenic radioisotope sulfur-35 (35S as a chronometer near spreading basins is evaluated at two well-established Managed Aquifer Recharge (MAR sites: the Atlantis facility (South Africa and Orange County Water District’s (OCWD’s Kraemer Basin (Northern Orange County, CA, USA. Source water for both of these sites includes recycled wastewater. Despite lying nearer to the outlet end of their respective watersheds than to the headwaters, 35S was detected in most of the water sampled, including from wells found close to the spreading ponds and in the source water. Dilution with 35S-dead continental SO4 was minimal, a surprising finding given its short ~3 month half-life. The initial work at the Atlantis MAR site demonstrated that remote laboratories could be set up and that small volume samples—saline solutions collected after the resin elution step from the recently developed batch method described below—can be stored and transported to the counting laboratory. This study also showed that the batch method needed to be altered to remove unknown compounds eluted from the resin along with SO4. Using the improved batch method, times series measurements of both source and well water from OCWD’s MAR site showed significant temporal variations. This result indicates that during future studies, monthly to semi-monthly sampling should be conducted. Nevertheless, both of these initial studies suggest the 35S chronometer may become a valuable tool for managing MAR sites where regulations require minimum retention times.

  14. Appraisal of the surficial aquifers in the Pomme de Terre and Chippewa River Valleys, western Minnesota

    Science.gov (United States)

    Soukup, W.G.; Gillies, D.C.; Myette, C.F.

    1984-01-01

    The surf icial sands in the Pomme de Terre and Chippewa River valleys in Grant, Pope, Stevens, and Swift Counties have been studied to determine the occurrence, availability, and quality of ground water in these aquifers.

  15. Extending the economic life of the Ogallala Aquifer with water conservation policies in the Texas panhandle

    Science.gov (United States)

    The continued decline in the availability of water from the Ogallala Aquifer in the Texas Panhandle has led to an increased interest in conservation policies designed to extend the life of the aquifer and sustain rural economies. Four counties were chosen for evaluation. This study evaluates the eff...

  16. Geophysics- and geochemistry-based assessment of the geochemical characteristics and groundwater-flow system of the U.S. part of the Mesilla Basin/Conejos-Médanos aquifer system in Doña Ana County, New Mexico, and El Paso County, Texas, 2010–12

    Science.gov (United States)

    Teeple, Andrew P.

    2017-06-16

    One of the largest rechargeable groundwater systems by total available volume in the Rio Grande/Río Bravo Basin (hereinafter referred to as the “Rio Grande”) region of the United States and Mexico, the Mesilla Basin/Conejos-Médanos aquifer system, supplies water for irrigation as well as for cities of El Paso, Texas; Las Cruces, New Mexico; and Ciudad Juárez, Chihuahua, Mexico. The U.S. Geological Survey in cooperation with the Bureau of Reclamation assessed the groundwater resources in the Mesilla Basin and surrounding areas in Doña Ana County, N. Mex., and El Paso County, Tex., by using a combination of geophysical and geochemical methods. The study area consists of approximately 1,400 square miles in Doña Ana County, N. Mex., and 100 square miles in El Paso County, Tex. The Mesilla Basin composes most of the study area and can be divided into three parts: the Mesilla Valley, the West Mesa, and the East Bench. The Mesilla Valley is the part of the Mesilla Basin that was incised by the Rio Grande between Selden Canyon to the north and by a narrow valley (about 4 miles wide) to the southeast near El Paso, Tex., named the Paso del Norte, which is sometimes referred to in the literature as the “El Paso Narrows.”Previously published geophysical data for the study area were compiled and these data were augmented by collecting additional geophysical and geochemical data. Geophysical resistivity measurements from previously published helicopter frequency domain electromagnetic data, previously published direct-current resistivity soundings, and newly collected (2012) time-domain electromagnetic soundings were used in the study to detect spatial changes in the electrical properties of the subsurface, which reflect changes that occur within the hydrogeology. The geochemistry of the groundwater system was evaluated by analyzing groundwater samples collected in November 2010 for physicochemical properties, major ions, trace elements, nutrients, pesticides

  17. Assessing urban forest effects and values: Douglas County, Kansas

    Science.gov (United States)

    David J. Nowak; Allison R. Bodine; Robert E. Hoehn; Alexis Ellis; Kim Bomberger; Daniel E. Crane; Theodore A. Endreny; Thomas Taggert; Emily. Stephan

    2014-01-01

    An analysis of trees in Douglas County, Kansas, reveals that this area has about 14,164,000 trees with tree and shrub canopy that covers 25.2 percent of the county. The most common tree species are American elm, northern hackberry, eastern redcedar, Osage-orange, and honeylocust. Trees in Douglas County currently store about 1.7 million tons of carbon (6.4 million tons...

  18. Geographic information system datasets of regolith-thickness data, regolith-thickness contours, raster-based regolith thickness, and aquifer-test and specific-capacity data for the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    Science.gov (United States)

    Arnold, L. Rick

    2010-01-01

    These datasets were compiled in support of U.S. Geological Survey Scientific-Investigations Report 2010-5082-Hydrogeology and Steady-State Numerical Simulation of Groundwater Flow in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. The datasets were developed by the U.S. Geological Survey in cooperation with the Lost Creek Ground Water Management District and the Colorado Geological Survey. The four datasets are described as follows and methods used to develop the datasets are further described in Scientific-Investigations Report 2010-5082: (1) ds507_regolith_data: This point dataset contains geologic information concerning regolith (unconsolidated sediment) thickness and top-of-bedrock altitude at selected well and test-hole locations in and near the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Data were compiled from published reports, consultant reports, and from lithologic logs of wells and test holes on file with the U.S. Geological Survey Colorado Water Science Center and the Colorado Division of Water Resources. (2) ds507_regthick_contours: This dataset consists of contours showing generalized lines of equal regolith thickness overlying bedrock in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Regolith thickness was contoured manually on the basis of information provided in the dataset ds507_regolith_data. (3) ds507_regthick_grid: This dataset consists of raster-based generalized thickness of regolith overlying bedrock in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Regolith thickness in this dataset was derived from contours presented in the dataset ds507_regthick_contours. (4) ds507_welltest_data: This point dataset contains estimates of aquifer transmissivity and hydraulic conductivity at selected well locations in the Lost Creek Designated Ground Water Basin, Weld, Adams, and

  19. Simulation of aquifer tests and ground-water flowpaths at the local scale in fractured shales and sandstones of the Brunswick Group and Lockatong Formation, Lansdale, Montgomery County, Pennsylvania

    Science.gov (United States)

    Goode, Daniel J.; Senior, Lisa A.

    2000-01-01

    The U.S. Geological Survey, as part of technical assistance to the U.S. Environmental Protection Agency, has constructed and calibrated models of local-scale ground-water flow in and near Lansdale, Pa., where numerous sources of industrial contamination have been consolidated into the North Penn Area 6 Superfund Site. The local-scale models incorporate hydrogeologic structure of northwest-dipping beds with uniform hydraulic properties identified in previous studies. Computations associated with mapping the dipping-bed structure into the three-dimensional model grid are handled by a preprocessor using a programmed geographic information system (GIS). Hydraulic properties are identified by calibration of the models using measured water levels during pumping and recovery from aquifer tests at three sites. Reduced flow across low-permeability beds is explicitly simulated. The dipping high-permeability beds are extensive in the strike direction but are of limited extent in the dip direction. This model structure yields ground-water-flow patterns characteristic of anisotropic aquifers; preferred flow is in the strike direction. The transmissivities of high-permeability beds in the local-scale models range from 142 to 1,900 ft2/d (feet squared per day) (13 to 177 m2/d). The hydraulic conductivities of low-permeability parts of the aquifer range from 9.6 x 10-4 to 0.26 ft/d (feet per day) (2.9 x 10-4 to 0.079 m/d). Storage coefficients and specific storage are very low, indicating the confined nature of the aquifer system. The calibrated models are used to simulate contributing areas of wells under alternative, hypothetical ground-water-management practices. Predictive contributing areas indicate the general characteristics of ground-water flow towards wells in the Lansdale area. Recharge to wells in Lansdale generally comes from infiltration near the well and over an area that extends upgradient from the well. The contributing areas for two wells pumping at 10 gal

  20. Kelp Wrack: Hopping with Life in Orange County

    OpenAIRE

    Dugan, Jenifer E.

    2011-01-01

    The same waves that pound the shore off California also tear large amounts of seaweed from the region’s giant kelp forests and rocky reefs. Much of this drift seaweed, known as wrack, is eventually washed ashore. On many of Southern California’s beaches, tractors will remove this wrack (along with trash and litter) and rake the sand, in a process known as beach grooming.

  1. 2006 Texas Water Development Board (TWDB) Lidar: Orange County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Using a LH Systems ALS50 Light Detection And Ranging (LiDAR) system, 43 flight lines of standard density (1.4 meter ground sample distance) data were collected over...

  2. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, ORANGE COUNTY, CALIFORNIA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  3. Water levels of the Ozark aquifer in northern Arkansas, 2013

    Science.gov (United States)

    Schrader, Tony P.

    2015-07-13

    The Ozark aquifer is the largest aquifer, both in area of outcrop and thickness, and the most important source of freshwater in the Ozark Plateaus physiographic province, supplying water to northern Arkansas, southeastern Kansas, southern Missouri, and northeastern Oklahoma. The study area includes 16 Arkansas counties lying completely or partially within the Ozark Plateaus of the Interior Highlands major physiographic division. The U.S. Geological Survey, in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey, conducted a study of water levels in the Ozark aquifer within Arkansas. This report presents a potentiometric-surface map of the Ozark aquifer within the Ozark Plateaus of northern Arkansas, representing water-level conditions for the early spring of 2013 and selected water-level hydrographs.

  4. Assessing the Effects of Climate Variability on Orange Yield in Florida to Reduce Production Forecast Errors

    Science.gov (United States)

    Concha Larrauri, P.

    2015-12-01

    Orange production in Florida has experienced a decline over the past decade. Hurricanes in 2004 and 2005 greatly affected production, almost to the same degree as strong freezes that occurred in the 1980's. The spread of the citrus greening disease after the hurricanes has also contributed to a reduction in orange production in Florida. The occurrence of hurricanes and diseases cannot easily be predicted but the additional effects of climate on orange yield can be studied and incorporated into existing production forecasts that are based on physical surveys, such as the October Citrus forecast issued every year by the USDA. Specific climate variables ocurring before and after the October forecast is issued can have impacts on flowering, orange drop rates, growth, and maturation, and can contribute to the forecast error. Here we present a methodology to incorporate local climate variables to predict the USDA's orange production forecast error, and we study the local effects of climate on yield in different counties in Florida. This information can aid farmers to gain an insight on what is to be expected during the orange production cycle, and can help supply chain managers to better plan their strategy.

  5. Orange fiber laser for ophthalmology

    Science.gov (United States)

    Adachi, M.; Kojima, K.; Hayashi, K.

    2007-02-01

    For the light source of photocoagulators for ophthalmology, orange laser is more suitable than green laser because of low scattering loss by the crystalline lens, and low absorption by xanthophylls in the retina. We developed two orange fiber lasers (580 nm and 590 nm) to investigate the effect depending on the difference in the range of orange. The 580nm laser is composed of a 1160 nm fiber laser and a Periodically Polled Lithium Niobate (PPLN) crystal for second harmonic generation. The 1160 nm fiber laser beam is focused into the MgO-doped PPLN crystal whose length is 30 mm with 3-pass configuration. Continuous-wave 1.3 W output power of 580 nm was obtained with 5.8 W input power of 1160nm for the first time. The conversion efficiency was 22%. The band width of the second harmonic was 0.006 nm (FWHM). The 590 nm laser is almost the same as 580 nm laser source. In this case we used a Raman shift fiber to generate 1180 nm, and the output power of 590 nm was 1.4 W. We developed an evaluation model of photocoagulator system using these two laser sources. A 700 mW coagulation output power was obtained with this orange fiber laser photocoagulator system. This is enough power for the eye surgery. We have the prospect of the maintenance-free, long-life system that is completely air-cooled. We are planning to evaluate this photocoagulator system in order to investigate the difference between the two wavelengths at the field test.

  6. Water-level altitudes 2017 and water-level changes in the Chicot, Evangeline, and Jasper Aquifers and compaction 1973–2016 in the Chicot and Evangeline Aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Ramage, Jason K.

    2017-08-16

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. This report contains regional-scale maps depicting approximate 2017 water-level altitudes (represented by measurements made during December 2016 through March 2017) and long-term water-level changes for the Chicot, Evangeline, and Jasper aquifers; a map depicting locations of borehole-extensometer (hereinafter referred to as “extensometer”) sites; and graphs depicting measured long-term cumulative compaction of subsurface sediments at the extensometers during 1973–2016.In 2017, water-level-altitude contours for the Chicot aquifer ranged from 200 feet (ft) below the North American Vertical Datum of 1988 (hereinafter referred to as “datum”) in two localized areas in southwestern and northwestern Harris County to 200 ft above datum in west-central Montgomery County. The largest water-level-altitude decline (120 ft) depicted by the 1977–2017 water-level-change contours for the Chicot aquifer was in northwestern Harris County. A broad area where water-level altitudes declined in the Chicot aquifer extends from northwestern, north-central, and southwestern Harris County

  7. EPA Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Information on sole source aquifers (SSAs) is widely used in assessments under the National Environmental Policy Act and at the state and local level. A national...

  8. Tracers Detect Aquifer Contamination

    National Research Council Canada - National Science Library

    Enfield, Carl

    1995-01-01

    The EPA's National Laboratory (NRMRL) at Ada, OK, along with the University of Florida and the University of Texas, have developed a tracer procedure to detect the amount of contamination in aquifer formations...

  9. 21 CFR 146.151 - Orange juice for manufacturing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Orange juice for manufacturing. 146.151 Section... Fruit Juices and Beverages § 146.151 Orange juice for manufacturing. (a) Orange juice for manufacturing... from oranges as provided in § 146.135, except that the oranges may deviate from the standards for...

  10. The dependence of orange-red IRSL decay curves of potassium feldspars on sample temperature

    International Nuclear Information System (INIS)

    Fattahi, Morteza

    2004-01-01

    This paper presents the effects of stimulation temperature on the infrared stimulated orange-red (600-650 nm) luminescence emission (orange-red infrared simulated luminescence (IRSL)) in potassium feldspar. Investigations explore the relationship between initial (0-2 s), integral (0-100 s), net initial (0-2 s less background over 2 s), net integral (0-100 s less background over 100 s) and last 2 s of the orange-red IRSL signals obtained for 100 s versus stimulation temperature (20-460 degree sign C) on both unpreheated and preheated samples. In the potassium feldspar sample examined, competition effects, including thermal enhancement, depletion and possibly quenching affect the orange-red IRSL signals measured. Observed effects (e.g., thermal enhancement, thermal activation energy and the decay rate) over the temperature range 20-120 degree sign C may be explained by tunnelling luminescence processes, IR transitions to the conduction band following excitations from ground state of electron trap by acquiring thermal energy from the lattice and or the random-walk band-tail model. Preheating prior to orange-red IRSL and Thermoluminescence (TL) measurements provides evidence that there are both shallow and deep traps responsible for low- and high-temperature orange-red IRSL and TL peaks. The effects of both preheating and IR bleaching on the orange-red thermally stimulated luminescence (red emission during thermoluminescence, RTL) provide evidence that bleached RTL traps have no significant contribution in the production of orange-red IRSL signals

  11. Hydrogeologic and geochemical characterization and evaluation of two arroyos for managed aquifer recharge by surface infiltration in the Pojoaque River Basin, Santa Fe County, New Mexico, 2014–15

    Science.gov (United States)

    Robertson, Andrew J.; Cordova, Jeffrey; Teeple, Andrew; Payne, Jason; Carruth, Rob

    2017-02-22

    In order to provide long-term storage of diverted surface water from the Rio Grande as part of the Aamodt water rights settlement, managed aquifer recharge by surface infiltration in Pojoaque River Basin arroyos was proposed as an option. The initial hydrogeologic and geochemical characterization of two arroyos located within the Pojoaque River Basin was performed in 2014 and 2015 in cooperation with the Bureau of Reclamation to evaluate the potential suitability of these two arroyos as sites for managed aquifer recharge through surface infiltration.The selected reaches were high-gradient (average 3.0–3.5 percent) braided channels filled with unconsolidated sand and gravel-sized deposits that were generally 30–50 feet thick. Saturation was not observed in the unconsolidated channel sands in four subsurface borings but was found at 7–60 feet below the contact between the unconsolidated channel sands and the bedrock. The poorly to well-cemented alluvial deposits that make up the bedrock underlying the unconsolidated channel material is the Tesuque Formation. The individual beds of the Tesuque Formation are reported to be highly heterogeneous and anisotropic, and the bedrock at the site was observed to have variable moisture and large changes in lithology. Surface electrical-resistivity geophysical survey methods showed a sharp contrast between the electrically resistive unconsolidated channel sands and the highly conductive bedrock; however, because of the high conductivity, the resistivity methods were not able to image the water table or preferential flow paths (if they existed) in the bedrock.Infiltration rates measured by double-ring and bulk infiltration tests on a variety of channel morphologies in the study reaches were extremely large (9.7–94.5 feet per day), indicating that the channels could potentially accommodate as much as 6.6 cubic feet per second of applied water without generating surface runoff out of the reach; however, the small volume

  12. Interactive Network Exploration with Orange

    Directory of Open Access Journals (Sweden)

    Miha Štajdohar

    2013-04-01

    Full Text Available Network analysis is one of the most widely used techniques in many areas of modern science. Most existing tools for that purpose are limited to drawing networks and computing their basic general characteristics. The user is not able to interactively and graphically manipulate the networks, select and explore subgraphs using other statistical and data mining techniques, add and plot various other data within the graph, and so on. In this paper we present a tool that addresses these challenges, an add-on for exploration of networks within the general component-based environment Orange.

  13. Ground-water conditions in the Grand County area, Utah, with emphasis on the Mill Creek-Spanish Valley area

    Science.gov (United States)

    Blanchard, Paul J.

    1990-01-01

    The Grand County area includes all of Grand County, the Mill Creek and Pack Creek drainages in San Juan County, and the area between the Colorado and Green Rivers in San Juan County. The Grand County area includes about 3,980 square miles, and the Mill Creek-Spanish Valley area includes about 44 square miles. The three principal consolidated-rock aquifers in the Grand County area are the Entrada, Navajo, and Wingate aquifers in the Entrada Sandstone, the Navajo Sandstone, and the Wingate Sandstone, and the principal consolidated-rock aquifer in the Mill Creek-Spanish Valley area is the Glen Canyon aquifer in the Glen Canyon Group, comprised of the Navajo Sandstone, the Kayenta Formation, and the Wingate Sandstone.Recharge to the Entrada, Navajo, and Glen Canyon aquifers typically occurs where the formations containing the aquifers crop out or are overlain by unconsolidated sand deposits. Recharge is enhanced where the sand deposits are saturated at a depth of more than about 6 feet below the land surface, and the effects of evaporation begin to decrease rapidly with depth. Recharge to the Wingate aquifer typically occurs by downward movement of water from the Navajo aquifer through the Kayenta Formation, and primarily occurs where the Navajo Sandstone, Kayenta Formation, and the Wingate Sandstone are fractured.

  14. Photostability of Natural Orange-Red and Yellow Fungal Pigments in Liquid Food Model Systems

    DEFF Research Database (Denmark)

    Mapari, Sameer Shamsuddin; Meyer, Anne S.; Thrane, Ulf

    2009-01-01

    The variation in the photostability among the currently authorized natural pigments limits their application span to a certain type of food system, and more robust alternatives are being sought after to overcome this problem. In the present study, the photostability of an orange-red and a yellow...... an enhanced photostability of fungal pigment extracts compared to the commercially available natural colorants Monascus Red and turmeric used as controls. Yellow components of the orange-red fungal pigment extract were more photostable than the red components. Chemistry of the photodegradation of the orange...

  15. Using enteric pathogens to assess sources of fecal contamination in the Silurian Dolomite Aquifer: Preliminary results

    Science.gov (United States)

    Muldoon, Maureen A; Borchardt, Mark A.; Spencer, Susan K.; Hunt, Randall J.; Owens, David

    2018-01-01

    The fractured Silurian dolomite aquifer is an important, but vulnerable, source of drinking water in northeast Wisconsin (Sherrill in Geology and ground water in Door County, Wisconsin, with emphasis on contamination potential in the Silurian dolomite, 1978; Bradbury and Muldoon in Hydrogeology and groundwater monitoring of fractured dolomite in the Upper Door Priority Watershed, Door County, Wisconsin, 1992; Muldoon and Bradbury in Assessing seasonal variations in recharge and water quality in the Silurian aquifer in areas with thicker soil cover. p 45, 2010). Areas underlain by the Silurian dolomite aquifer are extremely vulnerable to groundwater contamination from various land-use activities, especially the disposal of human wastewater and dairy manure. Currently there is no consensus as to which source of wastewater generates the greater impact to the aquifer.

  16. Neutron activation analysis of thin orange pottery

    International Nuclear Information System (INIS)

    Harbottle, G.; Sayre, E.V.; Abascal, R.

    1976-01-01

    The evidence thus far obtained supports the idea of ''Thin Orange'' ware, typical of classic Teotihuacan culture, easily identifiable petrographically or chemically, not necessarily made at Teotihuacan itself but widely traded, and ''thin, orange'' pottery, fabricated in many other places, and perhaps at other times as well

  17. Vocal behaviour of Orange River Francolin Scleroptila ...

    African Journals Online (AJOL)

    Fieldwork to study the vocal behaviour of Orange River Francolin Scleroptilia levaillantoides was conducted on a farm in the Heidelberg district, Gauteng province, South Africa, during August 2009 to March 2011. Orange River Francolins possess a basic repertoire of seven calls and one mechanical sound. From 83 ...

  18. 7 CFR 29.1043 - Orange (F).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Orange (F). 29.1043 Section 29.1043 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1043 Orange (F). A reddish yellow. [42 FR 21092, Apr. 25, 1977. Redesignated at 47 FR...

  19. Neutron activation analysis of thin orange pottery

    Energy Technology Data Exchange (ETDEWEB)

    Harbottle, G; Sayre, E V; Abascal, R

    1976-01-01

    The evidence thus far obtained supports the idea of ''Thin Orange'' ware, typical of classic Teotihuacan culture, easily identifiable petrographically or chemically, not necessarily made at Teotihuacan itself but widely traded, and ''thin, orange'' pottery, fabricated in many other places, and perhaps at other times as well.

  20. Ground-water appraisal in northwestern Big Stone County, west-central Minnesota

    Science.gov (United States)

    Soukup, W.G.

    1980-01-01

    The development of ground water for irrigation in northwestern Big Stone County has not kept up with development in other irrigable areas of the State. This is due, in part, to the absence of extensive surficial aquifers and the difficulty in locating buried aquifers.

  1. Geospatial compilation of historical water-level changes in the Chicot and Evangeline aquifers 1977-2013 and Jasper aquifer 2000-13, Gulf Coast aquifer system, Houston-Galveston region, Texas

    Science.gov (United States)

    Johnson, Michaela R.; Linard, Joshua I.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District has produced an annual series of reports that depict water-level changes in the Chicot, Evangeline, and Jasper aquifers of the Gulf Coast aquifer system in the Houston-Galveston region, Texas, from 1977 to 2013. Changes are determined from water-level measurements between December and March of each year from groundwater wells screened in one of the three aquifers. Existing published maps and unpublished geographic information system (GIS) datasets were compiled into a comprehensive geodatabase of all water-level-change maps produced as part of this multiagency effort. Annual water-level-change maps were georeferenced and digitized where existing GIS data were unavailable (1979–99). Existing GIS data available for 2000–13 were included in the geodatabase. The compilation contains 121 datasets showing water-level changes for each primary aquifer of the Gulf Coast aquifer system: 56 for the Chicot aquifer (1977; 1979–2013 and 1990; 1993–2013), 56 for the Evangeline aquifer (1977; 1979–2013 and 1990; 1993–2013), and 9 for the Jasper aquifer (2000; 2005–13).

  2. Hydrogeology and water-quality characteristics of the Lower Floridan aquifer in east-central Florida

    Science.gov (United States)

    O'Reilly, Andrew M.; Spechler, Rick M.; McGurk, Brian E.

    2002-01-01

    surface of the Lower Floridan aquifer ranged from about 16 to 113 feet above sea level, and altitudes in May 1999 were about 2 to 7 feet lower than those measured in September 1998. The potentiometric surface of the Floridan aquifer system is constantly fluctuating, mainly in response to seasonal variations in rainfall and ground-water withdrawals. Seasonal fluctuations in the Lower Floridan aquifer typically range from about 2 to 10 feet. Water samples from 50 Lower Floridan aquifer wells were collected during this study. Most samples were analyzed in the field for temperature, pH, and specific conductance, and in the laboratory for major cations and anions. Specific conductance ranged from 147 to 6,710 microsiemens per centimeter. Chloride concentrations ranged from 3.0 to 2,188 milligrams per liter; sulfate concentrations ranged from 0.2 to 750 milli-grams per liter; and hardness ranged from 69 to 940 milligrams per liter. Water was least mineralized in the recharge areas of the Lower Floridan aquifer in the western part of the study area. The most mineralized water in the Lower Floridan aquifer occurred along parts of the Wekiva and St. Johns Rivers and in much of the eastern and southern parts of the study area. The altitude of the base of freshwater in the Floridan aquifer system (where chloride concentrations are equal to 250 milligrams per liter) is variable throughout the study area. The estimated position of the 250 milligram per liter isochlor surface is less than 200 feet below sea level in much of the eastern part of the study area, including the areas along the St. Johns River in Lake, Seminole, and Volusia Counties and near the Wekiva River in western Seminole County. The altitude of the 250 milligram per liter isochlor exceeds 3,000 feet below sea level in the extreme southwestern part of the study area.

  3. Water-level trends and potentiometric surfaces in the Nacatoch Aquifer in northeastern and southwestern Arkansas and in the Tokio Aquifer in southwestern Arkansas, 2014–15

    Science.gov (United States)

    Rodgers, Kirk D.

    2017-09-20

    The Nacatoch Sand in northeastern and southwestern Arkansas and the Tokio Formation in southwestern Arkansas are sources of groundwater for agricultural, domestic, industrial, and public use. Water-level altitudes measured in 51 wells completed in the Nacatoch Sand and 42 wells completed in the Tokio Formation during 2014 and 2015 were used to create potentiometric-surface maps of the two areas. Aquifers in the Nacatoch Sand and Tokio Formation are hereafter referred to as the Nacatoch aquifer and the Tokio aquifer, respectively.Potentiometric surfaces show that groundwater in the Nacatoch aquifer flows southeast toward the Mississippi River in northeastern Arkansas. Groundwater flow direction is towards the south and southeast in Hempstead, Little River, and Nevada Counties in southwestern Arkansas. An apparent cone of depression exists in southern Clark County and likely alters groundwater flow from a regional direction toward the depression.In southwestern Arkansas, potentiometric surfaces indicate that groundwater flow in the Tokio aquifer is towards the city of Hope. Northwest of Hope, an apparent cone of depression exists. In southwestern Pike, northwestern Nevada, and northeastern Hempstead Counties, an area of artesian flow (water levels are at or above land surface) exists.Water-level changes in wells were identified using two methods: (1) linear regression analysis of hydrographs from select wells with a minimum of 20 years of water-level data, and (2) a direct comparison between water-level measurements from 2008 and 2014–15 at each well. Of the six hydrographs analyzed in the Nacatoch aquifer, four indicated a decline in water levels. Compared to 2008 measurements, the largest rise in water levels was 35.14 feet (ft) in a well in Clark County, whereas the largest decline was 14.76 ft in a well in Nevada County, both located in southwestern Arkansas.Of the four hydrographs analyzed in the Tokio aquifer, one indicated a decline in water levels, while

  4. Aquifer test to determine hydraulic properties of the Elm aquifer near Aberdeen, South Dakota

    Science.gov (United States)

    Schaap, Bryan D.

    2000-01-01

    The Elm aquifer, which consists of sandy and gravelly glacial-outwash deposits, is present in several counties in northeastern South Dakota. An aquifer test was conducted northeast of Aberdeen during the fall of 1999 to determine the hydraulic properties of the Elm aquifer in that area. An improved understanding of the properties of the aquifer will be useful in the possible development of the aquifer as a water resource. Historical water-level data indicate that the saturated thickness of the Elm aquifer can change considerably over time. From September 1977 through November 1985, water levels at three wells completed in the Elm aquifer near the aquifer test site varied by 5.1 ft, 9.50 ft, and 11.1 ft. From June 1982 through October 1999, water levels at five wells completed in the Elm aquifer near the aquifer test site varied by 8.7 ft, 11.4 ft, 13.2 ft, 13.8 ft, and 19.7 ft. The water levels during the fall of 1999 were among the highest on record, so the aquifer test was affected by portions of the aquifer being saturated that might not be saturated during drier times. The aquifer test was conducted using five existing wells that had been installed prior to this study. Well A, the pumped well, has an operating irrigation pump and is centrally located among the wells. Wells B, C, D, and E are about 70 ft, 1,390 ft, 2,200 ft, and 3,100 ft, respectively, in different directions from Well A. Using vented pressure transducers and programmable data loggers, water-level data were collected at the five wells prior to, during, and after the pumping, which started on November 19, 1999, and continued a little over 72 hours. Based on available drilling logs, the Elm aquifer near the test area was assumed to be unconfined. The Neuman (1974) method theoretical response curves that most closely match the observed water-level changes at Wells A and B were calculated using software (AQTESOLV for Windows Version 2.13-Professional) developed by Glenn M. Duffield of Hydro

  5. Reconnaissance of the hydrology, water quality, and sources of bacterial and nutrient contamination in the Ozark Plateaus aquifer system and Cave Springs Branch of Honey Creek, Delaware County, Oklahoma, March 1999-March 2000

    Science.gov (United States)

    Schlottmann, Jamie L.; Tanner, Ralph S.; Samadpour, Mansour

    2000-01-01

    A reconnaissance investigation of hydrology and water quality was conducted to evaluate possible sources of bacteria and nutrient contamination in the Cave Springs Branch basin and the underlying karstic Ozark Plateau aquifer system. Objectives were to: (1) determine the directions of ground-water flow in the basin and determine whether Cave Springs Branch interacts with ground water, (2) compare water quality in Cave Springs Branch with water quality in nearby wells to determine whether the stream is contaminating nearby wells, and (3) determine sources of fecal coliform bacteria and nitrate contamination in Cave Springs Branch and ground water. Potential sources of bacteria and nitrate in the area include cultivated agriculture, cow and horse on pasture, poultry production, households, and wildlife. Presence of fecal coliform and fecal streptococcal bacteria directly indicate fecal contamination and the potential for the presence of other pathogenic organisms in a water supply. Nitrate in drinking water poses health risks and may indicate the presence of additional contaminants. Fecal coliform bacteria colony counts were least in wells, intermediate in the poultry-processing plant wastewater outfall and Honey Creek above the confluence with Cave Springs Branch, and greatest in Cave Springs Branch. Bacteria strains and resistance to antibiotics by some bacteria indicate that livestock may have been sources of some bacteria in the water samples. Multiple antibiotic resistances were not present in the isolates from the water samples, indicating that the bacteria may not be from human or poultry sources. Ribotyping indicates that Escherichia coli bacteria in water samples from the basin were from bird, cow, horse, dog, deer, and human sources. The presence of multiple ribotypes from each type of animal source except bird indicates that most of the bacteria are from multiple populations of source animals. Identifiable sources of bacteria in Cave Springs Branch at the

  6. Female guppies use orange as choice cue: a manipulative test ...

    African Journals Online (AJOL)

    Female guppies from a feral South African population respond sexually to more orange males in correlative trials. We impaired the female's ability to use orange elements of male colour patterns by conducting choice trials under orange light. Under orange light, there was no relationship between male colour pattern and ...

  7. 21 CFR 146.145 - Orange juice from concentrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Orange juice from concentrate. 146.145 Section 146... Juices and Beverages § 146.145 Orange juice from concentrate. (a) Orange juice from concentrate is the food prepared by mixing water with frozen concentrated orange juice as defined in § 146.146 or with...

  8. 21 CFR 146.146 - Frozen concentrated orange juice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Frozen concentrated orange juice. 146.146 Section... Fruit Juices and Beverages § 146.146 Frozen concentrated orange juice. (a) Frozen concentrated orange juice is the food prepared by removing water from the juice of mature oranges as provided in § 146.135...

  9. 21 CFR 146.140 - Pasteurized orange juice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized orange juice. 146.140 Section 146.140... and Beverages § 146.140 Pasteurized orange juice. (a) Pasteurized orange juice is the food prepared from unfermented juice obtained from mature oranges as specified in § 146.135, to which may be added...

  10. 21 CFR 146.150 - Canned concentrated orange juice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Canned concentrated orange juice. 146.150 Section... Fruit Juices and Beverages § 146.150 Canned concentrated orange juice. (a) Canned concentrated orange... labeling of ingredients prescribed for frozen concentrated orange juice by § 146.146, except that it is not...

  11. 21 CFR 146.152 - Orange juice with preservative.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Orange juice with preservative. 146.152 Section... Fruit Juices and Beverages § 146.152 Orange juice with preservative. (a) Orange juice with preservative... of orange juice for manufacturing as provided for in § 146.151, except that a preservative is added...

  12. Characterization of California Central Coast Aquifers using Pneumatic Slug Tests

    Science.gov (United States)

    Aurelius, S.; Platt, D.; Whetsler, B.; Malama, B.

    2017-12-01

    The recent prolonged drought in California, where about 75% of the population depends to some extent ongroundwater, has led to increased stresses on the state's groundwater resources due to reduced recharge andincreased abstraction to supplement dwindling surface water supplies for irrigation and other urban uses.These factors have conspired to cause historic lows in groundwater levels, lost aquifer storage capacity dueincreased potential for land subsidence, and degraded water quality in coastal aquifers faced with increasedrates of seawater intrusion. Groundwater accounts for about a third of the total water uses in California,with some coastal communities being 100% dependent on groundwater. Irrigation accounts for over 60%of all state groundwater withdrawals in California. In light of this, the state of California recently passedthe Sustainable Groundwater Management Act (SGMA) aimed at bringing the State's groundwater basinsinto sustainable regimes of abstraction, recharge and storage. Groundwater ow models are critical to thesuccessful implementation of the SGMA legislation. However, the usefulness of the models is severely limitedby a lack of detailed knowledge of aquifer properties at spatial scales that allow for accurate projections tobe made about groundwater basin sustainability by resource managers. We report here the results of highresolution pneumatic slug tests performed in two shallow aquifers in San Luis Obispo County on the CaliforniaCentral Coast to obtain detailed information about aquifer properties, including permeability and storage,and their spatial variability.

  13. Hydrogeology and Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer, Southern Florida

    Science.gov (United States)

    Reese, Ronald S.; Alvarez-Zarikian, Carlos A.

    2007-01-01

    Well construction, hydraulic well test, ambient water-quality, and cycle test data were inventoried and compiled for 30 aquifer storage and recovery facilities constructed in the Floridan aquifer system in southern Florida. Most of the facilities are operated by local municipalities or counties in coastal areas, but five sites are currently being evaluated as part of the Comprehensive Everglades Restoration Plan. The relative performance of all sites with adequate cycle test data was determined, and compared with four hydrogeologic and design factors that may affect recovery efficiency. Testing or operational cycles include recharge, storage, and recovery periods that each last days or months. Cycle test data calculations were made including the potable water (chloride concentration of less than 250 milligrams per liter) recovery efficiency per cycle, total recovery efficiency per cycle, and cumulative potable water recovery efficiencies for all of the cycles at each site. The potable water recovery efficiency is the percentage of the total amount of potable water recharged for each cycle that is recovered; potable water recovery efficiency calculations (per cycle and cumulative) were the primary measures used to evaluate site performance in this study. Total recovery efficiency, which is the percent recovery at the end of each cycle, however, can be substantially higher and is the performance measure normally used in the operation of water-treatment plants. The Upper Floridan aquifer of the Floridan aquifer system currently is being used, or planned for use, at 29 of the aquifer storage and recovery sites. The Upper Floridan aquifer is continuous throughout southern Florida, and its overlying confinement is generally good; however, the aquifer contains brackish to saline ground water that can greatly affect freshwater storage and recovery due to dispersive mixing within the aquifer. The hydrogeology of the Upper Floridan varies in southern Florida; confinement

  14. Veterans and agent orange: update 2000

    National Research Council Canada - National Science Library

    Committee to Review the Health Effects in Vietnam Veterans of Exposure to Herbicides (Third Biennial Update), Division of Health Promotion and Disease Prevention

    2001-01-01

    Veterans and Agent Orange: Update 2000 examines the state of the scientific evidence regarding associations between diseases and exposure to dioxin and other chemical compounds in herbicides used in Vietnam...

  15. Redox chemistry of orange I and orange II: a pulse radiolysis study

    International Nuclear Information System (INIS)

    Yadav, P.; Sharma, K.K.; Rao, B.S.M.; O'Neill, P.; Oakes, J.; Batchelor, S.N.

    2004-01-01

    The relative reactivities of different tautomeric forms of model azo dyes (Orange I and Orange II) with oxidising and reducing radicals are investigated using pulse radiolysis technique. The rate of the reaction of N 3 with Orange I is diffusion controlled and the order of the reactivity among the tautomers is common ion > hydrazone > azo, whereas a reverse trend was seen in the reaction of e aq . The reducing alcohol radicals react with Orange II with k values in the range (1-3) x 10 9 dm 3 mol -1 s -1 . The relevant reaction mechanism is discussed. (author)

  16. STRATEGI COPING ORANG TUA MENGHADAPI ANAK AUTIS

    OpenAIRE

    Desi Sulistyo Wardani

    2016-01-01

    Autis merupakan grey area dibidang kedokteran, yang artinya masih merupakan suatu hal yang penyebab, mekanisme, dan terapinya belum jelas benar. Permasalahan yang dihadapi oleh orang tua yang mempunyai anak autis ini memerlukan pemecahan sebagai upaya untuk beradaptasi terhadap masalah dari tekanan yang menimpa mereka. Konsep untuk memecahkan masalah ini disebut coping. Penelitian ini bertujuan untuk mengetahui orientasi strategi coping yang digunakan oleh orang tua untuk menghadapi anak pend...

  17. Genetically engineered orange petunias on the market

    OpenAIRE

    Bashandy, Hany; Teeri, Teemu Heikki

    2017-01-01

    Main conclusion Unauthorized genetically engineered orange petunias were found on the market. Genetic engineering of petunia was shown to lead to novel flower color some 20?years ago. Here we show that petunia lines with orange flowers, generated for scientific purposes, apparently found their way to petunia breeding programmes, intentionally or unintentionally. Today they are widely available, but have not been registered for commerce. Electronic supplementary material The online version of ...

  18. ORANGE JUICE AND BLOOD PRESSURE

    Directory of Open Access Journals (Sweden)

    M. F. VALIM

    2009-01-01

    Full Text Available

    Blood pressure is the force of blood against artery walls. It is measured in millimeters of mercury (mm Hg and recorded as two numbers: systolic pressure (as the heart contracts over diastolic pressure (as the heart relaxes between beats. High blood pressure (hypertension is defined as chronically elevated high blood pressure, with systolic blood pressure (SBP of 140 mm Hg or greater, and diastolic blood pressure (DBP of 90 mm Hg or greater. High blood pressure (HBP, smoking, abnormal blood lipid levels, obesity and diabetes are risk factors for coronary heart disease, the leading cause of death in the US. Lifestyle modifications such as engaging in regular physical activity, quitting smoking and eating a healthy diet (limiting intake of saturated fat and sodium and increasing consumption of fiber, fruits and vegetables are advocated for the prevention, treatment, and control of HBP. As multiple factors influence blood pressure, the effects of each factor are typically modest, particularly in normotensive subjects, yet the combined effects can be substantial. Nutrition plays an important role in influencing blood pressure. Orange juice should be included as part of any low sodium diet and/or any blood pressure reducing eating plan, as it is sodium free, fat-free and can help meet recommended levels of potassium intake that may contribute to lower BP.

  19. 21 CFR 146.141 - Canned orange juice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Canned orange juice. 146.141 Section 146.141 Food... Beverages § 146.141 Canned orange juice. (a) Canned orange juice is the food prepared from orange juice as specified in § 146.135 or frozen orange juice as specified in § 146.137, or a combination of both, to which...

  20. 21 CFR 146.137 - Frozen orange juice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Frozen orange juice. 146.137 Section 146.137 Food... Beverages § 146.137 Frozen orange juice. (a) Frozen orange juice is orange juice as defined in § 146.135, except that it is frozen. (b) The name of the food is “Frozen orange juice”. Such name may be preceded on...

  1. Geospatial compilation of historical water-level altitudes in the Chicot and Evangeline aquifers 1977-2013 and Jasper aquifer 2000-13 in the Gulf Coast aquifer system, Houston-Galveston Region, Texas

    Science.gov (United States)

    Johnson, Michaela R.; Ellis, Robert H.H.

    2013-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District has produced a series of annual reports depicting groundwater-level altitudes in the Chicot, Evangeline, and Jasper aquifers of the Gulf Coast aquifer system in the Houston-Galveston region, Texas. To produce these annual reports, contours of equal water-level altitudes are created from water levels measured between December and March of each year from groundwater wells screened completely within one of these three aquifers. Information obtained from maps published in the annual series of USGS reports and geospatial datasets of water-level altitude contours used to create the annual series of USGS reports were compiled into a comprehensive geodatabase. The geospatial compilation contains 88 datasets from previously published contour maps showing water-level altitudes for each primary aquifer of the Gulf Coast aquifer system, 37 for the Chicot (1977–2013), 37 for the Evangeline aquifer (1977–2013), and 14 for the Jasper aquifer (2000–13).

  2. Drought-sensitive aquifer settings in southeastern Pennsylvania

    Science.gov (United States)

    Zimmerman, Tammy M.; Risser, Dennis W.

    2005-01-01

    from Chester and Montgomery Counties because those counties have well-construction regulations that identify wells that failed during drought. The locations of drought-affected wells in Chester and Montgomery Counties indicated the most highly sensitive settings are uplands and slopes in aquifers with high WTD index and uplands in aquifers with moderate WTD index. The least sensitive settings are in aquifers with low WTD index, in valleys, or on slopes. A map was developed showing the relative drought sensitivity (low, moderate, and high) of aquifers in southeastern Pennsylvania. Study results were limited by the inability to obtain much information about the location of drought-affected wells, with the exception of Montgomery and Chester Counties. Also, the construction characteristics (particularly depth) of drought-affected wells generally were not available. Well depth could be used to distinguish between problems caused by shallow well depth (generally less than 100 ft) and those caused by deficiency of the aquifer to supply water. With the exception of owner-derived information from a public survey on drought-affected wells (35 wells), depth data were not obtained. Data from the 35 drought-affected wells indicated most were drilled (not dug) and were completed to depths greater than 100 feet. This finding indicates that the affects of recent droughts in southeastern Pennsylvania were not restricted to shallow dug wells, but also affected deeper drilled wells.

  3. Arsenic levels in groundwater aquifer

    African Journals Online (AJOL)

    Miodrag Jelic

    resistance (ρ); dielectric constant (ε); magnetic permeability (η); electrochemical activity ..... comprises grey sands of different particle size distribution ..... groundwater: testing pollution mechanisms for sedimentary aquifers in. Bangladesh.

  4. Hydrology of the alluvial, buried channel, basal Pleistocene and Dakota aquifers in west-central Iowa

    Science.gov (United States)

    Runkle, D.L.

    1985-01-01

    A ground-water resources investigation in west-central Iowa indicates that water is available from alluvial, buried channel, basal Pleistocene, and Dakota aquifers. The west-central Iowa area includes Audubon, Carrol1, Crawford, Greene, Guthrie, Harrison, Monona, and Shelby Counties.

  5. EPA Region 1 Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of...

  6. Single cell protein from mandarin orange peel

    Energy Technology Data Exchange (ETDEWEB)

    Mishio, M.; Magai, J.

    1981-01-01

    As the hydrolysis of mandarin orange peel with macerating enzyme (40 degrees C, 24 h) produced 0.59 g g-1 reducing sugar per dry peel compared to 0.36 by acid-hydrolysis (15 min at 120 degrees C with 0.8 N H2S04), the production of single cell protein (SCP) from orange peel was studied mostly using enzymatically hydrolyzed orange peel. When the enzymatically hydrolyzed peel media were used, the utilization efficiency of reducing sugars (%) and the growth yield from reducing sugars (g g-1) were: 63 and 0.51 for Saccharomyces cerevisiae; 56 and 0.48 for Candida utilis; 74 and 0.69 for Debaryomyces hansenii and 64 and 0.70 for Rhodotorula glutinis. SCP production from orange peel by D. hansenii and R. glutinis were further studied. Batch cultures for 24 h at 30 degrees C using 100g dried orange peel produced 45 g of dried cultivated peel (protein content, 33%) with D. hansenii and 34 g (protein content, 50%) with R. glutinis, and 38 g (protein content, 44%) with a mixture of both yeasts. (Refs. 12).

  7. Localized sulfate-reducing zones in a coastal plain aquifer

    Science.gov (United States)

    Brown, C.J.; Coates, J.D.; Schoonen, M.A.A.

    1999-01-01

    High concentrations of dissolved iron in ground water of coastal plain or alluvial aquifers contribute to the biofouling of public supply wells for which treatment and remediation is costly. Many of these aquifers, however, contain zones in which microbial sulfate reduction and the associated precipitation of iron-sulfide minerals decreases iron mobility. The principal water-bearing aquifer (Magothy Aquifer of Cretaceous age) in Suffolk County, New York, contains localized sulfate-reducing zones in and near lignite deposits, which generally are associated with clay lenses. Microbial analyses of core samples amended with [14C]-acetate indicate that microbial sulfate reduction is the predominant terminal-electron-accepting process (TEAP) in poorly permeable, lignite-rich sediments at shallow depths and near the ground water divide. The sulfate-reducing zones are characterized by abundant lignite and iron-sulfide minerals, low concentrations of Fe(III) oxyhydroxides, and by proximity to clay lenses that contain pore water with relatively high concentrations of sulfate and dissolved organic carbon. The low permeability of these zones and, hence, the long residence time of ground water within them, permit the preservation and (or) allow the formation of iron-sulfide minerals, including pyrite and marcasite. Both sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are present beneath and beyond the shallow sulfate-reducing zones. A unique Fe(III)-reducing organism, MD-612, was found in core sediments from a depth of 187 m near the southern shore of Long Island. The distribution of poorly permeable, lignite-rich, sulfate-reducing zones with decreased iron concentration is varied within the principal aquifer and accounts for the observed distribution of dissolved sulfate, iron, and iron sulfides in the aquifer. Locating such zones for the placement of production wells would be difficult, however, because these zones are of limited aerial extent.

  8. Endurance exercise after orange ingestion anaphylaxis

    Directory of Open Access Journals (Sweden)

    Manu Gupta

    2016-01-01

    Full Text Available Endurance exercise after orange ingestion cause anaphylaxis which is food-dependent exercise-induced anaphylaxis (FDEIA which is a form of exercise-induced anaphylaxis. In this article, an individual develops symptoms such as flushing, itching, urticaria, angioedema, and wheezing after eating a food allergen and proceeds to exercise. Neither the food alone nor exercise alone is sufficient to induce a reaction. This case report describes a 36-year-old asthmatic male athlete who experienced nausea, vomiting, flushing, urticaria, and facial swelling while exercising in a gymnasium after eating oranges. Neither oranges alone nor exercise alone induced the reaction. Total avoidance of suspected food allergens would be ideal. Persons with FDEIA should keep at hand an emergency kit with antihistamines, injectable rapid action corticoids, and adrenaline.

  9. Quality of gamma irradiated California Valencia oranges

    International Nuclear Information System (INIS)

    Nagai, N.Y.; Moy, J.H.

    1985-01-01

    The effects of gamma irradiation at 0.30-1.0 kGy (30-100 krad) on sensory qualities, certain biochemical components, and short-term storage life of Valencia oranges were examined. Irradiation at 0.75 kGy maintained food quality during 7°C storage for 7 weeks, while 0.50 kGy irradiation retained food quality at 21 °C. Irradiation at 0.26-0.30 kGy accomplished fruit fly disinfection while preserving market qualities of the oranges

  10. AQUIFER IN AJAOKUTA, SOUTHWESTERN NIGERIA

    African Journals Online (AJOL)

    2005-03-08

    Mar 8, 2005 ... To establish the feasibility of water supply in a basement complex area ofAjaokuta, Southwestern Nigeria, pumping test results were used to investigate the storage properties and groundwater potential of the aquifer. The aquifer system consists of weathered and weathered/fractured zone of decomposed ...

  11. Potentiometric Surfaces in the Springfield Plateau and Ozark Aquifers of Northwestern Arkansas, Southeastern Kansas, Southwestern Missouri, and Northeastern Oklahoma, 2006

    Science.gov (United States)

    Gillip, Jonathan A.; Czarnecki, John B.; Mugel, Douglas N.

    2008-01-01

    The Springfield Plateau and Ozark aquifers are important sources of ground water in the Ozark Plateaus aquifer system. Water from these aquifers is used for agricultural, domestic, industrial, and municipal water sources. Changing water use over time in these aquifers presents a need for updated potentiometric-surface maps of the Springfield Plateau and Ozark aquifers. The Springfield Plateau aquifer consists of water-bearing Mississippian-age limestone and chert. The Ozark aquifer consists of Late Cambrian to Middle Devonian age water-bearing rocks consisting of dolostone, limestone, and sandstone. Both aquifers are complex with areally varying lithologies, discrete hydrologic units, varying permeabilities, and secondary permeabilities related to fractures and karst features. During the spring of 2006, ground-water levels were measured in 285 wells. These data, and water levels from selected lakes, rivers, and springs, were used to create potentiometric-surface maps for the Springfield Plateau and Ozark aquifers. Linear kriging was used initially to construct the water-level contours on the maps; the contours were subsequently modified using hydrologic judgment. The potentiometric-surface maps presented in this report represent ground-water conditions during the spring of 2006. During the spring of 2006, the region received less than average rainfall. Dry conditions prior to the spring of 2006 could have contributed to the observed water levels as well. The potentiometric-surface map of the Springfield Plateau aquifer shows a maximum measured water-level altitude within the study area of about 1,450 feet at a spring in Barry County, Missouri, and a minimum measured water-level altitude of 579 feet at a well in Ottawa County, Oklahoma. Cones of depression occur in Dade, Lawrence and Newton Counties in Missouri and Delaware and Ottawa Counties in Oklahoma. These cones of depression are associated with private wells. Ground water in the Springfield Plateau aquifer

  12. Potentiometric Surface of the Upper Floridan Aquifer, West-Central Florida, May 2006

    Science.gov (United States)

    Ortiz, A.G.

    2007-01-01

    Introduction Hydrologic Conditions in West-Central Florida The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing fresh water are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in May 2006. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly-cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the dry season, when ground-water levels usually are at an annual low and withdrawals for agricultural use typically are high. The cumulative average rainfall of 50.23 inches for west-central Florida (from June 2005 through May 2006) was 2.82 inches below the historical cumulative average of 53.05 inches (Southwest Florida Water Management District, 2006). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water

  13. An overview on the Brazilian orange juice production chain

    OpenAIRE

    Renato Marcio dos Santos; Irenilza de Alencar Nääs; Mario Mollo Neto; Oduvaldo Vendrametto

    2013-01-01

    Brazil is the world's largest producer of oranges and uses more than 70% of the harvested fruits in the production of juices. The amount of processed orange is growing about 10% per year, confirming the trend of the Brazilian citrus for juice production. This research aimed to investigate the Brazilian orange juice production chain from 2005 to 2009. Data from the amount of frozen juice produced and exported, international price of orange juice, and intermediate transactions were assessed in ...

  14. Geology and hydrology for environmental planning in Washtenaw County, Michigan

    Science.gov (United States)

    Fleck, William B.

    1980-01-01

    Washteaw County is underlain by glacial deposits that range in thickness from about 50 feet to about 450 feet. Underlying the glacial deposits are sedimentary rocks of Mississippian and Devonian age. The youngest of these rocks are the sandstones of the Marshall Formation in the western part of the county;  the oldest are the limestones of the Detroit River Group in the southeast corner.Sand and gravel deposits in some places in the county may yield more than 500 gallons per minute of water. Approximately 50 percent of the wells tapping the Marshall Formation, the most reliable bedrock aquifer, can yield as much as 60 gallons per minute.Washtenaw County has sand and gravel deposits that are more than 50 feet thick. The deposits are mined in several areas and are of economic importance. In addition, there may be potential for peat production in the western part of the county and for clay production in the eastern part.

  15. Inheritance of resistance to orange rust in sugarcane

    Science.gov (United States)

    Orange rust, caused by Puccinia kuehnii, is an economically important disease in the Florida sugarcane industry. In this study, orange rust reactions of seedlings in progenies originating from 12 crosses between female and male parents with differing resistance to orange rust (three of each categor...

  16. 76 FR 52563 - Special Local Regulations; Sabine River, Orange, TX

    Science.gov (United States)

    2011-08-23

    ...-AA08 Special Local Regulations; Sabine River, Orange, TX AGENCY: Coast Guard, DHS. ACTION: Temporary... Regulations; Sabine River, Orange, TX in the Federal Register (76 FR 103). We received no comments on the... Regulations for Marine Events; Sabine River, Orange, TX. (a) Definitions. As used in this section...

  17. 75 FR 55968 - Special Local Regulations, Sabine River; Orange, TX

    Science.gov (United States)

    2010-09-15

    ...-AA08 Special Local Regulations, Sabine River; Orange, TX AGENCY: Coast Guard, DHS. ACTION: Temporary... Arthur Captain of the Port Zone on the Sabine River, Orange, Texas. This Special Local Regulation is... River, Orange, TX in the Federal Register (75 FR 41119). We received no comments on the proposed rule...

  18. 75 FR 41119 - Special Local Regulations; Sabine River, Orange, TX

    Science.gov (United States)

    2010-07-15

    ...-AA08 Special Local Regulations; Sabine River, Orange, TX AGENCY: Coast Guard, DHS. ACTION: Notice of... the Port Arthur Captain of the Port Zone on the Sabine River, Orange, Texas. This Special Local... Orange, TX, Thunder on the Sabine boat races. The powerboat race and associated testing will occur...

  19. 76 FR 30890 - Special Local Regulations; Sabine River, Orange, TX

    Science.gov (United States)

    2011-05-27

    ...-AA08 Special Local Regulations; Sabine River, Orange, TX AGENCY: Coast Guard, DHS. ACTION: Notice of... the Port Arthur Captain of the Port Zone on the Sabine River, Orange, Texas on September 24-25, 2011... race in conjunction with the Orange, TX S.P.O.R.T. boat races. The powerboat race and associated...

  20. 21 CFR 146.154 - Concentrated orange juice with preservative.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Concentrated orange juice with preservative. 146... Canned Fruit Juices and Beverages § 146.154 Concentrated orange juice with preservative. (a) Concentrated orange juice with preservative complies with the requirements for composition and labeling of optional...

  1. "Cox orange\\" and \\"Elstar\\" Apple Cultivars

    African Journals Online (AJOL)

    Thinning trials were conducted in the apple orchards of Klein Altendorf experimental station near Bonn, Germany, using 7 year old CV, \\'Cox orange\\' in the year 2001 and 8 year old \\'Elstar\\' apple trees in 2002. The objective was to reduce the number of fruits per tree, yield, improve fruit quality, overcome alternate bearing ...

  2. farmers' perceptions of orange-fleshed sweetpotato

    African Journals Online (AJOL)

    Okello, Julius (CIP)

    generated using multi-stage sampling technique and involving 732 ..... and male respondents across the two intervention categories perceive ... that children do not mind the orange color of the OFSP as compared to the non- .... or as women's crop, use sweetpotato to bridge the hunger gap, and view its leaves as a.

  3. A 'tiny-orange' spectrometer for electrons

    International Nuclear Information System (INIS)

    Silva, N.C. da.

    1990-01-01

    An tiny-orange electron spectrometer was designed and constructed using flat permanent magnets and a surface barrier detector. The transmission functions of different system configurations were determined for energies in the 200-1100 KeV range. A mathematical model for the system was developed. (L.C.J.A.)

  4. History and hydrologic effects of ground water use in Kings, Queens, and western Nassau counties, Long Island, New York, 1800's through 1997

    Science.gov (United States)

    Cartwright, Richard A.

    2002-01-01

    Ground-water withdrawals from the aquifers underlying Kings and Queens Counties varied temporally and spatially during the 20th century and caused extreme changes in water levels. The resultant lowering of water levels during periods of heavy pumping caused saltwater intrusion in nearshore areas and the migration of contaminants from land surface into deep aquifers. The recovery of water levels in response to countywide curtailment of pumping has resulted in the flooding of underground structures. Combined withdrawals for public and industrial supply in Kings and Queens Counties were greatest during the 1930's--about 130 million gallons per day. During this period, a large cone of depression developed in the water table in Kings County; within this depression, water levels were about 45 feet lower than in 1903. All pumping for public supply was halted in Kings County in 1947, and in Jamaica (in Queens County) in 1974. Water levels in Kings County had recovered by 1974 and have remained similar to those of 1903 since then, except for minor localized drawdowns due to industrial-supply or dewatering withdrawals. A large cone of depression that had formed in southeastern Queens County before 1974 has now (1997) disappeared. The estimated combined withdrawal for public supply and industrial supply in Kings and Queens Counties in 1996 was only about 50 million gallons per day.The water-level recoveries in the water-table and confined aquifers generally have resulted in the dilution and dispersion of residual salty and nitrate-contaminated ground water. The majority of recently sampled wells indicate stable or decreasing chloride and nitrate concentrations in all aquifers since 1983. Organic contaminants remain in ground water in Kings, Queens, and Nassau Counties, however; the most commonly detected compounds in 1992-96 were tetrachloroethene, trichloroethene, chloroform, and total trihalomethanes. Water samples from monitoring wells in Kings County indicate a greater

  5. Groundwater flow in the Brunswick/Glynn County area, Georgia, 2000-04

    Science.gov (United States)

    Cherry, Gregory S.

    2015-01-01

    An existing regional steady-state model for coastal Georgia, and parts of South Carolina and Florida, was revised to evaluate the local effects of pumping on the migration of high chloride (saline) water in the Upper Floridan aquifer located in the Brunswick/Glynn County, Georgia (Ga.) area. Revisions were focused on enhancing the horizontal and vertical resolution of the regional model grid in the vicinity of saline water. Modifications to the regional model consisted of (1) limiting grid size to a maximum of 500 feet (ft) per side in the vicinity of chloride contamination; (2) representing the upper and lower Brunswick aquifers with distinct model layers; (3) similarly, representing upper and lower water-bearing zones of the Upper Floridan aquifer with distinct model layers in Glynn and Camden Counties, Ga.; and (4) establishing new hydraulic-property zones in the Upper Floridan aquifer. The revised model simulated steady-state conditions that were assumed to exist during 2000 and 2004.

  6. Application of Acid Whey in Orange Drink Production

    Directory of Open Access Journals (Sweden)

    Grażyna Jaworska

    2013-01-01

    Full Text Available The aim of this study is to compare qualitative changes in orange and orange beverages containing whey during 12 months of storage. The beverages contained 12 % extract, half of which was orange concentrate, the rest was sugar or sugar and whey extract. Acid whey was used in the production of beverages, added at a rate of 50 % of the used water. Orange beverages with whey contained more protein, ash, glucose, lactose and vitamin B2 than the orange beverages, but less sucrose, fructose and vitamin C, and also showed lower antioxidant activity against the DPPH radical. No significant differences between the two types of beverages were found in the polyphenolic content or activity against the ABTS cation radical. The type of beverage had a significant effect on the colour parameter values under the CIELAB system, although no significant differences were found between the beverages in the sensory evaluation of colour desirability. The overall sensory evaluation of orange beverages with whey was 2–10 % lower than of other orange beverages. The intensity of orange, sweet and refreshing taste was greater in orange beverages, while that of sour and whey taste was greater in orange beverages containing whey. There were significant decreases in sucrose, lactose, all indicators of antioxidant activity and sensory quality during storage. Levels of glucose and fructose rose with the storage period, while the intensity of sour, orange and refreshing taste decreased.

  7. Allegheny County Air Quality

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Air quality data from Allegheny County Health Department monitors throughout the county. Air quality monitored data must be verified by qualified individuals before...

  8. Allegheny County Municipal Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...

  9. Allegheny County Addressing Landmarks

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains address points which represent physical address locations assigned by the Allegheny County addressing authority. Data is updated by County...

  10. Allegheny County Council Districts

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset portrays the boundaries of the County Council Districts in Allegheny County. The dataset is based on municipal boundaries and City of Pittsburgh ward...

  11. Allegheny County Address Points

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains address points which represent physical address locations assigned by the Allegheny County addressing authority. Data is updated by County...

  12. aquifer in ajaokuta, southwestern nigeria

    African Journals Online (AJOL)

    2005-03-08

    Mar 8, 2005 ... (1969) straight line method (observation well) of draw-down analysis in an unconfined aquifer (B=1) yield ... April) and a short wet season (May-September). .... DECOMPOSED. GRANITIC ROCK WITH. QUARTZ VEINS. 13.

  13. Effects of highway deicing chemicals on shallow unconsolidated aquifers in Ohio, interim report, 1988-93

    Science.gov (United States)

    Jones, A.L.; Sroka, B.N.

    1997-01-01

    Effects of the application of highway deicing chemicals during winter months on ground- water quality are being studied by the U.S. Geological Survey in cooperation with the Ohio Department of Transportation and the Federal Highway Administration. Eight sites throughout the State were selected along major undivided highways where drainage is by open ditches and ground-water flow is approximately perpendicular to the highway. At these sites, records of deicer application rates are being kept and apparent movement of deicing chemicals through shallow, unconsolidated aquifers is being monitored by means of periodic measurements of specific con ductance and concentrations of dissolved sodium, calcium, and chloride. The counties and corre sponding sections of state routes being monitored are the following: State Route (SR) 3 in Ashland County, SR 84 in Ashtabula County, SR 29 in Champaign County, SR 4 in Clark County, SR 2 in Lucas County, SR 104 in Pickaway County, SR 14 in Portage County, and SR 97 in Richland County. The study began in January 1988 with background data collection, extensive literature review, and site selection. This process, including drilling of wells at the eight selected sites, lasted 3 years. Routine ground-water sampling at 4- to 6-week intervals began in January 1991. A relatively new type of multilevel, passive flow ground-water sampling device was constructed and used. Other conditions monitored on a regular basis included ground-water level (monitored con tinuously), specific conductance, air and soil temperature, precipitation, chloride concentration in soil samples, ground conductivity, and deicing chemical application times and rates. For the interim reporting period, water samples were collected from January 1991 through September 1993. Evidence from water analysis, specific conductance measurements, and surface geophysical measurements indicates that four of the eight sites (Ashtabula County, Lucas County, Portage County, and Richland

  14. Ground-water and geohydrologic conditions in Queens County, Long Island, New York

    Science.gov (United States)

    Soren, Julian

    1971-01-01

    Queens County is a heavily populated borough of New York City, at the western end of Long Island, N. Y., in which large amounts of ground water are used, mostly for public supply. Ground water, pumped from local aquifers, by privately owned water-supply companies, supplied the water needs of about 750,000 of the nearly 2 million residents of the county in 1967; the balance was supplied by New York City from surface sources outside the county in upstate New York. The county's aquifers consist of sand and gravel of Late Cretaceous and of Pleistocene ages, and the aquifers comprise a wedge-shaped ground-water reservoir lying on a southeastward-sloping floor of Precambrian(?) bedrock. Beds of clay and silt generally confine water in the deeper parts of the reservoir; water in the deeper aquifers ranges from poorly confined to well confined. Wisconsin-age glacial deposits in the uppermost part of the reservoir contain ground water under water-table conditions. Ground water pumpage averaged about 60 mgd (million gallons per day) in Queens County from about 1900 to 1967. Much of the water was used in adjacent Kings County, another borough of New York City, prior to 1950. The large ground-water withdrawal has resulted in a wide-spread and still-growing cone of depression in the water table, reflecting a loss of about 61 billion gallons of fresh water from storage. Significant drawdown of the water table probably began with rapid urbanization of Queens County in the 1920's. The county has been extensively paved, and storm and sanitary sewers divert water, which formerly entered the ground, to tidewater north and south of the county. Natural recharge to the aquifers has been reduced to about one half of the preurban rate and is below the withdrawal rate. Ground-water levels have declined more than 40. feet from the earliest-known levels, in 1903, to 1967, and the water table is below sea level in much of the county. The aquifers are being contaminated by the movement of

  15. Orange roughy: their age unlocked by radioisotopes

    International Nuclear Information System (INIS)

    Fenton, G.; Ritz, D.

    1992-01-01

    A radiometric method was developed and applied to try and solve the question of age for orange roughy, currently the primary target species in the south east trawl fishery. The method involved measuring the natural levels of the radioactive elements radium-226 and lead-210 present in the otolith of the fish. Radium-226 is chemically similar to calcium and, as such, is taken up by fish and laid-down in their otoliths as the fish grows. It was found that orange roughy is a very slow growing and long-lived species with fish 38-40 cm SL ranging between 77 and 149 years old. The results also indicated that maturity is around 32 years which occurs at about 32 cm SL. 4 refs., 1 tab., ills

  16. MATHEMATICAL MODELING OF ORANGE SEED DRYING KINETICS

    Directory of Open Access Journals (Sweden)

    Daniele Penteado Rosa

    2015-06-01

    Full Text Available Drying of orange seeds representing waste products from juice processing was studied in the temperatures of 40, 50, 60 and 70 °C and drying velocities of 0.6, 1.0 and 1.4 m/s. Experimental drying kinetics of orange seeds were obtained using a convective air forced dryer. Three thin-layer models: Page model, Lewis model, and the Henderson-Pabis model and the diffusive model were used to predict the drying curves. The Henderson-Pabis and the diffusive models show the best fitting performance and statistical evaluations. Moreover, the temperature dependence on the effective diffusivity followed an Arrhenius relationship, and the activation energies ranging from 16.174 to 16.842 kJ/mol

  17. Ground-water resources of Kings and Queens Counties, Long Island, New York

    Science.gov (United States)

    Buxton, Herbert T.; Shernoff, Peter K.

    1995-01-01

    The aquifers beneath Kings and Queens Counties supplied an average of more than 120 Mgal/d (million gallons per day) for industrial and public water supply during 1904-47, but this pumping caused saltwater intrusion and a deterioration of water quality that led to the cessation of pumping for public supply in Kings County in 1947 and in western Queens County in 1974. Since the cessation of pumping in Kings and western Queens Counties, ground-water levels have recovered steadily, and the saltwater has partly dispersed and become diluted. In eastern Queens County, where pumpage for public supply averages 60 Mgal/d, all three major aquifers contain a large cone of depression. The saltwater-freshwater interface in the Jameco-Magothy aquifer already extends inland in southeastern Queens County and is moving toward this cone of depression. The pumping centers' proximity to the north shore also warrants monitoring for saltwater intrusion in the Flushing Bay area. Urbanization and development on western Long Island since before the tum of this century have caused significant changes in the ground-water budget (total inflow and outflow) and patterns of movement. Some of the major causes are: ( 1) intensive pumping for industrial and public supply; (2) paving of large land-surface areas; (3) installation of a vast network of combined (stonn and sanitary) sewers; (4) leakage from a water-supply-line network that carries more than 750 Mgal/d; and (5) burial of stream channels and extensive wetland areas near the shore.Elevated nitrate and chloride concentrations throughout the upper glacial (water-table) aquifer indicate widespread contamination from land surface. Localized contamination in the underlying Jameco-Magothy aquifer is attributed to downward migration in areas of hydraulic connection between aquifers where the Gardiners Clay is absent A channel eroded through the Raritan confining unit provides a pathway for migration of surface contaminants to the Lloyd aquifer

  18. Call cultures in orang-utans?

    Directory of Open Access Journals (Sweden)

    Serge A Wich

    Full Text Available BACKGROUND: Several studies suggested great ape cultures, arguing that human cumulative culture presumably evolved from such a foundation. These focused on conspicuous behaviours, and showed rich geographic variation, which could not be attributed to known ecological or genetic differences. Although geographic variation within call types (accents has previously been reported for orang-utans and other primate species, we examine geographic variation in the presence/absence of discrete call types (dialects. Because orang-utans have been shown to have geographic variation that is not completely explicable by genetic or ecological factors we hypothesized that this will be similar in the call domain and predict that discrete call type variation between populations will be found. METHODOLOGY/PRINCIPAL FINDINGS: We examined long-term behavioural data from five orang-utan populations and collected fecal samples for genetic analyses. We show that there is geographic variation in the presence of discrete types of calls. In exactly the same behavioural context (nest building and infant retrieval, individuals in different wild populations customarily emit either qualitatively different calls or calls in some but not in others. By comparing patterns in call-type and genetic similarity, we suggest that the observed variation is not likely to be explained by genetic or ecological differences. CONCLUSION/SIGNIFICANCE: These results are consistent with the potential presence of 'call cultures' and suggest that wild orang-utans possess the ability to invent arbitrary calls, which spread through social learning. These findings differ substantially from those that have been reported for primates before. First, the results reported here are on dialect and not on accent. Second, this study presents cases of production learning whereas most primate studies on vocal learning were cases of contextual learning. We conclude with speculating on how these findings might

  19. Status of Groundwater Levels and Storage Volume in the Equus Beds Aquifer Near Wichita, Kansas, January 2009

    Science.gov (United States)

    Hansen, Cristi V.

    2009-01-01

    Beginning in the 1940s, the Wichita well field was developed in the Equus Beds aquifer in southwestern Harvey County and northwestern Sedgwick County to supply water to the city of Wichita (Williams and Lohman, 1949). In addition to supplying drinking water to the largest city in Kansas, the other primary use of water from the Equus Beds aquifer is to irrigate crops in this agriculture-dominated part of south-central Kansas (Rich Eubank, Kansas Department of Agriculture, Division of Water Resources, oral commun., 2008). The decline of water levels in the aquifer were noted soon after the development of the Wichita well field began (Williams and Lohman, 1949). As water levels in the aquifer decline, the volume of water stored in the aquifer decreases and less water is available to supply future needs. For many years the U.S. Geological Survey (USGS), in cooperation with the city of Wichita, has monitored these changes in water levels and the resulting changes in storage volume in the Equus Beds aquifer as part of Wichita's effort to effectively manage this resource. In 2007, the city of Wichita began using Phase I of the Equus Beds Aquifer Storage and Recovery (ASR) project for large-scale artificial recharge of the Equus Beds aquifer. The ASR project uses water from the Little Arkansas River - either pumped from the river directly or from wells in the riverbank that obtain their water from the river by induced infiltration - as the source of artificial recharge to the Equus Beds aquifer (City of Wichita, 2009).

  20. EPA Region 1 Sole Source Aquifers

    Science.gov (United States)

    This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of drinking water for a given aquifer service area; that is, an aquifer which is needed to supply 50% or more of the drinking water for the area and for which there are no reasonable alternative sources should the aquifer become contaminated.The aquifers were defined by a EPA hydrogeologist. Aquifer boundaries were then drafted by EPA onto 1:24000 USGS quadrangles. For the coastal sole source aquifers the shoreline as it appeared on the quadrangle was used as a boundary. Delineated boundaries were then digitized into ARC/INFO.

  1. Hydrology, water quality, and effects of drought in Monroe County, Michigan

    Science.gov (United States)

    Nicholas, J.R.; Rowe, Gary L.; Brannen, J.R.

    1996-01-01

    Monroe County relies heavily on its aquifers and streams for drinking water, irrigation, and other ~ses; however, increased water use, high concentrations of certain constituents in ground water, and droughts may limit the availability of water resources. Although the most densely populated parts of the county use water from the Great Lakes, large amounts of ground water are withdrawn for quarry dewatering, domestic supply, and irrigation.Unconsolidated deposits and bedrock of Silurian and Devonian age underlie Mon_roe County. The unconsolidated deposits are mostly clayey and less than 50 feet thick. Usable amounts of ground water generally are obtained from thin, discontinuous surficial sand deposits or, in the northwestern part of the county, from deep glaciofluvial deposits. In most of the county, however, ground water in unconsolidated deposits is highly susceptible to effects of droughts and to contamination.The bedrock is mostly carbonate rock, and usable quantities of ground water can be obtained from fractures and other secondary openings throughout the county. Transmissivities of the Silurian-Devonian aquifer range from 10 to 6,600 feet squared per day. Aquifer tests and historical informati.on indicate that the Silurian-Devonian aquifer is confmed throughout most of the county. The major recharge area for the Silurian-Devonian aquifer in Monroe County is in the southwest, and groundwater flow is mostly southeastward toward Lake Erie. In the northeastern and southeastern parts of the county, the potentiometric surface of the SilurianDevonian aquifers has been lowered by pumpage to below the elevation of Lake Erie.Streams and artificial drains in Monroe County are tributary to Lake Erie. Most streams are perennial because of sustained discharge from the sand aquifer and the Silurian-Devonian aquifer; however, the lower reaches of River Raisin and Plum Creek lost water to the Silurian-Devonian aquifer in July 1990.The quality of ground water and of

  2. Potentiometric surfaces of the intermediate aquifer system, west-central Florida, May, 1993

    Science.gov (United States)

    Mularoni, R.A.

    1994-01-01

    The intermediate aquifer system underlies a 5000-sq-mi area including De Soto, Sarasota, Hardee, Manatee, and parts of Charlotte, Hillsborough, Highlands, and Polk Counties, Florida. It is overlain by the surf@cial aquifer system and underlain by the Floridan aquifer system. The potentiometric surface of the intermediate aquifer system was mapped by determining the altitude of water levels in a network of wells and represented on a map by contours that connect points of equal altitude. This map represents water-level conditions near the end of the spring dry season when ground- water withdrawals for agricultural use were high. The cumulative rainfall for the study area was 4.84 inches above normal for the period from June 1992 to May 1993. Hydrographs for selected wells indicated that the annual and seasonal fluctuations of the water levels were generally large (greater than 15 feet) in the central interior region where water demand for irrigation is high during the fall and spring. Seasonal fluctuations were smaller in the northern recharge area where water use is predominantly for public supply. Water levels measured in May 1993 for the composite intermediate aquifer potentiometric surface were lower than those measured in May or September 1992. A cone of depression exists in the potentiometric surface for the composite aquifer system at Warm Mineral Springs, which is a natural discharge point from this system.

  3. Groundwater Governance and the Growth of Center Pivot Irrigation in Cimarron County, OK and Union County, NM: Implications for Community Vulnerability to Drought

    Directory of Open Access Journals (Sweden)

    Kathryn Wenger

    2017-01-01

    Full Text Available Cimarron County, Oklahoma and Union County, New Mexico, neighboring counties in the Southern High Plains, are part of a vital agricultural region in the United States. This region experiences extended periods of cyclical drought threatening its ability to produce, creating an incentive for extensive center pivot irrigation (CPI. Center pivots draw from the rapidly depleting High Plains Aquifer System. As a result, the prospect of long-term sustainability for these agricultural communities is questionable. We use Remote Sensing and Geographic Information Systems to quantify growth in land irrigated by CPI between the 1950s and 2014, and key informant interviews to explore local perspectives on the causes and impact of such growth. In Cimarron County, OK, CPI increased by the mid-1980s, and has continually increased since. Results suggest adaptation to drought, a depleting aquifer, high corn prices, and less rigid groundwater regulations contribute to CPI growth. Conversely, CPI in Union County, NM, increased until 2010, and then declined. Results also suggest that drought-related agricultural changes and more aggressive well drilling regulations contribute to this decrease. Nevertheless, in both counties, there is a growing concern over the depleting aquifer, the long-term sustainability of CPI, and the region’s economic future.

  4. Estimating Groundwater Mounding in Sloping Aquifers for Managed Aquifer Recharge.

    Science.gov (United States)

    Zlotnik, Vitaly A; Kacimov, Anvar; Al-Maktoumi, Ali

    2017-11-01

    Design of managed aquifer recharge (MAR) for augmentation of groundwater resources often lacks detailed data, and simple diagnostic tools for evaluation of the water table in a broad range of parameters are needed. In many large-scale MAR projects, the effect of a regional aquifer base dip cannot be ignored due to the scale of recharge sources (e.g., wadis, streams, reservoirs). However, Hantush's (1967) solution for a horizontal aquifer base is commonly used. To address sloping aquifers, a new closed-form analytical solution for water table mound accounts for the geometry and orientation of recharge sources at the land surface with respect to the aquifer base dip. The solution, based on the Dupiuit-Forchheimer approximation, Green's function method, and coordinate transformations is convenient for computing. This solution reveals important MAR traits in variance with Hantush's solution: mounding is limited in time and space; elevation of the mound is strongly affected by the dip angle; and the peak of the mound moves over time. These findings have important practical implications for assessment of various MAR scenarios, including waterlogging potential and determining proper rates of recharge. Computations are illustrated for several characteristic MAR settings. © 2017, National Ground Water Association.

  5. Characterising aquifer treatment for pathogens in managed aquifer recharge.

    Science.gov (United States)

    Page, D; Dillon, P; Toze, S; Sidhu, J P S

    2010-01-01

    In this study the value of subsurface treatment of urban stormwater during Aquifer Storage Transfer Recovery (ASTR) is characterised using quantitative microbial risk assessment (QMRA) methodology. The ASTR project utilizes a multi-barrier treatment train to treat urban stormwater but to date the role of the aquifer has not been quantified. In this study it was estimated that the aquifer barrier provided 1.4, 2.6, >6.0 log(10) removals for rotavirus, Cryptosporidium and Campylobacter respectively based on pathogen diffusion chamber results. The aquifer treatment barrier was found to vary in importance vis-à-vis the pre-treatment via a constructed wetland and potential post-treatment options of UV-disinfection and chlorination for the reference pathogens. The risk assessment demonstrated that the human health risk associated with potable reuse of stormwater can be mitigated (disability adjusted life years, DALYs aquifer is integrated with suitable post treatment options into a treatment train to attenuate pathogens and protect human health.

  6. Status of groundwater levels and storage volume in the Equus Beds aquifer near Wichita, Kansas, January 2006 to January 2010

    Science.gov (United States)

    Hansen, Cristi V.; Aucott, Walter R.

    2010-01-01

    A part of the Equus Beds aquifer in southwestern Harvey County and northwestern Sedgwick County was developed to supply water to residents of Wichita and for irrigation in south-central Kansas. Groundwater pumping for city and agricultural use caused water levels to decline in a large part of the aquifer northwest of Wichita. In 1965, the city of Wichita began using water from Cheney Reservoir in addition to water from the Equus Beds aquifer to meet the city's increasing demand for water. Irrigation pumpage in the area increased substantially during the 1970s and 1980s and contributed to the water-level declines. Water-level declines reached their maximum to date in October 1992.

  7. Clarke County, Virginia's innovative response to groundwater protection

    International Nuclear Information System (INIS)

    Lee, G.R.; Christoffel, T.J.

    1990-01-01

    In 1982, the Clarke County Planning Commission created a Water Supply committee which led to the following county actions: adoption of a resource conservation overlay zone to protect the County Sanitation Authority's public spring; submission of the first Virginia application for federal sole-source aquifer designation; drafting of a proposed oil and gas exploration and extraction ordinance; and a contract with the USGS for a three-year groundwater resources study. In February 1987, the Clarke County Plan was published. Six implementation strategies were recommended, the majority of which have been adopted: (1) on-site wastewater treatment system management; (2) a sinkhole ordinance; (3) well standards; (4) underground storage tank requirements; (5) community education; and (6) a geographic information system. This plan emphasizes direct local government land use policies designed to mitigate risks of groundwater contamination. The plan used existing technical information to focus on prevention as the best strategy for natural resource protection

  8. Field Investigation of Stream-Aquifer Interactions: A Case Study in Coastal California

    Science.gov (United States)

    Pritchard-Peterson, D.; Malama, B.

    2017-12-01

    We report here results of a detailed investigation of the dynamic interaction between a stream and an alluvial aquifer at Swanton Pacific Ranch in the Scotts Creek watershed, Santa Cruz County, California. The aquifer is an important source of groundwater for cropland irrigation and for aquatic ecosystem support. Low summer base flows in Scotts Creek are a source of serious concern for land managers, fisheries biologists, and regulatory agencies due to the presence of federally protected steelhead trout and coho salmon. An understanding of the interaction between the stream and pumped aquifer will allow for assessment of the impacts of groundwater extraction on stream flows and is essential to establishing minimum flow requirements. This will aid in the development of sustainable riparian groundwater pumping practices that meet agricultural and ecological needs. Results of extensive direct-push sampling of the subsurface, laboratory falling-head permeameter tests and particle size analysis of aquifer sediments, multi-day pumping tests, long-term passive monitoring of aquifer hydraulic heads and stream stage and discharge, and electrical resistivity interrogation of the subsurface are reported here. Findings indicate that the permeable subsurface formation tapped by irrigation wells is a leaky semi-confined aquifer, overlain by a thin low permeability layer of silt and clay above which lies Scotts Creek. These results are particularly useful to land managers responsible for groundwater abstraction from wells that tap into the aquifer. Additionally, an index of stream-aquifer connectivity is proposed that would allow land managers to conveniently modify groundwater abstraction practices, minimizing concerns of stream depletion.

  9. Pectin methyl esterase activity in apple and orange pulps

    International Nuclear Information System (INIS)

    Abdullaev, A.; Djumaev, B.B.; Djumaev, N.B.; Mukhidinov, Z.K.

    2008-01-01

    The results of pectin methyl esterase activity from apple, orange pulp and orange peel depending of ph and temperature are discussed. It's shown that the methyl esterase activity form apple and orange pulps higher in range of temperatures from +37...+60 d ig C . The analysis of dependence of its activity from ph has shown that in both case the enzyme activity increase with increase of ph

  10. Superfund Record of Decision (EPA Region 2): Montclair/West Orange, Radium, NJ. (First Remedial Action), June 1989

    International Nuclear Information System (INIS)

    1989-01-01

    The Montclair/West Orange Radium site is in the towns of Montclair and West Orange in Essex County, New Jersey. The soil at the site is contaminated with radioactive-waste materials suspected to have originated from radium processing or utilization facilities located nearby during the early 1900s. Temporary radon ventilation systems and gamma-radiation shielding have been installed and maintained by EPA and the State to reduce indoor exposures. The primary contaminant of concern affecting the soil and structures is radium 226 which decays to radon gas. The selected remedial action for the site includes excavation of approximately 41,000 cu yd of highly contaminated soil and an unspecified amount of debris followed by offsite disposal; installation and maintenance of indoor engineering controls at less contaminated properties; environmental monitoring to ensure remedy effectiveness; and continuation of a treatment technology study for future actions. EPA deferred a final continuation of a treatment-technology study for future action

  11. Water-level altitudes 2014 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2013 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2014-01-01

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained clay and silt layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps depicting approximate 2014 water-level altitudes (represented by measurements made during December 2013–March 2014) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2013–14) water-level changes for each aquifer; maps depicting contoured 5-year (2009–14) water-level changes for each aquifer; maps depicting contoured long-term (1990–2014 and 1977–2014) water-level changes for the Chicot and Evangeline aquifers; a map depicting contoured long-term (2000–14) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured cumulative compaction of subsurface sediments at the borehole extensometers during 1973–2013. Tables listing the data used to construct each water-level map for each aquifer and the compaction graphs are included.

  12. Water-level altitudes 2015 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2014 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Ramage, Jason K.; Houston, Natalie A.; Johnson, Michaela R.; Schmidt, Tiffany S.

    2015-01-01

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains regional-scale maps depicting approximate 2015 water-level altitudes (represented by measurements made during December 2014–March 2015) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2014–15) water-level changes for each aquifer; maps depicting approximate contoured 5-year (2010–15) water-level changes for each aquifer; maps depicting approximate contoured long-term (1990–2015 and 1977–2015) water-level changes for the Chicot and Evangeline aquifers; a map depicting approximate contoured long-term (2000–15) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured cumulative compaction of subsurface sediments at the borehole extensometers during 1973–2014. Three tables listing the water-level data used to construct each water-level map for each aquifer and a table listing the measured cumulative compaction data for each extensometer site and graphs are included.

  13. Water-level altitudes 2013 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973--2012 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2013-01-01

    Most of the subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction mostly in the clay and silt layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps depicting approximate water-level altitudes for 2013 (represented by measurements made during December 2012-February 2013) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2012-13) water-level changes for each aquifer; maps depicting 5-year (2008--13) water-level changes for each aquifer; maps depicting long-term (1990-2013 and 1977-2013) water-level changes for the Chicot and Evangeline aquifers; a map depicting long-term (2000-13) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured compaction of subsurface sediments at the extensometers during 1973-2012. Tables listing the data used to construct each water-level map for each aquifer and the compaction graphs are included.

  14. Water-level altitudes 2012 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2011 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2012-01-01

    Most of the subsidence in the Houston–Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers and caused compaction of the clay layers of the aquifer sediments. This report—prepared by the U.S. Geological Survey in cooperation with the Harris– Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District—is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston–Galveston region. The report contains maps showing approximate water-level altitudes for 2012 (calculated from measurements of water levels in wells made during December 2011–February 2012) for the Chicot, Evangeline, and Jasper aquifers; maps showing 1-year (2011–12) water-level-altitude changes for each aquifer; maps showing 5-year (2007–12) water-levelaltitude changes for each aquifer; maps showing long-term (1990–2012 and 1977–2012) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000–12) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface sediments at the extensometers from 1973 (or later) through 2011. Tables listing the data that were used to construct each water-level map for each aquifer and the cumulative compaction graphs are included.

  15. Aquifers Characterization and Productivity in Ellala Catchment ...

    African Journals Online (AJOL)

    user

    Aquifers Characterization and Productivity in Ellala Catchment, Tigray, ... using geological and hydrogeological methods in Ellala catchment (296.5km. 2. ) ... Current estimates put the available groundwater ... Aquifer characterization takes into.

  16. Ukraine's Orange Revolution and U.S. Policy

    National Research Council Canada - National Science Library

    Woehrel, Steven

    2005-01-01

    In January 2005, Viktor Yushchenko became Ukraine's new President, after massive demonstrations helped to overturn the former regime's electoral fraud, in what has been dubbed the "Orange Revolution...

  17. Recovery of aroma compounds from orange essential oil

    Directory of Open Access Journals (Sweden)

    Haypek E.

    2000-01-01

    Full Text Available The objective of this work was to study the recovery of aroma compounds present in the orange essential oil using experimental data from CUTRALE (a Brazilian Industry of Concentrated Orange Juice. The intention was to reproduce the industrial unit and afterwards to optimize the recovery of aroma compounds from orange essential oil by liquid-liquid extraction. The orange oil deterpenation was simulated using the commercial software PRO/II 4.0 version 1.0. The UNIFAC model was chosen for the calculation of the activity coefficients.

  18. Adaptive surrogate model based multiobjective optimization for coastal aquifer management

    Science.gov (United States)

    Song, Jian; Yang, Yun; Wu, Jianfeng; Wu, Jichun; Sun, Xiaomin; Lin, Jin

    2018-06-01

    In this study, a novel surrogate model assisted multiobjective memetic algorithm (SMOMA) is developed for optimal pumping strategies of large-scale coastal groundwater problems. The proposed SMOMA integrates an efficient data-driven surrogate model with an improved non-dominated sorted genetic algorithm-II (NSGAII) that employs a local search operator to accelerate its convergence in optimization. The surrogate model based on Kernel Extreme Learning Machine (KELM) is developed and evaluated as an approximate simulator to generate the patterns of regional groundwater flow and salinity levels in coastal aquifers for reducing huge computational burden. The KELM model is adaptively trained during evolutionary search to satisfy desired fidelity level of surrogate so that it inhibits error accumulation of forecasting and results in correctly converging to true Pareto-optimal front. The proposed methodology is then applied to a large-scale coastal aquifer management in Baldwin County, Alabama. Objectives of minimizing the saltwater mass increase and maximizing the total pumping rate in the coastal aquifers are considered. The optimal solutions achieved by the proposed adaptive surrogate model are compared against those solutions obtained from one-shot surrogate model and original simulation model. The adaptive surrogate model does not only improve the prediction accuracy of Pareto-optimal solutions compared with those by the one-shot surrogate model, but also maintains the equivalent quality of Pareto-optimal solutions compared with those by NSGAII coupled with original simulation model, while retaining the advantage of surrogate models in reducing computational burden up to 94% of time-saving. This study shows that the proposed methodology is a computationally efficient and promising tool for multiobjective optimizations of coastal aquifer managements.

  19. Studi Kasus Ketidakpatuhan Orang Kontak Serumah terhadap Anjuran Pemeriksaan Tuberkulosis

    Directory of Open Access Journals (Sweden)

    Rovina Ruslam

    2017-08-01

    Full Text Available Ketidakpatuhan orang kontak serumah terhadap anjuran pemeriksaan Tuberkulosis (TB merupakan fenomena kompleks, dinamis dari faktor yang berkaitan dengan perilaku. Penelitian ini bertujuan untuk menggali perilaku ketidakpatuhan orang kontak serumah terhadap anjuran pemeriksaan TB dengan menggunakan Health Belief Model (HBM. Penelitian ini adalah studi kasus yang dilakukan di Kelurahan Pajajaran Kota Bandung. Subjek penelitian adalah sembilan orang kontak serumah dan enam orang perawat Puskesmas Pasirkaliki. Pengumpulan data dilakukan dengan studi dokumentasi, observasi pasif tidak berstruktur, wawancara mendalam, dan diskusi kelompok terarah. Data dianalisis dengan menggunakan model Miles dan Huberman, yaitu reduksi data, penyajian data, dan penarikan kesimpulan. Hasil penelitian meliputi persepsi kerentanan, persepsi keseriusan, persepsi manfaat pemeriksaan orang kontak serumah, dan isyarat untuk melakukan tindakan berdasarkan HBM. Persepsi orang kontak serumah tentang kerentanan TB meliputi adanya perasaan takut tertular, melakukan pemisahan, dan menerima takdir. Persepsi orang kontak serumah mengenai keseriusan penyakit TB yaitu kematian, perasaan malu atau minder. Persepsi orang kontak serumah tentang manfaat skrining yaitu akan diketahui apakah orang kontak serumah terkena TB atau tidak. Isyarat untuk melakukan tindakan pemeriksaan TB menurut orang kontak serumah yaitu apabila mereka sudah sakit atau muncul gejala-gejala TB. Hasil penelitian dari perawat menunjukkan bahwa perawat mengetahui bahwa salah satu standar program penanggulangan TB (P2TB adalah pemeriksaan TB pada orang kontak serumah penderita TB paru terutama yang basil tahan asam (BTA positif dan anak dengan TB. Pemeriksaan TB tersebut dilakukan dengan pemeriksaan dahak sewaktu-pagi-sewaktu (SPS. Persepsi perawat mengenai hambatan dalam menjalankan peran dan fungsinya yaitu adanya keterbatasan jumlah tenaga di puskesmas, pendidikan perawat masih rendah, dan perawat mendapat tugas

  20. PROGRAM PENGHITUNG JUMLAH ORANG LEWAT MENGGUNAKAN WEBCAM

    Directory of Open Access Journals (Sweden)

    Sudianto Lande

    2004-01-01

    Full Text Available The amount of public places's visitor data is very important. Usually we get it manually. AT the moment, video camera has been used for security. Therefor, the people counter software has been made using Normalized Sum-squared difference (NSSD method that take differences the sum of frame fixel and background, squared it then normalized by detection window area. The NSSD values that have been count then thresholded to detect the people occurance in detection window. This project is made using Borland Delphi 5.0 with Tvideo component. Corect people counting percentation of more than 90% was obtained. The succesness of this program depends on the right thresholding values. Abstract in Bahasa Indonesia : Data jumlah pengunjung suatu tempat umum sangat penting. Data jumlah pengunjung biasanya didapat secara manual. Saat ini kamera video telah diterapkan untuk kepentingan keamanan. Karena itu dibuatlah program penghitung jumlah pengunjung dengan metode Normalized Sum-Squared Differences (NSSD yang mengambil selisih jumlah pixel frame dan background dan dikuadratkan, dinormalisasi dengan luasan detection window. Nilai NSSD yang didapat diseleksi dengan proses thresholding untuk mendeteksi keberadaan orang pada detection window. Penelitian ini dibuat dengan menggunakan Borland Delphi 5.0, dengan tambahan komponen TVideo. Program ini secara keseluruhan menunjukkan keberhasilan lebih dari 90%. Keberhasilan dari program ini sangat dipengaruhi oleh penentuan nilai threshold yang tepat. Kata kunci: penghitungan orang, sensor kamera, NSSD, Image processing.

  1. Biodegradation of orange G by a novel isolated bacterial strain ...

    African Journals Online (AJOL)

    At these optimum levels of parameters, bacterial decolorization of orange G by 94.48% was obtained under static conditions. Biodegradation and decolorization of azo dye, orange G, was confirmed using UV-VIS spectrophotometry, thin layer chromatography (TLC) and fourier transform infrared spectroscopy (FTIR) and ...

  2. The preservative potentials of sweet orange seed oil on leather ...

    African Journals Online (AJOL)

    Orange seed oil was extracted using the steam distillation method. The fungi isolated from the leather samples were Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus, Paecilomyces sp., Penicillium sp., Rhizopus nigricans and Alternaria sp. However, the fungal species vary from person to person. The orange seed ...

  3. 7 CFR 29.1044 - Orange Red (FR).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Orange Red (FR). 29.1044 Section 29.1044 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1044 Orange Red (FR). A yellowish red. [42 FR 21092, Apr. 25, 1977. Redesignated at 47 FR...

  4. Comparative and demographic analysis of orang-utan genomes

    DEFF Research Database (Denmark)

    Locke, Devin P.; Hillier, LaDeana W.; Warren, Wesley C.

    2011-01-01

    Orang-utan’ is derived from a Malay term meaning ‘man of the forest’ and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereb...

  5. Spectrophotometric determination of aluminium in steel with xylenol orange

    International Nuclear Information System (INIS)

    Majeed, A.; Javed, N.; Khan, M.S.

    1996-01-01

    Spectrophotometric determination of Aluminium in steel based on colour reaction between Aluminium and xylenol orange has been carried out. Red coloured complex formed in weak acidic solution is measured for its absorbance at 550 nm. The various optimum experimental conditions for Aluminium xylenol orange (Al-Xo) complex have been studied. (author)

  6. Geohydrology of Brooks, Lowndes, and western Echols counties, Georgia

    Science.gov (United States)

    Krause, R.E.

    1979-01-01

    The principal artesian aquifer, a limestone of Eocene to Miocene age, is the main source of water supply for Brooks, Lowndes, and western Echols Counties in south Georgia. Pumpage of about 22 million gallons perday from this prolific aquifer has not posed any problems regarding declining water levels or depletion of the reservoir. However, water-quality problems do occur in the Valdosta area. Seepage-run measurements indicate that the Withlacoochee River north of Valdosta contributes an average of 112 cubic feet per second of water to caverns and sinkholes that recharge the aquifer. Wells near the recharge area withdraw relatively unfiltered water with iron concentration and color intensity exceeding standards for drinking water. South of Valdosta, water from the aquifer contains as much as 3.0 milligrams per liter of hydrogen sulfide, rendering the water unfit for drinking. Water high in sulfate concentration occurs below 550 feet in the lower part of the aquifer in Valdosta, and is assumed to be present at that depth throughout the study area. Generally, sufficient quantities of freshwater can be obtained without drilling to this depth.

  7. Aquifer thermal energy stores in Germany

    International Nuclear Information System (INIS)

    Kabus, F.; Seibt, P.; Poppei, J.

    2000-01-01

    This paper describes the state of essential demonstration projects of heat and cold storage in aquifers in Germany. Into the energy supply system of the buildings of the German Parliament in Berlin, there are integrated both a deep brine-bearing aquifer for the seasonal storage of waste heat from power and heat cogeneration and a shallow-freshwater bearing aquifer for cold storage. In Neubrandenburg, a geothermal heating plant which uses a 1.200 m deep aquifer is being retrofitted into an aquifer heat storage system which can be charged with the waste heat from a gas and steam cogeneration plant. The first centralised solar heating plant including an aquifer thermal energy store in Germany was constructed in Rostock. Solar collectors with a total area of 1000m 2 serve for the heating of a complex of buildings with 108 flats. A shallow freshwater-bearing aquifer is used for thermal energy storage. (Authors)

  8. Advancing the Orang Asli through Malaysia's Clusters of Excellence Policy

    Directory of Open Access Journals (Sweden)

    Mohd Asri Mohd Noor

    2012-10-01

    Full Text Available Since gaining independence in 1957, the government of Malaysia has introduced various programmes to improve the quality of life of the Orang Asli (aboriginal people. The Ministry of Education, for example, is committed in providing education for all including the children of Orang Asli. However, whilst the number of Orang Asli children enrolled in primary and secondary schools has increased significantly over the last decade, the dropout rate among them is still high. This has been attributed to factors such as culture, school location, poverty, pedagogy and many more. The discussion in this article is drawn upon findings from fieldwork study at an Orang Asli village in Johor, Malaysia. This article discusses efforts in raising educational attainment of the Orang Asli through the implementation of the Clusters of Excellence Policy. In so doing it highlights the achievement of the policy and issues surrounding its implementation at the site.

  9. Preliminary Bedrock Geologic Map of the Old Lyme Quadrangle, New London and Middlesex Counties, Connecticut

    Science.gov (United States)

    Walsh, Gregory J.; Scott, Robert B.; Aleinikoff, John N.; Armstrong, Thomas R.

    2006-01-01

    This report presents a preliminary map of the bedrock geology of the Old Lyme quadrangle, New London and Middlesex Counties, Connecticut. The map depicts contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The map was published as part of a study of fractured bedrock aquifers and regional tectonics.

  10. Radon concentration assessment in water sources of public drinking of Covilhã's county, Portugal

    Directory of Open Access Journals (Sweden)

    M. Inácio

    2017-04-01

    Radon concentration measurements were performed on thirty three samples collected from water wells at different depths and types of aquifers, at Covilhã's County, Portugal with the radon gas analyser DURRIDGE RAD7. Twenty three, of the total of water samples collected, gave, values over 100 Bq/L, being that 1690 Bq/L was the highest measured value.

  11. Allegheny County Obesity Rates

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Obesity rates for each Census Tract in Allegheny County were produced for the study “Developing small-area predictions for smoking and obesity prevalence in the...

  12. Allegheny County Dam Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the point locations of dams in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  13. Allegheny County Asbestos Permits

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Current asbestos permit data issued by the County for commercial building demolitions and renovations as required by the EPA. This file is updated daily and can be...

  14. Allegheny County Crash Data

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Contains locations and information about every crash incident reported to the police in Allegheny County from 2004 to 2016. Fields include injury severity,...

  15. Allegheny County Anxiety Medication

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — These Census Tract-level datasets described here provide de-identified diagnosis data for customers of three managed care organizations in Allegheny County (Gateway...

  16. Allegheny County Smoking Rates

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Smoking rates for each Census Tract in Allegheny County were produced for the study “Developing small-area predictions for smoking and obesity prevalence in the...

  17. Allegheny County Employee Salaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Employee salaries are a regular Right to Know request the County receives. Here is the disclaimer language that is included with the dataset from the Open Records...

  18. ROE County Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This polygon dataset shows the outlines of states, counties, and county equivalents (Louisiana parishes, Alaska boroughs, Puerto Rico municipalities, and U.S. Virgin...

  19. Allegheny County Parcel Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains parcel boundaries attributed with county block and lot number. Use the Property Information Extractor for more control downloading a filtered...

  20. Allegheny County Tobacco Vendors

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The tobacco vendor information provides the location of all tobacco vendors in Allegheny County in 2015. Data was compiled from administrative records managed by...

  1. Allegheny County Plumbers

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — All master plumbers must be registered with the Allegheny County Health Department. Only Registered Master Plumbers who possess a current plumbing license or...

  2. Allegheny County Traffic Counts

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Traffic sensors at over 1,200 locations in Allegheny County collect vehicle counts for the Pennsylvania Department of Transportation. Data included in the Health...

  3. Allegheny County Greenways

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Greenways data was compiled by the Allegheny Land Trust as a planning effort in the development of Allegheny Places, the Allegheny County Comprehensive Plan. The...

  4. Allegheny County Street Centerlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the locations of the street centerlines for vehicular and foot traffic in Allegheny County. Street Centerlines are classified as Primary Road,...

  5. Allegheny County Major Rivers

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of major rivers that flow through Allegheny County. These shapes have been taken from the Hydrology dataset. The Ohio River,...

  6. Allegheny County Depression Medication

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — These Census Tract-level datasets described here provide de-identified diagnosis data for customers of three managed care organizations in Allegheny County (Gateway...

  7. Taos County Roads

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Vector line shapefile under the stewardship of the Taos County Planning Department depicting roads in Taos County, New Mexico. Originally under the Emergency...

  8. Allegheny County Property Assessments

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Real Property parcel characteristics for Allegheny County, PA. Includes information pertaining to land, values, sales, abatements, and building characteristics (if...

  9. Allegheny County Hospitals

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The data on health care facilities includes the name and location of all the hospitals and primary care facilities in Allegheny County. The current listing of...

  10. Allegheny County Parks Outlines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Shows the size and shape of the nine Allegheny County parks. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  11. Allegheny County Crash Data

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Contains locations and information about every crash incident reported to the police in Allegheny County from 2004 to 2017. Fields include injury severity,...

  12. Allegheny County Property Viewer

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Webmap of Allegheny municipalities and parcel data. Zoom for a clickable parcel map with owner name, property photograph, and link to the County Real Estate website...

  13. County Population Vulnerability

    Data.gov (United States)

    City and County of Durham, North Carolina — This layer summarizes the social vulnerability index for populations within each county in the United States at scales 1:3m and below. It answers the question...

  14. Water-level altitudes 2016 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973–2015 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Ramage, Jason K.; Johnson, Michaela R.

    2016-10-07

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains regional-scale maps depicting approximate 2016 water-level altitudes (represented by measurements made during December 2015–March 2016) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2015–16) water-level changes for each aquifer; maps depicting approximate contoured 5-year (2011–16) water-level changes for each aquifer; maps depicting approximate contoured long-term (1990–2016 and 1977–2016) water-level changes for the Chicot and Evangeline aquifers; a map depicting approximate contoured long-term (2000–16) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured long-term cumulative compaction of subsurface sediments at the extensometers during 1973–2015. Tables listing the water-level data used to construct each water-level map for each aquifer and the measured long-term cumulative compaction data for each extensometer site are included. Graphs depicting water-level measurement data also are included; these graphs can be used to approximate

  15. Geochemistry and origins of mineralized waters in the Floridan aquifer system, northeastern Florida

    Science.gov (United States)

    Phelps, G.G.

    2001-01-01

    Increases in chloride concentration have been observed in water from numerous wells tapping the Floridan aquifer system in northeastern Florida. Although most increases have been in the eastern part of Duval County, Florida, no spatial pattern in elevated chloride concentrations is discernible. Possible sources of the mineralized water include modern seawater intrusion; unflushed Miocene-to-Pleistocene-age seawater or connate water in aquifer sediments; or mineralized water from deeper zones of the aquifer system or from formations beneath the Floridan aquifer system. The purpose of this study was to document the chemical and isotopic characteristics of water samples from various aquifer zones, and from geochemical and hydrogeologic data, to infer the source of the increased mineralization. Water samples were collected from 53 wells in northeastern Florida during 1997-1999. Wells tapped various zones of the aquifer including: the Fernandina permeable zone (FPZ), the upper zone of the Lower Floridan aquifer (UZLF), the Upper Floridan aquifer (UFA), and both the UFA and the UZLF. Water samples were analyzed for major ions and trace constituents and for isotopes of carbon, oxygen, hydrogen, sulfur, strontium, chlorine, and boron. Samples of rock from the aquifer were analyzed for isotopes of oxygen, carbon, and strontium. In general, water from various aquifer zones cannot be differentiated based on chemistry, except for water from FPZ wells. Major-ion concentrations vary as much within the upper zone of the Lower Floridan aquifer and the Upper Floridan aquifer as between these two zones. Simple models of mixing between fresh ground water and either modern seawater or water from the FPZ as a mineralized end member show that many water samples from the UZLF aquifer and the UFA are enriched in bicarbonate, calcium, magnesium, sulfate, fluoride, and silica and are depleted in sodium and potassium (as compared to concentrations predicted by simple mixing). Chemical mass

  16. Strukturalisme Genetik Lucien Goldmann dalam Novel Orang-Orang Proyek Karya Ahmad Tohari

    Directory of Open Access Journals (Sweden)

    Dewi Nurhasanah

    2015-01-01

    Full Text Available Article clarified structure, global view of social class, and social structure function as the background of Orang-orang Proyek, a novel by Ahmad Tohari. Research applied analytic and dialectic descriptive method. Analysis was done by applying Genetic Structuralism theory by Lucien Goldmann to see the meaning of the novel by relating the structure of the novel with the human facts (social structure as a background of the novel. The research results indicate that the novel structure described some oppositions, those are cultural, natural, social, and human oppositions; the novel’s structure expresses a global views, those are ideal-humanist and social-religious; when the novel was written, there were some corruption cases in the social structure in Indonesia that was adopted in the novel. Therefore, there seems a correlation between the novel structure and the social structure. 

  17. Remedial design services for Montclair/West Orange and Glen Ridge Superfund sites

    International Nuclear Information System (INIS)

    Urbaniak, T.F.; Tomiczek, P.W. Jr.

    1994-01-01

    The Montclair/West Orange and Glen Ridge Superfund Sites are located 12 miles west of New York City in Essex County, New Jersey. The sites are contaminated with waste materials from radium-processing facilities which operated in the area during the early 1900's. The waste materials, containing radium and other radioactive isotopes were placed in three separate landfill sites. Major public health risks are indoor radon gas build-up and indoor/ outdoor gamma radiation. In 1989, the EPA issued a Record of Decision (ROD) which chose excavation and off-site disposal of material as the preferred alternative. The purpose of this presentation is to highlight key elements of the design process for the remedial action at Montclair. Those key elements are as follows: meeting community relations challenges; measuring radioactive contamination; developing plans and specifications; packaging of remedial action contacts; and continually improving both the process and the designs

  18. Building on the Orange river project

    International Nuclear Information System (INIS)

    Skinner, J.

    1999-01-01

    The life of the World Commission on Dams (WCD) is due to end in mid-2000. In order to achieve its objective of making recommendations on the environmental, social, economic and institutional questions on dams, it will conduct up to ten case studies where the dams and river basins have been selected according to their age, function, regional representation and the lessons to be learned. The Orange River project in South Africa is being used as a pilot study for the other case studies and the reactions to the study are discussed. The case studies will focus on planning, implementation and operation of the dams with respect to their river basins. Six questions are listed and these will need to be answered to form a basis for a structured approach. To date, stakeholder meetings and fieldwork have highlighted four common generic difficulties and these are listed. A form for completion by interested parties was included with the article. (UK)

  19. The Orang Suku Laut of Riau, Indonesia

    DEFF Research Database (Denmark)

    Chou, Cynthia Gek Hua

    and resources that have resulted in great demand on sea and land spaces. In this momentum of change, several aspects of rural culture including indigenous populations, like the Orang Suku Laut (people of the sea) of Riau have been deemed by the state architects of development programmes to hinder progress......Land reform has been an indisputable part of Indonesian revolution. The consequent execution of development programmes for nation-building have provoked intense hostility over territorial rights. Global market forces in Indonesia have seen increasing flows of transnational investments, technology...... the social assimilation of indigenous peoples as citizens, religious conversion and cultural identity. Cynthia Chou discusses how Indonesian nation-building development programmes have generated intense struggles over issues pertaining to territorial rights, social assimilation of indigenous peoples...

  20. Identification of sulfur volatiles in canned orange juices lacking orange flavor.

    Science.gov (United States)

    Perez-Cacho, Pilar Ruiz; Mahattanatawee, Kanjana; Smoot, John M; Rouseff, Russell

    2007-07-11

    The purpose of this study was to understand why some canned orange juices are not perceived as orange juice. Sensory flavor profile data indicated that the primary odor (orthonasal) attributes were tropical fruit/grapefruit, cooked/caramel, musty, and medicine. By comparison fresh-squeezed juice lacked these odor attributes. GC-O analysis found 43 odor-active components in canned juices. Eight of these aroma volatiles were sulfur based. Four of the 12 most intense aroma peaks were sulfur compounds that included methanethiol, 1-p-menth-1-ene-8-thiol, 2-methyl-3-furanthiol, and dimethyl trisulfide. The other most intense odorants included 7-methyl-3-methylene-1,6-octadiene (myrcene), octanal, 2-methoxyphenol (guaiacol), 2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone (homofuraneol), (E)-non-2-enal, (E,E)-deca-2,4-dienal, 4-hydroxy-3-methoxybenzaldehyde (vanillin), and alpha-sinensal. Odorants probably responsible for the undesirable sensory attributes included grapefruit (1-p-menth-1-ene-8-thiol), cooked [2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol), and 3-(methylthio)propanal (methional)], musty [7-methyl-3-methylene-1,6-octadiene and (E)-non-2-enal], and medicine (2-methoxyphenol). The canned juices also lacked several aldehydes and esters normally found in fresh orange juice.

  1. Identification and Characterization of Citrus tristeza virus Isolates Breaking Resistance in Trifoliate Orange in California.

    Science.gov (United States)

    Yokomi, Raymond K; Selvaraj, Vijayanandraj; Maheshwari, Yogita; Saponari, Maria; Giampetruzzi, Annalisa; Chiumenti, Michela; Hajeri, Subhas

    2017-07-01

    Most Citrus tristeza virus (CTV) isolates in California are biologically mild and symptomless in commercial cultivars on CTV tolerant rootstocks. However, to better define California CTV isolates showing divergent serological and genetic profiles, selected isolates were subjected to deep sequencing of small RNAs. Full-length sequences were assembled, annotated and trifoliate orange resistance-breaking (RB) isolates of CTV were identified. Phylogenetic relationships based on their full genomes placed three isolates in the RB clade: CA-RB-115, CA-RB-AT25, and CA-RB-AT35. The latter two isolates were obtained by aphid transmission from Murcott and Dekopon trees, respectively, containing CTV mixtures. The California RB isolates were further distinguished into two subclades. Group I included CA-RB-115 and CA-RB-AT25 with 99% nucleotide sequence identity with RB type strain NZRB-G90; and group II included CA-RB-AT35 with 99 and 96% sequence identity with Taiwan Pumelo/SP/T1 and HA18-9, respectively. The RB phenotype was confirmed by detecting CTV replication in graft-inoculated Poncirus trifoliata and transmission from P. trifoliata to sweet orange. The California RB isolates induced mild symptoms compared with severe isolates in greenhouse indexing tests. Further examination of 570 CTV accessions, acquired from approximately 1960 and maintained in planta at the Central California Tristeza Eradication Agency, revealed 16 RB positive isolates based on partial p65 sequences. Six isolates collected from 1992 to 2011 from Tulare and Kern counties were CA-RB-115-like; and 10 isolates collected from 1968 to 2010 from Riverside, Fresno, and Kern counties were CA-RB-AT35-like. The presence of the RB genotype is relevant because P. trifoliata and its hybrids are the most popular rootstocks in California.

  2. Geologic framework and hydrogeologic characteristics of the outcrops of the Edwards and Trinity aquifers, Medina Lake area, Texas

    Science.gov (United States)

    Small, Ted A.; Lambert, Rebecca B.

    1998-01-01

    The hydrogeologic subdivisions of the Edwards aquifer outcrop in the Medina Lake area in Medina and Bandera Counties generally are porous and permeable. The most porous and permeable appear to be hydrogeologic subdivision VI, the Kirschberg evaporite member of the Kainer Formation; and hydrogeologic subdivision III, the leached and collapsed members, undivided, of the Person Formation. The porosity of the rocks in the Edwards aquifer outcrop is related to depositional or diagenetic elements along specific stratigraphic horizons (fabric selective) and to dissolution and structural elements that can occur in any lithostratigraphic horizon (not fabric selective). Permeability depends on the physical properties of the rock such as size, shape, and distribution of pores.

  3. Hydrogeology and simulation of groundwater flow in the Central Oklahoma (Garber-Wellington) Aquifer, Oklahoma, 1987 to 2009, and simulation of available water in storage, 2010–2059

    Science.gov (United States)

    Mashburn, Shana L.; Ryter, Derek W.; Neel, Christopher R.; Smith, S. Jerrod; Magers, Jessica S.

    2014-02-10

    The Central Oklahoma (Garber-Wellington) aquifer underlies about 3,000 square miles of central Oklahoma. The study area for this investigation was the extent of the Central Oklahoma aquifer. Water from the Central Oklahoma aquifer is used for public, industrial, commercial, agricultural, and domestic supply. With the exception of Oklahoma City, all of the major communities in central Oklahoma rely either solely or partly on groundwater from this aquifer. The Oklahoma City metropolitan area, incorporating parts of Canadian, Cleveland, Grady, Lincoln, Logan, McClain, and Oklahoma Counties, has a population of approximately 1.2 million people. As areas are developed for groundwater supply, increased groundwater withdrawals may result in decreases in long-term aquifer storage. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, investigated the hydrogeology and simulated groundwater flow in the aquifer using a numerical groundwater-flow model. The purpose of this report is to describe an investigation of the Central Oklahoma aquifer that included analyses of the hydrogeology, hydrogeologic framework of the aquifer, and construction of a numerical groundwater-flow model. The groundwater-flow model was used to simulate groundwater levels and for water-budget analysis. A calibrated transient model was used to evaluate changes in groundwater storage associated with increased future water demands.

  4. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Inyo County

    2006-01-01

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA

  5. An overview on the Brazilian orange juice production chain

    Directory of Open Access Journals (Sweden)

    Renato Marcio dos Santos

    2013-03-01

    Full Text Available Brazil is the world's largest producer of oranges and uses more than 70% of the harvested fruits in the production of juices. The amount of processed orange is growing about 10% per year, confirming the trend of the Brazilian citrus for juice production. This research aimed to investigate the Brazilian orange juice production chain from 2005 to 2009. Data from the amount of frozen juice produced and exported, international price of orange juice, and intermediate transactions were assessed in order to make possible selection of all interveners involved in the chain. The study using the Social Network Analysis (SNA showed that the densest relationships in the network are from exporters to importers and from orange growers to the orange processing industry. No difference was found in the values of the network geodesic distance or the clustering coefficients from 2005 to 2009. The degree of centrality increased steadily throughout the years indicating that the processing industry attempts to minimize the risks by centralizing the actions. A decrease in export of orange juice from 2007 (2.07 10(6 t to 2008 (2.05 10(6 t was found, probably due to the world's financial crisis with recovery in 2009. Since 2004, there has been an increase of nearly 10% per year in the market preference of concentrate juice (OFCJ when compared to the "not from concentrated" juice (NFC. Nowadays the NFC market represents nearly 50% of all Brazilian export which impacted in the logistic distribution and transportation issues.

  6. Arsenic, microbes and contaminated aquifers

    Science.gov (United States)

    Oremland, Ronald S.; Stolz, John F.

    2005-01-01

    The health of tens of millions of people world-wide is at risk from drinking arsenic-contaminated well water. In most cases this arsenic occurs naturally within the sub-surface aquifers, rather than being derived from identifiable point sources of pollution. The mobilization of arsenic into the aqueous phase is the first crucial step in a process that eventually leads to human arsenicosis. Increasing evidence suggests that this is a microbiological phenomenon.

  7. Detection of 8-hydroxydeoxyguanine in the Irradiated Orange and Spice

    International Nuclear Information System (INIS)

    Alam, Mohammad Khorshed.

    2007-01-01

    A study was carried out to detect the chemical change that might occur in irradiated orange and spice. Oxidative DNA damage can induce the production of 8-hydroxydeoxyguanine (8-OHdG) and thus the level of 8-hydroxydeoxyguanine was investigated using enzyme linked immunosorbent assay (ELISA) in the irradiated orange and spice which was compared with the unirradiated samples. By the difference in the oxidized guanine level that produce 8-hydroxydeoxyguanine in the irradiated and unirradiated samples, it can be clearly understood that detection of irradiated orange and spice is possible using monoclonal antibody for 8-hydroxydeoxyguanine in the ELAISA assay.(author)

  8. Reduction of the waste from domestic production of the orange

    International Nuclear Information System (INIS)

    Husain, K. A. M.

    2010-10-01

    The research subject is (reduction of the waste from domestic production of orange) we find there is a lot of wastage after harvest, because the process of packaging, loading, transportation, and store is not adequate. The purpose of this research is to solve this problem of wastage by following a number of steps after harvesting and pre-harvest process. This process is called COLD CHAIN. Cold chain is: cold store in production place, cold vehicles for transportation, cold room in the market, cold car for distribution, cold and freezer refrigerator home. After adopting the cold chain we achieved the following results: orange wastage is reduced, the orange quality improved. (Author)

  9. Aquifer thermal-energy-storage modeling

    Science.gov (United States)

    Schaetzle, W. J.; Lecroy, J. E.

    1982-09-01

    A model aquifer was constructed to simulate the operation of a full size aquifer. Instrumentation to evaluate the water flow and thermal energy storage was installed in the system. Numerous runs injecting warm water into a preconditioned uniform aquifer were made. Energy recoveries were evaluated and agree with comparisons of other limited available data. The model aquifer is simulated in a swimming pool, 18 ft by 4 ft, which was filled with sand. Temperature probes were installed in the system. A 2 ft thick aquifer is confined by two layers of polyethylene. Both the aquifer and overburden are sand. Four well configurations are available. The system description and original tests, including energy recovery, are described.

  10. Hydrochemistry of New Zealand's aquifers

    International Nuclear Information System (INIS)

    Rosen, M.R.

    2001-01-01

    Groundwater chemistry on a national scale has never been studied in New Zealand apart from a few studies on nitrate concentrations and pesticides. These studies are covered in Chapter 8 of this book. However general studies of groundwater chemistry, groundwater-rock interaction and regional characteristics of water quality have not been previously addressed in much detail. This is partly because New Zealand aquifers are relatively small on a world scale and are geologically and tectonically diverse (see Chapter 3). But New Zealand has also recently lacked a centralised agency responsible for groundwater quality, and therefore, no national assessments have been undertaken. In recent years, the Institute of Geological and Nuclear Sciences has managed a programme of collecting and analysing the groundwater chemistry of key New Zealand aquifers. This programme is called the National Groundwater Monitoring Programme (NGMP) and is funded by the New Zealand Public Good Science Fund. The programme started in 1990 using only 22 wells, with four regional authorities of the country participating. The NGMP now includes all 15 regional and unitary authorities that use groundwater and over 100 monitoring sites. The NGMP is considered a nationally significant database by the New Zealand Foundation for Research Science and Technology. The NGMP allows a national comparison of aquifer chemistries because the samples are all analysed at one laboratory in a consistent manner and undergo stringent quality control checks. Poor quality analyses are thus minimised. In addition, samples are collected quarterly so that long-term seasonal trends in water quality can be analysed, and the effects of changes in land use and the vulnerability of aquifers to contaminant leaching can be assessed. This chapter summarises the water quality data collected for the NGMP over the past 10 years. Some records are much shorter than others, but most are greater than three years. Additional information is

  11. Distribution and composition of microbial populations in a landfill leachate contaminated aquifer (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Ludvigsen, L.; Albrechtsen, H.-J.; Ringelberg, D.

    1999-01-01

    To investigate whether landfill leachates affected the microbial biomass and/or community composition of the extant microbiota, 37 samples were collected along a 305-m transect of a shallow landfill-leachate polluted aquifer. The samples were analyzed for total numbers of bacteria by use of the a......To investigate whether landfill leachates affected the microbial biomass and/or community composition of the extant microbiota, 37 samples were collected along a 305-m transect of a shallow landfill-leachate polluted aquifer. The samples were analyzed for total numbers of bacteria by use...... of the acridine orange direct count method (AODC). Numbers of dominant, specific groups of bacteria and total numbers of protozoa were measured by use of the most probable number method (MPN). Viable biomass estimates were obtained from measures of ATP and ester-linked phospholipid fatty acid (PLFA......) concentrations. The estimated numbers of total bacteria by direct counts were relatively constant throughout the aquifer, ranging from a low of 4.8 × 106 cells/g dry weight (dw) to a high of 5.3 × 107 cells/g dw. Viable biomass estimates based on PLFA concentrations were one to three orders of magnitude lower...

  12. An evaluation of aquifer intercommunication between the unconfined and Rattlesnake Ridge aquifers on the Hanford Site

    International Nuclear Information System (INIS)

    Jensen, E.J.

    1987-10-01

    During 1986, Pacific Northwest Laboratory conducted a study of a portion of the Rattlesnake Ridge aquifer (confined aquifer) that lies beneath the B Pond - Gable Mountain Pond area of the Hanford Site. The purpose was to determine the extent of intercommunication between the unconfined aquifer and the uppermost regionally extensive confined aquifer, referred to as the Rattlesnake Ridge aquifer. Hydraulic head data and chemical data were collected from the ground water in the study area during December 1986. The hydraulic head data were used to determine the effects caused by water discharged to the ground from B Pond on both the water table of the unconfined aquifer and the potentiometric surface of the confined aquifer. The chemical data were collected to determine the extent of chemical constituents migrating from the unconfined aquifer to the confined aquifer. Analysis of chemical constituents in the Rattlesnake Ridge aquifer demonstrated that communication between the unconfined and confined aquifers had occurred. However, the levels of contaminants found in the Rattlesnake Ridge aquifer during this study were below the DOE Derived Concentration Guides

  13. Aquifer Characterization and Groundwater Potential Assessment

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Keywords: Aquifer Characterization, Groundwater Potential, Electrical Resistivity, Lithologic Logs ... State Water Corporation currently cannot meet the daily water ... METHOD OF STUDY ... sections which were constrained with the available.

  14. Approved Drug Products with Therapuetic Equivalence Evaluations (Orange Book)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The publication Approved Drug Products with Therapeutic Equivalence Evaluations (the List, commonly known as the Orange Book) identifies drug products approved on...

  15. The orange roughy Hoplostethus atlanticus is an un- usual fish ...

    African Journals Online (AJOL)

    denise

    inferred mainly from biological studies, but genetic studies have also found .... Chile. Fig. 2: Catch history of orange roughy around the world. The catches shown ..... roughy is the lack of validation past the first four years ...... English abstract).

  16. The orange roughy Hoplostethus atlanticus is a long- lived, slow ...

    African Journals Online (AJOL)

    denise

    input to an error model that simulated the error process and produced probability density functions of absolute biomass ... Key words: acoustics, deep-water fisheries, orange roughy, survey. * National ...... shallow-towed transducer. In all, it ...

  17. Integrated nutrient management for orange-fleshed sweet potato

    African Journals Online (AJOL)

    ACSS

    and variety, suggesting that the orange-fleshed sweet potato varieties responded similarly to nutrient ... fleshed ones, can help alleviate vitamin A deficiency .... LSD (0.05) for variety (V) mean. = 14.8 .... Information System, Working Paper #2.

  18. Orange maize in Zambia: crop development and delivery experience

    African Journals Online (AJOL)

    Orange maize in Zambia: crop development and delivery experience. ... PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN JOURNALS ONLINE ... African Journal of Food, Agriculture, Nutrition and Development. Journal Home ...

  19. Studi Komunikasi Antarpribadi Anak Dengan Orang Tua Tiri

    Directory of Open Access Journals (Sweden)

    Chaterine Setiawan

    2017-07-01

    Full Text Available This study discusses the communication between the child and the stepparent and use the theory that consists of communication theory, communication function, the purpose of communication, interpersonal communication, effective interpersonal communication, interpersonal communication role and function of interpersonal communication. This study used a qualitative method with descriptive qualitative approach. The data used in this study consisted of primary data and secondary data. The primary data of the interviews with sources consisting of four children and one stepparent. While the secondary data obtained from other sources such as books and online data searches. The technique of collecting data using interviews, observation, literature review and data searches online. From this research it is known that children who learn about and understand the prospective stepparent before she married biological parents do relatively better than those who do not recognize his step prospective parents before marriage. It is also known that the interpersonal communication of children with stepparents dependent based on the character of the child and the stepparent respectively. Penelitian ini membahas tentang komunikasi antara anak dengan orang tua tiri dan menggunakan teori yang terdiri dari teori komunikasi, fungsi komunikasi, tujuan komunikasi, komunikasi antarpribadi, komunikasi antarpribadi yang efektif, peranan komunikasi antarpribadi dan fungsi komunikasi antarpribadi. Penelitian ini menggunakan metode kualitatif dengan pendekatan deskriptif kualitatif. Data yang digunakan dalam penelitian ini terdiri dari data primer dan data sekunder. Data primer berupa hasil wawancara dengan narasumber yang terdiri dari empat orang anak dan satu orang tua tiri. Sedangkan data sekunder berupa data yang diperoleh dari buku dan sumber lain seperti penelusuran data online. Teknik pengumpulan data dengan menggunakan wawancara, observasi, kajian pustaka dan penelusuran

  20. Gaya Kepemimpinan Orang Buddha Maitreya dalam Bisnis Keluarga

    OpenAIRE

    Josowanto, Selvie

    2014-01-01

    -Penelitian ini bertujuan untuk mengetahui gaya kepemimpinan yang digunakan oleh orang Buddha Maitreya dalam bisnis keluarganya hingga dapat sukses dalam era bisnis, karena mayoritas orang Buddha Maitreya sukses dalam berbisnis. Jenis penelitian ini kualitatif, dengan menggunakan teknik pengumpulan data yaitu wawancara dan observasi pada pemimpin dari USAha berskala menengah dan berskala besar yang merupakan bisnis keluarga, dengan latar belakang agama Buddha Maitreya. Untuk menguji validitas...

  1. DRIS norms for 'Valencia' sweet orange on three rootstocks

    OpenAIRE

    Mourão Filho,Francisco de Assis Alves; Azevedo,João Carlos

    2003-01-01

    Diagnosis and Recommendation Integrated System (DRIS) applies nutrient ratios instead of the isolated concentration values of each nutrient in interpretation of tissue analysis. The objectives of this research were to establish adequate DRIS norms for 'Valencia' sweet orange irrigated commercial groves budded on three rootstocks and correlate indexes of nutrition balance with yield. Experiments were conducted in São Paulo State, Brazil. Rootstocks Rangpur lime, Caipira sweet orange, and Ponci...

  2. Gamma Irradiation Induced Degradation of Orange Peels

    Directory of Open Access Journals (Sweden)

    Jaime Saucedo Luna

    2012-08-01

    Full Text Available In this study, gamma irradiation induced degradation of orange peels (OP was investigated. The lignocellulosic biomass degradation was carried out at doses of 0 (control, 600, 1800 and 3500 kGy using a Co-60 gamma radiation source. The samples were tested for total and reducing sugars. The concentrations of total sugars ranged from 0.530 g∙g−1 in control sample to 0.382 g∙g−1 of dry weight in the sample which received the highest radiation dose. The reducing sugars content varying from 0.018 to 0.184 g∙g−1 of dry weight with the largest rise occurring in the sample irradiated at 3500 kGy. The concentrations of sucrose, glucose and fructose were determined. The changes generated in physico-chemical properties were determined by Fourier Transform Infrared Spectroscopy (FTIR and termogravimetric analysis (TG-DTG. The results show that OP was affected, but not significantly, which suggests that lignocellulose and sugars profiles were partially degraded after gamma irradiation.

  3. Production and Marketing of Orange in Two Villages in Muheza District, Tanzania

    OpenAIRE

    MHANDO, David Gongwe; IKENO, Jun

    2018-01-01

    This study examines the current situation and challenges in orange production and marketing in Muheza District, Tanga Region, Tanzania. Tanga Region is a major orange production area in Tanzania, and it is estimated that more than 80% of all oranges in Tanga Region are produced in Muheza District. Utilizing field data collected in Mkuzi and Mindu villages in Muheza District, this paper explores the current situation of orange production and marketing. Orange production makes a substantial con...

  4. FAKTOR PENDORONG DAN PENARIK ORANG BALI BERWISATA KE LUAR NEGERI

    Directory of Open Access Journals (Sweden)

    Ni Wayan Ana Pradnya Dewi

    2017-02-01

    Full Text Available Berwisata saat ini sudah menjadi gaya hidup bagi masyarakat, tak terkecuali orang Bali. Beberapa tahun terakhir tercatat banyak orang Bali yang berlibur, bahkan hingga ke luar negeri. Penelitian ini bertujuan untuk mengetahui profil demografis orang Bali dan negara yang dikunjungi, faktor pendorong dan penarik, menganalisis tingkat motivasi dan perbedaan motivasi orang Bali yang pertama kali dan yang sering berwisata ke luar negeri. Teori Motivasi dan Teori Hirarki Kebutuhan Maslow digunakan dalam penelitian ini. Pengumpulan data menggunakan metode wawancara dan kuesioner dengan teknik Quota Sampling. Teknik analisis data dilakukan dengan analisis deskriptif kualitatif dan analisis statistik Diskriminan. Hasil penelitian menunjukkan bahwa motivasi orang Bali sangat beragam, responden dapat memiliki motivasi lebih dari satu. Faktor pendorong yang paling dominan adalah educational opportunity disamping motif lain seperti relaxation dan play, sedangkan faktor penarik yang dominan adalah cultural factors, diikuti oleh natural environment dan recreation and attraction services. Ditemukan pula adanya perbedaan motivasi di antara orang Bali yang pertama kali dan yang sering melakukan perjalanan wisata ke luar negeri.

  5. VT Boundaries - county polygons

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The BNDHASH dataset depicts Vermont villages, towns, counties, Regional Planning Commissions (RPC), and LEPC (Local Emergency Planning Committee)...

  6. Indian Point Nuclear Power Station: verification analysis of County Radiological Emergency-Response Plans

    International Nuclear Information System (INIS)

    Nagle, J.; Whitfield, R.

    1983-05-01

    This report was developed as a management tool for use by the Federal Emergency Management Agency (FEMA) Region II staff. The analysis summarized in this report was undertaken to verify the extent to which procedures, training programs, and resources set forth in the County Radiological Emergency Response Plans (CRERPs) for Orange, Putnam, and Westchester counties in New York had been realized prior to the March 9, 1983, exercise of the Indian Point Nuclear Power Station near Buchanan, New York. To this end, a telephone survey of county emergency response organizations was conducted between January 19 and February 22, 1983. This report presents the results of responses obtained from this survey of county emergency response organizations

  7. Diagnosis of the Ghiss Nekor aquifer in order to elaborate the aquifer contract

    Science.gov (United States)

    Baite, Wissal; Boukdir, A.; Zitouni, A.; Dahbi, S. D.; Mesmoudi, H.; Elissami, A.; Sabri, E.; Ikhmerdi, H.

    2018-05-01

    The Ghiss-Nekor aquifer, located in the north-east of the action area of the ABHL, plays a strategic role in the drinkable water supply of the city of Al Hoceima and of the neighboring urban areas. It also participates in the irrigation of PMH. However, this aquifer has problems such as over-exploitation and pollution. In the face of these problems, the only Solution is the establishment of a new mode of governance, which privileges the participation, the involvement and the responsibility of the actors concerned in a negotiated contractual framework, namely the aquifer contract. The purpose of this study is to diagnose the current state of the Ghiss Nekor aquifer, the hydrogeological characterization of the aquifer, the use of the waters of the aquifer, the Problem identification and the introduction of the aquifer contract, which aims at the participatory and sustainable management of underground water resources in the Ghiss- Nekor plain, to ensure sustainable development.

  8. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, ORANGE COUNTY, FLORIDA AND INCORPORATED AREAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  9. Use of Surveillance Systems in Detection of a Ciguatera Fish Poisoning Outbreak - Orange County, Florida, 2014.

    Science.gov (United States)

    Klekamp, Benjamin G; Bodager, Dean; Matthews, Sarah D

    2015-10-16

    What is already known on this topic? Ciguatera fish poisoning (CFP), caused by the ingestion of predatory reef-dwelling fish harboring ciguatoxins is one of the most commonly reported fish-associated marine intoxications. Ciguatoxin retains toxicity regardless of freezing or cooking. Prompt treatment can reduce debilitating neurologic symptoms that are associated with CFP.What is added by this report? Syndromic surveillance systems in Florida identified six adults with CFP following consumption of black grouper. Five patients sought medical attention; health care providers did not make a diagnosis of CFP or report the cases to public health authorities, and none of the patients received treatment. Close collaboration among several investigating agencies allowed traceback efforts to link black grouper consumed by all patients to a common international distributor.What are the implications for public health practice? Syndromic surveillance systems capable of detecting CFP are essential public health tools to identify outbreaks and enhance investigations. Medical and public health practitioners should be educated to inquire about recent fish consumption when evaluating patients with clinically compatible signs and symptoms to allow for prompt treatment, and report suspected CFP cases to public health authorities to facilitate source-food traceback efforts. Public education on avoidance of consumption of relatively large predatory reef fish species known to be from ciguatoxic-endemic areas might reduce the risk for CFP.

  10. Orange County Littoral Cell CRSMP Wastewater and Power Plant Discharge Structures

    Data.gov (United States)

    California Natural Resource Agency — Graphical depiction of wastewater and power plant discharge pipelines/outlets locations in Southern California.The shapefile was collected by Everest International...

  11. Surface gamma-ray survey of the Barre West quadrangle, Washington and Orange Counties, Vermont

    Science.gov (United States)

    Walsh, Gregory J.; Satkoski, Aaron M.

    2005-01-01

    This study was designed to determine the levels of naturally occurring radioactivity in bedrock from surface measurements at outcrops during the course of 1:24,000-scale geologic mapping and to determine which rock types were potential sources of radionuclides. Elevated levels of total alpha particle radiation (gross alpha) occur in a public water system in Montpelier, Vermont. Measured gross alpha levels in the Murray Hill water system (Vermont Dept. of Environmental Conservation, unpub. data, 2005) have exceeded the maximum contaminant level of 15 picocuries per liter (pCi/l) set by the Environmental Protection Agency (EPA) (EPA, 2000). The Murray Hill system began treatment for radium in 1999. Although this treatment was successful, annual monitoring for gross alpha, radium, and uranium continues as required (Jon Kim, written communication, 2005). The water system utilizes a drilled bedrock well located in the Silurian-Devonian Waits River Formation. Kim (2002) summarized radioactivity data for Vermont, and aside from a statewide assessment of radon in public water systems (Manning and Ladue, 1986) and a single flight line from the National Uranium Resource Evaluation (NURE) (Texas Instruments, 1976) (fig. 1), no data are available to identify the potential sources of naturally occurring radioactivity in the local bedrock. Airborne gamma-ray surveys are typically used for large areas (Duval, 2001, 2002), and ground-based surveys are more commonly used for local site assessments. For example, ground-based surveys have been used for fault mapping (Iwata and others, 2001), soil mapping (Roberts and others, 2003), environmental assessments (Stromswold and Arthur, 1996), and mineral exploration (Jubeli and others, 1998). Duval (1980) summarized the methods and applications of gamma- ray spectrometry. In this study, we present the results from a ground-based gamma-ray survey of bedrock outcrops in the 7.5-minute Barre West quadrangle, Vermont. Other related and ongoing studies in the area are addressing potential mineral sources of radionuclides (Satkoski and Walsh, 2004; Satkoski and others, 2005), radionuclides in ground water (Kim and others, 2005), and bedrock geology.

  12. VT Data - Lidar Hillshade (0.7m) 2016, Essex, Caledonia, Orange, and Windsor Counties

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Middle CT River subbasin 2016 0.7m and related "HILLSHADE" raster data. HILLSHADE data...

  13. VT Data - Lidar Slope (0.7m) 2016, Essex, Caledonia, Orange, and Windsor Counties

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Middle CT River subbasin 2016 0.7m and related SLOPE datasets. Created using ArcGIS...

  14. VT Data - Lidar Aspect (0.7m) 2016, Essex, Caledonia, Orange, and Windsor Counties

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Middle CT River subbasin 2016 0.7m and related ASPECT datasets. This metadata complies...

  15. Inventory and Evaluation of Cultural Resources, Bolsa Chica Mesa and Huntington Beach Mesa, Orange County, California

    Science.gov (United States)

    1989-09-30

    Excelentisimo Conde de Monterey, Virrey Que Era dela Nueva Espana. In Monarchia Indiana, edited by J. de Torquemada, pp. 693-725. Madrid. 101 102 Baumhoff, M...biological bacterias , this includes the destruction of canyons, hills, mountains and the flora and fauna in these areas. Road construction, real

  16. Orange County, California 1/3 arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Centers for Environmental Information (NCEI) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These...

  17. 78 FR 68858 - Seal Beach National Wildlife Refuge, Orange County, CA; Final Comprehensive Conservation Plan and...

    Science.gov (United States)

    2013-11-15

    ... provide refuge managers with a 15-year plan for achieving refuge purposes and contributing toward the... photography, environmental education and interpretation. We intend to review and update the CCP at least every... for new research projects that would benefit Refuge resources and Refuge management. Alternative C...

  18. Orange County Transit/traffic Management Integration And Traveler Information Project: Evaluation Plan

    OpenAIRE

    Hall, R.; Hickman, M.

    1996-01-01

    This document focuses on a Field Operational Test (FOT) to develop an integrated information system for transit and traffic management and for traveler information that relies on Global Positioning System (GPS) equipped buses as probe vehicles. The document provides the evaluation plan for the FOT. The plan covers three principal elements: 1) Institutional, TMC Operator and Bus Operator, 2) Public Knowledge and Perceptions, and 3) System performance. The document provides an overall evaluatio...

  19. Orange County Littoral Cell CRSMP Wastewater and Power Plant Discharge Structures

    Data.gov (United States)

    California Department of Resources — Graphical depiction of wastewater and power plant discharge pipelines/outlets locations in Southern California.The shapefile was collected by Everest International...

  20. Rickettsia felis in cat fleas, Ctenocephalides felis parasitizing opossums, San Bernardino County, California.

    Science.gov (United States)

    Abramowicz, K F; Wekesa, J W; Nwadike, C N; Zambrano, M L; Karpathy, S E; Cecil, D; Burns, J; Hu, R; Eremeeva, M E

    2012-12-01

    Los Angeles and Orange Counties are known endemic areas for murine typhus in California; however, no recent reports of flea-borne rickettsioses are known from adjacent San Bernardino County. Sixty-five opossums (Didelphis virginiana) were trapped in the suburban residential and industrial zones of the southwestern part of San Bernardino County in 2007. Sixty out of 65 opossums were infested with fleas, primarily cat fleas, Ctenocephalides felis (Bouché, 1835). The flea minimum infection rate with Rickettsia felis was 13.3% in pooled samples and the prevalence was 23.7% in single fleas, with two gltA genotypes detected. In spite of historic records of murine typhus in this area, no evidence for circulation of R. typhi in fleas was found during the present study. Factors contributing to the absence of R. typhi in these cat fleas in contrast to its presence in cat fleas from Orange and Los Angeles Counties are unknown and need to be investigated further in San Bernardino County. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  1. Geohydrology of the Cerro Prieto geothermal aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez R, J.; de la Pena L, A.

    1981-01-01

    The most recent information on the Cerro Prieto geothermal aquifer is summarized, with special emphasis on the initial production zone where the wells completed in the Alpha aquifer are located. These wells produce steam for power plant units 1 and 2. Brief comments also are made on the Beta aquifer, which underlies the Alpha aquifer in the Cerro Prieto I area and which extends to the east to what is known as the Cerro Prieto II and Cerro Prieto III areas. The location of the area studied is shown. The Alpha and Beta aquifers differ in their mineralogy and cementing mineral composition, temperatures, and piezometric levels. The difference in piezometric levels indicates that there is no local communication between the two aquifers. This situation has been verified by a well interference test, using well E-1 as a producer in the Beta aquifer and well M-46 as the observation well in the Alpha aquifer. No interference between them was observed. Information on the geology, geohydrology, and geochemistry of Cerro Prieto is presented.

  2. Estimating Aquifer Properties Using Sinusoidal Pumping Tests

    Science.gov (United States)

    Rasmussen, T. C.; Haborak, K. G.; Young, M. H.

    2001-12-01

    We develop the theoretical and applied framework for using sinusoidal pumping tests to estimate aquifer properties for confined, leaky, and partially penetrating conditions. The framework 1) derives analytical solutions for three boundary conditions suitable for many practical applications, 2) validates the analytical solutions against a finite element model, 3) establishes a protocol for conducting sinusoidal pumping tests, and 4) estimates aquifer hydraulic parameters based on the analytical solutions. The analytical solutions to sinusoidal stimuli in radial coordinates are derived for boundary value problems that are analogous to the Theis (1935) confined aquifer solution, the Hantush and Jacob (1955) leaky aquifer solution, and the Hantush (1964) partially penetrated confined aquifer solution. The analytical solutions compare favorably to a finite-element solution of a simulated flow domain, except in the region immediately adjacent to the pumping well where the implicit assumption of zero borehole radius is violated. The procedure is demonstrated in one unconfined and two confined aquifer units near the General Separations Area at the Savannah River Site, a federal nuclear facility located in South Carolina. Aquifer hydraulic parameters estimated using this framework provide independent confirmation of parameters obtained from conventional aquifer tests. The sinusoidal approach also resulted in the elimination of investigation-derived wastes.

  3. Allegheny County Blazed Trails Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Shows the location of blazed trails in all Allegheny County parks. This is the same data used in the Allegheny County Parks Trails Mobile App, available for Apple...

  4. Allegheny County Supermarkets & Convenience Stores

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Location information for all Supermarkets and Convenience Stores in Allegheny County was produced using the Allegheny County Fee and Permit Data for 2016.

  5. Geochemistry of the Arbuckle-Simpson Aquifer

    Science.gov (United States)

    Christenson, Scott; Hunt, Andrew G.; Parkhurst, David L.; Osborn, Noel I.

    2009-01-01

    The Arbuckle-Simpson aquifer in south-central Oklahoma provides water for public supply, farms, mining, wildlife conservation, recreation, and the scenic beauty of springs, streams, and waterfalls. A new understanding of the aquifer flow system was developed as part of the Arbuckle-Simpson Hydrology Study, done in 2003 through 2008 as a collaborative research project between the State of Oklahoma and the Federal government. The U.S. Geological Survey collected 36 water samples from 32 wells and springs in the Arbuckle-Simpson aquifer in 2004 through 2006 for geochemical analyses of major ions, trace elements, isotopes of oxygen and hydrogen, dissolved gases, and dating tracers. The geochemical analyses were used to characterize the water quality in the aquifer, to describe the origin and movement of ground water from recharge areas to discharge at wells and springs, and to determine the age of water in the aquifer.

  6. Nitrate Contamination of Deep Aquifers in the Salinas Valley, California

    Science.gov (United States)

    Moran, J. E.; Esser, B. K.; Hillegonds, D. J.; Holtz, M.; Roberts, S. K.; Singleton, M. J.; Visser, A.; Kulongoski, J. T.; Belitz, K.

    2011-12-01

    The Salinas Valley, known as 'the salad bowl of the world', has been an agricultural center for more than 100 years. Irrigated row crops such as lettuce and strawberries dominate both land use and water use. Groundwater is the exclusive supply for both irrigation and drinking water. Some irrigation wells and most public water supply wells in the Salinas Valley are constructed to draw water from deep portions of the aquifer system, where contamination by nitrate is less likely than in the shallow portions of the aquifer system. However, a number of wells with top perforations greater than 75 m deep, screened below confining or semi-confining units, have nitrate concentrations greater than the Maximum Contaminant Limit (MCL) of 45 mg/L as NO3-. This study uses nitrate concentrations from several hundred irrigation, drinking water, and monitoring wells (Monterey County Water Resources Agency, 1997), along with tritium-helium groundwater ages acquired at Lawrence Livermore National Laboratory through the State of California Groundwater Monitoring and Assessment (GAMA) program (reported in Kulongoski et al., 2007 and in Moran et al., in press), to identify nitrate 'hot spots' in the deep aquifer and to examine possible modes of nitrate transport to the deep aquifer. In addition, observed apparent groundwater ages are compared with the results of transport simulations that use particle tracking and a stochastic-geostatistical framework to incorporate aquifer heterogeneity to determine the distribution of travel times from the water table to each well (Fogg et al., 1999). The combined evidence from nitrate, tritium, tritiogenic 3He, and radiogenic 4He concentrations, reveals complex recharge and flow to the capture zone of the deep drinking water wells. Widespread groundwater pumping for irrigation accelerates vertical groundwater flow such that high nitrate groundwater reaches some deep drinking water wells. Deeper portions of the wells often draw in water that recharged

  7. Nanobiocatalytic Degradation of Acid Orange 7

    Science.gov (United States)

    Hastings, Jason

    The catalytic properties of various metal nanoparticles have led to their use in environmental remediation applications. However, these remediation strategies are limited by their ability to deliver catalytic nanoparticles and a suitable electron donor to large treatment zones. Clostridium pasteurianum BC1 cells, loaded with bio-Pd nanoparticles, were used to effectively catalyze the reductive degradation and removal of Acid Orange 7 (AO7), a model azo compound. Hydrogen produced fermentatively by the C. pasteurianum BC1 acted as the electron donor for the process. Pd-free bacterial cultures or control experiments conducted with heat-killed cells showed limited reduction of AO7. Experiments also showed that the in situ biological production of H2 by C. pasteurianum BC1 was essential for the degradation of AO7, which suggests a novel process where the in situ microbial production of hydrogen is directly coupled to the catalytic bio-Pd mediated reduction of AO7. The differences in initial degradation rate for experiments conducted using catalyst concentrations of 1ppm Pd and 5ppm Pd and an azo dye concentration of 100ppm AO7 was 0.39 /hr and 1.94 /hr respectively, demonstrating the importance of higher concentrations of active Pd(0). The degradation of AO7 was quick as demonstrated by complete reductive degradation of 50ppm AO7 in 2 hours in experiments conducted using a catalyst concentration of 5ppm Pd. Dye degradation products were analyzed via Gas Chromatograph-Mass Spectrometer (GCMS), High Performance Liquid Chromatography (HPLC), UltraViolet-Visible spectrophotometer (UV-Vis) and Matrix-Assisted Laser Desorption/Ionization (MALDI) spectrometry. The presence of 1-amino 2-naphthol, one of the hypothesized degradation products, was confirmed using mass spectrometry.

  8. Water-level altitudes 2011 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2010 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Johnson, Michaela R.; Ramage, Jason K.; Kasmarek, Mark C.

    2011-01-01

    Most of the subsidence in the Houston–Galveston region has occurred as a direct result of groundwater withdrawals for municipal supply, industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers causing compaction of the clay layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey, in cooperation with the Harris–Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, and Lone Star Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston–Galveston region. The report contains maps showing 2011 water-level altitudes for the Chicot, Evangeline, and Jasper aquifers; maps showing 1-year (2010–11) water-level-altitude changes for each aquifer; maps showing 5-year (2006–11) water-level-altitude changes for each aquifer; maps showing long-term (1990–2011 and 1977–2011) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000–11) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface material at the extensometers from 1973, or later, through 2010. Tables listing the data used to construct each aquifer-data map and the compaction graphs are included.Water levels in the Chicot, Evangeline, and Jasper aquifers were measured during December 2010–February 2011. In 2011, water-level-altitude contours for the Chicot aquifer ranged from 200 feet below North American Vertical Datum of 1988 (hereinafter, datum) in a small area in southwestern Harris County to 200 feet above datum in central to southwestern Montgomery County. Water-level-altitude changes in the Chicot aquifer ranged from a 40-foot decline to a 33-foot rise (2010–11), from a 10-foot

  9. Water-level altitudes 2010 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2009 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2010-01-01

    Most of the subsidence in the Houston-Galveston region has occurred as a direct result of groundwater withdrawals for municipal supply, industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers causing compaction of the clay layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey, in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, and Lone Star Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps showing 2010 water-level altitudes for the Chicot, Evangeline, and Jasper aquifers, respectively; maps showing 1-year (2009-10) water-level-altitude changes for each aquifer; maps showing 5-year (2005-10) water-level-altitude changes for each aquifer; maps showing long-term (1990-2010 and 1977-2010) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000-10) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface material at the extensometers from 1973, or later, through 2009. Tables listing the data used to construct each aquifer-data map and the compaction graphs are included. Water levels in the Chicot, Evangeline, and Jasper aquifers were measured during December 2009-March 2010. In 2010, water-level-altitude contours for the Chicot aquifer ranged from 200 feet below National Geodetic Vertical Datum of 1929 or North American Vertical Datum of 1988 (hereinafter, datum) in a small area in southwestern Harris County to 200 feet above datum in central to southwestern Montgomery County. Water-level-altitude changes in the Chicot aquifer ranged from a 49-foot decline to a 67

  10. Economics of Managed Aquifer Recharge

    Directory of Open Access Journals (Sweden)

    Robert G. Maliva

    2014-05-01

    Full Text Available Managed aquifer recharge (MAR technologies can provide a variety of water resources management benefits by increasing the volume of stored water and improving water quality through natural aquifer treatment processes. Implementation of MAR is often hampered by the absence of a clear economic case for the investment to construct and operate the systems. Economic feasibility can be evaluated using cost benefit analysis (CBA, with the challenge of monetizing benefits. The value of water stored or treated by MAR systems can be evaluated by direct and indirect measures of willingness to pay including market price, alternative cost, value marginal product, damage cost avoided, and contingent value methods. CBAs need to incorporate potential risks and uncertainties, such as failure to meet performance objectives. MAR projects involving high value uses, such as potable supply, tend to be economically feasible provided that local hydrogeologic conditions are favorable. They need to have low construction and operational costs for lesser value uses, such as some irrigation. Such systems should therefore be financed by project beneficiaries, but dichotomies may exist between beneficiaries and payers. Hence, MAR projects in developing countries may be economically viable, but external support is often required because of limited local financial resources.

  11. EFEKTIVITAS AROMATERAPI BITTER ORANGE TERHADAP NYERI POST PARTUM SECTIO CAESAREA

    Directory of Open Access Journals (Sweden)

    Sri Utami

    2016-10-01

    Full Text Available Surgery that causes severe pain physiological response as compared to a normal delivery was called sectio caesarea. The alternative to reduce pain with bitter orange aroma therapy. Bitter orange aroma therapy is to give the effect of reducing the muscle tensions and stress the body as a whole with the goal of keeping the body and mind into a relaxed. This research was aimed to explore the effectiveness of bitter orange aroma therapy for reduction pain in post partum sectio caesarea. The method used this research was quasi experimental with pre test and post test design with control group. The instruments used numeric rating scale to measure pain intensity. The sampling technique used purposive sampling where the quantity of research sample 34 respondents which are divided into 2 groups, namely intervention group and control group. bitter orange aroma therapy carried out for 15 minutes each day for 2 days. The univariate analysis was conducted to show pain distribution and bivariate analysis was conducted by Wicoxon and Mann Whitney. The result show that after bitter orange aroma therapy was applied towards intervered group, it was obtained that mean of respondents category pain was reducing at 3,44 (low pain with the reduction was 1,47 and mean of post partum sectio caesarea pain without given bitter orange aroma therapy in control group was 4,82 (moderate pain with the reduction was 0. The statistic showed up p value (0,000< 0,05 which mean that kneading techniques effective to reduce pain of post partum sectio caesarea. Based on the result, bitter orange aroma therapy can be recommended as nursing intervention of post partum sectio caesarea.

  12. Allegheny County Watershed Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the 52 isolated sub-Watersheds of Allegheny County that drain to single point on the main stem rivers. Created by 3 Rivers 2nd Nature based...

  13. Allegheny County Block Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset overlays a grid on the County to assist in locating a parcel. The grid squares are 3,500 by 4,500 square feet. The data was derived from original...

  14. LANDSLIDES IN SUCEAVA COUNTY

    Directory of Open Access Journals (Sweden)

    Dan Zarojanu

    2017-07-01

    Full Text Available In the county of Suceava, the landslides are a real and permanent problem. This paper presents the observations of landslides over the last 30 years in Suceava County, especially their morphology, theirs causes and the landslide stopping measures. It presents also several details regarding the lanslides from the town of Suceava, of Frasin and the village of Brodina.

  15. Potentiometric Surface of the Magothy Aquifer in Southern Maryland, September 2009

    Science.gov (United States)

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Late Cretaceous age in Southern Maryland during September 2009. The map is based on water-level measurements in 66 wells. The highest measured water level was 85 feet above sea level near the northern boundary and outcrop area of the aquifer in the north-central part of Anne Arundel County. The potentiometric surface declined towards the south. Local hydraulic gradients were directed toward the center of a cone of depression in the Waldorf area that developed in response to pumping. Measured groundwater levels were as low as 71 feet below sea level in the Waldorf area. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  16. Potentiometric Surface of the Magothy Aquifer in Southern Maryland, September 2007

    Science.gov (United States)

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Late Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 69 wells. The highest measured water level was 85 feet above sea level near the northern boundary and outcrop area of the aquifer in the north-central part of Anne Arundel County. The potentiometric surface declined towards the south. Local gradients were directed toward the center of a cone of depression in the Waldorf area that developed in response to pumping. Measured ground-water levels were as low as 90 feet below sea level in the Waldorf area.

  17. Demand relationships in orange exports to Russia: a differential demand system approach focusing on Egypt

    Directory of Open Access Journals (Sweden)

    Assem Abu Hatab

    2016-10-01

    Full Text Available Abstract Recent years have witnessed closer diplomatic relations between Egypt and Russia, which have led to significant growth in the countries’ bilateral agricultural trade. As a world-leading producer and exporter of oranges, these developments represent an opportunity for Egypt to promote its orange exports to Russia. Another emerging opportunity for Egypt to increase its share in the Russian market for imported oranges has been provided by import embargos imposed by Russia in recent years on agricultural and food commodities from several countries, creating a supply gap of around 25 % in the Russian orange market. To assess the competitiveness of Egyptian oranges and explore the potential export opportunities presented by the Russian market, this paper uses a Rotterdam import allocation model to analyse demand relationships among major orange suppliers to Russia during the period 1996–2014. The results show that in comparison with other orange suppliers, Egypt enjoys a strong comparative advantage in the export of oranges to Russia. The econometric results suggest that both Morocco and Egypt would benefit the most if Russia were to allocate a larger budget to the import of oranges. The expenditure elasticity estimates indicate that an increase in Russia’s demand for imported oranges would lead to increases in the quantity of Egypt’s orange exports, as well as in its share of the Russian orange market. Furthermore, cross-price elasticity estimates reveal that Egyptian oranges are substitutes for Turkish and South African oranges, implying that Russia has a tendency to switch to these two suppliers when Egyptian oranges become relatively expensive. In light of these results, the adoption of strategies to produce oranges sustainably and cost-effectively, upgrade the orange value chain, acquire processing technologies and enhance the technical and organisational capacity of farmers and exporters could be useful means for promoting

  18. Potentiometric Surface in the Sparta-Memphis Aquifer of the Mississippi Embayment, Spring 2007

    Science.gov (United States)

    Schrader, T.P.

    2008-01-01

    The most widely used aquifer for industry and public supply in the Mississippi embayment in Arkansas, Louisiana, Mississippi, and Tennessee is the Sparta-Memphis aquifer. Decades of pumping from the Sparta-Memphis aquifer have affected ground-water levels throughout the Mississippi embayment. Regional assessments of water-level data from the aquifer are important to document regional water-level conditions and to develop a broad view of the effects of ground-water development and management on the sustainability and availability of the region's water supply. This information is useful to identify areas of water-level declines, identify cumulative areal declines that may cross State boundaries, evaluate the effectiveness of ground-water management strategies practiced in different States, and identify areas with substantial data gaps that may preclude effective management of ground-water resources. A ground-water flow model of the northern Mississippi embayment is being developed by the Mississippi Embayment Regional Aquifer Study (MERAS) to aid in answering questions about ground-water availability and sustainability. The MERAS study area covers parts of eight states including Alabama, Arkansas, Illinois, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee and covers approximately 70,000 square miles. The U.S. Geological Survey (USGS) and the Mississippi Department of Environmental Quality Office of Land and Water Resources measured water levels in wells completed in the Sparta-Memphis aquifer in the spring of 2007 to assist in the MERAS model calibration and to document regional water-level conditions. Measurements by the USGS and the Mississippi Department of Environmental Quality Office of Land and Water Resources were done in cooperation with the Arkansas Natural Resources Commission; the Arkansas Geological Survey; Memphis Light, Gas and Water; Shelby County, Tennessee; and the city of Germantown, Tennessee. In 2005, total water use from the Sparta

  19. Colorful and transparent poly(vinyl alcohol) composite films filled with layered zinc hydroxide salts, intercalated with anionic orange azo dyes (methyl orange and orange II)

    International Nuclear Information System (INIS)

    Neves da Silva, Marlon Luiz; Marangoni, Rafael; Cursino, Ana Cristina Trindade; Schreiner, Wido Herwig; Wypych, Fernando

    2012-01-01

    Highlights: ► Zinc hydroxide salts were successfully intercalated with anionic orange azo dyes. ► The anionic dye was co-intercalated with hydrated chloride anions. ► The orange materials were used as fillers for poly(vinyl alcohol). ► Transparent, homogeneous, colorful PVA films were obtained by wet casting. ► Some composites stored at lower humidity exhibited improved mechanical properties. - Abstract: Layered zinc hydroxide salts (zinc LHS) were intercalated with anionic orange azo dyes, namely methyl orange (MO) and orange II (OII), and co-intercalated with hydrated chloride anions. After characterization by X-ray diffraction (XRD), thermal analysis (TGA/DTA), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS), the materials were used as fillers for poly(vinyl alcohol) (PVA). Colorful transparent films were obtained by wet casting, revealing good dispersion of the material into the polymer. In the case of zinc LHS/OII, PVA was intercalated between the zinc LHS layers. Evaluation of the mechanical properties of the PVA composite films revealed that the layered colorful materials were able to increase the mechanical properties of the PVA films only when the films were stored under lower relative humidity. As expected, films with higher water content displayed reduced tensile strength and modulus because of the plasticizing effect of water. As for the films stored at 43% relative humidity, more pronounced improvement of modulus was observed for 1 and 4% zinc LHS/OII, and enhanced tensile strength was achieved for 0.5 and 1% zinc LHS/OII. This effect can be attributed to better dispersion of the layered filler and its better adhesion to the PVA matrix.

  20. Hydrogeologic data from the US Geological Survey test wells near Waycross, Ware County, Georgia

    Science.gov (United States)

    Matthews, S.E.; Krause, R.E.

    1983-01-01

    Two wells were constructed near Waycross, Ware County, Georgia, from July 1980 to May 1981 to collect stratigraphic, structural, geophysical, hydrologic, hydraulic, and geochemical information for the U.S. Geological Survey Tertiary Limestone Regional Aquifer-System Analysis. Data collection included geologic sampling and coring, borehole geophysical logging, packer testing, water-level measuring, water-quality sampling, and aquifer testing. In the study area, the Tertiary limestone aquifer system is about 1,300 feet thick and is confined and overlain by about 610 feet of clastic sediments. The aquifer system consists of limestone, dolomite, and minor evaporites and has high porosity and permeability. A 4-day continuous discharge aquifer test was conducted, from which a transmissivity of about 1 million feet squared per day and a storage coefficient of 0.0001 were calculated. Water from the upper part of the aquifer is of a calcium bicarbonate type. The deeper highly mineralized zone produces a sodium bicarbonate type water in which concentrations of magnesium, sulfate, chloride, sodium, and some trace metals increase with depth. (USGS)

  1. Characterization of orange oil microcapsules for application in textiles

    Science.gov (United States)

    Rossi, W.; Bonet-Aracil, M.; Bou-Belda, E.; Gisbert-Payá, J.; Wilson, K.; Roldo, L.

    2017-10-01

    The use of orange oil presents as an ecological alternative to chemicals, attracting the attention of the scientific community to the development of eco-friendly antimicrobials. The microencapsulation technology has been used for the application of orange oil to textiles, being an economically viable, fast and efficient method by combining core and shell materials, desirable perceptual and functional characteristics, responsible for properties related to the nature of the product and provides that the wall materials release the functional substances in a controlled manner, in addition to effectively protecting and isolating the core material from the external environment to prevent its volatilization and deterioration, increasing the stability of the oil, such as non-toxicity. Thus, to better exploit the properties of the orange essential oil applied to textile products this study presents a characterization of microcapsules of Melamine formaldehyde obtained by the interfacial polymerization method with variations of proportions of orange oil (volatile) with fixed oil Medium-Chain Triglycerides (MCT) (non-volatile) to assist in the stability of the orange essential oil. Scanning electron microscope (SEM) was used as visualizing tool to characterize microparticles and surface morphology and thermal characteristics of microcapsules were premeditated by mean Differential scanning calorimetry (DSC).

  2. Bioactive compounds from orange epicarp to enrich fish burgers.

    Science.gov (United States)

    Spinelli, Sara; Lecce, Lucia; Likyova, Desislava; Del Nobile, Matteo Alessandro; Conte, Amalia

    2018-05-01

    The orange industry produces considerable amounts of by-products, traditionally used for animal feed or fuel production. Most of these by-products could be used as functional ingredients. To assess the potential food application of orange epicarp, different percentages of micro-encapsulated orange extract were added to fresh fish burgers. Then, an in vitro digestion was also carried out, before and after micro-encapsulation, to measure the bio-accessibility of the active compounds. A significant increase of bio-accessibility of bioactive compounds has been observed in the orange epicarp extract after micro-encapsulation by spray-drying. From the sensory point of view, the fish sample enriched with 50 g kg -1 micro-encapsulated extract was the most comparable to the control burger, even if it showed a higher phenolic, flavonoid and carotenoid bio-accessibility. Orange epicarp may be used as a food additive to enhance the health content of food products. The micro-encapsulation is a valid technique to protect the bioactive compounds and increase their bio-accessibility. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Single cell protein production from mandarin orange peel

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, N.; Nagai, S.

    1981-01-01

    As the hydrolysis of mandarin orange peel with macerating enzyme (40/sup 0/C,24 h)produced 0.59 g g/sup -1/ reducing sugar per dry peel compared to 0.36 by acid-hydrolysis (15 min at 120/sup 0/C with 0.8 N H/sub 2/SO/sub 4/), the production of single cell protein (SCP) from orange peel was studied mostly using enzymatically hydrolyzed orange peel. When the enzymatically hydrolyzed peel media were used, the utilization efficiency of reducing sugars (%) and the growth yield from reducing sugars (gg/sup -1/)were: 63 and 0.51 for Saccharomyces cerevisiae; 56 and 0.48 for Candida utilis; 74 and 0.69 for Debaryomyces hansenii and 64 and 0.70 for Rhodotorula glutinis. SCP production from orange peel by D. hansenii and R. glutinis were further studied. Batch cultures for 24 h at 30/sup 0/C using 100 g dried orange peel produced 45 g of dried cultivated peel (protein content, 33%) with D. hansenii and 34 g (protein content, 50%) with R. glutinis, and 38 g (protein content, 44%) with a mixture of both yeasts.

  4. Sharing Experience dan Resiliensi: Studi atas Facebook Group Orang Tua Anak Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Safrina Rofasita

    2017-06-01

    [Orang tua yang mendapati anaknya terfonis sebagai anak Cerebral Palsy mengalami kedukaan mendalam yang mengakibatkan ketidakpercayaan diri, dan putus asa. Hal itu diakibatkan ketahanan terhadap stres (resiliensi rendah, oleh karena itu orang tua mengikuti sharing experiences penyandang Cerebral Palsy melalui Facebook Group orang tua anak Cerebral Palsy. Penelitian ini bertujuan menjawab pertanyaan adakah pengaruh sharing experiences penyandang Cerebral Palsy terhadap resiliensi orang tua anak Cerebral Palsy yang terhimpun dalam Facebook Group Orang Tua Anak Cerebral Palsy. Penelitian menggunakan methode kombinasi antara kuantitatif dan kualitatif. Penelitian menemukan bahwa Facebook Group berpengaruh pada peningkatan resiliensi orang tua anak cerebal palcy karena mereka mendapatkan pengetahuan dan informasi tambahan dari forum itu.

  5. Stability of unpasteurized and refrigerated orange juice

    Directory of Open Access Journals (Sweden)

    Maria Cristina Corrêa de Souza

    2004-07-01

    Full Text Available The stability of orange juice obtained from a small extractor and stored in a polyethylene bottle was assessed under isothermal and non-isothermal storage conditions at 4, 8 and 12ºC for 72 hours. pH, titratable acidity and Brix did not alter significantly during the 72 hours storage. Microbiological analysis showed high initial count for moulds and yeasts that increased in the juice stored for 72h under the non-isothermal conditions with temperature abuse (12��C/4h. Date of the sensory evaluation showed a small reduction in product acceptance in this condition. The juice, in the recommended validity period (48h, presented losses of less than 20% of the initial ascorbic acid content regardless of the treatment. However, after this time, the degradation became accentuated reaching, at 72h storage, retentions of 72 to 85%.Desenvolvimento microbiano, ação enzimática e reações químicas influenciam a qualidade de suco de laranja natural não-pasteurizado, podendo comprometer características sensoriais e provocar perdas nutricionais. A estabilidade do suco, obtido em extrator de pequeno porte e acondicionado em embalagem de polietileno, foi avaliada em condições isotérmicas e não-isotérmicas de armazenamento em temperaturas entre 4 e 12ºC por 72h. Valores de pH, acidez titulável e sólidos solúveis totais não se alteraram significativamente ao longo do armazenamento em todas as condições. Resultados da análise microbiológica mostraram alta contagem inicial de bolores e leveduras, que aumentaram no suco armazenado por 72h na condição não isotérmica onde houve abuso de temperatura (12ºC por 4h. Os testes sensoriais mostraram uma pequena redução na aceitação do produto nessa mesma condição. Constatou-se que o suco, no período preconizado como prazo de validade (48h, apresentou perdas inferiores a 20% do teor inicial de ácido ascórbico, independentemente do tratamento. A partir deste momento, a degradação se

  6. PRof ILE of ORANGE CONSUMPTION AND CONSUMER ATTITUDES TO MINIMALLY PROCESSED ‘PERA’ ORANGE IN MUNICIPALITIES of THE STATE of SÃO PAULO

    Directory of Open Access Journals (Sweden)

    Maria Cecília de Arruda PALHARINI

    2012-08-01

    Full Text Available The objective of this work was to investigate the prof ile of orange consumption and consumer attitude to minimally processed orange. Seven hundred and seventeen questionnaires were applied in commercial establishments in three municipalities in the State of São Paulo, Brazil. Main results of this research are: orange is a highly appreciated fruit, being consumed in natura and also as its natural juice, moreover orange is purchased weekly at hypermarkets, the purchase intent for minimally processed orange was low and the likely consumers’ willingness of paying for that product would be near 200% over the ‘in natura’ fruit. Considering the high consume of ‘in natura’ orange and the increasing need for convenience and practicality, it is possible to affirm that there is a potential for commercializing minimally processed orange.

  7. Characterization of aquifer heterogeneity using Cyclostratigraphy and geophysical methods in the upper part of the Karstic Biscayne Aquifer, Southeastern Florida

    Science.gov (United States)

    Cunningham, Kevin J.; Carlson, Janine L.; Wingard, G. Lynn; Robinson, Edward; Wacker, Michael A.

    2004-01-01

    This report identifies and characterizes candidate ground-water flow zones in the upper part of the shallow, eogenetic karst limestone of the Biscayne aquifer in the Lake Belt area of north-central Miami-Dade County using cyclostratigraphy, ground-penetrating radar (GPR), borehole geophysical logs, and continuously drilled cores. About 60 miles of GPR profiles were used to calculate depths to shallow geologic contacts and hydrogeologic units, image karst features, and produce qualitative views of the porosity distribution. Descriptions of the lithology, rock fabrics, and cyclostratigraphy, and interpretation of depositional environments of 50 test coreholes were linked to the geophysical interpretations to provide an accurate hydrogeologic framework. Molluscan and benthic foraminiferal paleontologic constraints guided interpretation of depositional environments represented by rockfabric facies. Digital borehole images were used to characterize and quantify large-scale vuggy porosity. Preliminary heat-pulse flowmeter data were coupled with the digital borehole image data to identify candidate ground-water flow zones. Combined results show that the porosity and permeability of the karst limestone of the Biscayne aquifer have a highly heterogeneous and anisotropic distribution that is mostly related to secondary porosity overprinting vertical stacking of rock-fabric facies within high-frequency cycles (HFCs). This distribution of porosity produces a dual-porosity system consisting of diffuse-carbonate and conduit flow zones. The nonuniform ground-water flow in the upper part of the Biscayne aquifer is mostly localized through secondary permeability, the result of solution-enlarged carbonate grains, depositional textures, bedding planes, cracks, root molds, and paleokarst surfaces. Many of the resulting pore types are classified as touching vugs. GPR, borehole geophysical logs, and whole-core analyses show that there is an empirical relation between formation porosity

  8. Semangat Islam Dalam Kebudayaan Orang Bugis-Makassar

    Directory of Open Access Journals (Sweden)

    Abu Hamid

    2006-06-01

    Full Text Available Pembahasan masalah semangat dan etos sosial tidak terlepas dari jangkauan sistem budaya masyarakat. Sistem budaya adalah abstrak, tak dapat dilihat dan diraba, ia identik pada komunitas, berada di kepala dan sukma tiap orang dalam komunitas tersebut, terdiri atas konsep-konsep, gagasan ide-ide dan kepercayaan yang diterima setiap orang dari hasil perkembangan kebudayaannya. Sadar atau tidak sadar, manusia terpengaruh dan menerima berbagai warisan, ajaran, kepercayaan dan ideologi tertentu dan hasil kerja komunitasnya melalui internalisasi sejak ia lahir dari dalam rumah tangga serta pengeruh dari lingkungan hidupnya tempat manusia tersebut bertumbuh. Kalau tradisi budaya masyarakat telah diserapi oleh setiap orang, maka perilakunya hampir menjadi otomatis, tanpa disadari perilakunya itu sudah diterima secara sosial.

  9. Oranges and Sunshine: The Story of a Traumatic Encounter

    Directory of Open Access Journals (Sweden)

    Dolores Herrero

    2015-10-01

    Full Text Available This paper will rely on some well-known theories on trauma, memory and ethics to study how Jim Loach’s debut film Oranges and Sunshine (2010 testifies to the traumatic deportation of up to 150,000 British children to distant parts of the Empire, mainly Australia, until 1970. Oranges and Sunshine was based on Margaret Humphreys’ moving memoir, originally entitled Empty Cradles (1994 but later re-titled Oranges and Sunshine after Loach’s film. What these two texts basically claim is the need to recover historic memory through heart-breaking acts of remembrance, which can alone denounce the atrocities that were concomitant with the colonial enterprise and pave the way for disclosing and working through individual and collective traumas.

  10. Development and Modelling of a High-Resolution Aquifer Analog in the Guarani Aquifer (Brazil)

    OpenAIRE

    Höyng, Dominik

    2014-01-01

    A comprehensive and detailed knowledge about the spatial distribution of physical and chemical properties in heterogeneous porous aquifers plays a decisive role for a realistic representation of governing parameters in mathematical models. Models allow the simulation, prediction and reproduction of subsurface flow and transport characteristics. This work explains the identification, characterization and effects of small-scale aquifer heterogeneities in the Guarani Aquifer System (GAS) in S...

  11. Identification of sensory attributes that drive consumer liking of commercial orange juice products in Korea.

    Science.gov (United States)

    Kim, Mina K; Lee, Young-Jin; Kwak, Han Sub; Kang, Myung-woo

    2013-09-01

    Orange juice is a well-accepted fruit juice, and its consumption increases steadily. Many studies have been conducted to understand the sensory characteristics of orange juice throughout its varying processing steps. Sensory language and consumer likings of food can be influenced by culture. The objective of this study is to evaluate the sensory characteristics of commercially available orange juices in Korea and identify drivers of liking for orange juices in Korea. A quantitative descriptive analysis was conducted using a trained panel (n = 10) to evaluate 7 orange juice samples in triplicates, followed by consumer acceptance tests (n = 103). Univariate and multivariate statistical analyses were conducted for data analysis. The sensory characteristics of commercially available orange juice were documented and grouped: group 1 samples were characterized by high in natural citrus flavors such as orange peel, orange flesh, citrus fruit, and grape fruit, whereas group 2 samples were characterized by processed orange-like flavors such as over-ripe, cooked-orange, and yogurt. Regardless of orange flavor types, a high intensity of orange flavor in orange juice was identified as a driver of liking for orange juices in Korea. Three distinct clusters were segmented by varying sensory attributes that were evaluated by likes and dislikes. Overall, many similarities were noticed between Korean market segment and global orange juice market. By knowing the drivers of liking and understanding the distinct consumer clusters present in the Korean orange juice market, the orange juice industry could improve the strategic marketing of its products in Korea. © 2013 Institute of Food Technologists®

  12. Hydrogeologic framework and hydrologic conditions of the Piney Point aquifer in Virginia

    Science.gov (United States)

    McFarland, E. Randolph

    2017-06-07

    The Piney Point aquifer in Virginia is newly described and delineated as being composed of six geologic units, in a study conducted by the U.S. Geological Survey in cooperation with the Virginia Department of Environmental Quality (VA DEQ). The eastward-dipping geologic units include, in stratigraphically ascending order, thesand of the Nanjemoy Formation Woodstock Member,interbedded limestone and sand of the Piney Point Formation,silty and clayey sand of the Gosport Formation equivalent sediments,silty sand of the Oligocene-age sediments,silty fine-grained sand of the Old Church Formation, andsilty sand of the Calvert Formation, Newport News unit and basal Plum Point Member.Identification of geologic units is based on typical sediment lithologies of geologic formations. Fine-grained sediments that compose confining units positioned immediately above and below the Piney Point aquifer are also described.The Piney Point aquifer is one of several confined aquifers within the Virginia Coastal Plain and includes a highly porous and solution-channeled indurated limestone within the Piney Point Formation from which withdrawals are made. The limestone is relatively continuous laterally across central parts of the Northern Neck, Middle Peninsula, and York-James Peninsula. Other geologic units are of variable extent. The configurations of most of the geologic units are further affected by newly identified faults that are aligned radially from the Chesapeake Bay impact crater and create constrictions or barriers to groundwater flow. Some geologic units are also truncated beneath the lower Rappahannock River by a resurge channel associated with the impact crater.Groundwater withdrawals from the Piney Point aquifer increased from approximately 1 million gallons per day (Mgal/d) during 1900 to 7.35 Mgal/d during 2004. As a result, a water-level cone of depression in James City and northern York Counties was estimated to be as low as 70 feet (ft) below the National Geodetic

  13. ORANGE: a Monte Carlo dose engine for radiotherapy

    International Nuclear Information System (INIS)

    Zee, W van der; Hogenbirk, A; Marck, S C van der

    2005-01-01

    This study presents data for the verification of ORANGE, a fast MCNP-based dose engine for radiotherapy treatment planning. In order to verify the new algorithm, it has been benchmarked against DOSXYZ and against measurements. For the benchmarking, first calculations have been done using the ICCR-XIII benchmark. Next, calculations have been done with DOSXYZ and ORANGE in five different phantoms (one homogeneous, two with bone equivalent inserts and two with lung equivalent inserts). The calculations have been done with two mono-energetic photon beams (2 MeV and 6 MeV) and two mono-energetic electron beams (10 MeV and 20 MeV). Comparison of the calculated data (from DOSXYZ and ORANGE) against measurements was possible for a realistic 10 MV photon beam and a realistic 15 MeV electron beam in a homogeneous phantom only. For the comparison of the calculated dose distributions and dose distributions against measurements, the concept of the confidence limit (CL) has been used. This concept reduces the difference between two data sets to a single number, which gives the deviation for 90% of the dose distributions. Using this concept, it was found that ORANGE was always within the statistical bandwidth with DOSXYZ and the measurements. The ICCR-XIII benchmark showed that ORANGE is seven times faster than DOSXYZ, a result comparable with other accelerated Monte Carlo dose systems when no variance reduction is used. As shown for XVMC, using variance reduction techniques has the potential for further acceleration. Using modern computer hardware, this brings the total calculation time for a dose distribution with 1.5% (statistical) accuracy within the clinical range (less then 10 min). This means that ORANGE can be a candidate for a dose engine in radiotherapy treatment planning

  14. Comparison of aquifer characteristics derived from local and regional aquifer tests.

    Science.gov (United States)

    Randolph, R.B.; Krause, R.E.; Maslia, M.L.

    1985-01-01

    A comparison of the aquifer parameter values obtained through the analysis of a local and a regional aquifer test involving the same area in southeast Georgia is made in order to evaluate the validity of extrapolating local aquifer-test results for use in large-scale flow simulations. Time-drawdown and time-recovery data were analyzed by using both graphical and least-squares fitting of the data to the Theis curve. Additionally, directional transmissivity, transmissivity tensor, and angle of anisotropy were computed for both tests. -from Authors Georgia drawdown transmissivity regional aquifer tests

  15. Quantification of aquifer properties with surface nuclear magnetic resonance in the Platte River valley, central Nebraska, using a novel inversion method

    Science.gov (United States)

    Irons, Trevor P.; Hobza, Christopher M.; Steele, Gregory V.; Abraham, Jared D.; Cannia, James C.; Woodward, Duane D.

    2012-01-01

    Surface nuclear magnetic resonance, a noninvasive geophysical method, measures a signal directly related to the amount of water in the subsurface. This allows for low-cost quantitative estimates of hydraulic parameters. In practice, however, additional factors influence the signal, complicating interpretation. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, evaluated whether hydraulic parameters derived from surface nuclear magnetic resonance data could provide valuable input into groundwater models used for evaluating water-management practices. Two calibration sites in Dawson County, Nebraska, were chosen based on previous detailed hydrogeologic and geophysical investigations. At both sites, surface nuclear magnetic resonance data were collected, and derived parameters were compared with results from four constant-discharge aquifer tests previously conducted at those same sites. Additionally, borehole electromagnetic-induction flowmeter data were analyzed as a less-expensive surrogate for traditional aquifer tests. Building on recent work, a novel surface nuclear magnetic resonance modeling and inversion method was developed that incorporates electrical conductivity and effects due to magnetic-field inhomogeneities, both of which can have a substantial impact on the data. After comparing surface nuclear magnetic resonance inversions at the two calibration sites, the nuclear magnetic-resonance-derived parameters were compared with previously performed aquifer tests in the Central Platte Natural Resources District. This comparison served as a blind test for the developed method. The nuclear magnetic-resonance-derived aquifer parameters were in agreement with results of aquifer tests where the environmental noise allowed data collection and the aquifer test zones overlapped with the surface nuclear magnetic resonance testing. In some cases, the previously performed aquifer tests were not designed fully to characterize

  16. Crossbedding of the Potomac Formation in Fairfax County, Virginia

    Science.gov (United States)

    Weir, Gordon Whitney

    1976-01-01

    Crossbedding in sandstone units is the most conspicuous sedimentary structure of the Potomac Formation in Fairfax County, Virginia. Most sets of crossbeds are a few feet thick and several feet wide and tens of feet long. Trough sets are dominant, but planar sets are also common. Dip directions of crossbeds show great variation, though westerly dips are sparse. The averages (resultant vectors) of crossbedding dip-directions measured at 33 localities do not show significant differences according to their geographic or stratigraphic distribution. The average dip-direction of the 292 crossbeds measured is N. 85? E. The data suggest that the depositional slope was easterly in Fairfax County throughout the time of deposition of the Potomac Formation. Major sand bodies, potential aquifers of the formation, are probably elongated along easterly trends.

  17. Steam Injection For Soil And Aquifer Remediation

    Science.gov (United States)

    The purpose of this Issue Paper is to provide to those involved in assessing remediation technologies for specific sites basic technical information on the use of steam injection for the remediation of soils and aquifers that are contaminated by...

  18. Hydrogeologic characterization of devonian aquifers in Uruguay

    International Nuclear Information System (INIS)

    Massa, E.

    1988-01-01

    This article carried out the assistance research project implementation in devonian sedimentary units as a potentials aquifers and their best use to school supplying and rural population in central area of Uruguay.

  19. Aquifer parameter identification and interpretation with different ...

    African Journals Online (AJOL)

    unfortunately, field data deviations from the model type curves are not considered in ... Such an extensive Study can only he done when there is a set of aquifer test data with main and .... 1990; 1995) methods are employed for qualitative.

  20. Allegheny County Hydrology Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams,...

  1. Allegheny County Walk Scores

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Walk Score measures the walkability of any address using a patented system developed by the Walk Score company. For each 2010 Census Tract centroid, Walk Score...

  2. Allegheny County Sheriff Sales

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — List of properties up for auction at a Sheriff Sale. Datasets labeled "Current" contain this month's postings, while those labeled "Archive" contain a running list...

  3. Allegheny County Older Housing

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Older housing can impact the quality of the occupant's health in a number of ways, including lead exposure, housing quality, and factors that may exacerbate...

  4. Allegheny County Dog Licenses

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — A list of dog license dates, dog breeds, and dog name by zip code. Currently this dataset does not include City of Pittsburgh dogs.

  5. Allegheny County Housing Tenure

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Home ownership provides a number of financial, social, and health benefits to American families. Especially in areas with housing price appreciation, home ownership...

  6. Allegheny County Hydrology Lines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams,...

  7. Durham County Demographic Profile

    Data.gov (United States)

    City and County of Durham, North Carolina — (a) Includes persons reporting only one race.(b) Hispanics may be of any race, so also are included in applicable race categories. D: Suppressed to avoid disclosure...

  8. Allegheny County Vacant Properties

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Mail carriers routinely collect data on address no longer receiving mail due to vacancy. This vacancy data is reported quarterly at census tract geographies in the...

  9. 76 FR 35886 - Orange Cove Irrigation District, and Friant Power Authority; Notice of Availability of...

    Science.gov (United States)

    2011-06-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 11068-014--California] Orange Cove Irrigation District, and Friant Power Authority; Notice of Availability of Environmental... has prepared an Environmental Assessment (EA) regarding Orange Cove Irrigation District's and Friant...

  10. t-Butyl group-substituted triphenylamine-containing orange-red fluorescent emitters for organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kum Hee; Kim, Chi Sik [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)

    2012-03-30

    Efficient orange-red fluorescent compounds, 4-(dicyanomethylene)-2-adamantyl-6-(4-(N-(4-tert-butylphenyl) -N-(3,5-di-tert-butylphenyl)amino)benzene)vinyl-4H-pyran (DCATP) and 2,6-bis[4-(N-(4-tert-butylphenyl)-N-(3,5-di-tert-butylphenyl)amino)benzene] vinyl-4-(dicyanomethylene)-4H-pyran (BDCTP) containing the tert-butylated triphenylamine in donor moieties, were synthesized and characterized. In these red emitters, bulky groups, such as t-butyl group and adamantane were introduced to increase the steric hindrance between the red emitters. In particular, an efficient orange-red device containing the emitter DCATP as a dopant showed a luminous and power efficiency of 6.87 cd/A and 2.70 lm/W, respectively, at 20 mA/cm{sup 2} with the CIE coordinates of (0.48, 0.50) at 7.0 V. In addition, an efficient red organic light-emitting diode using BDCTP as a dopant exhibited a luminous and power efficiency of 2.30 cd/A and 1.31 lm/W, respectively, at 20 mA/cm{sup 2} and CIE coordinates of (0.61, 0.39). - Highlights: Black-Right-Pointing-Pointer Two orange-red emitters with t-butylated triphenylamine derivatives were studied. Black-Right-Pointing-Pointer We examine changes in electron D-A and electron D-A-D type in the terminal groups. Black-Right-Pointing-Pointer Electron D-A-D type material shows improved color chromaticity.

  11. Hybrid white organic light-emitting devices based on phosphorescent iridium-benzotriazole orange-red and fluorescent blue emitters

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zhen-Yuan, E-mail: xiazhenyuan@hotmail.com [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Su, Jian-Hua [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Chang, Chi-Sheng; Chen, Chin H. [Display Institute, Microelectronics and Information Systems Research Center, National Chiao Tung University, Hsinchu, Taiwan 300 (China)

    2013-03-15

    We demonstrate that high color purity or efficiency hybrid white organic light-emitting devices (OLEDs) can be generated by integrating a phosphorescent orange-red emitter, bis[4-(2H-benzotriazol-2-yl)-N,N-diphenyl-aniline-N{sup 1},C{sup 3}] iridium acetylacetonate, Ir(TBT){sub 2}(acac) with fluorescent blue emitters in two different emissive layers. The device based on deep blue fluorescent material diphenyl-[4-(2-[1,1 Prime ;4 Prime ,1 Double-Prime ]terphenyl-4-yl-vinyl)-phenyl]-amine BpSAB and Ir(TBT){sub 2}(acac) shows pure white color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.30). When using sky-blue fluorescent dopant N,N Prime -(4,4 Prime -(1E,1 Prime E)-2,2 Prime -(1,4-phenylene)bis(ethene-2,1-diyl) bis(4,1-phenylene))bis(2-ethyl-6-methyl-N-phenylaniline) (BUBD-1) and orange-red phosphor with a color-tuning phosphorescent material fac-tris(2-phenylpyridine) iridium (Ir(ppy){sub 3} ), it exhibits peak luminance yield and power efficiency of 17.4 cd/A and 10.7 lm/W, respectively with yellow-white color and CIE color rendering index (CRI) value of 73. - Highlights: Black-Right-Pointing-Pointer An iridium-based orange-red phosphor Ir(TBT){sub 2}(acac) was applied in hybrid white OLEDs. Black-Right-Pointing-Pointer Duel- and tri-emitter WOLEDs were achieved with either high color purity or efficiency performance. Black-Right-Pointing-Pointer Peak luminance yield of tri-emitter WOLEDs was 17.4 cd/A with yellow-white color and color rendering index (CRI) value of 73.

  12. Simulation of flow in the Edwards Aquifer, San Antonio region, Texas, and refinement of storage and flow concepts

    Science.gov (United States)

    Maclay, Robert W.; Land, Larry F.

    1988-01-01

    produced the best simulation of water levels and springflow. A major interpretation resulting from the simulations is that two essentially independent areas of regional flow were identified in the west and central part of the study area. Flows from the two areas converge at Comal Springs. The directions of computed flux vectors reflected the presence of major barrier faults, which locally deflect patterns of ground-water movement. The most noticeable deflection is the convergence of flow through a geologic structural opening, the Knippa gap, in eastern Uvalde County. A second significant interpretation is that ground-water flow in northeastern Bexar, Comal, and Hays Counties is diverted by barrier faults toward San Marcos Springs, a regional discharge point. Simulations showed that several barrier faults in the northwestern part of the San Antonio area had a significant effect on storage, water levels, and springflow within the Edwards aquifer.

  13. A General Solution for Groundwater Flow in Estuarine Leaky Aquifer System with Considering Aquifer Anisotropy

    Science.gov (United States)

    Chen, Po-Chia; Chuang, Mo-Hsiung; Tan, Yih-Chi

    2014-05-01

    In recent years the urban and industrial developments near the coastal area are rapid and therefore the associated population grows dramatically. More and more water demand for human activities, agriculture irrigation, and aquaculture relies on heavy pumping in coastal area. The decline of groundwater table may result in the problems of seawater intrusion and/or land subsidence. Since the 1950s, numerous studies focused on the effect of tidal fluctuation on the groundwater flow in the coastal area. Many studies concentrated on the developments of one-dimensional (1D) and two-dimensional (2D) analytical solutions describing the tide-induced head fluctuations. For example, Jacob (1950) derived an analytical solution of 1D groundwater flow in a confined aquifer with a boundary condition subject to sinusoidal oscillation. Jiao and Tang (1999) derived a 1D analytical solution of a leaky confined aquifer by considered a constant groundwater head in the overlying unconfined aquifer. Jeng et al. (2002) studied the tidal propagation in a coupled unconfined and confined costal aquifer system. Sun (1997) presented a 2D solution for groundwater response to tidal loading in an estuary. Tang and Jiao (2001) derived a 2D analytical solution in a leaky confined aquifer system near open tidal water. This study aims at developing a general analytical solution describing the head fluctuations in a 2D estuarine aquifer system consisted of an unconfined aquifer, a confined aquifer, and an aquitard between them. Both the confined and unconfined aquifers are considered to be anisotropic. The predicted head fluctuations from this solution will compare with the simulation results from the MODFLOW program. In addition, the solutions mentioned above will be shown to be special cases of the present solution. Some hypothetical cases regarding the head fluctuation in costal aquifers will be made to investigate the dynamic effects of water table fluctuation, hydrogeological conditions, and

  14. Evaluation of long-term water-level declines in basalt aquifers near Mosier, Oregon

    Science.gov (United States)

    Burns, Erick R.; Morgan, David S.; Lee, Karl K.; Haynes, Jonathan V.; Conlon, Terrence D.

    2012-01-01

    The Mosier area lies along the Columbia River in northwestern Wasco County between the cities of Hood River and The Dalles, Oregon. Major water uses in the area are irrigation, municipal supply for the city of Mosier, and domestic supply for rural residents. The primary source of water is groundwater from the Columbia River Basalt Group (CRBG) aquifers that underlie the area. Concerns regarding this supply of water arose in the mid-1970s, when groundwater levels in the orchard tract area began to steadily decline. In the 1980s, the Oregon Water Resources Department (OWRD) conducted a study of the aquifer system, which resulted in delineation of an administrative area where parts of the Pomona and Priest Rapids aquifers were withdrawn from further appropriations for any use other than domestic supply. Despite this action, water levels continued to drop at approximately the same, nearly constant annual rate of about 4 feet per year, resulting in a current total decline of between 150 and 200 feet in many wells with continued downward trends. In 2005, the Mosier Watershed Council and the Wasco Soil and Water Conservation District began a cooperative investigation of the groundwater system with the U.S. Geological Survey. The objectives of the study were to advance the scientific understanding of the hydrology of the basin, to assess the sustainability of the water supply, to evaluate the causes of persistent groundwater-level declines, and to evaluate potential management strategies. An additional U.S. Geological Survey objective was to advance the understanding of CRBG aquifers, which are the primary source of water across a large part of Oregon, Washington, and Idaho. In many areas, significant groundwater level declines have resulted as these aquifers were heavily developed for agricultural, municipal, and domestic water supplies. Three major factors were identified as possible contributors to the water-level declines in the study area: (1) pumping at rates that

  15. Hydric resources evaluation of the Guarani Aquifer System in the State of Minas Gerais Araguari municipality, Brazil

    International Nuclear Information System (INIS)

    Menegasse Velasquez, L.; De Carvalho Filho; Brandao Froes, C.

    2004-01-01

    The general objective of this project is to investigate the aquifers comprised by the Guarany Aquifer System that could eventually be found at the county of Araguari, State of Minas Gerais, Brazil. The main purpose of this investigation is to assist in the implementation of a comprehensive program for the management of the water resources in this region.The proposal can be justified by the fact that, being Araguari located at the north-northeast limit of the river Parana basin, at the plateau which separates the basins of rivers Paranaiba and Araguari, the town concentrates about 90% of the whole population of the county, and is totally supplied by groundwater from the upper formations (Serra Geral and, predominantly, Bauru). Data on these aquifers are scarce, and their intensive explotation has already given rise to conflicts amongst the several water users, such as public and private water supply companies, and industrial and agricultural sectors. Aiming at the evaluation of the groundwater fluxes behavior in the aquifers, as well as the evaluation of their vulnerability to human impacts, besides some other more specific goals, and taking into account two recent studies carried out in the region, a methodology was proposed for simultaneous approaches to the problem, involving from the establishment of a hydrogeological conceptual model to the elaboration/application of a mathematical model for simulation of the groundwater flux and the preparation of natural and specific vulnerability maps of the aquifer system, including the local water budget. The studies will be conducted by the application of classical hydrological and hydrogeological techniques, as well as by the application of nuclear (tracer) and isotopic techniques [es

  16. Water use in Georgia by county for 2010 and water-use trends, 1985–2010

    Science.gov (United States)

    Lawrence, Stephen J.

    2015-12-16

    Water use and water withdrawals and returns in 2010 are estimated for each major river basin, principal aquifer, water-planning region, and county in Georgia using data obtained from various Federal and State agencies and local sources. Offstream water use in 2010 is estimated for the categories of public supply, domestic, commercial, industrial, mining, irrigation, livestock, aquaculture, and thermoelectric power. Water-use trends for 1985 to 2010 are also shown.

  17. Literacy and Development for the Orang Asli in Malaysia: What Matters?

    Science.gov (United States)

    Renganathan, Sumathi

    2016-01-01

    This article explores the literacy practices of the indigenous Semai Orang Asli community in Malaysia. Literacy for the Orang Asli often centres on formal education and schooling and is hardly explored from a social and cultural perspective. In fact, researchers have paid barely any attention to Orang Asli oral and literate traditions nor their…

  18. Educating the Orang Asli Children: Exploring Indigenous Children's Practices and Experiences in Schools

    Science.gov (United States)

    Renganathan, Sumathi

    2016-01-01

    The author is concerned with the education available for the Orang Asli, an indigenous minority community in Malaysia. Literature written about Orang Asli and education mostly assumes a deficit perspective where the lack of educational achievement among the Orang Asli children is often attributed to their culture and community. Therefore, rather…

  19. 7 CFR 319.56-44 - Untreated grapefruit, sweet oranges, and tangerines from Mexico for processing.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Untreated grapefruit, sweet oranges, and tangerines... QUARANTINE NOTICES Fruits and Vegetables § 319.56-44 Untreated grapefruit, sweet oranges, and tangerines from Mexico for processing. Untreated grapefruit (Citrus paradisi), sweet oranges (Citrus sinensis), and...

  20. 78 FR 75359 - Waterway Suitability Assessment for Construction and Operation of Liquefied Gas Terminals; Orange...

    Science.gov (United States)

    2013-12-11

    ... Assessment for Construction and Operation of Liquefied Gas Terminals; Orange, TX AGENCY: Coast Guard, DHS... waterfront facility handling and storing Liquefied Hazardous Gas (LHG) at its Orange, Texas facility. The... LHG marine traffic in the associated waterway. INVISTA, S.a.r.l. located in Orange, Texas submitted an...

  1. 77 FR 30504 - Certain Orange Juice From Brazil: Notice of Rescission of Antidumping Duty Administrative Review

    Science.gov (United States)

    2012-05-23

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-351-840] Certain Orange Juice From... Administrative Review'' of the antidumping duty order on certain orange juice (OJ) from Brazil for a period of...\\ See Revocation of Antidumping Duty Order: Certain Orange Juice From Brazil, 77 FR 23659 (Apr. 20, 2012...

  2. 21 CFR 146.148 - Reduced acid frozen concentrated orange juice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Reduced acid frozen concentrated orange juice. 146... Canned Fruit Juices and Beverages § 146.148 Reduced acid frozen concentrated orange juice. (a) Reduced acid frozen concentrated orange juice is the food that complies with the requirements for composition...

  3. 7 CFR 905.306 - Orange, Grapefruit, Tangerine and Tangelo Regulation.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Orange, Grapefruit, Tangerine and Tangelo Regulation... AGRICULTURE ORANGES, GRAPEFRUIT, TANGERINES, AND TANGELOS GROWN IN FLORIDA Grade and Size Requirements § 905.306 Orange, Grapefruit, Tangerine and Tangelo Regulation. (a) During the period specified in column (2...

  4. 76 FR 54375 - Safety Zone; Thunder on the Gulf, Gulf of Mexico, Orange Beach, AL

    Science.gov (United States)

    2011-09-01

    ...-AA00 Safety Zone; Thunder on the Gulf, Gulf of Mexico, Orange Beach, AL AGENCY: Coast Guard, DHS... portion of the Gulf of Mexico for the waters off Orange Beach, Alabama. This action is necessary for the... conduct a high speed boat race on the Gulf of Mexico, south of Orange Beach, Alabama to occur from October...

  5. Bio-Diesel Production from Oil of Orange ( Citrus Sinensis ) Peels as ...

    African Journals Online (AJOL)

    Although, in Nigeria orange peels are considered as a waste, this study is intended to convert the waste into wealth by establishing the production of biodiesel with oil obtained from orange peels; using transeterification process. Oil from sun-dried/ ground orange peels were extractedusing n-hexane. Transesterification ...

  6. Farmers' willingness to pay for quality orange fleshed sweetpotato ...

    African Journals Online (AJOL)

    The special nutrition need by people have shifted their focus to the adoption of Orange Flesh Sweet Potato for cumption due to its high content of Vitamin A. Sweetpotato which is one of the most important but underutilized food crops in the world have now attracted concerted efforts globally to in the past decade to feed the ...

  7. Health benefits of orange juice and citrus flavonoids

    Science.gov (United States)

    The main flavonoids found in orange juice are hesperidin and naringenin, which can affect several metabolic routes that improve blood serum antioxidant capacity and anti-inflammatory performance, while decreasing insulin resistance protecting against diabetes and metabolic syndrome. In addition, or...

  8. Interception and retention of 238Pu deposition by orange trees

    International Nuclear Information System (INIS)

    Pinder, J.E. III; Adriano, D.C.; Ciravolo, T.G.; Doswell, A.C.; Yehling, D.M.

    1987-01-01

    Radioisotope thermoelectric generators (RTG) transform the heat produced during the alpha decay of 238 Pu into electrical energy for use by deep-space probes, such as the Voyager spacecraft, which have returned images and other data from Jupiter, Saturn and Uranus. Future missions involving RTGs may be launched aboard the space shuttle, and there is a remote possibility that an explosion of liquid-hydrogen and liquid-oxygen fuel could rupture the RTGs and disperse 238 Pu into the atmosphere over central Florida. Research was performed to determine the potential transport to man of atmospherically dispersed Pu via contaminated orange fruits. The results indicate that the major contamination of oranges would result from the interception and retention of 238 Pu deposition by fruits. The resulting surface contamination could enter human food chains through transfer to internal tissues during peeling or in the reconstituted juices and flavorings made from orange skins. The interception of 238 Pu deposition by fruits is especially important because the results indicate no measurable loss of Pu from fruit surfaces through time or with washing. Approximately 1% of the 238 Pu deposited onto an orange grove would be harvested in the year following deposition

  9. Ecological research in conserved areas in the Orange Free State ...

    African Journals Online (AJOL)

    There is a need for the protection and scientific management of representative samples of each ecological area of the Orange Free State. Considerable progress has been made with the establishment of a large number of nature reserves by various authorities. Various ecological investigations have been undertaken in ...

  10. 77 FR 22343 - Certain Orange Juice From Brazil

    Science.gov (United States)

    2012-04-13

    ... Brazil Determination On the basis of the record \\1\\ developed in the subject five-year review, the United... from Brazil would not be likely to lead to continuation or recurrence of material injury to an industry... Publication 4311 (April 2012), entitled Certain Orange Juice from Brazil: Investigation No. 731-TA-1089...

  11. Comparative efficacy of sweet orange, Citrus sinensis (l) rind ...

    African Journals Online (AJOL)

    Sweet orange, Citrus sinensis((L.) rind powder and oil were evaluated for the control of maize weevil, Sitophilus zeamais(Mot.) under ambient laboratory conditions (28 ± 2o C and 75 ± 20% R.H.). Experiments consisted of exposing adult S. zeamais to both the powder and oil for 42 days. Mortality counts were taken from the ...

  12. Agent Orange exposure and attributed health effects in Vietnam veterans.

    Science.gov (United States)

    Young, Alvin L; Cecil, Paul F

    2011-07-01

    Serum dioxin studies of Vietnam (VN) veterans, military historical records of tactical herbicide use in Vietnam, and the compelling evidence of the photodegradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other aspects of environmental fate and low bioavailability of TCDD are consistent with few, if any, ground troop veterans being exposed to Agent Orange. That conclusion, however, is contrary to the presumption by the Department of Veterans Affairs (DVA) that military service in Vietnam anytime from January 9, 1962 to May 7, 1975 is a proxy for exposure to Agent Orange. The DVA assumption is inconsistent with the scientific principles governing determinations of disease causation. The DVA has nonetheless awarded Agent Orange-related benefits and compensation to an increasing number of VN veterans based on the presumption of exposure and the published findings of the Institute of Medicine that there is sufficient evidence of a "statistical association" (a less stringent standard than "causal relationship") between exposure to tactical herbicides or TCDD and 15 different human diseases. A fairer and more valid approach for VN veterans would have been to enact a program of "Vietnam experience" benefits for those seriously ill, rather than benefits based on the dubious premise of injuries caused by Agent Orange.

  13. Decoding the Nonvolatile Sensometabolome of Orange Juice ( Citrus sinensis).

    Science.gov (United States)

    Glabasnia, Anneke; Dunkel, Andreas; Frank, Oliver; Hofmann, Thomas

    2018-03-14

    Activity-guided fractionation in combination with the taste dilution analysis, followed by liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance experiments, led to the identification of 10 polymethoxylated flavones (PMFs), 6 limonoid glucosides, and 2 limonoid aglycones as the key bitterns of orange juice. Quantitative studies and calculation of dose-over-threshold factors, followed by taste re-engineering, demonstrated for the first time 25 sensometabolites to be sufficient to reconstruct the typical taste profile of orange juices and indicated that not a single compound can be considered a suitable marker for juice bitterness. Intriguingly, the taste percept of orange juice seems to be created by a rather complex interplay of limonin, limonoid glucosides, PMFs, organic acids, and sugars. For the first time, sub-threshold concentrations of PMFs were shown to enhance the perceived bitterness of limonoids. Moreover, the influence of sugars on the perceived bitterness of limonoids and PMFs in orange juice relevant concentration ranges was quantitatively elucidated.

  14. A magnetic-lens - mini-orange coincidence spectrometer

    International Nuclear Information System (INIS)

    Bargholtz, C.; Holmberg, L.; Ruus, N.; Tegner, P.E.; Weiss, G.

    1997-04-01

    A coincidence spectrometer consisting of a Gerholm type magnetic lens and a permanent magnet mini-orange spectrometer is described. Electron-electron or electron-positron coincidences may be registered in various angular settings. The spectrometer has been developed mainly to search for anomalous contributions to Bhabha scattering or positrons and is at present used for such studies. 6 refs

  15. California mild CTV strains that break resistance in Trifoliate Orange

    Science.gov (United States)

    This is the final report of a project to characterize California isolates of Citrus tristeza virus (CTV) that replicate in Poncirus trifoliata (trifoliate orange). Next Generation Sequencing (NGS) of viral small interfering RNAs (siRNAs) and assembly of full-length sequences of mild California CTV i...

  16. Comparative study of peroxidase purification from apple and orange ...

    African Journals Online (AJOL)

    This paper reports the isolation and purification of peroxidase from low cost material; moreover, no significant work has been done on the isolation and purification of peroxidase from such cost effective sources (apple and orange seeds). Peroxidases had attracted considerable interest in recent years because of their ...

  17. A review of orange roughy Hoplostethus atlanticus fisheries ...

    African Journals Online (AJOL)

    ... catch rate until a survey series has been established. Keywords: age determination, aggregations, assessment, biology, diet, distribution, fisheries, genetics, habitat, Hoplostethus atlanticus, lipids, Namibia, orange roughy, reproduction, review, stock structure, surveys. African Journal of Marine Science 2001, 23: 181–203 ...

  18. Insecticidal efficacy of Lambdacyhalothrin, cyfluthrin, orange peel oil ...

    African Journals Online (AJOL)

    The mortality effects of lambdacyhalothrin, cyfluthrin, orange peel oil and Platostoma sp. leaves extracts on adult Anopheles mosquitoes were compared in the laboratory at room temperature of 30± 2oC. Thirty adult Anopheles mosquitoes of age 2-4 days were exposed to the four formulations at concentrations ranging from ...

  19. Life cycle assessment of orange peel waste management

    DEFF Research Database (Denmark)

    Negro, Viviana; Ruggeri, Bernardo; Fino, Debora

    2017-01-01

    on-land digestate use. Orange peel waste use for animal feeding, while appearing interesting from an environmental perspective (for example to reduce meal imports), presents practical challenges as far as the nutritional aspects and costs are concerned, and these eventually hinder its market...

  20. Phospholipids of marine origin: the orange roughy (Hoplostethus atlanticus)

    CSIR Research Space (South Africa)

    De Koning, AJ

    2005-09-01

    Full Text Available Fillets of deep-skinned orange roughy (Hoplostethus atlanticus) were found to contain 5.46% total lipids consisting of as much as 93% non-digestible wax esters. The fillets therefore act as a mild laxative, which probably contributes...

  1. Ergonomic evaluation of subjects involved in orange ( Citrus sinensis )

    African Journals Online (AJOL)

    Ergonomic evaluation of subjects involved in orange handling operation in Kano State was conducted. Anthropometric parameters were evaluated, where they were found to vary with age amongst the subjects selected. 20th and 80th percentiles of the dimensions were computed and recommended for usage in design of ...

  2. Uniformity of plants regenerated from orange (Citrus sinensis Osb.) protoplasts.

    Science.gov (United States)

    Kobayashi, S

    1987-05-01

    Using 25 plants (protoclones) regenerated from orange (Citrus sinensis Osb.) protoplasts, several characters, including leaf and flower morphology, leaf oil, isozyme patterns and chromosome number, were examined. No significant variations in each character were recorded among the protoclones. Uniformity observed among protoclones was identical to that of nucellar seedlings.

  3. Quality of jinchen orange juice treated with irradiation and pasteurization

    International Nuclear Information System (INIS)

    Qiao Yu; Cheng Wei; Wang Shaohua; Xiong Guangquan; Liao Li; Chen Xueling; Fan Gang; Pan Siyi

    2010-01-01

    Jinchen orange juice was treated by pasteurization and irradiation (1.4, 2.8 and 5.6 kGy) to study the effects of sterilization methods on quality of orange juice. The volatile compounds were analyzed by solid phase micro-extraction method combined with GC-MS. The juice color, pH and Vc content were determined, and sensory evaluation of the juice were evaluated. The results showed a total of 54, 47, 57, 55, 53 kinds of compounds were detected in fresh juice, pasteurized juice and 3 irradiated juices, respectively. The irradiated juices had bigger peak area of volatile compounds than pasteurized juice,and the biggest peak area was found in 2.8 kGy irradiation sample. β - myrcene, D - limonene and γ-terpinene, which were the characteristic aroma compounds in orange juice, were detected a higher level in irradiation sample than pasteurization. Vc content and aroma decreased after all treatments. The sample after 1.4 kGy treatment showed highest score in sensory evaluation. It was concluded that low dose irradiation could be used in sterilization processing of orange juice. (authors)

  4. ‘JAFFA’ SWEET ORANGE PLANTS GRAFTED ONTO FIVE ROOTSTOCKS

    Directory of Open Access Journals (Sweden)

    ELÍDIO LILIANO CARLOS BACAR

    2017-12-01

    Full Text Available ABSTRACT Low genetic diversity of citrus scion and rootstock cultivars makes the crop more vulnerable to diseases and pests. The objective of this study was to evaluate the performance of ‘Jaffa’ sweet orange grafted onto five rootstocks over six harvests in subtropical conditions in the north of Paraná state, Brazil. The experiment used a randomized block design, with six replications and two trees per plot, spaced at 7.0 m x 4.0 m. The rootstocks were: ‘Rangpur’ lime, ‘Cleopatra’ and ‘Sunki’ mandarins, ‘Fepagro C-13’ citrange, and ‘Swingle’ citrumelo. The variables evaluated were vigor, yield, and yield efficiency of the trees as well as the physical and chemical characteristics of the fruits. Data were subjected to analysis of variance, complemented by Scott-Knott test at 5% probability. The smallest tree canopy for ‘Jaffa’ sweet orange plants was induced by the ‘Rangpur’ lime rootstock. The trees had the same cumulative yield performance over six seasons for all rootstocks. The best yield efficiency for ‘Jaffa’ sweet orange trees was provided by ‘Fepagro C-13’ citrange rootstock. With regard to fruit quality, no differences were observed among the rootstocks and the ‘Jaffa’ sweet orange fruits met the standards required by the fresh fruit market and the fruit processing industry.

  5. Effect of sweet orange aroma on experimental anxiety in humans.

    Science.gov (United States)

    Goes, Tiago Costa; Antunes, Fabrício Dias; Alves, Péricles Barreto; Teixeira-Silva, Flavia

    2012-08-01

    The objective of this study was to evaluate the potential anxiolytic effect of sweet orange (Citrus sinensis) aroma in healthy volunteers submitted to an anxiogenic situation. Forty (40) male volunteers were allocated to five different groups for the inhalation of sweet orange essential oil (test aroma: 2.5, 5, or 10 drops), tea tree essential oil (control aroma: 2.5 drops), or water (nonaromatic control: 2.5 drops). Immediately after inhalation, each volunteer was submitted to a model of anxiety, the video-monitored version of the Stroop Color-Word Test (SCWT). Psychologic parameters (state-anxiety, subjective tension, tranquilization, and sedation) and physiologic parameters (heart rate and gastrocnemius electromyogram) were evaluated before the inhalation period and before, during, and after the SCWT. Unlike the control groups, the individuals exposed to the test aroma (2.5 and 10 drops) presented a lack of significant alterations (p>0.05) in state-anxiety, subjective tension and tranquillity levels throughout the anxiogenic situation, revealing an anxiolytic activity of sweet orange essential oil. Physiologic alterations along the test were not prevented in any treatment group, as has previously been observed for diazepam. Although more studies are needed to find out the clinical relevance of aromatherapy for anxiety disorders, the present results indicate an acute anxiolytic activity of sweet orange aroma, giving some scientific support to its use as a tranquilizer by aromatherapists.

  6. Photo-catalytic Removal of Methyl Orange Dye by Polyaniline ...

    African Journals Online (AJOL)

    Photo-catalytic Removal of Methyl Orange Dye by Polyaniline Modified ZnO using Visible Radiation. ... The as-synthesized nano-ZnO, PANI and PANI/ZnO nanocomposite were characterized by X-ray diffraction (XRD), FT-IR, and UV-Vis spectroscopy. The UV–visible spectroscopy studies showed that the absorption peak ...

  7. Optimization of extraction of microcrystalline cellulose from orange ...

    African Journals Online (AJOL)

    This study investigated the optimum processing conditions for obtaining the maximum yield of microcrystalline cellulose (MCC) powder from orange peel waste (OPW) by use of response surface methodology (RSM). Central composite design (CCD) was used to evaluate the optimum process conditions for producing MCC ...

  8. Gamma radiation and the conservation of natural orange juice

    International Nuclear Information System (INIS)

    Iemma, Juliana; Alcarde, Andre Ricardo; Domarco, Rachel Elisabeth; Spoto, Marta Helena Fillet; Blumer, Lucimara; Matraia, Clarice

    1999-01-01

    The effect of gamma radiation was evaluated on the microbiological population, soluble solids content, acidity, p H and ascorbic acid content of natural orange juice. Microbial activity may cause deterioration of orange juice. Irradiation is a process of food conservation which eliminates microorganisms. nevertheless radiation may affect some characteristics of irradiated food. The experimental design was a 4 x 5 factorial scheme, including control and 3 rates of irradiation (2.0, 4.0 and 6.0 kGy) and 5 storage periods (1, 7, 14, 21 and 28 days), with 2 replicates. Samples of juice were extracted from variety Pera oranges and irradiated at a rate of 2.0 kGy/h ( 60 Cobalt) and thereafter stored at 5 +- 3 deg C. Results showed small changes in soluble solids content, acidity and p H, for all treatments. The ratio soluble solids/acidity was also determined and showed little variation for all treatments. There was a reduction on ascorbic acid content of the orange juice with increased radiation dosage and storage time. Gamma radiation was effective in reducing the microbiological population of the juice. (author)

  9. Guarani aquifer hydrogeological synthesis of the Guarani aquifer system. Edicion bilingue

    International Nuclear Information System (INIS)

    2009-01-01

    This work represents the synthesis of current knowledge of the Guarani Aquifer System, based on technical products made by different companies and consultants who participated in the framework of the Project for Environmental Protection and Sustainable Development of the Guarani Aquifer.

  10. Alcoholic fermentation induces melatonin synthesis in orange juice.

    Science.gov (United States)

    Fernández-Pachón, M S; Medina, S; Herrero-Martín, G; Cerrillo, I; Berná, G; Escudero-López, B; Ferreres, F; Martín, F; García-Parrilla, M C; Gil-Izquierdo, A

    2014-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) is a molecule implicated in multiple biological functions. Its level decreases with age, and the intake of foods rich in melatonin has been considered an exogenous source of this important agent. Orange is a natural source of melatonin. Melatonin synthesis occurs during alcoholic fermentation of grapes, malt and pomegranate. The amino acid tryptophan is the precursor of all 5-methoxytryptamines. Indeed, melatonin appears in a shorter time in wines when tryptophan is added before fermentation. The aim of the study was to measure melatonin content during alcoholic fermentation of orange juice and to evaluate the role of the precursor tryptophan. Identification and quantification of melatonin during the alcoholic fermentation of orange juice was carried out by UHPLC-QqQ-MS/MS. Melatonin significantly increased throughout fermentation from day 0 (3.15 ng/mL) until day 15 (21.80 ng/mL) reaching larger amounts with respect to other foods. Melatonin isomer was also analysed, but its content remained stable ranging from 11.59 to 14.18 ng/mL. The enhancement of melatonin occurred mainly in the soluble fraction. Tryptophan levels significantly dropped from 13.80 mg/L (day 0) up to 3.19 mg/L (day 15) during fermentation. Melatonin was inversely and significantly correlated with tryptophan (r = 0.907). Therefore, the enhancement in melatonin could be due to both the occurrence of tryptophan and the new synthesis by yeast. In summary, the enhancement of melatonin in novel fermented orange beverage would improve the health benefits of orange juice by increasing this bioactive compound. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Trifoliate hybrids as rootstocks for Pêra sweet orange tree

    Directory of Open Access Journals (Sweden)

    Jorgino Pompeu Junior

    2014-03-01

    Full Text Available The Rangpur lime (Citrus limonia has been used as the main rootstock for Pêra sweet orange (C. sinensis trees. However, its susceptibility to citrus blight and citrus sudden death has led to the use of disease-tolerant rootstocks, such as Cleopatra mandarin reshni, Sunki mandarin (C. sunki and Swingle citrumelo (C. paradisi x Poncirus trifoliata, which are more susceptible to drought than the Rangpur lime. These mandarin varieties are also less resistant to root rot caused by Phytophthora, and the Swingle citrumelo showed to be incompatible with the Pêra sweet orange. In search of new rootstock varieties, this study aimed at assessing the fruit precocity and yield, susceptibility to tristeza and blight and occurrence of incompatibility of Pêra sweet orange trees grafted on 12 trifoliate hybrids, on Rangpur lime EEL and Goutou sour orange, without irrigation. Tristeza and blight are endemic in the experimental area. The Sunki x English (1628 and Changsha x English Small (1710 citrandarins and two other selections of Cleopatra x Rubidoux provided the highest cumulative yields, in the first three crops and in the total of six crops evaluated. The Cleopatra x Rubidoux (1660 and Sunki x Benecke (1697 citrandarins induced early yield, while the Cravo x Swingle citromonia and C-13 citrange induced later yield. None of the rootstock varieties caused alternate bearing. Pêra sweet orange trees grafted on Swingle citrumelo, Cleopatra x Swingle (1654 citrandarin and on two selections of Rangpur lime x Carrizo citrange showed bud-union-ring symptoms of incompatibility. None of the plants presented symptoms of tristeza or blight.

  12. Aquifer response to earth tides

    International Nuclear Information System (INIS)

    Kanehiro, B.Y.; Narasimhan, T.N.

    1981-01-01

    The relation presented in the first part of this paper are applicable to packed-off wells and other situations where appreciable flow to the well does not exist. Comparisons of aquifer properties determined from the response to earth tides and from the more standard pumping tests for the two California fields are reasonably good. The case of an open well makes the problem more complicated, since there may be an appreciable amount of flow to the well. This flow to the well is seen as either a phase lag or as a difference in the ratio of the well signal to the tide for the semidiurnal and diurnal components of the tide. The latter is probably the better and more accurate indicator of flow to the well. Analyses of such situations, however, become involved and are probably best done as case-by-case studies. The numerical solutions show that treating the inverse problem through numerical modeling is at least feasible for any individual situation. It may be possible to simplify the inverse problem through the generation of type curves, but general type curves that are applicable to diverse situations are not likely to be practical. 7 figures

  13. Aquifer Storage Recovery (ASR) of chlorinated municipal drinking water in a confined aquifer

    Science.gov (United States)

    Izbicki, John A.; Petersen, Christen E.; Glotzbach, Kenneth J.; Metzger, Loren F.; Christensen, Allen H.; Smith, Gregory A.; O'Leary, David R.; Fram, Miranda S.; Joseph, Trevor; Shannon, Heather

    2010-01-01

    About 1.02 x 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94-137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 x 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with freechlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction

  14. Hydrological connectivity of perched aquifers and regional aquifers in semi-arid environments: a case study from Namibia

    Science.gov (United States)

    Hamutoko, J. T.; Wanke, H.

    2017-12-01

    Integrated isotopic and hydrological tracers along with standard hydrological data are used to understand complex dry land hydrological processes on different spatial and temporal scales. The objective of this study is to analyse the relationship between the perched aquifers and the regional aquifer using hydrochemical data and isotopic composition in the Cuvelai-Etosha Basin in Namibia. This relation between the aquifers will aid in understanding groundwater recharge processes and flow dynamics. Perched aquifers are discontinuous shallow aquifers with water level ranging from 0 to 30 meters below ground level. The regional aquifer occurs in semi-consolidated sandstone at depths between about 60 and 160 meters below ground level. Water samples were collected from both aquifers in 10 villages and were analysed for major ions and stable isotopes. The results show overlapping hydrochemistry and isotopic compositions of both aquifers in 8 villages which suggest the possibility of perched aquifer water infiltrating into the regional aquifer. In two villages the hydrochemistry and isotopic composition of the aquifers are totally different and this suggests that there is no interaction between this aquifers. Areas where perched aquifers are connected to regional aquifers maybe recharge zones. These finding have important implications for groundwater resource management.

  15. Transient well flow in vertically heterogeneous aquifers

    Science.gov (United States)

    Hemker, C. J.

    1999-11-01

    A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with

  16. Importance of Unattached Bacteria and Bacteria Attached to Sediment in Determining Potentials for Degradation of Xenobiotic Organic Contaminants in an Aerobic Aquifer

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Albrechtsen, Hans-Jørgen; Christensen, Thomas Højlund

    1992-01-01

    The bacterial abundance, distribution, and degradation potential (in terms of degradation versus lack of degradation) for four xenobiotic compounds in an aerobic aquifer sediment have been examined in laboratory and field experiments. The xenobiotic compounds studied were benzene, toluene, o......-xylene, and naphthalene (all at concentrations of approximately 120 pg/liter). The aerobic degradation experiments ran for approximately 90 days at 10°C, which corresponded to the groundwater temperature. At the end of the experiment, the major part of the microbial biomass, quantified as acridine orange direct counts......, was attached to the groundwater sediment (18 x 106 to 25 x 106 cells per g [dry weight]), and only a minor part was unattached in the groundwater (0.6 x 106 to 5.5 x 106 cells per ml). Experiments involving aquifer sediment suspensions showed identical degradation potentials in the laboratory and in the field...

  17. A Black Hills-Madison Aquifer origin for Dakota Aquifer groundwater in northeastern Nebraska.

    Science.gov (United States)

    Stotler, Randy; Harvey, F Edwin; Gosselin, David C

    2010-01-01

    Previous studies of the Dakota Aquifer in South Dakota attributed elevated groundwater sulfate concentrations to Madison Aquifer recharge in the Black Hills with subsequent chemical evolution prior to upward migration into the Dakota Aquifer. This study examines the plausibility of a Madison Aquifer origin for groundwater in northeastern Nebraska. Dakota Aquifer water samples were collected for major ion chemistry and isotopic analysis ((18)O, (2)H, (3)H, (14)C, (13)C, (34)S, (18)O-SO(4), (87)Sr, (37)Cl). Results show that groundwater beneath the eastern, unconfined portion of the study area is distinctly different from groundwater sampled beneath the western, confined portion. In the east, groundwater is calcium-bicarbonate type, with delta(18)O values (-9.6 per thousand to -12.4 per thousand) similar to local, modern precipitation (-7.4 per thousand to -10 per thousand), and tritium values reflecting modern recharge. In the west, groundwater is calcium-sulfate type, having depleted delta(18)O values (-16 per thousand to -18 per thousand) relative to local, modern precipitation, and (14)C ages 32,000 to more than 47,000 years before present. Sulfate, delta(18)O, delta(2)H, delta(34)S, and delta(18)O-SO(4) concentrations are similar to those found in Madison Aquifer groundwater in South Dakota. Thus, it is proposed that Madison Aquifer source water is also present within the Dakota Aquifer beneath northeastern Nebraska. A simple Darcy equation estimate of groundwater velocities and travel times using reported physical parameters from the Madison and Dakota Aquifers suggests such a migration is plausible. However, discrepancies between (14)C and Darcy age estimates indicate that (14)C ages may not accurately reflect aquifer residence time, due to mixtures of varying aged water.

  18. Hydrogeology and simulation of ground-water flow at Arnold Air Force Base, Coffee and Franklin counties, Tennessee

    Science.gov (United States)

    Haugh, C.J.; Mahoney, E.N.

    1994-01-01

    The U.S. Air Force at Arnold Air Force Base (AAFB), in Coffee and Franklin Counties, Tennessee, is investigating ground-water contamination in selected areas of the base. This report documents the results of a comprehensive investigation of the regional hydrogeology of the AAFB area. Three aquifers within the Highland Rim aquifer system, the shallow aquifer, the Manchester aquifer, and the Fort Payne aquifer, have been identified in the study area. Of these, the Manchester aquifer is the primary source of water for domestic use. Drilling and water- quality data indicate that the Chattanooga Shale is an effective confining unit, isolating the Highland Rim aquifer system from the deeper, upper Central Basin aquifer system. A regional ground-water divide, approximately coinciding with the Duck River-Elk River drainage divide, underlies AAFB and runs from southwest to northeast. The general direction of most ground-water flow is to the north- west or to the northwest or to the southeast from the divide towards tributary streams that drain the area. Recharge estimates range from 4 to 11 inches per year. Digital computer modeling was used to simulate and provide a better understanding of the ground-water flow system. The model indicates that most of the ground-water flow occurs in the shallow and Manchester aquifers. The model was most sensitive to increases in hydraulic conductivity and changes in recharge rates. Particle-tracking analysis from selected sites of ground-water contamination indicates a potential for contami- nants to be transported beyond the boundary of AAFB.

  19. Potentiometric Surface of the Lower Patapsco Aquifer in Southern Maryland, September 2007

    Science.gov (United States)

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the lower Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 65 wells. The highest measured water level was 111 feet above sea level near the northwestern boundary and outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined towards well fields at Severndale and Arnold. The measured ground-water levels were 87 feet below sea level at Severndale, and 42 feet below sea level at Arnold. There was also a cone of depression covering a large area in Charles County that includes Waldorf, La Plata, Indian Head, and the Morgantown power plant. The ground-water levels measured were as low as 219 feet below sea level at Waldorf, 187 feet below sea level at La Plata, 106 feet below sea level at Indian Head, and 89 feet below sea level at the Morgantown power plant.

  20. Potentiometric Surface of the Lower Patapsco Aquifer in Southern Maryland, September 2009

    Science.gov (United States)

    Curtin, Stephen E.; Andreasin, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the potentiometric surface of the lower Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2009. The map is based on water-level measurements in 64 wells. The highest measured water level was 110 feet above sea level near the northwestern boundary and outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined towards well fields at Severndale, Broad Creek, and Arnold. The measured groundwater levels were 99 feet below sea level at Severndale, 50 feet below sea level at Broad Creek, and 36 feet below sea level at Arnold. There was also a cone of depression in Charles County that includes Waldorf, La Plata, Indian Head, and the Morgantown power plant. The groundwater levels measured were as low as 215 feet below sea level at Waldorf, 149 feet below sea level at La Plata, 121 feet below sea level at Indian Head, and 96 feet below sea level at the Morgantown power plant. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  1. Potentiometric Surface of the Upper Patapsco Aquifer in Southern Maryland, September 2007

    Science.gov (United States)

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 50 wells. The highest measured water level was 120 feet above sea level near the northern boundary and outcrop area of the aquifer in northern Anne Arundel County. From this area, the potentiometric surface declined to the south toward a well field in the Annapolis-Arnold area, and from all directions toward four cones of depression. These cones are located in the Waldorf-La Plata area, Chalk Point-Prince Frederick area, Swan Point subdivision in southern Charles County, and the Lexington Park-St. Inigoes area. The lowest measured ground-water level was 44 feet below sea level at Arnold, 106 feet below sea level south of Waldorf, 54 feet below sea level at Swan Point, 59 feet below sea level at Chalk Point, and 58 feet below sea level at Lexington Park.

  2. Remedial design process for Montclair/West Orange and Glen Ridge radium sites

    International Nuclear Information System (INIS)

    MacIndoe, M.; Johnson, R.; Paez-Restrepo, A.; Wilkinson, S.; Hyman, M.

    1994-01-01

    The Montclair/West Orange and Glen Ridge Superfund Sites, located in Essex County, New Jersey, are contaminated to varying degrees with radioactive materials. The waste materials originated from radium processing facilities prevalent in the area during the early 1900's. The two sites consist of 769 residential and commercial properties having a combined land area of approximately 210 acres. Historically, radioactive waste materials were disposed as landfill material in what were once rural areas. As development flourished, homes and streets were constructed over the landfilled waste. In 1981 the EPA conducted an aerial gamma radiation survey of the area to determine the presence of radioactive materials. It was from this survey that subsequent ground studies where initiated, and elevated gamma radiation and radon levels were discovered. The paper will discuss the methods used to obtain data through field investigations; the relationship between the interpretation of data to define the vertical and lateral limits of contamination and the selection of remedial design methods used to develop excavation plans; the evolution of remediation methods and technologies relative to the remediation of structures by underpinning basements, on-grade structures, and chimneys; removal of contaminated material beneath footings without cribbing; and demolition of basement foundation walls (where contaminated) without use of traditional support methods. Finally, the paper will discuss remedial action execution of the work

  3. Case study: Montclair/West Orange and Glen Ridge Radium Superfund sites

    International Nuclear Information System (INIS)

    Pezzella, R.; Seppi, P.; Watson, D.

    1994-01-01

    The Montclair/West Orange and Glen Ridge Radium Sites are located 12 miles west of New York City in three residential communities in Essex County, New Jersey. The sites are contaminated with waste materials from a local radium processing facility which ceased operations in 1926. Houses were subsequently constructed on or near the radium waste disposal areas. The waste material was also used as backfill, which caused contamination to be spread randomly over the communities. There are 769 properties between four townships that comprise the Superfund sites. The Environmental Protection Agency (EPA) conducted an aerial survey in 1981 which identified the boundaries of the sites. In 1985, the New Jersey Department of Environmental Protection (NJDEP) began a pilot study to examine the feasibility of excavation and off-site disposal of contaminated material as a permanent solution. The study was interrupted when the permit for the disposal site was revoked by the state of Nevada. Since 1990 field testing has been completed on over 725 properties and remediation and restoration has been completed on 75 properties

  4. Evidence for Upward Flow of Saline Water from Depth into the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    Science.gov (United States)

    Larsen, D.; Paul, J.

    2017-12-01

    Groundwater salinization is occurring in the Mississippi River Valley Alluvial (MRVA) aquifer in southeastern Arkansas (SE AR). Water samples from the MRVA aquifer in Chicot and Desha counties have yielded elevated Cl-concentrations with some as high as 1,639 mg/L. Considering that the MRVA aquifer is the principle source of irrigation water for the agricultural economy of SE AR, salinization needs to be addressed to ensure the sustainability of crop, groundwater, and soil resources in the area. The origin of elevated salinity in MRVA aquifer was investigated using spatial and factor analysis of historical water quality data, and sampling and tracer analysis of groundwater from irrigation, municipal, and flowing industrial wells in SE AR. Spatial analysis of Cl- data in relation to soil type, geomorphic features and sand-blow density indicate that the Cl- anomalies are more closely related to the sand-blow density than soil data, suggesting an underlying tectonic control for the distribution of salinity. Factor analysis of historical geochemical data from the MRVA and underlying Sparta aquifer shows dilute and saline groups, with saline groups weighted positively with Cl- or Na+ and Cl-. Tracer data suggest a component of evaporatively evolved crustal water of pre-modern age has mixed with younger, fresher meteoric sources in SE AR to create the saline conditions in the MRVA aquifer. Stable hydrogen and oxygen values of waters sampled from the Tertiary Sparta and MRVA aquifers deviate from the global and local meteoric water lines along an evaporative trend (slope=4.4) and mixing line with Eocene Wilcox Group groundwaters. Ca2+ and Cl- contents vary with Br- along mixing trends between dilute MRVA water and Jurassic Smackover Formation pore fluids in southern AR. Increasing Cl- content with C-14 age in MRVA aquifer groundwater suggests that the older waters are more saline. Helium isotope ratios decrease with He gas content for more saline water, consistent with

  5. The 2016 groundwater flow model for Dane County, Wisconsin

    Science.gov (United States)

    Parsen, Michael J.; Bradbury, Kenneth R.; Hunt, Randall J.; Feinstein, Daniel T.

    2016-01-01

    A new groundwater flow model for Dane County, Wisconsin, replaces an earlier model developed in the 1990s by the Wisconsin Geological and Natural History Survey (WGNHS) and the U.S. Geological Survey (USGS). This modeling study was conducted cooperatively by the WGNHS and the USGS with funding from the Capital Area Regional Planning Commission (CARPC). Although the overall conceptual model of the groundwater system remains largely unchanged, the incorporation of newly acquired high-quality datasets, recent research findings, and improved modeling and calibration techniques have led to the development of a more detailed and sophisticated model representation of the groundwater system. The new model is three-dimensional and transient, and conceptualizes the county’s hydrogeology as a 12-layer system including all major unlithified and bedrock hydrostratigraphic units and two high-conductivity horizontal fracture zones. Beginning from the surface down, the model represents the unlithified deposits as two distinct model layers (1 and 2). A single layer (3) simulates the Ordovician sandstone and dolomite of the Sinnipee, Ancell, and Prairie du Chien Groups. Sandstone of the Jordan Formation (layer 4) and silty dolostone of the St. Lawrence Formation (layer 5) each comprise separate model layers. The underlying glauconitic sandstone of the Tunnel City Group makes up three distinct layers: an upper aquifer (layer 6), a fracture feature (layer 7), and a lower aquifer (layer 8). The fracture layer represents a network of horizontal bedding-plane fractures that serve as a preferential pathway for groundwater flow. The model simulates the sandstone of the Wonewoc Formation as an upper aquifer (layer 9) with a bedding-plane fracture feature (layer 10) at its base. The Eau Claire aquitard (layer 11) includes shale beds within the upper portion of the Eau Claire Formation. This layer, along with overlying bedrock units, is mostly absent in the preglacially eroded valleys along

  6. Lithostratigraphic, borehole-geophysical, hydrogeologic, and hydrochemical data from the East Bay Plain, Alameda County, California

    Science.gov (United States)

    Sneed, Michelle; Orlando, Patricia v.P.; Borchers, James W.; Everett, Rhett; Solt, Michael; McGann, Mary; Lowers, Heather; Mahan, Shannon

    2015-01-01

    The U.S. Geological Survey, in cooperation with the East Bay Municipal Utility District, carried out an investigation of aquifer-system deformation associated with groundwater-level changes at the Bayside Groundwater Project near the modern San Francisco Bay shore in San Lorenzo, California. As a part of the Bayside Groundwater Project, East Bay Municipal Utility District proposed an aquifer storage and recovery program for 1 million gallons of water per day. The potential for aquifer-system compaction and expansion, and related subsidence, uplift, or both, resulting from aquifer storage and recovery activities were investigated and monitored in the Bayside Groundwater Project. In addition, baseline analysis of groundwater and substrata properties were performed to assess the potential effect of such activities. Chemical and physical data, obtained from the subsurface at four sites on the east side of San Francisco Bay in the San Lorenzo and San Leandro areas of the East Bay Plain, Alameda County, California, were collected during the study. The results of the study were provided to the East Bay Municipal Utility District and other agencies to evaluate the chemical and mechanical responses of aquifers underlying the East Bay Plain to the future injection and recovery of imported water from the Sierra Nevada of California.

  7. Groundwater vulnerability mapping of Qatar aquifers

    Science.gov (United States)

    Baalousha, Husam Musa

    2016-12-01

    Qatar is one of the most arid countries in the world with limited water resources. With little rainfall and no surface water, groundwater is the only natural source of fresh water in the country. Whilst the country relies mainly on desalination of seawater to secure water supply, groundwater has extensively been used for irrigation over the last three decades, which caused adverse environmental impact. Vulnerability assessment is a widely used tool for groundwater protection and land-use management. Aquifers in Qatar are carbonate with lots of fractures, depressions and cavities. Karst aquifers are generally more vulnerable to contamination than other aquifers as any anthropogenic-sourced contaminant, especially above a highly fractured zone, can infiltrate quickly into the aquifer and spread over a wide area. The vulnerability assessment method presented in this study is based on two approaches: DRASTIC and EPIK, within the framework of Geographical Information System (GIS). Results of this study show that DRASTIC vulnerability method suits Qatar hydrogeological settings more than EPIK. The produced vulnerability map using DRASTIC shows coastal and karst areas have the highest vulnerability class. The southern part of the country is located in the low vulnerability class due to occurrence of shale formation within aquifer media, which averts downward movement of contaminants.

  8. Citrus pulp pellets as an additive for orange bagasse silage

    Directory of Open Access Journals (Sweden)

    R. K. Grizotto

    2017-03-01

    Full Text Available This study evaluated the fermentation profile of orange bagasse ensiled with three levels of dry matter (DM using citrus pulp pellets as a moisture-absorbing additive. Thirty experimental silos (3 treatments, 5 storage times, 2 replicates were prepared using 25-liter plastic buckets containing orange bagasse and three levels of pelleted citrus pulp (0, 6% and 20% as additive. A completely randomized design with repeated measures over time was used. The periods of anaerobic storage were 3, 7, 14, 28 and 56 days. Natural orange bagasse contained 13.9% DM, which increased to 19.1% and 25.5% with the inclusion of 6% and 20% citrus pulp pellets, respectively. The apparent density was inversely correlated with DM content and a higher level of compaction (982 kg/m3 was observed in the mass ensiled with the lowest DM level (13.9%. Additionally, lower compaction (910 kg/m3 was found in the mass ensiled with the additive. The chemical composition of the mass ensiled with or without citrus pulp pellets did not differ significantly in terms of protein, ether extract, neutral detergent fiber, lignin or in vitro DM digestibility (P≥0.05, as expected. Thus, it was possible to analyze only the effect of the inclusion of citrus pulp pellets on the increase in DM content. The inclusion of 20% of the additive reduced (P<0.01 losses due to effluent (98% less and gas production (81% less compared to the control treatment at the end of the anaerobic storage period. In this treatment, a higher (P≤0.05 log number of lactic acid bacteria (4.61 log CFU/g was also observed compared to the other treatments, indicating that the increase in DM favored the growth of these bacteria. In addition, the low yeast count (about 1 log CFU/g sample and the pH below 4.0, which were probably due to the production of lactic and acetic acids, show that the orange bagasse is rich in fermentable soluble carbohydrates and is indicated for ensiling. In conclusion, orange bagasse can be

  9. Inventory and review of aquifer storage and recovery in southern Florida

    Science.gov (United States)

    Reese, Ronald S.

    2002-01-01

    publications > water resources investigations > report 02-4036 US Department of the Interior US Geological Survey WRI 02-4036Inventory and Review of Aquifer Storage and Recovery in Southern Florida By Ronald S. ReeseTallahassee, Florida 2002 prepared as part of the U.S. Geological Survey Place-Based Studies Program ABSTRACT Abstract Introduction Inventory of Data Case Studies Summary References Tables Aquifer storage and recovery in southern Florida has been proposed on an unprecedented scale as part of the Comprehensive Everglades Restoration Plan. Aquifer storage and recovery wells were constructed or are under construction at 27 sites in southern Florida, mostly by local municipalities or counties located in coastal areas. The Upper Floridan aquifer, the principal storage zone of interest to the restoration plan, is the aquifer being used at 22 of the sites. The aquifer is brackish to saline in southern Florida, which can greatly affect the recovery of the freshwater recharged and stored.Well data were inventoried and compiled for all wells at most of the 27 sites. Construction and testing data were compiled into four main categories: (1) well identification, location, and construction data; (2) hydraulic test data; (3) ambient formation water-quality data; and (4) cycle testing data. Each cycle during testing or operation includes periods of recharge of freshwater, storage, and recovery that each last days or months. Cycle testing data include calculations of recovery efficiency, which is the percentage of the total amount of potable water recharged for each cycle that is recovered.Calculated cycle test data include potable water recovery efficiencies for 16 of the 27 sites. However, the number of cycles at most sites was limited; except for two sites, the highest number of cycles was five. Only nine sites had a recovery efficiency above 10 percent for the first cycle, and 10 sites achieved a recovery efficiency above 30 percent during at least one cycle. The

  10. Hydrogeology and groundwater quality of the glaciated valleys of Bradford, Tioga, and Potter Counties, Pennsylvania

    Science.gov (United States)

    Williams, John H.; Taylor, Larry E.; Low, Dennis J.

    1998-01-01

    The most important sources of groundwater in Bradford, Tioga, and Potter Counties are the stratified-drift aquifers. Saturated sand and gravel primarily of outwash origin forms extensive unconfined aquifers in the valleys. Outwash is underlain in most major valleys by silt, clay, and very fine sand of lacustrine origin that comprise extensive confining units. The lacustrine confining units locally exceed 100 feet in thickness. Confined aquifers of ice-contact sand and gravel are buried locally beneath the lacustrine deposits. Bedrock and till are the basal confining units of the stratifies-drift aquifer systems. Recharge to the stratified-drift aquifers if by direct infiltration of precipitation, tributary-stream infiltration, infiltration of unchanneled runoff at the valley walls, and groundwater inflow from the bedrock and till uplands. Valley areas underlain by superficial sand and gravel contribute about 1 million gallons per day per square mile of water from precipitation to the aquifers. Tributary streams provide recharge of nearly 590 gallons per day per foot of stream reach. Water is added at the rate of 1 million gallons per day per square mile of bordering uplands not drained by tributary streams to the stratified-drift aquifers from unchanneled runoff and groundwater inflow. Induced infiltration can be a major source of recharge to well fields completed in unconfined stratified-drift aquifers that are in good hydraulic connection with surface water. The well fields of an industrial site in North Towanda, a public-water supplier at Tioga Point, and the U.S. Fish and Wildlife Service at Asaph accounted for 75 percent of the 10.8 million gallons per day pf groundwater withdrawn by public suppliers and other selected users in 1985. The well fields tap stratified-drift aquifers that are substantially recharged by induced infiltration or tributary-stream infiltration. Specific-capacity data from 95 wells indicate that most wells completed in stratified

  11. Allegheny County Fatal Accidental Overdoses

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Fatal accidental overdose incidents in Allegheny County, denoting age, gender, race, drugs present, zip code of incident and zip code of residence. Zip code of...

  12. Allegheny County Zip Code Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the zip code boundaries that lie within Allegheny County.If viewing this description on the Western Pennsylvania Regional Data Center’s open...

  13. Allegheny County School District Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the school district boundaries within Allegheny County If viewing this description on the Western Pennsylvania Regional Data Center’s open...

  14. 2015 Lowndes County (GA) Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: NOAA OCM Lidar for Lowndes County, GA with the option to Collect Lidar in Cook and Tift Counties, GA Lidar Data Acquisition and Processing Production Task...

  15. Allegheny County Fast Food Establishments

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Allegheny County Health Department has generated this list of fast food restaurants by exporting all chain restaurants without an alcohol permit from the...

  16. Allegheny County Park Rangers Outreach

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Launched in June 2015, the Allegheny County Park Rangers program reached over 48,000 people in its first year. Park Rangers interact with residents of all ages and...

  17. Allegheny County Jail Daily Census

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — A daily census of the inmates at the Allegheny County Jail (ACJ). Includes gender, race, age at booking, and current age. The records for each month contain a...

  18. Allegheny County Mortgage Foreclosure Records

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This data includes filings related to mortgage foreclosure in Allegheny County. The foreclosure process enables a lender to take possession of a property due to an...

  19. Allegheny County Poor Housing Conditions

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This estimate of the percent of distressed housing units in each Census Tract was prepared using data from the American Community Survey and the Allegheny County...

  20. Providing engineering services to counties.

    Science.gov (United States)

    2008-09-01

    An engineer is required by law to safeguard the health, safety and welfare of the public. The current Kansas : statute state, The Board of County Commissioners of each county shall appoint a licensed professional : engineer, whose title shall be c...