WorldWideScience

Sample records for oral keratinocyte e-cadherin

  1. Expression of E-cadherin and vimentin in oral squamous cell carcinoma

    Science.gov (United States)

    Zhou, Jingping; Tao, Detao; Xu, Qing; Gao, Zhenlin; Tang, Daofang

    2015-01-01

    The aim of the study is to determine the levels of E-cadherin, vimentin expression in tumor tissues from patients with oral squamous cell carcinoma (OSCC), and the relationship between the expression of E-cadherin, vimentin and epithelial-mesenchymal transition, in order to explore its values for predicting the invasion and metastasis of oral squamous cell carcinoma, short survival of patients in many types of cancer. E-cadherin and vimentin expression of 10 benign and 42 OSCC tumor tissues was examined by immunohistochemical staining. E-cadherin is positively expressed in normal oral mucosa epithelium, but vimentin expression is not found in normal oral mucosa epithelia; the E-cadherin and vimentin were expressed in 26 of 42 (61.9%) and 16 of 42 (38.1%), respectively. No statistically difference was found for E-cadherin and vimentin expression in patients with different age, gender and tumor location, E-cadherin and vimentin expression was significantly associated with lymph node metastasis and tissue location (P oral squamous cell carcinoma for E-cadherin and vimentin positive expression (P oral squamous cell carcinoma. Our study preliminarily confirmed that EMT phenomenon is existed during the development of oral squamous cell carcinoma. Co-evaluation of E-cadherin and vimentin might be a valuable tool for predicting OSCC patient outcome. PMID:26045832

  2. Oral administration of yessotoxin stabilizes E-cadherin in mouse colon

    International Nuclear Information System (INIS)

    Callegari, Federica; Sosa, Silvio; Ferrari, Sara; Soranzo, Maria Rosa; Pierotti, Silvia; Yasumoto, Takeshi; Tubaro, Aurelia; Rossini, Gian Paolo

    2006-01-01

    YTX has been shown to disrupt the E-cadherin-catenin system in cultured epithelial cells, raising some concern that ingestion of seafood contaminated by YTX might favour tumour spreading and metastasis formation in vivo. In order to probe whether YTX might affect cadherin systems in vivo, we have set up a study involving repeated oral dosing of the toxin in mice (1 mg/kg/day, for 7 days) and analysis of E-cadherin and N-cadherin in tissue extracts obtained at the end of the dosing scheme, as well as 1 and 3 months after YTX administration. We found that the E-cadherin pools obtained from lung and kidney were not altered by YTX in any of our experimental conditions. Extracts from mouse colon contained intact E-cadherin and an E-cadherin fragment of about 90 kDa (ECRA 9 ), displaying a molecular alteration resembling that caused by YTX in cultured cells. We found that the relative proportion of ECRA 9 , as compared to intact E-cadherin, was higher in colon extracts from control mice than from YTX-treated animals, indicating that oral administration of YTX to mice stabilizes E-cadherin of mouse colon. No significant difference could be detected in samples prepared from colons obtained 30 or 90 days after termination of YTX treatment. Oral administration of YTX to mice did not lead to a significant increase in the fragments of E-cadherin detectable in serum, neither it altered the N-cadherin pool of mouse heart. Electron microscopy analysis showed no substantial ultrastructural differences between controls and YTX-treated mice. Our findings show that ingestion of food contaminated by YTX poses a low risk of disruption of the E-cadherin system in vivo

  3. Expression of E-cadherin and involucrin in leukoplakia and oral cancer: an immunocytochemical and immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Alessandra Dutra da SILVA

    2017-03-01

    Full Text Available Abstract To assess the immunocytochemical and immunohistochemical correlation of adhesion (E-cadherin and cell differentiation (involucrin molecules in oral leukoplakia and oral squamous cell carcinoma. Cytological samples and biopsies were obtained from male and female patients aged over 30 years with oral leukoplakia (n = 30 and oral squamous cell carcinoma (n = 22. Cell scrapings and the biopsy were performed at the site of the lesion and histological slides were prepared for the immunocytochemical analysis of exfoliated oral mucosal cells and for the immunohistochemical analysis of biopsy tissues using E-cadherin and involucrin. Spearman’s correlation and kappa coefficients were used to assess the correlation and level of agreement between the techniques. Immunostaining for E-cadherin and involucrin by both techniques was similar in the superficial layers of the histological sections compared with cell scrapings. However, there was no statistical correlation and agreement regarding the immunocytochemical and immunohistochemical expression of E-cadherin and involucrin in oral leukoplakia (R = 0.01, p = 0.958 (Kappa = 0.017, p = 0.92 or in oral squamous cell carcinoma (R = 0.26, p = 0.206 (Kappa = 0.36, p = 0.07. The immunoexpression of E-cadherin and involucrin in tissues is consistent with the expression patterns observed in exfoliated oral mucosal cells, despite the lack of a statistically significant correlation. There is an association of the histopathological characteristics of leukoplakia with the expression E-cadherin and of the microscopic aspects of oral squamous cell carcinoma with immunohistochemical expression of involucrin.

  4. Cooperation of distinct Rac-dependent pathways to stabilise E-cadherin adhesion.

    Science.gov (United States)

    Erasmus, Jennifer C; Welsh, Natalie J; Braga, Vania M M

    2015-09-01

    The precise mechanisms via which Rac1 is activated by cadherin junctions are not fully known. In keratinocytes Rac1 activation by cadherin junctions requires EGFR signalling, but how EGFR does so is unclear. To address which activator could mediate E-cadherin signalling to Rac1, we investigated EGFR and two Rac1 GEFs, SOS1 and DOCK180. EGFR RNAi prevented junction-induced Rac1 activation and led to fragmented localization of E-cadherin at cadherin contacts. In contrast, depletion of another EGFR family member, ErbB3, did not interfere with either process. DOCK180 RNAi, but not SOS1, prevented E-cadherin-induced Rac1 activation. However, in a strong divergence from EGFR RNAi phenotype, DOCK180 depletion did not perturb actin recruitment or cadherin localisation at junctions. Rather, reduced DOCK180 levels impaired the resistance to mechanical stress of pre-formed cell aggregates. Thus, within the same cell type, EGFR and DOCK180 regulate Rac1 activation by newly-formed contacts, but control separate cellular events that cooperate to stabilise junctions. Copyright © 2015. Published by Elsevier Inc.

  5. Clinicopathological significance of ZEB-1 and E-cadherin proteins in patients with oral cavity squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yao X

    2017-02-01

    Full Text Available Xiaofeng Yao,1,2 Shanshan Sun,1,2 Xuan Zhou,1,2 Qiang Zhang,1,2 Wenyu Guo,1,2 Lun Zhang1,2 1Department of Maxillofacial and Otorhinolaryngology Head and Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, 2Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin, People’s Republic of China Background: Zinc-finger E-box binding homeobox 1 (ZEB-1, a member of the ZFH family, plays a key role in epithelial–mesenchymal transition during tumor progression in various cancers. However, little information is available on ZEB-1 expression in oral cavity squamous cell carcinoma (OSCC.Methods: The expression levels of ZEB-1 and E-cadherin were assessed by immunohistochemistry in a cohort of 120 patients with OSCC treated by curative operation, and then the correlations between ZEB-1 and E-cadherin expression and clinical factors were evaluated, including patient prognosis. Quantitative real-time polymerase chain reaction (qRT-PCR assays were performed to assess mRNA levels of ZEB-1 and E-cadherin in 20 matched OSCC specimens.Results: Patients were followed up for a median period of 66 months (range 8-116 months, and 5-year overall survival was 68.3%. Positive ZEB-1 and E-cadherin immunostaining reactivity was detected in 64 (53.3% and 53 (44.2% patients, respectively. There was a negative correlation between ZEB-1 expression and E-cadherin expression. In addition, overexpression of ZEB-1 was significantly associated with recurrence, lymph node metastasis, and pathologic grading of patients, loss of E-cadherin was significantly associated with lymph node metastasis and pathologic grading of patients. Univariate analysis showed that increased ZEB-1 expression, loss of E-cadherin expression, lymph node metastasis, recurrence, and pathology grade were prognostic factors. In multivariate analysis, increased ZEB-1 expression and recurrence remained independent prognostic factors. In particular

  6. Down regulation of E-Cadherin (ECAD) - a predictor for occult metastatic disease in sentinel node biopsy of early squamous cell carcinomas of the oral cavity and oropharynx

    International Nuclear Information System (INIS)

    Huber, Gerhard F; Stoeckli, Sandro J; Züllig, Lena; Soltermann, Alex; Roessle, Matthias; Graf, Nicole; Haerle, Stephan K; Studer, Gabriela; Jochum, Wolfram; Moch, Holger

    2011-01-01

    Prognostic factors in predicting occult lymph node metastasis in patients with head and neck squamous-cell carcinoma (HNSCC) are necessary to improve the results of the sentinel lymph node procedure in this tumour type. The E-Cadherin glycoprotein is an intercellular adhesion molecule in epithelial cells, which plays an important role in establishing and maintaining intercellular connections. To determine the value of the molecular marker E-Cadherin in predicting regional metastatic disease. E-Cadherin expression in tumour tissue of 120 patients with HNSCC of the oral cavity and oropharynx were evaluated using the tissue microarray technique. 110 tumours were located in the oral cavity (91.7%; mostly tongue), 10 tumours in the oropharynx (8.3%). Intensity of E-Cadherin expression was quantified by the Intensity Reactivity Score (IRS). These results were correlated with the lymph node status of biopsied sentinel lymph nodes. Univariate and multivariate analysis was used to determine statistical significance. pT-stage, gender, tumour side and location did not correlate with lymph node metastasis. Differentiation grade (p = 0.018) and down regulation of E-Cadherin expression significantly correlate with positive lymph node status (p = 0.005) in univariate and multivariate analysis. These data suggest that loss of E-cadherin expression is associated with increased lymhogeneous metastasis of HNSCC. E-cadherin immunohistochemistry may be used as a predictor for lymph node metastasis in squamous cell carcinoma of the oral cavity and oropharynx. Level of evidence: 2b

  7. Platelets Regulate the Migration of Keratinocytes via Podoplanin/CLEC-2 Signaling during Cutaneous Wound Healing in Mice.

    Science.gov (United States)

    Asai, Jun; Hirakawa, Satoshi; Sakabe, Jun-ichi; Kishida, Tsunao; Wada, Makoto; Nakamura, Naomi; Takenaka, Hideya; Mazda, Osam; Urano, Tetsumei; Suzuki-Inoue, Katsue; Tokura, Yoshiki; Katoh, Norito

    2016-01-01

    Podoplanin is an endogenous ligand for C-type lectin-like receptor 2 (CLEC-2), which is expressed on platelets. Recent evidence indicates that this specific marker of lymphatic endothelial cells is also expressed by keratinocytes at the edge of wounds. However, whether podoplanin or platelets play a role in keratinocyte activity during wound healing remains unknown. We evaluated the effect of podoplanin expression levels on keratinocyte motility using cultured primary normal human epidermal keratinocytes (NHEKs). Down-regulation of podoplanin in NHEKs via transfection with podoplanin siRNA inhibited their migration, indicating that podoplanin plays a mandatory role in this process. In addition, down-regulation of podoplanin was correlated with up-regulation of E-cadherin, suggesting that podoplanin-mediated stimulation of keratinocyte migration is associated with a loss of E-cadherin. Both the addition of platelets and treatment with CLEC-2 inhibited the migration of NHEKs. The down-regulation of RhoA activity and the up-regulation of E-cadherin in keratinocytes were also induced by CLEC-2. In conclusion, these results suggest that podoplanin/CLEC-2 signaling regulates keratinocyte migration via modulating E-cadherin expression through RhoA signaling. Altering the regulation of keratinocyte migration by podoplanin might be a novel therapeutic approach to improve wound healing. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Integrin-linked kinase and ELMO2 modulate recycling endosomes in keratinocytes.

    Science.gov (United States)

    Ho, Ernest; Ivanova, Iordanka A; Dagnino, Lina

    2016-12-01

    The formation of tight cell-cell junctions is essential in the epidermis for its barrier properties. In this tissue, keratinocytes follow a differentiation program tightly associated with their movement from the innermost basal to the outer suprabasal layers, and with changes in their cell-cell adhesion profile. Intercellular adhesion in keratinocytes is mediated through cell-cell contacts, including E-cadherin-based adherens junctions. Although the mechanisms that mediate E-cadherin delivery to the plasma membrane have been widely studied in simple epithelia, this process is less well understood in the stratified epidermis. In this study, we have investigated the role of Engulfment and Cell Motility 2 (ELMO2) and integrin-linked kinase (ILK) in the positioning of E-cadherin-containing recycling endosomes during establishment of cell-cell contacts in differentiating keratinocytes. We now show that induction of keratinocyte differentiation by Ca 2+ is accompanied by localization of ELMO2 and ILK to Rab4- and Rab11a-containing recycling endosomes. The positioning of long-loop Rab11a-positive endosomes at areas adjacent to cell-cell contacts is disrupted in ELMO2- or ILK-deficient keratinocytes, and is associated with impaired localization of E-cadherin to cell borders. Our studies show a previously unrecognized role for ELMO2 and ILK in modulation of endosomal positioning, which may play key roles in epidermal sheet maintenance and permeability barrier function. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Prognostic potential of n-cadherin in oral squamous cell carcinoma via immunohistochemical methods

    International Nuclear Information System (INIS)

    Chandolia, B.; Arora, M.; Rajliwal, P.

    2017-01-01

    To assess the prognostic potential for N-cadherin in oral squamous cell carcinoma and oral epithelial dysplasia. Study Design: A cross-sectional study, analytical study. Place and Duration of Study: Maharishi Markandeshwar College of Dental Science Research (MMCDSR), Ambala, India, from 2011 to 2014. Methodology: Immunohistochemistry was used to observe the N-cadherin expression in 100 cases having epithelium with normal oral mucosa, oral epithelial dysplastic lesions and oral squamous cell carcinoma (OSCC). For statistical significance, SPSS 13.0 was used to calculate the data by Mann-Whitney and Kruskal-Wallis tests. Results: In OSCC, N-cadherin expression was more evident than in oral epithelial dysplasia followed by the normal oral epithelium that did not show any dysplastic changes (p=0.001). Conversely, N-cadherin expression was not significant among the histological grade of OSCC. Conclusion: N-cadherin can be used as a potential biomarker for early diagnosis of OSCC. However, the N-cadherin expression did not show any correlation with the histological grade of OSCC. (author)

  10. Prognostic Potential of N-Cadherin in Oral Squamous Cell Carcinoma via Immunohistochemical Methods.

    Science.gov (United States)

    Chandolia, Betina; Rajliwal, Jai Parkash; Bajpai, Manas; Arora, Manika

    2017-08-01

    To assess the prognostic potential for N-cadherin in oral squamous cell carcinoma and oral epithelial dysplasia. Across-sectional study, analytical study. Maharishi Markandeshwar College of Dental Science Research (MMCDSR), Ambala, India, from 2011 to 2014. Immunohistochemistry was used to observe the N-cadherin expression in 100 cases having epithelium with normal oral mucosa, oral epithelial dysplastic lesions and oral squamous cell carcinoma (OSCC). For statistical significance, SPSS 13.0 was used to calculate the data by Mann-Whitney and Kruskal-Wallis tests. In OSCC, N-cadherin expression was more evident than in oral epithelial dysplasia followed by the normal oral epithelium that did not show any dysplastic changes (p=0.001). Conversely, N-cadherin expression was not significant among the histological grade of OSCC. N-cadherin can be used as a potential biomarker for early diagnosis of OSCC. However, the N-cadherin expression did not show any correlation with the histological grade of OSCC.

  11. CD8 T-cells and E-cadherin in host responses against oropharyngeal candidiasis

    Science.gov (United States)

    Quimby, K.; Lilly, E.A.; Zacharek, M.; McNulty, K.; Leigh, J.E.; Vazquez, J.E.; Fidel, P.L.

    2011-01-01

    Oropharyngeal candidiasis (OPC) is the most common oral infection in HIV+ persons. Previous studies suggest a role for CD8+ T-cells against OPC when CD4+ T-cells are lost, but enhanced susceptibility to infection occurs when CD8+ T-cell migration is inhibited by reduced tissue E-cadherin. Objective Conduct a longitudinal study of tissue CD8+ T-cells and E-cadherin expression before, during, and after episodes of OPC. Methods Oral fungal burden was monitored and tissue was evaluated for CD8+ T-cells and E-cadherin over a one-year period in HIV+ persons with a history of, or an acute episode of OPC. Results While longitudinal analyses precluded formal interpretations, point prevalence analyses of the dataset revealed that when patients experiencing OPC were successfully treated, tissue E-cadherin expression was similar to patients who had not experienced OPC, and higher numbers of CD8+ T-cells were distributed throughout OPC− tissue under normal expression of E-cadherin. Conclusion These results suggest that 1) reduction in tissue E-cadherin expression in OPC+ patients is not permanent, and 2) high numbers of CD8+ T-cells can be distributed throughout OPC− tissue under normal E-cadherin expression. Together these results extend our previous studies and continue to support a role for CD8+ T-cells in host defense against OPC. PMID:21958417

  12. Expression of E-cadherin and β-catenin in basaloid and conventional squamous cell carcinoma of the oral cavity: are potential prognostic markers?

    International Nuclear Information System (INIS)

    Hanemann, João Adolfo Costa; Oliveira, Denise Tostes; Nonogaki, Suely; Nishimoto, Inês Nobuko; Carli, Marina Lara de; Landman, Gilles; Kowalski, Luiz Paulo

    2014-01-01

    Basaloid squamous cell carcinoma presents with a preference for the head and neck region, and shows a distinct aggressive behavior, with frequent local recurrences, regional and distant metastasis. The alterations in the cadherin-catenin complex are fundamental requirements for the metastasis process, and this is the first study to evaluate the immunostaining of E-cadherin and β-catenin in oral basaloid squamous cell carcinoma. Seventeen cases of this tumor located exclusively in the mouth were compared to 26 cases of poorly differentiated squamous cell carcinoma and 28 cases of well to moderately differentiated squamous cell carcinoma matched by stage and tumor site. The immunostaining of E-cadherin and β-catenin were evaluated in the three groups and compared to their clinicopathological features and prognosis. For groups poorly differentiated squamous cell carcinoma and basaloid squamous cell carcinoma, reduction or absence of E-cadherin staining was observed in more than 80.0% of carcinomas, and it was statistically significant compared to well to moderately differentiated squamous cell carcinoma (p = .019). A strong expression of β-catenin was observed in 26.9% and 20.8% of well to moderately differentiated squamous cell carcinoma and poorly differentiated squamous cell carcinoma, respectively, and in 41.2% of basaloid squamous cell carcinoma. The 5-year and 10-year overall and disease-free survival rates demonstrated no significant differences among all three groups. The clinical and biological behavior of three groups of the oral cavity tumors evaluated are similar. E-cadherin and β-catenin immunostaining showed no prognostic value for basaloid and conventional squamous cell carcinomas

  13. Expression of E-cadherin and β-catenin in basaloid and conventional squamous cell carcinoma of the oral cavity: are potential prognostic markers?

    Science.gov (United States)

    Hanemann, João Adolfo Costa; Oliveira, Denise Tostes; Nonogaki, Suely; Nishimoto, Inês Nobuko; de Carli, Marina Lara; Landman, Gilles; Kowalski, Luiz Paulo

    2014-06-03

    Basaloid squamous cell carcinoma presents with a preference for the head and neck region, and shows a distinct aggressive behavior, with frequent local recurrences, regional and distant metastasis. The alterations in the cadherin-catenin complex are fundamental requirements for the metastasis process, and this is the first study to evaluate the immunostaining of E-cadherin and β-catenin in oral basaloid squamous cell carcinoma. Seventeen cases of this tumor located exclusively in the mouth were compared to 26 cases of poorly differentiated squamous cell carcinoma and 28 cases of well to moderately differentiated squamous cell carcinoma matched by stage and tumor site. The immunostaining of E-cadherin and β-catenin were evaluated in the three groups and compared to their clinicopathological features and prognosis. For groups poorly differentiated squamous cell carcinoma and basaloid squamous cell carcinoma, reduction or absence of E-cadherin staining was observed in more than 80.0% of carcinomas, and it was statistically significant compared to well to moderately differentiated squamous cell carcinoma (p = .019). A strong expression of β-catenin was observed in 26.9% and 20.8% of well to moderately differentiated squamous cell carcinoma and poorly differentiated squamous cell carcinoma, respectively, and in 41.2% of basaloid squamous cell carcinoma. The 5-year and 10-year overall and disease-free survival rates demonstrated no significant differences among all three groups. The clinical and biological behavior of three groups of the oral cavity tumors evaluated are similar. E-cadherin and β-catenin immunostaining showed no prognostic value for basaloid and conventional squamous cell carcinomas.

  14. Ca2+-dependent localization of integrin-linked kinase to cell junctions in differentiating keratinocytes.

    Science.gov (United States)

    Vespa, Alisa; Darmon, Alison J; Turner, Christopher E; D'Souza, Sudhir J A; Dagnino, Lina

    2003-03-28

    Integrin complexes are necessary for proper proliferation and differentiation of epidermal keratinocytes. Differentiation of these cells is accompanied by down-regulation of integrins and focal adhesions as well as formation of intercellular adherens junctions through E-cadherin homodimerization. A central component of integrin adhesion complexes is integrin-linked kinase (ILK), which can induce loss of E-cadherin expression and epithelial-mesenchymal transformation when ectopically expressed in intestinal and mammary epithelia. In cultured primary mouse keratinocytes, we find that ILK protein levels are independent of integrin expression and signaling, since they remain constant during Ca(2+)-induced differentiation. In contrast, keratinocyte differentiation is accompanied by marked reduction in kinase activity in ILK immunoprecipitates and altered ILK subcellular distribution. Specifically, ILK distributes in close apposition to actin fibers along intercellular junctions in differentiated but not in undifferentiated keratinocytes. ILK localization to cell-cell borders occurs independently of integrin signaling and requires Ca(2+) as well as an intact actin cytoskeleton. Further, and in contrast to what is observed in other epithelial cells, ILK overexpression in differentiated keratinocytes does not promote E-cadherin down-regulation and epithelial-mesenchymal transition. Thus, novel tissue-specific mechanisms control the formation of ILK complexes associated with cell-cell junctions in differentiating murine epidermal keratinocytes.

  15. Comparative study of the Ar and He atmospheric pressure plasmas on E-cadherin protein regulation for plasma-mediated transdermal drug delivery

    Science.gov (United States)

    Lee, Hyun Young; Hae Choi, Jeong; Hong, Jin Woo; Kim, Gyoo Cheon; Lee, Hae June

    2018-05-01

    The effects of argon plasma (ArP) and helium plasma (HeP) jets on E-cadherin protein function have been tested in order to choose the working gas for a better plasma-mediated transdermal drug delivery. The plasma-mediated changes of the E-cadherin function and the skin penetration efficacies of epidermal growth factor (EGF) were monitored in vitro using HaCaT human keratinocytes and in vivo using hairless mice. The ArP showed higher efficacy for E-cadherin regulation and EGF absorption than HeP under the same applied voltage and the same gas flow rate. The ArP generates higher volume power density, higher discharge current peak, and more reactive species than HeP, especially for OH with the same operating parameters. Moreover, the effect of ArP on E-cadherin function was blocked by the use of a grounded metal mesh. Taken together, this study presents the possibility that the synergetic effect of negative charges with radicals plays an important role in plasma-mediated E-cadherin regulation, which leads to enhanced transdermal drug delivery.

  16. Principles of E-cadherin supramolecular organization in vivo.

    Science.gov (United States)

    Truong Quang, Binh-An; Mani, Madhav; Markova, Olga; Lecuit, Thomas; Lenne, Pierre-François

    2013-11-18

    E-cadherin plays a pivotal role in tissue morphogenesis by forming clusters that support intercellular adhesion and transmit tension. What controls E-cadherin mesoscopic organization in clusters is unclear. We use 3D superresolution quantitative microscopy in Drosophila embryos to characterize the size distribution of E-cadherin nanometric clusters. The cluster size follows power-law distributions over three orders of magnitude with exponential decay at large cluster sizes. By exploring the predictions of a general theoretical framework including cluster fusion and fission events and recycling of E-cadherin, we identify two distinct active mechanisms setting the cluster-size distribution. Dynamin-dependent endocytosis targets large clusters only, thereby imposing a cutoff size. Moreover, interactions between E-cadherin clusters and actin filaments control the fission in a size-dependent manner. E-cadherin clustering depends on key cortical regulators, which provide tunable and local control over E-cadherin organization. Our data provide the foundation for a quantitative understanding of how E-cadherin distribution affects adhesion and might regulate force transmission in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Delineating miRNA profile induced by chewing tobacco in oral keratinocytes

    Directory of Open Access Journals (Sweden)

    Mohd Younis Bhat

    2017-10-01

    Full Text Available The major established etiologic risk factor for oral cancer is tobacco (chewed, smoked and snuffed forms. Chewing form of tobacco is predominantly used in India making it the leading cause of oral cancer. Despite being one of the leading causes of oral cancer, the molecular alterations induced by chewing tobacco remains largely unclear. Carcinogenic effect of chewing tobacco is through chronic and not acute exposure. To understand the molecular alterations induced by chewing tobacco, we developed a cell line model where non-neoplastic oral keratinocytes were chronically exposed to chewing tobacco for a period of 6 months. This resulted in increased cellular proliferation and invasive ability of normal oral keratinocytes. Using this cellular model we studied the differential expression of miRNAs associated with chewing tobacco and the altered signaling pathways through which the aberrantly expressed miRNAs affect tumorigenesis. miRNA sequencing  was carried out using Illumina HiSeq 2500 platform  which resulted in the identification of 427 annotated miRNAs of which 10 were significantly dysregulated (≥ 4 fold; p-value ≤ 0.05 in tobacco exposed cells compared to untreated parental cells. To study the altered signaling in oral keratinocytes chronically exposed to chewing tobacco, we employed quantitative proteomics to characterize the dysregulated proteins. Integration of miRNA sequencing data with proteomic data resulted in identification of 36 proven protein targets which (≥1.5 fold; p-value ≤ 0.05 showed expression correlation with the 10 significantly dysregulated miRNAs. Pathway analysis of the dysregulated targets revealed enrichment of interferon signaling and mRNA processing related pathways in the chewing tobacco exposed cells. In addition, we also identified 6 novel miRNA in oral keratinocytes chronically exposed to chewing tobacco extract. Our study provides a framework to understand the oncogenic transformation induced by

  18. Inhibition of Akt activity induces the mesenchymal-to-epithelial reverting transition with restoring E-cadherin expression in KB and KOSCC-25B oral squamous cell carcinoma cells

    Directory of Open Access Journals (Sweden)

    Hong Sam-Pyo

    2009-02-01

    Full Text Available Abstract Background The Akt/PKB family of kinases is frequently activated in human cancers, including oral squamous cell carcinoma (OSCC. Akt-induced epithelial-to-mesenchymal transition (EMT involves downregulation of E-cadherin, which appears to result from upregulation of the transcription repressor Snail. Recently, it was proposed that carcinoma cells, especially in metastatic sites, could acquire the mesenchymal-to-epithelial reverting transition (MErT in order to adapt the microenvironments and re-expression of E-cadherin be a critical indicator of MErT. However, the precise mechanism and biologic or clinical importance of the MErT in cancers have been little known. This study aimed to investigate whether Akt inhibition would restore the expression of E-cadherin and β-catenin, reduce that of Vimentin, and induce the MErT in OSCC cells with low or negative expression of E-cadherin. We also investigate whether inhibition of Akt activity would affect the E-cadherin repressors and signaling molecules like NF-κB, ERK, and p38. Methods We screened several OSCC cell lines in order to select suitable cell line models for inducing MErT, using immunoblotting and methylation specific-PCR. We examined whether Akt inhibitor phosphatidylinositol ether lipid analogues (PIA treatment would restore the expression of E-cadherin and β-catenin, reduce that of Vimentin, and induce the MErT in KB and KOSCC-25B cells using RT-PCR, immunoblotting, immunofluorescence analysis, and in vitro migration assay. We also investigated whether inhibition of Akt activity would affect the E-cadherin repressors, including Snail, Twist, and SIP-1/ZEB-2 and signaling molecules like NF-κB, ERK, JNK, and p38 using RT-PCR, immunoblotting, and immunofluorescence analysis. Results Of the 7 OSCC cell lines, KB and KOSCC-25B showed constitutively activated phosphorylated Akt and low or negative expression of E-cadherin. Inhibition of Akt activity by PIA decreased NF-κB signaling

  19. JNK-associated scattered growth of YD-10B oral squamous carcinoma cells while maintaining the epithelial phenotype

    International Nuclear Information System (INIS)

    Lee, Gayoung; Kim, Hyun-Man

    2017-01-01

    Cell scattering of epithelial carcinoma cancer cells is one of the critical event in tumorigenesis. Cells losing epithelial cohesion detach from aggregated epithelial cell masses and may migrate to fatal organs through metastasis. The present study investigated the molecular mechanism by which squamous cell carcinoma cells grow scattered at the early phase of transformation while maintaining the epithelial phenotype. We studied YD-10B cells, which are established from human oral squamous cell carcinoma, because the cells grow scattered without the development of E-cadherin junctions (ECJs) under routine culture conditions despite the high expression of functional E-cadherin. The functionality of their E-cadherin was demonstrated in that YD-10B cells developed ECJs, transiently or persistently, when they were cultured on substrates coated with a low amount of fibronectin or to confluence. The phosphorylation of JNK was up-regulated in YD-10B cells compared with that in human normal oral keratinocyte cells or human squamous cell carcinoma cells, which grew aggregated along with well-organized ECJs. The suppression of JNK activity induced the aggregated growth of YD-10B cells concomitant with the development of ECJs. These results indicate for the first time that inherently up-regulated JNK activity induces the scattered growth of the oral squamous cell carcinoma cells through down-regulating the development of ECJ despite the expression of functional E-cadherin, a hallmark of the epithelial phenotype. - Highlights: • JNK dissociates YD-10B oral squamous cell carcinoma cells. • JNK suppresses the development of E-cadherin junctions of oral carcinoma cells. • Suppression of JNK activity reverses the scattered growth of oral carcinoma cells.

  20. Disruption of adherens junction and alterations in YAP-related proliferation behavior as part of the underlying cell transformation process of alcohol-induced oral carcinogenesis.

    Science.gov (United States)

    Husari, Ayman; Hülter-Hassler, Diana; Steinberg, Thorsten; Schulz, Simon Daniel; Tomakidi, Pascal

    2018-01-01

    Accumulating evidences indicate that alcohol might play a causative in oral cancer. Unfortunately, in vitro cell systems, uncovering the molecular background of the underlying cell transformation process, are rare. Therefore, this study was conducted, to identify molecular changes and characterize their putative cell behavioral consequences in epitheloid (EPI) and fibroblastoid (FIB) oral keratinocyte phenotypes, arising from chronical alcohol treatment. Concerning adherens junctions (AJs), both EPI and FIB showed membrane-bound β-catenin, but exhibited differences for E-cadherin and zyxin. While EPI revealed E-cadherin/β-catenin membrane co-localization, which in parts also applied for zyxin, FIB membranes were devoid of E-cadherin and exhibited marginal zyxin expression. Fetal calf serum (FCS) administration in starved cells promoted proliferation in both keratinocyte phenotypes, whereat EPI and FIB yielded a strikingly modified FCS sensitivity on the temporal scale. Impedance measurement-based cell index detection yielded proliferation stimulation occurring much earlier in FIB (45h). Nuclear preference of the proliferation-associated YAP co-transcription factor in FIB was FCS independent, while it required FCS in EPI. Taken together, the lack of membrane-inherent E-cadherin/β-catenin co-localization together with low zyxin - reveals perturbation of AJ integrity in FIB. Regarding cell behavior, perturbed AJs in FIB correlate with temporal proliferation sensitivity towards FCS. CYF of 5.6 strongly suggests involvement of chromatin-bound YAP in FIB's proliferation temperosensitivity. These molecular differences detected for EPI and FIB are part of the underlying cell transformation process of alcohol-induced oral carcinogenesis, and indicate FIB being in a more advanced transformation stage. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. E-cadherin expression and prognosis of head and neck squamous cell carcinoma: evidence from 19 published investigations

    Directory of Open Access Journals (Sweden)

    Ren X

    2016-04-01

    Full Text Available Xusheng Ren,1,2 Jianning Wang,2 Xuefen Lin,1,3 Xuxia Wang1,3 1Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Shandong University, 2Department of Oral and Maxillofacial Surgery, Jinan Stomatological Hospital, 3Shandong Province Key Laboratory of Oral Tissue Regeneration, Stomatological Hospital of Shandong University, Jinan, Shandong Province, People’s Republic of China Objective: The objective of this study was to review the published literature and investigate whether E-cadherin gene is a prognostic factor in head and neck squamous cell carcinoma by conducting a meta-analysis.Methods: Studies were identified from the databases Embase, Medline, and Cochrane Library by using the keywords “E-cadherin gene” and “head and neck cancer”. Overall survival (OS and disease-free survival (DFS were the primary outcome measurements.Results: Our literature review identified 1,458 articles; 19 studies with a total number of 2,012 cases were eligible for inclusion in the meta-analysis. The hazard ratio (HR for OS of patients with decreased expression of E-cadherin gene was 0.57 (95% CI =0.37, 0.89; P=0.000. However, statistical heterogeneity was unacceptably high (I2=74.5%, P=0.000. After sensitivity analysis, heterogeneity became acceptable, and the effect measure was still significant (I2=7.0%; HR =0.52; 95% CI =0.40, 0.66; P=0.000. The HR for DFS was 0.53 (95% CI =0.42, 0.67; P=0.000.Conclusion: This meta-analysis showed clear evidence that high E-cadherin gene expression is a positive prognostic factor of head and neck squamous cell carcinoma, resulting in better OS and DFS. However, this conclusion must be interpreted with caution due to a few limitations. Keywords: E-cadherin gene, prognosis, head and neck squamous cell carcinoma, immunohistochemistry 

  2. Paradoxical expression of E-cadherin in prostatic bone metastases.

    Science.gov (United States)

    Bryden, A A; Freemont, A J; Clarke, N W; George, N J

    1999-12-01

    To determine whether the calcium-dependent cell adhesion molecule E-cadherin is expressed in metastatic deposits of prostate cancer in bone. Ten bone biopsies containing metastatic deposits of untreated prostatic cancer were obtained and immunohistochemically stained for E-cadherin with the monoclonal antibody HECD-1, using the streptavidin-biotin complex technique. Benign prostatic tissue was used as the control. Of the 10 specimens, nine showed positive expression of E-cadherin, graded as strong in four. E-cadherin expression was strongest in well-differentiated metastases and decreased with increasing tumour grade. In some specimens there were mixed patterns of expression. E-cadherin is strongly expressed in prostatic bone metastases and the degree of expression appears to reflect local tumour grade. This suggests that loss of E-cadherin expression may not be critically linked to metastatic potential.

  3. Aberrant E-cadherin staining patterns in invasive mammary carcinoma

    Directory of Open Access Journals (Sweden)

    Brogi Edi

    2005-11-01

    Full Text Available Abstract Background E-cadherin, a cell surface protein involved in cell adhesion, is present in normal breast epithelium, benign breast lesions, and in breast carcinoma. Alterations in the gene CDH1 on chromosome 16q22 are associated with changes in E-cadherin protein expression and function. Inactivation of E-cadherin in lobular carcinomas and certain diffuse gastric carcinomas may play a role in the dispersed, discohesive "single cell" growth patterns seen in these tumors. The molecular "signature" of mammary lobular carcinomas is the loss of E-cadherin protein expression as evidenced by immunohistochemistry, whereas ductal carcinomas are typically E-cadherin positive. Patients and methods We report on E-cadherin immunostaining patterns in five cases of invasive mammary carcinoma Results These were five exceptional instances in which the E-cadherin immunophenotype did not correspond to the apparent histologic classification of the lesion. These cases which are exceedingly rare in our experience are the subject of this report. Conclusion Findings such as those illustrated in this study occur in virtually all biologic phenomena and they do not invalidate the very high degree of correlation between the expression of E-cadherin and the classification of breast carcinomas as ductal or lobular type on the basis of conventional histologic criteria.

  4. Tissue-specific regulation of CXCL9/10/11 chemokines in keratinocytes: Implications for oral inflammatory disease.

    Directory of Open Access Journals (Sweden)

    Alison Marshall

    Full Text Available The IFN-γ-inducible chemokines CXCL9, CXCL10, and CXCL11 play a key role in many inflammatory conditions, particularly those mediated by T cells. Therefore, the production of these chemokines in peripheral tissues could be instrumental in the pathophysiology of tissue-specific immunological diseases such as oral lichen planus (OLP. In the present study, we assessed the production of keratinocyte-derived CXCL9/10/11 under basal and inflammatory conditions and investigated whether these chemokines were involved in the pathogenesis of OLP. We used semi-quantitative PCR, ELISA, chemotaxis assays, and fluorescence-activated cell sorting (FACS to assess the expression and functional role of CXCL9/10/11 in oral keratinocytes (three strains of normal human oral keratinocytes (NHOK, and the H357 oral cancer cell line in the presence or absence of IFN-γ. CXCL9/10/11 were also assessed in tissues from normal patients and those with oral lichen planus (OLP. The time course study in oral keratinocytes treated with IFN-γ showed that expression of CXCL9/10/11 chemokines was significantly enhanced by IFN-γ in a time-dependent manner. In particular, CXCL10, a prominent chemokine that was overexpressed by IFN-γ-stimulated NHOK, was able to effectively recruit CD4 lymphocytes, mainly CD4+CD45RA- cells. Significantly higher levels of CXCL9/10/11 were found in tissues from patients with OLP compared to normal oral mucosa. Taken together, the results demonstrate that normal oral keratinocytes produce chemotactic molecules that mediate T cell recruitment. This study furthers understanding of chemokine production in oral keratinocytes and their role in the pathophysiology of oral mucosa, with particular relevance to OLP.

  5. E-cadherin is required for cranial neural crest migration in Xenopus laevis.

    Science.gov (United States)

    Huang, Chaolie; Kratzer, Marie-Claire; Wedlich, Doris; Kashef, Jubin

    2016-03-15

    The cranial neural crest (CNC) is a highly motile and multipotent embryonic cell population, which migrates directionally on defined routes throughout the embryo, contributing to facial structures including cartilage, bone and ganglia. Cadherin-mediated cell-cell adhesion is known to play a crucial role in the directional migration of CNC cells. However, migrating CNC co-express different cadherin subtypes, and their individual roles have yet to be fully explored. In previous studies, the expression of individual cadherin subtypes has been analysed using different methods with varying sensitivities, preventing the direct comparison of expression levels. Here, we provide the first comprehensive and comparative analysis of the expression of six cadherin superfamily members during different phases of CNC cell migration in Xenopus. By applying a quantitative RT-qPCR approach, we can determine the copy number and abundance of each expressed cadherin through different phases of CNC migration. Using this approach, we show for the first time expression of E-cadherin and XB/C-cadherin in CNC cells, adding them as two new members of cadherins co-expressed during CNC migration. Cadherin co-expression during CNC migration in Xenopus, in particular the constant expression of E-cadherin, contradicts the classical epithelial-mesenchymal transition (EMT) model postulating a switch in cadherin expression. Loss-of-function experiments further show that E-cadherin is required for proper CNC cell migration in vivo and also for cell protrusion formation in vitro. Knockdown of E-cadherin is not rescued by co-injection of other classical cadherins, pointing to a specific function of E-cadherin in mediating CNC cell migration. Finally, through reconstitution experiments with different E-cadherin deletion mutants in E-cadherin morphant embryos, we demonstrate that the extracellular domain, but not the cytoplasmic domain, of E-cadherin is sufficient to rescue CNC cell migration in vivo

  6. Oral keratinocyte stem/progenitor cells: specific markers, molecular signaling pathways and potential uses.

    Science.gov (United States)

    Calenic, Bogdan; Greabu, Maria; Caruntu, Constantin; Tanase, Cristiana; Battino, Maurizio

    2015-10-01

    Oral keratinocyte stem cells reside in the basal layers of the oral epithelium, representing a minor population of cells with a great potential to self-renew and proliferate over the course of their lifetime. As a result of the potential uses of oral keratinocyte stem cells in regenerative medicine and the key roles they play in tissue homeostasis, inflammatory conditions, wound healing and tumor initiation and progression, intense scientific efforts are currently being undertaken to identify, separate and reprogram these cells. Although currently there is no specific marker that can characterize and isolate oral keratinocyte stem cells, several suggestions have been made. Thus, different stem/progenitor-cell subpopulations have been categorized based on combinations of positive and/or negative membrane-surface markers, which include integrins, clusters of differentiation and cytokeratins. Important advances have also been made in understanding the molecular pathways that govern processes such as self-renewal, differentiation, proliferation, wound healing and programmed cell death. A thorough understanding of stem-cell biology and the molecular players that govern cellular fate is paramount in the quest for using stem-cell-derived therapies in the treatment of various oral pathologies. The current review focuses on recent advances in understanding the molecular signaling pathways coordinating the behavior of these cells and in identifying suitable markers used for their isolation and characterization. Special emphasis will also be placed on the roles played by oral keratinocyte stem and progenitor cells in normal and diseased oral tissues and on their potential uses in the fields of general medicine and dentistry. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. The comparison of two methods to obtain human oral keratinocytes in primary culture

    International Nuclear Information System (INIS)

    Klingbeil, Maria Fatima Guarizo

    2006-01-01

    The therapeutic procedures frequently used in oral treatments for the pathological diseases are surgical, resulting in failures of the mucosal continuity.The possibility to obtain transplantable oral epithelia from an in vitro cell culture opens new utilization perspectives not only to where it comes from, but also as a reconstructive material for other parts of the human body, such as: urethra, epithelia corneo-limbal, cornea, ocular surface. Many researchers still use controversial methods for obtaining cells. It was therefore evaluated and compared the efficiency in both methods: enzymatic and direct explant to obtain oral keratinocytes from human oral mucosa. Fragments of intra oral epithelial tissues from healthy human subjects, undergoing dental surgeries, were donated to the research project. The keratinocytes were cultivated over a feeder-layer from a previously irradiated 3T3 Swiss albino fibroblasts. In this study it was compared the time needed in the cell obtention, the best cell amount between both methods, the life-span, the cell capacity to form an in vitro epithelia and its morphologic structure. The results in the assessment of both methods have shown the possibility to obtain keratinocytes from a small oral fragment, but at the same time we may verify the advantages and peculiar restrictions for each one of both analyzed methods. (author)

  8. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells.

    Directory of Open Access Journals (Sweden)

    Quynh T Phan

    2007-03-01

    Full Text Available Candida albicans is the most common cause of hematogenously disseminated and oropharyngeal candidiasis. Both of these diseases are characterized by fungal invasion of host cells. Previously, we have found that C. albicans hyphae invade endothelial cells and oral epithelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the fungal surface protein and host cell receptors that mediate this process. We found that the C. albicans Als3 is required for the organism to be endocytosed by human umbilical vein endothelial cells and two different human oral epithelial lines. Affinity purification experiments with wild-type and an als3delta/als3delta mutant strain of C. albicans demonstrated that Als3 was required for C. albicans to bind to multiple host cell surface proteins, including N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. Furthermore, latex beads coated with the recombinant N-terminal portion of Als3 were endocytosed by Chinese hamster ovary cells expressing human N-cadherin or E-cadherin, whereas control beads coated with bovine serum albumin were not. Molecular modeling of the interactions of the N-terminal region of Als3 with the ectodomains of N-cadherin and E-cadherin indicated that the binding parameters of Als3 to either cadherin are similar to those of cadherin-cadherin binding. Therefore, Als3 is a fungal invasin that mimics host cell cadherins and induces endocytosis by binding to N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. These results uncover the first known fungal invasin and provide evidence that C. albicans Als3 is a molecular mimic of human cadherins.

  9. Differential Downregulation of E-Cadherin and Desmoglein by Epidermal Growth Factor

    Directory of Open Access Journals (Sweden)

    Miquella G. Chavez

    2012-01-01

    Full Text Available Modulation of cell : cell junctions is a key event in cutaneous wound repair. In this study we report that activation of the epidermal growth factor (EGF receptor disrupts cel : cell adhesion, but with different kinetics and fates for the desmosomal cadherin desmoglein and for E-cadherin. Downregulation of desmoglein preceded that of E-cadherin in vivo and in an EGF-stimulated in vitro wound reepithelialization model. Dual immunofluorescence staining revealed that neither E-cadherin nor desmoglein-2 internalized with the EGF receptor, or with one another. In response to EGF, desmoglein-2 entered a recycling compartment based on predominant colocalization with the recycling marker Rab11. In contrast, E-cadherin downregulation was accompanied by cleavage of the extracellular domain. A broad-spectrum matrix metalloproteinase inhibitor protected E-cadherin but not the desmosomal cadherin, desmoglein-2, from EGF-stimulated disruption. These findings demonstrate that although activation of the EGF receptor regulates adherens junction and desmosomal components, this stimulus downregulates associated cadherins through different mechanisms.

  10. E-cadherin junction formation involves an active kinetic nucleation process

    Science.gov (United States)

    Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng-han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan-Chen; Guo, Zhenhuan; Padmanabhan, Anup; Troyanovsky, Sergey M.; Dustin, Michael L.; Shapiro, Lawrence; Honig, Barry; Zaidel-Bar, Ronen; Groves, Jay T.

    2015-01-01

    Epithelial (E)-cadherin-mediated cell−cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role. PMID:26290581

  11. Immunohistochemical Observation of Co-expression of E- and N-cadherins in Rat Organogenesis

    International Nuclear Information System (INIS)

    Sakamoto, Atsushi; Murata, Kazumoto; Suzuki, Hideto; Yatabe, Megumi; Kikuchi, Motoshi

    2008-01-01

    Cadherins are a family of transmembrane glycoproteins that mediate cell-to-cell adhesion. Isoforms, including E- and N-cadherin, have been identified and shown to regulate morphogenesis through homophilic binding. In the ontogeny, the expressions of E- and N-cadherin change spatiotemporally, and the changes in cadherin isoforms, called cadherin switching, impact the mechanical adhesion of cells. Furthermore, cadherin functions as a receptor that transfers information from outside to inside cells, and in terms of switching, it affects cell phenotypes. To observe the expression patterns of E- and N-cadherins during embryogenesis and to identify cells that transiently coexpress both cadherins, we employed a recently developed immunohistochemical double staining technique in rat fetuses. At embryonic day 9, embryonic ectodermal cells more dominantly expressed E-cadherin, while mesodermal cells more dominantly expressed N-cadherin. At embryonic day 10, the expression pattern of E-cadherin in the surface ectoderm and endoderm and that of N-cadherin in the neuroectoderm were established. After embryonic day 10, unique co-expression of E- and N-cadherin was observed in primordia, such as the bulbus cordis, otic pit, notochord, and Rathke’s pouch. In the present study, it was possible to visualize the expression patterns of E- and N-cadherin during early fetal development, which enabled us to morphologically clarify cadherin switching

  12. E-cadherin expression in primary carcinomas of the breast and its distant metastases

    International Nuclear Information System (INIS)

    Kowalski, Paul J; Rubin, Mark A; Kleer, Celina G

    2003-01-01

    Aberrant expression of E-cadherin has been associated with the development of metastases in patients with breast cancer. Even though the expression of E-cadherin has been studied in primary breast tumors, little is known about its expression at the distant metastatic sites. We investigate the relationship between E-cadherin expression in primary breast carcinoma and their distant, non-nodal metastases. Immunohistochemical analysis of E-cadherin was performed in tissues from 30 patients with primary invasive breast carcinoma and their distant metastases. E-cadherin expression was evaluated as normal or aberrant (decreased when compared with normal internal positive controls, or absent). Twenty-two (73%) invasive carcinomas were ductal, and eight (27%) were lobular. Of the primary invasive ductal carcinomas, 55% (12/22) had normal E-cadherin expression and 45% (10/22) had aberrant expression. All of the metastases expressed E-cadherin with the same intensity as (12 tumors) or with stronger intensity than (10 tumors) the corresponding primaries. Of the invasive lobular carcinomas, one of eight (12%) primary carcinomas and none of the metastases expressed E-cadherin in the cell membranes, but they accumulated the protein in the cytoplasm. Aberrant E-cadherin expression is frequent in invasive ductal carcinomas that progress to develop distant metastases. Distant metastases consistently express E-cadherin, often more strongly than the primary tumor. Invasive lobular carcinomas have a different pattern of E-cadherin expression, suggesting a different role for E-cadherin in this form of breast carcinoma

  13. Functional characterization of E- and P-cadherin in invasive breast cancer cells

    International Nuclear Information System (INIS)

    Sarrió, David; Palacios, José; Hergueta-Redondo, Marta; Gómez-López, Gonzalo; Cano, Amparo; Moreno-Bueno, Gema

    2009-01-01

    Alterations in the cadherin-catenin adhesion complexes are involved in tumor initiation, progression and metastasis. However, the functional implication of distinct cadherin types in breast cancer biology is still poorly understood. To compare the functional role of E-cadherin and P-cadherin in invasive breast cancer, we stably transfected these molecules into the MDA-MB-231 cell line, and investigated their effects on motility, invasion and gene expression regulation. Expression of either E- and P-cadherin significantly increased cell aggregation and induced a switch from fibroblastic to epithelial morphology. Although expression of these cadherins did not completely reverse the mesenchymal phenotype of MDA-MB-231 cells, both E- and P-cadherin decreased fibroblast-like migration and invasion through extracellular matrix in a similar way. Moreover, microarray gene expression analysis of MDA-MB-231 cells after expression of E- and P-cadherins revealed that these molecules can activate signaling pathways leading to significant changes in gene expression. Although the expression patterns induced by E- and P-cadherin showed more similarities than differences, 40 genes were differentially modified by the expression of either cadherin type. E- and P-cadherin have similar functional consequences on the phenotype and invasive behavior of MDA-MB-231 cells. Moreover, we demonstrate for the first time that these cadherins can induce both common and specific gene expression programs on invasive breast cancer cells. Importantly, these identified genes are potential targets for future studies on the functional consequences of altered cadherin expression in human breast cancer

  14. Functional characterization of E- and P-cadherin in invasive breast cancer cells

    Directory of Open Access Journals (Sweden)

    Cano Amparo

    2009-03-01

    Full Text Available Abstract Background Alterations in the cadherin-catenin adhesion complexes are involved in tumor initiation, progression and metastasis. However, the functional implication of distinct cadherin types in breast cancer biology is still poorly understood. Methods To compare the functional role of E-cadherin and P-cadherin in invasive breast cancer, we stably transfected these molecules into the MDA-MB-231 cell line, and investigated their effects on motility, invasion and gene expression regulation. Results Expression of either E- and P-cadherin significantly increased cell aggregation and induced a switch from fibroblastic to epithelial morphology. Although expression of these cadherins did not completely reverse the mesenchymal phenotype of MDA-MB-231 cells, both E- and P-cadherin decreased fibroblast-like migration and invasion through extracellular matrix in a similar way. Moreover, microarray gene expression analysis of MDA-MB-231 cells after expression of E- and P-cadherins revealed that these molecules can activate signaling pathways leading to significant changes in gene expression. Although the expression patterns induced by E- and P-cadherin showed more similarities than differences, 40 genes were differentially modified by the expression of either cadherin type. Conclusion E- and P-cadherin have similar functional consequences on the phenotype and invasive behavior of MDA-MB-231 cells. Moreover, we demonstrate for the first time that these cadherins can induce both common and specific gene expression programs on invasive breast cancer cells. Importantly, these identified genes are potential targets for future studies on the functional consequences of altered cadherin expression in human breast cancer.

  15. Unconventional Cadherin Localization in Honey Bee Gonads Revealed Through Domain-Specific Apis mellifera E- and N-Cadherin Antibodies Indicates Alternative Functions

    Directory of Open Access Journals (Sweden)

    Klaus Hartfelder

    2012-11-01

    Full Text Available As key factors in intercellular adhesion processes, cadherins play important roles in a plethora of developmental processes, including gametogenesis. In a previous study on cadherin localization in the gonads of honey bees, performed with heterologous pan-cadherin antibodies, we detected these proteins as (i associated with cell membranes, (ii as homogeneously distributed throughout the cytoplasm, and (iii as nuclear foci in both somatic and germline cells, raising the possibility of alternative functions. To further investigate such unusual intracellular cadherin localization we produced specific antibodies against the N- and C-terminal domains of honey bee N- and E-cadherin. A 160 kDa protein was recognized by the E-cadherin antibodies as well as one of approximately 300 kDa from those raised against N-cadherin. In gonad preparations, both proteins were detected as dispersed throughout the cytoplasm and as nuclear foci in both germline and somatic cells of queen and worker ovarioles, as well as in the testioles of drones. This leads us to infer that cadherins may indeed be involved in certain signaling pathways and/or transcriptional regulation during gametogenesis. In late oogenesis stages, immunolabeling for both proteins was observed at the cell cortex, in conformity with a role in cell adhesion. In testioles, E-cadherin was seen in co-localization with fusomes, indicating a possible role in cyst organization. Taken together, the distribution of N- and E-cadherins in honey bee gonads is suggestive of alternative roles for cadherins in gametogenesis of both sexes.

  16. EXPRESSION OF SURVIVIN AND E-CADHERIN IN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    TIAN Xiao-feng; LIU Ji-hong; WANG Li-fen; FENG XIAO-Mei; YAO Ji-hong

    2005-01-01

    Objective: Survivin is a member of the inhibitor of apoptosis (IAP) family, and is involved in the regulation of cell division. E-cadherin functionally belongs to transmembrane glycoproteins family, it is responsible for intercellular junction mechanism that is crucial for the mutual association of vertebrate cells. These genes are thought to be associated with cancer aggression. This study was to investigate the relationship between surviving gene, E-cadherin expression and invasion clinicopathological features of breast cancer. Methods: The expression of surviving gene and E-cadherin were detected by SP immunohistochemical technique in tissues of 66 breast cancer, 20 breast fibroadenoma and 20 adjacent breast tissue. Results: The positive rate of surviving gene expression in breast cancer was 42.2%, significantly higher (P=0.025) than those in breast fibroadenoma (35.0%), and adjacent breast tissue (10.0%). The positive rate of E-cadherin in the groups of adjacent breast tissue, breast fibroadenoma and breast cancer were 100%, 100% and 42.4%, there was significant difference between the group of benign and malignant tumor (P=0.005). The positive rate of surviving in breast cancer with local lymph node metastasis was significant higher than that in breast cancer without lymph node metastasis (P=0.01), and E-cadherin in breast cancer with local lymph node metastasis was significant lower than that without lymph node metastasis (P=o.o1). There was no significant difference among the groups of pathological types and TNM stages in the expression of surviving (P=0.966 & P=0.856), but there was significant difference in the expression of E-cadherin among these groups (P=0.01 & P=0.023). Conclusion: The loss or decrease of E-cadherin expression may promote the exfoliation of cancerous cells from original tissues, and surviving gene may promote the viability of the exfoliated cancer cells and the formation of new metastasis focus. These 2 factors cooperate with each other

  17. E-cadherin and beta-catenin are down-regulated in prostatic bone metastases.

    Science.gov (United States)

    Bryden, A A G; Hoyland, J A; Freemont, A J; Clarke, N W; Schembri Wismayer, D; George, N J R

    2002-03-01

    To determine the E-cadherin and beta-catenin expression phenotype in untreated primary prostate cancer and corresponding bone metastases. Paired bone metastasis and primary prostate specimens were obtained from 14 men with untreated metastatic prostate carcinoma. The tumours were histologically graded by an independent pathologist. Expression of mRNA for E-cadherin and beta-catenin was detected within the tumour cells using in-situ hybridization with a 35S-labelled cDNA probe. The expression of E-cadherin and beta-catenin were graded as uniform, heterogeneous or negative. The mRNA for E-cadherin was expressed in 13 of 14 primary carcinomas and 11 bone metastases; beta-catenin was expressed by 13 and nine, respectively. Of the primary tumours, nine expressed E-cadherin and beta-catenin uniformly; in contrast, all metastases had down-regulated E-cadherin and/or beta-catenin. The down-regulation of E-cadherin and beta-catenin are a feature of the metastatic phenotype, which may be a significant factor in the genesis of bone metastases. However, this does not appear to be reflected in the expression of these molecules in the primary tumours.

  18. Oral keratinocytes support non-replicative infection and transfer of harbored HIV-1 to permissive cells.

    Science.gov (United States)

    Vacharaksa, Anjalee; Asrani, Anil C; Gebhard, Kristin H; Fasching, Claudine E; Giacaman, Rodrigo A; Janoff, Edward N; Ross, Karen F; Herzberg, Mark C

    2008-07-17

    Oral keratinocytes on the mucosal surface are frequently exposed to HIV-1 through contact with infected sexual partners or nursing mothers. To determine the plausibility that oral keratinocytes are primary targets of HIV-1, we tested the hypothesis that HIV-1 infects oral keratinocytes in a restricted manner. To study the fate of HIV-1, immortalized oral keratinocytes (OKF6/TERT-2; TERT-2 cells) were characterized for the fate of HIV-specific RNA and DNA. At 6 h post inoculation with X4 or R5-tropic HIV-1, HIV-1gag RNA was detected maximally within TERT-2 cells. Reverse transcriptase activity in TERT-2 cells was confirmed by VSV-G-mediated infection with HIV-NL4-3Deltaenv-EGFP. AZT inhibited EGFP expression in a dose-dependent manner, suggesting that viral replication can be supported if receptors are bypassed. Within 3 h post inoculation, integrated HIV-1 DNA was detected in TERT-2 cell nuclei and persisted after subculture. Multiply spliced and unspliced HIV-1 mRNAs were not detectable up to 72 h post inoculation, suggesting that HIV replication may abort and that infection is non-productive. Within 48 h post inoculation, however, virus harbored by CD4 negative TERT-2 cells trans infected co-cultured peripheral blood mononuclear cells (PBMCs) or MOLT4 cells (CD4+ CCR5+) by direct cell-to-cell transfer or by releasing low levels of infectious virions. Primary tonsil epithelial cells also trans infected HIV-1 to permissive cells in a donor-specific manner. Oral keratinocytes appear, therefore, to support stable non-replicative integration, while harboring and transmitting infectious X4- or R5-tropic HIV-1 to permissive cells for up to 48 h.

  19. Oral keratinocytes support non-replicative infection and transfer of harbored HIV-1 to permissive cells

    Directory of Open Access Journals (Sweden)

    Giacaman Rodrigo A

    2008-07-01

    Full Text Available Abstract Background Oral keratinocytes on the mucosal surface are frequently exposed to HIV-1 through contact with infected sexual partners or nursing mothers. To determine the plausibility that oral keratinocytes are primary targets of HIV-1, we tested the hypothesis that HIV-1 infects oral keratinocytes in a restricted manner. Results To study the fate of HIV-1, immortalized oral keratinocytes (OKF6/TERT-2; TERT-2 cells were characterized for the fate of HIV-specific RNA and DNA. At 6 h post inoculation with X4 or R5-tropic HIV-1, HIV-1gag RNA was detected maximally within TERT-2 cells. Reverse transcriptase activity in TERT-2 cells was confirmed by VSV-G-mediated infection with HIV-NL4-3Δenv-EGFP. AZT inhibited EGFP expression in a dose-dependent manner, suggesting that viral replication can be supported if receptors are bypassed. Within 3 h post inoculation, integrated HIV-1 DNA was detected in TERT-2 cell nuclei and persisted after subculture. Multiply spliced and unspliced HIV-1 mRNAs were not detectable up to 72 h post inoculation, suggesting that HIV replication may abort and that infection is non-productive. Within 48 h post inoculation, however, virus harbored by CD4 negative TERT-2 cells trans infected co-cultured peripheral blood mononuclear cells (PBMCs or MOLT4 cells (CD4+ CCR5+ by direct cell-to-cell transfer or by releasing low levels of infectious virions. Primary tonsil epithelial cells also trans infected HIV-1 to permissive cells in a donor-specific manner. Conclusion Oral keratinocytes appear, therefore, to support stable non-replicative integration, while harboring and transmitting infectious X4- or R5-tropic HIV-1 to permissive cells for up to 48 h.

  20. Activation of estrogen receptor beta (ERβ) regulates the expression of N-cadherin, E-cadherin and β-catenin in androgen-independent prostate cancer cells.

    Science.gov (United States)

    Silva, Rafael de Souza; Lombardi, Ana Paola G; de Souza, Deborah Simão; Vicente, Carolina M; Porto, Catarina S

    2018-03-01

    The aim of the present study was to investigate the impact of the activation of estrogen receptors on expression and localization of N-cadherin, E-cadherin and non-phosphorylated β-catenin in androgen-independent prostate cancer cells (PC-3 and DU-145) and in human post pubertal prostate epithelial cells (PNT1A). Expression of N-cadherin was detected in PNT1A and PC-3 cells, but not in DU-145 cells. E-cadherin was detected only in DU-145 cells and β-catenin was detected in all cells studied. N-cadherin and β-catenin were located preferentially in the cellular membrane of PNT1A cells and in the cytoplasm of PC-3 cells. E-cadherin and β-catenin were located preferentially in the cellular membrane of DU-145 cells. 17β-estradiol (E2) or the ERα-selective agonist PPT did not affect the content and localization of N-cadherin in PC-3 and PNT1A cells or E-cadherin in DU-145 cells. In PC-3 cells, ERβ-selective agonist DPN decreased the expression of N-cadherin. DPN-induced downregulation of N-cadherin was blocked by pretreatment with the ERβ-selective antagonist (PHTPP), indicating that ERβ1 is the upstream receptor regulating the expression of N-cadherin. In DU-145 cells, the activation of ERβ1 by DPN increased the expression of E-cadherin. Taken together, these results suggest that activation of ERβ1 is required to maintain an epithelial phenotype in PC-3 and DU-145 cells. The activation of ERβ1 also increased the expression of β-catenin in cytoplasm of PC-3 and in the cellular membrane of DU-145 cells. In conclusion, our results indicate differential expression and localization of N-cadherin, E-cadherin and β-catenin in androgen-independent prostate cancer cells. The reduction of N-cadherin content by activation of ERβ, exclusively observed in androgen-independent prostate cancer cells (PC-3), may be related to the activation of signaling pathways, such as the release of β-catenin into the cytoplasm, translocation of β-catenin to the nucleus and

  1. E-cadherin and CD10 expression in atypical hyperplastic and malignant endometrial lesions

    International Nuclear Information System (INIS)

    Ahmed, A.R.H.; Muhammad, E.M.S.

    2014-01-01

    Background: Loss of E-cadherin is a critical step for development and progression of malignant tumors. CD10; a marker of non-neoplastic and neoplastic endometrial stroma, is associated with aggressiveness of many epithelial malignancies. Aims: To evaluate expression and correlation of E-cadherin and CD10 in endometrial lesions and their possible role in differentiating atypical endometrial hyperplasia from endometrial carcinoma. The association of E-cadherin and CD10 expression with clinico-pathological parameters of endometrial carcinoma was also investigated. Materials and methods: Fifty four cases including 28 endometrial carcinomas; 19 endometrial hyperplasia and 7 cases of normal endometrial changes were enrolled for this study. The expression of E-cadherin and CD10 was evaluated by immunohistochemistry using the streptavidin–biotin technique. Results: There was a strong association between malignant change of endometrial glands and membrano- cytoplasmic localization of E-cadherin (p< 0.001). Expression of E-cadherin but not CD10 was significantly higher in endometrial carcinomas compared to atypical endometrial hyperplasia (p < 0.01). Expression of E-cadherin was not associated with CD10 expression in different endometrial lesions. High grade tumors expressed low levels of both E-cadherin (p<0.01) and CD10 (p < 0.05) and serous endometrial carcinoma had low E-cadherin and CD10 expression compared to endometrioid carcinoma (p< 0.01 and <0.05, respectively). Expression of both molecules showed no association with depth of tumor invasion or FIGO stage. Tumors with lower E-cadherin or CD10 expression had higher rates of vascular tumor emboli (p< 0.01 and <0.07, respectively). Conclusions: Although expression of E-cadherin and CD10 in endometrial lesions was not correlated, reduced expression of both molecules could be critical for progression of endometrial carcinoma.

  2. Soluble E-Cadherin: An Early Marker of Severity in Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    A. Sewpaul

    2009-01-01

    Full Text Available Background/Aims. At present, there is no simple test for predicting severity in acute pancreatitis. We investigated the use of an assay of soluble E-cadherin (sE-cadherin. Methods. Concentrations of sE-cadherin, from 19 patients with mild acute pancreatitis, 7 patients with severe acute pancreatitis, 11 patients with other acute gastrointestinal pathologies, and 12 healthy subjects were measured using a commercially available sandwich ELISA kit based on two monoclonal antibodies specific to the extracellular fragment of human E-cadherin. Measurements were made at 12 hours or less from onset of pain and also at 24 and 48 hours after onset of pain. Results. Mean (standard deviation concentration of sE-cadherin in patients with severe acute pancreatitis at <12 hours was 17780 ng/mL (7853, significantly higher than that of healthy volunteers 5180 ng/mL (1350, =.0039, patients with other gastrointestinal pathologies 7358 ng/mL (6655, =.0073, and also significantly higher than that of patients with mild pancreatitis, 7332 ng/mL (2843, =.0019. Discussion. Serum sE-cadherin could be an early (within 12 hours objective marker of severity in acute pancreatitis. This molecule warrants further investigation in the form of a large multicentre trial.

  3. E-cadherin gene re-expression in chronic lymphocytic leukemia cells by HDAC inhibitors

    International Nuclear Information System (INIS)

    Jordaan, Gwen; Liao, Wei; Sharma, Sanjai

    2013-01-01

    The tumor suppressor gene E-cadherin gene is frequently silenced in chronic lymphocytic leukemia (CLL) cells and results in wnt-pathway activation. We analyzed the role of histone epigenetic modifications in E-cadherin gene silencing. CLL specimens were treated with histone deacetylase inhibitor (HDACi) MS-275 and analyzed for E-cadherin expression with western blot and RT-PCR analysis. The downstream effects of HDACi treated leukemic cells were studied by analyzing the effect on wnt-pathway signaling. HDACi induced alterations in E-cadherin splicing were investigated by transcript specific real time PCR analysis. Treatment of CLL specimens with histone deacetylase inhibitors (HDACi) treatment resulted in an increase of the E-cadherin RNA transcript (5 to 119 fold increase, n=10) in eight out of ten CLL specimens indicating that this gene is down regulated by histone hypoacetylation in a majority of CLL specimens. The E-cadherin re-expression in CLL specimens was noted by western blot analysis as well. Besides epigenetic silencing another mechanism of E-cadherin inactivation is aberrant exon 11 splicing resulting in an alternatively spliced transcript that lacks exon 11 and is degraded by the non-sense mediated decay (NMD) pathway. Our chromatin immunoprecipitation experiments show that HDACi increased the acetylation of histones H3 and H4 in the E-cadherin promoter region. This also affected the E-cadherin exon 11 splicing pattern as HDACi treated CLL specimens preferentially expressed the correctly spliced transcript and not the exon 11 skipped aberrant transcript. The re-expressed E- cadherin binds to β-catenin with inhibition of the active wnt-beta-catenin pathway in these cells. This resulted in a down regulation of two wnt target genes, LEF and cyclinD1 and the wnt pathway reporter. The E-cadherin gene is epigenetically modified and hypoacetylated in CLL leukemic cells. Treatment of CLL specimens with HDACi MS-275 activates transcription from this silent

  4. Effect of E-cadherin Expression on Hormone Production in Rat Anterior Pituitary Lactotrophs In Vitro

    International Nuclear Information System (INIS)

    Kusumoto, Kenji; Kikuchi, Motoshi; Fujiwara, Ken; Horiguchi, Kotaro; Kouki, Tom; Kawanishi, Kotaro; Yashiro, Takashi

    2010-01-01

    Cadherins are a family of transmembrane glycoproteins that mediate cell-to-cell adhesion. A change in cadherin type in cells, i.e., cadherin switching, induces changes in the character of the cell. Recent studies of the developing rat adenohypophysis found that primordial cells co-expressed E- and N-cadherins, but that hormone-producing cells lost E-cadherin and ultimately possessed only N-cadherin. In the present study, we examined the roles of cadherin switching in cytogenesis of anterior pituitary cells by observing prolactin mRNA and protein expression in lactotrophs that were transformed with an E-cadherin expression vector. In hormone-producing cells that were transfected with a pIRES2-ZsGreen1 plasmid with a full-length E-cadherin cDNA (rE-cad-IZ) insert in primary culture, we detected E- and N-cadherins on plasma membrane and E-cadherin in cytoplasm. In these rE-cad-IZ-transfected cells, in situ hybridization revealed prolactin mRNA signals that were at a level identical to that in control cells, while prolactin protein was barely detectable using immunocytochemistry. The mean signal intensity of prolactin protein in rE-cad-IZ-transfected cells was approximately one fourth that in intact cells and in null-IZ-transfected cells (P<0.01). These results suggest that the expression of E-cadherin does not affect prolactin mRNA transcription; rather, it reduces prolactin protein content, presumably by affecting trafficking of secretory granules

  5. Effects of 25-hydroxyvitamin D3 on cathelicidin production and antibacterial function of human oral keratinocytes.

    Science.gov (United States)

    Wang, Qi; Zhang, Wu; Li, Hao; Aprecio, Raydolf; Wu, Wan; Lin, Yiqiao; Li, Yiming

    2013-01-01

    Vitamin D and its metabolites have been recognized as key determinants in innate immune modulation. In this study, we investigated the regulation of antibacterial functions of oral keratinocyte cells by 25-hydroxyvitamin D3 (25VD3). OKF6/TERT2 cells, an immortalized human oral keratinocyte cell line, were transfected with or without 24-hydroxylase small interfering RNA (siRNA) and incubated with different amounts of 25VD3. These epithelial cells expressed high levels of inactivating 24-hydroxylase (CYP24A1) and relatively low levels of activating 1α-hydroxylase (CYP27B1) in the presence of 25VD3. 25VD3 influenced the expression of vitamin D-driven genes and cathelicidin in a dose-related manner. SiRNA specific to 24-hydroxylase augmented the cathelicidin production and subseqently influenced the antibacterial activity on multispecies of oral pathogens. These observations suggest that 25VD3 is capable of stimulating cathelicidin production and modulating antibacterial function upon CYP24A1 knochdown in oral epithelial cells, and indicate novel mechanisms that 25VD3 may enhance antibacterial ability in oral keratinocytes. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Arf6 regulates EGF-induced internalization of E-cadherin in breast cancer cells.

    Science.gov (United States)

    Xu, Rui; Zhang, Yujie; Gu, Luo; Zheng, Jianchao; Cui, Jie; Dong, Jing; Du, Jun

    2015-01-01

    E-cadherin internalization facilitates dissolution of adherens junctions and promotes tumor cell epithelial-mesenchymal transition (EMT) and migration. Our previous results have shown that Arf6 exerts pro-migratory action in breast cancer cells after EGF stimulation. Despite the fact that EGF signaling stimulates EMT of breast cancer cells, the effect of Arf6 on internalization of E-cadherin of breast cancer cells under EGF treatment remains to be determined. Here, we showed that EGF dose-dependently stimulated E-cadherin internalization by MCF-7 cells with the maximal effect at 50 ng/ml. Meanwhile, EGF treatment markedly increased Arf6 activation. Arf6 was involved in complexes of E-cadherin, and more E-cadherin was pulled down with Arf6 when the activity of the latter was increased. Immunoblotting and immunofluorescence assays showed that transfection breast cancer cells with Arf6-T27N or Arf6 siRNA suppressed EGF-induced E-cadherin internalization. Taken together, our study demonstrated that Arf6 activation plays a potential role in EGF-induced E-cadherin internalization, providing new mechanism underlying the effect of Arf6 on promoting breast cancer cell metastasis.

  7. Replacement of E-cadherin by N-cadherin in the mammary gland leads to fibrocystic changes and tumor formation.

    Science.gov (United States)

    Kotb, Ahmed M; Hierholzer, Andreas; Kemler, Rolf

    2011-10-26

    E-cadherin (E-cad; cadherin 1) and N-cadherin (N-cad; cadherin 2) are the most prominent members of the cadherin family of cell adhesion molecules. Although they share many structural and functional features, they are expressed in an almost mutually exclusive manner in vivo. To explore functional differences between the two cadherins in vivo, we recently generated a knock-in line in which N-cad is expressed from the E-cad locus. In combination with a conditional gene inactivation approach, we expressed N-cad in the absence of E-cad (referred to as Ncadk.i.) in alveolar epithelial cells of the mammary gland starting in late pregnancy. We found that the sole presence of N-cad induces constitutively active fibroblast growth factor (Fgf) signaling and a precocious involution resulting in massive apoptosis of alveolar cells. To block apoptosis, we conditionally deleted one allele of p53 in Ncadk.i. mice and observed a temporal rescue of alveolar morphology and function. However, an accumulation of fibrotic tissue and cysts with increasing age and lactation cycles was observed. This phenotype closely resembled fibrocystic mastopathy (FM), a common disorder in humans, which is thought to precede breast cancer. Concordantly, 55% of Ncadk.i. mice harboring a heterozygous p53 deletion developed malignant and invasive tumors. Our results demonstrate a possible role for N-cad in the formation of fibrosis and cysts in the mammary gland. Moreover, we show that these lesions precede the development of malignant tumors. Thus, we provide a new mouse model to investigate the molecular mechanisms of fibrocystic mastopathy and the transition from benign to malignant tumors.

  8. High Levels of Chemokine C-C Motif Ligand 20 in Human Milk and Its Production by Oral Keratinocytes.

    Science.gov (United States)

    Lourenço, Alan G; Komesu, Marilena C; Duarte, Geraldo; Del Ciampo, Luiz A; Mussi-Pinhata, Marisa M; Yamamoto, Aparecida Y

    2017-03-01

    Chemokine C-C motif ligand 20 (CCL20) is implicated in the formation and function of mucosal lymphoid tissues. Although CCL20 is secreted by many normal human tissues, no studies have evaluated the presence of CCL20 in human milk or its production by oral keratinocytes stimulated by human milk. To evaluate the presence of CCL20 in breast milk and verify CCL20 secretion in vitro by oral keratinocytes stimulated with human and bovine milk, as well as its possible association with breast milk lactoferrin levels. The levels of CCL20 and lactoferrin were measured by enzyme-linked immunosorbent assay in human milk at three different stages of maturation from 74 healthy breastfeeding mothers. In vitro, oral keratinocytes were stimulated with human and bovine milk, and CCL20 was measured in their supernatant. High concentrations of CCL20 were detected in the human breast milk samples obtained during the first week (1,777.07 pg/mL) and second week postpartum (1,523.44 pg/mL), with a significantly low concentration in samples at 3-6 weeks postpartum (238.42 pg/mL; p stimulated higher CCL20 secretion by oral keratinocytes compared with bovine milk (p stimulation had no association with breast milk lactoferrin concentration. CCl20 is present at high levels in human milk, predominantly in the first and second week postpartum, but at significantly lower levels at 3-6 weeks postpartum. Human milk is capable of stimulating CCL20 secretion by oral keratinocytes, and this induction had no association with breast milk lactoferrin concentration.

  9. A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions

    DEFF Research Database (Denmark)

    Perez-Moreno, M A; Locascio, A; Rodrigo, I

    2001-01-01

    Down-regulation of E-cadherin expression is a determinant of tumor cell invasiveness, an event frequently associated with epithelial-mesenchymal transitions. Here we show that the mouse E12/E47 basic helix-loop-helix transcription factor (the E2A gene product) acts as a repressor of E-cadherin ex......Down-regulation of E-cadherin expression is a determinant of tumor cell invasiveness, an event frequently associated with epithelial-mesenchymal transitions. Here we show that the mouse E12/E47 basic helix-loop-helix transcription factor (the E2A gene product) acts as a repressor of E...

  10. The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression

    International Nuclear Information System (INIS)

    Berx, Geert; Roy, Frans Van

    2001-01-01

    E-cadherin is a cell–cell adhesion protein fulfilling a prominent role in epithelial differentiation. Data from model systems suggest that E-cadherin is a potent invasion/tumor suppressor of breast cancer. Consistent with this role in breast cancer progression, partial or complete loss of E-cadherin expression has been found to correlate with poor prognosis in breast cancer patients. The E-cadherin gene (CDH1) is located on human chromosome 16q22.1, a region frequently affected with loss of heterozygosity in sporadic breast cancer. Invasive lobular breast carcinomas, which are typically completely E-cadherin-negative, often show inactivating mutations in combination with loss of heterozygosity of the wild-type CDH1 allele. Mutations were found at early noninvasive stages, thus associating E-cadherin mutations with loss of cell growth control and defining CDH1 as the tumor suppressor for the lobular breast cancer subtype. Ductal breast cancers in general show heterogeneous loss of E-cadherin expression, associated with epigenetic transcriptional downregulation. It is proposed that the microenvironment at the invasive front is transiently downregulating E-cadherin transcription. This can be associated with induction of nonepithelial cadherins

  11. The E-cadherin repressor slug and progression of human extrahepatic hilar cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Wang Xin-sheng

    2010-07-01

    Full Text Available Abstract Objectives This study explored the expression and function of Slug in human extrahepatic hilar cholangiocarcinoma (EHC to identify its role in tumor progression. Methods The expression of Snail and Slug mRNA in 52 human tissue samples of EHC was investigated. The mRNA of Snail and Slug were quantified using reverse transcriptase-PCR, and correlations with E-cadherin expression and clinicopathological factors were investigated. We then investigated transfection of Slug cDNA in endogenous E-cadherin-positive human EHC FRH0201 cells, selectively induced the loss of E-cadherin protein expression, and then small interfering RNA (siRNA for inhibition of Slug expression in endogenous Slug-positive human EHC QBC939 cells, selectively induced the loss of Slug protein expression. A Boyden chamber transwell assay was used for invasion. Results Slug mRNA was overexpressed in 18 cases (34.6% of EHC compared with adjacent noncancerous tissue. E-Cadherin protein expression determined in the same 52 cases by immunohistochemistry was significantly down-regulated in those cases with Slug mRNA overexpression (P = 0.0001. The tumor and nontumor ratio of Slug mRNA was correlated with nodal metastasis(p = 0.0102, distant metastasis (p = 0.0001and Survival time(p = 0.0443. However, Snail mRNA correlated with neither E-cadherin expression nor tumor invasiveness. By inhibiting Slug expression by RNA interference, we found that reduced Slug levels upregulated E-cadherin and decreased invasion in QBC939 cell. When the QBC939 cells was infected with Slug cDNA,, significant E-cadherin was downregulated and increased invasion in QBC939 cell. Conclusions The results suggested that Slug expression plays an important role in both the regulation of E-cadherin expression and in the acquisition of invasive potential in human EHC. Slug is possibly a potential target for an antitumor therapy blocking the functions of invasion and metastasis in human EHCs.

  12. Differences in E-Cadherin and Syndecan-1 Expression in Different Types of Ameloblastomas

    Science.gov (United States)

    López-Verdín, Sandra; Pereira-Prado, Vanesa

    2018-01-01

    Ameloblastomas are a group of benign, locally aggressive, recurrent tumors characterized by their slow and infiltrative growth. E-Cadherin and syndecan-1 are cell adhesion molecules related to the behavior of various tumors, including ameloblastomas. Ninety-nine ameloblastoma samples were studied; the expression of E-cadherin and syndecan-1 were evaluated by immunohistochemistry. E-Cadherin and epithelial syndecan-1 were more highly expressed in intraluminal/luminal unicystic ameloblastoma than in mural unicystic ameloblastoma and solid/multicystic ameloblastoma, whereas the stromal expression of syndecan-1 was higher in mural unicystic ameloblastoma and solid/multicystic ameloblastoma. Synchronicity was observed between E-cadherin and epithelial syndecan-1; the expression was correlated with intensity in all cases. There was a strong association between expression and tumor size and recurrence. The evaluation of the expression of E-cadherin and syndecan-1 are important for determining the potential aggressiveness of ameloblastoma variants. Future studies are required to understand how the expression of these markers is related to tumor aggressiveness.

  13. E-cadherin is required for centrosome and spindle orientation in Drosophila male germline stem cells.

    Directory of Open Access Journals (Sweden)

    Mayu Inaba

    2010-08-01

    Full Text Available Many adult stem cells reside in a special microenvironment known as the niche, where they receive essential signals that specify stem cell identity. Cell-cell adhesion mediated by cadherin and integrin plays a crucial role in maintaining stem cells within the niche. In Drosophila melanogaster, male germline stem cells (GSCs are attached to niche component cells (i.e., the hub via adherens junctions. The GSC centrosomes and spindle are oriented toward the hub-GSC junction, where E-cadherin-based adherens junctions are highly concentrated. For this reason, adherens junctions are thought to provide a polarity cue for GSCs to enable proper orientation of centrosomes and spindles, a critical step toward asymmetric stem cell division. However, understanding the role of E-cadherin in GSC polarity has been challenging, since GSCs carrying E-cadherin mutations are not maintained in the niche. Here, we tested whether E-cadherin is required for GSC polarity by expressing a dominant-negative form of E-cadherin. We found that E-cadherin is indeed required for polarizing GSCs toward the hub cells, an effect that may be mediated by Apc2. We also demonstrated that E-cadherin is required for the GSC centrosome orientation checkpoint, which prevents mitosis when centrosomes are not correctly oriented. We propose that E-cadherin orchestrates multiple aspects of stem cell behavior, including polarization of stem cells toward the stem cell-niche interface and adhesion of stem cells to the niche supporting cells.

  14. Prognostic Value of E-Cadherin and β-Catenin in Triple-Negative Breast Cancer.

    Science.gov (United States)

    Shen, Tiansheng; Zhang, Kui; Siegal, Gene P; Wei, Shi

    2016-11-01

    To analyze the expression of E-cadherin and β-catenin in triple-negative breast cancer (TNBC) to assess their prognostic significance. The expression of E-cadherin and β-catenin was examined semiquantitatively and correlated with other pathologic factors and survival outcomes. Of 72 consecutive TNBCs, 56% showed reduced membranous expression of E-cadherin or β-catenin, with a strong correlation to each other. Of the clinicopathologic factors analyzed, tumor size and nodal status were significantly associated with overall survival and disease-specific survival, while the latter remained an independent factor by multivariate analysis. Reduced E-cadherin and β-catenin were both significantly associated with a poor overall survival and disease-specific survival by univariate and multivariate analyses. E-cadherin and β-catenin expression provides discriminative prognostic power independent of conventional pathologic factors, thus further reinforcing the important role of cell adhesion molecules in the process of tumor metastasis, especially in TNBC. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  15. Loss of E-Cadherin-Dependent Cell-Cell Adhesion and the Development and Progression of Cancer.

    Science.gov (United States)

    Bruner, Heather C; Derksen, Patrick W B

    2018-03-01

    Classical cadherins are the key molecules that control cell-cell adhesion. Notwithstanding this function, it is also clear that classical cadherins are more than just the "glue" that keeps the cells together. Cadherins are essential regulators of tissue homeostasis that govern multiple facets of cellular function and development, by transducing adhesive signals to a complex network of signaling effectors and transcriptional programs. In cancer, cadherins are often inactivated or functionally inhibited, resulting in disease development and/or progression. This review focuses on E-cadherin and its causal role in the development and progression of breast and gastric cancer. We provide a summary of the biochemical consequences and consider the conceptual impact of early (mutational) E-cadherin loss in cancer. We advocate that carcinomas driven by E-cadherin loss should be considered "actin-diseases," caused by the specific disruption of the E-cadherin-actin connection and a subsequent dependence on sustained actomyosin contraction for tumor progression. Based on the available data from mouse and human studies we discuss opportunities for targeted clinical intervention. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  16. Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA

    Science.gov (United States)

    Schmidt, Thomas P.; Perna, Anna M.; Fugmann, Tim; Böhm, Manja; Jan Hiss; Haller, Sarah; Götz, Camilla; Tegtmeyer, Nicole; Hoy, Benjamin; Rau, Tilman T.; Neri, Dario; Backert, Steffen; Schneider, Gisbert; Wessler, Silja

    2016-03-01

    The cell adhesion protein and tumour suppressor E-cadherin exhibits important functions in the prevention of gastric cancer. As a class-I carcinogen, Helicobacter pylori (H. pylori) has developed a unique strategy to interfere with E-cadherin functions. In previous studies, we have demonstrated that H. pylori secretes the protease high temperature requirement A (HtrA) which cleaves off the E-cadherin ectodomain (NTF) on epithelial cells. This opens cell-to-cell junctions, allowing bacterial transmigration across the polarised epithelium. Here, we investigated the molecular mechanism of the HtrA-E-cadherin interaction and identified E-cadherin cleavage sites for HtrA. Mass-spectrometry-based proteomics and Edman degradation revealed three signature motifs containing the [VITA]-[VITA]-x-x-D-[DN] sequence pattern, which were preferentially cleaved by HtrA. Based on these sites, we developed a substrate-derived peptide inhibitor that selectively bound and inhibited HtrA, thereby blocking transmigration of H. pylori. The discovery of HtrA-targeted signature sites might further explain why we detected a stable 90 kDa NTF fragment during H. pylori infection, but also additional E-cadherin fragments ranging from 105 kDa to 48 kDa in in vitro cleavage experiments. In conclusion, HtrA targets E-cadherin signature sites that are accessible in in vitro reactions, but might be partially masked on epithelial cells through functional homophilic E-cadherin interactions.

  17. E-cadherin destabilization accounts for the pathogenicity of missense mutations in hereditary diffuse gastric cancer.

    Directory of Open Access Journals (Sweden)

    Joana Simões-Correia

    Full Text Available E-cadherin is critical for the maintenance of tissue architecture due to its role in cell-cell adhesion. E-cadherin mutations are the genetic cause of Hereditary Diffuse Gastric Cancer (HDGC and missense mutations represent a clinical burden, due to the uncertainty of their pathogenic role. In vitro and in vivo, most mutations lead to loss-of-function, although the causal factor is unknown for the majority. We hypothesized that destabilization could account for the pathogenicity of E-cadherin missense mutations in HDGC, and tested our hypothesis using in silico and in vitro tools. FoldX algorithm was used to calculate the impact of each mutation in E-cadherin native-state stability, and the analysis was complemented with evolutionary conservation, by SIFT. Interestingly, HDGC patients harbouring germline E-cadherin destabilizing mutants present a younger age at diagnosis or death, suggesting that the loss of native-state stability of E-cadherin accounts for the disease phenotype. To elucidate the biological relevance of E-cadherin destabilization in HDGC, we investigated a group of newly identified HDGC-associated mutations (E185V, S232C and L583R, of which L583R is predicted to be destabilizing. We show that this mutation is not functional in vitro, exhibits shorter half-life and is unable to mature, due to premature proteasome-dependent degradation, a phenotype reverted by stabilization with the artificial mutation L583I (structurally tolerated. Herein we report E-cadherin structural models suitable to predict the impact of the majority of cancer-associated missense mutations and we show that E-cadherin destabilization leads to loss-of-function in vitro and increased pathogenicity in vivo.

  18. Chlamydia trachomatis Infection Is Associated with E-Cadherin Promoter Methylation, Downregulation of E-Cadherin Expression, and Increased Expression of Fibronectin and α-SMA—Implications for Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Jovana Rajić

    2017-06-01

    Full Text Available Chlamydia trachomatis (Ct can induce scarring disease of the ocular mucosa, known as trachoma, the most common infectious cause of blindness worldwide. We hypothesized that epithelial-mesenchymal transition (EMT contributes to the fibrotic process in trachomatous scarring. Infection of human conjunctival epithelial cells (HCjE with Ct activated signaling pathways involved in EMT induction, which was correlated with decreased expression of E-cadherin, guardian of the epithelial phenotype. In addition, Ct infection was associated with increased expression of two mesenchymal cell markers: fibronectin and α-SMA. The DNA methylation statuses of selected regions of E-cadherin, fibronectin, and α-SMA genes revealed that Ct infection was accompanied with changes in DNA methylation of the E-cadherin promoter, while the expression of the two mesenchymal markers was not related with this epigenetic event. Our data suggest that Ct infection of conjunctival epithelial cells induces EMT-like changes that go along with modification of the methylation profile of the E-cadherin promoter and could, as one of the earliest events, contribute to processes triggering conjunctival scarring.

  19. Cell surface N-glycans influence the level of functional E-cadherin at the cell–cell border

    Directory of Open Access Journals (Sweden)

    M. Kristen Hall

    2014-01-01

    Full Text Available E-cadherin is crucial for adhesion of cells to each other and thereby development and maintenance of tissue. While it is has been established that N-glycans inside the cell impact the level of E-cadherin at the cell surface of epithelial-derived cells, it is unclear whether N-glycans outside the cell control the clustering of E-cadherin at the cell–cell border. Here, we demonstrate reduction of N-glycans at the cell surface weakened the recruitment and retention of E-cadherin at the cell–cell border, and consequently reduced the strength of cell–cell interactions. We conclude that N-glycans at the cell surface are tightly linked to the placement of E-cadherin at the cell–cell border and thereby control E-cadherin mediated cell–cell adhesion.

  20. Mucinous Colorectal Adenocarcinoma: Influence of EGFR and E-Cadherin Expression on Clinicopathologic Features and Prognosis.

    Science.gov (United States)

    Foda, Abd AlRahman M; AbdelAziz, Azza; El-Hawary, Amira K; Hosni, Ali; Zalata, Khalid R; Gado, Asmaa I

    2015-08-01

    Previous studies have shown conflicting results on epidermal growth factor receptor (EGFR) and E-cadherin expression in colorectal carcinoma and their prognostic significance. To the best of our knowledge, this study is the first to investigate EGFR and E-cadherin expression, interrelation and relation to clinicopathologic, histologic parameters, and survival in rare colorectal mucinous adenocarcinoma (MA). In this study, we studied tumor tissue specimens from 150 patients with colorectal MA and nonmucinous adenocarcinoma (NMA). High-density manual tissue microarrays were constructed using modified mechanical pencil tips technique, and immunohistochemistry for EGFR and E-cadherin was performed. All relations were analyzed using established statistical methodologies. NMA expressed EGFR and E-cadherin in significantly higher rates with significant heterogenous pattern than MA. EGFR and E-cadherin positivity rates were significantly interrelated in both NMA and MA groups. In the NMA group, high EGFR expression was associated with old age, male sex, multiplicity of tumors, lack of mucinous component, and association with schistosomiasis. However, in the MA group, high EGFR expression was associated only with old age and MA subtype rather than signet ring carcinoma subtype. Conversely, high E-cadherin expression in MA cases was associated with old age, fungating tumor configuration, MA subtype, and negative intratumoral lymphocytic response. However, in the NMA cases, none of these factors was statistically significant. In a univariate analysis, neither EGFR nor E-cadherin expression showed a significant impact on disease-free or overall survival. Targeted therapy against EGFR and E-cadherin may not be useful in patients with MA. Neither EGFR nor E-cadherin is an independent prognostic factor in NMA or MA.

  1. Adherence of human oral keratinocytes and gingival fibroblasts to nano-structured titanium surfaces.

    Science.gov (United States)

    Dorkhan, Marjan; Yücel-Lindberg, Tülay; Hall, Jan; Svensäter, Gunnel; Davies, Julia R

    2014-06-21

    A key element for long-term success of dental implants is integration of the implant surface with the surrounding host tissues. Modification of titanium implant surfaces can enhance osteoblast activity but their effects on soft-tissue cells are unclear. Adherence of human keratinocytes and gingival fibroblasts to control commercially pure titanium (CpTi) and two surfaces prepared by anodic oxidation was therefore investigated. Since implant abutments are exposed to a bacteria-rich environment in vivo, the effect of oral bacteria on keratinocyte adhesion was also evaluated. The surfaces were characterized using scanning electron microscopy (SEM). The number of adhered cells and binding strength, as well as vitality of fibroblasts and keratinocytes were evaluated using confocal scanning laser microscopy after staining with Live/Dead Baclight. To evaluate the effect of bacteria on adherence and vitality, keratinocytes were co-cultured with a four-species streptococcal consortium. SEM analysis showed the two anodically oxidized surfaces to be nano-structured with differing degrees of pore-density. Over 24 hours, both fibroblasts and keratinocytes adhered well to the nano-structured surfaces, although to a somewhat lesser degree than to CpTi (range 42-89% of the levels on CpTi). The strength of keratinocyte adhesion was greater than that of the fibroblasts but no differences in adhesion strength could be observed between the two nano-structured surfaces and the CpTi. The consortium of commensal streptococci markedly reduced keratinocyte adherence on all the surfaces as well as compromising membrane integrity of the adhered cells. Both the vitality and level of adherence of soft-tissue cells to the nano-structured surfaces was similar to that on CpTi. Co-culture with streptococci reduced the number of keratinocytes on all the surfaces to approximately the same level and caused cell damage, suggesting that commensal bacteria could affect adherence of soft-tissue cells to

  2. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions

    DEFF Research Database (Denmark)

    Perrais, Michaël; Chen, Xiao; Perez-Moreno, Mirna

    2007-01-01

    growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic bonds at the cell surface of isolated epithelial cells by using functionally active recombinant E-cadherin protein attached to microspheres. We find that E-cadherin ligation alone reduces the frequency...... of cells entering the S phase, demonstrating that E-cadherin ligation directly transduces growth inhibitory signals. E-cadherin binding to beta-catenin is required for cell growth inhibition, but beta-catenin/T-cell factor transcriptional activity is not involved in growth inhibition resulting from...... homophilic binding. Neither E-cadherin binding to p120-catenin nor beta-catenin binding to alpha-catenin, and thereby the actin cytoskeleton, is required for growth inhibition. E-cadherin ligation also inhibits epidermal growth factor (EGF) receptor-mediated growth signaling by a beta...

  3. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions

    DEFF Research Database (Denmark)

    Bolós, Victoria; Peinado, Hector; Pérez-Moreno, Mirna A

    2003-01-01

    Transcriptional repression mechanisms have emerged as one of the crucial processes for the downregulation of E-cadherin expression during development and tumour progression. Recently, several E-cadherin transcriptional repressors have been characterized (Snail, E12/E47, ZEB-1 and SIP-1) and shown...

  4. Subcellular localisation of BAG-1 and its regulation of vitamin D receptor-mediated transactivation and involucrin expression in oral keratinocytes: Implications for oral carcinogenesis

    International Nuclear Information System (INIS)

    Lee, San San; Crabb, Simon J.; Janghra, Nari; Carlberg, Carsten; Williams, Ann C.; Cutress, Ramsey I.; Packham, Graham; Hague, Angela

    2007-01-01

    In oral cancers, cytoplasmic BAG-1 overexpression is a marker of poor prognosis. BAG-1 regulates cellular growth, differentiation and survival through interactions with diverse proteins, including the vitamin D receptor (VDR), a key regulator of keratinocyte growth and differentiation. BAG-1 is expressed ubiquitously in human cells as three major isoforms of 50 kDa (BAG-1L), 46 kDa (BAG-1M) and 36 kDa (BAG-1S) from a single mRNA. In oral keratinocytes BAG-1L, but not BAG-1M and BAG-1S, enhanced VDR transactivation in response to 1α,25-dihydroxyvitamin D 3. BAG-1L was nucleoplasmic and nucleolar, whereas BAG-1S and BAG-1M were cytoplasmic and nucleoplasmic in localisation. Having identified the nucleolar localisation sequence in BAG-1L, we showed that mutation of this sequence did not prevent BAG-1L from potentiating VDR activity. BAG-1L also potentiated transactivation of known vitamin-D-responsive gene promoters, osteocalcin and 24-hydroxylase, and enhanced VDR-dependent transcription and protein expression of the keratinocyte differentiation marker, involucrin. These results demonstrate endogenous gene regulation by BAG-1L by potentiating nuclear hormone receptor function and suggest a role for BAG-1L in 24-hydroxylase regulation of vitamin D metabolism and the cellular response of oral keratinocytes to 1α,25-dihydroxyvitamin D 3 . By contrast to the cytoplasmic BAG-1 isoforms, BAG-1L may act to suppress tumorigenesis

  5. E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells

    International Nuclear Information System (INIS)

    Theys, Jan; Jutten, Barry; Habets, Roger; Paesmans, Kim; Groot, Arjan J.; Lambin, Philippe; Wouters, Brad G.; Lammering, Guido; Vooijs, Marc

    2011-01-01

    Background and purpose: Hypoxia is a hallmark of solid cancers and associated with metastases and treatment failure. During tumor progression epithelial cells often acquire mesenchymal features, a phenomenon known as epithelial-to-mesenchymal transition (EMT). Intratumoral hypoxia has been linked to EMT induction. We hypothesized that signals from the tumor microenvironment such as growth factors and tumor oxygenation collaborate to promote EMT and thereby contribute to radioresistance. Materials and methods: Gene expression changes under hypoxia were analyzed using microarray and validated by qRT-PCR. Conversion of epithelial phenotype upon hypoxic exposure, TGFβ addition or oncogene activation was investigated by Western blot and immunofluorescence. Cell survival following ionizing radiation was assayed using clonogenic survival. Results: Upon hypoxia, TGFβ addition or EGFRvIII expression, MCF7, A549 and NMuMG epithelial cells acquired a spindle shape and lost cell-cell contacts. Expression of epithelial markers such as E-cadherin decreased, whereas mesenchymal markers such as vimentin and N-cadherin increased. Combining hypoxia with TGFβ or EGFRvIII expression, lead to more rapid and pronounced EMT-like phenotype. Interestingly, E-cadherin expression and the mesenchymal appearance were reversible upon reoxygenation. Mesenchymal conversion and E-cadherin loss were associated with radioresistance. Conclusions: Our findings describe a mechanism by which the tumor microenvironment may contribute to tumor radioresistance via E-cadherin loss and EMT.

  6. E-cadherin is transcriptionally activated via suppression of ZEB1 transcriptional repressor by small RNA-mediated gene silencing.

    Directory of Open Access Journals (Sweden)

    Minami Mazda

    Full Text Available RNA activation has been reported to be induced by small interfering RNAs (siRNAs that act on the promoters of several genes containing E-cadherin. In this study, we present an alternative mechanism of E-cadherin activation in human PC-3 cells by siRNAs previously reported to possess perfect-complementary sequences to E-cadherin promoter. We found that activation of E-cadherin can be also induced via suppression of ZEB1, which is a transcriptional repressor of E-cadherin, by seed-dependent silencing mechanism of these siRNAs. The functional seed-complementary sites of the siRNAs were found in the coding region in addition to the 3' untranslated region of ZEB1 mRNA. Promoter analyses indicated that E-boxes, which are ZEB1-binding sites, in the upstream promoter region are indispensable for E-cadherin transcription by the siRNAs. Thus, the results caution against ignoring siRNA seed-dependent silencing effects in genome-wide transcriptional regulation. In addition, members of miR-302/372/373/520 family, which have the same seed sequences with one of the siRNAs containing perfect-complementarity to E-cadherin promoter, are also found to activate E-cadherin transcription. Thus, E-cadherin could be upregulated by the suppression of ZEB1 transcriptional repressor by miRNAs in vivo.

  7. E-cadherin expression increases cell proliferation by regulating energy metabolism through nuclear factor-κB in AGS cells.

    Science.gov (United States)

    Park, Song Yi; Shin, Jee-Hye; Kee, Sun-Ho

    2017-09-01

    β-Catenin is a central player in Wnt signaling, and activation of Wnt signaling is associated with cancer development. E-cadherin in complex with β-catenin mediates cell-cell adhesion, which suppresses β-catenin-dependent Wnt signaling. Recently, a tumor-suppressive role for E-cadherin has been reconsidered, as re-expression of E-cadherin was reported to enhance the metastatic potential of malignant tumors. To explore the role of E-cadherin, we established an E-cadherin-expressing cell line, EC96, from AGS cells that featured undetectable E-cadherin expression and a high level of Wnt signaling. In EC96 cells, E-cadherin re-expression enhanced cell proliferation, although Wnt signaling activity was reduced. Subsequent analysis revealed that nuclear factor-κB (NF-κB) activation and consequent c-myc expression might be involved in E-cadherin expression-mediated cell proliferation. To facilitate rapid proliferation, EC96 cells enhance glucose uptake and produce ATP using both mitochondria oxidative phosphorylation and glycolysis, whereas AGS cells use these mechanisms less efficiently. These events appeared to be mediated by NF-κB activation. Therefore, E-cadherin re-expression and subsequent induction of NF-κB signaling likely enhance energy production and cell proliferation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  8. Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer

    Science.gov (United States)

    Carvalho, S; Catarino, TA; Dias, AM; Kato, M; Almeida, A; Hessling, B; Figueiredo, J; Gärtner, F; Sanches, JM; Ruppert, T; Miyoshi, E; Pierce, M; Carneiro, F; Kolarich, D; Seruca, R; Yamaguchi, Y; Taniguchi, N; Reis, CA; Pinho, SS

    2016-01-01

    E-cadherin is a central molecule in the process of gastric carcinogenesis and its posttranslational modifications by N-glycosylation have been described to induce a deleterious effect on cell adhesion associated with tumor cell invasion. However, the role that site-specific glycosylation of E-cadherin has in its defective function in gastric cancer cells needs to be determined. Using transgenic mice models and human clinical samples, we demonstrated that N-acetylglucosaminyltransferase V (GnT-V)-mediated glycosylation causes an abnormal pattern of E-cadherin expression in the gastric mucosa. In vitro models further indicated that, among the four potential N-glycosylation sites of E-cadherin, Asn-554 is the key site that is selectively modified with β1,6 GlcNAc-branched N-glycans catalyzed by GnT-V. This aberrant glycan modification on this specific asparagine site of E-cadherin was demonstrated to affect its critical functions in gastric cancer cells by affecting E-cadherin cellular localization, cis-dimer formation, molecular assembly and stability of the adherens junctions and cell–cell aggregation, which was further observed in human gastric carcinomas. Interestingly, manipulating this site-specific glycosylation, by preventing Asn-554 from receiving the deleterious branched structures, either by a mutation or by silencing GnT-V, resulted in a protective effect on E-cadherin, precluding its functional dysregulation and contributing to tumor suppression. PMID:26189796

  9. Gene expression signatures affected by ethanol and/or nicotine in normal human normal oral keratinocytes (NHOKs

    Directory of Open Access Journals (Sweden)

    Jeffrey J. Kim

    2014-12-01

    Full Text Available It has been reported that nicotine/alcohol alters epigenetic control and leads to abrogated DNA methylation and histone modifications, which could subsequently perturb transcriptional regulation critically important in cellular transformation. The aim of this study is to determine the molecular mechanisms of nicotine/alcohol-induced epigenetic alterations and their mechanistic roles in transcriptional regulation in human adult stem cells. We hypothesized that nicotine/alcohol induces deregulation of epigenetic machinery and leads to epigenetic alterations, which subsequently affect transcriptional regulation in oral epithelial stem cells. As an initiating step we have profiled transcriptomic alterations induced by the combinatory administration of EtOH and nicotine in primary normal human oral keratinocytes. Here we provide detailed experimental methods, analysis and information associated with our data deposited into Gene Expression Omnibus (GEO under GSE57634. Our data provide comprehensive transcriptomic map describing molecular changes induced by EtOH and nicotine on normal human oral keratinocytes.

  10. The ultrastructural surface morphology of oral cancer cells and keratinocytes after exposure to chitosan

    Science.gov (United States)

    Fatimah; Sarsito, A. S.; Wimardhani, Y. S.

    2017-08-01

    Low-molecular-weight chitosan (LMWC) has the same selective cytotoxic effects on oral cancer cells as cisplatin. The cell deaths caused by the anticancer characteristics of chitosan show that apoptosis is not the death pathway of the primary cells involved. The interactions between LMWC and the cells need to be explored. The objective of this study was to compare the ultrastructural morphology of oral Squamous Cell Carcinoma (SCC Ca)-922 and noncancer keratinocyte HaCaT cell lines after exposure to LMWC and cisplatin. The cells were treated with LMWC and cisplatin, and their ultrastructural morphology was analyzed using scanning electron micrographs. Features of early apoptosis, seen as the loss of microvilli, were detected in the LMWC-exposed Ca9-22 cells, and there was a material surrounding the cells. In contrast, the LMWC-exposed HaCaT cells showed no changes related to apoptosis. The results were the opposite when cisplatin was used. This study confirms that there are differences in the ultrastructural surface morphology of LMWC-exposed and cisplatin-exposed oral cancer cells and keratinocytes that could be correlated with their biological activity.

  11. p120 Catenin-Mediated Stabilization of E-Cadherin Is Essential for Primitive Endoderm Specification.

    Directory of Open Access Journals (Sweden)

    Tim Pieters

    2016-08-01

    Full Text Available E-cadherin-mediated cell-cell adhesion is critical for naive pluripotency of cultured mouse embryonic stem cells (mESCs. E-cadherin-depleted mESC fail to downregulate their pluripotency program and are unable to initiate lineage commitment. To further explore the roles of cell adhesion molecules during mESC differentiation, we focused on p120 catenin (p120ctn. Although one key function of p120ctn is to stabilize and regulate cadherin-mediated cell-cell adhesion, it has many additional functions, including regulation of transcription and Rho GTPase activity. Here, we investigated the role of mouse p120ctn in early embryogenesis, mESC pluripotency and early fate determination. In contrast to the E-cadherin-null phenotype, p120ctn-null mESCs remained pluripotent, but their in vitro differentiation was incomplete. In particular, they failed to form cystic embryoid bodies and showed defects in primitive endoderm formation. To pinpoint the underlying mechanism, we undertook a structure-function approach. Rescue of p120ctn-null mESCs with different p120ctn wild-type and mutant expression constructs revealed that the long N-terminal domain of p120ctn and its regulatory domain for RhoA were dispensable, whereas its armadillo domain and interaction with E-cadherin were crucial for primitive endoderm formation. We conclude that p120ctn is not only an adaptor and regulator of E-cadherin, but is also indispensable for proper lineage commitment.

  12. Clinicopathologic Correlations of E-cadherin and Prrx-1 Expression Loss in Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Kijong Yi

    2016-09-01

    Full Text Available Background Developing predictive markers for hepatocellular carcinoma (HCC is important, because many patients experience recurrence and metastasis. Epithelial to mesenchymal transition (EMT is a developmental process that plays an important role during embryogenesis and also during cancer metastasis. Paired-related homeobox protein 1 (Prrx-1 is an EMT inducer that has recently been introduced, and its prognostic significance in HCC is largely unknown. Methods Tissue microarray was constructed using surgically resected primary HCCs from 244 cases. Immunohistochemical staining of E-cadherin and Prrx-1 was performed. The correlation between E-cadherin loss and Prrx-1 expression, as well as other clinicopathologic factors, was evaluated. Results E-cadherin expression was decreased in 96 cases (39.4%. Loss of E-cadherin correlated with a higher recurrence rate (p 40% were independent prognostic factors for shorter overall survival. Conclusions Prrx-1 was expressed in small portions of HCCs but not in normal livers. Additional studies with a large number of Prrx-1-positive cases are required to confirm the results of this study.

  13. Integrin-Linked Kinase Is Indispensable for Keratinocyte Differentiation and Epidermal Barrier Function.

    Science.gov (United States)

    Sayedyahossein, Samar; Rudkouskaya, Alena; Leclerc, Valerie; Dagnino, Lina

    2016-02-01

    A functional permeability barrier is essential to prevent the passage of water and electrolytes, macromolecules, and pathogens through the epidermis. This is accomplished in terminally differentiated keratinocytes through formation of a cornified envelope and the assembly of tight intercellular junctions. Integrin-linked kinase (ILK) is a scaffold protein essential for hair follicle morphogenesis and epidermal attachment to the basement membrane. However, the biological functions of ILK in differentiated keratinocytes remain poorly understood. Furthermore, whether ILK is implicated in keratinocyte differentiation and intercellular junction formation has remained an unresolved issue. Here we describe a pivotal role for ILK in keratinocyte differentiation responses to increased extracellular Ca(2+), regulation of adherens and tight junction assembly, and the formation of an outside-in permeability barrier toward macromolecules. In the absence of ILK, the calcium sensing receptor, E-cadherin, and ZO-1 fail to translocate to the cell membrane, through mechanisms that involve abnormalities in microtubules and in RhoA activation. In situ, ILK-deficient epidermis exhibits reduced tight junction formation and increased outside-in permeability to a dextran tracer, indicating reduced barrier properties toward macromolecules. Therefore, ILK is an essential component of keratinocyte differentiation programs that contribute to epidermal integrity and the establishment of its barrier properties. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Invasive lobular breast cancer: the prognostic impact of histopathological grade, E-cadherin and molecular subtypes.

    Science.gov (United States)

    Engstrøm, Monica J; Opdahl, Signe; Vatten, Lars J; Haugen, Olav A; Bofin, Anna M

    2015-02-01

    The aim of this study was to compare breast cancer specific survival (BCSS) for invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) and, further, to evaluate critically the prognostic value of histopathological grading of ILC and examine E-cadherin as a prognostic marker in ILC. The study comprised 116 lobular and 611 ductal breast carcinomas occurring between 1961 and 2008. All cases had been classified previously according to histopathological type and grade, stained for oestrogen receptor (ER), progesterone receptor (PR), antigen Ki67 (Ki67), epithelial growth factor receptor (EGFR), cytokeratin 5 (CK5) and human epidermal growth factor receptor 2 (HER2) and classified into molecular subtypes. For the present study, immunohistochemical staining for E-cadherin was performed. The Kaplan-Meier method and Cox proportional hazards models were used in the analyses. Grade 2 tumours comprised 85.3% of the lobular tumours and 51.9% of the ductal tumours. BCSS in ILC grade 2 was comparable to that of IDC grade 3. E-cadherin-negative ILC had a poorer prognosis compared to E-cadherin positive ILC and to IDC regardless of E-cadherin status. The implication of histopathological grading may differ in ILC compared to IDC. E-cadherin may be useful in prognostication in ILC and thereby influence the determination of treatment strategies for this group of women. © 2014 The Authors. Histopathology published by John Wiley & Sons Ltd.

  15. Loss of functional E-cadherin renders cells more resistant to the apoptotic agent taxol in vitro

    International Nuclear Information System (INIS)

    Ferreira, Paulo; Oliveira, Maria Jose; Beraldi, Eliana; Mateus, Ana Rita; Nakajima, Takashi; Gleave, Martin; Yokota, Jun; Carneiro, Fatima; Huntsman, David; Seruca, Raquel; Suriano, Gianpaolo

    2005-01-01

    Experimental evidence supports a role for E-cadherin in suppressing invasion, metastasis, and proliferation. Germline mutations of the E-cadherin represent the genetic cause of hereditary diffuse gastric cancer (HDGC). In this type of tumor, isolated cancer cells permeate the basal membrane and paradoxically survive in the gastric wall in the absence of contact with neighbor epithelial cells or with the extracellular matrix. This suggests that upon E-cadherin deregulation, cells acquired resistance to apoptosis. To test this hypothesis, CHO cells stably expressing either wild-type E-cadherin or the HDGC-related germline mutations T340A and V832M were seeded either on a thin layer of collagen type I or on plastic and then subjected to the apoptotic agent taxol. We found that in vitro functional E-cadherin renders cells more sensitive to the effect of taxol. Our results also indicate that this effect is associated to decreased level of the anti-apoptotic bcl-2 protein

  16. Effects of CD44 and E-cadherin overexpression on the proliferation, adhesion and invasion of ovarian cancer cells.

    Science.gov (United States)

    Mao, Meiya; Zheng, Xiaojiao; Jin, Bohong; Zhang, Fubin; Zhu, Linyan; Cui, Lining

    2017-12-01

    CD44 is a prognostic indicator of shorter survival time in ovarian cancer. E-cadherin fragmentation promotes the progression of ovarian cancer. However, the effects of CD44 and E-cadherin overexpression on ovarian cancer cells have remained elusive. The present study aimed to investigate the effects of overexpression of CD44 and E-cadherin on cell proliferation, adhesion and invasion of SKOV-3 and OVCAR-3 ovarian cancer cells. Overexpression of CD44 and E-cadherin was achieved by transfecting SKOV-3 and OVCAR-3 cells with viruses carrying the CD44 or E-cadherin gene, respectively. Expression of CD44 and E-cadherin was detected by western blot analysis. The proliferation of SKOV-3 and OVCAR-3 cells was measured by a Cell Counting Kit-8 at 0, 24 and 48 h after viral transfection. The adhesion ability of SKOV-3 and OVCAR-3 cells to the endothelial layer was detected. A Transwell invasion assay was utilized to assess the invasion ability of the cells. Overexpression of CD44 and E-cadherin in SKOV-3 and OVCAR-3 cells was confirmed by western blot. Compared with the blank or negative control groups, the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells exhibited an increased cell proliferation rate at 24 and 48 h, whereas overexpression of E-cadherin did not alter the proliferation of these cells. Furthermore, compared with the blank and negative control groups, the cell adhesion and invasion ability in the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells was markedly higher. There were no significant differences in adhesion ability between the E-cadherin overexpression group and the blank/negative control group. Of note, overexpression of E-cadherin decreased the invasive ability of SKOV-3 and OVCAR-3 cells. In conclusion, Overexpression of CD44 increased the proliferation, adhesion and invasion of ovarian cancer cells, while overexpression of E-cadherin decreased the invasion of ovarian cancer cells.

  17. Rac1 activation inhibits E-cadherin-mediated adherens junctions via binding to IQGAP1 in pancreatic carcinoma cells

    Directory of Open Access Journals (Sweden)

    Giehl Klaudia

    2009-09-01

    Full Text Available Abstract Background Monomeric GTPases of the Rho family control a variety of cellular functions including actin cytoskeleton organisation, cell migration and cell adhesion. Defects in these regulatory processes are involved in tumour progression and metastasis. The development of metastatic carcinoma is accompanied by deregulation of adherens junctions, which are composed of E-cadherin/β- and α-catenin complexes. Results Here, we show that the activity of the monomeric GTPase Rac1 contributes to inhibition of E-cadherin-mediated cell-cell adhesion in pancreatic carcinoma cells. Stable expression of constitutively active Rac1(V12 reduced the amount of E-cadherin on protein level in PANC-1 pancreatic carcinoma cells, whereas expression of dominant negative Rac1(N17 resulted in an increased amount of E-cadherin. Extraction of proteins associated with the actin cytoskeleton as well as coimmunoprecipitation analyses demonstrated markedly decreased amounts of E-cadherin/catenin complexes in Rac1(V12-expressing cells, but increased amounts of functional E-cadherin/catenin complexes in cells expressing Rac1(N17. Cell aggregation and migration assays revealed, that cells containing less E-cadherin due to expression of Rac1(V12, exhibited reduced cell-cell adhesion and increased cell motility. The Rac/Cdc42 effector protein IQGAP1 has been implicated in regulating cell-cell adhesion. Coimmunoprecipitation studies showed a decrease in the association between IQGAP1 and β-catenin in Rac1(V12-expressing PANC-1 cells and an association of IQGAP1 with Rac1(V12. Elevated association of IQGAP1 with the E-cadherin adhesion complex via β-catenin correlated with increased intercellular adhesion of PANC-1 cells. Conclusion These results indicate that active Rac1 destabilises E-cadherin-mediated cell-cell adhesion in pancreatic carcinoma cells by interacting with IQGAP1 which is associated with a disassembly of E-cadherin-mediated adherens junctions. Inhibition

  18. Human T-Lymphotropic virus (HTLV type I in vivo integration in oral keratinocytes

    Directory of Open Access Journals (Sweden)

    Martha C Domínguez

    2011-03-01

    Full Text Available Although the infection of HTLV-1 to cell components of the mouth have been previously reported, there was not until this report, a detailed study to show the characteristics of such infection. From 14 Tropical Spastic Paraparesis/ HTLV-1-Associated Myelopathy (HAM/TSP patients and 11 asymptomatic carrier individuals (AC coming from HTLV-1 endemic areas of southwest Pacific of Colombia, infected oral mucosa cells were primary cultured during five days. These cell cultures were immunophenotyped by dual color fluorescence cell assortment using different lymphocyte CD markers and also were immunohistochemically processed using a polyclonal anti-keratin antibody. Five days old primary cultures were characterized as oral keratinocytes, whose phenotype was CD3- /CD4-/CD8-/CD19-/CD14-/CD45-/A575-keratin+. From DNA extracted of primary cultures LTR, pol, env and tax HTLV-1 proviral DNA regions were differentially amplified by PCR showing proviral integration. Using poly A+ RNA obtained of these primary cultures, we amplify by RT-PCR cDNA of tax and pol in 57.14% (8/14 HAM/TSP patients and 27.28% (3/11 AC. Tax and pol poly A+ RNA were expressed only in those sIgA positive subjects. Our results showed that proviral integration and viral gene expression in oral keratinocytes are associated with a HTLV-1 specific local mucosal immune response only in those HTLV-1 infected individuals with detectable levels of sIgA in their oral fluids. Altogether the results gave strong evidence that oral mucosa infection would be parte of the systemic spreading of HTLV-1 infection.

  19. cDNA microarray analysis of human keratinocytes cells of patients submitted to chemoradiotherapy and oral photobiomodulation therapy: pilot study.

    Science.gov (United States)

    Antunes, Heliton S; Wajnberg, Gabriel; Pinho, Marcos B; Jorge, Natasha Andressa Nogueira; de Moraes, Joyce Luana Melo; Stefanoff, Claudio Gustavo; Herchenhorn, Daniel; Araújo, Carlos M M; Viégas, Celia Maria Pais; Rampini, Mariana P; Dias, Fernando L; de Araujo-Souza, Patricia Savio; Passetti, Fabio; Ferreira, Carlos G

    2018-01-01

    Oral mucositis is an acute toxicity that occurs in patients submitted to chemoradiotherapy to treat head and neck squamous cell carcinoma. In this study, we evaluated differences in gene expression in the keratinocytes of the oral mucosa of patients treated with photobiomodulation therapy and tried to associate the molecular mechanisms with clinical findings. From June 2009 to December 2010, 27 patients were included in a randomized double-blind pilot study. Buccal smears from 13 patients were obtained at days 1 and 10 of chemoradiotherapy, and overall gene expression of samples from both dates were analyzed by complementary DNA (cDNA) microarray. In addition, samples from other 14 patients were also collected at D1 and D10 of chemoradiotherapy for subsequent validation of cDNA microarray findings by qPCR. The expression array analysis identified 105 upregulated and 60 downregulated genes in our post-treatment samples when compared with controls. Among the upregulated genes with the highest fold change, it was interesting to observe the presence of genes related to keratinocyte differentiation. Among downregulated genes were observed genes related to cytotoxicity and immune response. The results indicate that genes known to be induced during differentiation of human epidermal keratinocytes were upregulated while genes associated with cytotoxicity and immune response were downregulated in the laser group. These results support previous clinical findings indicating that the lower incidence of oral mucositis associated with photobiomodulation therapy might be correlated to the activation of genes involved in keratinocyte differentiation.

  20. E-cadherin Is Critical for Collective Sheet Migration and Is Regulated by the Chemokine CXCL12 Protein During Restitution*

    Science.gov (United States)

    Hwang, Soonyean; Zimmerman, Noah P.; Agle, Kimberle A.; Turner, Jerrold R.; Kumar, Suresh N.; Dwinell, Michael B.

    2012-01-01

    Chemokines and other immune mediators enhance epithelial barrier repair. The intestinal barrier is established by highly regulated cell-cell contacts between epithelial cells. The goal of these studies was to define the role for the chemokine CXCL12 in regulating E-cadherin during collective sheet migration during epithelial restitution. Mechanisms regulating E-cadherin were investigated using Caco2BBE and IEC-6 model epithelia. Genetic knockdown confirmed a critical role for E-cadherin in in vitro restitution and in vivo wound repair. During restitution, both CXCL12 and TGF-β1 tightened the monolayer by decreasing the paracellular space between migrating epithelial cells. However, CXCL12 differed from TGF-β1 by stimulating the significant increase in E-cadherin membrane localization during restitution. Chemokine-stimulated relocalization of E-cadherin was paralleled by an increase in barrier integrity of polarized epithelium during restitution. CXCL12 activation of its cognate receptor CXCR4 stimulated E-cadherin localization and monolayer tightening through Rho-associated protein kinase activation and F-actin reorganization. These data demonstrate a key role for E-cadherin in intestinal epithelial restitution. PMID:22549778

  1. P-cadherin expression and survival rate in oral squamous cell carcinoma:an immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Laino Gregorio

    2005-06-01

    Full Text Available Abstract Background P-cadherin (P-cad is a transmembrane molecule involved in the cell-cell adhesion and similar to E-cadherin (E-cad, but less investigated in oncology, especially in in vivo studies. Aims of the present study were to assess the prevalence of P-cad expression in oral squamous cell carcinoma (OSCC and to verify whether P-cad can be considered a marker of prognosis in patients with OSCC. Methods In a retrospective study, a cohort of 67 OSCC patients was investigated for P-cad expression and its cellular localization by immunohistochemistry; some respective healthy margins of resection were similarly investigated as standard controls. After grouping for P-cad expression, OSCCs were statistically analyzed for the variables age, gender, histological grading (G, TNM, Staging, and overall survival rate. Univariate and multivariate analyses were performed. Results 37 cases (55.2% of OSCC showed membranous/cytoplasmic positivity for P-cad, whereas 30 (44.8 % were negative. Although with some differences in membranous vs cytoplasmic localization of P-cad in OSCC with different G, no statistical association was found between P-cad expression and any variables considered at baseline. In terms of prognostic significance, P-cad non expression was found to have an independent association with poorer overall survival rate than P-cad expressing group (P = 0.056; moreover, among P-cad +ve patients the best prognosis was for those OSCC with membranous (P Conclusion On the basis of these results, it is possible to suggest P-cad as an early marker of poor prognosis. The abnormal or lack of P-cad expression could constitute an hallmark of aggressive biological behavior in OSCC

  2. Is upregulation of BCL2 a determinant of tumor development driven by inactivation of CDH1/E-cadherin?

    Directory of Open Access Journals (Sweden)

    Inga Karch

    Full Text Available Inactivation of CDH1, encoding E-cadherin, promotes cancer initiation and progression. According to a newly proposed molecular mechanism, loss of E-cadherin triggers an upregulation of the anti-apoptotic oncoprotein BCL2. Conversely, reconstitution of E-cadherin counteracts overexpression of BCL2. This reciprocal regulation is thought to be critical for early tumor development. We determined the relevance of this new concept in human infiltrating lobular breast cancer (ILBC, the prime tumor entity associated with CDH1 inactivation. BCL2 expression was examined in human ILBC cell lines (IPH-926, MDA-MB-134, SUM-44 harboring deleterious CDH1 mutations. To test for an intact regulatory axis between E-cadherin and BCL2, wild-type E-cadherin was reconstituted in ILBC cells by ectopic expression. Moreover, BCL2 and E-cadherin were evaluated in primary invasive breast cancers and in synchronous lobular carcinomas in situ (LCIS. MDA-MB-134 and IPH-926 showed little or no BCL2 expression, while SUM-44 ILBC cells were BCL2-positive. Reconstitution of E-cadherin failed to impact on BCL2 expression in all cell lines tested. Primary ILBCs were almost uniformly E-cadherin-negative (97% and were frequently BCL2-negative (46%. When compared with an appropriate control group, ILBCs showed a trend towards an increased frequency of BCL2-negative cases (P = 0.064. In terminal duct-lobular units affected by LCIS, the E-cadherin-negative neoplastic component showed a similar or a reduced BCL2-immunoreactivity, when compared with the adjacent epithelium. In conclusion, upregulation of BCL2 is not involved in lobular breast carcinogenesis and is unlikely to represent an important determinant of tumor development driven by CDH1 inactivation.

  3. Characterization of E-cadherin-dependent and -independent events in a new model of c-Fos-mediated epithelial-mesenchymal transition

    International Nuclear Information System (INIS)

    Mejlvang, Jakob; Kriajevska, Marina; Berditchevski, Fedor; Bronstein, Igor; Lukanidin, Eugene M.; Pringle, J. Howard; Mellon, J. Kilian; Tulchinsky, Eugene M.

    2007-01-01

    Fos proteins have been implicated in control of tumorigenesis-related genetic programs including invasion, angiogenesis, cell proliferation and apoptosis. In this study, we demonstrate that c-Fos is able to induce mesenchymal transition in murine tumorigenic epithelial cell lines. Expression of c-Fos in MT1TC1 cells led to prominent alterations in cell morphology, increased expression of mesenchymal markers, vimentin and S100A4, DNA methylation-dependent down-regulation of E-cadherin and abrogation of cell-cell adhesion. In addition, c-Fos induced a strong β-catenin-independent proliferative response in MT1TC1 cells and stimulated cell motility, invasion and adhesion to different extracellular matrix proteins. To explore whether loss of E-cadherin plays a role in c-Fos-mediated mesenchymal transition, we expressed wild-type E-cadherin and two different E-cadherin mutants in MT1TC1/c-fos cells. Expression of wild-type E-cadherin restored epithelioid morphology and enhanced cellular levels of catenins. However, exogenous E-cadherin did not influence expression of c-Fos-dependent genes, only partly suppressed growth of MT1TC1/c-fos cells and produced no effect on c-Fos-stimulated cell motility and invasion in matrigel. On the other hand, re-expression of E-cadherin specifically negated c-Fos-induced adhesion to collagen type I, but not to laminin or fibronectin. Of interest, mutant E-cadherin which lacks the ability to form functional adhesive complexes had an opposite, potentiating effect on cell adhesion to collagen I. These data suggest that cell adhesion to collagen I is regulated by the functional state of E-cadherin. Overall, our data demonstrate that, with the exception of adhesion to collagen I, c-Fos is dominant over E-cadherin in relation to the aspects of mesenchymal transition assayed in this study

  4. Cadherins in the retinal pigment epithelium (RPE revisited: P-cadherin is the highly dominant cadherin expressed in human and mouse RPE in vivo.

    Directory of Open Access Journals (Sweden)

    Xue Yang

    Full Text Available The retinal pigment epithelium (RPE supports the health and function of retinal photoreceptors and is essential for normal vision. RPE cells are post-mitotic, terminally differentiated, and polarized epithelial cells. In pathological conditions, however, they lose their epithelial integrity, become dysfunctional, even dedifferentiate, and ultimately die. The integrity of epithelial cells is maintained, in part, by adherens junctions, which are composed of cadherin homodimers and p120-, β-, and α-catenins linking to actin filaments. While E-cadherin is the major cadherin for forming the epithelial phenotype in most epithelial cell types, it has been reported that cadherin expression in RPE cells is different from other epithelial cells based on results with cultured RPE cells. In this study, we revisited the expression of cadherins in the RPE to clarify their relative contribution by measuring the absolute quantity of cDNAs produced from mRNAs of three classical cadherins (E-, N-, and P-cadherins in the RPE in vivo. We found that P-cadherin (CDH3 is highly dominant in both mouse and human RPE in situ. The degree of dominance of P-cadherin is surprisingly large, with mouse Cdh3 and human CDH3 accounting for 82-85% and 92-93% of the total of the three cadherin mRNAs, respectively. We confirmed the expression of P-cadherin protein at the cell-cell border of mouse RPE in situ by immunofluorescence. Furthermore, we found that oxidative stress induces dissociation of P-cadherin and β-catenin from the cell membrane and subsequent translocation of β-catenin into the nucleus, resulting in activation of the canonical Wnt/β-catenin pathway. This is the first report of absolute comparison of the expression of three cadherins in the RPE, and the results suggest that the physiological role of P-cadherin in the RPE needs to be reevaluated.

  5. Positive expression of LSD1 and negative expression of E-cadherin correlate with metastasis and poor prognosis of colon cancer.

    Science.gov (United States)

    Jie, Ding; Zhongmin, Zhang; Guoqing, Liao; Sheng, Liu; Yi, Zhang; Jing, Wen; Liang, Zeng

    2013-06-01

    The first identified lysine-specific demethylase, LSD1, plays an important role in the metastatic progression of several types of cancer. The aim of this study was to investigate LSD1, E-cadherin, and N-cadherin expression in colon cancer specimens and their clinical significance. The expression of LSD1, E-cadherin, and N-cadherin in colon cancer specimens was determined by immunohistochemistry, and the relationship between the expression of the respective molecules and clinicopathological characteristics was analyzed. The positive expression rates of LSD1, E-cadherin, and N-cadherin in colon cancer specimens were 66.7 % (72/108), 85.2 % (92/108), and 41.7 % (45/108), respectively. LSD1 was significantly more highly expressed in colon cancer specimens classified as high TNM stage lesions and with distant metastasis (P colon cancer specimens classified as high TNM stage lesions and with distant metastasis (P clinical and pathological characteristics (P > 0.05). Correlation analysis revealed that LSD1 expression was negatively correlated with E-cadherin expression (r s = -0.318, P = 0.001), but not evidently correlated with N-cadherin expression (r s = 0.182, P = 0.06). Colon cancer specimens with positive LSD1 expression and negative E-cadherin expression were correlated with significantly lower overall survival. LSD1 showed a significantly higher expression, in contrast to the significantly lower expression of E-cadherin, in colon cancer specimens classified as high TNM stage lesions and with distant metastasis. Positive expression of LSD1 and negative expression of E-cadherin may be predictors of a worse colon cancer prognosis.

  6. Podoplanin expression in peritumoral keratinocytes predicts aggressive behavior in extramammary Paget's disease.

    Science.gov (United States)

    Cho, Zaigen; Konishi, Eiichi; Kanemaru, Mai; Isohisa, Taro; Arita, Takahiro; Kawai, Minako; Tsutsumi, Miho; Mizutani, Hiromi; Takenaka, Hideya; Ozawa, Toshiyuki; Tsuruta, Daisuke; Katoh, Norito; Asai, Jun

    2017-07-01

    Recent studies have demonstrated podoplanin expression in several tumors, which has been associated with lymph node metastasis and poor prognosis. Podoplanin expression in peritumoral cells such as cancer-associated fibroblasts also correlates with tumor progression in several cancers. However, podoplanin expression and its association with extramammary Paget's disease (EMPD) remain unclear. In this study, we examined whether the presence of podoplanin expression in tumor cells or peritumoral basal keratinocytes correlated with aggressive behavior in patients with EMPD and investigated the mechanisms of podoplanin-mediated tumor invasion in this disorder. Skin samples of 37 patients with EMPD were investigated by immunohistochemical analysis. The functions of podoplanin in keratinocytes were examined in vitro by RT-PCR and with invadopodia gelatin-degradation assays using HaCaT cells. Podoplanin was not identified in tumor cells in all cases. Podoplanin expression in peritumoral basal keratinocytes was observed in 25 patients (67.6%). In in situ EMPD, 50% of cases (9 in 18) exhibited podoplanin-positive keratinocytes, whereas 84.2% (16 in 19) demonstrated positive staining in invasive EMPD (P<0.05). Podoplanin expression in peritumoral keratinocytes was also associated with tumor thickness (P<0.005). By immunohistochemical analysis, podoplanin-positive peritumoral keratinocytes were found to be negative for E-cadherin, one of the major adhesion molecules of keratinocytes, which might contribute to tumor invasion into the dermis through a crack in the basal cell layer induced by down-regulation of cell adhesion therein. We further found that podoplanin-positive keratinocytes exhibited invadopodia, which are thought to function in the migration of cancer cells through tissue barriers, indicating that podoplanin-positive peritumoral basal keratinocytes might assist tumor invasion by degrading the extracellular matrix. The presence of podoplanin expression in

  7. Identification of a claudin-4 and E-cadherin score to predict prognosis in breast cancer.

    Science.gov (United States)

    Szasz, Attila M; Nemeth, Zsuzsanna; Gyorffy, Balazs; Micsinai, Mariann; Krenacs, Tibor; Baranyai, Zsolt; Harsanyi, Laszlo; Kiss, Andras; Schaff, Zsuzsa; Tokes, Anna-Maria; Kulka, Janina

    2011-12-01

    The elevated expression of claudins (CLDN) and E-cadherin (CDH-1) was found to correlate with poor prognostic features. Our aim was to perform a comprehensive analysis to assess their potential to predict prognosis in breast cancer. The expression of CLDN-1, -3-5, -7, -8, -10, -15, -18, and E-cadherin at the mRNA level was evaluated in correlation with survival in datasets containing expression measurements of 1809 breast cancer patients. The breast cancer tissues of 197 patients were evaluated with tissue microarray technique and immunohistochemical method for CLDN-1-5, -7, and E-cadherin protein expression. An additional validation set of 387 patients was used to test the accuracy of the resulting prognostic score. Based on the bioinformatic screening of publicly-available datasets, the metagene of CLDN-3, -4, -7, and E-cadherin was shown to have the most powerful predictive power in the survival analyses. An immunohistochemical protein profile consisting of CLDN-2, -4, and E-cadherin was able to predict outcome in the most effective manner in the training set. Combining the overlapping members of the above two methods resulted in the claudin-4 and E-cadherin score (CURIO), which was able to accurately predict relapse-free survival in the validation cohort (P = 0.029). The multivariate analysis, including clinicopathological variables and the CURIO, showed that the latter kept its predictive power (P = 0.040). Furthermore, the CURIO was able to further refine prognosis, separating good versus poor prognosis subgroups in luminal A, luminal B, and triple-negative breast cancer intrinsic subtypes. In breast cancer, the CURIO provides additional prognostic information besides the routinely utilized diagnostic approaches and factors. © 2011 Japanese Cancer Association.

  8. Oral fibroblasts produce more HGF and KGF than skin fibroblasts in response to co-culture with keratinocytes

    DEFF Research Database (Denmark)

    Grøn, Birgitte; Stoltze, Kaj; Andersson, Anders

    2002-01-01

    The production of hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) in subepithelial fibroblasts from buccal mucosa, periodontal ligament, and skin was determined after co-culture with keratinocytes. The purpose was to detect differences between the fibroblast subpopulations...... days by ELISA. When cultured on polystyrene, the constitutive level of KGF and HGF in periodontal fibroblasts was higher than the level in buccal and skin fibroblasts. In the presence of keratinocytes, all three types of fibroblasts in general increased their HGF and KGF production 2-3 times. When...... cells were maintained in collagen, the level of HGF and KGF was decreased mainly in skin cultures. However, in oral fibroblasts, induction after stimulation was at a similar level in collagen compared to on polystyrene. Skin fibroblasts maintained in collagen produced almost no HGF whether...

  9. [Clinical significance of signal transduction and activators of transcription 3, E-cadherin and vimentin in colon cancer].

    Science.gov (United States)

    Zhang, Chao; Xu, Jian-Hua; Liu, Tao; Cui, Hao

    2011-03-01

    To evaluate the clinical significance of STAT3, E-cadherin and vimentin in colon cancer. Samples of colon cancer tissue and adjacent normal tissue were procured from 70 patients with colon cancer. The expressions of STAT3, E-cadherin and vimentin were detected by immunohistochemistry. Associations of clinicopathological characteristics and these three factors were evaluated. STAT3, E-cadherin, vimentin were positive in 74.3%,32.9%, and 78.6% in the colon cancer tissues, respectively, and were 15.7%, 82.9%, and 12.9% in normal colon mucosa tissues, respectively. They were correlated with tumor differentiation, depth of invasion, lymph node metastasis, and TNM staging(Pcolon cancer. The expressions of STAT3, E-cadherin and vimentin may serve as prognostic indicators for patients with colon cancer.

  10. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression

    DEFF Research Database (Denmark)

    Cano, A; Pérez-Moreno, M A; Rodrigo, I

    2000-01-01

    The Snail family of transcription factors has previously been implicated in the differentiation of epithelial cells into mesenchymal cells (epithelial-mesenchymal transitions) during embryonic development. Epithelial-mesenchymal transitions are also determinants of the progression of carcinomas......, occurring concomitantly with the cellular acquisition of migratory properties following downregulation of expression of the adhesion protein E-cadherin. Here we show that mouse Snail is a strong repressor of transcription of the E-cadherin gene. Epithelial cells that ectopically express Snail adopt...

  11. Down-regulation of E-cadherin and catenins in human pituitary growth hormone-producing adenomas.

    Science.gov (United States)

    Sano, Toshiaki; Rong, Qian Zhi; Kagawa, Noriko; Yamada, Shozo

    2004-01-01

    Growth hormone (GH)-producing pituitary adenomas can be ultrastructurally divided into two major types: densely granulated and sparsely granulated. The latter type of adenoma characteristically exhibits globular accumulations of cytokeratin filaments known as fibrous bodies, which are immunohistochemically identifiable as juxtanuclear dot-like immunoreactivity. We hypothesize that the formation of fibrous body might be related to dysfunction of adhesion molecules, because of the functional relationship between intermediate filaments and the cadherin-catenin complex and frequent observation of loss of cohesiveness of the adenoma cells. Our recent immunohistochemical study showed that expression of E-cadherin and its undercoat proteins, alpha-, beta- and gamma-catenin, in GH cell adenomas with prominent fibrous bodies was significantly reduced compared with GH cell adenomas without fibrous bodies and the normal adenohypophysial cells. Although no mutation of exon 3 of the beta-catenin gene was found in any GH cell adenomas with fibrous bodies, methylation-specific polymerase chain reaction analysis revealed that the E-cadherin promoter region was methylated in 37.5% of these adenomas, two of which displayed total methylation, but not in GH cell adenomas without fibrous bodies. We conclude that the decreased expression of the E-cadherin-catenin complex and methylation of the E-cadherin gene promoter region are events associated with the formation of fibrous bodies in GH cell adenomas. It remains to be clarified to explain the mechanism by which down-regulation of adhesion molecules is involved in the abnormal assembly of intermediate filaments.

  12. Relation of glypican-3 and E-cadherin expressions to clinicopathological features and prognosis of mucinous and non-mucinous colorectal adenocarcinoma.

    Science.gov (United States)

    Foda, Abd Al-Rahman Mohammad; Mohammad, Mie Ali; Abdel-Aziz, Azza; El-Hawary, Amira Kamal

    2015-06-01

    Glypican-3 (GPC3) is a member of the membrane-bound heparin sulfate proteoglycans. E-cadherin is an adhesive receptor that is believed to act as a tumor suppressor gene. Many studies had investigated E-cadherin expressions in colorectal carcinoma (CRC) while only one study had investigated GPC3 expression in CRC. This study aims to investigate expression of GCP3 and E-cadherin in colorectal mucinous carcinoma (MA) and non-mucinous adenocarcinoma (NMA) using manual tissue microarray technique. Tumor tissue specimens are collected from 75 cases of MC and 75 cases of NMA who underwent radical surgery from Jan 2007 to Jan 2012 at the Gastroenterology Centre, Mansoura University, Egypt. Their clinicopathological parameters and survival data were revised and analyzed using established statistical methodologies. High-density manual tissue microarrays were constructed using modified mechanical pencil tip technique and immunohistochemistry for GPC3 and E-cadherin was done. NMA showed higher expression of GPC3 than MA with no statistically significant relation. NMA showed a significantly higher E-cadherin expression than MA. GPC3 and E-cadherin positivity rates were significantly interrelated in NMA, but not in MA, group. In NMA group, there was no significant relation between either GPC3 or E-cadherin expression and the clinicopathological features. In a univariate analysis, neither GPC3 nor E-cadherin expression showed a significant impact on disease-free survival (DFS) or overall survival (OS). GPC3 and E-cadherin expressions are not independent prognostic factors in CRC. However, expressions of both are significantly interrelated in NMA patients, suggesting an excellent interplay between both, in contrast to MA. Further molecular studies are needed to further explore the relationship between GCP3 and E-cadherin in colorectal carcinogenesis.

  13. E-cadherin and Vimentin as Predictors of Resistance to Preoperative Systemic Therapy in Patients with Advanced Breast Cancer

    Directory of Open Access Journals (Sweden)

    Sonar. S. Panigoro

    2017-01-01

    Full Text Available Loss of E-cadherin and increased vimentin expression are associated with epithelial-mesenchymal transition andcancer stemness which are responsible for treatment resistance. The study aims to evaluate the role of E-cadherin andvimentin as predictors of resistance to preoperative systemic therapy in patients with advanced breast cancer. This wasa cross-sectional analytical study in patients with stage III-IV breast cancer in Dharmais Cancer Hospital and dr. CiptoMangunkusumo National Hospital from July 2015 to April 2016. Patients had biopsy specimens embedded in paraffinblocks. Expressions of E-cadherin and vimentin proteins were done immunohistochemically. Treatment response wasevaluated histopathologically using Miller-Payne criteria on mastectomy specimens. A total of 65 patients were enrolled.Five patients with invasive lobular carcinoma were excluded. Thirty one had chemotherapy and 29 had hormonaltherapy. After treatment, 46 patients were eligible for mastectomy. E-cadherin and vimentin were positive in 28 (60.9%and 11 (20.3% of specimens. Twenty-three (50% patients showed no response. Treatment resistance were associatedwith type of therapy (OR=4.4; 95% CI=1.27-15.41; p=0.017 and vimentin expression (OR=6.75; 95% CI=1.27-30.02;p=0.016. Hormonal therapy (ORadj=6.26; 95%CI=1.59-24.6; p=0.009 and positive vimentin (ORadj=8.75; 95%CI=1.43-57.4; p=0.019 were independent predictors of treatment resistance. In conclusion, E-cadherin and vimentin can beused as predictors of resistance to preoperative systemic therapy in patients with advanced breast cancer. Keywords: breast cancer, cancer stemness, E-cadherin, preoperative therapy, vimentin.   Peran E-cadherin dan Vimentin sebagai Prediktor Resistensi Terapi Sistemik Preoperatif pada Pasien Kanker Payudara Stadium Lanjut Abstrak Hilangnya ekspresi E-cadherin dan meningkatnya ekspresi vimentin dihubungkan dengan epithelial-mesenchymaltransition dan cancer stemness yang bertanggungjawab terhadap

  14. CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer

    DEFF Research Database (Denmark)

    Caldeira, José Roberto F; Prando, Erika C; Quevedo, Francisco C

    2006-01-01

    prognosis, and metastasis. Differential CpG island methylation in the promoter region of the CDH1 gene might be an alternative way for the loss of expression and function of E-cadherin, leading to loss of tissue integrity, an essential step in tumor progression. METHODS: The aim of our study was to assess...... not statistically significant, the levels of E-cadherin expression tended to diminish with the CDH1 promoter region methylation. In the group of 71 ductal cancinomas, most of the cases of showing CDH1 hypermethylation also presented reduced levels of expression of ER and PgR proteins, and a possible association......BACKGROUND: The E-cadherin gene (CDH1) maps, at chromosome 16q22.1, a region often associated with loss of heterozygosity (LOH) in human breast cancer. LOH at this site is thought to lead to loss of function of this tumor suppressor gene and was correlated with decreased disease-free survival, poor...

  15. Dynamic interplay between adhesive and lateral E-cadherin dimers

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Laur, Oscar Y; Troyanovsky, Regina B

    2002-01-01

    M. The disappearance of adhesive dimers was counterbalanced by an increase in Trp156-dependent lateral dimers. Increasing the calcium concentration to a normal level rapidly restored the original balance between adhesive and lateral dimers. We also present evidence that E-cadherin dimers in vivo have a short lifetime...

  16. Sialyl Lewis x expression in canine malignant mammary tumours: correlation with clinicopathological features and E-Cadherin expression

    International Nuclear Information System (INIS)

    Pinho, Salomé S; Matos, Augusto JF; Lopes, Célia; Marcos, Nuno T; Carvalheira, Júlio; Reis, Celso A; Gärtner, Fátima

    2007-01-01

    Sialyl Lewis x (sLe x ) antigen is a carbohydrate antigen that is considered not only a marker for cancer but also implicated functionally in the malignant behaviour of cancer cells. Overexpression of sLe x is associated with enhanced progression and metastases of many types of cancer including those of the mammary gland. Canine mammary tumours can invade and give rise to metastases via either lymphatic or blood vessels. E-Cadherin is specifically involved in epithelial cell-to-cell adhesion. In cancer, E-Cadherin underexpression is one of the alterations that characterizes the invasive phenotype and is considered an invasion/tumour suppressor gene. Partial or complete loss of E-Cadherin expression correlates with poor prognosis in canine malignant mammary cancer. The aim of this study was to analyse the sLe x expression in canine malignant mammary tumours and to evaluate if the presence of sLe x correlates with the expression of E-Cadherin and with clinicopathological features. Fifty-three cases of canine mammary carcinomas were analysed immunohistochemically using monoclonal antibodies against sLe x (IgM) and E-Cadherin (IgG). The clinicopathological data were then assessed to determine whether there was a correlation with sLe x tumour expression. Double labelled immunofluorescence staining was performed to analyse the combined expression of sLe x and E-Cadherin. sLe x expression was consistently demonstrated in all cases of canine mammary carcinomas with different levels of expression. We found a significant relationship between the levels of sLe x expression and the presence of lymph node metastases. We also demonstrated that when E-Cadherin expression was increased sLe x was reduced and vice-versa. The combined analysis of both adhesion molecules revealed an inverse relationship. In the present study we demonstrate the importance of sLe x in the malignant phenotype of canine malignant mammary tumours. Our results support the use of sLe x as a prognostic tumour

  17. Involvement of microRNAs-MMPs-E-cadherin in the migration and invasion of gastric cancer cells infected with Helicobacter pylori.

    Science.gov (United States)

    Yang, Yongmei; Li, Xiaohui; Du, Jie; Yin, Youcong; Li, Yuanjian

    2018-06-15

    It has been found that Helicobacter pylori (H. pylori)is not only the main cause of gastric cancer, but also closely related to its metastasis. E-cadherin cleavage induced by matrix metalloproteinases (MMPs) plays an important role in the tumor metastasis. In the present study, we investigated the role of microRNAs-MMPs-E-cadherin in migration and invasion of gastric cancer cells treated with H. pylori. The results showed that H. pylori induced migration and invasion of SGC-7901 cells with a down-regulation of E-cadherin expression, which were abolished by MMPs knock down, E-cadherin overexpression, mimics of miR128 and miR148a. MiR128/miR148a inhibitors restored MMP-3/MMP-7 expression, down-regulated E-cadherin level, and accelerated cellular migration and invasion. This study suggests that H. pylori induces migration and invasion of gastric cancer cells through reduction of E-cadherin function by activation of MMP-3, - 7. The present results also suggest that the activated MMPs/E-cadherin pathway is related with down-regulation of miR128/miR148a in the human gastric cancer cells infected with H. pylori. Copyright © 2018. Published by Elsevier Inc.

  18. Simultaneous loss of E-cadherin and catenins in invasive lobular breast cancer and lobular carcinoma in situ

    NARCIS (Netherlands)

    de Leeuw, W. J.; Berx, G.; Vos, C. B.; Peterse, J. L.; van de Vijver, M. J.; Litvinov, S.; van Roy, F.; Cornelisse, C. J.; Cleton-Jansen, A. M.

    1997-01-01

    Loss of expression of the intercellular adhesion molecule E-cadherin frequently occurs in invasive lobular breast carcinomas as a result of mutational inactivation. Expression patterns of E-cadherin and the molecules comprising the cytoplasmic complex of adherens junctions, alpha-, beta- and

  19. Nanoscale E-Cadherin ligand patterns show threshold size for cellular adhesion and adherence junction formation

    DEFF Research Database (Denmark)

    Kristensen, Stine H; Pedersen, Gitte Albinus; Nejsum, Lene Niemann

    2012-01-01

    The role of ligand spatial distribution on the formation of cadherin mediated cell-cell contacts is studied utilizing nanopatterns of E-cadherin ligands. Protein patches ranging in size from 100 nm to 800 nm prepared by colloidal lithography critically influence adhesion, spreading and formation ...

  20. Ezrin and E-cadherin expression profile in cervical cytology: a prognostic marker for tumor progression in cervical cancer.

    Science.gov (United States)

    Zacapala-Gómez, Ana E; Navarro-Tito, Napoleón; Alarcón-Romero, Luz Del C; Ortuño-Pineda, Carlos; Illades-Aguiar, Berenice; Castañeda-Saucedo, Eduardo; Ortiz-Ortiz, Julio; Garibay-Cerdenares, Olga L; Jiménez-López, Marco A; Mendoza-Catalán, Miguel A

    2018-03-27

    Cervical cancer (CC) is the fourth cause of mortality by neoplasia in women worldwide. The use of immunomarkers is an alternative tool to complement currently used algorithms for detection of cancer, and to improve selection of therapeutic schemes. Aberrant expression of Ezrin and E-cadherin play an important role in tumor invasion. In this study we analyzed Ezrin and E-cadherin expression in liquid-based cervical cytology samples, and evaluated their potential use as prognostic immunomarkers. Immunocytochemical staining of Ezrin and E-cadherin was performed in cervical samples of 125 patients. The cytological or histological diagnostic was performed by Papanicolaou staining or H&E staining, respectively. HPV genotyping was determined using INNO-LIPA Genotyping Extra kit and the HPV physical status by in situ hybridization. Ezrin expression in HaCaT, HeLa and SiHa cell lines was determined by immunocytochemistry, immunofluorescence and Western blot. High Ezrin expression was observed in cervical cancer samples (70%), samples with multiple infection by HR-HPV (43%), and samples with integrated viral genome (47%). High Ezrin expression was associated with degree of SIL, viral genotype and physical status. In contrast, low E-cadherin expression was found in cervical cancer samples (95%), samples with multiple infection by HR-HPV/LR-HPV (87%) and integrated viral genome (72%). Low E-cadherin expression was associated with degree of SIL and viral genotype. Interestingly, Ezrin nuclear staining was associated with degree of SIL and viral genotype. High Ezrin expression, high percent of nuclear Ezrin and low E-cadherin expression behaved as risk factors for progression to HSIL and cervical cancer. Ezrin and E-cadherin expression profile in cervical cytology samples could be a potential prognostic marker, useful for identifying cervical lesions with a high-risk of progression to cervical cancer.

  1. Glycoprotein 90K Promotes E-Cadherin Degradation in a Cell Density-Dependent Manner via Dissociation of E-Cadherin–p120-Catenin Complex

    Directory of Open Access Journals (Sweden)

    So-Yeon Park

    2017-12-01

    Full Text Available Glycoprotein 90K (also known as LGALS3BP or Mac-2BP is a tumor-associated protein, and high 90K levels are associated with poor prognosis in some cancers. To clarify the role of 90K as an indicator for poor prognosis and metastasis in epithelial cancers, the present study investigated the effect of 90K on an adherens junctional protein, E-cadherin, which is frequently absent or downregulated in human epithelial cancers. Treatment of certain cancer cells with 90K significantly reduced E-cadherin levels in a cell-population-dependent manner, and these cells showed decreases in cell adhesion and increases in invasive cell motility. Mechanistically, 90K-induced E-cadherin downregulation occurred via ubiquitination-mediated proteasomal degradation. 90K interacted with the E-cadherin–p120-catenin complex and induced its dissociation, altering the phosphorylation status of p120-catenin, whereas it did not associate with β-catenin. In subconfluent cells, 90K decreased membrane-localized p120-catenin and the membrane fraction of the p120-catenin. Particularly, 90K-induced E-cadherin downregulation was diminished in p120-catenin knocked-down cells. Taken together, 90K upregulation promotes the dissociation of the E-cadherin–p120-catenin complex, leading to E-cadherin proteasomal degradation, and thereby destabilizing adherens junctions in less confluent tumor cells. Our results provide a potential mechanism to explain the poor prognosis of cancer patients with high serum 90K levels.

  2. Epithelial self-healing is recapitulated by a 3D biomimetic E-cadherin junction.

    Science.gov (United States)

    Cohen, Daniel J; Gloerich, Martijn; Nelson, W James

    2016-12-20

    Epithelial monolayers undergo self-healing when wounded. During healing, cells collectively migrate into the wound site, and the converging tissue fronts collide and form a stable interface. To heal, migrating tissues must form cell-cell adhesions and reorganize from the front-rear polarity characteristic of cell migration to the apical-basal polarity of an epithelium. However, identifying the "stop signal" that induces colliding tissues to cease migrating and heal remains an open question. Epithelial cells form integrin-based adhesions to the basal extracellular matrix (ECM) and E-cadherin-mediated cell-cell adhesions on the orthogonal, lateral surfaces between cells. Current biological tools have been unable to probe this multicellular 3D interface to determine the stop signal. We addressed this problem by developing a unique biointerface that mimicked the 3D organization of epithelial cell adhesions. This "minimal tissue mimic" (MTM) comprised a basal ECM substrate and a vertical surface coated with purified extracellular domain of E-cadherin, and was designed for collision with the healing edge of an epithelial monolayer. Three-dimensional imaging showed that adhesions formed between cells, and the E-cadherin-coated MTM resembled the morphology and dynamics of native epithelial cell-cell junctions and induced the same polarity transition that occurs during epithelial self-healing. These results indicate that E-cadherin presented in the proper 3D context constitutes a minimum essential stop signal to induce self-healing. That the Ecad:Fc MTM stably integrated into an epithelial tissue and reduced migration at the interface suggests that this biointerface is a complimentary approach to existing tissue-material interfaces.

  3. Interaction of E-cadherin and PTEN regulates morphogenesis and growth arrest in human mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Marcia V.; Fata, Jimmie E.; Martin, Katherine J.; Yaswen, Paul; Bissell, Mina J.

    2009-06-03

    PTEN is a dual function phosphatase with tumor suppressor function compromised in a wide spectrum of cancers. Because tissue polarity and architecture are crucial modulators of normal and malignant behavior, we postulated that PTEN may play a role in maintenance of tissue integrity. We used two non-malignant human mammary epithelial cell lines (HMECs) that form polarized, growth-arrested structures (acini) when cultured in 3-dimensional laminin-rich extracellular matrix gels (3D lrECM). As acini begin to form, PTEN accumulates in both the cytoplasm, and at cell-cell contacts where it colocalizes with E-cadherin/{beta}-catenin complex. Reduction of PTEN levels by shRNA in lrECM prevents formation of organized breast acini and disrupts growth arrest. Importantly, disruption of acinar polarity and cell-cell contact by E-cadherin function-blocking antibodies reduces endogenous PTEN protein levels and inhibits its accumulation at cell-cell contacts. Conversely, in SKBR3 breast cancer cells lacking endogenous E-cadherin expression, exogenous introduction of E-cadherin gene causes induction of PTEN expression and its accumulation at sites of cell interactions. These studies provide evidence that E-cadherin regulates both the PTEN protein levels and its recruitment to cell-cell junctions in 3D lrECM indicating a dynamic reciprocity between architectural integrity and the levels and localization of PTEN. This interaction thus appears to be a critical integrator of proliferative and morphogenetic signaling in breast epithelial cells.

  4. Increased keratinocyte proliferation initiated through downregulation of desmoplakin by RNA interference

    International Nuclear Information System (INIS)

    Wan Hong; South, Andrew P.; Hart, Ian R.

    2007-01-01

    The intercellular adhesive junction desmosomes are essential for the maintenance of tissue structure and integrity in skin. Desmoplakin (Dp) is a major obligate plaque protein which plays a fundamental role in anchoring intermediate filaments to desmosomal cadherins. Evidence from hereditary human disease caused by mutations in the gene encoding Dp, e.g. Dp haploinsufficiency, suggests that alterations in Dp expression result not only in the disruption of tissue structure and integrity but also could evoke changes in keratinocyte proliferation. We have used transient RNA interference (RNAi) to downregulate Dp specifically in HaCaT keratinocytes. We showed that this Dp downregulation also caused reduced expression of several other desmosomal proteins. Increased cell proliferation and enhanced G 1 -to-S-phase entry in the cell cycle, as monitored by colonial cellular density and BrdU incorporation, were seen in Dp RNAi-treated cells. These proliferative changes were associated with elevated phospho-ERK1/2 and phospho-Akt levels. Furthermore, this increase in phospho-ERK/1/2 and phospho-Akt levels was sustained in Dp RNAi-treated cells at confluence whereas in control cells there was a significant reduction in phosphorylation of ERK1/2. This study indicates that Dp may participate in the regulation of keratinocyte cell proliferation by, in part at least, regulating cell cycle progression

  5. Infiltrating leukocytes confound the detection of E-cadherin promoter methylation in tumors

    International Nuclear Information System (INIS)

    Lombaerts, Marcel; Middeldorp, Janneke W.; Weide, Esther van der; Philippo, Katja; Wezel, Tom van; Smit, Vincent T.H.B.M.; Cornelisse, Cees J.; Cleton-Jansen, Anne-Marie

    2004-01-01

    Promoter hypermethylation is known to result in transcriptional downregulation of many genes including the CDH1 gene. In this study we set out to determine CDH1 promoter methylation in breast tumors with decreased or absent E-cadherin protein expression and without CDH1 gene mutations by methylation-specific PCR (MSP). Interestingly, some tumor samples with normal E-cadherin expression yielded a methylation-specific PCR product. We hypothesized that other cells than tumor cells contribute to these products. Since in normal breast tissue no CDH1 promoter methylation is detected, infiltrating leukocytes, often present in tumors, might account for these methylation-specific fragments. Indeed, a methylation-specific fragment is found in all twelve leukocyte samples tested. Furthermore, activated T-cells also yielded a methylation-specific fragment. Sequencing of these fragments reveals two distinct methylation profiles. Leukocytes have only partial methylation of some CpGs, while the tumor-associated methylation profile shows complete methylation of most CpGs. Therefore, to assess whether CDH1 methylation is tumor associated, sequencing of MSP products is a prerequisite. Here we show that out of six lobular tumors lacking E-cadherin protein expression, three have tumor-associated CDH1 promoter methylation while in three other tumors no methylation is detected

  6. Igf1r signaling is indispensable for preimplantation development and is activated via a novel function of E-cadherin.

    Directory of Open Access Journals (Sweden)

    Ivan Bedzhov

    Full Text Available Insulin-like growth factor I receptor (Igf1r signaling controls proliferation, differentiation, growth, and cell survival in many tissues; and its deregulated activity is involved in tumorigenesis. Although important during fetal growth and postnatal life, a function for the Igf pathway during preimplantation development has not been described. We show that abrogating Igf1r signaling with specific inhibitors blocks trophectoderm formation and compromises embryo survival during murine blastocyst formation. In normal embryos total Igf1r is present throughout the membrane, whereas the activated form is found exclusively at cell contact sites, colocalizing with E-cadherin. Using genetic domain switching, we show a requirement for E-cadherin to maintain proper activation of Igf1r. Embryos expressing exclusively a cadherin chimera with N-cadherin extracellular and E-cadherin intracellular domains (NcEc fail to form a trophectoderm and cells die by apoptosis. In contrast, homozygous mutant embryos expressing a reverse-structured chimera (EcNc show trophectoderm survival and blastocoel cavitation, indicating a crucial and non-substitutable role of the E-cadherin ectodomain for these processes. Strikingly, blastocyst formation can be rescued in homozygous NcEc embryos by restoring Igf1r signaling, which enhances cell survival. Hence, perturbation of E-cadherin extracellular integrity, independent of its cell-adhesion function, blocked Igf1r signaling and induced cell death in the trophectoderm. Our results reveal an important and yet undiscovered function of Igf1r during preimplantation development mediated by a unique physical interaction between Igf1r and E-cadherin indispensable for proper receptor activation and anti-apoptotic signaling. We provide novel insights into how ligand-dependent Igf1r activity is additionally gated to sense developmental potential in utero and into a bifunctional role of adhesion molecules in contact formation and signaling.

  7. Expression analysis of E-cadherin, Slug and GSK3β in invasive ductal carcinoma of breast

    International Nuclear Information System (INIS)

    Prasad, Chandra P; Rath, Gayatri; Mathur, Sandeep; Bhatnagar, Dinesh; Parshad, Rajinder; Ralhan, Ranju

    2009-01-01

    Cancer progression is linked to a partially dedifferentiated epithelial cell phenotype. The signaling pathways Wnt, Hedgehog, TGF-β and Notch have been implicated in experimental and developmental epithelial mesenchymal transition (EMT). Recent findings from our laboratory confirm that active Wnt/β-catenin signaling is critically involved in invasive ductal carcinomas (IDCs) of breast. In the current study, we analyzed the expression patterns and relationships between the key Wnt/β-catenin signaling components- E-cadherin, Slug and GSK3β in IDCs of breast. Of the 98 IDCs analyzed, 53 (54%) showed loss/or reduced membranous staining of E-cadherin in tumor cells. Nuclear accumulation of Slug was observed in 33 (34%) IDCs examined. Loss or reduced level of cytoplasmic GSK3β expression was observed in 52/98 (53%) cases; while 34/98 (35%) tumors showed nuclear accumulation of GSK3β. Statistical analysis revealed associations of nuclear Slug expression with loss of membranous E-cadherin (p = 0.001); nuclear β-catenin (p = 0.001), and cytoplasmic β-catenin (p = 0.005), suggesting Slug mediated E-cadherin suppression via the activation of Wnt/β-catenin signaling pathway in IDCs. Our study also demonstrated significant correlation between GSK3β nuclear localization and tumor grade (p = 0.02), suggesting its association with tumor progression. The present study for the first time provided the clinical evidence in support of Wnt/β-catenin signaling upregulation in IDCs and key components of this pathway - E-cadherin, Slug and GSK3β with β-catenin in implementing EMT in these cells

  8. Expression analysis of E-cadherin, Slug and GSK3β in invasive ductal carcinoma of breast

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Chandra P [Department of Anatomy, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi (India); Department of Biochemistry, All India Institute of Medical Sciences, New Delhi (India); Rath, Gayatri [Department of Anatomy, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi (India); Mathur, Sandeep [Department of Pathology, All India Institute of Medical Sciences, New Delhi (India); Bhatnagar, Dinesh [Department of Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Dehi (India); Parshad, Rajinder [Department of Surgery, All India Institute of Medical Sciences, New Delhi -110029 (India); Ralhan, Ranju [Department of Biochemistry, All India Institute of Medical Sciences, New Delhi (India); Sonshine Family Centre for Head & Neck Disease, Mount Sinai Hospital, 600 University Avenue, Room 6-500, Toronto, Ontario M5G 1X5 (Canada); Department of Otolaryngology-Head and Neck Surgery, Mount Sinai Hospital, 600 University Avenue, Room 6-500, Toronto, Ontario M5G 1X5 (Canada); Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Room 6-500, Toronto, Ontario M5G 1X5 (Canada); Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, M5G 2N2 (Canada)

    2009-09-14

    Cancer progression is linked to a partially dedifferentiated epithelial cell phenotype. The signaling pathways Wnt, Hedgehog, TGF-β and Notch have been implicated in experimental and developmental epithelial mesenchymal transition (EMT). Recent findings from our laboratory confirm that active Wnt/β-catenin signaling is critically involved in invasive ductal carcinomas (IDCs) of breast. In the current study, we analyzed the expression patterns and relationships between the key Wnt/β-catenin signaling components- E-cadherin, Slug and GSK3β in IDCs of breast. Of the 98 IDCs analyzed, 53 (54%) showed loss/or reduced membranous staining of E-cadherin in tumor cells. Nuclear accumulation of Slug was observed in 33 (34%) IDCs examined. Loss or reduced level of cytoplasmic GSK3β expression was observed in 52/98 (53%) cases; while 34/98 (35%) tumors showed nuclear accumulation of GSK3β. Statistical analysis revealed associations of nuclear Slug expression with loss of membranous E-cadherin (p = 0.001); nuclear β-catenin (p = 0.001), and cytoplasmic β-catenin (p = 0.005), suggesting Slug mediated E-cadherin suppression via the activation of Wnt/β-catenin signaling pathway in IDCs. Our study also demonstrated significant correlation between GSK3β nuclear localization and tumor grade (p = 0.02), suggesting its association with tumor progression. The present study for the first time provided the clinical evidence in support of Wnt/β-catenin signaling upregulation in IDCs and key components of this pathway - E-cadherin, Slug and GSK3β with β-catenin in implementing EMT in these cells.

  9. Cyclooxygenase-2 mediated regulation of E-cadherin occurs in conventional but not early-onset gastric cancer cell lines

    NARCIS (Netherlands)

    Sitarz, R.; Leguit, R. J.; de Leng, W. W. J.; Morsink, F. H. M.; Polkowski, W. P.; Maciejewski, R.; Offerhaus, G. J. A.; Milne, A. N.

    2009-01-01

    COX-2 and E-cadherin, involved in invasion and metastasis, are molecules critical for gastric carcinogenesis. A relationship between them is documented in non-small cell lung and prostate cancer. We present novel evidence of a relationship between COX-2 and E-cadherin expression in gastric cancer.

  10. Distribution of E-cadherin and ß-catenin in relation to cell maturation and cell extrusion in rat and mouse small intestines

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge

    2006-01-01

    of programmed cell death (PCD) in mouse small intestinal epithelium. We have studied if this also occurs in the intact rodent small intestine. Our results confirm that extruded cells are negatie for E-cadherin. However, loss of the E-cadherin-interacting protein ß-cetenin preceded both extrusion and loss of E......-cadherin. Thus, all extruded cells as well as all cells in the process of extrusion lacked staining for ß-catenin. Moreover, almost 80% of all cells undergoing programmed cell death, as detected by the TUNEL reaction, lacked ß-catenin whereas over 70% of such cells were positive for E-cadherin. However, most...... ells lacking ß-catenin did not display signs of PCD as detected by the TUNEL method or by staining for active caspase-3. Therefore, these results suggest that loss of ß-catenin precedes the onset of programmed cell death, loss of E-cadherin and extrusion from the villi....

  11. The comparison of two methods to obtain human oral keratinocytes in primary culture; Comparacao de dois metodos de obtencao celular para cultura primaria de queratinocitos bucais humanos

    Energy Technology Data Exchange (ETDEWEB)

    Klingbeil, Maria Fatima Guarizo

    2006-07-01

    The therapeutic procedures frequently used in oral treatments for the pathological diseases are surgical, resulting in failures of the mucosal continuity.The possibility to obtain transplantable oral epithelia from an in vitro cell culture opens new utilization perspectives not only to where it comes from, but also as a reconstructive material for other parts of the human body, such as: urethra, epithelia corneo-limbal, cornea, ocular surface. Many researchers still use controversial methods for obtaining cells. It was therefore evaluated and compared the efficiency in both methods: enzymatic and direct explant to obtain oral keratinocytes from human oral mucosa. Fragments of intra oral epithelial tissues from healthy human subjects, undergoing dental surgeries, were donated to the research project. The keratinocytes were cultivated over a feeder-layer from a previously irradiated 3T3 Swiss albino fibroblasts. In this study it was compared the time needed in the cell obtention, the best cell amount between both methods, the life-span, the cell capacity to form an in vitro epithelia and its morphologic structure. The results in the assessment of both methods have shown the possibility to obtain keratinocytes from a small oral fragment, but at the same time we may verify the advantages and peculiar restrictions for each one of both analyzed methods. (author)

  12. Correlation between E-cadherin-regulated cell adhesion and human osteosarcoma MG-63 cell anoikis.

    Science.gov (United States)

    Lin, Ding-Sheng; Cai, Le-Yi; Ding, Jian; Gao, Wei-Yang

    2014-01-01

    The aim of this study was to investigate the relationship between cell adhesion and anoikis evasion among human osteosarcoma cells (MG-63), and to further study the molecular mechanisms. Human osteosarcoma cells (MG-63) were assessed for apoptosis, and caspase-3, E-cadherin and β-catenin expression in EDTA and control non-EDTA groups. MG-63 cells were predominantly aggregated when in suspension, and the suspended cells were more dispersed in the EDTA group. Following culture in suspension for 24 h, 48 h, or 72 h, the rates of apoptosis were 34.88%±3.64%, 59.3%±7.22% and 78.5%±5.21% in the experimental group and 7.34%±2.13%, 14.7%±3.69%, and 21.4%±3.60% in the control group, respectively. Caspase-3 expression progressively increased and E-cadherin and β-catenin were decreased in the experimental group, whereas there was no change in the control group. MG-63 cells could avoid anoikis through cell adhesion, and E-cadherin might play a role in this process.

  13. e-Cadherin in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Induced Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Samuela Cataldi

    2016-01-01

    Full Text Available Today a large number of studies are focused on clarifying the complexity and diversity of the pathogenetic mechanisms inducing Parkinson disease. We used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, a neurotoxin that induces Parkinson disease, to evaluate the change of midbrain structure and the behavior of the anti-inflammatory factor e-cadherin, interleukin-6, tyrosine hydroxylase, phosphatase and tensin homolog, and caveolin-1. The results showed a strong expression of e-cadherin, variation of length and thickness of the heavy neurofilaments, increase of interleukin-6, and reduction of tyrosine hydroxylase known to be expression of dopamine cell loss, reduction of phosphatase and tensin homolog described to impair responses to dopamine, and reduction of caveolin-1 known to be expression of epithelial-mesenchymal transition and fibrosis. The possibility that the overexpression of the e-cadherin might be implicated in the anti-inflammatory reaction to MPTP treatment by influencing the behavior of the other analyzed molecules is discussed.

  14. Wingless signalling alters the levels, subcellular distribution and dynamics of Armadillo and E-cadherin in third instar larval wing imaginal discs.

    Directory of Open Access Journals (Sweden)

    Ildiko M L Somorjai

    2008-08-01

    Full Text Available Armadillo, the Drosophila orthologue of vertebrate ss-catenin, plays a dual role as the key effector of Wingless/Wnt1 signalling, and as a bridge between E-Cadherin and the actin cytoskeleton. In the absence of ligand, Armadillo is phosphorylated and targeted to the proteasome. Upon binding of Wg to its receptors, the "degradation complex" is inhibited; Armadillo is stabilised and enters the nucleus to transcribe targets.Although the relationship between signalling and adhesion has been extensively studied, few in vivo data exist concerning how the "transcriptional" and "adhesive" pools of Armadillo are regulated to orchestrate development. We have therefore addressed how the subcellular distribution of Armadillo and its association with E-Cadherin change in larval wing imaginal discs, under wild type conditions and upon signalling. Using confocal microscopy, we show that Armadillo and E-Cadherin are spatio-temporally regulated during development, and that a punctate species becomes concentrated in a subapical compartment in response to Wingless. In order to further dissect this phenomenon, we overexpressed Armadillo mutants exhibiting different levels of activity and stability, but retaining E-Cadherin binding. Arm(S10 displaces endogenous Armadillo from the AJ and the basolateral membrane, while leaving E-Cadherin relatively undisturbed. Surprisingly, DeltaNArm(1-155 caused displacement of both Armadillo and E-Cadherin, results supported by our novel method of quantification. However, only membrane-targeted Myr-DeltaNArm(1-155 produced comparable nuclear accumulation of Armadillo and signalling to Arm(S10. These experiments also highlighted a row of cells at the A/P boundary depleted of E-Cadherin at the AJ, but containing actin.Taken together, our results provide in vivo evidence for a complex non-linear relationship between Armadillo levels, subcellular distribution and Wingless signalling. Moreover, this study highlights the importance of

  15. [Epithelial cadherins and associated molecules in invasive lobular breast cancer].

    Science.gov (United States)

    Brilliant, Yu M; Brilliant, A A; Sazonov, S V

    to estimate the expression of cell adhesion molecules E- and P-cadherin, as well as that of cadherin-catenin complexes in invasive lobular breast cancer (BC) cells. 250 cases of postoperative material from patients diagnosed with invasive lobular BC were studied. The expressions of cell adhesion molecules E-cadherin, P-cadherin, β-catenin, p120 catenin, and vimentin were determined by immunohistochemical assay in all cases. The examined cases were divided into molecular biological subtypes, based on the evaluation of estrogen receptors (ER), progesterone receptors (PR), HER-2/neu, and Ki-67 proliferative index. The membrane expression of E-cadherin on the tumor cells was found to be preserved in 93%; the cytoplasmic expression of β-catenin and p120-catenin appeared in 60 and 72% of cases, respectively. The expression of P-cadherin was detected in 82% of cases. The coexpression of E- and P-cadherin was noted in 90% of all the examined cases. There was a correlation between the expression of E- and P-cadherins (V=0.34; pcancer and its metastasis.

  16. Colorectal adenocarcinoma with mucinous component: relation of MMP-13, EGFR, and E-cadherin expressions to clinicopathological features and prognosis.

    Science.gov (United States)

    Foda, Abd Al-Rahman Mohammad; El-Hawary, Amira Kamal; Aziz, Azza Abdel

    2015-06-01

    The aim of this study was to compare colorectal adenocarcinoma with mucinous component, ordinary adenocarcinoma (OA) and mucinous adenocarcinoma (MA) regarding clinicopathological parameters, survival, EGFR, MMP-13, and E-cadherin. We studied tumor tissue specimens from 28 patients with adenocarcinoma with mucinous component, 47 with OA, and 56 with MA, who underwent radical surgery from January 2007 to January 2012 at the Gastroenterology Centre, Mansoura University, Egypt. High density manual tissue microarrays were constructed and immunohistochemistry for EGFR, MMP-13, and E-cadherin was done. Colorectal adenocarcinoma with mucinous component (AWMC) was significantly associated with more perineural invasion, lower EGFR, and MMP-13 expressions than OA, with no difference in E-cadherin expression. Conversely, only microscopic abscess formation was significantly more with colorectal AWMC than MC with no difference in EGFR, MMP-13 and E-cadherin expression between both groups. Colorectal AWMC showed a better survival than MA with no difference with OA. In a univariate analysis, EGFR, MMP-13, and E-cadherin expressions did not show a significant impact on disease-free or overall survival in patients with colorectal AWMC. Colorectal AWMC remains a vague entity that resembles OA in some clinicopathological and molecular respects as well as MA. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  17. Mast cells infiltration and decreased E-cadherin expression in ketamine-induced cystitis

    Directory of Open Access Journals (Sweden)

    Mengqiang Li

    2015-01-01

    Conclusions: Increased mast cells in bladder wall and downregulated expression of E-cadherin junction protein in epithelial cells were probably associated with interstitial inflammation and fissures in mucosa. It implied that ketamine induced an interstitial cystitis.

  18. Patients treatment with neuroglioma by teniposide and semustine and its influence on Twist and E-cadherin expression

    Directory of Open Access Journals (Sweden)

    Yongbo Zhang

    2016-05-01

    Full Text Available This study focuses on curative effects of teniposide combining with semustine on patients with neuroglioma and the influences on the expression of Twist and E-cadherin in tissue. Sixty-eight patients with neuroglioma taking operation in our hospital were divided into two groups randomly. Single radiotherapy was given to 34 patients in group A, and teniposide (VM-26 and semustine (Me-CCUN were added to radiotherapy for 34 patients in group B. Then, curative effects, survival rate, living quality and adverse reaction rate after operation were compared between two groups. Moreover, the difference in positive expression rate of Twist and E-cadherin before and after treatment between two groups was analyzed by immunohistochemistry. Results: In group B, the effective rate of treatment was 88.2%, and the disease control rate was 70.6%, higher than 52.9% and 32.4% in group A with statistical significance (P  0.05. In addition, the difference in positive expression rate of Twist and E-cadherin between group A and group B has no statistical significance before treatment (P > 0.05. After treatment, however, the positive rate of Twist in group B is lower than that in group A, while the positive rate of E-cadherin is higher. Both differences have statistical significance (P < 0.05. Chemotherapy of VM-26 combining with Me-CCNU can inhibit Twist expression and improve the expression rate of E-cadherin to help improving the curative effects and living quality and increasing survival rate.

  19. ERβ1 inhibits the migration and invasion of breast cancer cells through upregulation of E-cadherin in a Id1-dependent manner

    International Nuclear Information System (INIS)

    Zhou, Yan; Ming, Jia; Xu, Yan; Zhang, Yi; Jiang, Jun

    2015-01-01

    Highlights: • Expression of ERβ1 was positively correlated with E-cadherin in breast cancer cell. • ERβ1 upregulates E-cadherin expression in breast cancer cell lines. • ERβ1 upregulates E-cadherin expression in a Id1-dependent manner. - Abstract: ERβ1 is a member of the nuclear receptor superfamily of ligand-regulated transcription factors. It plays an important role in regulating the progression of breast cancer. However, the mechanisms of ERβ1 in tumorigenesis, metastasis and prognosis are still not fully clear. In this study, we showed that the expression of ERβ1 was positively correlated with E-cadherin expression in breast cancer cell lines. In addition, we found that ERβ1 upregulates E-cadherin expression in breast cancer cell lines. Furthermore, we also found that ERβ1 inhibits the migration and invasion of breast cancer cells and upregulated E-cadherin expression in a Id1-dependent manner. Taken together, our study provides further understanding of the molecular mechanism of ERβ1 in tumor metastasis and suggests the feasibility of developing novel therapeutic approaches to target Id1 to inhibit breast cancer metastasis

  20. CDH1 regulates E2F1 degradation in response to differentiation signals in keratinocytes.

    Science.gov (United States)

    Singh, Randeep K; Dagnino, Lina

    2017-01-17

    The E2F1 transcription factor plays key roles in skin homeostasis. In the epidermis, E2F1 expression is essential for normal proliferation of undifferentiated keratinocytes, regeneration after injury and DNA repair following UV radiation-induced photodamage. Abnormal E2F1 expression promotes nonmelanoma skin carcinoma. In addition, E2F1 must be downregulated for proper keratinocyte differentiation, but the relevant mechanisms involved remain poorly understood. We show that differentiation signals induce a series of post-translational modifications in E2F1 that are jointly required for its downregulation. Analysis of the structural determinants that govern these processes revealed a central role for S403 and T433. In particular, substitution of these two amino acid residues with non-phosphorylatable alanine (E2F1 ST/A) interferes with E2F1 nuclear export, K11- and K48-linked polyubiquitylation and degradation in differentiated keratinocytes. In contrast, replacement of S403 and T433 with phosphomimetic aspartic acid to generate a pseudophosphorylated E2F1 mutant protein (E2F1 ST/D) generates a protein that is regulated in a manner indistinguishable from that of wild type E2F1. Cdh1 is an activating cofactor that interacts with the anaphase-promoting complex/cyclosome (APC/C) ubiquitin E3 ligase, promoting proteasomal degradation of various substrates. We found that Cdh1 associates with E2F1 in keratinocytes. Inhibition or RNAi-mediated silencing of Cdh1 prevents E2F1 degradation in response to differentiation signals. Our results reveal novel regulatory mechanisms that jointly modulate post-translational modifications and downregulation of E2F1, which are necessary for proper epidermal keratinocyte differentiation.

  1. miR-125b inhibits keratinocyte proliferation and promotes keratinocyte apoptosis in oral lichen planus by targeting MMP-2 expression through PI3K/Akt/mTOR pathway.

    Science.gov (United States)

    Wang, Jing; Luo, Hong; Xiao, Yan; Wang, Luyao

    2016-05-01

    Oral lichen planus (OLP) is a chronic inflammatory mucosal disease that involves the degeneration of keratinocytes. However, the etiology and mechanisms of OLP pathogenesis have not been fully elucidated. In this study, we used keratinocytes HaCaT stimulated with lipopolysaccharide (LPS) to mimic a local OLP immune environment, and investigated the regulatory role of miR-125b in keratinocyte proliferation and apoptosis under OLP conditions. Immunohistochemical analysis and quantitative real-time PCR (qRT-PCR) assay showed that MMP-2 expression was up-regulated and miR-125b expression was down-regulated in both OLP mucosa tissues and LPS-incubated HaCaT cells. Western blot analysis indicated that miR-125b overexpression suppressed LPS-induced MMP-2 expression in HaCaT cells. Molecularly, our results confirmed that MMP-2 is a target gene of miR-125b in HaCaT cells. The effect of miR-125b on cell proliferation was revealed by CCK-8 assay, BrdU assay and cell cycle analysis, which illustrated that miR-125b overexpression impeded LPS-induced HaCaT cell proliferation. Flow cytometry analysis further demonstrated that miR-125b overexpression promoted HaCaT cell apoptosis. Moreover, these effects were involved in PI3K/Akt/mTOR activation, as miR-125b overexpression inhibited LPS-enhanced expression of p-Akt and p-mTOR proteins. Taken together, these data confirm that miR-125b might inhibit keratinocyte proliferation and promote keratinocyte apoptosis in OLP pathogenesis by targeting MMP-2 through PI3K/Akt/mTOR pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Junctional E-cadherin/p120-catenin Is Correlated with the Absence of Supporting Cells to Hair Cells Conversion in Postnatal Mice Cochleae

    Directory of Open Access Journals (Sweden)

    Wen-wei Luo

    2018-02-01

    Full Text Available Notch inhibition is known to generate supernumerary hair cells (HCs at the expense of supporting cells (SCs in the mammalian inner ear. However, inhibition of Notch activity becomes progressively less effective at inducing SC-to-HC conversion in the postnatal cochlea and balance organs as the animal ages. It has been suggested that the SC-to-HC conversion capacity is inversely correlated with E-cadherin accumulation in postnatal mammalian utricles. However, whether E-cadherin localization is linked to the SC-to-HC conversion capacity in the mammalian inner ear is poorly understood. In the present study, we treated cochleae from postnatal day 0 (P0 with the Notch signaling inhibitor DAPT and observed apparent SC-to-HC conversion along with E-cadherin/p120ctn disruption in the sensory region. In addition, the SC-to-HC conversion capacity and E-cadherin/p120ctn disorganization were robust in the apex but decreased toward the base. We further demonstrated that the ability to regenerate HCs and the disruption of E-cadherin/p120ctn concomitantly decreased with age and ceased at P7, even after extended DAPT treatments. This timing is consistent with E-cadherin/p120ctn accumulation in the postnatal cochleae. These results suggest that the decreasing capacity of SCs to transdifferentiate into HCs correlates with E-cadherin/p120ctn localization in the postnatal cochleae, which might account for the absence of SC-to-HC conversion in the mammalian cochlea.

  3. Junctional E-cadherin/p120-catenin Is Correlated with the Absence of Supporting Cells to Hair Cells Conversion in Postnatal Mice Cochleae.

    Science.gov (United States)

    Luo, Wen-Wei; Wang, Xin-Wei; Ma, Rui; Chi, Fang-Lu; Chen, Ping; Cong, Ning; Gu, Yu-Yan; Ren, Dong-Dong; Yang, Juan-Mei

    2018-01-01

    Notch inhibition is known to generate supernumerary hair cells (HCs) at the expense of supporting cells (SCs) in the mammalian inner ear. However, inhibition of Notch activity becomes progressively less effective at inducing SC-to-HC conversion in the postnatal cochlea and balance organs as the animal ages. It has been suggested that the SC-to-HC conversion capacity is inversely correlated with E-cadherin accumulation in postnatal mammalian utricles. However, whether E-cadherin localization is linked to the SC-to-HC conversion capacity in the mammalian inner ear is poorly understood. In the present study, we treated cochleae from postnatal day 0 (P0) with the Notch signaling inhibitor DAPT and observed apparent SC-to-HC conversion along with E-cadherin/p120ctn disruption in the sensory region. In addition, the SC-to-HC conversion capacity and E-cadherin/p120ctn disorganization were robust in the apex but decreased toward the base. We further demonstrated that the ability to regenerate HCs and the disruption of E-cadherin/p120ctn concomitantly decreased with age and ceased at P7, even after extended DAPT treatments. This timing is consistent with E-cadherin/p120ctn accumulation in the postnatal cochleae. These results suggest that the decreasing capacity of SCs to transdifferentiate into HCs correlates with E-cadherin/p120ctn localization in the postnatal cochleae, which might account for the absence of SC-to-HC conversion in the mammalian cochlea.

  4. Fragments of e-Cadherin as Biomarkers of Non-erosive Reflux Disease.

    Science.gov (United States)

    Jovov, Biljana; Reed, Craig C; Shaheen, Nicholas J; Pruitt, Amy; Ferrell, Kathleen; Orlando, Geraldine S; Djukic, Zorka; Orlando, Roy C

    2018-03-01

    Approximately, 20% of patients with heartburn and normal endoscopic findings do not symptomatically improve on proton pump inhibitor (PPI) therapy making diagnosis and treatment uncertain. A biomarker distinguishing PPI-responsive from PPI-refractory heartburn is desirable. We performed a pilot study assessing whether carboxy(C)-terminal fragments (CTFs) of e-cadherin in esophageal biopsies or amino(N)-terminal fragments (NTFs) of e-cadherin in serum could serve this purpose. Twenty-nine patients with endoscopy-negative heartburn had esophageal biopsies for CTFs on Western blot and blood for serum NTFs on ELISA. All patients received dexlansoprazole 30 mg daily for 4 weeks, and heartburn was assessed by daily diary entry. Post-treatment blood samples were obtained for serum NTFs. A control group without GERD symptoms (n = 6) had biopsies for CTFs and a second control group (n = 20) blood serum for serum NTFs. Twenty-seven of 29 patients (93.1%) with endoscopy-negative heartburn, but 0 of 6 controls, were positive for CTFs. All patients and controls had measureable serum NTFs, but mean NTFs were significantly higher in those with PPI-responsive heartburn compared to those with PPI-refractory heartburn and controls. Following treatment, 24 of 29 (82.8) patients had relief of heartburn, which associated with a decline in mean NTFs compared to controls. NTFs in PPI-refractory patients (n = 5) were similar to controls before and after PPI therapy. When heartburn responds to PPI, elevated serum NTFs decline to normal. These data suggest that cleaved products of e-cadherin may serve as biomarkers of NERD. Further data are needed to assess and confirm this concept.

  5. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    International Nuclear Information System (INIS)

    Kouchi, Zen; Fujiwara, Yuki; Yamaguchi, Hideki; Nakamura, Yoshikazu; Fukami, Kiyoko

    2011-01-01

    Highlights: → We analyzed Phosphatidylinositol 5-phosphate kinase IIβ (PIPKIIβ) function in cancer. → PIPKIIβ is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. → PIPKIIβ suppresses cellular motility through E-cadherin induction in SW480 cells. → Nuclear PIP 2 but not plasma membrane-localized PIP 2 mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1α,25-dihydroxyvitamin D 3 (1α,25(OH) 2 D 3 ) has anti-cancer activity in several colon cancers. 1α,25(OH) 2 D 3 induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however, its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKIIβ) but not PIPKIIα is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLCδ1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P 2 ) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLCδ1 PHD inhibited 1α,25(OH) 2 D 3 -induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P 2 production mediates E-cadherin expression through PIPKIIβ in a VDR-dependent manner. PIPKIIβ is also involved in the suppression of the cell motility induced by 1α,25(OH) 2 D 3 . These results indicate that PIPKIIβ-mediated PI(4,5)P 2 signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.

  6. A study of RUNX3, E-cadherin and β-catenin in CagA-positive Helicobacter pylori associated chronic gastritis in Saudi patients.

    Science.gov (United States)

    Wagih, H M; El-Ageery, S M; Alghaithy, A A

    2015-04-01

    H. pylori is the most important risk factor for gastric carcinoma. CagA-positive H. pylori is associated with an increased risk for gastric cancer compared with negative strains. RUNX3 is a tumor suppressor gene, which is related to the genesis of gastric cancer. β-catenin is integrated with E-cadherin in the cell membrane, and aberrant expression of the complex was reported in gastric carcinoma. Aim of this paper is to determine of the relation between RUNX3, E-cadherin and β-catenin in chronic gastritis associated with cagA-positive H. pylori infection. Retrospective study was done on formalin fixed paraffin embedded gastric biopsies blocks of 90 patients diagnosed as H. pylori associated chronic gastritis. H. pylori was detected using modified Giemsa stain. Nested PCR was used for detection of cagA, reverse transcription-PCR for detection of RUNX3 and immunohistochemistry for detection of E-cadherin and β-catenin. Fifty percent of cases were found to be cagA positive. CagA was significantly associated with the intensity of mononuclear inflammation, the intensity of neutrophilic inflammation, the degree of mucosal atrophy and loss of RUNX3 but not with the density of H. pylori, intestinal metaplasia, E-cadherin or β-catenin. There was significant relation between loss of RUNX3 and increasing density of H. pylori, intensity of neutrophilic inflammation, mucosal atrophy and intestinal metaplasia. RUNX3 was found to be significantly correlated with E-cadherin but not with β-catenin. E-cadherin showed decreased expression in 36.7% of biopsies while, β-catenin was decreased in 33% of biopsies. Loss of RUNX3, E-cadherin and β-catenin was considered early events in the cascade of gastric carcinoma development. Loss of RUNX3 but neither E-cadherin nor β-catenin was related to cagA positive H. pylori strains.

  7. Dual pulse-chase microscopy reveals early divergence in the biosynthetic trafficking of the Na,K-ATPase and E-cadherin

    Science.gov (United States)

    Farr, Glen A.; Hull, Michael; Stoops, Emily H.; Bateson, Rosalie; Caplan, Michael J.

    2015-01-01

    Recent evidence indicates that newly synthesized membrane proteins that share the same distributions in the plasma membranes of polarized epithelial cells can pursue a variety of distinct trafficking routes as they travel from the Golgi complex to their common destination at the cell surface. In most polarized epithelial cells, both the Na,K-ATPase and E-cadherin are localized to the basolateral domains of the plasma membrane. To examine the itineraries pursued by newly synthesized Na,K-ATPase and E-cadherin in polarized MDCK epithelial cells, we used the SNAP and CLIP labeling systems to fluorescently tag temporally defined cohorts of these proteins and observe their behaviors simultaneously as they traverse the secretory pathway. These experiments reveal that E-cadherin is delivered to the cell surface substantially faster than is the Na,K-ATPase. Furthermore, the surface delivery of newly synthesized E-cadherin to the plasma membrane was not prevented by the 19°C temperature block that inhibits the trafficking of most proteins, including the Na,K-ATPase, out of the trans-Golgi network. Consistent with these distinct behaviors, populations of newly synthesized E-cadherin and Na,K-ATPase become separated from one another within the trans-Golgi network, suggesting that they are sorted into different carrier vesicles that mediate their post-Golgi trafficking. PMID:26424804

  8. Saccharomyces boulardii CNCM I-745 Restores intestinal Barrier Integrity by Regulation of E-cadherin Recycling.

    Science.gov (United States)

    Terciolo, Chloé; Dobric, Aurélie; Ouaissi, Mehdi; Siret, Carole; Breuzard, Gilles; Silvy, Françoise; Marchiori, Bastien; Germain, Sébastien; Bonier, Renaté; Hama, Adel; Owens, Roisin; Lombardo, Dominique; Rigot, Véronique; André, Frédéric

    2017-08-01

    Alteration in intestinal permeability is the main factor underlying the pathogenesis of many diseases affecting the gut, such as inflammatory bowel disease [IBD]. Characterization of molecules targeting the restoration of intestinal barrier integrity is therefore vital for the development of alternative therapies. The yeast Saccharomyces boulardii CNCM I-745 [Sb], used to prevent and treat antibiotic-associated infectious and functional diarrhea, may have a beneficial effect in the treatment of IBD. We analyzed the impact of Sb supernatant on tissue integrity and components of adherens junctions using cultured explants of colon from both IBD and healthy patients. To evaluate the pathways by which Sb regulates the expression of E-cadherin at the cell surface, we developed in vitro assays using human colonic cell lines, including cell aggregation, a calcium switch assay, real-time measurement of transepithelial electrical resistance [TEER] and pulse-chase experiments. We showed that Sb supernatant treatment of colonic explants protects the epithelial morphology and maintains E-cadherin expression at the cell surface. In vitro experiments revealed that Sb supernatant enhances E-cadherin delivery to the cell surface by re-routing endocytosed E-cadherin back to the plasma membrane. This process, involving Rab11A-dependent recycling endosome, leads to restoration of enterocyte adherens junctions, in addition to the overall restoration and strengthening of intestinal barrier function. These findings open new possibilities of discovering novel options for prevention and therapy of diseases that affect intestinal permeability. Copyright © 2017 European Crohn's and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  9. Down-regulated E-cadherin expression is associated with poor five-year overall survival in bone and soft tissue sarcoma: results of a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Ning Wang

    Full Text Available To conduct a meta-analysis to evaluate the prognostic role of E-cadherin expression in bone and soft tissue sarcomas.The PubMed, EMBASE, and Web of Science databases were searched using terms related to E-cadherin, sarcoma, and prognosis for all articles published in English before March 2014. Pooled effect was calculated from the available data to evaluate the association between negative E-cadherin expression and 5-year overall survival and tumor clinicopathological features in sarcoma patients. Pooled odds ratios (OR and risk ratios (RR with 95% confidence intervals (CI were calculated using a fixed-effects model.Eight studies met the selection criteria and reported on 812 subjects. A total of 496 subjects showed positive E-cadherin expression (59.9%. Negative E-cadherin expression in bone and soft tissue sarcomas was correlated with lower 5-year overall survival (OR = 3.831; 95% CI: 2.246-6.534, and was associated with higher clinical stage (RR = 1.446; 95% CI: 1.030-2.028 and with male sex (RR = 0.678; 95% CI: 0.493-0.933.In the E-cadherin negative group, 5-year overall survival was significantly worse than in the E-cadherin positive group. However, further studies are required to confirm these results.

  10. Reduced E-Cadherin and Aberrant β-Catenin Expression are Associated With Advanced Disease in Signet-Ring Cell Carcinomas.

    Science.gov (United States)

    Ma, Yihong R; Ren, Zhiyong; Conner, Michael G; Siegal, Gene P; Wei, Shi

    2017-07-01

    Signet-ring cell carcinomas (SRCCs) tend to present at higher stages and thus are generally associated with a worse prognosis. It has been postulated that a deficiency of E-cadherin may be causal in the pathogenesis of SRCC in animal models. In this study, we systemically analyzed the expression of E-cadherin and β-catenin, a key component of the cadherin complex, in 137 consecutive SRCCs of various organ systems to explore the significance of these molecules in the pathogenesis and progression of SRCCs. Seventy-six percent of SRCCs showed loss or reduced E-cadherin expression. Aberrant β-catenin expression, defined as loss of membranous expression and nuclear/cytoplasmic subcellular localization, was observed in 60% of these cases, with the altered β-catenin expression observed most commonly in the breast (93%) and least in the lung (38%) primaries. Further, the aberrant β-catenin was significantly associated with pathologic nodal stage (P=0.002) and clinical stage (P=0.02). Our findings demonstrated that reduced membranous E-cadherin and aberrant β-catenin expression were frequent events in SRCCs of various organs, and that the altered β-catenin expression was significantly associated with advanced disease. The observations further support the importance of these molecules in the pathogenesis of SRCCs, and indicate the fundamental role of the Wnt/β-catenin signaling pathway in the progression of these tumors. Further investigations of the downstream molecules in this cascade may provide potential novel therapeutic targets for this aggressive tumor type.

  11. Estrogen Deficiency Promotes Cerebral Aneurysm Rupture by Upregulation of Th17 Cells and Interleukin-17A Which Downregulates E-Cadherin.

    Science.gov (United States)

    Hoh, Brian L; Rojas, Kelley; Lin, Li; Fazal, Hanain Z; Hourani, Siham; Nowicki, Kamil W; Schneider, Matheus B; Hosaka, Koji

    2018-04-13

    Estrogen deficiency is associated with the development of cerebral aneurysms; however, the mechanism remains unknown. We explored the pathway of cerebral aneurysm development by investigating the potential link between estrogen deficiency and inflammatory factors. First, we established the role of interleukin-17 (IL-17)A. We performed a cytokine screen demonstrating that IL-17A is significantly expressed in mouse and human aneurysms ( P =0.03). Likewise, IL-17A inhibition was shown to prevent aneurysm formation by 42% ( P =0.02) and rupture by 34% ( P <0.05). Second, we found that estrogen deficiency upregulates T helper 17 cells and IL-17A and promotes aneurysm rupture. Estrogen-deficient mice had more ruptures than control mice (47% versus 7%; P =0.04). Estradiol supplementation or IL-17A inhibition decreased the number of ruptures in estrogen-deficient mice (estradiol 6% versus 37%; P =0.04; IL-17A inhibition 18% versus 47%; P =0.018). Third, we found that IL-17A-blockade protects against aneurysm formation and rupture by increased E-cadherin expression. IL-17-inhibited mice had increased E-cadherin expression ( P =0.003). E-cadherin inhibition reversed the protective effect of IL-17A inhibition and increased the rate of aneurysm formation (65% versus 28%; P =0.04) and rupture (12% versus 0%; P =0.22). However, E-cadherin inhibition alone does not significantly increase aneurysm formation in normal mice or in estrogen-deficient mice. In cell migration assays, E-cadherin inhibition promoted macrophage infiltration across endothelial cells ( P <0.05), which may be the mechanism for the estrogen deficiency/IL-17/E-cadherin aneurysm pathway. Our data suggest that estrogen deficiency promotes cerebral aneurysm rupture by upregulating IL-17A, which downregulates E-cadherin, encouraging macrophage infiltration in the aneurysm vessel wall. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  12. Force via integrins but not E-cadherin decreases Oct3/4 expression in embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Uda, Yuhei [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01, Aramaki-aoba, Aoba-ward, Sendai City (Japan); Poh, Yeh-Chuin; Chowdhury, Farhan; Wu, Douglas C. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Tanaka, Tetsuya S. [Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Sato, Masaaki [Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01, Aramaki-aoba, Aoba-ward, Sendai City (Japan); Wang, Ning, E-mail: nwangrw@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Force via integrins or cadherins induces similar cell stiffening responses. Black-Right-Pointing-Pointer Force via integrins but not cadherins induces cell spreading. Black-Right-Pointing-Pointer Force via integrins but not cadherins induces differentiation of embryonic stem cells. -- Abstract: Increasing evidence suggests that mechanical factors play a critical role in fate decisions of stem cells. Recently we have demonstrated that a local force applied via Arg-Gly-Asp (RGD) peptides coated magnetic beads to mouse embryonic stem (ES) cells increases cell spreading and cell stiffness and decreases Oct3/4 (Pou5f1) gene expression. However, it is not clear whether the effects of the applied stress on these functions of ES cells can be extended to natural extracellular matrix proteins or cell-cell adhesion molecules. Here we show that a local cyclic shear force applied via fibronectin or laminin to integrin receptors increased cell spreading and stiffness, downregulated Oct3/4 gene expression, and decreased cell proliferation rate. In contrast, the same cyclic force applied via cell-cell adhesion molecule E-cadherin (Cdh1) had no effects on cell spreading, Oct3/4 gene expression, and the self-renewal of mouse ES cells, but induced significant cell stiffening. Our findings demonstrate that biological responses of ES cells to force applied via integrins are different from those to force via E-cadherin, suggesting that mechanical forces might play different roles in different force transduction pathways to shape early embryogenesis.

  13. E-cadherin promotes incorporation of mouse epiblast stem cells into normal development.

    Directory of Open Access Journals (Sweden)

    Satoshi Ohtsuka

    Full Text Available Mouse epiblast stem cells (mEpiSCs are pluripotent stem cells derived from epiblasts of postimplantation mouse embryos. Their pluripotency is distinct from that of mouse embryonic stem cells (mESCs in several cell biological criteria. One of the distinctions is that mEpiSCs contribute either not at all or at much lower efficiency to chimeric embryos after blastocyst injection compared to mESCs. However, here we showed that mEpiSCs can be incorporated into normal development after blastocyst injection by forced expression of the E-cadherin transgene for 2 days in culture. Using this strategy, mEpiSCs gave rise to live-born chimeras from 5% of the manipulated blastocysts. There were no obvious signs of reprogramming of mEpiSCs toward the mESC-like state during the 2 days after induction of the E-cadherin transgene, suggesting that mEpiSCs possess latent ability to integrate into the normal developmental process as its origin, epiblasts.

  14. Expression of RKIP, E-cadherin and NF-kB p65 in esophageal squamous cell carcinoma and their correlations.

    Science.gov (United States)

    Ping, Fu-Min; Liu, Gui-Jing; Liu, Zhi-Jun; Li, Hai-Bin; Zhai, Jian-Wen; Li, Shu-Xia; Liu, Yue-Mei; Li, Bao-Wei; Wei, Hong

    2015-01-01

    To detect the expression of RKIP, E-cadherin and NF-kB p65 in esophageal squamous cell carcinoma (ESCC) and study their correlations. Steptavidin-peroxidase (S-P) method was employed to detect the expressions of RKIP, E-cadherin and NF-kB p65 in ESCC tissues from 77 cases and paracancerous tissues from 77 cases. The correlations between their expressions and clinicopathological indices and between the expressions of these proteins themselves were analyzed. The expressions of RKIP and E-cadherin in ESCC tissues were obviously lower than those in the paracancerous tissues (PkB p65 in ESCC tissues was correlated with clinical staging, lymph node metastasis and tumor differentiation (PkB p65 in ESCC tissues (PkB p65.

  15. PTEN Loss in E-Cadherin-Deficient Mouse Mammary Epithelial Cells Rescues Apoptosis and Results in Development of Classical Invasive Lobular Carcinoma

    NARCIS (Netherlands)

    Boelens, M.C.; Nethe, M.; Klarenbeek, S.; de Ruiter, J.R.; Schut, E.; Bonzanni, N.; Zeeman, A.L.; Wientjens, E.; van der Burg, E.; Wessels, L.; van Amerongen, R.; Jonkers, J.

    2016-01-01

    Invasive lobular carcinoma (ILC) is an aggressive breast cancer subtype with poor response to chemotherapy. Besides loss of E-cadherin, a hallmark of ILC, genetic inactivation of PTEN is frequently observed in patients. Through concomitant Cre-mediated inactivation of E-cadherin and PTEN in mammary

  16. The simultaneous expression of both ephrin B3 receptor and E-cadherin in Barrett`s adenocarcinoma is associated with favorable clinical staging

    Directory of Open Access Journals (Sweden)

    Schauer Matthias C

    2012-05-01

    Full Text Available Abstract Background In intestinal epithelium, tyrosine kinase receptor Ephrin B3 (Eph B3 maintains the architecture of the crypt-villus axis by repulsive interaction with its ligand ephrin-B1. While loss of Eph B3 is linked to colorectal cancer initiation, overexpression of Eph B3 in cancer cell lines inhibits growth and induces functional changes with decreased mesenchymal and increased epithelial markers. In order to study this tumor suppressor activity of Eph B3 in esophageal adenocarcinoma we analyzed the simultaneous expression of Eph B3 and E-cadherin in both the healthy esophagus and in Barrett’s carcinoma. Methods Simultaneous expression of Eph B3 and E-cadherin was investigated in samples from 141 patients with Barrett’s carcinoma and from 20 healthy esophagi using immunhistology and quantitative PCR. Results from healthy squamous epithelium, Barrett’s metaplasia and staging-specific esophageal adenocarcinoma were correlated. Results A significantly reduced E-cadherin mRNA expression could be detected in adenocarcinoma compared to dysplasia. The immunhistological activity of E-cadherin and Eph B3 was reduced in adenocarcinoma compared to dysplasia or healthy esophageal mucosa. The intracellular E-cadherin distribution changed significantly from the cytoplasm to the membrane, when the Eph receptor was simultaneously expressed. Simultaneous expression of E-cadherin and Eph B3 showed a significant inverse correlation to tumor stage. Conclusions We present novel evidence of the tumor suppressor activity of Eph B3 in esophageal adenocarcinoma possibly due to the impact on redistribution of cellular E-cadherin to the membrane. Our results suggest that this effect might play a role in the dysplasia-adenocarcinoma sequence, the infiltrative growth pattern and the development of lymph node metastases.

  17. PTEN Loss in E-Cadherin-Deficient Mouse Mammary Epithelial Cells Rescues Apoptosis and Results in Development of Classical Invasive Lobular Carcinoma

    Directory of Open Access Journals (Sweden)

    Mirjam C. Boelens

    2016-08-01

    Full Text Available Invasive lobular carcinoma (ILC is an aggressive breast cancer subtype with poor response to chemotherapy. Besides loss of E-cadherin, a hallmark of ILC, genetic inactivation of PTEN is frequently observed in patients. Through concomitant Cre-mediated inactivation of E-cadherin and PTEN in mammary epithelium, we generated a mouse model of classical ILC (CLC, the main histological ILC subtype. While loss of E-cadherin induced cell dissemination and apoptosis, additional PTEN inactivation promoted cell survival and rapid formation of invasive mammary tumors that recapitulate the histological and molecular features, estrogen receptor (ER status, growth kinetics, metastatic behavior, and tumor microenvironment of human CLC. Combined inactivation of E-cadherin and PTEN is sufficient to cause CLC development. These CLCs showed significant tumor regression upon BEZ235-mediated inhibition of PI3K signaling. In summary, this mouse model provides important insights into CLC development and suggests inhibition of phosphatidylinositol 3-kinase (PI3K signaling as a potential therapeutic strategy for targeting CLC.

  18. Expression of P-aPKC-iota, E-cadherin, and beta-catenin related to invasion and metastasis in hepatocellular carcinoma.

    Science.gov (United States)

    Du, Guang-Sheng; Wang, Jian-Ming; Lu, Jin-Xi; Li, Qiang; Ma, Chao-Qun; Du, Ji-Tao; Zou, Sheng-Quan

    2009-06-01

    Atypical protein kinase C iota (aPKC-iota) and its associated intracellular molecules, E-cadherin and beta-catenin, are important for cell polarization in tumorigenesis and progression. Expression of aPKC-iota, P-aPKC-iota (activated aPKC-iota), E-cadherin, and beta-catenin in hepatocellular carcinoma (HCC) was measured, and correlation with clinicopathological characteristics of HCC was analyzed. Paraffin-embedded tumor tissue was obtained from patients with HCC after resection without preoperative radiotherapy or chemotherapy. Gene expression was detected by polymerase chain reaction (PCR), and protein expression was detected by immunohistochemistry and Western blot analysis. Expressions of aPKC-iota, P-aPKC-iota, E-cadherin, and beta-catenin were analyzed with relation to the clinicopathological data. The gene and protein expression of aPKC-iota are obviously higher in HCC tissues than that in peritumoral tissues and normal tissues by semiquantitative PCR and immunohistochemistry methods. Accumulation of aPKC-iota in HCC cytoplasm and nucleolus inhibited the later formation of belt-like adherens junctions (AJs) and/or tight junctions (TJs) in cell-cell contact. E-cadherin was reduced and accumulation of cytoplasm beta-catenin was increased in HCC. The expression of aPKC-iota was closely related to pathological differentiation, tumor size, invasion, and metastasis of HCC. Accumulation of cytoplasm aPKC-iota may reflect pathological differentiation, invasion, and metastasis potential of HCC. In this regard, our study on HCC revealed the potential usefulness of aPKC-iota, E-cadherin, and beta-catenin as a prognostic marker, closely related to pathological differentiation, invasion, metastasis, and prognosis of HCC.

  19. miR-151a induces partial EMT by regulating E-cadherin in NSCLC cells

    DEFF Research Database (Denmark)

    Daugaard, Iben; Sanders, K J; Idica, A

    2017-01-01

    mortality. Here, we demonstrate that miR-151a is overexpressed in non-small cell lung cancer (NSCLC) patient specimens, as compared to healthy lung. In addition, miR-151a overexpression promotes proliferation, epithelial-to-mesenchymal transition (EMT) and induces tumor cell migration and invasion of NSCLC......-cadherin in miR-151a NSCLC cell lines potently repressed miR-151a-induced partial EMT and cell migration of NSCLC cells. In conclusion, our findings suggest that miR-151a functions as an oncomiR in NSCLC by targeting E-cadherin mRNA and inducing proliferation, migration and partial EMT....

  20. The effect of chemo-embolization on E-cadherin expression of primary hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Xiao Enhua; Hu Guodong; Liu Pengcheng; Hu Daoyu; Liu Shaochun; Hao Chunrong

    2001-01-01

    Objective: To study the significance of E-cadherin (E-cad) expression of primary hepatocellular carcinoma (PHC), and the effect of the different chemo-embolization treatment on E-cad. Methods:Ninety-eight histopathological verified PHC specimens were obtained. The patients were treated with surgical resection alone (57 cases), and second stage surgical resection after four kinds of chemo-embolization (41 cases). Strept avidin-biotin complex (SABC) immunohistochemical staining with monoclonal antibody against human E-cad was used to observe the E-cad in all specimens. The experimental results were compared with the surgical and clinical findings. Results: The metastatic rates in E-cad (+) and (-) were 43.3%, 70.4% respectively (x 2 = 4.22, P 0.05). The E-cad expression of trabecular and clear cell PHC was higher than that of solid and poorly differentiated PHC. After chemo-embolization, the E-cad expression of the former decreased, the latter increased. The E-cad expression decreased as pathologic grades increasing. After chemo-embolization, the E-cad expression increased as pathological grades increasing. The metastatic rates in interventional group and surgical resection alone were 48.8%, 56.1% respectively (P > 0.05). Conclusions: The increased expression of E-cad would restrain PHC from metastasis. It could act as a prognosis-predictive marker. The effect of chemo-embolization on E-cadherin expression of primary hepatocellular carcinoma had histopathologic difference

  1. PTEN Loss in E-Cadherin-Deficient Mouse Mammary Epithelial Cells Rescues Apoptosis and Results in Development of Classical Invasive Lobular Carcinoma.

    Science.gov (United States)

    Boelens, Mirjam C; Nethe, Micha; Klarenbeek, Sjoerd; de Ruiter, Julian R; Schut, Eva; Bonzanni, Nicola; Zeeman, Amber L; Wientjens, Ellen; van der Burg, Eline; Wessels, Lodewyk; van Amerongen, Renée; Jonkers, Jos

    2016-08-23

    Invasive lobular carcinoma (ILC) is an aggressive breast cancer subtype with poor response to chemotherapy. Besides loss of E-cadherin, a hallmark of ILC, genetic inactivation of PTEN is frequently observed in patients. Through concomitant Cre-mediated inactivation of E-cadherin and PTEN in mammary epithelium, we generated a mouse model of classical ILC (CLC), the main histological ILC subtype. While loss of E-cadherin induced cell dissemination and apoptosis, additional PTEN inactivation promoted cell survival and rapid formation of invasive mammary tumors that recapitulate the histological and molecular features, estrogen receptor (ER) status, growth kinetics, metastatic behavior, and tumor microenvironment of human CLC. Combined inactivation of E-cadherin and PTEN is sufficient to cause CLC development. These CLCs showed significant tumor regression upon BEZ235-mediated inhibition of PI3K signaling. In summary, this mouse model provides important insights into CLC development and suggests inhibition of phosphatidylinositol 3-kinase (PI3K) signaling as a potential therapeutic strategy for targeting CLC. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. E-cadherin Mediates the Preventive Effect of Vitamin D3 in Colitis-associated Carcinogenesis.

    Science.gov (United States)

    Xin, Yu; He, Longmei; Luan, Zijian; Lv, Hong; Yang, Hong; Zhou, Ying; Zhao, Xinhua; Zhou, Weixun; Yu, Songlin; Tan, Bei; Wang, Hongying; Qian, Jiaming

    2017-09-01

    Vitamin D3 is beneficial in ameliorating or preventing inflammation and carcinogenesis. Here, we evaluated if vitamin D3 has a preventive effect on colitis-associated carcinogenesis. Administration of azoxymethane (AOM), followed with dextran sulfate sodium (DSS), was used to simulate colitis-associated colon cancer in mice. The supplement of vitamin D3 at different dosages (15, 30, 60 IU·g·w), started before AOM or immediately after DSS treatment (post 60), was sustained to the end of the experiment. Dietary vitamin D3 significantly reduced the number of tumors and tumor burden in a dose-dependent manner. Of note, vitamin D3 in high doses showed significant preventive effects on carcinogenesis regardless of administration before or after AOM-DSS treatment. Cell proliferation decreased in vitamin D3 groups compared with the control group after inhibition of expression of β-catenin and its downstream target gene cyclin D1 in the colon. In vitro, vitamin D3 reduced the transcriptional activity and nuclear level of β-catenin, and it also increased E-cadherin expression and its binding affinity for β-catenin. Moreover, repression of E-cadherin was rescued by supplemental vitamin D3 in mouse colons. Taken together, our results indicate that vitamin D3 effectively suppressed colonic carcinogenesis in the AOM-DSS mouse model. Our findings further suggest that upregulation of E-cadherin contributes to the preventive effect of vitamin D3 on β-catenin activity.

  3. ZEB1 overexpression associated with E-cadherin and microRNA-200 downregulation is characteristic of undifferentiated endometrial carcinoma.

    Science.gov (United States)

    Romero-Pérez, Laura; López-García, M Ángeles; Díaz-Martín, Juan; Biscuola, Michele; Castilla, M Ángeles; Tafe, Laura J; Garg, Karuna; Oliva, Esther; Matias-Guiu, Xavier; Soslow, Robert A; Palacios, José

    2013-11-01

    Undifferentiated endometrial carcinomas are very aggressive high-grade endometrial carcinomas that are frequently under-recognized. This study aimed to analyze the molecular alterations underlying the development of these endometrial carcinomas, focusing on those related to dedifferentiation. We assessed a series of 120 tumors: 57 grade 1 and 2 endometrioid endometrial carcinomas, 15 grade 3 endometrioid endometrial carcinomas, 27 endometrial serous carcinomas, and 21 undifferentiated endometrial carcinomas. We found a high frequency of DNA mismatch repair deficiency (38%) and moderate rate of p53 overexpression (∼33%) in undifferentiated carcinomas. In contrast to the characteristic endometrioid phenotype, there was a dramatic downregulation of E-cadherin expression in the undifferentiated subtype. Quantitative methylation studies dismissed CDH1 promoter hypermethylation as the mechanism responsible for this change in gene expression, while immunohistochemistry revealed that the E-cadherin repressor ZEB1 was frequently overexpressed (62%) in undifferentiated endometrial carcinomas. This finding was accompanied by a sharp downregulation in the expression of the miR-200 family of microRNAs, well-known targets of ZEB1. Furthermore, there was enhanced expression of epithelial-to-mesenchymal transition markers in undifferentiated endometrial carcinomas, such as N-cadherin, cytoplasmic p120, and osteonectin. In addition, HMGA2, a regulator of epithelial-to-mesenchymal transition that is expressed in aggressive endometrial tumors, such as endometrial serous carcinomas and carcinosarcomas, was expressed in >20% of undifferentiated carcinomas. These results suggest that ZEB1 overexpression, associated with E-cadherin and miR-200s downregulation, and the expression of mesenchymal markers might enhance the metastatic potential of undifferentiated endometrial carcinomas, leading to a poor prognosis. In addition, our observations suggest that the immnohistochemical analysis

  4. Semaphorin4D Drives CD8+ T-Cell Lesional Trafficking in Oral Lichen Planus via CXCL9/CXCL10 Upregulations in Oral Keratinocytes.

    Science.gov (United States)

    Ke, Yao; Dang, Erle; Shen, Shengxian; Zhang, Tongmei; Qiao, Hongjiang; Chang, Yuqian; Liu, Qing; Wang, Gang

    2017-11-01

    Chemokine-mediated CD8 + T-cell recruitment is an essential but not well-established event for the persistence of oral lichen planus (OLP). Semaphorin 4D (Sema4D)/CD100 is implicated in immune dysfunction, chemokine modulation, and cell migration, which are critical aspects for OLP progression, but its implication in OLP pathogenesis has not been determined. In this study, we sought to explicate the effect of Sema4D on human oral keratinocytes and its capacity to drive CD8 + T-cell lesional trafficking via chemokine modulation. We found that upregulations of sSema4D in OLP tissues and blood were positively correlated with disease severity and activity. In vitro observation revealed that Sema4D induced C-X-C motif chemokine ligand 9/C-X-C motif chemokine ligand 10 production by binding to plexin-B1 via protein kinase B-NF-κB cascade in human oral keratinocytes, which elicited OLP CD8 + T-cell migration. We also confirmed using clinical samples that elevated C-X-C motif chemokine ligand 9/C-X-C motif chemokine ligand 10 levels were positively correlated with sSema4D levels in OLP lesions and serum. Notably, we determined matrix metalloproteinase-9 as a new proteolytic enzyme for the cleavage of sSema4D from the T-cell surface, which may contribute to the high levels of sSema4D in OLP lesions and serum. Our findings conclusively revealed an amplification feedback loop involving T cells, chemokines, and Sema4D-dependent signal that promotes OLP progression. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Detachment-induced E-cadherin expression promotes 3D tumor spheroid formation but inhibits tumor formation and metastasis of lung cancer cells.

    Science.gov (United States)

    Powan, Phattrakorn; Luanpitpong, Sudjit; He, Xiaoqing; Rojanasakul, Yon; Chanvorachote, Pithi

    2017-11-01

    The epithelial-to-mesenchymal transition is proposed to be a key mechanism responsible for metastasis-related deaths. Similarly, cancer stem cells (CSCs) have been proposed to be a key driver of tumor metastasis. However, the link between the two events and their control mechanisms is unclear. We used a three-dimensional (3D) tumor spheroid assay and other CSC-indicating assays to investigate the role of E-cadherin in CSC regulation and its association to epithelial-to-mesenchymal transition in lung cancer cells. Ectopic overexpression and knockdown of E-cadherin were found to promote and retard, respectively, the formation of tumor spheroids in vitro but had opposite effects on tumor formation and metastasis in vivo in a xenograft mouse model. We explored the discrepancy between the in vitro and in vivo results and demonstrated, for the first time, that E-cadherin is required as a component of a major survival pathway under detachment conditions. Downregulation of E-cadherin increased the stemness of lung cancer cells but had an adverse effect on their survival, particularly on non-CSCs. Such downregulation also promoted anoikis resistance and invasiveness of lung cancer cells. These results suggest that anoikis assay could be used as an alternative method for in vitro assessment of CSCs that involves dysregulated adhesion proteins. Our data also suggest that agents that restore E-cadherin expression may be used as therapeutic agents for metastatic cancers. Copyright © 2017 the American Physiological Society.

  6. Single cell migration in oral squamous cell carcinoma - possible evidence of epithelial-mesenchymal transition in vivo

    DEFF Research Database (Denmark)

    Jensen, David H; Reibel, Jesper; Mackenzie, Ian C

    2015-01-01

    carcinomas, their relationship has not been examined in detail. METHODS: Paraffin-embedded tissues from 28 patients with oral squamous cell carcinomas were stained with antibodies to cytokeratin, α-SMA, vimentin, E-cadherin, N-cadherin and Twist and evaluated for their expression in relation to invasive...

  7. Amino-terminal domain of classic cadherins determines the specificity of the adhesive interactions

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Troyanovsky, R B; Laur, O Y

    2000-01-01

    Classic cadherins are transmembrane receptors involved in cell type-specific calcium-dependent intercellular adhesion. The specificity of adhesion is mediated by homophilic interactions between cadherins extending from opposing cell surfaces. In addition, classic cadherins can self-associate form......Classic cadherins are transmembrane receptors involved in cell type-specific calcium-dependent intercellular adhesion. The specificity of adhesion is mediated by homophilic interactions between cadherins extending from opposing cell surfaces. In addition, classic cadherins can self....... To study lateral and adhesive intercadherin interactions, we examined interactions between two classic cadherins, E- and P-cadherins, in epithelial A-431 cells co-producing both proteins. We showed that these cells exhibited heterocomplexes consisting of laterally assembled E- and P....... The specificity of adhesive interaction was localized to the amino-terminal (EC1) domain of both cadherins. Thus, EC1 domain of classic cadherins exposes two determinants responsible for nonspecific lateral and cadherin type-specific adhesive dimerization....

  8. Prognostic value of E-cadherin, beta-catenin, CD44v6, and HER2/neu in metastatic cutaneous adenocarcinoma.

    Science.gov (United States)

    Pozdnyakova, Olga; Hoang, Mai M P; Dresser, Karen A; Mahalingam, Meera

    2009-08-01

    Our recent experience with a patient developing cutaneous metastases within 3 months of diagnosis of esophageal adenocarcinoma suggests that altered expression of the cellular adhesion molecules, E-cadherin and CD44v6, may have had a role to play in the rapid onset of metastases. To corroborate these findings, we designed a cross-sectional study to investigate the expression of select molecules involved in the metastatic cascade. E-cadherin, beta-catenin, CD44v6, and HER2/neu immunohistochemical stains were performed on archival materials of metastatic adenocarcinoma to the skin from 27 patients and the available corresponding primary tumors in 10 patients. The primary sites included breast (n = 10; 37%), gastrointestinal tract (n = 10; 37%), ovary (n = 1; 4%), thyroid (n = 2; 7%), lung (n = 1; 4%), and unknown primary (n = 3; 11%). Expression of all markers was noted with the most significant increases observed in beta-catenin (26 of 27 cases; 96%), followed by CD44v6 (24 of 27 cases; 89%), E-cadherin (22 of 27 cases; 82%), and HER2/neu (11 of 27 cases; 41%). Contrasting expression of these molecules in the primary versus the metastatic tumors, enhanced expression of CD44v6 was observed in the cutaneous metastases relative to the primary in 6 of 10 (60%) cases. Of interest, 2 of these 6 cases (33%) also showed reduction in E-cadherin--a member of the cadherin family functioning as an invasion suppressor molecule. These findings reinforce the complexities of the metastatic cascade and imply that the variation in adhesive properties of tumor cells is, perhaps, a consequence of the difference in density of the molecules mediating this process.

  9. Reacquisition of E-cadherin expression in metastatic deposits of signet-ring cell carcinoma of the upper gastrointestinal system: a potential anchor for metastatic deposition.

    Science.gov (United States)

    Ma, Yihong R; Siegal, Gene P; Wei, Shi

    2017-06-01

    To examine the expression of E-cadherin in paired primary and metastatic signet-ring cell carcinomas (SRCC) of various organ systems in order to explore the potential role of the molecule in metastatic dissemination of this unique tumour type. Thirty-seven consecutive cases of SRCC from various organs with paired primary and metastatic tumorous tissue available were retrieved. The intensity of membranous E-cadherin expression was semiquantitatively scored on a scale of 0-3+. Reduced E-cadherin expression was a distinct feature of primary SRCC and was observed in 78% of primary tumours. Interestingly, the E-cadherin reduction was less frequently seen in metastatic SRCC when compared with their primary counterparts, and was only found in 57% of tumours in lymph node metastases or at distant sites of relapse. Furthermore, the mean score of E-cadherin expression of primary SRCC was significantly lower than that of their metastatic counterparts (2.3 vs 1.8; p=0.008). When divided by organ systems, the reacquisition of E-cadherin expression in the metastatic deposits was most remarkable in the SRCC of upper gastrointestinal tract origin (2.3 vs 1.4; p=0.003), whereas no significant difference was observed in other organ systems. While the reduction of E-cadherin in primary SRCC supports its pivotal role in epithelial-mesenchymal transition, a process crucial in tumour progression and metastatic dissemination, the re-expression of this molecule in metastatic SRCC cells implies a reversal to their epithelial phenotype (thus mesenchymal-epithelial transition) which, in turn, theoretically helps tumour cells to anchor and form cohesive metastatic deposits. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Surface functionalization of inorganic nano-crystals with fibronectin and E-cadherin chimera synergistically accelerates trans-gene delivery into embryonic stem cells

    International Nuclear Information System (INIS)

    Kutsuzawa, K.; Chowdhury, E.H.; Nagaoka, M.; Maruyama, K.; Akiyama, Y.; Akaike, T.

    2006-01-01

    Stem cells holding great promises in regenerative medicine have the potential to be differentiated to a specific cell type through genetic manipulation. However, conventional ways of gene transfer to such progenitor cells suffer from a number of disadvantages particularly involving safety and efficacy issues. Here, we report on the development of a bio-functionalized inorganic nano-carrier of DNA by embedding fibronectin and E-cadherin chimera on the carrier, leading to its high affinity interactions with embryonic stem cell surface and accelerated trans-gene delivery for subsequent expression. While only apatite nano-particles were very inefficient in transfecting embryonic stem cells, fibronectin-anchored particles and to a more significant extent, fibronectin and E-cadherin-Fc-associated particles dramatically enhanced trans-gene delivery with a value notably higher than that of commercially available lipofection system. The involvement of both cell surface integrin and E-cadherin in mediating intracellular localization of the hybrid carrier was verified by blocking integrin binding site with excess free fibronectin and up-regulating both integrin and E-cadherin through PKC activation. Thus, the new establishment of a bio-functional hybrid gene-carrier would promote and facilitate development of stem cell-based therapy in regenerative medicine

  11. γ-Tocotrienol prevents 5-FU-induced reactive oxygen species production in human oral keratinocytes through the stabilization of 5-FU-induced activation of Nrf2.

    Science.gov (United States)

    Takano, Hideyuki; Momota, Yukihiro; Kani, Kouichi; Aota, Keiko; Yamamura, Yoshiko; Yamanoi, Tomoko; Azuma, Masayuki

    2015-04-01

    Chemotherapy-induced oral mucositis is a common adverse event in patients with oral squamous cell carcinoma, and is initiated through a variety of mechanisms, including the generation of reactive oxygen species (ROS). In this study, we examined the preventive effect of γ-tocotrienol on the 5-FU-induced ROS production in human oral keratinocytes (RT7). We treated RT7 cells with 5-FU and γ-tocotrienol at concentrations of 10 µg/ml and 10 nM, respectively. When cells were treated with 5-FU alone, significant growth inhibition was observed as compared to untreated cells. This inhibition was, in part, due to the ROS gene-rated by 5-FU treatment, because N-acetyl cysteine (NAC), a ROS scavenger, significantly ameliorated the growth of RT7 cells. γ-tocotrienol showed no cytotoxic effect on the growth of RT7 cells. Simultaneous treatment of cells with these agents resulted in the significant recovery of cell growth, owing to the suppression of ROS generation by γ-tocotrienol. Whereas 5-FU stimulated the expression of NF-E2-related factor 2 (Nrf2) protein in the nucleus up to 12 h after treatment of RT7 cells, γ-tocotrienol had no obvious effect on the expression of nuclear Nrf2 protein. Of note, the combined treatment with both agents stabilized the 5-FU-induced nuclear Nrf2 protein expression until 24 h after treatment. In addition, expression of Nrf2-dependent antioxidant genes, such as heme oxygenase-1 (HO-1) and quinone oxidoreductase-1 (NQO-1), was significantly augmented by treatment of cells with both agents. These findings suggest that γ-tocotrienol could prevent 5-FU-induced ROS generation by stabilizing Nrf2 activation, thereby leading to ROS detoxification and cell survival in human oral keratinocytes.

  12. Estudo da expressão da proteína caderina-E correlacionada com o grau de diferenciação celular e o estadiamento TNM do adenocarcinoma colorretal Relationship study between the cadherin-E protein cell diferentiation and TNM staging

    Directory of Open Access Journals (Sweden)

    Marcos Vinicius Araujo Denadai

    2006-09-01

    Full Text Available OBJETIVO: Avaliar a relação de uma proteína que participa do mecanismo de adesão celular com o grau de diferenciação celular e o estadiamento TNM I e IV no CCR. MÉTODOS: Foram estudados 100 pacientes (54 homens e 46 mulheres tratados por CCR, estádio I - 44 pacientes, estádio IV - 56 pacientes. Os cortes histológicos do tecido tumoral foram examinados por técnica de imunohistoquímica em relação à expressão da proteína caderina-E. Os cortes histológicos foram classificados como positivos ou negativos pelo método semiquantitativo. RESULTADOS: Para o TNM, expressão da caderina-E estádio I: positiva em 72,7 % e negativa em 35,7% ; estádio IV: positiva em 64,3% e negativa em 35,7%. Em relação ao grau de diferenciação celular, expressão da caderina-E; G I: positiva em 70% e negativa em 30%; G II: positiva em 68.4% e 31,6% negativa; G III: 63.6% positiva e 36,4 % negativa.. Não houve diferença significativa entre os grupos. CONCLUSÃO: Os resultados dessa pesquisa permitem concluir que não há relação da expressão da proteína caderina-E com o estadiamento TNM (I e IV e o grau de diferenciação celular no CCR.OBJECTIVE: To evaluate the relationship of a protein that take part in the same mechanism of cell adhesion with the cell differentiation degree and TNM staging I and IV in CRA. METHODS: One-hundred patients (54 men and 46 women, who have received treatment for CRA, stage I - 44 patients and stage IV - 56 patients, have been studied. Histological cuts of tumor tissue were examined by the immunohistochemical technique as to the expression of E-cadherin proteins. Such histological cuts were classified as positive or negative through the semi-quantitative method. RESULTS: For TNM, the E-cadherin expression for stage I: positive in 72.7% and negative in 35.7%; stage IV: positive in 64.3% and negative in 35.7%. Regarding the cell differentiation degree, the expression of E-cadherin, GI: positive in 70% and negative in

  13. Effect of radiation on the expression of E-cadherin and α-catenin and invasive capacity in human lung cancer cell line in vitro

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Mitsuhashi, Norio; Saito, Yoshihiro; Ebara, Takeshi; Niibe, Hideo

    1998-01-01

    Purpose: To investigate the effect of radiation on E-cadherin and α-catenin expression in a human lung cancer cell line, and also evaluate invasive capacity in the membrane invasion culture system using the Boyden Chamber. Materials and Methods: The immunoblot and immunofluorescence analyses were performed using the human lung cancer cell line A549 to examine altered expression of E-cadherin and α-catenin after irradiation. We also compared invasive capacity of untreated cells with that of irradiated cells. Results: Immunoblot analysis revealed that the expression of E-cadherin increased after irradiation. In a time-course analysis, the expression was increased 6 h after irradiation with 10 Gy and reached its peak level at 24 h, being 2.3 times the control value, whereas expression at 1 and 3 h after irradiation was almost equivalent to that of the control. A slight increase in expression was observed after irradiation of 2 Gy and the expression reached peak levels after 5 Gy. After fractionated irradiation, the increase in expression of both E-cadherin and α-catenin was observed, and the alteration of α-catenin was more prominent than that after a single irradiation of the same total dose. In the immunofluorescence study for E-cadherin antibody analyzed by confocal laser scanning microscopy, increased intensity in irradiated cells produced as a nondisrupted and continuous line at cell-cell contact sites. In an invasive assay, the number of migrated cells in irradiated cells after a dose of 5 and 10 Gy was reduced significantly compared to untreated cells. Conclusion: The results indicate that irradiation of A549 increased the expression of E-cadherin, possibly preserving their functional property

  14. Correlation of Slug gene expression with lymph node metastasis and invasion molecule expression in oral squamous cell carcinoma tissue

    Directory of Open Access Journals (Sweden)

    Shan-Ming Lu

    2017-10-01

    Full Text Available Objective: To study the correlation of Slug gene expression with lymph node metastasis and invasion molecule expression in oral squamous cell carcinoma tissue. Methods: Oral squamous cell carcinoma tissue surgical removed in Affiliated Stomatological Hospital of Nanjing Medical University between March 2015 and April 2017 was selected and divided into the oral squamous cell carcinoma tissue with neck lymph node metastasis and the oral squamous cell carcinoma tissues without lymph node metastasis according to the condition of lymph node metastasis. The expression of Slug, epithelial-mesenchymal transition molecules and invasion molecules in the oral squamous cell carcinoma tissue were detected. Results: Slug, N-cadherin, Vimentin, CD147, OPN, GRP78, SDF-1 and CXCR4 protein expression in oral squamous cell carcinoma tissue with neck lymph node metastasis were significantly higher than those in oral squamous cell carcinoma tissue without lymph node metastasis while E-cadherin, P120ctn and ZO-1 protein expression were significantly lower than those in oral squamous cell carcinoma tissue without lymph node metastasis; N-cadherin, Vimentin, CD147, OPN, GRP78, SDF-1 and CXCR4 protein expression in oral squamous cell carcinoma tissue with high Slug expression were significantly higher than those in oral squamous cell carcinoma tissue with low Slug expression while E-cadherin, P120ctn and ZO-1 protein expression were significantly lower than those in oral squamous cell carcinoma tissue with low Slug expression. Conclusion: The highly expressed Slug in oral squamous cell carcinoma tissue can promote the epithelial-mesenchymal transition and invasion of the cells to participate in the lymph node metastasis of tumor cells.

  15. Mammary-specific inactivation of E-cadherin and p53 impairs functional gland development and leads to pleomorphic invasive lobular carcinoma in mice

    Directory of Open Access Journals (Sweden)

    Patrick W. B. Derksen

    2011-05-01

    Breast cancer is the most common malignancy in women of the Western world. Even though a large percentage of breast cancer patients show pathological complete remission after standard treatment regimes, approximately 30–40% are non-responsive and ultimately develop metastatic disease. To generate a good preclinical model of invasive breast cancer, we have taken a tissue-specific approach to somatically inactivate p53 and E-cadherin, the cardinal cell-cell adhesion receptor that is strongly associated with tumor invasiveness. In breast cancer, E-cadherin is found mutated or otherwise functionally silenced in invasive lobular carcinoma (ILC, which accounts for 10–15% of all breast cancers. We show that mammary-specific stochastic inactivation of conditional E-cadherin and p53 results in impaired mammary gland function during pregnancy through the induction of anoikis resistance of mammary epithelium, resulting in loss of epithelial organization and a dysfunctional mammary gland. Moreover, combined inactivation of E-cadherin and p53 induced lactation-independent development of invasive and metastatic mammary carcinomas, which showed strong resemblance to human pleomorphic ILC. Dissemination patterns of mouse ILC mimic the human malignancy, showing metastasis to the gastrointestinal tract, peritoneum, lung, lymph nodes and bone. Our results confirm that loss of E-cadherin contributes to both mammary tumor initiation and metastasis, and establish a preclinical mouse model of human ILC that can be used for the development of novel intervention strategies to treat invasive breast cancer.

  16. O-GlcNAcylation affects β-catenin and E-cadherin expression, cell motility and tumorigenicity of colorectal cancer.

    Science.gov (United States)

    Harosh-Davidovich, Shani Ben; Khalaila, Isam

    2018-03-01

    O-GlcNAcylation, the addition of β-N-acetylglucosamine (O-GlcNAc) moiety to Ser/Thr residues, is a sensor of the cell metabolic state. Cancer diseases such as colon, lung and breast cancer, possess deregulated O-GlcNAcylation. Studies during the last decade revealed that O-GlcNAcylation is implicated in cancer tumorigenesis and proliferation. The Wnt/β-catenin signaling pathway and cadherin-mediated adhesion are also implicated in epithelial-mesenchymal transition (EMT), a key cellular process in invasion and cancer metastasis. Often, deregulation of the Wnt pathway is caused by altered phosphorylation of its components. Specifically, phosphorylation of Ser or Thr residues of β-catenin affects its location and interaction with E-cadherin, thus facilitating cell-cell adhesion. Consistent with previous studies, the current study indicates that β-catenin is O-GlcNAcylated. To test the effect of O-GlcNAcylation on cell motility and how O-GlcNAcylation might affect β-catenin and E-cadherin functions, the enzyme machinery of O-GlcNAcylation was modulated either with chemical inhibitors or by gene silencing. When O-GlcNAcase (OGA) was inhibited, a global elevation of protein O-GlcNAcylation and increase in the expression of E-cadherin and β-catenin were noted. Concomitantly with enhanced O-GlcNAcylation, β-catenin transcriptional activity were elevated. Additionally, fibroblast cell motility was enhanced. Stable silenced cell lines with adenoviral OGA or adenoviral O-GlcNAc transferase (OGT) were established. Consistent with the results obtained by OGA chemical inhibition by TMG, OGT-silencing led to a significant reduction in β-catenin level. In vivo, murine orthotropic colorectal cancer model indicates that elevated O-GlcNAcylation leads to increased mortality rate, tumor and metastasis development. However, reduction in O-GlcNAcylation promoted survival that could be attributed to attenuated tumor and metastasis development. The results described herein provide

  17. Nanodiamond modified copolymer scaffolds affects tumour progression of early neoplastic oral keratinocytes.

    Science.gov (United States)

    Suliman, Salwa; Mustafa, Kamal; Krueger, Anke; Steinmüller-Nethl, Doris; Finne-Wistrand, Anna; Osdal, Tereza; Hamza, Amani O; Sun, Yang; Parajuli, Himalaya; Waag, Thilo; Nickel, Joachim; Johannessen, Anne Christine; McCormack, Emmet; Costea, Daniela Elena

    2016-07-01

    This study aimed to evaluate the tumorigenic potential of functionalising poly(LLA-co-CL) scaffolds. The copolymer scaffolds were functionalised with nanodiamonds (nDP) or with nDP and physisorbed BMP-2 (nDP-PHY) to enhance osteoinductivity. Culturing early neoplastic dysplastic keratinocytes (DOK(Luc)) on nDP modified scaffolds reduced significantly their subsequent sphere formation ability and decreased significantly the cells' proliferation in the supra-basal layers of in vitro 3D oral neoplastic mucosa (3D-OT) when compared to DOK(Luc) previously cultured on nDP-PHY scaffolds. Using an in vivo non-invasive environmentally-induced oral carcinogenesis model, nDP scaffolds were observed to reduce bioluminescence intensity of tumours formed by DOK(Luc) + carcinoma associated fibroblasts (CAF). nDP modification was also found to promote differentiation of DOK(Luc) both in vitro in 3D-OT and in vivo in xenografts formed by DOK(Luc) alone. The nDP-PHY scaffold had the highest number of invasive tumours formed by DOK(Luc) + CAF outside the scaffold area compared to the nDP and control scaffolds. In conclusion, in vitro and in vivo results presented here demonstrate that nDP modified copolymer scaffolds are able to decrease the tumorigenic potential of DOK(Luc), while confirming concerns for the therapeutic use of BMP-2 for reconstruction of bone defects in oral cancer patients due to its tumour promoting capabilities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Nucleation and growth of cadherin adhesions

    International Nuclear Information System (INIS)

    Lambert, Mireille; Thoumine, Olivier; Brevier, Julien; Choquet, Daniel; Riveline, Daniel; Mege, Rene-Marc

    2007-01-01

    Cell-cell contact formation relies on the recruitment of cadherin molecules and their anchoring to actin. However, the precise chronology of events from initial cadherin trans-interactions to adhesion strengthening is unclear, in part due to the lack of access to the distribution of cadherins within adhesion zones. Using N-cadherin expressing cells interacting with N-cadherin coated surfaces, we characterized the formation of cadherin adhesions at the ventral cell surface. TIRF and RIC microscopies revealed streak-like accumulations of cadherin along actin fibers. FRAP analysis indicated that engaged cadherins display a slow turnover at equilibrium, compatible with a continuous addition and removal of cadherin molecules within the adhesive contact. Association of cadherin cytoplasmic tail to actin as well as actin cables and myosin II activity are required for the formation and maintenance of cadherin adhesions. Using time lapse microscopy we deciphered how cadherin adhesions form and grow. As lamellipodia protrude, cadherin foci stochastically formed a few microns away from the cell margin. Neo-formed foci coalesced aligned and coalesced with preformed foci either by rearward sliding or gap filling to form cadherin adhesions. Foci experienced collapse at the rear of cadherin adhesions. Based on these results, we present a model for the nucleation, directional growth and shrinkage of cadherin adhesions

  19. Changes of E-cadherin and á-catenin in human and mouse intestinal tumours

    Czech Academy of Sciences Publication Activity Database

    Šloncová, Eva; Frič, P.; Kučerová, Dana; Lojda, Z.; Tuháčková, Zdena; Sovová, Vlasta

    2001-01-01

    Roč. 33, č. 1 (2001), s. 13-17 ISSN 0018-2214 R&D Projects: GA ČR GV312/96/K205; GA ČR GA301/00/0269; GA MZd IZ4217 Institutional research plan: CEZ:AV0Z5052915 Keywords : E-cadherin * beta-catenin * intestinal tumours Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.169, year: 2001

  20. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin.

    Science.gov (United States)

    Lecuit, Marc; Nelson, D Michael; Smith, Steve D; Khun, Huot; Huerre, Michel; Vacher-Lavenu, Marie-Cécile; Gordon, Jeffrey I; Cossart, Pascale

    2004-04-20

    Listeria monocytogenes produces severe fetoplacental infections in humans. How it targets and crosses the maternofetal barrier is unknown. We used immunohistochemistry to examine the location of L. monocytogenes in placental and amniotic tissue samples obtained from women with fetoplacental listeriosis. The results raised the possibility that L. monocytogenes crosses the maternofetal barrier through the villous syncytiotrophoblast, with secondary infection occurring via the amniotic epithelium. Because epidemiological studies indicate that the bacterial surface protein, internalin (InlA), may play a role in human fetoplacental listeriosis, we investigated the cellular patterns of expression of its host receptor, E-cadherin, at the maternofetal interface. E-cadherin was found on the basal and apical plasma membranes of syncytiotrophoblasts and in villous cytotrophoblasts. Established trophoblastic cell lines, primary trophoblast cultures, and placental villous explants were each exposed to isogenic InlA+ or InlA- strains of L. monocytogenes, and to L. innocua expressing or not InlA. Quantitative assays of cellular invasion demonstrated that bacterial entry into syncytiotrophoblasts occurs via the apical membrane in an InlA-E-cadherin dependent manner. In human placental villous explants, bacterial invasion of the syncytiotrophoblast barrier and underlying villous tissue and subsequent replication produces histopathological lesions that mimic those seen in placentas of women with listeriosis. Thus, the InlA-E-cadherin interaction that plays a key role in the crossing of the intestinal barrier in humans is also exploited by L. monocytogenes to target and cross the placental barrier. Such a ligand-receptor interaction allowing a pathogen to specifically cross the placental villous trophoblast barrier has not been reported previously.

  1. E-cadherin acts as a regulator of transcripts associated with a wide range of cellular processes in mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Francesca Soncin

    Full Text Available We have recently shown that expression of the cell adhesion molecule E-cadherin is required for LIF-dependent pluripotency of mouse embryonic stem (ES cells.In this study, we have assessed global transcript expression in E-cadherin null (Ecad-/- ES cells cultured in either the presence or absence of LIF and compared these to the parental cell line wtD3.We show that LIF has little effect on the transcript profile of Ecad-/- ES cells, with statistically significant transcript alterations observed only for Sp8 and Stat3. Comparison of Ecad-/- and wtD3 ES cells cultured in LIF demonstrated significant alterations in the transcript profile, with effects not only confined to cell adhesion and motility but also affecting, for example, primary metabolic processes, catabolism and genes associated with apoptosis. Ecad-/- ES cells share similar, although not identical, gene expression profiles to epiblast-derived pluripotent stem cells, suggesting that E-cadherin expression may inhibit inner cell mass to epiblast transition. We further show that Ecad-/- ES cells maintain a functional β-catenin pool that is able to induce β-catenin/TCF-mediated transactivation but, contrary to previous findings, do not display endogenous β-catenin/TCF-mediated transactivation. We conclude that loss of E-cadherin in mouse ES cells leads to significant transcript alterations independently of β-catenin/TCF transactivation.

  2. Combined overexpression of cadherin 6, cadherin 11 and cluster of differentiation 44 is associated with lymph node metastasis and poor prognosis in oral squamous cell carcinoma.

    Science.gov (United States)

    Ma, Chao; Zhao, Ji-Zhi; Lin, Run-Tai; Zhou, Lian; Chen, Yong-Ning; Yu, Li-Jiang; Shi, Tian-Yin; Wang, Mu; Liu, Man-Man; Liu, Yao-Ran; Zhang, Tao

    2018-06-01

    Oral squamous cell carcinoma (OSCC) is a highly invasive lesion that frequently metastasizes to the cervical lymph nodes and is associated with a poor prognosis. Several adhesion factors, including cadherin 6 (CDH6), cadherin 11 (CDH11) and cluster of differentiation 44 (CD44), have been reported to be involved in the invasion and metastasis of multiple types of cancer. Therefore, the aim of the present study was to determine the expression of CDH6, CDH11 and CD44 in tumor tissues from patients with OSCC, and whether this was associated with the metastasis and survival of OSCC. The mRNA expression of the human tumor metastasis-related cytokines was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in OSCC tumors with or without lymph node metastasis (n=10/group). The expression of CDH6, CDH11 and CD44 in 101 OSCC and 10 normal oral mucosa samples was examined by immunohistochemical staining. The association between overall and disease-specific survival times of patients with OSCC and the expression of these three proteins was evaluated using Kaplan-Meier curves and the log-rank test. RT-qPCR results indicated that the mRNA expression of CDH6, CDH11 and CD44 was increased in OSCC patients with lymph node metastasis (2.93-, 2.01- and 1.92-fold; P<0.05). Overexpression of CDH6, CDH11 and CD44 was observed in 31/35 (89%), 25/35 (71%) and 31/35 (89%) patients, respectively. The number of OSCC patients with lymph node metastasis exhibiting CDH6, CDH11 and CD44 overexpression was significantly higher than the number of patients without lymph node metastasis exhibiting overexpression of these proteins (P=0.017, P=0.038 and P=0.007, respectively). OSCC patients with high co-expression of CDH6, CDH11 and CD44 exhibited lower disease-specific survival times (P=0.047; χ 2 =3.933) when compared with OSCC patients with low co-expression of these adhesion factors. CDH6, CDH11 and CD44 serve important roles in OSCC metastasis and the combined use

  3. Cell division orientation is coupled to cell-cell adhesion by the E-cadherin/LGN complex

    NARCIS (Netherlands)

    Gloerich, Martijn; Bianchini, Julie M.; Siemers, Kathleen A.; Cohen, Daniel J.; Nelson, W. James

    2017-01-01

    Both cell-cell adhesion and oriented cell division play prominent roles in establishing tissue architecture, but it is unclear how they might be coordinated. Here, we demonstrate that the cell-cell adhesion protein E-cadherin functions as an instructive cue for cell division orientation. This is

  4. Soy Components Genistein and Lunasin Regulate E-Cadherin and Wnt Signaling in Mammary Epithelial Cells

    Science.gov (United States)

    Enhanced Wnt/beta-catenin signaling and loss of E-cadherin expression are considered hallmarks of tumorigenesis. We previously showed by microarray gene profiling that dietary intake of soy-based AIN-93G diets altered components of Wnt/beta-catenin signaling in rat mammary epithelial cells. To furth...

  5. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    Science.gov (United States)

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  6. Evaluation of tissue engineered models of the oral mucosa to investigate oral candidiasis.

    Science.gov (United States)

    Yadev, Nishant P; Murdoch, Craig; Saville, Stephen P; Thornhill, Martin H

    2011-06-01

    Candida albicans is a commensal organism that can be isolated from the majority of healthy individuals. However, in certain susceptible individuals C. albicans can become pathogenic leading to the mucocutaneous infection; oral candidiasis. Murine models and in vitro monolayer cultures have generated some data on the likely virulence and host factors that contribute to oral candidiasis but these models have limitations. Recently, tissue engineered oral mucosal models have been developed to mimic the normal oral mucosa but little information is available on their true representation. In this study, we assessed the histological features of three different tissue engineered oral mucosal models compared to the normal oral mucosa and analysed both cell damage and cytokine release following infection with C. albicans. Models comprised of normal oral keratinocytes and a fibroblast-containing matrix displayed more similar immunohistological and proliferation characteristics to normal mucosa, compared to models composed of an oral carcinoma cell line. Although all models were invaded and damaged by C. albicans in a similar manner, the cytokine response was much more pronounced in models containing normal keratinocytes. These data suggest that models based on normal keratinocytes atop a fibroblast-containing connective tissue will significantly aid in dissecting the molecular pathogenesis of oral candidiasis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Areca nut extract up-regulates prostaglandin production, cyclooxygenase-2 mRNA and protein expression of human oral keratinocytes.

    Science.gov (United States)

    Jeng, J H; Ho, Y S; Chan, C P; Wang, Y J; Hahn, L J; Lei, D; Hsu, C C; Chang, M C

    2000-07-01

    There are about 600 million betel quid (BQ) chewers in the world. BQ chewing is associated with increased incidence of oral cancer and submucous fibrosis. In this study, areca nut (AN) extract (200-800 microg/ml) induced the prostaglandin E(2) (PGE(2)) production by 1. 4-3.4-fold and 6-keto-PGF(1 alpha) production by 1.1-1.7-fold of gingival keratinocytes (GK), respectively, following 24 h of exposure. Exposure of GK to AN extract (>400 microg/ml) led to cell retraction and intracellular vacuoles formation. At concentrations of 800 and 1200 microg/ml, AN extract induced cell death at 21-24 and 32-52% as detected by MTT assay and cellular lactate dehydrogenase release, respectively. Interestingly, AN-induced morphological changes of GK are reversible. GK can still proliferate following exposure to AN extract. Cytotoxicity of AN extract cannot be inhibited by indomethacin (1 microM) and aspirin (50 microM), indicating that prostaglandin (PG) production is not the major factor responsible for AN cytotoxicity. PGE(2) exhibited little effect on the growth of GK at concentrations ranging from 100-1000 pg/ml. Stimulating GK production of PGs by AN extract could be due to induction of cyclooxygenase-2 (COX-2) mRNA expression and protein production. These results suggest that AN ingredients are critical in the pathogenesis of oral submucous fibrosis and oral cancer via their stimulatory effects on the PGs, COX-2 production and associated tissue inflammatory responses. AN cytotoxicity to GK is not directly mediated by COX-2 stimulation and PG production.

  8. Cell polarity development and protein trafficking in hepatocytes lacking E-cadherin/beta-catenin-based adherens junctions

    NARCIS (Netherlands)

    Theard, Delphine; Steiner, Magdalena; Kalicharan, Dharamdajal; Hoekstra, Dick; van IJzendoorn, Sven C. D.

    Using a mutant hepatocyte cell line in which E-cadherin and ss-catenin are completely depleted from the cell surface, and, consequently, fail to form adherens junctions, we have investigated adherens junction requirement for apical-basolateral polarity development and polarized membrane trafficking.

  9. Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin

    Science.gov (United States)

    1996-01-01

    Cadherins are a family of cell-cell adhesion molecules which play a central role in controlling morphogenetic movements during development. Cadherin function is regulated by its association with the actin containing cytoskeleton, an association mediated by a complex of cytoplasmic proteins, the catenins: alpha, beta, and gamma. Phosphorylated tyrosine residues on beta-catenin are correlated with loss of cadherin function. Consistent with this, we find that only nontyrosine phosphorylated beta-catenin is associated with N-cadherin in E10 chick retina tissue. Moreover, we demonstrate that a PTP1B-like tyrosine phosphatase associates with N-cadherin and may function as a regulatory switch controlling cadherin function by dephosphorylating beta-catenin, thereby maintaining cells in an adhesion-competent state. The PTP1B-like phosphatase is itself tyrosine phosphorylated. Moreover, both direct binding experiments performed with phosphorylated and dephosphorylated molecules, and treatment of cells with tyrosine kinase inhibitors indicate that the interaction of the PTP1B-like phosphatase with N-cadherin depends on its tyrosine phosphorylation. Concomitant with the tyrosine kinase inhibitor-induced loss of the PTP1B-like phosphatase from its association with N-cadherin, phosphorylated tyrosine residues are retained on beta-catenin, the association of N- cadherin with the actin containing cytoskeleton is lost and N-cadherin- mediated cell adhesion is prevented. Tyrosine phosphatase inhibitors also result in the accumulation of phosphorylated tyrosine residues on beta-catenin, loss of the association of N-cadherin with the actin- containing cytoskeleton, and prevent N-cadherin mediated adhesion, presumably by directly blocking the function of the PTP1B-like phosphatase. We previously showed that the binding of two ligands to the cell surface N-acetylgalactosaminylphosphotransferase (GalNAcPTase), the monoclonal antibody 1B11 and a proteoglycan with a 250-kD core protein

  10. New Fluorescent Reporter Systems for Evaluation of the Expression of E- and N-Cadherins.

    Science.gov (United States)

    Burmistrova, O A; Nikulin, S V; Zakharova, G S; Fomicheva, K A; Alekseev, B Ya; Shkurnikov, M Yu

    2018-05-24

    During metastatic growth, cells of solid tumors undergo phenotypical changes related to epithelial-mesenchymal transition. Epithelial-mesenchymal transition is regarded as a potential target for prospective antitumor drugs. Fluorescent reporter systems for evaluation of the expression of markers of epithelial and mesenchymal status (E- and N-cadherins) were created. The described approaches can be used for creation of analogous reporter systems.

  11. Dragon (Repulsive Guidance Molecule RGMb) Inhibits E-cadherin Expression and Induces Apoptosis in Renal Tubular Epithelial Cells*

    Science.gov (United States)

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y.; Xia, Yin

    2013-01-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45–66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo. PMID:24052264

  12. Celastrol inhibits TGF-β1-induced epithelial–mesenchymal transition by inhibiting Snail and regulating E-cadherin expression

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyereen; Lee, Minjae [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Jang, Sung-Wuk, E-mail: swjang@amc.seoul.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of)

    2013-08-09

    Highlights: •We investigated the effects of celastrol on TGF-β1-induced EMT in epithelial cells. •Celastrol regulates TGF-β1-induced morphological changes and E-cadherin expression. •Celastrol inhibits TGF-β1-induced Snail expression. •Celastrol strongly suppresses TGF-β1-induced invasion in MDCK and A549 cells. -- Abstract: The epithelial–mesenchymal transition (EMT) is a pivotal event in the invasive and metastatic potentials of cancer progression. Celastrol inhibits the proliferation of a variety of tumor cells including leukemia, glioma, prostate, and breast cancer; however, the possible role of celastrol in the EMT is unclear. We investigated the effect of celastrol on the EMT. Transforming growth factor-beta 1 (TGF-β1) induced EMT-like morphologic changes and upregulation of Snail expression. The downregulation of E-cadherin expression and upregulation of Snail in Madin–Darby Canine Kidney (MDCK) and A549 cell lines show that TGF-β1-mediated the EMT in epithelial cells; however, celastrol markedly inhibited TGF-β1-induced morphologic changes, Snail upregulation, and E-cadherin expression. Migration and invasion assays revealed that celastrol completely inhibited TGF-β1-mediated cellular migration in both cell lines. These findings indicate that celastrol downregulates Snail expression, thereby inhibiting TGF-β1-induced EMT in MDCK and A549 cells. Thus, our findings provide new evidence that celastrol suppresses lung cancer invasion and migration by inhibiting TGF-β1-induced EMT.

  13. Lysophosphatidic acid induces expression of genes in human oral keratinocytes involved in wound healing.

    Science.gov (United States)

    Thorlakson, Hong Huynh; Engen, Stian Andre; Schreurs, Olav; Schenck, Karl; Blix, Inger Johanne Schytte

    2017-08-01

    Epithelial cells participate in wound healing by covering wounds, but also as important mediators of wound healing processes. Topical application of the phospholipid growth factor lysophosphatidic acid (LPA) accelerates dermal wound healing and we hypothesized that LPA can play a role in human oral wound healing through its effects on human oral keratinocytes (HOK). HOK were isolated from gingival biopsies and exposed to LPA. The LPA receptor profile, signal transduction pathways, gene expression and secretion of selected cytokines were analyzed. HOK expressed the receptors LPA 1 , LPA 5 and LPA 6 and LPA activated the ERK1/2, JNK and p38 intracellular pathways, substantiated by secretion of IL-6 and IL-8. The early (2h) and intermediate (6h) gene expression profiles of HOK after LPA treatment showed a wide array of regulated genes. The majority of the strongest upregulated genes were related to chemotaxis and inflammation, and became downregulated after 6h. At 6h, genes coding for factors involved in extracellular matrix remodeling and re-epithelialization became highly expressed. IL-36γ, not earlier known to be regulated by LPA, was strongly transcribed and translated but not secreted. After stimulation with LPA, HOK responded by regulating factors and genes that are essential in wound healing processes. As LPA is found in saliva and is released by activated cells after wounding, our results indicate that LPA has a favorable physiological role in oral wound healing. This may further point towards a beneficial role for application of LPA on oral surgical or chronic wounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. HAb18G/CD147 cell-cell contacts confer resistance of a HEK293 subpopulation to anoikis in an E-cadherin-dependent manner

    Directory of Open Access Journals (Sweden)

    Zhu Ping

    2010-04-01

    Full Text Available Abstract Background Acquisition of resistance to "anoikis" facilitates the survival of cells under independent matrix-deficient conditions, such as cells in tumor progression and the production of suspension culture cells for biomedical engineering. There is evidence suggesting that CD147, an adhesion molecule associated with survival of cells in tumor metastasis and cell-cell contacts, plays an important role in resistance to anoikis. However, information regarding the functions of CD147 in mediating cell-cell contacts and anoikis-resistance remains limited and even self-contradictory. Results An anoikis-resistant clone (HEK293ar, derived from anoikis-sensitive parental Human Embryonic Kidney 293 cells, survived anoikis by the formation of cell-cell contacts. The expression of HAb18G/CD147 (a member of the CD147 family was upregulated and the protein was located at cell-cell junctions. Upregulation of HAb18G/CD147 in suspended HEK293ar cells suppressed anoikis by mediating the formation of cell-cell adhesions. Anoikis resistance in HEK293ar cells also required E-cadherin-mediated cell-cell contacts. Knock-down of HAb18G/CD147 and E-cadherin inhibited cell-cell contacts formation and increased anoikis sensitivity respectively. When HAb18G/CD147 was downregulated, E-cadherin expression in HEK293ar cells was significantly suppressed; however, knockdown of E-cadherin by E-cadherin siRNA or blocking of E-cadherin binding activity with a specific antibody and EDTA had no significant effect on HAb18G/CD147 expression. Finally, pretreatment with LY294002, a phosphoinositide 3-kinase (PI3K/AKT inhibitor, disrupted cell-cell contacts and decreased cell number, but this was not the case in cells treated with the extracellular signal-regulated kinase (ERK inhibitor PD98059. Conclusions Our results provide new evidence that HAb18G/CD147-mediated cell-cell contact confers anoikis resistance in an E-cadherin-dependent manner; and cell-cell contact mediated

  15. A complex of α6 integrin and E-cadherin drives liver metastasis of colorectal cancer cells through hepatic angiopoietin-like 6.

    Science.gov (United States)

    Marchiò, Serena; Soster, Marco; Cardaci, Sabrina; Muratore, Andrea; Bartolini, Alice; Barone, Vanessa; Ribero, Dario; Monti, Maria; Bovino, Paola; Sun, Jessica; Giavazzi, Raffaella; Asioli, Sofia; Cassoni, Paola; Capussotti, Lorenzo; Pucci, Piero; Bugatti, Antonella; Rusnati, Marco; Pasqualini, Renata; Arap, Wadih; Bussolino, Federico

    2012-11-01

    Homing of colorectal cancer (CRC) cells to the liver is a non-random process driven by a crosstalk between tumour cells and components of the host tissue. Here we report the isolation of a liver metastasis-specific peptide ligand (CGIYRLRSC) that binds a complex of E-cadherin and α(6) integrin on the surface of CRC cells. We identify angiopoietin-like 6 protein as a peptide-mimicked natural ligand enriched in hepatic blood vessels of CRC patients. We demonstrate that an interaction between hepatic angiopoietin-like 6 and tumoural α(6) integrin/E-cadherin drives liver homing and colonization by CRC cells, and that CGIYRLRSC inhibits liver metastasis through interference with this ligand/receptor system. Our results indicate a mechanism for metastasis whereby a soluble factor accumulated in normal vessels functions as a specific ligand for circulating cancer cells. Consistently, we show that high amounts of coexpressed α(6) integrin and E-cadherin in primary tumours represent a poor prognostic factor for patients with advanced CRC. Copyright © 2012 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  16. Colorectal signet ring cell carcinoma: Influence of EGFR, E-cadherin and MMP-13 expression on clinicopathological features and prognosis.

    Science.gov (United States)

    Foda, Abd Al-Rahman Mohammad; Aziz, Azza Abdel; Mohamed, Mie Ali

    2018-02-01

    Signet ring cell carcinoma (SRCC) is unique rare subtype of mucin-producing colorectal adenocarcinoma characterized by presence of signet ring cells, in >50% of the tumor tissue. This study aims to investigate expression of EGFR, E-cadherin and MMP-13 expression on clinicopathological features of signet ring cell type and its prognostic effect using manual tissue microarray technique. In this work, we studied tumor tissue specimens from 150 patients with colorectal cancer cases among which 19 cases of SRCC. High density manual tissue microarrays were constructed using modified mechanical pencil tips technique and immunohistochemistry for EGFR, E-cadherin and MMP-13 expression was done. We found that SRCC was significantly associated with younger age and more frequency of LN metastasis than all other groups. SRCC was also significantly associated with annular gross picture, more depth of invasion, advanced stage, more lymphovascular emboli, more perineural invasion and less arousal from an overlying adenoma. In conclusion, colorectal SRCC has distinctive clinicopathological and histological features with different unique mechanisms of carcinogenesis and more aggressive biologic behavior than other colorectal carcinoma subtypes. Negative/low expressions of EGFR and E-cadherin and MMP-13 were found in SRCC with no effect on the prognosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Correlation between E-cadherin and p120 expression in invasive ductal breast cancer with a lobular component and MRI findings.

    Science.gov (United States)

    El Sharouni, Mary-Ann; Postma, Emily L; van Diest, Paul J

    2017-12-01

    Invasive breast cancer comprises a spectrum of histological changes with purely lobular cancer on one side and purely ductal cancer on the other, with many mixed lesions in between. In a previous study, we showed that in patients with any percentage lobular component at core needle biopsy, preoperative MRI leads to the detection of clinically relevant additional findings in a substantial percentage of patients, irrespective of the percentage of the lobular component. Detection of a small lobular component may however not be reproducible among pathologists. Loss of membrane expression of E-cadherin or p120 is useful biomarkers of ILC and may therefore support a more objective diagnosis. All patients diagnosed with breast cancer containing a lobular component of any percentage between January 2008 and October 2012 were prospectively offered preoperative MRI. Clinically relevant additional findings on MRI were verified by pathology evaluation. Expression patterns of E-cadherin and p120 were evaluated by immunohistochemistry on the core needle biopsy. MRI was performed in 109 patients. The percentage of lobular component was significantly increased in cases with aberrant E-cadherin or p120 expression (both p = lobular component in the core needle of their breast cancer.

  18. Loss of TET1 facilitates DLD1 colon cancer cell migration via H3K27me3-mediated down-regulation of E-cadherin.

    Science.gov (United States)

    Zhou, Zhen; Zhang, Hong-Sheng; Liu, Yang; Zhang, Zhong-Guo; Du, Guang-Yuan; Li, Hu; Yu, Xiao-Ying; Huang, Ying-Hui

    2018-02-01

    Epigenetic modifications such as histone modifications and cytosine hydroxymethylation are linked to tumorigenesis. Loss of 5-hydroxymethylcytosine (5 hmC) by ten-eleven translocation 1 (TET1) down-regulation facilitates tumor initiation and development. However, the mechanisms by which loss of TET1 knockdown promotes malignancy development remains unclear. Here, we report that TET1 knockdown induced epithelial-mesenchymal transition (EMT) and increased cancer cell growth, migration, and invasion in DLD1 cells. Loss of TET1 increased EZH2 expression and reduced UTX-1 expression, thus increasing histone H3K27 tri-methylation causing repression of the target gene E-cadherin. Ectopic expression of the H3K27 demethylase UTX-1 or EZH2 depletion both impeded EZH2 binding caused a loss of H3K27 methylation at epithelial gene E-cadherin promoter, thereby suppressing EMT and tumor invasion in shTET1 cells. Conversely, UTX-1 depletion and ectopic expression of EZH2 enhanced EMT and tumor metastasis in DLD1 cells. These findings provide insight into the regulation of TET1 and E-cadherin and identify EZH2 as a critical mediator of E-cadherin repression and tumor progression. © 2017 Wiley Periodicals, Inc.

  19. The Cadherin Interaction as a Rate Limiting Step in Breast Cancer Metastasis to the Liver

    National Research Council Canada - National Science Library

    Chao, Yvonne

    2008-01-01

    .... Epithelial-cadherin (E-cadherin), the prototype classical cadherin present on the surface of most epithelial cells, has a cytoplasmic domain that anchors the cell adhesion molecule to the actin cytoskeleton via catenin-based complexes...

  20. Differential regulation of iron chelator-induced IL-8 synthesis via MAP kinase and NF-κB in immortalized and malignant oral keratinocytes

    International Nuclear Information System (INIS)

    Lee, Hwa-Jeong; Lee, Jun; Lee, Sun-Kyung; Lee, Suk-Keun; Kim, Eun-Cheol

    2007-01-01

    Interleukin-8 (IL-8) is a cytokine that plays an important role in tumor progression in a variety of cancer types; however, its regulation is not well understood in oral cancer cells. In the present study, we examined the expression and mechanism of IL-8 in which it is involved by treating immortalized (IHOK) and malignant human oral keratinocytes (HN12) cells with deferoxamine (DFO). IL-8 production was measured by an enzyme-linked immunoabsorbent assay and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Electrophoretic mobility shift assays was used to determine NF-κB binding activity. Phosphorylation and degradation of the I-κB were analyized by Western blot. IHOK cells incubated with DFO showed increased expression of IL-8 mRNA, as well as higher release of the IL-8 protein. The up-regulation of DFO-induced IL-8 expression was higher in IHOK cells than in HN12 cells and was concentration-dependent. DFO acted additively with IL-1β to strongly up-regulate IL-8 in IHOK cells but not in HN12 cells. Accordingly, selective p38 and ERK1/2 inhibitors for both kinases abolished DFO-induced IL-8 expression in both IHOK and HN12 cells. Furthermore, DFO induced the degradation and phosphorylation of IκB, and activation of NF-κB. The IL-8 inducing effects of DFO were mediated by a nitric oxide donor (S-nitrosoglutathione), and by pyrrolidine dithiocarbamate, an inhibitor of NF-κB, as well as by wortmannin, which inhibits the phosphatidylinositol 3-kinase-dependent activation of NAD(P)H oxidase. This results demonstrate that DFO-induced IL-8 acts via multiple signaling pathways in immortalized and malignant oral keratinocytes, and that the control of IL-8 may be an important target for immunotheraphy against human oral premalignant lesions

  1. Ex Vivo Produced Oral Mucosa Equivalent by Using the Direct Explant Cell Culture Technique

    Directory of Open Access Journals (Sweden)

    Kamile Öztürk

    2012-09-01

    Full Text Available Objective: The aim of this study is the histological and immunohistochemical evaluation of ex vivo produced oral mucosal equivalents using keratinocytes cultured by direct explant technique.Material and Methods: Oral mucosa tissue samples were obtained from the keratinized gingival tissues of 14 healthy human subjects. Human oral mucosa keratinocytes from an oral mucosa biopsy specimen were dissociated by the explant technique. Once a sufficient population of keratinocytes was reached, they were seeded onto the type IV collagen coated “AlloDerm” and taken for histological and immunohistochemical examinations at 11 days postseeding of the keratinocytes on the cadaveric human dermal matrix.Results: Histopathologically and immunohistochemically, 12 out of 14 successful ex vivo produced oral mucosa equivalents (EVPOME that consisted of a stratified epidermis on a dermal matrix have been developed with keratinocytes cultured by the explant technique.Conclusion: The technical handling involved in the direct explant method at the beginning of the process has fewer steps than the enzymatic method and use of the direct explant technique protocol for culturing of human oral mucosa keratinocyte may be more adequate for EVPOME production.

  2. Restricted expression of classic cadherins in the spinal cord of the chicken embryo

    Directory of Open Access Journals (Sweden)

    Juntang eLin

    2014-03-01

    Full Text Available Classic cadherins belong to the family of cadherin genes and play important roles in neurogenesis, neuron migration and axon growth. In the present study, we compared the expression patterns of 10 classic cadherins (Cdh2, Cdh4, Cdh6, Cdh7, Cdh8, Cdh9, Cdh11, Cdh12, Cdh18 and Cdh20 in the developing chicken spinal cord by in situ hybridization. Our results indicate that each of the investigated cadherins exhibits a spatially restricted and temporally regulated pattern of expression. At early developmental stages (E2.5-E3, Cdh2 is expressed throughout the neuroepithelial layer. Cdh6 is strongly positive in the roof plate and later also in the floor plate. Cdh7, Cdh11, Cdh12 and Cdh20 are expressed in restricted regions of the basal plate of the spinal cord. At intermediate stages of development (E4-E10, specific expression profiles are observed for all investigated cadherins in the differentiating mantle layer along the dorsoventral, mediolateral and rostrocaudal dimensions. Expression profiles are especially diverse for Cdh2, Cdh4, Cdh8, Cdh11 and Cdh20 in the dorsal horn, while different pools of motor neurons exhibit signal for Cdh6, Cdh7, Cdh8, Cdh9, Cdh12 and Cdh20 in the ventral horn. Interestingly, subpopulations of cells in the dorsal root ganglion express combinations of different cadherins. In the surrounding tissues, such as the boundary cap cells and the notochord, the cadherins are also expressed differentially. The highly regulated spatiotemporal expression patterns of the classic cadherins indicate that these genes potentially play multiple and diverse roles during the development of the spinal cord and its surrounding tissues.

  3. EXPRESSION OF E-CADHERIN AND WNT PATHWAY PROTEINS BETACATENIN, APC, TCF-4 AND SURVIVIN IN GASTRIC ADENOCARCINOMA: CLINICAL AND PATHOLOGICAL IMPLICATION.

    Science.gov (United States)

    Lins, Rodrigo Rego; Oshima, Celina Tizuko Fujiyama; Oliveira, Levindo Alves de; Silva, Marcelo Souza; Mader, Ana Maria Amaral Antonio; Waisberg, Jaques

    2016-01-01

    Gastric cancer is the fifth most frequent cancer and the third most common cause of cancer-related deaths worldwide.It has been reported that Wnt/ betacatenin pathway is activated in 30-50% of these tumors. However,the deregulation of this pathway has not been fully elucidated. To determine the expression of E-cadherin, betacatenin, APC, TCF-4 and survivin proteins in gastric adenocarcinoma tissues and correlate with clinical and pathological parameters. Seventy-one patients with gastric adenocarcinoma undergoing gastrectomy were enrolled. The expression of E-cadherin, betacatenin, APC, TCF-4 and survivin proteins was detected by immunohistochemistryand related to the clinical and pathological parameters. The expression rates of E-cadherin in the membrane was 3%; betacatenin in the cytoplasm and nucleus were 23,4% and 3,1% respectively; APC in the cytoplasm was 94,6%; TCF-4 in the nucleus was 19,4%; and survivin in the nucleus 93,9%. The expression rate of E-cadherin was correlated with older patients (p=0,007), while betacatenin with tumors citoplasma e 3,1% no núcleo; APC em 94,6% no citoplasma; TCF-4 em19,4% no núcleo; e survivina em 93,9% no núcleo. Houve relação entre expressão da proteína E-caderina com a idade mais avançada (p=0,007); betacatenina com tumores <5 cm de diâmetro (p=0,041);APC com tumores proximais (p=0,047); e TCF-4 com tipo difuso da classificação de Lauren (p=0,017) e com o grau de penetração tumoral (p=0,002). A via Wnt/betacatenina não está envolvida na carcinogênese gástrica. Porém, a frequência elevada de survivina permite sugerir que outras vias sinalizadoras devam estar envolvidas na transformação do tecido gástrico.

  4. New insights into the molecular mechanism of E-cadherin-mediated cell adhesion by free energy calculations

    DEFF Research Database (Denmark)

    Doro, Fabio; Saladino, Giorgio; Belvisi, Laura

    2015-01-01

    Three-dimensional domain swapping is an important mode of protein association leading to the formation of stable dimers. Monomers associating via this mechanism mutually exchange a domain to form a homodimer. Classical cadherins, an increasingly important target for anticancer therapy, use domain...... swapping to mediate cell adhesion. However, despite its importance, the molecular mechanism of domain swapping is still debated. Here, we study the conformational changes that lead to activation and dimerization via domain swapping of E-cadherin. Using state-of-the-art enhanced sampling atomistic......" mechanism in which monomers in an active conformational state bind to form a homodimer, analogous to the conformational selection mechanism often observed in ligand-target binding. Moreover, we find that the open state population is increased in the presence of calcium ions at the extracellular boundary...

  5. A Regulatory Network Involving β-Catenin, e-Cadherin, PI3k/Akt, and Slug Balances Self-Renewal and Differentiation of Human Pluripotent Stem Cells In Response to Wnt Signaling.

    Science.gov (United States)

    Huang, Tyng-Shyan; Li, Li; Moalim-Nour, Lilian; Jia, Deyong; Bai, Jian; Yao, Zemin; Bennett, Steffany A L; Figeys, Daniel; Wang, Lisheng

    2015-05-01

    The mechanisms underlying disparate roles of the canonical Wnt signaling pathway in maintaining self-renewal or inducing differentiation and lineage specification in embryonic stem cells (ESCs) are not clear. In this study, we provide the first demonstration that self-renewal versus differentiation of human ESCs (hESCs) in response to Wnt signaling is predominantly determined by a two-layer regulatory circuit involving β-catenin, E-cadherin, PI3K/Akt, and Slug in a time-dependent manner. Short-term upregulation of β-catenin does not lead to the activation of T-cell factor (TCF)-eGFP Wnt reporter in hESCs. Instead, it enhances E-cadherin expression on the cell membrane, thereby enhancing hESC self-renewal through E-cadherin-associated PI3K/Akt signaling. Conversely, long-term Wnt activation or loss of E-cadherin intracellular β-catenin binding domain induces TCF-eGFP activity and promotes hESC differentiation through β-catenin-induced upregulation of Slug. Enhanced expression of Slug leads to a further reduction of E-cadherin that serves as a β-catenin "sink" sequestering free cytoplasmic β-catenin. The formation of such a framework reinforces hESCs to switch from a state of temporal self-renewal associated with short-term Wnt/β-catenin activation to definitive differentiation. Stem Cells 2015;33:1419-1433. © 2015 AlphaMed Press.

  6. Neuron-Derived ADAM10 Production Stimulates Peripheral Nerve Injury-Induced Neuropathic Pain by Cleavage of E-Cadherin in Satellite Glial Cells.

    Science.gov (United States)

    Li, Jian; Ouyang, Qing; Chen, Cheng-Wen; Chen, Qian-Bo; Li, Xiang-Nan; Xiang, Zheng-Hua; Yuan, Hong-Bin

    2017-09-01

    Increasing evidence suggests the potential involvement of metalloproteinase family proteins in the pathogenesis of neuropathic pain, although the underlying mechanisms remain elusive. Using the spinal nerve ligation model, we investigated whether ADAM10 proteins participate in pain regulation. By implementing invitro methods, we produced a purified culture of satellite glial cells to study the underlying mechanisms of ADAM10 in regulating neuropathic pain. Results showed that the ADAM10 protein was expressed in calcitonin gene-related peptide (CGRP)-containing neurons of the dorsal root ganglia, and expression was upregulated following spinal nerve ligation surgery invivo. Intrathecal administration of GI254023X, an ADAM10 selective inhibitor, to the rats one to three days after spinal nerve ligation surgery attenuated the spinal nerve ligation-induced mechanical allodynia and thermal hyperalgesia. Intrathecal injection of ADAM10 recombinant protein simulated pain behavior in normal rats to a similar extent as those treated by spinal nerve ligation surgery. These results raised a question about the relative contribution of ADAM10 in pain regulation. Further results showed that ADAM10 might act by cleaving E-cadherin, which is mainly expressed in satellite glial cells. GI254023X reversed spinal nerve ligation-induced downregulation of E-cadherin and activation of cyclooxygenase 2 after spinal nerve ligation. β-catenin, which creates a complex with E-cadherin in the membranes of satellite glial cells, was also downregulated by spinal nerve ligation surgery in satellite glial cells. Finally, knockdown expression of β-catenin by lentiviral infection in purified satellite glial cells increased expression of inducible nitric oxide synthase and cyclooxygenase 2. Our findings indicate that neuron-derived ADAM10 production stimulates peripheral nerve injury-induced neuropathic pain by cleaving E-cadherin in satellite glial cells. © 2017 American Academy of Pain Medicine

  7. The E7 protein of the cottontail rabbit papillomavirus immortalizes normal rabbit keratinocytes and reduces pRb levels, while E6 cooperates in immortalization but neither degrades p53 nor binds E6AP

    International Nuclear Information System (INIS)

    Ganzenmueller, Tina; Matthaei, Markus; Muench, Peter; Scheible, Michael; Iftner, Angelika; Hiller, Thomas; Leiprecht, Natalie; Probst, Sonja; Stubenrauch, Frank; Iftner, Thomas

    2008-01-01

    Human papillomaviruses (HPVs) cause cervical cancer and are associated with the development of non-melanoma skin cancer. A suitable animal model for papillomavirus-associated skin carcinogenesis is the infection of domestic rabbits with the cottontail rabbit papillomavirus (CRPV). As the immortalizing activity of CRPV genes in the natural target cells remains unknown, we investigated the properties of CRPV E6 and E7 in rabbit keratinocytes (RK) and their influence on the cell cycle. Interestingly, CRPV E7 immortalized RK after a cellular crisis but showed no such activity in human keratinocytes. Co-expressed CRPV E6 prevented cellular crisis. The HPV16 or CRPV E7 protein reduced rabbit pRb levels thereby causing rabbit p19 ARF induction and accumulation of p53 without affecting cellular proliferation. Both CRPV E6 proteins failed to degrade rabbit p53 in vitro or to bind E6AP; however, p53 was still inducible by mitomycin C. In summary, CRPV E7 immortalizes rabbit keratinocytes in a species-specific manner and E6 contributes to immortalization without directly affecting p53

  8. Chitosan modified poly(lactic-co-glycolic acid nanoparticles interaction with normal, precancerous keratinocytes and dental pulp cells

    Directory of Open Access Journals (Sweden)

    Maria Justina Roxana Virlan

    2017-03-01

    Conclusion: Chitosan-coated PLGAChi NPs proved to be able to cross the cellular membrane of oral keratinocytes, in 2D as well as in 3D cultures. The polymeric NPs used in the present study seem not to be suitable for applications that require NPs uptake by DPCs, as no evidence of uptake in these cells was found in this study. The finding that PLGAChi NPs showed significant internalization by human keratinocytes indicate that they could be used for drug delivery purposes to oral mucosa.

  9. Surface engineered magnetic nanoparticles for specific immunotargeting of cadherin expressing cells

    International Nuclear Information System (INIS)

    Moros, Maria; Puertas, Sara; Saez, Berta; Grazú, Valeria; Delhaes, Flavien; Feracci, Helene; De la Fuente, Jesús M

    2016-01-01

    In spite of historic advances in cancer biology and recent development of sophisticated chemotherapeutics, the outlook for patients with advanced cancer is still grim. In this sense nanoparticles (NPs), through their unique physical properties, enable the development of new approaches for cancer diagnosis and treatment. Thus far the most used active targeting scheme involves NPs functionalization with antibodies specific to molecules overexpressed on cancer cell’s surface. Therefore, such active targeting relies on differences in NPs uptake kinetics rates between tumor and healthy cells. Many cancers of epithelial origin are associated with the inappropriate expression of non-epithelial cadherins (e.g. N-, P-, -11) with concomitant loss of E-cadherin. Such phenomenon named cadherin switching favors tumor development and metastasis via interactions of tumor cells with stromal components. That is why we optimized the oriented functionalization of fluorescently labelled magnetic NPs with a novel antibody specific for the extracellular domain of cadherin-11. The obtained Ab-NPs exhibited high specificity when incubated with two cell lines used as models of tumor and healthy cells. Thus, cadherin switching offers a great opportunity for the development of active targeting strategies aimed to improve the early detection and treatment of cancer. (paper)

  10. Influence of CAD/CAM all-ceramic materials on cell viability, migration ability and adenylate kinase release of human gingival fibroblasts and oral keratinocytes.

    Science.gov (United States)

    Pabst, A M; Walter, C; Grassmann, L; Weyhrauch, M; Brüllmann, D D; Ziebart, T; Scheller, H; Lehmann, K M

    2014-05-01

    The aim of this study was to analyze the influence of four CAD/CAM all-ceramic materials on cell viability, migration ability and adenylate kinase (ADK) release of human gingival fibroblasts (HGF) and oral keratinocytes (HOK). HGF and HOK were cultured on disc-shaped CAD/CAM all-ceramic materials (e.max CAD LT, e.max CAD HT, Empress CAD and Mark II) and on discs made of tissue culture polystyrene surface (TCPS) serving as control. Cell viability was analyzed by using an MTT assay, and migration ability was investigated by a scratch assay. A ToxiLight assay has been performed to analyze the effect of all-ceramic materials on ADK release and cell apoptosis. At MTT assay for HGF, no significant decrease of cell viability could be detected at all points of measurement (p each > 0.05), while HOK demonstrated a significant decrease in cell viability especially on Empress CAD and Mark II at each point of measurement (p each materials at all points of measurement (between -36 % and -71 %; p each ceramic materials could be investigated. This study disclosed significant differences in cell viability and migration ability of HGF and HOK on CAD/CAM all-ceramic materials. CAD/CAM all-ceramic materials can influence oral cell lines responsible for soft tissue creation which may affect the esthetic outcome.

  11. Spatiotemporal distribution and function of N-cadherin in postnatal Schwann cells: A matter of adhesion?

    DEFF Research Database (Denmark)

    Corell, Mikael; Wicher, Grzegorz; Limbach, Christoph

    2010-01-01

    During embryonic development of the peripheral nervous system (PNS), the adhesion molecule neuronal cadherin (N-cadherin) is expressed by Schwann cell precursors and associated with axonal growth cones. N-cadherin expression levels decrease as precursors differentiate into Schwann cells. In this ......During embryonic development of the peripheral nervous system (PNS), the adhesion molecule neuronal cadherin (N-cadherin) is expressed by Schwann cell precursors and associated with axonal growth cones. N-cadherin expression levels decrease as precursors differentiate into Schwann cells....... In this study, we investigated the distribution of N-cadherin in the developing postnatal and adult rat peripheral nervous system. N-cadherin was found primarily in ensheathing glia throughout development, concentrated at neuron-glial or glial-glial contacts of the sciatic nerve, dorsal root ganglia (DRG......), and myenteric plexi. In the sciatic nerve, N-cadherin decreases with age and progress of myelination. In adult animals, N-cadherin was found exclusively in nonmyelinating Schwann cells. The distribution of N-cadherin in developing E17 DRG primary cultures is similar to what was observed in vivo. Functional...

  12. Normal endometrial stromal cells regulate 17β-estradiol-induced epithelial-mesenchymal transition via slug and E-cadherin in endometrial adenocarcinoma cells in vitro.

    Science.gov (United States)

    Zhang, Hui; Li, Hongyan; Qi, Shasha; Liu, Zhao; Fu, Yibing; Li, Mingjiang; Zhao, Xingbo

    2017-01-01

    Stroma-tumor communication participates in the pathogenesis of endometrial carcinomas. In previous studies, we found that normal stromal cells inhibited the growth of endometrial carcinoma cells. Here, we investigated the role of normal stromal cells in the epithelial-mesenchymal transition (EMT) of endometrial carcinoma cells and explored the possible mechanism implied. We found that conditioned medium (CM) by normal endometrial stromal cells (NSC) reduced cell growth and induced cell apoptosis in Ishikawa cells. CM by NSC inhibited 17β-estradiol-induced cell growth and apoptosis decrease in Ishikawa cells. Moreover, CM by NSC inhibited the migration and invasion, and 17β-estradiol-induced migration and invasion in Ishikawa cells. Meanwhile, CM by NSC decreased Slug expression and 17β-estradiol-induced Slug expression, increased E-cadherin expression and abolished 17β-estradiol-induced E-cadherin reduction in Ishikawa cells. In conclusion, normal stromal factors can inhibit 17β-estradiol-induced cell proliferation and apoptosis inhibition, and abolished 17β-estradiol-induced EMT in endometrial cancer cell via regulating E-cadherin and Slug expression.

  13. Oral Administration of p-Hydroxycinnamic Acid Attenuates Atopic Dermatitis by Downregulating Th1 and Th2 Cytokine Production and Keratinocyte Activation.

    Directory of Open Access Journals (Sweden)

    Hyun-Su Lee

    Full Text Available Atopic dermatitis (AD is a complex disease that is caused by various factors, including environmental change, genetic defects, and immune imbalance. We previously showed that p-hydroxycinnamic acid (HCA isolated from the roots of Curcuma longa inhibits T-cell activation without inducing cell death. Here, we demonstrated that oral administration of HCA in a mouse model of ear AD attenuates the following local and systemic AD manifestations: ear thickening, immune-cell infiltration, production of AD-promoting immunoregulatory cytokines in ear tissues, increased spleen and draining lymph node size and weight, increased pro-inflammatory cytokine production by draining lymph nodes, and elevated serum immunoglobulin production. HCA treatment of CD4+ T cells in vitro suppressed their proliferation and differentiation into Th1 or Th2 and their Th1 and Th2 cytokine production. HCA treatment of keratinocytes lowered their production of the pro-inflammatory cytokines that drive either Th1 or Th2 responses in AD. Thus, HCA may be of therapeutic potential for AD as it acts by suppressing keratinocyte activation and downregulating T-cell differentiation and cytokine production.

  14. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    International Nuclear Information System (INIS)

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.; Parkos, Charles A.; Nusrat, Asma

    2010-01-01

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.

  15. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    Energy Technology Data Exchange (ETDEWEB)

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.; Parkos, Charles A. [Epithelial Pathobiology Research Unit, Dept. of Pathology, Emory University, Atlanta, GA 30322 (United States); Nusrat, Asma, E-mail: anusrat@emory.edu [Epithelial Pathobiology Research Unit, Dept. of Pathology, Emory University, Atlanta, GA 30322 (United States)

    2010-07-02

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.

  16. Influence of intra-tumoral heterogeneity on the evaluation of BCL2, E-cadherin, EGFR, EMMPRIN, and Ki-67 expression in tissue microarrays from breast cancer

    DEFF Research Database (Denmark)

    Tramm, Trine; Kyndi, Marianne; Sørensen, Flemming B

    2018-01-01

    -tumoral heterogeneity as well as inter-observer variability on the evaluation of various IHC markers with potential prognostic impact in breast cancer (BCL2, E-cadherin, EGFR, EMMPRIN and Ki-67). MATERIAL AND METHODS: From each of 27 breast cancer patients, two tumor-containing paraffin blocks were chosen. Intra...... was found. EMMPRIN and Ki-67 showed a more heterogeneous expression with moderate to substantial intra-block agreements. For both stainings, there was a moderate inter-block agreement that improved slightly for EMMPRIN, when using WS instead of TMA cores. Inter-observer agreements were found to be almost...... perfect for BCL2, E-cadherin and EGFR (WS: κ > 0.82, TMAs: κ > 0.90), substantial for EMMPRIN (κ > 0.63), but only fair to moderate for Ki-67 (WS: κ = 0.54, TMAs: κ = 0.33). CONCLUSIONS: BCL2, E-cadherin and EGFR were found to be homogeneously expressed, whereas EMMPRIN and Ki-67 showed a more pronounced...

  17. Brain Metastases from Lung Cancer Show Increased Expression of DVL1, DVL3 and Beta-Catenin and Down-Regulation of E-Cadherin

    Directory of Open Access Journals (Sweden)

    Anja Kafka

    2014-06-01

    Full Text Available The susceptibility of brain to secondary formation from lung cancer primaries is a well-known phenomenon. In contrast, the molecular basis for invasion and metastasis to the brain is largely unknown. In the present study, 31 brain metastases that originated from primary lung carcinomas were analyzed regarding over expression of Dishevelled-1 (DVL1, Dishevelled-3 (DVL3, E-cadherin (CDH1 and beta-catenin (CTNNB1. Protein expressions and localizations were analyzed by immunohistochemistry. Genetic alterations of E-cadherin were tested by polymerase chain reaction (PCR/loss of heterozygosity (LOH. Heteroduplex was used to investigate mutations in beta-catenin. DVL1 and DVL3 showed over expression in brain metastasis in 87.1% and 90.3% of samples respectively. Nuclear staining was observed in 54.8% of cases for DVL1 and 53.3% for DVL3. The main effector of the Wnt signaling, beta-catenin, was up-regulated in 56%, and transferred to the nucleus in 36% of metastases. When DVL1 and DVL3 were up-regulated the number of cases with nuclear beta-catenin significantly increased (p = 0.0001. Down-regulation of E-cadherin was observed in 80% of samples. Genetic analysis showed 36% of samples with LOH of the CDH1. In comparison to other lung cancer pathologies, the diagnoses adenocarcinoma and small cell lung cancer (SCLC were significantly associated to CDH1 LOH (p = 0.001. Microsatellite instability was detected in one metastasis from adenocarcinoma. Exon 3 of beta-catenin was not targeted. Altered expression of Dishevelled-1, Dishevelled-3, E-cadherin and beta-catenin were present in brain metastases which indicates that Wnt signaling is important and may contribute to better understanding of genetic profile conditioning lung cancer metastasis to the brain.

  18. Upregulation of cathepsin S in psoriatic keratinocytes.

    Science.gov (United States)

    Schönefuss, Alexander; Wendt, Wiebke; Schattling, Benjamin; Schulten, Roxane; Hoffmann, Klaus; Stuecker, Markus; Tigges, Christian; Lübbert, Hermann; Stichel, Christine

    2010-08-01

    Cathepsin S (CATS) is a cysteine protease, well known for its role in MHC class II-mediated antigen presentation and extracellular matrix degradation. Disturbance of the expression or metabolism of this protease is a concomitant feature of several diseases. Given this importance we studied the localization and regulation of CATS expression in normal and pathological human/mouse skin. In normal human skin CATS-immunostaining is mainly present in the dermis and is localized in macrophages, Langerhans, T- and endothelial cells, but absent in keratinocytes. In all analyzed pathological skin biopsies, i.e. atopic dermatitis, actinic keratosis and psoriasis, CATS staining is strongly increased in the dermis. But only in psoriasis, CATS-immunostaining is also detectable in keratinocytes. We show that cocultivation with T-cells as well as treatment with cytokines can trigger expression and secretion of CATS, which is involved in MHC II processing in keratinocytes. Our data provide first evidence that CATS expression (i) is selectively induced in psoriatic keratinocytes, (ii) is triggered by T-cells and (iii) might be involved in keratinocytic MHC class II expression, the processing of the MHC class II-associated invariant chain and remodeling of the extracellular matrix. This paper expands our knowledge on the important role of keratinocytes in dermatological disease.

  19. Cytotoxic effects of denture adhesives on primary human oral keratinocytes, fibroblasts and permanent L929 cell lines.

    Science.gov (United States)

    Chen, Fengying; Wu, Tianfu; Cheng, Xiangrong

    2014-03-01

    To date, there have been very little data on the cytotoxic responses of different cell lines to denture adhesives. To determine the cytotoxicity of three denture adhesives on primary human oral keratinocytes (HOKs), fibroblasts (HOFs) and permanent mouse fibroblasts cell lines (L929). Three commercial denture adhesives (two creams and one powder) were prepared for indirect contact using the agar diffusion test, as well as extracts in MTT assay. The results of the MTT assay were statistically analysed by one-way anova and Tukey's test (p adhesives showed mild to moderate cytotoxicity to primary HOKs (p  0.05) in both assays. For primary HOFs cultures, slight cytotoxicity was observed for one of the products from the agar diffusion test and undiluted eluates of all tested adhesives with MTT assay (p adhesives are toxic to the primary HOKs and HOFs cultures, whereas non-toxic to L929 cells. The results suggest that primary human oral mucosal cells may provide more valuable information in toxicity screening of denture adhesives. © 2012 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  20. P120-Catenin Regulates Early Trafficking Stages of the N-Cadherin Precursor Complex.

    Directory of Open Access Journals (Sweden)

    Diana P Wehrendt

    Full Text Available It is well established that binding of p120 catenin to the cytoplasmic domain of surface cadherin prevents cadherin endocytosis and degradation, contributing to cell-cell adhesion. In the present work we show that p120 catenin bound to the N-cadherin precursor, contributes to its anterograde movement from the endoplasmic reticulum (ER to the Golgi complex. In HeLa cells, depletion of p120 expression, or blocking its binding to N-cadherin, increased the accumulation of the precursor in the ER, while it decreased the localization of mature N-cadherin at intercellular junctions. Reconstitution experiments in p120-deficient SW48 cells with all three major isoforms of p120 (1, 3 and 4 had similar capacity to promote the processing of the N-cadherin precursor to the mature form, and its localization at cell-cell junctions. P120 catenin and protein tyrosine phosphatase PTP1B facilitated the recruitment of the N-ethylmaleimide sensitive factor (NSF, an ATPase involved in vesicular trafficking, to the N-cadherin precursor complex. Dominant negative NSF E329Q impaired N-cadherin trafficking, maturation and localization at cell-cell junctions. Our results uncover a new role for p120 catenin bound to the N-cadherin precursor ensuring its trafficking through the biosynthetic pathway towards the cell surface.

  1. Evaluation of methylation pattern in promoter region of E-cadherin ...

    African Journals Online (AJOL)

    The epithelial cadherin gene (CDH1) has been identified as a tumor suppressor gene located within the 16q22.1 region. The CDH1 gene encodes a transmembrane glycoprotein involved in cell to cell adhesion and loss of CDH1 expression contributes to increased proliferation, invasion and metastasis in breast carcinoma.

  2. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.

    Science.gov (United States)

    Login, Frédéric H; Jensen, Helene H; Pedersen, Gitte A; Amieva, Manuel R; Nejsum, Lene N

    2018-06-19

    Enteropathogenic Escherichia coli (EPEC) causes watery diarrhea when colonizing the surface of enterocytes. The translocated intimin receptor (Tir):intimin receptor complex facilitates tight adherence to epithelial cells and formation of actin pedestals beneath EPEC. We found that the host cell adherens junction protein E-cadherin (Ecad) was recruited to EPEC microcolonies. Live-cell and confocal imaging revealed that Ecad recruitment depends on, and occurs after, formation of the Tir:intimin complex. Combinatorial binding experiments using wild-type EPEC, isogenic mutants lacking Tir or intimin, and E. coli expressing intimin showed that the extracellular domain of Ecad binds the bacterial surface in a Tir:intimin-dependent manner. Finally, addition of the soluble extracellular domain of Ecad to the infection medium or depletion of Ecad extracellular domain from the cell surface reduced EPEC adhesion to host cells. Thus, the soluble extracellular domain of Ecad may be used in the design of intervention strategies targeting EPEC adherence to host cells.-Login, F. H., Jensen, H. H., Pedersen, G. A., Amieva, M. R., Nejsum, L. N. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.

  3. Differential expression of neural cell adhesion molecule and cadherins in pancreatic islets, glucagonomas, and insulinomas

    DEFF Research Database (Denmark)

    Møller, C J; Christgau, S; Williamson, M R

    1992-01-01

    The endocrine cells of the pancreas develop from the endoderm and yet display several characteristics of a neuronal phenotype. During embryonic life, ductal epithelial cells give rise to first the glugagon-producing cells (alpha-cells) and then cells that express insulin (beta-cells), somatostatin...... primary islet cells at all ages express unsialylated NCAM and E-cadherin, as do insulinomas, the glucagonomas express the polysialylated NCAM, which is characteristic for developing neurons. The glucagonomas also lose E-cadherin expression and instead express a cadherin which is similar to N...

  4. Association of E-Cadherin Gene 3_-UTR C/T Polymorphism with ...

    African Journals Online (AJOL)

    Endometriosis (EM) is one of the most frequent diseases in gynecology; endometriotic cells display invasive characteristics,despite their benign histological appearance. Epithelial-cadherin (Ecadherin)is a cell-cell adhesive molecule which maintains cell integrity and communication between the intracellular and ...

  5. The minimal essential unit for cadherin-mediated intercellular adhesion comprises extracellular domains 1 and 2

    DEFF Research Database (Denmark)

    Shan, Weisong; Yagita, Yoshiki; Wang, Zhaohui

    2004-01-01

    of the extracellular domains of N-cadherin and produced various cell lines to examine adhesion properties. We show that the first domain of N-cadherin alone on the cell surface fails to generate adhesive activity and that the first two domains of N-cadherin form the "minimal essential unit" to mediate cell adhesion...... domains of N-cadherin have distinct roles in cell adhesion, i.e. the first two domains are responsible for homophilic adhesion activity, and the other domains promote adhesion efficiency most likely by positioning essential domains relatively far out from the cell surface....

  6. Evolutionary origin of type IV classical cadherins in arthropods.

    Science.gov (United States)

    Sasaki, Mizuki; Akiyama-Oda, Yasuko; Oda, Hiroki

    2017-06-17

    Classical cadherins are a metazoan-specific family of homophilic cell-cell adhesion molecules that regulate morphogenesis. Type I and type IV cadherins in this family function at adherens junctions in the major epithelial tissues of vertebrates and insects, respectively, but they have distinct, relatively simple domain organizations that are thought to have evolved by independent reductive changes from an ancestral type III cadherin, which is larger than derived paralogs and has a complicated domain organization. Although both type III and type IV cadherins have been identified in hexapods and branchiopods, the process by which the type IV cadherin evolved is still largely unclear. Through an analysis of arthropod genome sequences, we found that the only classical cadherin encoded in chelicerate genomes was the type III cadherin and that the two type III cadherin genes found in the spider Parasteatoda tepidariorum genome exhibited a complex yet ancestral exon-intron organization in arthropods. Genomic and transcriptomic data from branchiopod, copepod, isopod, amphipod, and decapod crustaceans led us to redefine the type IV cadherin category, which we separated into type IVa and type IVb, which displayed a similar domain organization, except type IVb cadherins have a larger number of extracellular cadherin (EC) domains than do type IVa cadherins (nine versus seven). We also showed that type IVa cadherin genes occurred in the hexapod, branchiopod, and copepod genomes whereas only type IVb cadherin genes were present in malacostracans. Furthermore, comparative characterization of the type IVb cadherins suggested that the presence of two extra EC domains in their N-terminal regions represented primitive characteristics. In addition, we identified an evolutionary loss of two highly conserved cysteine residues among the type IVa cadherins of insects. We provide a genomic perspective of the evolution of classical cadherins among bilaterians, with a focus on the Arthropoda

  7. Infecção oral pelo HPV e lesões epiteliais proliferativas associadas HPV oral infection and proliferative epithelial associated lesions

    Directory of Open Access Journals (Sweden)

    Cíntia Tereza Lima Ferraro

    2011-08-01

    Full Text Available Os papilomavírus humanos (HPVs pertencem à família Papillomaviridae e seu ciclo de vida é diretamente ligado à diferenciação das células epiteliais do hospedeiro. Possuem seis genes que se expressam precocemente e dois genes que se expressam tardiamente, sendo denominados respectivamente E (early e L (late. O ácido desoxirribonucleico (DNA viral dentro da célula do hospedeiro pode assumir duas formas: epissomal e integrada. O HPV tem como alvo as células basais de epitélios escamosos, em particular da área genital, onde está associado ao carcinoma da cérvice uterina. Na boca, o HPV está associado a papiloma escamoso oral, condiloma acuminado, verruga vulgar e hiperplasia epitelial focal. Entretanto, seu papel na carcinogênese oral é ainda controverso, sendo também identificado como agente etiológico de alguns carcinomas de células escamosas de cabeça e pescoço. A infecção pelo HPV pode agir sinergicamente com agentes carcinogênicos, como o tabaco e o álcool. Pelo menos 150 subtipos diferentes de HPV já foram identificados, sendo que 25 têm sido detectados em lesões orais. Considerando a relevância do tema para a melhor compreensão da infecção oral pelo HPV, o objetivo desta atualização é rever os aspectos relevantes da biologia do HPV, com ênfase na relação HPV-ceratinócitos, e a importância dos dados clínicos e histopatológicos na definição diagnóstica das lesões orais possivelmente associadas ao HPV.Papillomaviruses belong to the family Papillomaviridae and their life cycle is directly linked to the differentiation of host epithelial cells. They have six genes that are expressed earlier and two genes that are expressed later in their life cycle, named respectively E (early and L (late. Host cell viral DNA can take two forms: episomal and integrated. The human papillomavirus (HPV targets the basal cells of squamous epithelia, particularly from the genital area, which is associated with uterine

  8. Human keratinocyte sensitivity towards inflammatory cytokines varies with culture time

    Directory of Open Access Journals (Sweden)

    G. Elliott

    1992-01-01

    Full Text Available Proliferating keratinocyte cultures have been reported to synthesize higher concentrations of prostaglandin (PG E than confluent ones. As interleukin-1 (IL-1 stimulates keratinocyte PGE synthesis we investigated whether the degree of confluency of the keratinocyte culture modified the response of the cells to IL-1. It was found that IL-1α (100 U/ml stimulated PGE2 synthesis by proliferating (7 days in culture but not differentiating (14 days in culture keratinocytes. Similar effects were observed using tumour necrosis factor-α. Both arachidonic acid (AA and the calcium ionophore A23187 stimulated PGE2 synthesis by 7 and 14 day cultures although the increase was greatest when 7 day cultures were used. Our data indicate that there is a specific down-regulation of the mechanism(s by which some inflammatory cytokines stimulate keratinocyte eicosanoid synthesis as cultured keratinocytes begin to differentiate.

  9. Expressão da E-caderina em carcinoma de células escamosas e no tumor de células basais de cães E-cadherin expression in squamous cell carcinoma and basal cell tumors in dogs

    Directory of Open Access Journals (Sweden)

    Carolina Franchi João

    2011-09-01

    Full Text Available As caderinas compreendem uma classe de moléculas de adesão celular expressa na superfície de todas as camadas epidérmicas. A E-caderina é a principal caderina envolvida na adesão celular epitelial. A redução de sua expressão está envolvida na progressão de alguns tipos de câncer, no potencial metastático e ainda na definição do prognóstico, principalmente nos carcinomas. O carcinoma de células escamosas e o tumor de células basais são neoplasias cutâneas malignas que afetam os cães. O objetivo deste estudo foi avaliar a expressão da E-caderina no carcinoma de células escamosas (n=20 e no tumor de células basais (n=15, buscando-se relacionar sua expressão ao comportamento biológico desses tumores. Os carcinomas de células escamosas apresentaram significativa redução da expressão da molécula comparado aos tumores de células basais, quando avaliado pelo teste de Fisher (P=0,0039. Também foi observado que células neoplásicas mais diferenciadas apresentaram coloração mais intensa que as menos diferenciadas. Em conclusão, sugere-se que a expressão reduzida da E-caderina em tumores cutâneos pode indicar maior poder infiltrativo e consequentemente mau prognóstico na espécie canina.The cadherins are a group of cellular adhesion molecules that are expressed on the surface of all epidermic layer. The E-cadherin is the main cadherin involved in epithelial cellular adhesion; the decrease in its expression is related to the progression of some types of cancer, to its metastatic characteristics, and to the prognosis, specially carcinomas. The squamous cell carcinoma and the basal cells tumors are a malignant epithelial neoplasm which affects dogs. The goal of this study was to evaluate E-cadherin's expression in canine tissues that were classified as squamous cell carcinoma or basal cell tumor, and to find a correlation with the biological behavior of the tumors. The squamous cell carcinomas showed significantly

  10. LincRNA-p21 inhibits invasion and metastasis of hepatocellular carcinoma through miR-9/E-cadherin cascade signaling pathway molecular mechanism

    Directory of Open Access Journals (Sweden)

    Ding G

    2017-06-01

    Full Text Available Gangqiang Ding, Zhen Peng, Jia Shang, Yi Kang, Huibin Ning, Chongshan Mao Department of Infectious Diseases, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China Abstract: In the previous study, it was found that long intergenic noncoding RNA-p21 (lincRNA-p21 was downregulated in hepatocellular carcinoma (HCC and lincRNA-p21 overexpression inhibited tumor invasion through inducing epithelial–mesenchymal transition. However, the underlying mechanism was not fully elaborated. In this study, lincRNA-p21 expression was measured in 12 paired HCC and nontumor adjacent normal tissues by ­quantitative real-time polymerase chain reaction. The effects of lincRNA-p21 on HCC cells were studied using lentivirus expressing lincRNA-p21 vector in vitro. The association between lincRNA-p21 level and miR-9 level was tested with the Spearman rank correlation. The effects of miR-9 on HCC cells were studied by using miR-9 inhibitor in vitro. Luciferase assay was used to validate the target of miR-9. The results showed that lincRNA-p21 was downregulated in human HCC tissues and cell lines. LincRNA-p21 overexpression significantly inhibited HCC cell migration and invasion in vitro. Besides, lincRNA-p21 negatively regulated miR-9 expression level, and miR-9 was upregulated in human HCC tissues and cells. MiR-9 knockdown inhibited HCC cell migration and invasion in vitro. Finally, the luciferase assay results showed that E-cadherin was a direct target of miR-9. The expression level of E-cadherin was found to be regulated by lincRNA-p21 and miR-9. Altogether, the results suggested that lincRNA-p21 inhibits migration and invasion of HCC cells through regulating miR-9-mediated E-cadherin cascade signaling pathway. Keywords: hepatocellular carcinoma, lincRNA-p21, miR-9, E-cadherin, epithelial–mesenchymal transition

  11. Expression of P-cadherin identifies prostate-specific-antigen-negative cells in epithelial tissues of male sexual accessory organs and in prostatic carcinomas. Implications for prostate cancer biology.

    OpenAIRE

    Soler, A. P.; Harner, G. D.; Knudsen, K. A.; McBrearty, F. X.; Grujic, E.; Salazar, H.; Han, A. C.; Keshgegian, A. A.

    1997-01-01

    Cadherins constitute a family of calcium-dependent cell-cell adhesion molecules the individual members of which are essential for the sorting of cells into tissues during development. In this study, we examined the expression of E-cadherin, N-cadherin, and P-cadherin in tissues obtained from radical prostatectomies. Epithelial cells of prostatic glands, ejaculatory ducts, and seminal vesicles expressed E-cadherin but not N-cadherin. P-cadherin was expressed in epithelial cells of the seminal ...

  12. Cadherin genes and evolutionary novelties in the octopus.

    Science.gov (United States)

    Wang, Z Yan; Ragsdale, Clifton W

    2017-09-01

    All animals with large brains must have molecular mechanisms to regulate neuronal process outgrowth and prevent neurite self-entanglement. In vertebrates, two major gene families implicated in these mechanisms are the clustered protocadherins and the atypical cadherins. However, the molecular mechanisms utilized in complex invertebrate brains, such as those of the cephalopods, remain largely unknown. Recently, we identified protocadherins and atypical cadherins in the octopus. The octopus protocadherin expansion shares features with the mammalian clustered protocadherins, including enrichment in neural tissues, clustered head-to-tail orientations in the genome, and a large first exon encoding all cadherin domains. Other octopus cadherins, including a newly-identified cadherin with 77 extracellular cadherin domains, are elevated in the suckers, a striking cephalopod novelty. Future study of these octopus genes may yield insights into the general functions of protocadherins in neural wiring and cadherin-related proteins in complex morphogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Assessment of staging, prognosis and mortality of colorectal cancer by tumor markers: receptor erbB-2 and cadherins

    Directory of Open Access Journals (Sweden)

    Jesus Eliane C.

    2005-01-01

    Full Text Available PURPOSE: To evaluate the prognostic significance and correlation with staging and degree of cell differentiation of the tumoral expression of the proteins c-erbB-2 and E-cadherin, in patients with colorectal adenocarcinoma. METHODS: The study included 117 patients with an average age of 63.1 years and an average follow-up duration of 28.1 months. The disease-free interval, survival, incidence of recurrence and specific mortality were evaluated. c-erbB-2 anti-oncoprotein antibodies (Dako were utilized via the streptavidin-biotin technique. Samples were considered to be positive for c-erbB-2 if 10% or more of the tumor cell membranes were stained.The anti-E-cadherin antibodies (Dako, evaluated this protein and is considered positive, if 50% or more of the cell membranes were stained. Statistical analysis was performed using Pearson's chi-squared test, Fisher's exact test, Kaplan-Meier's estimator, the log-rank test and Wilcoxon's test (Breslow version, setting the level of statistical significance at 5% (p<0.05. RESULTS: 52 of 108 patients studied for c-erbB-2 were positive (48,1%, 47 of 93 patients studied for E-cadherin were negative (50,5%. These data do not express any correlation with TNM (tumor, node and metastasis staging and the degree of cell differentiation or with the tumor recurrence rate. The disease-free interval among patients who were positive for c-erbB-2 and negative for E-cadherin was 68.0 months and did not differ from those with c-erbB-2 negative and E-cadherin positive ( 55.0 months - p = 0.5510. The average survival among patients positive for c-erbB-2 and negative for E-cadherin was 75 months without statistical significance difference with the other group ( 61 months - p = 0.5256. Specific mortality occurred in 20.0% of the cases and did not correlate with the expression of c-erbB-2 (p=0,446, E-cadherin (p=0,883. CONCLUSION: The tumoral expression of c-erbB-2 and E-cadherin did not demonstrate a correlation with the

  14. URG11 mediates hypoxia-induced epithelial-to-mesenchymal transition by modulation of E-cadherin and β-catenin

    International Nuclear Information System (INIS)

    Du, Rui; Huang, Chen; Bi, Qian; Zhai, Ying; Xia, Lin; Liu, Jie; Sun, Shiren; Fan, Daiming

    2010-01-01

    Upregulated gene 11 (URG11), recently identified as a new HBx-upregulated gene that may activate β-catenin and Wnt signaling, was found to be upregulated in a human tubule cell line under low oxygen. Here, we investigated the potential role of URG11 in hypoxia-induced renal tubular epithelial-to-mesenchymal (EMT). Overexpression of URG11 in a human proximal tubule cell line (HK2) promoted a mesenchymal phenotype accompanied by reduced expression of the epithelial marker E-cadherin and increased expression of the mesenchymal markers vimentin and α-SMA, while URG11 knockdown by siRNA effectively reversed hypoxia-induced EMT. URG11 promoted the expression of β-catenin and increased its nuclear accumulation under normoxic conditions through transactivation of the β-catenin promoter. This in turn upregulated β-catenin/T-cell factor (TCF) and its downstream effector genes, vimentin, and α-SMA. In vivo, strong expression of URG11 was observed in the tubular epithelia of 5/6-nephrectomized rats, and a Western blot analysis demonstrated a close correlation between HIF-1α and URG11 protein levels. Altogether, our results indicate that URG11 mediates hypoxia-induced EMT through the suppression of E-cadherin and the activation of the β-catenin/TCF pathway.

  15. Rapid paracellular transmigration of Campylobacter jejuni across polarized epithelial cells without affecting TER: role of proteolytic-active HtrA cleaving E-cadherin but not fibronectin

    LENUS (Irish Health Repository)

    Boehm, Manja

    2012-04-25

    AbstractBackgroundCampylobacter jejuni is one of the most important bacterial pathogens causing food-borne illness worldwide. Crossing the intestinal epithelial barrier and host cell entry by C. jejuni is considered the primary reason of damage to the intestinal tissue, but the molecular mechanisms as well as major bacterial and host cell factors involved in this process are still widely unclear.ResultsIn the present study, we characterized the serine protease HtrA (high-temperature requirement A) of C. jejuni as a secreted virulence factor with important proteolytic functions. Infection studies and in vitro cleavage assays showed that C. jejuni’s HtrA triggers shedding of the extracellular E-cadherin NTF domain (90 kDa) of non-polarised INT-407 and polarized MKN-28 epithelial cells, but fibronectin was not cleaved as seen for H. pylori’s HtrA. Deletion of the htrA gene in C. jejuni or expression of a protease-deficient S197A point mutant did not lead to loss of flagella or reduced bacterial motility, but led to severe defects in E-cadherin cleavage and transmigration of the bacteria across polarized MKN-28 cell layers. Unlike other highly invasive pathogens, transmigration across polarized cells by wild-type C. jejuni is highly efficient and is achieved within a few minutes of infection. Interestingly, E-cadherin cleavage by C. jejuni occurs in a limited fashion and transmigration required the intact flagella as well as HtrA protease activity, but does not reduce transepithelial electrical resistance (TER) as seen with Salmonella, Shigella, Listeria or Neisseria.ConclusionThese results suggest that HtrA-mediated E-cadherin cleavage is involved in rapid crossing of the epithelial barrier by C. jejuni via a very specific mechanism using the paracellular route to reach basolateral surfaces, but does not cleave the fibronectin receptor which is necessary for cell entry.

  16. Rapid paracellular transmigration of Campylobacter jejuni across polarized epithelial cells without affecting TER: role of proteolytic-active HtrA cleaving E-cadherin but not fibronectin.

    Science.gov (United States)

    Boehm, Manja; Hoy, Benjamin; Rohde, Manfred; Tegtmeyer, Nicole; Bæk, Kristoffer T; Oyarzabal, Omar A; Brøndsted, Lone; Wessler, Silja; Backert, Steffen

    2012-04-25

    Campylobacter jejuni is one of the most important bacterial pathogens causing food-borne illness worldwide. Crossing the intestinal epithelial barrier and host cell entry by C. jejuni is considered the primary reason of damage to the intestinal tissue, but the molecular mechanisms as well as major bacterial and host cell factors involved in this process are still widely unclear. In the present study, we characterized the serine protease HtrA (high-temperature requirement A) of C. jejuni as a secreted virulence factor with important proteolytic functions. Infection studies and in vitro cleavage assays showed that C. jejuni's HtrA triggers shedding of the extracellular E-cadherin NTF domain (90 kDa) of non-polarised INT-407 and polarized MKN-28 epithelial cells, but fibronectin was not cleaved as seen for H. pylori's HtrA. Deletion of the htrA gene in C. jejuni or expression of a protease-deficient S197A point mutant did not lead to loss of flagella or reduced bacterial motility, but led to severe defects in E-cadherin cleavage and transmigration of the bacteria across polarized MKN-28 cell layers. Unlike other highly invasive pathogens, transmigration across polarized cells by wild-type C. jejuni is highly efficient and is achieved within a few minutes of infection. Interestingly, E-cadherin cleavage by C. jejuni occurs in a limited fashion and transmigration required the intact flagella as well as HtrA protease activity, but does not reduce transepithelial electrical resistance (TER) as seen with Salmonella, Shigella, Listeria or Neisseria. These results suggest that HtrA-mediated E-cadherin cleavage is involved in rapid crossing of the epithelial barrier by C. jejuni via a very specific mechanism using the paracellular route to reach basolateral surfaces, but does not cleave the fibronectin receptor which is necessary for cell entry.

  17. Thermo-chemotherapy Induced miR-218 upregulation inhibits the invasion of gastric cancer via targeting Gli2 and E-cadherin.

    Science.gov (United States)

    Ruan, Qiang; Fang, Zhi-Yuan; Cui, Shu-Zhong; Zhang, Xiang-Liang; Wu, Yin-Bing; Tang, Hong-Sheng; Tu, Yi-Nuo; Ding, Yan

    2015-08-01

    Thermo-chemotherapy has been proven to reduce the invasion capability of cancer cells. However, the molecular mechanism underlying this anti-invasion effect is still unclear. In this study, the role of thermo-chemotherapy in the inhibition of tumor invasion was studied. The results demonstrated that expression of miR-218 was downregulated in gastric cancer tissues, which had a positive correlation with tumor invasion and metastasis. In vitro thermo-chemotherapy increased miR-218 expression in SGC7901 cells and inhibited both proliferation and invasion of cancer cells. Gli2 was identified as a downstream target of miR-218, and its expression was negatively regulated by miR-218. The thermo-chemotherapy induced miR-218 upregulation was also accompanied by increasing of E-cadherin expression. In conclusion, the present study indicates that thermo-chemotherapy can effectively decrease the invasion capability of cancer cells and increase cell-cell adhesion. miR-218 and its downstream target Gli2, as well as E-cadherin, participate in the anti-invasion process.

  18. Expression of major histocompatibility complex class II and costimulatory molecules in oral carcinomas in vitro.

    Science.gov (United States)

    Villarroel-Dorrego, Mariana; Speight, Paul M; Barrett, A William

    2005-01-01

    Recognition in the 1980 s that keratinocytes can express class II molecules of the Major Histocompatibility Complex (MHC) first raised the possibility that these cells might have an immunological function, and may even act as antigen presenting cells (APC). For effective T lymphocyte activation, APC require, in addition to MHC II, appropriate costimulatory signals. The aim of this study was to determine the expression of MHC class II and the co-stimulatory molecules CD40, CD80 and CD86 in keratinocytes derived from healthy oral mucosa and oral carcinomas. Using flow cytometry, it was confirmed that oral keratinocytes, switch on, expression of MHC class II molecules after stimulation with IFNgamma in vitro. All keratinocyte lines expressed CD40 constitutively; by contrast, CD80 and CD86 were universally absent. Loss of CD80 and CD86 may be one means whereby tumours escape immunological surveillance.

  19. Leptin acts on neoplastic behavior and expression levels of genes related to hypoxia, angiogenesis, and invasiveness in oral squamous cell carcinoma.

    Science.gov (United States)

    Sobrinho Santos, Eliane Macedo; Guimarães, Talita Antunes; Santos, Hércules Otacílio; Cangussu, Lilian Mendes Borborema; de Jesus, Sabrina Ferreira; Fraga, Carlos Alberto de Carvalho; Cardoso, Claudio Marcelo; Santos, Sérgio Henrique Souza; de Paula, Alfredo Maurício Batista; Gomez, Ricardo Santiago; Guimarães, André Luiz Sena; Farias, Lucyana Conceição

    2017-05-01

    Leptin, one of the main hormones controlling energy homeostasis, has been associated with different cancer types. In oral cancer, its effect is not well understood. We investigated, through in vitro and in vivo assays, whether leptin can affect the neoplastic behavior of oral squamous cell carcinoma. Expression of genes possibly linked to the leptin pathway was assessed in leptin-treated oral squamous cell carcinoma cells and also in tissue samples of oral squamous cell carcinoma and oral mucosa, including leptin, leptin receptor, hypoxia-inducible factor 1-alpha, E-cadherin, matrix metalloproteinase-2, matrix metalloproteinase-9, Col1A1, Ki67, and mir-210. Leptin treatment favored higher rates of cell proliferation and migration, and reduced apoptosis. Accordingly, leptin-treated oral squamous cell carcinoma cells show decreased messenger RNA caspase-3 expression, and increased levels of E-cadherin, Col1A1, matrix metalloproteinase-2, matrix metalloproteinase-9, and mir-210. In tissue samples, hypoxia-inducible factor 1-alpha messenger RNA and protein expression of leptin and leptin receptor were high in oral squamous cell carcinoma cases. Serum leptin levels were increased in first clinical stages of the disease. In animal model, oral squamous cell carcinoma-induced mice show higher leptin receptor expression, and serum leptin level was increased in dysplasia group. Our findings suggest that leptin seems to exert an effect on oral squamous cell carcinoma cells behavior and also on molecular markers related to cell proliferation, migration, and tumor angiogenesis.

  20. Correlação entre as expressões de P-caderina e de receptores de estrógeno no câncer da mama Correlation between P-cadherin and estrogen receptor expression in breast cancer

    Directory of Open Access Journals (Sweden)

    Joana Cancela de Amorim Falcão Paredes

    2002-01-01

    Full Text Available Introdução: A manutenção da arquitetura dos tecidos adultos depende essencialmente da integridade estrutural e funcional das caderinas, uma superfamília de moléculas de adesão celular dependentes de cálcio, que medeiam normalmente a adesão intercelular homofílica e homotípica. A P-caderina é expressa pelas células mioepiteliais da glândula mamária normal, sendo aberrantemente expressa num pequeno subgrupo de carcinomas da mama. Vários estudos recentes têm demonstrado que a expressão desta proteína está significativamente correlacionada com tumores de alto grau histológico e negativos para os receptores de estrógeno (RE. Objetivos: Investigar a expressão da P-caderina e dos receptores de estrógeno (RE em carcinomas da mama invasivos e correlacionar os resultados obtidos. Material e método: O padrão de expressão da P-caderina e dos RE foi estudado imunoistoquimicamente em 149 carcinomas invasivos da mama; seguidamente, correlacionou-se estatisticamente a expressão destas duas proteínas. Resultados: A P-caderina foi detectada nas células mioepiteliais do tecido mamário normal e em 46 de 146 (31,5% casos de carcinoma invasivo da mama. A expressão da P-caderina correlacionou-se inversamente com a expressão dos RE, verificando-se que o subgrupo de tumores P-caderina positivos e RE negativos apresentava alto grau histológico e maior agressividade tumoral. Conclusão: Demonstrou-se que a P-caderina identifica um subgrupo de carcinomas da mama, que não expressa RE e que parece representar um estado mais avançado da progressão tumoral. Estes resultados levantam ainda a hipótese de que a expressão desta proteína possa ser regulada por uma via alternativa, independente de estrógeno.Background: The maintenance of adult tissue architecture largely depends on structural and functional integrity of cadherins, a superfamily of Ca2+-dependent cell-cell adhesion molecules that usually mediate homophilic and homotypic

  1. Reduced E-cadherin expression is associated with abdominal pain and symptom duration in a study of alternating and diarrhea predominant IBS.

    LENUS (Irish Health Repository)

    Wilcz-Villega, E

    2013-11-29

    Increased intestinal permeability and altered expression of tight junction (TJ) proteins may be implicated in the pathogenesis of irritable bowel syndrome (IBS). This study aimed to investigate the expression of adherens junction (AJ) protein E-cadherin and TJ proteins zonula occludens (ZO)-1 and claudin (CLD)-1 and associations with IBS symptoms.

  2. PIST regulates the intracellular trafficking and plasma membrane expression of Cadherin 23

    Directory of Open Access Journals (Sweden)

    Oshima Kazuo

    2010-10-01

    Full Text Available Abstract Background The atypical cadherin protein cadherin 23 (CDH23 is crucial for proper function of retinal photoreceptors and inner ear hair cells. As we obtain more and more information about the specific roles of cadherin 23 in photoreceptors and hair cells, the regulatory mechanisms responsible for the transport of this protein to the plasma membrane are largely unknown. Results PIST, a Golgi-associated, PDZ domain-containing protein, interacted with cadherin 23 via the PDZ domain of PIST and the C-terminal PDZ domain-binding interface (PBI of cadherin 23. By binding to cadherin 23, PIST retained cadherin 23 in the trans-Golgi network of cultured cells. The retention was released when either of the two known cadherin 23-binding proteins MAGI-1 and harmonin was co-expressed. Similar to MAGI-1 and harmonin, PIST was detected in mouse inner ear sensory hair cells. Conclusions PIST binds cadherin 23 via its PDZ domain and retains cadherin 23 in trans-Golgi network. MAGI-1 and harmonin can compete with PIST for binding cadherin 23 and release cadherin 23 from PIST's retention. Our finding suggests that PIST, MAGI-1 and harmonin collaborate in intracellular trafficking of cadherin 23 and regulate the plasma membrane expression of cadherin 23.

  3. High Glucose-Induced Reactive Oxygen Species Stimulates Human Mesenchymal Stem Cell Migration Through Snail and EZH2-Dependent E-Cadherin Repression

    Directory of Open Access Journals (Sweden)

    Ji Young Oh

    2018-04-01

    Full Text Available Background/Aims: Glucose plays an important role in stem cell fate determination and behaviors. However, it is still not known how glucose contributes to the precise molecular mechanisms responsible for stem cell migration. Thus, we investigate the effect of glucose on the regulation of the human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSC migration, and analyze the mechanism accompanied by this effect. Methods: Western blot analysis, wound healing migration assays, immunoprecipitation, and chromatin immunoprecipitation assay were performed to investigate the effect of high glucose on hUCB-MSC migration. Additionally, hUCB-MSC transplantation was performed in the mouse excisional wound splinting model. Results: High concentration glucose (25 mM elicits hUCB-MSC migration compared to normal glucose and high glucose-pretreated hUCB-MSC transplantation into the wound sites in mice also accelerates skin wound repair. We therefore elucidated the detailed mechanisms how high glucose induces hUCB-MSC migration. We showed that high glucose regulates E-cadherin repression through increased Snail and EZH2 expressions. And, we found high glucose-induced reactive oxygen species (ROS promotes two signaling; JNK which regulates γ–secretase leading to the cleavage of Notch proteins and PI3K/Akt signaling which enhances GSK-3β phosphorylation. High glucose-mediated JNK/Notch pathway regulates the expression of EZH2, and PI3K/Akt/GSK-3β pathway stimulates Snail stabilization, respectively. High glucose enhances the formation of EZH2/Snail/HDAC1 complex in the nucleus, which in turn causes E-cadherin repression. Conclusion: This study reveals that high glucose-induced ROS stimulates the migration of hUCB-MSC through E-cadherin repression via Snail and EZH2 signaling pathways.

  4. Influence of intra-tumoral heterogeneity on the evaluation of BCL2, E-cadherin, EGFR, EMMPRIN, and Ki-67 expression in tissue microarrays from breast cancer.

    Science.gov (United States)

    Tramm, Trine; Kyndi, Marianne; Sørensen, Flemming B; Overgaard, Jens; Alsner, Jan

    2018-01-01

    The influence of intra-tumoral heterogeneity on the evaluation of immunohistochemical (IHC) biomarker expression may affect the analytical validity of new biomarkers substantially and hence compromise the clinical utility. The aim of this study was to examine the influence of intra-tumoral heterogeneity as well as inter-observer variability on the evaluation of various IHC markers with potential prognostic impact in breast cancer (BCL2, E-cadherin, EGFR, EMMPRIN and Ki-67). From each of 27 breast cancer patients, two tumor-containing paraffin blocks were chosen. Intra-tumoral heterogeneity was evaluated (1) within a single tumor-containing paraffin block ('intra-block agreement') by comparing information from a central, a peripheral tissue microarray (TMA) core and a whole slide section (WS), (2) between two different tumor-containing blocks from the same primary tumor ('inter-block agreement') by comparing information from TMA cores (central/peripheral) and WS. IHC markers on WS and TMA cores were evaluated by two observers independently, and agreements were estimated by Kappa statistics. For BCL2, E-cadherin and EGFR, an almost perfect intra- and inter-block agreement was found. EMMPRIN and Ki-67 showed a more heterogeneous expression with moderate to substantial intra-block agreements. For both stainings, there was a moderate inter-block agreement that improved slightly for EMMPRIN, when using WS instead of TMA cores. Inter-observer agreements were found to be almost perfect for BCL2, E-cadherin and EGFR (WS: κ > 0.82, TMAs: κ > 0.90), substantial for EMMPRIN (κ > 0.63), but only fair to moderate for Ki-67 (WS: κ = 0.54, TMAs: κ = 0.33). BCL2, E-cadherin and EGFR were found to be homogeneously expressed, whereas EMMPRIN and Ki-67 showed a more pronounced degree of intra-tumoral heterogeneity. The results emphasize the importance of securing the analytical validity of new biomarkers by examining the intra-tumoral heterogeneity of

  5. Effects of UVB irradiation on keratinocyte growth factor (KGF) and receptor (KGFR) expression in cultured human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.; Lee, H.S.T.; Kooshesh, F.; Fujisawa, H.; Sauder, D.N.; Kondo, S. [Univ. of Toronto, Sunnybrook Health Science Centre, Div. of Dermatology, Toronto (Canada)

    1996-06-01

    Keratinocyte growth factor (KGF) and its receptor (KGFR) are thought to play important roles in normal keratinocyte growth and differentiation. Since UVB radiation is known to influence keratinocyte growth, we sought to determine whether UVB would alter the expression of KGF and KGFR. Using a reverse-transcription coupled polymerase chain reaction (RT-PCR), the present study examined the expression of KGF and KGFR mRNA in cultured normal human keratinocytes exposed to UVB irradiation. Total cellular RNA was extracted from cultured keratinocytes at various time points after irradiation, reverse transcribed and used for PCR amplification using primers specific for KGF and KGFR. Constitutive expression of KGFR mRNA, but not KGF mRNA, was detected in normal cultured human keratinocytes. After UVB irradiation at 300 J/m{sup 2}, the KGF mRNA remained undetectable while the KGFR mRNA level was significantly decreased. The down-regulation of KGFR mRNA expression was also confirmed by Northern blot analysis. Immunohistochemical studies demonstrated a decreased positive signal of KGFR in human keratinocytes after UVB irradiation. Our results suggest a possible role for the KGF-KGFR signalling pathway in the skin after exposure to UVB, and that UVB-induced growth inhibition of keratinocytes in hyperproliferative skin disorders may be related to downregulation of KGFR. (au) 39 refs.

  6. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    Science.gov (United States)

    Tohidnezhad, Mersedeh; Lammel, Justus; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen

    2017-01-01

    Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF®) came recently into the physicians' focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10) and late (transglutaminase-1 and involucrin) differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR-) dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo. PMID:28808357

  7. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    Directory of Open Access Journals (Sweden)

    Andreas Bayer

    2017-01-01

    Full Text Available Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs or their clinically related formulations (e.g., Vivostat PRF® came recently into the physicians’ focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10 and late (transglutaminase-1 and involucrin differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR- dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo.

  8. Evidence for Alteration of EZH2, BMI1, and KDM6A and Epigenetic Reprogramming in Human Papillomavirus Type 16 E6/E7-Expressing Keratinocytes

    OpenAIRE

    Hyland, Paula L.; McDade, Simon S.; McCloskey, Rachel; Dickson, Glenda J.; Arthur, Ken; McCance, Dennis J.; Patel, Daksha

    2011-01-01

    A number of epigenetic alterations occur in both the virus and host cellular genomes during human papillomavirus (HPV)-associated carcinogenesis, and investigations of such alterations, including changes in chromatin proteins and histone modifications, have the potential to lead to therapeutic epigenetic reversion. We report here that transformed HPV16 E6/E7-expressing primary human foreskin keratinocytes (HFKs) (E6/E7 cells) demonstrate increased expression of the PRC2 methyltransferase EZH2...

  9. Thalidomide increases human keratinocyte migration and proliferation.

    Science.gov (United States)

    Nasca, M R; O'Toole, E A; Palicharla, P; West, D P; Woodley, D T

    1999-11-01

    Thalidomide is reported to have therapeutic utility in the treatment of pyoderma gangrenosum, Behçet's disease, aphthous ulcers, and skin wounds. We investigated the effect of thalidomide on human keratinocyte proliferation and migration, two early and critical events in the re-epithelialization of skin wounds. Thalidomide at concentrations less than 1 microM did not affect keratinocyte viability. Using a thymidine incorporation assay, we found that thalidomide, at therapeutic concentrations, induced more than a 2. 5-fold increase in the proliferative potential of the cells. Keratinocyte migration was assessed by two independent motility assays: a colloidal gold assay and an in vitro scratch assay. At optimal concentrations, thalidomide increased keratinocyte migration on a collagen matrix more than 2-fold in the colloidal gold assay and more than 3-fold in the scratch assay over control. Although pro-migratory, thalidomide did not alter the level of metalloproteinase-9 secreted into culture medium. Thalidomide did, however, induce a 2-4-fold increase in keratinocyte-derived interleukin-8, a pro-migratory cellular autocrine factor. Human keratinocyte migration and proliferation are essential for re-epithelialization of skin wounds. Interleukin-8 increases human keratinocyte migration and proliferation and is chemotactic for keratinocytes. Therefore, thalidomide may modulate keratinocyte proliferation and motility by a chemokine-dependent pathway.

  10. Cell surface clustering of Cadherin adhesion complex induced by antibody coated beads

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cadherin receptors mediate cell-cell adhesion, signal transduction and assembly of cytoskeletons. How a single transmembrane molecule Cadherin can be involved in multiple functions through modulating its binding activities with many membrane adhesion molecules and cytoskeletal components is an unanswered question which can be elucidated by clues from bead experiments. Human lung cells expressing N-Cadherin were examined. After co-incubation with anti-N-Cadherin monoclonal antibody coated beads, cell surface clustering of N-Cadherin was induced. Immunofluorescent detection demonstrated that in addition to Cadherin, β-Catenin, α-Catenin, α-Actinin and Actin fluorescence also aggregated respectively at the membrane site of bead attachment. Myosin heavy chain (MHC), another major component of Actin cytoskeleton, did not aggregate at the membrane site of bead attachment. Adhesion unrelated protein Con A and polylysine conjugated beads did not induce the clustering of adhesion molecules. It is indicated that the Cadherin/Catenins/α-Actinin/Actin complex is formed at Cadherin mediated cell adherens junction; occupancy and cell surface clustering of Cadherin is crucial for the formation of Cadherin adhesion protein complexes.

  11. Mammalian O-mannosylation of Cadherins and Plexins is Independent of Protein O-mannosyltransferase 1 and 2

    DEFF Research Database (Denmark)

    Larsen, Ida Signe Bohse; Narimatsu, Yoshiki; Joshi, Hiren Jitendra

    2017-01-01

    Protein O-mannosylation is found in yeast and metazoans and a family of conserved orthologous protein O-mannosyltransferases is believed to initiate this important post-translational modification. We recently discovered that the cadherin superfamily carries O-linked mannose (O-Man) glycans...... at highly conserved residues in specific extracellular cadherin domains, and it was suggested that the function of E-cadherin was dependent on the O-Man glycans. Deficiencies in enzymes catalyzing O-Man biosynthesis, including the two human protein O-mannosyltransferases, POMT1 and POMT2, underlie...... a subgroup of congenital muscular dystrophies (CMD) designated α-dystroglycanopathies, because deficient O-Man glycosylation of -dystroglycan disrupts laminin interaction with -dystroglycan and the extracellular matrix. In order to explore the functions of O-Man glycans on cadherins and protocadherins we...

  12. HPV-18 E2circumflexE4 chimera: 2 new spliced transcripts and proteins induced by keratinocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Chye Ling [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore); Gunaratne, Jayantha [Mass Spectrometry and Systems Biology Laboratory, Institute of Molecular and Cell Biology, A-STAR, Biopolis, 61 Biopolis Drive, Proteos, Singapore 138673 (Singapore); Lai, Deborah [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore); Carthagena, Laetitia [UMR-S996, Universite Paris-Sud 11, 32 rue des Carnets, 92140 Clamart (France); Wang, Qian [MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London N10 3UE (United Kingdom); Xue, Yue Zhen; Quek, Ling Shih [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore); Doorbar, John [MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London N10 3UE (United Kingdom); Bachelerie, Francoise [UMR-S996, Universite Paris-Sud 11, 32 rue des Carnets, 92140 Clamart (France); Thierry, Francoise, E-mail: francoise.thierry@imb.a-star.edu.sg [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore); Bellanger, Sophie, E-mail: sophie.bellanger@imb.a-star.edu.sg [Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A-STAR), Biopolis, 8A Biomedical Grove, Immunos, Singapore 138648 (Singapore)

    2012-07-20

    The Human Papillomavirus (HPV) E4 is known to be synthesized as an E1circumflexE4 fusion resulting from splice donor and acceptor sites conserved across HPV types. Here we demonstrate the existence of 2 HPV-18 E2circumflexE4 transcripts resulting from 2 splice donor sites in the 5 Prime part of E2, while the splice acceptor site is the one used for E1circumflexE4. Both E2circumflexE4 transcripts are up-regulated by keratinocyte differentiation in vitro and can be detected in clinical samples containing low-grade HPV-18-positive cells from Pap smears. They give rise to two fusion proteins in vitro, E2circumflexE4-S and E2circumflexE4-L. Whereas we could not differentiate E2circumflexE4-S from E1circumflexE4 in vivo, E2circumflexE4-L could be formally identified as a 23 kDa protein in raft cultures in which the corresponding transcript was also found, and in a biopsy from a patient with cervical intraepithelial neoplasia stage I-II (CINI-II) associated with HPV-18, demonstrating the physiological relevance of E2circumflexE4 products.

  13. Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.

    Science.gov (United States)

    Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R

    2012-01-11

    Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.

  14. Large-scale analysis of protein expression changes in human keratinocytes immortalized by human papilloma virus type 16 E6 and E7 oncogenes

    Directory of Open Access Journals (Sweden)

    Arnouk Hilal

    2009-08-01

    Full Text Available Abstract Background Infection with high-risk type human papilloma viruses (HPVs is associated with cervical carcinomas and with a subset of head and neck squamous cell carcinomas. Viral E6 and E7 oncogenes cooperate to achieve cell immortalization by a mechanism that is not yet fully understood. Here, human keratinocytes were immortalized by long-term expression of HPV type 16 E6 or E7 oncoproteins, or both. Proteomic profiling was used to compare expression levels for 741 discrete protein features. Results Six replicate measurements were performed for each group using two-dimensional difference gel electrophoresis (2D-DIGE. The median within-group coefficient of variation was 19–21%. Significance of between-group differences was tested based on Significance Analysis of Microarray and fold change. Expression of 170 (23% of the protein features changed significantly in immortalized cells compared to primary keratinocytes. Most of these changes were qualitatively similar in cells immortalized by E6, E7, or E6/7 expression, indicating convergence on a common phenotype, but fifteen proteins (~2% were outliers in this regulatory pattern. Ten demonstrated opposite regulation in E6- and E7-expressing cells, including the cell cycle regulator p16INK4a; the carbohydrate binding protein Galectin-7; two differentially migrating forms of the intermediate filament protein Cytokeratin-7; HSPA1A (Hsp70-1; and five unidentified proteins. Five others had a pattern of expression that suggested cooperativity between the co-expressed oncoproteins. Two of these were identified as forms of the small heat shock protein HSPB1 (Hsp27. Conclusion This large-scale analysis provides a framework for understanding the cooperation between E6 and E7 oncoproteins in HPV-driven carcinogenesis.

  15. O-GlcNAcylation in oral squamous cell carcinoma.

    Science.gov (United States)

    Kongkaew, Tassaporn; Aung, Win Pa Pa; Supanchart, Chayarop; Makeudom, Anupong; Langsa-Ard, Sarawat; Sastraruji, Thanapat; Chaiyarit, Ponlatham; Krisanaprakornkit, Suttichai

    2018-03-01

    Two post-translational mechanisms commonly demonstrated in various cancers are protein phosphorylation and glycosylation by O-linked β-N-acetylglucosamine (O-GlcNAc). However, only phosphorylation of the epidermal growth factor receptor (EGFR)/Akt pathway has been reported in oral squamous cell carcinoma (OSCC). Therefore, we aimed to determine both post-translational modifications in OSCC tissues and in oral cancer cells compared to normal tissues and oral keratinocytes and to find correlations of these modifications with histological grading. Thirty-two OSCC and ten normal formalin-fixed and paraffin-embedded sections were probed with the anti-O-GlcNAc, anti-O-GlcNAc transferase (OGT), anti-phosphorylated-EGFR tyr1173 , and anti-phosphorylated-Akt ser473 antibodies following standard immunohistochemistry. The immunohistochemical (IHC) score was determined using the Fromowitz standard. Whole cell lysates of oral cancer cells and normal oral keratinocytes were immunoblotted with the anti-O-GlcNAc antibody. The median IHC scores of O-GlcNAc or OGT between OSCC and normal tissues were not different, whereas those of phosphorylated-EGFR tyr1173 and phosphorylated-Akt ser473 were significantly higher in OSCC than normal tissues (P O-GlcNAcylated proteins in oral cancer cells and normal oral keratinocytes did not differ. In the OSCC group, the median IHC scores of O-GlcNAc and OGT were significantly lower than those of phosphorylated-EGFR tyr1173 and phosphorylated-Akt ser473 (P O-GlcNAc or OGT were not determined to correlate with histological grading. Unlike other types of cancers, our findings demonstrate that the levels of O-GlcNAcylation are not significantly increased in OSCC tissues or in oral cancer cells and are not associated with the histological grading of OSCC. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Effect of retinoic acid on the radiosensitivity of normal human oral keratinocyte

    International Nuclear Information System (INIS)

    Lee, Jean; Heo, Min Suk; Lee, Sam Sun; Oh, Sung Ook; Choi, Soon Chul; Park, Tae Won; Lee, Sul Mi; Choi, Hang Moon

    2003-01-01

    To evaluate the effect of all-trans-retinotic acid (ATRA) on the radiosensitivity of normal human oral keratinocyte (NHOK). Relative cell survival fraction including SF2 (survival fraction at 2 Gy) was calculated on the basis of colony formation assay. Data were fitted to the linear-quadratic model to establish the survival curve and calculate α and β values. Using flow cytometry at 1, 2, 3, 4, and 5 days after exposure to 2 and 10 Gy irradiation, cell cycle arrest and apoptosis were analysed. To understand the molecular mechanism of the radiosensitization of ATRA on NHOK, proteins related with apoptosis and cell cycle arrest were investigated by Western blot analysis. Treatment with ATRA resulted in a significant decrease of SF2 value for NHOK from 0.63 to 0.27, and increased α and β value, indicating that ATRA increased radiosensitivity of NHOK. ATRA increased LDH significantly, but increasing irradiation dose decreased LDH, suggesting that the radiosensitizing effect of ATRA is not directly related with increasing cell necrosis by ATRA. ATRA did not induce appotosis but increased G2 arrest after 10 Gy irradiation, implying that the increased radiosensitivity of NHOK may be due to a decrease in mitosis caused by increasing G2 arrest. ATRA inhibited the reduction of p53 at 3 days after 10 Gy irradiation and increased p21 at 1 day after 10 Gy irradiation. Further study is required to determine the precise relationship between this effect and the radiosensitizing effect of ATRA. These results suggested that ATRA increase radiosensitivity by inhibiting mitosis caused by increasing G2 arrest.

  17. The E5 protein of human papillomavirus type 16 perturbs MHC class II antigen maturation in human foreskin keratinocytes treated with interferon-γ

    International Nuclear Information System (INIS)

    Zhang Benyue; Li Ping; Wang Exing; Brahmi, Zacharie; Dunn, Kenneth W.; Blum, Janice S.; Roman, Ann

    2003-01-01

    Major histocompatibility complex (MHC) class II antigens are expressed on human foreskin keratinocytes (HFKs) following exposure to interferon gamma. The expression of MHC class II proteins on the cell surface may allow keratinocytes to function as antigen-presenting cells and induce a subsequent immune response to virus infection. Invariant chain (Ii) is a chaperone protein which plays an important role in the maturation of MHC class II molecules. The sequential degradation of Ii within acidic endocytic compartments is a key process required for the successful loading of antigenic peptide onto MHC class II molecules. Since human papillomavirus (HPV) 16 E5 can inhibit the acidification of late endosomes in HFKs, the E5 protein may be able to affect proper peptide loading onto the MHC class II molecule. To test this hypothesis, HFKs were infected with either control virus or a recombinant virus expressing HPV16 E5 and the infected cells were subsequently treated with interferon-γ. ELISAs revealed a decrease of MHC class II expression on the surface of E5-expressing cells compared with control virus-infected cells after interferon treatment. Western blot analysis showed that, in cells treated with interferon gamma, E5 could prevent the breakdown of Ii and block the formation of peptide-loaded, SDS-stable mature MHC class II dimers, correlating with diminished surface MHC class II expression. These data suggest that HPV16 E5 may be able to decrease immune recognition of infected keratinocytes via disruption of MHC class II protein function

  18. The expression of VE-cadherin in breast cancer cells modulates cell dynamics as a function of tumor differentiation and promotes tumor-endothelial cell interactions.

    Science.gov (United States)

    Rezaei, Maryam; Cao, Jiahui; Friedrich, Katrin; Kemper, Björn; Brendel, Oliver; Grosser, Marianne; Adrian, Manuela; Baretton, Gustavo; Breier, Georg; Schnittler, Hans-Joachim

    2018-01-01

    The cadherin switch has profound consequences on cancer invasion and metastasis. The endothelial-specific vascular endothelial cadherin (VE-cadherin) has been demonstrated in diverse cancer types including breast cancer and is supposed to modulate tumor progression and metastasis, but underlying mechanisms need to be better understood. First, we evaluated VE-cadherin expression by tissue microarray in 392 cases of breast cancer tumors and found a diverse expression and distribution of VE-cadherin. Experimental expression of fluorescence-tagged VE-cadherin (VE-EGFP) in undifferentiated, fibroblastoid and E-cadherin-negative MDA-231 (MDA-VE-EGFP) as well as in differentiated E-cadherin-positive MCF-7 human breast cancer cell lines (MCF-VE-EGFP), respectively, displayed differentiation-dependent functional differences. VE-EGFP expression reversed the fibroblastoid MDA-231 cells to an epithelial-like phenotype accompanied by increased β-catenin expression, actin and vimentin remodeling, increased cell spreading and barrier function and a reduced migration ability due to formation of VE-cadherin-mediated cell junctions. The effects were largely absent in both MDA-VE-EGFP and in control MCF-EGFP cell lines. However, MCF-7 cells displayed a VE-cadherin-independent planar cell polarity and directed cell migration that both developed in MDA-231 only after VE-EGFP expression. Furthermore, VE-cadherin expression had no effect on tumor cell proliferation in monocultures while co-culturing with endothelial cells enhanced tumor cell proliferation due to integration of the tumor cells into monolayer where they form VE-cadherin-mediated cell contacts with the endothelium. We propose an interactive VE-cadherin-based crosstalk that might activate proliferation-promoting signals. Together, our study shows a VE-cadherin-mediated cell dynamics and an endothelial-dependent proliferation in a differentiation-dependent manner.

  19. N-cadherin Expression in Testicular Germ Cell and Gonadal Stromal Tumors

    Directory of Open Access Journals (Sweden)

    Daniel J. Heidenberg, Joel H. Barton, Denise Young, Michael Grinkemeyer, Isabell A. Sesterhenn

    2012-01-01

    Full Text Available Neural-cadherin is a member of the cadherin gene family encoding the N-cadherin protein that mediates cell adhesion. N-cadherin is a marker of Sertoli cells and is also expressed in germ cells of varying stages of maturation. The purpose of this study was to determine the presence and distribution of this protein by immunohistochemistry in 105 germ cell tumors of both single and mixed histological types and 12 gonadal stromal tumors. Twenty-four germ cell tumors consisted of one cell type and the remaining were mixed. Of the 23 seminomas in either pure or mixed tumors, 74% were positive. Two spermatocytic seminomas were positive. Of the 83 cases with yolk sac tumor, 99% were positive for N-cadherin. The teratomas were positive in 73% in neuroectodermal and / or glandular components. In contrast, 87% of embryonal carcinomas did not express N-cadherin. Only 17% of the syncytiotrophoblastic cells were positive for N-cadherin. In conclusion, N-cadherin expression is very helpful in the identification of yolk sac tumors. In addition to glypican-3 and Sal-like protein 4, N-cadherin can be beneficial for the diagnosis and classification of this subtype of testicular germ cell tumor. Nine of the 12 gonadal stromal tumors were positive to a variable extent.

  20. Directed evolution and targeted mutagenesis to murinize Listeria monocytogenes internalin A for enhanced infectivity in the murine oral infection model.

    LENUS (Irish Health Repository)

    Monk, Ian R

    2010-01-01

    Internalin A (InlA) is a critical virulence factor which mediates the initiation of Listeria monocytogenes infection by the oral route in permissive hosts. The interaction of InlA with the host cell ligand E-cadherin efficiently stimulates L. monocytogenes entry into human enterocytes, but has only a limited interaction with murine cells.

  1. Cancer-associated fibroblasts regulate keratinocyte cell-cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer.

    Science.gov (United States)

    Cirillo, N; Hassona, Y; Celentano, A; Lim, K P; Manchella, S; Parkinson, E K; Prime, S S

    2017-01-01

    The interrelationship between malignant epithelium and the underlying stroma is of fundamental importance in tumour development and progression. In the present study, we used cancer-associated fibroblasts (CAFs) derived from genetically unstable oral squamous cell carcinomas (GU-OSCC), tumours that are characterized by the loss of genes such as TP53 and p16 INK4A and with extensive loss of heterozygosity, together with CAFs from their more genetically stable (GS) counterparts that have wild-type TP53 and p16 INK4A and minimal loss of heterozygosity (GS-OSCC). Using a systems biology approach to interpret the genome-wide transcriptional profile of the CAFs, we show that transforming growth factor-β (TGF-β) family members not only had biological relevance in silico but also distinguished GU-OSCC-derived CAFs from GS-OSCC CAFs and fibroblasts from normal oral mucosa. In view of the close association between TGF-β family members, we examined the expression of TGF-β1 and TGF-β2 in the different fibroblast subtypes and showed increased levels of active TGF-β1 and TGF-β2 in CAFs from GU-OSCC. CAFs from GU-OSCC, but not GS-OSCC or normal fibroblasts, induced epithelial-mesenchymal transition and down-regulated a broad spectrum of cell adhesion molecules resulting in epithelial dis-cohesion and invasion of target keratinocytes in vitro in a TGF-β-dependent manner. The results demonstrate that the TGF-β family of cytokines secreted by CAFs derived from genotype-specific oral cancer (GU-OSCC) promote, at least in part, the malignant phenotype by weakening intercellular epithelial adhesion. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Ecklonia cava Extract and Dieckol Attenuate Cellular Lipid Peroxidation in Keratinocytes Exposed to PM10.

    Science.gov (United States)

    Lee, Jeong-Won; Seok, Jin Kyung; Boo, Yong Chool

    2018-01-01

    Airborne particulate matter can cause oxidative stress, inflammation, and premature skin aging. Marine plants such as Ecklonia cava Kjellman contain high amounts of polyphenolic antioxidants. The purpose of this study was to examine the antioxidative effects of E. cava extract in cultured keratinocytes exposed to airborne particulate matter with a diameter of <10  μ m (PM10). After the exposure of cultured HaCaT keratinocytes to PM10 in the absence and presence of E. cava extract and its constituents, cell viability and cellular lipid peroxidation were assessed. The effects of eckol and dieckol on cellular lipid peroxidation and cytokine expression were examined in human epidermal keratinocytes exposed to PM10. The total phenolic content of E. cava extract was the highest among the 50 marine plant extracts examined. The exposure of HaCaT cells to PM10 decreased cell viability and increased lipid peroxidation. The PM10-induced cellular lipid peroxidation was attenuated by E. cava extract and its ethyl acetate fraction. Dieckol more effectively attenuated cellular lipid peroxidation than eckol in both HaCaT cells and human epidermal keratinocytes. Dieckol and eckol attenuated the expression of inflammatory cytokines such as tumor necrosis factor- (TNF-) α , interleukin- (IL-) 1 β , IL-6, and IL-8 in human epidermal keratinocytes stimulated with PM10. This study suggested that the polyphenolic constituents of E. cava , such as dieckol, attenuated the oxidative and inflammatory reactions in skin cells exposed to airborne particulate matter.

  3. miR-24 and miR-205 expression is dependent on HPV onco-protein expression in keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, Declan J., E-mail: dj.mckenna@ulster.ac.uk [Biomedical Sciences Research Institute, University of Ulster, Coleraine, Co. Derry BT52 1SA (United Kingdom); Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen' s University Belfast, Belfast BT9 7BL (United Kingdom); Patel, Daksha, E-mail: d.patel@qub.ac.uk [Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen' s University Belfast, Belfast BT9 7BL (United Kingdom); McCance, Dennis J., E-mail: d.mccance@qub.ac.uk [Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen' s University Belfast, Belfast BT9 7BL (United Kingdom)

    2014-01-05

    A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miR-24 and miR-205. We investigated how expression of Human Papilloma Virus Type-16 (HPV16) onco-proteins E6 and E7 affected expression of miR-24 and miR-205 during proliferation and differentiation of HFKs. We show that the induction of both miR-24 and miR-205 observed during differentiation of HFKs is lost in HFKs expressing E6 and E7. We demonstrate that the effect on miR-205 is due to E7 activity, as miR-205 expression is dependent on pRb expression. Finally, we provide evidence that miR-24 effects in the cell may be due to targeting of cyclin dependent kinase inhibitor p27. In summary, these results indicate that expression of both miR-24 and miR-205 are impacted by E6 and/or E7 expression, which may be one mechanism by which HPV onco-proteins can disrupt the balance between proliferation and differentiation in keratinocytes. - Highlights: • miR-24 and miR-205 are induced during keratinocyte differentiation. • This induction is lost in keratinocytes expressing HPV onco-proteins E6 and E7. • miR-205 is dependent upon pRb expression. • miR-24 targets p27 in cycling keratinocytes.

  4. miR-24 and miR-205 expression is dependent on HPV onco-protein expression in keratinocytes

    International Nuclear Information System (INIS)

    McKenna, Declan J.; Patel, Daksha; McCance, Dennis J.

    2014-01-01

    A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miR-24 and miR-205. We investigated how expression of Human Papilloma Virus Type-16 (HPV16) onco-proteins E6 and E7 affected expression of miR-24 and miR-205 during proliferation and differentiation of HFKs. We show that the induction of both miR-24 and miR-205 observed during differentiation of HFKs is lost in HFKs expressing E6 and E7. We demonstrate that the effect on miR-205 is due to E7 activity, as miR-205 expression is dependent on pRb expression. Finally, we provide evidence that miR-24 effects in the cell may be due to targeting of cyclin dependent kinase inhibitor p27. In summary, these results indicate that expression of both miR-24 and miR-205 are impacted by E6 and/or E7 expression, which may be one mechanism by which HPV onco-proteins can disrupt the balance between proliferation and differentiation in keratinocytes. - Highlights: • miR-24 and miR-205 are induced during keratinocyte differentiation. • This induction is lost in keratinocytes expressing HPV onco-proteins E6 and E7. • miR-205 is dependent upon pRb expression. • miR-24 targets p27 in cycling keratinocytes

  5. Oral epithelial cells are susceptible to cell-free and cell-associated HIV-1 infection in vitro

    International Nuclear Information System (INIS)

    Moore, Jennifer S.; Rahemtulla, Firoz; Kent, Leigh W.; Hall, Stacy D.; Ikizler, Mine R.; Wright, Peter F.; Nguyen, Huan H.; Jackson, Susan

    2003-01-01

    Epithelial cells lining the oral cavity are exposed to HIV-1 through breast-feeding and oral-genital contact. Genital secretions and breast milk of HIV-1-infected subjects contain both cell-free and cell-associated virus. To determine if oral epithelial cells can be infected with HIV-1 we exposed gingival keratinocytes and adenoid epithelial cells to cell-free virus and HIV-1-infected peripheral blood mononuclear cells and monocytes. Using primary isolates we determined that gingival keratinocytes are susceptible to HIV-1 infection via cell-free CD4-independent infection only. R5 but not X4 viral strains were capable of infecting the keratinocytes. Further, infected cells were able to release infectious virus. In addition, primary epithelial cells isolated from adenoids were also susceptible to infection; both cell-free and cell-associated virus infected these cells. These data have potential implications in the transmission of HIV-1 in the oral cavity

  6. Osteo-/odontogenic differentiation of induced mesenchymal stem cells generated through epithelial-mesenchyme transition of cultured human keratinocytes.

    Science.gov (United States)

    Yi, Jin-Kyu; Mehrazarin, Shebli; Oh, Ju-Eun; Bhalla, Anu; Oo, Jenessa; Chen, Wei; Lee, Min; Kim, Reuben H; Shin, Ki-Hyuk; Park, No-Hee; Kang, Mo K

    2014-11-01

    Revascularization of necrotic pulp has been successful in the resolution of periradicular inflammation; yet, several case studies suggest the need for cell-based therapies using mesenchymal stem cells (MSCs) as an alternative for de novo pulp regeneration. Because the availability of MSCs may be limited, especially in an aged population, the current study reports an alternative approach in generating MSCs from epidermal keratinocytes through a process called epithelial-mesenchymal transition (EMT). We induced EMT in primary normal human epidermal keratinocytes (NHEKs) by transient transfection of small interfering RNA targeting the p63 gene. The resulting cells were assayed for their mesenchymal marker expression, proliferation capacities as a monolayer and in a 3-dimensional collagen scaffold, and differentiation capacities. Transient transfection of p63 small-interfering RNA successfully abolished the expression of endogenous p63 in NHEKs and induced the expression of mesenchymal markers (eg, vimentin and fibronectin), whereas epithelial markers (eg, E-cadherin and involucrin) were lost. The NHEKs exhibiting the EMT phenotype acquired extended replicative potential and an increased telomere length compared with the control cells. Similar to the established MSCs, the NHEKs with p63 knockdown showed attachment onto the 3-dimensional collagen scaffold and underwent progressive proliferation and differentiation. Upon differentiation, these EMT cells expressed alkaline phosphatase activity, osteocalcin, and osteonectin and readily formed mineralized nodules detected by alizarin S red staining, showing osteo-/odontogenic differentiation. The induction of EMT in primary NHEKs by means of transient p63 knockdown allows the generation of induced MSCs from autologous sources. These cells may be used for tissues engineering purposes, including that of dental pulp. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Water transport through the intestinal epithelial barrier under different osmotic conditions is dependent on LI-cadherin trans-interaction.

    Science.gov (United States)

    Weth, Agnes; Dippl, Carsten; Striedner, Yasmin; Tiemann-Boege, Irene; Vereshchaga, Yana; Golenhofen, Nikola; Bartelt-Kirbach, Britta; Baumgartner, Werner

    2017-04-03

    In the intestine water has to be reabsorbed from the chymus across the intestinal epithelium. The osmolarity within the lumen is subjected to high variations meaning that water transport often has to take place against osmotic gradients. It has been hypothesized that LI-cadherin is important in this process by keeping the intercellular cleft narrow facilitating the buildup of an osmotic gradient allowing water reabsorption. LI-cadherin is exceptional among the cadherin superfamily with respect to its localization along the lateral plasma membrane of epithelial cells being excluded from adherens junction. Furthermore it has 7 but not 5 extracellular cadherin repeats (EC1-EC7) and a small cytosolic domain. In this study we identified the peptide VAALD as an inhibitor of LI-cadherin trans-interaction by modeling the structure of LI-cadherin and comparison with the known adhesive interfaces of E-cadherin. This inhibitory peptide was used to measure LI-cadherin dependency of water transport through a monolayer of epithelial CACO2 cells under various osmotic conditions. If LI-cadherin trans-interaction was inhibited by use of the peptide, water transport from the luminal to the basolateral side was impaired and even reversed in the case of hypertonic conditions whereas no effect could be observed at isotonic conditions. These data are in line with a recently published model predicting LI-cadherin to keep the width of the lateral intercellular cleft small. In this narrow cleft a high osmolarity can be achieved due to ion pumps yielding a standing osmotic gradient allowing water absorption from the gut even if the faeces is highly hypertonic.

  8. Inherent phenotypic plasticity facilitates progression of head and neck cancer: Endotheliod characteristics enable angiogenesis and invasion

    International Nuclear Information System (INIS)

    Tong, Meng; Han, Byungdo B.; Holpuch, Andrew S.; Pei, Ping; He, Lingli; Mallery, Susan R.

    2013-01-01

    The presence of the EMT (epithelial-mesenchymal transition), EndMT (endothelial-mesenchymal transition) and VM (vasculogenic mimicry) demonstrates the multidirectional extent of phenotypic plasticity in cancers. Previous findings demonstrating the crosstalk between head and neck squamous cell carcinoma (HNSCC) and vascular endothelial growth factor (VEGF) imply that HNSCC cells share some functional commonalities with endothelial cells. Our current results reveal that cultured HNSCC cells not only possess endothelial-specific markers, but also display endotheliod functional features including low density lipoprotein uptake, formation of tube-like structures on Matrigel and growth state responsiveness to VEGF and endostatin. HNSCC cell subpopulations are also highly responsive to transforming growth factor-β1 and express its auxiliary receptor, endoglin. Furthermore, the endotheliod characteristics observed in vitro recapitulate phenotypic features observed in human HNSCC tumors. Conversely, cultured normal human oral keratinocytes and intact or ulcerated human oral epithelia do not express comparable endotheliod characteristics, which imply that assumption of endotheliod features is restricted to transformed keratinocytes. In addition, this phenotypic state reciprocity facilitates HNSCC progression by increasing production of factors that are concurrently pro-proliferative and pro-angiogenic, conserving cell energy stores by LDL internalization and enhancing cell mobility. Finally, recognition of this endotheliod phenotypic transition provides a solid rationale to evaluate the antitumorigenic potential of therapeutic agents formerly regarded as exclusively angiostatic in scope. - Highlights: ► HNSCC tumor cells express endothelial specific markers VE-cadherin, CD31 and vimentin. ► Similarly, cultured HNSCC cells retain expression of these markers. ► HNSCC cells demonstrate functional endotheliod characteristics i.e. AcLDL uptake. ► HNSCC cell

  9. Inherent phenotypic plasticity facilitates progression of head and neck cancer: Endotheliod characteristics enable angiogenesis and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Meng, E-mail: tong.59@osu.edu [Division of Oral Pathology and Radiology, The Ohio State University College of Dentistry, Columbus, OH 43210 (United States); Han, Byungdo B.; Holpuch, Andrew S.; Pei, Ping; He, Lingli; Mallery, Susan R. [Division of Oral Pathology and Radiology, The Ohio State University College of Dentistry, Columbus, OH 43210 (United States)

    2013-04-15

    The presence of the EMT (epithelial-mesenchymal transition), EndMT (endothelial-mesenchymal transition) and VM (vasculogenic mimicry) demonstrates the multidirectional extent of phenotypic plasticity in cancers. Previous findings demonstrating the crosstalk between head and neck squamous cell carcinoma (HNSCC) and vascular endothelial growth factor (VEGF) imply that HNSCC cells share some functional commonalities with endothelial cells. Our current results reveal that cultured HNSCC cells not only possess endothelial-specific markers, but also display endotheliod functional features including low density lipoprotein uptake, formation of tube-like structures on Matrigel and growth state responsiveness to VEGF and endostatin. HNSCC cell subpopulations are also highly responsive to transforming growth factor-β1 and express its auxiliary receptor, endoglin. Furthermore, the endotheliod characteristics observed in vitro recapitulate phenotypic features observed in human HNSCC tumors. Conversely, cultured normal human oral keratinocytes and intact or ulcerated human oral epithelia do not express comparable endotheliod characteristics, which imply that assumption of endotheliod features is restricted to transformed keratinocytes. In addition, this phenotypic state reciprocity facilitates HNSCC progression by increasing production of factors that are concurrently pro-proliferative and pro-angiogenic, conserving cell energy stores by LDL internalization and enhancing cell mobility. Finally, recognition of this endotheliod phenotypic transition provides a solid rationale to evaluate the antitumorigenic potential of therapeutic agents formerly regarded as exclusively angiostatic in scope. - Highlights: ► HNSCC tumor cells express endothelial specific markers VE-cadherin, CD31 and vimentin. ► Similarly, cultured HNSCC cells retain expression of these markers. ► HNSCC cells demonstrate functional endotheliod characteristics i.e. AcLDL uptake. ► HNSCC cell

  10. Existe alteração no mecanismo de adesão celular mediado pela E-caderina nas neoplasias cervicais de pacientes soropositivas para o HIV? Is there any change in the cell adhesion method mediated by e-cadherin in cervical neoplasia of HIV-infected patients?

    Directory of Open Access Journals (Sweden)

    Juliana Barroso Zimmermmann

    2010-06-01

    Full Text Available OBJETIVOS: avaliar a expressão da E-caderina em lesões do colo uterino em pacientes portadoras da infecção pelo vírus HIV. MÉTODOS: foi realizado um estudo com 77 pacientes apresentando o HPV cervical, sendo 40 soropositivas e 37 soronegativas para o HIV, todas submetidas à colposcopia e biópsia de colo uterino. O material obtido foi encaminhado para histopatologia e imunoistoquímica. Foram realizados cortes e montagem em lâminas silanizadas, e o observador foi blindado para a sorologia da paciente. Foram utilizados os anticorpos E-caderina, marca DAKO, clone NHC-38, com diluição de 1:400, e o sistema de polímeros Novolink (Novocastra. A expressão de E-caderina foi avaliada na membrana da célula epitelial, através da extensão da área corada. Utilizou-se o teste do χ2 com correção de Yates ou o teste de Fisher, para comparação de proporções na análise univariada. Foram incluídas no modelo de regressão logística todas as variáveis com valor pPURPOSE: to evaluate the expression of E-cadherin in cervical lesions of patients suffering from HIV infection. METHODS: we conducted a study with 77 patients with cervical HPV infection, 40 of them were HIV seropositive and 37 HIV seronegative who underwent colposcopy and a biopsy of the cervix. The material obtained by biopsy of the cervix was sent for histopathologic and immunohistochemical study. Sections were obtained and mounted on silanized slides and examined by an observer who was blind to patient serology. E-cadherin antibody, clone NHC-38 diluted 1:400 (DAKO and the Novolink polymer system (Novocastra were used. The expression of E-cadherin was determined on the epithelial cell membrane based on the extent of the stained area. The χ2 test with Yates correction or the Fisher's Exact test was used for comparison of the proportion in univariate analysis. All the variables with p<0.25 were included in the logistic regression model, called initial model. The analyses were

  11. Dithiolethione modified valproate and diclofenac increase E-cadherin expression and decrease proliferation of non-small cell lung cancer cells.

    Science.gov (United States)

    Moody, Terry W; Switzer, Christopher; Santana-Flores, Wilmarie; Ridnour, Lisa A; Berna, Marc; Thill, Michelle; Jensen, Robert T; Sparatore, Anna; Del Soldato, Piero; Yeh, Grace C; Roberts, David D; Giaccone, Giuseppe; Wink, David A

    2010-05-01

    The effects of dithiolethione modified valproate, diclofenac and sulindac on non-small cell lung cancer (NSCLC) cells were investigated. Sulfur(S)-valproate and S-diclofenac at 1 microg/ml concentrations significantly reduced prostaglandin (PG)E(2) levels in NSCLC cell lines A549 and NCI-H1299 as did the COX-2 inhibitor DuP-697. In vitro, S-valproate, S-diclofenac and S-sulindac half-maximally inhibited the clonal growth of NCI-H1299 cells at 6, 6 and 15 microg/ml, respectively. Using the MTT assay, 10 microg/ml S-valproate, NO-aspirin and Cay10404, a selective COX-2 inhibitor, but not SC-560, a selective COX-1 inhibitor, inhibited the growth of A549 cells. In vivo, 18mg/kg i.p. of S-valproate and S-diclofenac, but not S-sulindac, significantly inhibited A549 or NCI-H1299 xenograft proliferation in nude mice, but had no effect on the nude mouse body weight. The mechanism by which S-valproate and S-diclofenac inhibited the growth of NSCLC cells was investigated. Nitric oxide-aspirin but not S-valproate caused apoptosis of NSCLC cells. By Western blot, S-valproate and S-diclofenac increased E-cadherin but reduced vimentin and ZEB1 (a transcriptional suppressor of E-cadherin) protein expression in NSCLC cells. Because S-valproate and S-diclofenac inhibit the growth of NSCLC cells and reduce PGE(2) levels, they may prove beneficial in the chemoprevention and/or therapy of NSCLC. Published by Elsevier Ireland Ltd.

  12. The invasive phenotype of placenta accreta extravillous trophoblasts associates with loss of E-cadherin.

    Science.gov (United States)

    Duzyj, C M; Buhimschi, I A; Motawea, H; Laky, C A; Cozzini, G; Zhao, G; Funai, E F; Buhimschi, C S

    2015-06-01

    Epithelial-to-mesenchymal transition (EMT) is a process of molecular and phenotypic epithelial cell alteration promoting invasiveness. Loss of E-cadherin (E-CAD), a transmembrane protein involved in cell adhesion, is a marker of EMT. Proteolysis into N- and C-terminus fragments by ADAM10 and presenilin-1 (PSEN-1) generates soluble (sE-CAD) and transcriptionally active forms. We studied the protein expression patterns of E-CAD in the serum and placenta of women with histologically-confirmed over-invasive placentation. The patterns of expression and levels of sE-CAD were analyzed by Western blot, immunoassay, and immunoprecipitation. Tissue immunostaining for E-CAD, cytokeratin-7 (epithelial marker), vimentin (mesenchymal marker), ADAM10, PSEN-1 and β-catenin expression were investigated in parallel. N-terminus cleaved 80 kDa sE-CAD fragments were present in serum of pregnant women with gestational age regulation of the circulatory levels. Women with advanced trophoblast invasion did not display circulatory levels of sE-CAD different from those of women with normal placentation. Histologically, extravillous trophoblasts (EVT) closer to the placental-myometrial interface demonstrated less E-CAD staining than those found deeper in the myometrium. These cells expressed both vimentin and cytokeratin, an additional feature of EMT. EVT of placentas with advanced invasion displayed intracellular E-CAD C-terminus immunoreactivity predominating over that of the extracellular N-terminus, a pattern consistent with preferential PSEN-1 processing. Local processing of E-CAD may be an important molecular mechanism controlling the invasive phenotype of accreta EVT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. PDGF controls contact inhibition of locomotion by regulating N-cadherin during neural crest migration.

    Science.gov (United States)

    Bahm, Isabel; Barriga, Elias H; Frolov, Antonina; Theveneau, Eric; Frankel, Paul; Mayor, Roberto

    2017-07-01

    A fundamental property of neural crest (NC) migration is contact inhibition of locomotion (CIL), a process by which cells change their direction of migration upon cell contact. CIL has been proven to be essential for NC migration in amphibians and zebrafish by controlling cell polarity in a cell contact-dependent manner. Cell contact during CIL requires the participation of the cell adhesion molecule N-cadherin, which starts to be expressed by NC cells as a consequence of the switch between E- and N-cadherins during epithelial-to-mesenchymal transition (EMT). However, the mechanism that controls the upregulation of N-cadherin remains unknown. Here, we show that platelet-derived growth factor receptor alpha (PDGFRα) and its ligand platelet-derived growth factor A (PDGF-A) are co-expressed in migrating cranial NC. Inhibition of PDGF-A/PDGFRα blocks NC migration by inhibiting N-cadherin and, consequently, impairing CIL. Moreover, we identify phosphatidylinositol-3-kinase (PI3K)/AKT as a downstream effector of the PDGFRα cellular response during CIL. Our results lead us to propose PDGF-A/PDGFRα signalling as a tissue-autonomous regulator of CIL by controlling N-cadherin upregulation during EMT. Finally, we show that once NC cells have undergone EMT, the same PDGF-A/PDGFRα works as an NC chemoattractant, guiding their directional migration. © 2017. Published by The Company of Biologists Ltd.

  14. Stanniocalcin-1 regulates re-epithelialization in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Bonnie H Y Yeung

    Full Text Available Stanniocalcin-1 (STC1, a glycoprotein hormone, is believed to be involved in various biological processes such as inflammation, oxidative responses and cell migration. Riding on these emerging evidences, we hypothesized that STC1 may participate in the re-epithelialization during wound healing. Re-epithelialization is a critical step that involves keratinocyte lamellipodia (e-lam formation, followed by cell migration. In this study, staurosporine (STS treatment induced human keratinocyte (HaCaT e-lam formation on fibronectin matrix and migration via the activation of focal adhesion kinase (FAK, the surge of intracellular calcium level [Ca²⁺]i and the inactivation of Akt. In accompanied with these migratory features, a time- and dose-dependent increase in STC1 expression was detected. STC1 gene expression was found not the downstream target of FAK-signaling as illustrated by FAK inhibition using PF573228. The reduction of [Ca²⁺]i by BAPTA/AM blocked the STS-mediated keratinocyte migration and STC1 gene expression. Alternatively the increase of [Ca²⁺]i by ionomycin exerted promotional effect on STS-induced STC1 gene expression. The inhibition of Akt by SH6 and GSK3β by lithium chloride (LiCl could respectively induce and inhibit the STS-mediated e-lam formation, cell migration and STC1 gene expression. The STS-mediated e-lam formation and cell migration were notably hindered or induced respectively by STC1 knockdown or overexpression. This notion was further supported by the scratched wound assay. Collectively the findings provide the first evidence that STC1 promotes re-epithelialization in wound healing.

  15. Stanniocalcin-1 regulates re-epithelialization in human keratinocytes.

    Science.gov (United States)

    Yeung, Bonnie H Y; Wong, Chris K C

    2011-01-01

    Stanniocalcin-1 (STC1), a glycoprotein hormone, is believed to be involved in various biological processes such as inflammation, oxidative responses and cell migration. Riding on these emerging evidences, we hypothesized that STC1 may participate in the re-epithelialization during wound healing. Re-epithelialization is a critical step that involves keratinocyte lamellipodia (e-lam) formation, followed by cell migration. In this study, staurosporine (STS) treatment induced human keratinocyte (HaCaT) e-lam formation on fibronectin matrix and migration via the activation of focal adhesion kinase (FAK), the surge of intracellular calcium level [Ca²⁺]i and the inactivation of Akt. In accompanied with these migratory features, a time- and dose-dependent increase in STC1 expression was detected. STC1 gene expression was found not the downstream target of FAK-signaling as illustrated by FAK inhibition using PF573228. The reduction of [Ca²⁺]i by BAPTA/AM blocked the STS-mediated keratinocyte migration and STC1 gene expression. Alternatively the increase of [Ca²⁺]i by ionomycin exerted promotional effect on STS-induced STC1 gene expression. The inhibition of Akt by SH6 and GSK3β by lithium chloride (LiCl) could respectively induce and inhibit the STS-mediated e-lam formation, cell migration and STC1 gene expression. The STS-mediated e-lam formation and cell migration were notably hindered or induced respectively by STC1 knockdown or overexpression. This notion was further supported by the scratched wound assay. Collectively the findings provide the first evidence that STC1 promotes re-epithelialization in wound healing.

  16. A single type of cadherin is involved in Bacillus thuringiensis toxicity in Plutella xylostella.

    Science.gov (United States)

    Park, Y; Herrero, S; Kim, Y

    2015-12-01

    Cadherins have been described as one the main functional receptors for the toxins of the entomopathogenic bacterium, Bacillus thuringiensis (Bt). With the availability of the whole genome of Plutella xylostella, different types of cadherins have been annotated. In this study we focused on determining those members of the cadherin-related proteins that potentially play a role in the mode of action of Bt toxins. For this, we mined the genome of P. xylostella to identify these putative cadherins. The genome screening revealed 52 genes that were annotated as cadherin or cadherin-like genes. Further analysis revealed that six of these putative cadherins had three motifs common to all Bt-related cadherins: a signal peptide, cadherin repeats and a transmembrane domain. From the six selected cadherins, only P. xylostella cadherin 1 (PxCad1) was expressed in the larval midgut and only the silencing of this gene by RNA interference (double-stranded RNA feeding) reduce toxicity and binding to the midgut of the Cry1Ac type toxin from Bt. These results indicate that from the whole set of cadherin-related genes identified in P. xylostella, only PxCad1 is associated with the Cry1Ac mode of action. © 2015 The Royal Entomological Society.

  17. H-Ras activation promotes cytoplasmic accumulation and phosphoinositide 3-OH kinase association of beta-catenin in epidermal keratinocytes

    DEFF Research Database (Denmark)

    Espada, J; Pérez-Moreno, M; Braga, V M

    1999-01-01

    The mechanisms underlying downregulation of the cadherin/catenin complexes and beta-catenin signaling during tumor progression are not fully understood. We have analyzed the effect of oncogenic H-Ras on E-cadherin/catenin complex formation/stabilization and beta-catenin distribution in epidermal ...

  18. IFN-β antiproliferative effect and miRNA regulation in Human Papilloma Virus E6- and E7-transformed keratinocytes.

    Science.gov (United States)

    Chiantore, Maria Vincenza; Mangino, Giorgio; Iuliano, Marco; Zangrillo, Maria Simona; De Lillis, Ilaria; Vaccari, Gabriele; Accardi, Rosita; Tommasino, Massimo; Fiorucci, Gianna; Romeo, Giovanna

    2017-01-01

    Human Papilloma Viruses (HPVs) are the causative agents of cervical cancer although other types of cancers are associated with HPV infection. Type I Interferons can interfere with HPV E6- and/or E7-dependent transformation and can affect microRNA (miRNA) expression. Cancer cells show a specific pattern of miRNA expression and HPVs are able to modulate miRNAs expressed in infected cells. Keratinocytes transduced with E6 and E7 from mucosal HPV-16 or cutaneous HPV-38 (K16 and K38) were studied to analyze the involvement of HPV oncoproteins in the anti-proliferative activity of IFN-β. In view of our previous data showing senescence induction by the cytokine in K38 cells, we observe that IFN-β treatment leads to p53-indipendent apoptosis in K16 cells whereas induces senescence in K16 cells if E6 is silenced and p53 expression is restored. The levels of selected miRNAs, deregulated in K16 and K38 cells, can be modulated by IFN-β when E6 and E7 proteins of HPV-16, but not HPV-38, are expressed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Relationship among mismatch repair deficiency, CDX2 loss, p53 and E-cadherin in colon carcinoma and suitability of using a double panel of mismatch repair proteins by immunohistochemistry.

    Science.gov (United States)

    Sayar, Ilyas; Akbas, Emin Murat; Isik, Arda; Gokce, Aysun; Peker, Kemal; Demirtas, Levent; Gürbüzel, Mehmet

    2015-09-01

    Biomarkers such as mismatch repair proteins, CDX2, p53, and E-cadherin are blamed for colon cancers, but the relationships of these biomarkers with each other and with pathological risk factors in colon carcinoma are still not clear. The aim of this study was to evaluate the association of these biomarkers with each other by using immunohistochemical staining and to compare their expression with pathological risk factors for colonic adenocarcinoma. We also aimed to study the usability of a double panel of mismatch repair proteins. One hundred and eleven cases with colonic adenocarcinoma were examined. There was a statistically significant relationship between tumor histological differentiation and perineural invasion, vascular invasion, mismatch repair deficiency, p53, CDX2, and E-cadherin (p < 0.05). PMS2 and MSH6 loss covered 100% of cases with mismatch repair deficiency. Mismatch repair deficiency was correlated with CDX2 loss and E-cadherin expression (p < 0.05). It was also observed that cases with PMS2 loss covered all the cases with CDX2 loss. In conclusion, this double panel may be used instead of a quadruple panel for detecting mismatch repair deficiency. Association of CDX2 and PMS2 in the present study is necessary to conduct further genetic and pathological studies focusing on these two markers together.

  20. The DP-1 transcription factor is required for keratinocyte growth and epidermal stratification.

    Science.gov (United States)

    Chang, Wing Y; Bryce, Dawn M; D'Souza, Sudhir J A; Dagnino, Lina

    2004-12-03

    The epidermis is a stratified epithelium constantly replenished through the ability of keratinocytes in its basal layer to proliferate and self-renew. The epidermis arises from a single-cell layer ectoderm during embryogenesis. Large proliferative capacity is central to ectodermal cell and basal keratinocyte function. DP-1, a heterodimeric partner of E2F transcription factors, is highly expressed in the ectoderm and all epidermal layers during embryogenesis. To investigate the role of DP-1 in epidermal morphogenesis, we inhibited DP-1 activity through exogenous expression of a dominant-negative mutant (dnDP-1). Expression of the dnDP-1 mutant interferes with binding of E2F/DP-1 heterodimers to DNA and inhibits DNA replication, as well as cyclin A mRNA and protein expression. Chromatin immunoprecipitation analysis demonstrated that the cyclin A promoter is predominantly bound in proliferating keratinocytes by complexes containing E2F-3 and E2F-4. Thus, the mechanisms of decreased expression of cyclin A in the presence of dnDP-1 seem to involve inactivation of DP-1 complexes containing E2F-3 and E2F-4. To assess the consequences on epidermal morphogenesis of inhibiting DP-1 activity, we expressed dnDP-1 in rat epithelial keratinocytes in organotypic culture and observed that DP-1 inhibition negatively affected stratification of these cells. Likewise, expression of dnDP-1 in embryonic ectoderm explants produced extensive disorganization of subsequently formed epidermal basal and suprabasal layers, interfering with normal epidermal formation. We conclude that DP-1 activity is required for normal epidermal morphogenesis and ectoderm-to-epidermis transition.

  1. A protocadherin-cadherin-FLRT3 complex controls cell adhesion and morphogenesis.

    Directory of Open Access Journals (Sweden)

    Xuejun Chen

    2009-12-01

    Full Text Available Paraxial protocadherin (PAPC and fibronectin leucine-rich domain transmembrane protein-3 (FLRT3 are induced by TGFbeta signaling in Xenopus embryos and both regulate morphogenesis by inhibiting C-cadherin mediated cell adhesion.We have investigated the functional and physical relationships between PAPC, FLRT3, and C-cadherin. Although neither PAPC nor FLRT3 are required for each other to regulate C-cadherin adhesion, they do interact functionally and physically, and they form a complex with cadherins. By itself PAPC reduces cell adhesion physiologically to induce cell sorting, while FLRT3 disrupts adhesion excessively to cause cell dissociation. However, when expressed together PAPC limits the cell dissociating and tissue disrupting activity of FLRT3 to make it effective in physiological cell sorting. PAPC counteracts FLRT3 function by inhibiting the recruitment of the GTPase RND1 to the FLRT3 cytoplasmic domain.PAPC and FLRT3 form a functional complex with cadherins and PAPC functions as a molecular "governor" to maintain FLRT3 activity at the optimal level for physiological regulation of C-cadherin adhesion, cell sorting, and morphogenesis.

  2. In Vitro Growth of Human Keratinocytes and Oral Cancer Cells into Microtissues: An Aerosol-Based Microencapsulation Technique

    Directory of Open Access Journals (Sweden)

    Wai Yean Leong

    2017-05-01

    Full Text Available Cells encapsulation is a micro-technology widely applied in cell and tissue research, tissue transplantation, and regenerative medicine. In this paper, we proposed a growth of microtissue model for the human keratinocytes (HaCaT cell line and an oral squamous cell carcinoma (OSCC cell line (ORL-48 based on a simple aerosol microencapsulation technique. At an extrusion rate of 20 μL/min and air flow rate of 0.3 L/min programmed in the aerosol system, HaCaT and ORL-48 cells in alginate microcapsules were encapsulated in microcapsules with a diameter ranging from 200 to 300 μm. Both cell lines were successfully grown into microtissues in the microcapsules of alginate within 16 days of culture. The microtissues were characterized by using a live/dead cell viability assay, field emission-scanning electron microscopy (FE-SEM, fluorescence staining, and cell re-plating experiments. The microtissues of both cell types were viable after being extracted from the alginate membrane using alginate lyase. However, the microtissues of HaCaT and ORL-48 demonstrated differences in both nucleus size and morphology. The microtissues with re-associated cells in spheroids are potentially useful as a cell model for pharmacological studies.

  3. Asymmetric migration of human keratinocytes under mechanical stretch and cocultured fibroblasts in a wound repair model.

    Directory of Open Access Journals (Sweden)

    Dongyuan Lü

    Full Text Available Keratinocyte migration during re-epithelization is crucial in wound healing under biochemical and biomechanical microenvironment. However, little is known about the underlying mechanisms whereby mechanical tension and cocultured fibroblasts or keratinocytes modulate the migration of keratinocytes or fibroblasts. Here we applied a tensile device together with a modified transwell assay to determine the lateral and transmembrane migration dynamics of human HaCaT keratinocytes or HF fibroblasts. A novel pattern of asymmetric migration was observed for keratinocytes when they were cocultured with non-contact fibroblasts, i.e., the accumulative distance of HaCaT cells was significantly higher when moving away from HF cells or migrating from down to up cross the membrane than that when moving close to HF cells or when migrating from up to down, whereas HF migration was symmetric. This asymmetric migration was mainly regulated by EGF derived from fibroblasts, but not transforming growth factor α or β1 production. Mechanical stretch subjected to fibroblasts fostered keratinocyte asymmetric migration by increasing EGF secretion, while no role of mechanical stretch was found for EGF secretion by keratinocytes. These results provided a new insight into understanding the regulating mechanisms of two- or three-dimensional migration of keratinocytes or fibroblasts along or across dermis and epidermis under biomechanical microenvironment.

  4. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    Science.gov (United States)

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  5. The epithelial-mesenchymal transition induced by keratinocyte growth conditions is overcome by E6 and E7 from HPV16, but not HPV8 and HPV38: Characterization of global transcription profiles

    International Nuclear Information System (INIS)

    Azzimonti, Barbara; Dell'Oste, Valentina; Borgogna, Cinzia; Mondini, Michele; Gugliesi, Francesca; De Andrea, Marco; Chiorino, Giovanna; Scatolini, Maria; Ghimenti, Chiara; Landolfo, Santo; Gariglio, Marisa

    2009-01-01

    The aim of this study was to evaluate the growth properties of primary human keratinocytes expressing E6 and E7 proteins, which are from either the β- or α-genotypes, under different culture conditions. We demonstrated that keratinocytes expressing E6 and E7, from both HPV8 and 38, irreversibly underwent the epithelial-mesenchymal transition (EMT) when grown on plastic with FAD medium (F12/DMEM/5%FBS). Expression of E6/E7 from HPV16 was capable of fully overcoming the FAD-induced EMT. Immortalization was only observed in HPV16-transduced cell lines, while the more proliferating phenotype of both KerHPV8 and 38 was mainly related to FAD-induced EMT. Microarray analysis of exponentially growing cells identified 146 cellular genes that were differentially regulated in HPV16 compared to HPV8- and 38-transduced cells. A large accumulation of transcripts associated with epidermal development and differentiation was observed in HPV16-transduced cells, whereas transcripts of genes involved in the extracellular matrix, multicellular organismal processes, and inflammatory response were affected in HPV8 and 38-transduced cells.

  6. Treatment of burn injuries with keratinocyte cultures

    International Nuclear Information System (INIS)

    Syring, C.; Maenig, H.J.; Von Versen, R.; Bruck, J.

    1999-01-01

    The German Institute for Cell and Tissue Replacement (DIZG) provides burned patients with skin and amnion for a temporary wound closure. Severely burned patients (>60% BSA for adults, >40% BSA for children) were supplied with autologous and allogenic grafts from cultured keratinocytes. The keratinocyte culture is done under GMP-conditions using the method of Rheinwald and Green. The 3T3 fibroblasts were irradiated with 60 Gy and used as feeder cells to produce keratinocyte sheets within 3 weeks. In this time up to 6.000 cm are available. The sheets were harvested by detachment with dispase (1,2 U/ml), fixed to gauze and transported to the hospital. The DIZG has a 3 years experience in the treatment of burns with keratinocyte sheets. The sheets were transplanted to patients in different hospitals, the total transplanted area is about 30.000 cm. This paper describes the experiences with ten severely burned patients treated with keratinocyte sheet

  7. Acrolein—an α,ß-Unsaturated Aldehyde: A Review of Oral Cavity Exposure and Oral Pathology Effects

    Directory of Open Access Journals (Sweden)

    Dror Aizenbud

    2016-07-01

    Full Text Available Acrolein is a highly reactive unsaturated aldehyde widely present in the environment, particularly as a product of tobacco smoke. Our previous studies indicated the adverse consequences of even short-term acrolein exposure and proposed a molecular mechanism of its potential harmful effect on oral cavity keratinocytic cells. In this paper we chose to review the broad spectrum of acrolein sources such as pollution, food, and smoking. Consequently, in this paper we consider a high level of oral exposure to acrolein through these sources and discuss the noxious effects it has on the oral cavity including on salivary quality and contents, oral resistance to oxidative stress, and stress mechanism activation in a variety of oral cells.

  8. Structure of a force-conveying cadherin bond essential for inner-ear mechanotransduction.

    Science.gov (United States)

    Sotomayor, Marcos; Weihofen, Wilhelm A; Gaudet, Rachelle; Corey, David P

    2012-12-06

    Hearing and balance use hair cells in the inner ear to transform mechanical stimuli into electrical signals. Mechanical force from sound waves or head movements is conveyed to hair-cell transduction channels by tip links, fine filaments formed by two atypical cadherins known as protocadherin 15 and cadherin 23 (refs 4, 5). These two proteins are involved in inherited deafness and feature long extracellular domains that interact tip-to-tip in a Ca(2+)-dependent manner. However, the molecular architecture of this complex is unknown. Here we combine crystallography, molecular dynamics simulations and binding experiments to characterize the protocadherin 15-cadherin 23 bond. We find a unique cadherin interaction mechanism, in which the two most amino-terminal cadherin repeats (extracellular cadherin repeats 1 and 2) of each protein interact to form an overlapped, antiparallel heterodimer. Simulations predict that this tip-link bond is mechanically strong enough to resist forces in hair cells. In addition, the complex is shown to become unstable in response to Ca(2+) removal owing to increased flexure of Ca(2+)-free cadherin repeats. Finally, we use structures and biochemical measurements to study the molecular mechanisms by which deafness mutations disrupt tip-link function. Overall, our results shed light on the molecular mechanics of hair-cell sensory transduction and on new interaction mechanisms for cadherins, a large protein family implicated in tissue and organ morphogenesis, neural connectivity and cancer.

  9. Melatonin Inhibits Reactive Oxygen Species-Driven Proliferation, Epithelial-Mesenchymal Transition, and Vasculogenic Mimicry in Oral Cancer.

    Science.gov (United States)

    Liu, Rui; Wang, Hui-Li; Deng, Man-Jing; Wen, Xiu-Jie; Mo, Yuan-Yuan; Chen, Fa-Ming; Zou, Chun-Li; Duan, Wei-Feng; Li, Lei; Nie, Xin

    2018-01-01

    Globally, oral cancer is the most common type of head and neck cancers. Melatonin elicits inhibitory effects on oral cancer; however, the biological function of melatonin and underlying mechanisms remain largely unknown. In this study, we found that melatonin impaired the proliferation and apoptosis resistance of oral cancer cells by inactivating ROS-dependent Akt signaling, involving in downregulation of cyclin D1, PCNA, and Bcl-2 and upregulation of Bax. Melatonin inhibited the migration and invasion of oral cancer cells by repressing ROS-activated Akt signaling, implicating with the reduction of Snail and Vimentin and the enhancement of E-cadherin. Moreover, melatonin hampered vasculogenic mimicry of oral cancer cells through blockage of ROS-activated extracellular-regulated protein kinases (ERKs) and Akt pathways involving the hypoxia-inducible factor 1 α . Consistently, melatonin retarded tumorigenesis of oral cancer in vivo . Overall, these findings indicated that melatonin exerts antisurvival, antimotility, and antiangiogenesis effects on oral cancer partly by suppressing ROS-reliant Akt or ERK signaling.

  10. N-cadherin is overexpressed in Crohn's stricture fibroblasts and promotes intestinal fibroblast migration.

    LENUS (Irish Health Repository)

    Burke, John P

    2012-02-01

    BACKGROUND: Intestinal fibroblasts mediate stricture formation in Crohn\\'s disease (CD). Transforming growth factor-beta (TGF-beta) is important in fibroblast activation, while cell attachment and migration is regulated by the adhesion molecule N-cadherin. The aim of this study was to investigate the expression and function of N-cadherin in intestinal fibroblasts in patients with fibrostenosing CD. METHODS: Intestinal fibroblasts were cultured from seromuscular biopsies from patients undergoing resection for terminal ileal fibrostenosing CD (n = 14) or controls patients (n = 8). N-cadherin expression was assessed using Western blot and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Fibroblasts were stimulated with TGF-beta and selective pathway inhibitors Y27632, PD98050, and LY294002 were used to examine the Rho\\/ROCK, ERK-1\\/2, and Akt signaling pathways, respectively. Cell migration was assessed using a scratch wound assay. N-cadherin was selectively overexpressed using a plasmid. RESULTS: Fibroblasts from fibrostenosing CD express increased constitutive N-cadherin mRNA and protein and exhibit enhanced basal cell migration relative to those from directly adjacent normal bowel. Control fibroblasts treated with TGF-beta induced N-cadherin in a dose-dependent manner which was inhibited by Rho\\/ROCK and Akt pathway modulation. Control fibroblasts exhibited enhanced cell migration in response to treatment with TGF-beta or transfection with an N-cadherin plasmid. CONCLUSIONS: Fibroblasts from strictures in CD express increased constitutive N-cadherin and exhibit enhanced basal cell migration. TGF-beta is a potent inducer of N-cadherin in intestinal fibroblasts resulting in enhanced cell migration. The TGF-beta-mediated induction of N-cadherin may potentiate Crohn\\'s stricture formation.

  11. Defects in ultrasonic vocalization of cadherin-6 knockout mice.

    Directory of Open Access Journals (Sweden)

    Ryoko Nakagawa

    Full Text Available BACKGROUND: Although some molecules have been identified as responsible for human language disorders, there is still little information about what molecular mechanisms establish the faculty of human language. Since mice, like songbirds, produce complex ultrasonic vocalizations for intraspecific communication in several social contexts, they can be good mammalian models for studying the molecular basis of human language. Having found that cadherins are involved in the vocal development of the Bengalese finch, a songbird, we expected cadherins to also be involved in mouse vocalizations. METHODOLOGY/PRINCIPAL FINDINGS: To examine whether similar molecular mechanisms underlie the vocalizations of songbirds and mammals, we categorized behavioral deficits including vocalization in cadherin-6 knockout mice. Comparing the ultrasonic vocalizations of cadherin-6 knockout mice with those of wild-type controls, we found that the peak frequency and variations of syllables were differed between the mutant and wild-type mice in both pup-isolation and adult-courtship contexts. Vocalizations during male-male aggression behavior, in contrast, did not differ between mutant and wild-type mice. Open-field tests revealed differences in locomotors activity in both heterozygote and homozygote animals and no difference in anxiety behavior. CONCLUSIONS/SIGNIFICANCE: Our results suggest that cadherin-6 plays essential roles in locomotor activity and ultrasonic vocalization. These findings also support the idea that different species share some of the molecular mechanisms underlying vocal behavior.

  12. Pathologically decreased expression of miR-193a contributes to metastasis by targeting WT1-E-cadherin axis in non-small cell lung cancers

    Directory of Open Access Journals (Sweden)

    Junjie Chen

    2016-11-01

    Full Text Available Abstract Background The metastatic cascade is a complex and multistep process with many potential barriers. Recently, miR-193a has been reported to be a suppressive miRNA in multiple types of cancers, but its underlying anti-oncogenic activity in non-small cell lung cancers (NSCLC is not fully elucidated. Methods The expressions of miR-193a (miR-193a-5p in human lung cancer tissues and cell lines were detected by real-time PCR. Dual-luciferase reporter assay was used to identify the direct target of miR-193a. Cell proliferation, apoptosis, and metastasis were assessed by CCK-8, flow cytometry, and Transwell assay, respectively. Results The expression of miR-193a in lung cancer tissues was decreased comparing to adjacent non-tumor tissues due to DNA hypermethylation in lung cancer tissues. Ectopic expression of miR-193a inhibited cell proliferation, colony formation, migration, and invasion in A549 and H1299 cells. Moreover, overexpression of miR-193a partially reversed tumor growth factor-β1 (TGF-β1-induced epithelial-to-mesenchymal transition (EMT in NSCLC cells. Mechanistically, miR-193a reduced the expression of WT1, which negatively regulated the protein level of E-cadherin, suggesting that miR-193a might prevent EMT via modulating WT1-E-cadherin axis. Importantly, knockdown of WT1 resembled the anti-cancer activity by miR-193a and overexpression of WT1 partially reversed miR-193a-induced anti-cancer activity, indicating that WT1 plays an important role in miR-193a-induced anti-cancer activity. Finally, overexpression of miR-193a decreased the growth of tumor xenografts in mice. Conclusion Collectively, our results have revealed an important role of miR-193a-WT1-E-cadherin axis in metastasis, demonstrated an important molecular cue for EMT, and suggested a therapeutic strategy of restoring miR-193a expression in NSCLC.

  13. The role of epithelial-mesenchymal transition in squamous cell carcinoma of the oral cavity.

    Science.gov (United States)

    Zidar, Nina; Boštjančič, Emanuela; Malgaj, Marija; Gale, Nina; Dovšak, Tadej; Didanovič, Vojko

    2018-02-01

    Epithelial-mesenchymal transition (EMT) has emerged as a possible mechanism of cancer metastasizing, but strong evidence for EMT involvement in human cancer is lacking. Our aim was to compare oral spindle cell carcinoma (SpCC) as an example of EMT with oral conventional squamous cell carcinoma (SCC) with and without nodal metastases to test the hypothesis that EMT contributes to metastasizing in oral SCC. Thirty cases of oral SCC with and without nodal metastasis and 15 cases of SpCC were included. Epithelial (cytokeratin, E-cadherin), mesenchymal (vimentin, N-cadherin), and stem cell markers (ALDH-1, CD44, Nanog, Sox-2) and transcription repressors (Snail, Slug, Twist) were analyzed immunohistochemically. We also analyzed the expression of microRNAs miR-141, miR-200 family, miR-205, and miR-429. SpCC exhibited loss of epithelial markers and expression of mesenchymal markers or coexpression of both up-regulation of transcription repressors and down-regulation of the investigated microRNAs. SCC showed only occasional focal expression of mesenchymal markers at the invasive front. No other differences were observed between SCC with and without nodal metastases except for a higher expression of ALDH-1 in SCC with metastases. Our results suggest that SpCC is an example of true EMT but do not support the hypothesis that EMT is involved in metastasizing of conventional SCC. Regarding oral SCC progression and metastasizing, we have been facing a shift from the initial enthusiasm for the EMT concept towards a more critical approach with "EMT-like" and "partial EMT" concepts. The real question, though, is, is there no EMT at all?

  14. The N-Myc down regulated Gene1 (NDRG1) Is a Rab4a effector involved in vesicular recycling of E-cadherin.

    Science.gov (United States)

    Kachhap, Sushant K; Faith, Dennis; Qian, David Z; Shabbeer, Shabana; Galloway, Nathan L; Pili, Roberto; Denmeade, Samuel R; DeMarzo, Angelo M; Carducci, Michael A

    2007-09-05

    Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1) increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein.

  15. The N-Myc down regulated Gene1 (NDRG1 Is a Rab4a effector involved in vesicular recycling of E-cadherin.

    Directory of Open Access Journals (Sweden)

    Sushant K Kachhap

    2007-09-01

    Full Text Available Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1 increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein.

  16. Antibiofilm and Anti-Inflammatory Activities of Houttuynia cordata Decoction for Oral Care

    Directory of Open Access Journals (Sweden)

    Yasuko Sekita

    2017-01-01

    Full Text Available Dental biofilms that form in the oral cavity play a critical role in the pathogenesis of several infectious oral diseases, including dental caries, periodontal disease, and oral candidiasis. Houttuynia cordata (HC, Saururaceae is a widely used traditional medicine, for both internal and external application. A decoction of dried HC leaves (dHC has long been consumed as a health-promoting herbal tea in Japan. We have recently reported that a water solution of HC poultice ethanol extract (wHCP exerts antimicrobial and antibiofilm effects against several important oral pathogens. It also exhibits anti-inflammatory effects on human keratinocytes. In our current study, we examined the effects of dHC on infectious oral pathogens and inflammation. Our results demonstrated that dHC exerts moderate antimicrobial effects against methicillin-resistant Staphylococcus aureus (MRSA and other oral microorganisms. dHC also exhibited antibiofilm effects against MRSA, Fusobacterium nucleatum (involved in dental plaque formation, and Candida albicans and inhibitory effects on interleukin-8, CCL20, IP-10, and GROα productions by human oral keratinocytes stimulated by Porphyromonas gingivalis lipopolysaccharide (a cause of periodontal disease, without cytotoxic effects. This suggests that dHC exhibits multiple activities in microorganisms and host cells. dHC can be easily prepared and may be effective in preventing infectious oral diseases.

  17. From genotypes to phenotypes: classification of the tumour profiles for different variants of the cadherin adhesion pathway

    International Nuclear Information System (INIS)

    Ramis-Conde, Ignacio; Drasdo, Dirk

    2012-01-01

    The E-cadherin adhesive profile expressed by a tumour is a characterization of the intracellular and intercellular protein interactions that control cell–cell adhesion. Within the intracellular proteins that determine the tumour adhesive profile, Src and PI3 are two essentials to initiate the formation of the E-cadherin adhesion complex. On the other hand, Src has also the capability of disrupting the β-catenin–E-cadherin complex and down-regulating cell–cell adhesion. In this paper, using a multi-scale mathematical model, we study the role of each of these proteins in the adhesive profile and invasive properties of the tumour. To do this, we create three versions of an intracellular model that explains the interplay between the proteins E-cadherin, β-catenin, Src and PI3; and we couple them to the strength of the cell–cell adhesion forces within an individual-cell-based model. The simulation results show how the tumour profile and its aggressive potential may change depending on the intrinsic characteristics of the protein pathways, and how these pathways may influence the early stages of cancer invasion. Our major findings may be summarized as follows. (1) Intermediate levels of Src synthesis rates generate the least invasive tumour phenotype. (2) Conclusions drawn from findings obtained from the intracellular molecular dynamics (here cadherin–catenin binding complexes) to the multi-cellular invasive potential of a tumour may be misleading or erroneous. The conclusions should be validated in a multi-cellular context on timescales relevant for population growth. (3) Monoclonal populations of more cohesive cells with otherwise equal properties tend to grow slower. (4) Less cohesive cells tend to outcompete more cohesive cells. (5) Less cohesive cells have a larger probability of invasion as migration forces can more easily outbalance cohesive forces. (paper)

  18. From genotypes to phenotypes: classification of the tumour profiles for different variants of the cadherin adhesion pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ramis-Conde, Ignacio [Facultad de Educación de Cuenca, Avenida de los Alfares 44, 16071 Universidad de Castilla la Mancha, Cuenca (Spain); Drasdo, Dirk [Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt/Paris (France)

    2012-06-01

    The E-cadherin adhesive profile expressed by a tumour is a characterization of the intracellular and intercellular protein interactions that control cell–cell adhesion. Within the intracellular proteins that determine the tumour adhesive profile, Src and PI3 are two essentials to initiate the formation of the E-cadherin adhesion complex. On the other hand, Src has also the capability of disrupting the β-catenin–E-cadherin complex and down-regulating cell–cell adhesion. In this paper, using a multi-scale mathematical model, we study the role of each of these proteins in the adhesive profile and invasive properties of the tumour. To do this, we create three versions of an intracellular model that explains the interplay between the proteins E-cadherin, β-catenin, Src and PI3; and we couple them to the strength of the cell–cell adhesion forces within an individual-cell-based model. The simulation results show how the tumour profile and its aggressive potential may change depending on the intrinsic characteristics of the protein pathways, and how these pathways may influence the early stages of cancer invasion. Our major findings may be summarized as follows. (1) Intermediate levels of Src synthesis rates generate the least invasive tumour phenotype. (2) Conclusions drawn from findings obtained from the intracellular molecular dynamics (here cadherin–catenin binding complexes) to the multi-cellular invasive potential of a tumour may be misleading or erroneous. The conclusions should be validated in a multi-cellular context on timescales relevant for population growth. (3) Monoclonal populations of more cohesive cells with otherwise equal properties tend to grow slower. (4) Less cohesive cells tend to outcompete more cohesive cells. (5) Less cohesive cells have a larger probability of invasion as migration forces can more easily outbalance cohesive forces. (paper)

  19. Serial cultivation of human scalp hair follicle keratinocytes.

    Science.gov (United States)

    Weterings, P J; Roelofs, H M; Vermorken, A J; Bloemendal, H

    1983-01-01

    A method is described for the serial cultivation of adult human hair follicle keratinocytes. Plucked scalp hair follicles, placed on bovine eye lens capsules as a growth substrate, give rise to quickly expanding colonies within a few days. After trypsinization, the cells are replated with irradiated 3T3 cells as 'feeders'. Using this combination of techniques the keratinocytes can be subcultured up to four times. In this way about 10(7) keratinocytes can be generated from one single hair follicle. Moreover, the technique enables cryogenic storage of the cells, allowing for instance, convenient transportation. Subcultured hair follicle keratinocytes can be plated on glass coverslips. This allows immunofluorescence studies. The keratin cytoskeletons visualized using an antiserum against human keratin.

  20. Evidence for alteration of EZH2, BMI1, and KDM6A and epigenetic reprogramming in human papillomavirus type 16 E6/E7-expressing keratinocytes.

    Science.gov (United States)

    Hyland, Paula L; McDade, Simon S; McCloskey, Rachel; Dickson, Glenda J; Arthur, Ken; McCance, Dennis J; Patel, Daksha

    2011-11-01

    A number of epigenetic alterations occur in both the virus and host cellular genomes during human papillomavirus (HPV)-associated carcinogenesis, and investigations of such alterations, including changes in chromatin proteins and histone modifications, have the potential to lead to therapeutic epigenetic reversion. We report here that transformed HPV16 E6/E7-expressing primary human foreskin keratinocytes (HFKs) (E6/E7 cells) demonstrate increased expression of the PRC2 methyltransferase EZH2 at both the mRNA and protein levels but do not exhibit the expected increase in trimethylated H3K27 (H3K27me3) compared to normal keratinocytes. In contrast, these cells show a reduction in global H3K27me3 levels in vitro, as well as upregulation of the KDM6A demethylase. We further show for the first time that transformation with the HPV16 E6 and E7 oncogenes also results in an increase in phosphorylated EZH2 serine 21 (P-EZH2-Ser21), mediated by active Akt, and in a downregulation of the PRC1 protein BMI1 in these cells. High-grade squamous cervical intraepithelial lesions also showed a loss of H3K27me3 in the presence of increased expression of EZH2. Correlating with the loss of H3K27me3, E6/E7 cells exhibited derepression of specific EZH2-, KMD6A-, and BMI1-targeted HOX genes. These results suggest that the observed reduction in H3K27me3 may be due to a combination of reduced activities/levels of specific polycomb proteins and increases in demethylases. The dysregulation of multiple chromatin proteins resulting in the loss of global H3K27me3 and the transcriptional reprogramming in HPV16 E6/E7-infected cells could provide an epigenetic signature associated with risk and/or progression of HPV16-associated cancers, as well as the potential for epigenetic reversion in the future.

  1. Maintenance and induction of murine embryonic stem cell differentiation using E-cadherin-Fc substrata without colony formation

    Science.gov (United States)

    Meng, Qing-Yuan; Akaike, Toshihiro

    2013-03-01

    Induced embryonic stem (ES) cells are expected to be promising cell resources for the observation of the cell behaviors in developmental biology as well as the implantation in cell treatments in human diseases. A recombinant E-cadherin substratum was developed as a cell recognizable substratum to maintain the ES cells' self-renewal and pluripotency at single cell level. Furthermore, the generation of various cell lineages in different germ layers, including hepatic or neural cells, was achieved on the chimeric protein layer precisely and effectively. The induction and isolation of specific cell population was carried out with the enhancing effect of other artificial extracellular matrices (ECMs) in enzyme-free process. The murine ES cell-derived cells showed highly morphological similarities and functional expressions to matured hepatocytes or neural progenitor cells.

  2. Connections between cadherin-catenin proteins, spindle misorientation, and cancer

    DEFF Research Database (Denmark)

    Shahbazi, Marta N; Perez-Moreno, Mirna

    2015-01-01

    Cadherin-catenin mediated adhesion is an important determinant of tissue architecture in multicellular organisms. Cancer progression and maintenance is frequently associated with loss of their expression or functional activity, which not only leads to decreased cell-cell adhesion, but also to enh......; and illustrates how alterations in cadherin-catenin levels or functional activity may render cells susceptible to transformation through the loss of their proliferation-differentiation balance....

  3. Differential expression of liver-intestine cadherin in hepatocellular carcinoma and its clinical significance

    Directory of Open Access Journals (Sweden)

    QIU Shi

    2013-01-01

    Full Text Available ObjectiveTo investigate the expression of liver-intestine (LI-cadherin in hepatocellular carcinoma (HCC by tissue microarray and explore its relationship with pathologic features of HCC patients. MethodsSeventy primary HCC resection samples with different indexing and five primary normal tissue samples were assessed by tissue microarray and immunohistochemistry based on the SP method. The detected expression levels of LI-cadherin were compared to the clinic pathologic parameters of the tissue donors. ResultsLI-cadherin expression was detected in 39 (55.7% of the 70 primary HCC tissues, and none of the normal tissues. Positivity for LI-cadherin expression was significantly associated with lymph node metastasis and venous invasion (both P<0.05, but no significant association was observed with age, sex, tumor grade, or metastasis (all P>0.05. ConclusionLI-cadherin expression may be associated with HCC occurrence, tumor invasion, and metastasis. Future studies should assess the potential of LI-cadherin expression as a diagnostic biomarker or target of molecular therapy for HCC.

  4. Experimental model of cultured keratinocytes Modelo experimental de cultura de queratinócitos

    Directory of Open Access Journals (Sweden)

    Alfredo Gragnani

    2003-01-01

    Full Text Available The bioengineering research is essential in the development of ideal combination of biomaterials and cultured cells to produce the permanent wound coverage. The experimental model of cultured keratinocytes presents all steps of the culture, since the isolation of the keratinocytes, preparation of the human acellular dermis, preparation of the composite skin graft and their elevation to the air-liquid interface. The research in cultured keratinocytes model advances in two main ways: 1. optimization of the methods in vitro to the skin cells culture and proliferation and 2. developing biomaterials that present similar skin properties.A pesquisa em bioengenharia é primordial no desenvolvimento da combinação ideal de biomateriais e células cultivadas para produzir a cobertura definitiva das lesões. O modelo experimental da cultura de queratinócitos apresenta toda as etapas do cultivo, desde o isolamento dos queratinócitos, preparação da derme acelular humana, do enxerto composto e da sua elevação à interface ar-líquido. A pesquisa em modelo de cultura de queratinócitos desenvolve-se em duas vias principais: 1. otimização dos métodos in vitro para cultivo e proliferação de células da pele e 2. desenvolvimento de biomateriais que mimetizem as propriedades da pele.

  5. A correlation between altered O-GlcNAcylation, migration and with changes in E-cadherin levels in ovarian cancer cells

    International Nuclear Information System (INIS)

    Jin, Feng-zhen; Yu, Chao; Zhao, De-zhang; Wu, Ming-jun; Yang, Zhu

    2013-01-01

    O-GlcNAcylation is a dynamic and reversible posttranslational modification of nuclear and cytoplasmic proteins. In recent years, the roles of O-GlcNAcylation in several human malignant tumors have been investigated, and O-GlcNAcylation was found to be linked to cellular features relevant to metastasis. In this study, we modeled four diverse ovarian cancer cells and investigated the effects of O-GlcNAcylation on ovarian cancer cell migration. We found that total O-GlcNAcylation level was elevated in HO-8910PM cells compared to OVCAR3 cells. Additionally, through altering the total O-GlcNAcylation level by OGT silencing or OGA inhibition, we found that the migration of OVCAR3 cells was dramatically enhanced by PUGNAc and Thiamet G treatment, and the migration ability of HO-8910PM cells was significantly inhibited by OGT silencing. Furthermore, we also found that the expression of E-cadherin, an O-GlcNAcylated protein in ovarian cancer cells, was reduced by OGA inhibition in OVCAR3 cells and elevated by OGT silencing in HO-8910PM cells. These results indicate that O-GlcNAcylation could enhance ovarian cancer cell migration and decrease the expression of E-cadherin. Our studies also suggest that O-GlcNAcylation might become another potential target for the therapy of ovarian cancer. -- Highlights: • We examine the migration potential of diverse ovarian cancer cells. • We examine the total O-GlcNAcylation level of diverse ovarian cancer cells. • Increasing O-GlcNAcylation level will enhance the migration of ovarian cancer cells. • Reducing O-GlcNAcylation level will inhibit the migration of ovarian cancer cells. • The mechanism explains O-GlcNAcylation enhance ovarian cancer cell migration

  6. Mechanical Barriers Restrict Invasion of Herpes Simplex Virus 1 into Human Oral Mucosa.

    Science.gov (United States)

    Thier, Katharina; Petermann, Philipp; Rahn, Elena; Rothamel, Daniel; Bloch, Wilhelm; Knebel-Mörsdorf, Dagmar

    2017-11-15

    Oral mucosa is one of the main target tissues of the human pathogen herpes simplex virus 1 (HSV-1). How the virus overcomes the protective epithelial barriers and penetrates the tissue to reach its receptors and initiate infection is still unclear. Here, we established an ex vivo infection assay with human oral mucosa that allows viral entry studies in a natural target tissue. The focus was on the susceptibility of keratinocytes in the epithelium and the characterization of cellular receptors that mediate viral entry. Upon ex vivo infection of gingiva or vestibular mucosa, we observed that intact human mucosa samples were protected from viral invasion. In contrast, the basal layer of the oral epithelium was efficiently invaded once the connective tissue and the basement membrane were removed. Later during infection, HSV-1 spread from basal keratinocytes to upper layers, demonstrating the susceptibility of the stratified squamous epithelium to HSV-1. The analysis of potential receptors revealed nectin-1 on most mucosal keratinocytes, whereas herpesvirus entry mediator (HVEM) was found only on a subpopulation of cells, suggesting that nectin-1 acts as primary receptor for HSV-1 in human oral mucosa. To mimic the supposed entry route of HSV-1 via microlesions in vivo , we mechanically wounded the mucosa prior to infection. While we observed a limited number of infected keratinocytes in some wounded mucosa samples, other samples showed no infected cells. Thus, we conclude that mechanical wounding of mucosa is insufficient for the virus to efficiently overcome epithelial barriers and to make entry-mediating receptors accessible. IMPORTANCE To invade the target tissue of its human host during primary infection, herpes simplex virus (HSV) must overcome the epithelial barriers of mucosa, skin, or cornea. For most viruses, the mechanisms underlying the invasion into the target tissues of their host organism are still open. Here, we established an ex vivo infection model of

  7. Differentiation and injury-repair signals modulate the interaction of E2F and pRB proteins with novel target genes in keratinocytes.

    Science.gov (United States)

    Chang, Wing Y; Andrews, Joseph; Carter, David E; Dagnino, Lina

    2006-08-01

    E2F transcription factors are central to epidermal morphogenesis and regeneration after injury. The precise nature of E2F target genes involved in epidermal formation and repair has yet to be determined. Identification of these genes is essential to understand how E2F proteins regulate fundamental aspects of epidermal homeostasis and transformation. We have conducted a genome-wide screen using CpG island microarray analysis to identify novel promoters bound by E2F3 and E2F5 in human keratinocytes. We further characterized several of these genes, and determined that multiple E2F and retinoblastoma (pRb) family proteins associate with them in exponentially proliferating cells. We also assessed the effect on E2F and pRb binding to those genes in response to differentiation induced by bone morphogenetic protein-6 (BMP-6), or to activation of repair mechanisms induced by transforming growth factor-beta (TGF-beta). These studies demonstrate promoter- and cytokine-specific changes in binding profiles of E2F and/or pRb family proteins. For example, E2F1, 3, 4 and p107 were recruited to the N-myc promoter in cells treated with BMP-6, whereas E2F1, 3, 4, 5, p107 and p130 were bound to this promoter in the presence of TGF-beta. Functionally, these different interactions resulted in transcriptional repression by BMP-6 and TGF-beta of the N-myc gene, via mechanisms that involved E2F binding to the promoter and association with pRb-family proteins. Thus, multiple combinations of E2F and pRb family proteins may associate with and transcriptionally regulate a given target promoter in response to differentiation and injury-repair stimuli in epidermal keratinocytes.

  8. Areca nut components stimulate ADAM17, IL-1α, PGE2 and 8-isoprostane production in oral keratinocyte: role of reactive oxygen species, EGF and JAK signaling.

    Science.gov (United States)

    Chang, Mei-Chi; Chan, Chiu-Po; Chen, Yi-Jane; Hsien, Hsiang-Chi; Chang, Ya-Ching; Yeung, Sin-Yuet; Jeng, Po-Yuan; Cheng, Ru-Hsiu; Hahn, Liang-Jiunn; Jeng, Jiiang-Huei

    2016-03-29

    Betel quid (BQ) chewing is an etiologic factor of oral submucous fibrosis (OSF) and oral cancer. There are 600 million BQ chewers worldwide. The mechanisms for the toxic and inflammatory responses of BQ are unclear. In this study, both areca nut (AN) extract (ANE) and arecoline stimulated epidermal growth factor (EGF) and interleukin-1α (IL-1α) production of gingival keratinocytes (GKs), whereas only ANE can stimulate a disintegrin and metalloproteinase 17 (ADAM17), prostaglandin E2 (PGE2) and 8-isoprostane production. ANE-induced EGF production was inhibited by catalase. Addition of anti-EGF neutralizing antibody attenuated ANE-induced cyclooxygenase-2 (COX-2), mature ADAM9 expression and PGE2 and 8-isoprostane production. ANE-induced IL-1α production was inhibited by catalase, anti-EGF antibody, PD153035 (EGF receptor antagonist) and U0126 (MEK inhibitor) but not by α-naphthoflavone (cytochrome p450-1A1 inhibitor). ANE-induced ADAM17 production was inhibited by pp2 (Src inhibitor), U0126, α-naphthoflavone and aspirin. AG490 (JAK inhibitor) prevented ANE-stimulated ADAM17, IL-1α, PGE2 production, COX-2 expression, ADAM9 maturation, and the ANE-induced decline in keratin 5 and 14, but showed little effect on cdc2 expression and EGF production. Moreover, ANE-induced 8-isoprostane production by GKs was inhibited by catalase, anti-EGF antibody, AG490, pp2, U0126, α-naphthoflavone, Zinc protoporphyrin (ZnPP) and aspirin. These results indicate that AN components may involve in BQ-induced oral cancer by induction of reactive oxygen species, EGF/EGFR, IL-1α, ADAMs, JAK, Src, MEK/ERK, CYP1A1, and COX signaling pathways, and the aberration of cell cycle and differentiation. Various blockers against ROS, EGF, IL-1α, ADAM, JAK, Src, MEK, CYP1A1, and COX can be used for prevention or treatment of BQ chewing-related diseases.

  9. Evidence for Alteration of EZH2, BMI1, and KDM6A and Epigenetic Reprogramming in Human Papillomavirus Type 16 E6/E7-Expressing Keratinocytes

    Science.gov (United States)

    Hyland, Paula L.; McDade, Simon S.; McCloskey, Rachel; Dickson, Glenda J.; Arthur, Ken; McCance, Dennis J.; Patel, Daksha

    2011-01-01

    A number of epigenetic alterations occur in both the virus and host cellular genomes during human papillomavirus (HPV)-associated carcinogenesis, and investigations of such alterations, including changes in chromatin proteins and histone modifications, have the potential to lead to therapeutic epigenetic reversion. We report here that transformed HPV16 E6/E7-expressing primary human foreskin keratinocytes (HFKs) (E6/E7 cells) demonstrate increased expression of the PRC2 methyltransferase EZH2 at both the mRNA and protein levels but do not exhibit the expected increase in trimethylated H3K27 (H3K27me3) compared to normal keratinocytes. In contrast, these cells show a reduction in global H3K27me3 levels in vitro, as well as upregulation of the KDM6A demethylase. We further show for the first time that transformation with the HPV16 E6 and E7 oncogenes also results in an increase in phosphorylated EZH2 serine 21 (P-EZH2-Ser21), mediated by active Akt, and in a downregulation of the PRC1 protein BMI1 in these cells. High-grade squamous cervical intraepithelial lesions also showed a loss of H3K27me3 in the presence of increased expression of EZH2. Correlating with the loss of H3K27me3, E6/E7 cells exhibited derepression of specific EZH2-, KMD6A-, and BMI1-targeted HOX genes. These results suggest that the observed reduction in H3K27me3 may be due to a combination of reduced activities/levels of specific polycomb proteins and increases in demethylases. The dysregulation of multiple chromatin proteins resulting in the loss of global H3K27me3 and the transcriptional reprogramming in HPV16 E6/E7-infected cells could provide an epigenetic signature associated with risk and/or progression of HPV16-associated cancers, as well as the potential for epigenetic reversion in the future. PMID:21865393

  10. Cortactin involvement in the keratinocyte growth factor and fibroblast growth factor 10 promotion of migration and cortical actin assembly in human keratinocytes

    International Nuclear Information System (INIS)

    Ceccarelli, Simona; Cardinali, Giorgia; Aspite, Nicaela; Picardo, Mauro; Marchese, Cinzia; Torrisi, Maria Rosaria; Mancini, Patrizia

    2007-01-01

    Keratinocyte growth factor (KGF/FGF7) and fibroblast growth factor 10 (FGF10/KGF2) regulate keratinocyte proliferation and differentiation by binding to the tyrosine kinase KGF receptor (KGFR). KGF induces keratinocyte motility and cytoskeletal rearrangement, whereas a direct role of FGF10 on keratinocyte migration is not clearly established. Here we analyzed the motogenic activity of FGF10 and KGF on human keratinocytes. Migration assays and immunofluorescence of actin cytoskeleton revealed that FGF10 is less efficient than KGF in promoting migration and exerts a delayed effect in inducing lamellipodia and ruffles formation. Both growth factors promoted phosphorylation and subsequent membrane translocation of cortactin, an F-actin binding protein involved in cell migration; however, FGF10-induced cortactin phosphorylation was reduced, more transient and delayed with respect to that promoted by KGF. Cortactin phosphorylation induced by both growth factors was Src-dependent, while its membrane translocation and cell migration were blocked by either Src and PI3K inhibitors, suggesting that both pathways are involved in KGF- and FGF10-dependent motility. Furthermore, siRNA-mediated downregulation of cortactin inhibited KGF- and FGF10-induced migration. These results indicate that cortactin is involved in keratinocyte migration promoted by both KGF and FGF10

  11. Loss of cadherin-based cell adhesion and the progression of Invasive Lobular Breast Cancer

    NARCIS (Netherlands)

    Vlug, E.J.

    2015-01-01

    Lobular breast cancer is a type of breast cancer that is histologically characterized by a noncohesive growth pattern of small regular cells, where single cells infiltrate as one-layered strands of cells. This noncohesive growth pattern is due to inactivation of the E-cadherin complex and a

  12. Gene expression based evidence of innate immune response activation in the epithelium with oral lichen planus

    Science.gov (United States)

    Adami, Guy R.; Yeung, Alexander C.F.; Stucki, Grant; Kolokythas, Antonia; Sroussi, Herve Y.; Cabay, Robert J.; Kuzin, Igor; Schwartz, Joel L.

    2014-01-01

    Objective Oral lichen planus (OLP) is a disease of the oral mucosa of unknown cause producing lesions with an intense band-like inflammatory infiltrate of T cells to the subepithelium and keratinocyte cell death. We performed gene expression analysis of the oral epithelium of lesions in subjects with OLP and its sister disease, oral lichenoid reaction (OLR), in order to better understand the role of the keratinocytes in these diseases. Design Fourteen patients with OLP or OLR were included in the study, along with a control group of 23 subjects with a variety of oral diseases and a normal group of 17 subjects with no clinically visible mucosal abnormalities. Various proteins have been associated with OLP, based on detection of secreted proteins or changes in RNA levels in tissue samples consisting of epithelium, stroma, and immune cells. The mRNA level of twelve of these genes expressed in the epithelium was tested in the three groups. Results Four genes showed increased expression in the epithelium of OLP patients: CD14, CXCL1, IL8, and TLR1, and at least two of these proteins, TLR1 and CXCL1, were expressed at substantial levels in oral keratinocytes. Conclusions Because of the large accumulation of T cells in lesions of OLP it has long been thought to be an adaptive immunity malfunction. We provide evidence that there is increased expression of innate immune genes in the epithelium with this illness, suggesting a role for this process in the disease and a possible target for treatment. PMID:24581860

  13. AMPK regulation of the growth of cultured human keratinocytes

    International Nuclear Information System (INIS)

    Saha, Asish K.; Persons, Kelly; Safer, Joshua D.; Luo Zhijun; Holick, Michael F.; Ruderman, Neil B.

    2006-01-01

    AMP kinase (AMPK) is a fuel sensing enzyme that responds to cellular energy depletion by increasing processes that generate ATP and inhibiting others that require ATP but are not acutely necessary for survival. In the present study, we examined the relationship between AMPK activation and the growth (proliferation) of cultured human keratinocytes and assessed whether the inhibition of keratinocyte growth by vitamin D involves AMPK activation. In addition, we explored whether the inhibition of keratinocyte proliferation as they approach confluence could be AMPK-related. Keratinocytes were incubated for 12 h with the AMPK activator, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). At concentrations of 10 -4 and 10 -3 M, AICAR inhibited keratinocyte growth by 50% and 95%, respectively, based on measurements of thymidine incorporation into DNA. It also increased AMPK and acetyl CoA carboxylase phosphorylation (P-AMPK and P-ACC) and decreased the concentration of malonyl CoA confirming that AMPK activation had occurred. Incubation with the thiazolidinedione, troglitazone (10 -6 M) caused similar alterations in P-AMPK, P-ACC, and cell growth. In contrast, the well known inhibition of keratinocyte growth by 1,25-dihydroxyvitamin D 3 (10 -7 and 10 -6 M) was not associated with changes in P-AMPK or P-ACC. Like most cells, the growth of keratinocytes diminished as they approached confluence. Thus, it was of note that we found a progressive increase in P-AMPK (1.5- to 2-fold, p 3 is AMPK-independent

  14. Decorin gene expression and its regulation in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Velez-DelValle, Cristina; Marsch-Moreno, Meytha; Castro-Munozledo, Federico [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico); Kuri-Harcuch, Walid, E-mail: walidkuri@gmail.com [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico)

    2011-07-22

    Highlights: {yields} We showed that cultured human diploid epidermal keratinocytes express and synthesize decorin. {yields} Decorin is found intracytoplasmic in suprabasal cells of cultures and in human epidermis. {yields} Decorin mRNA expression in cHEK is regulated by pro-inflammatory and proliferative cytokines. {yields} Decorin immunostaining of psoriatic lesions showed a lower intensity and altered intracytoplasmic arrangements. -- Abstract: In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.

  15. Differentiation of human scalp hair follicle keratinocytes in culture.

    Science.gov (United States)

    Weterings, P J; Verhagen, H; Wirtz, P; Vermorken, A J

    1984-01-01

    The morphology of human scalp hair follicle keratinocytes, cultured on the bovine eye lens capsule, is studied by light and electron microscopy. The hair follicle keratinocytes in the stratified cultures are characterized by the presence of numerous tonofilaments, desmosomes and lysosomes and by the presence of glycogen accumulations. The cells in the upper layers develop a cornified envelope. Moreover, an incomplete basal lamina is found between the capsule and the basal cells. However, some features of epidermal keratinocytes in vivo, such as keratohyalin granules and stratum corneum formation, are absent. Analysis of the polypeptides by sodium dodecylsulfate polyacrylamide gel electrophoresis also reveals differences between the cultured hair follicle cells and epidermis, whilst the patterns of cultured cells and hair follicle sheaths are similar. The morphological and protein biosynthetic aspects of terminal differentiation of the keratinocytes in vitro are correlated. These results are discussed in the light of the findings with cultured epidermal keratinocytes, reported in the literature.

  16. Role of human papillomavirus in oral squamous cell carcinoma and oral potentially malignant disorders: A review of the literature

    Science.gov (United States)

    Gupta, Shikha; Gupta, Sunita

    2015-01-01

    Human papillomaviruses (HPVs) are epitheliotropic viruses with an affinity for keratinocytes and are principally found in the anogenital tract, urethra, skin, larynx, tracheobronchial and oral mucosa. On the basis of high, but variable frequency of HPV in oral squamous cell carcinoma (OSCC), malignant potential of HPV infection has been hypothesized but not definitely confirmed. The aim of this review was to highlight the genomic structure and possible mechanism of infection and carcinogenesis by HPV in the oral mucosa and to review the frequency of HPV prevalence in OSCC and oral potentially malignant disorders. A computer database search was performed through the use of PubMed from 1994 to 2014. Search keywords used were: HPV and oral cancer, HPV and oral leukoplakia, HPV and oral lichen planus, HPV and OSCC, HPV and verrucous carcinoma, HPV and proliferative verrucous leukoplakia, HPV and oral papilloma. PMID:26097339

  17. A positive role of cadherin in Wnt/β-catenin signalling during epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Sara Howard

    Full Text Available The Wnt/β-catenin signalling pathway shares a key component, β-catenin, with the cadherin-based adhesion system. The signalling function of β-catenin is conferred by a soluble cytoplasmic pool that is unstable in the absence of a Wnt signal, whilst the adhesion function is based on a cadherin-bound, stable pool at the membrane. The cadherin complex is dynamic, allowing for cell-cell rearrangements such as epithelial-mesenchymal transition (EMT, where the complex turns over through internalisation. Potential interplay between the two pools remains poorly understood, but cadherins are generally considered negative regulators of Wnt signalling because they sequester cytoplasmic β-catenin. Here we explore how cellular changes at EMT affect the signalling capacity of β-catenin using two models of EMT: hepatocyte growth factor (HGF treatment of MDCK cells, and gastrulation in embryonic development. We show that EMT not only provides a pool of signalling-competent β-catenin following internalisation of cadherin, but also significantly facilitates activation of the Wnt pathway in response to both Wnt signals and exogenous β-catenin. We further demonstrate that availability of β-catenin in the cytoplasm does not necessarily correlate with Wnt/β-catenin pathway activity, since blocking endocytosis or depleting endogenous cadherin abolishes pathway activation despite the presence of β-catenin in the cytoplasm. Lastly we present data suggesting that cadherins are required for augmented activation of the Wnt/β-catenin pathway in vivo. This suggests that cadherins play a crucial role in β-catenin-dependent transcription.

  18. Immunohistochemical evaluation of e-cadherin, Ki-67 and PCNA in canine mammary neoplasias: correlation of prognostic factors and clinical outcome Avaliação imuno-histoquímica da e-caderina, Ki-67 e PCNA nas neoplasias mamárias caninas: correlação dos fatores prognósticos com a evolução clínica

    Directory of Open Access Journals (Sweden)

    Debora A.P.C. Zuccari

    2008-04-01

    Full Text Available E-cadherin is a cell-cell adhesion molecule and low e-cadherin expression is related to invasiveness and may indicate a bad prognosis in mammary neoplasms. The expression of cell proliferation markers PCNA and especially Ki-67, has also proved to have a strong prognostic value in this tumor class. The expression of these markers was related to the clinical-pathological characteristics of 73 surgically removed mammary tumors in female dogs by immunohistochemistry. There was no statistical correlation between these markers and death by neoplasm, survival time and disease-free interval. However, the loss of e-cadherin expression and marked Ki-67 expression (p=0.016 were considered statistically significant for the diagnosis (p=0.032. When evaluated as independent factors, there was evidence of the relationship between the loss of e-cadherin expression and high PCNA expression with changes in the body status (divided into obese, normal and cachectic of female dogs (p=0.030; there was also evidence of the relationship between pseudopregnancy and e-cadherin alone (p=0.021 and for ulceration and PCNA alone (p=0.035. The significant correlation between the markers expression and these well known prognostic factors used individually or in combination suggests their prognostic value in canine mammary tumors.A e-caderina é uma molécula de adesão celular e a perda de sua expressão esta relacionada à invasão tumoral podendo indicar um prognóstico ruim nas neoplasias mamárias. A expressão dos marcadores de proliferação celular PCNA e especialmente o Ki-67, também têm mostrado forte valor prognóstico nesta classe tumoral. A expressão imuno-histoquímica destes marcadores foi relacionada com as características clinico-patológicas de 73 tumores removidos cirurgicamente de fêmeas caninas. Não houve correlação estatística entre estes marcadores e a morte por neoplasia, tempo de sobrevida e intervalo livre de doença. Entretanto, a perda da

  19. Impact of pH on the structure and function of neural cadherin.

    Science.gov (United States)

    Jungles, Jared M; Dukes, Matthew P; Vunnam, Nagamani; Pedigo, Susan

    2014-12-02

    Neural (N-) cadherin is a transmembrane protein within adherens junctions that mediates cell-cell adhesion. It has 5 modular extracellular domains (EC1-EC5) that bind 3 calcium ions between each of the modules. Calcium binding is required for dimerization. N-Cadherin is involved in diverse processes including tissue morphogenesis, excitatory synapse formation and dynamics, and metastasis of cancer. During neurotransmission and tumorigenesis, fluctuations in extracellular pH occur, causing tissue acidosis with associated physiological consequences. Studies reported here aim to determine the effect of pH on the dimerization properties of a truncated construct of N-cadherin containing EC1-EC2. Since N-cadherin is an anionic protein, we hypothesized that acidification of solution would cause an increase in stability of the apo protein, a decrease in the calcium-binding affinity, and a concomitant decrease in the formation of adhesive dimer. The stability of the apo monomer was increased and the calcium-binding affinity was decreased at reduced pH, consistent with our hypothesis. Surprisingly, analytical SEC studies showed an increase in calcium-induced dimerization as solution pH decreased from 7.4 to 5.0. Salt-dependent dimerization studies indicated that electrostatic repulsion attenuates dimerization affinity. These results point to a possible electrostatic mechanism for moderating dimerization affinity of the Type I cadherin family. Extrapolating these results to cell adhesion in vivo leads to the assertion that decreased pH promotes adhesion by N-cadherin, thereby stabilizing synaptic junctions.

  20. Octamer-binding protein 4 affects the cell biology and phenotypic transition of lung cancer cells involving β-catenin/E-cadherin complex degradation.

    Science.gov (United States)

    Chen, Zhong-Shu; Ling, Dong-Jin; Zhang, Yang-De; Feng, Jian-Xiong; Zhang, Xue-Yu; Shi, Tian-Sheng

    2015-03-01

    Clinical studies have reported evidence for the involvement of octamer‑binding protein 4 (Oct4) in the tumorigenicity and progression of lung cancer; however, the role of Oct4 in lung cancer cell biology in vitro and its mechanism of action remain to be elucidated. Mortality among lung cancer patients is more frequently due to metastasis rather than their primary tumors. Epithelial‑mesenchymal transition (EMT) is a prominent biological event for the induction of epithelial cancer metastasis. The aim of the present study was to investigate whether Oct4 had the capacity to induce lung cancer cell metastasis via the promoting the EMT in vitro. Moreover, the effect of Oct4 on the β‑catenin/E‑cadherin complex, associated with EMT, was examined using immunofluorescence and immunoprecipitation assays as well as western blot analysis. The results demonstrated that Oct4 enhanced cell invasion and adhesion accompanied by the downregulation of epithelial marker cytokeratin, and upregulation of the mesenchymal markers vimentin and N‑cadherin. Furthermore, Oct4 induced EMT of lung cancer cells by promoting β‑catenin/E‑cadherin complex degradation and regulating nuclear localization of β‑catenin. In conclusion, the present study indicated that Oct4 affected the cell biology of lung cancer cells in vitro through promoting lung cancer cell metastasis via EMT; in addition, the results suggested that the association and degradation of the β‑catenin/E‑cadherin complex was regulated by Oct4 during the process of EMT.

  1. Fibroblast growth factor signaling potentiates VE-cadherin stability at adherens junctions by regulating SHP2.

    Directory of Open Access Journals (Sweden)

    Kunihiko Hatanaka

    Full Text Available The fibroblast growth factor (FGF system plays a critical role in the maintenance of vascular integrity via enhancing the stability of VE-cadherin at adherens junctions. However, the precise molecular mechanism is not well understood. In the present study, we aimed to investigate the detailed mechanism of FGF regulation of VE-cadherin function that leads to endothelial junction stabilization.In vitro studies demonstrated that the loss of FGF signaling disrupts the VE-cadherin-catenin complex at adherens junctions by increasing tyrosine phosphorylation levels of VE-cadherin. Among protein tyrosine phosphatases (PTPs known to be involved in the maintenance of the VE-cadherin complex, suppression of FGF signaling reduces SHP2 expression levels and SHP2/VE-cadherin interaction due to accelerated SHP2 protein degradation. Increased endothelial permeability caused by FGF signaling inhibition was rescued by SHP2 overexpression, indicating the critical role of SHP2 in the maintenance of endothelial junction integrity.These results identify FGF-dependent maintenance of SHP2 as an important new mechanism controlling the extent of VE-cadherin tyrosine phosphorylation, thereby regulating its presence in adherens junctions and endothelial permeability.

  2. Hepatocyte and keratinocyte growth factors and their receptors in human lung emphysema

    Directory of Open Access Journals (Sweden)

    Marchal Joëlle

    2005-10-01

    Full Text Available Abstract Background Hepatocyte and keratinocyte growth factors are key growth factors in the process of alveolar repair. We hypothesized that excessive alveolar destruction observed in lung emphysema involves impaired expression of hepatocyte and keratinocyte growth factors or their respective receptors, c-met and keratinocyte growth factor receptor. The aim of our study was to compare the expression of hepatocyte and keratinocyte growth factors and their receptors in lung samples from 3 groups of patients: emphysema; smokers without emphysema and non-smokers without emphysema. Methods Hepatocyte and keratinocyte growth factor proteins were analysed by immunoassay and western blot; mRNA expression was measured by real time quantitative polymerase chain reaction. Results Hepatocyte and keratinocyte growth factors, c-met and keratinocyte growth factor receptor mRNA levels were similar in emphysema and non-emphysema patients. Hepatocyte growth factor mRNA correlated negatively with FEV1 and the FEV1/FVC ratio both in emphysema patients and in smokers with or without emphysema. Hepatocyte and keratinocyte growth factor protein concentrations were similar in all patients' groups. Conclusion The expression of hepatocyte and keratinocyte growth factors and their receptors is preserved in patients with lung emphysema as compared to patients without emphysema. Hepatocyte growth factor mRNA correlates with the severity of airflow obstruction in smokers.

  3. Establishment of primary keratinocyte culture from horse tissue biopsates

    Directory of Open Access Journals (Sweden)

    Jernej OGOREVC

    2015-12-01

    Full Text Available Primary cell lines established from skin tissue can be used in immunological, proteomic and genomic studies as in vitro skin models. The goal of our study was to establish a primary keratinocyte cell culture from tissue biopsates of two horses. The primary keratinocyte cell culture was obtained by mechanical and enzymatic dissociation and with explant culture method. The result was a heterogeneous primary culture comprised of keratinocytes and fibroblasts. To distinguish epithelial and mesenchymal cells immunofluorescent characterisation was performed, using antibodies against cytokeratin 14 and vimentin. We successfully at attained a primary cell line of keratinocytes, which could potentially be used to study equine skin diseases, as an animal model for human diseases, and for cosmetic and therapeutic product testing.

  4. N-cadherin{sup +} HSCs in fetal liver exhibit higher long-term bone marrow reconstitution activity than N-cadherin{sup -} HSCs

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Hirofumi; Arai, Fumio; Hosokawa, Kentaro; Ikushima, Yoshiko Matsumoto [Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Suda, Toshio, E-mail: sudato@z3.keio.jp [Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer High N-cad expression was detected in E12.5 mouse FL LT-HSCs (EPCR{sup +} LSK cells). Black-Right-Pointing-Pointer Immunohistochemically, N-cad{sup +} HSCs co-localized with sinusoidal ECs (Lyve-1{sup +} cells) in E12.5 FL, but these gradually detached in E15.5 and E18.5 FL. Black-Right-Pointing-Pointer N-cad{sup +} LSK cells in E12.5 FL exhibited higher LTR activity versus N-cad{sup -} LSK cells, which decreased in E15.5 and E18.5. Black-Right-Pointing-Pointer N-cad expression may confer high LTR activity to HSCs by facilitating interactions with the perisinusoidal niche in FL. -- Abstract: Adult hematopoietic stem cells (HSCs) are maintained in a microenvironment known as the stem cell niche. The regulation of HSCs in fetal liver (FL) and their niche, however, remains to be elucidated. In this study, we investigated the role of N-cadherin (N-cad) in the maintenance of HSCs during FL hematopoiesis. By using anti-N-cad antibodies (Abs) produced by our laboratory, we detected high N-cad expression in embryonic day 12.5 (E12.5) mouse FL HSCs, but not in E15.5 and E18.5 FL. Immunofluorescence staining revealed that N-cad{sup +}c-Kit{sup +} and N-cad{sup +} endothelial protein C receptor (EPCR){sup +} HSCs co-localized with Lyve-1{sup +} sinusoidal endothelial cells (ECs) in E12.5 FL and that some of these cells also expressed N-cad. However, N-cad{sup +} HSCs were also observed to detach from the perisinusoidal niche at E15.5 and E18.5, concomitant with a down-regulation of N-cad and an up-regulation of E-cadherin (E-cad) in hepatic cells. Moreover, EPCR{sup +} long-term (LT)-HSCs were enriched in the N-cad{sup +}Lin{sup -}Sca-1{sup +}c-Kit{sup +} (LSK) fraction in E12.5 FL, but not in E15.5 or E18.5 FL. In a long-term reconstitution (LTR) activity assay, higher engraftment associated with N-cad{sup +} LSK cells versus N-cad{sup -} LSK cells in E12.5 FL when transplanted into lethally irradiated recipient mice. However, the

  5. Protective effect of different antioxidant agents in UVB-irradiated keratinocytes

    Directory of Open Access Journals (Sweden)

    Sara Salucci

    2017-09-01

    Full Text Available Skin cells can respond to UVB-induced damage either by tolerating it, or restoring it through antioxidant activation and DNA repair mechanisms or, ultimately, undergoing programmed cell death, when damage is massive. Nutritional factors, in particular, food antioxidants, have attracted much interest because of their potential use in new preventive, protective, and therapeutic strategies for chronic degenerative diseases, including skin inflammation and cancer. Some polyphenols, present in virgin olive oil, well tolerated by organism after oral administration, show a variety of pharmacological and clinical benefits such as anti-oxidant, anti-cancer, anti-inflammatory, and neuro-protective activities. Here, the protective effects of antioxidant compounds against UV-induced apoptosis have been described in HaCat cell line. Human keratinocytes were pre-treated with antioxidants before UVB exposure and their effects have been evaluated by means of ultrastructural analyses. After UVB radiation, a known cell death trigger, typical apoptotic features, absent in control condition and in antioxidant alone-treated cells, appear. An evident numerical decrease of ultrastructural apoptotic patterns and TUNEL positive nuclei can be observed when natural antioxidants were supplied before cell death induction. These data have been confirmed by molecular investigation of caspase activity. In conclusion, this paper highlights antioxidant compound ability to prevent apoptotic cell death in human keratinocytes exposed to UVB, suggesting, for these molecules, a potential role in preventing skin damage. 

  6. Smad4 disruption accelerates keratinocyte reepithelialization in murine cutaneous wound repair.

    Science.gov (United States)

    Yang, Leilei; Li, Wenlong; Wang, Shaoxia; Wang, Lijuan; Li, Yang; Yang, Xiao; Peng, Ruiyun

    2012-10-01

    Keratinocyte reepithelialization is a rate-limiting event in cutaneous wound repair, which involves the migration and proliferation of keratinocytes to cover the denuded dermal surface. Transforming growth factor-β1 (TGF-β1) has the ability to induce epithelial cell migration while inhibiting proliferation, and controversial results have been generated regarding the effect of TGF-β signaling on reepithelialization. In this study, full-thickness skin wounds were made in keratinocyte-specific Smad4 knockout and the control mice. The wound closure, reepithelialization, keratinocyte proliferation, myofibroblast numbers and collagen deposition of were assessed. The results showed that the proliferation of keratinocytes increased, which accelerated the reepithelialization, and led to faster wound repair in the epidermis of Smad4 mutant mice. Upregulation of keratin 17, 14-3-3 sigma and phosphorylated AKT in the hyperproliferative epidermis may be correlated with the accelerated reepithelialization. We conclude that Smad4 plays an inhibitory role in the keratinocyte-mediated reepithelialization of wound healing.

  7. In vivo relative quantitative proteomics reveals HMGB1 as a downstream mediator of oestrogen-stimulated keratinocyte migration.

    Science.gov (United States)

    Shin, Jung U; Noh, Ji Yeon; Lee, Ju Hee; Lee, Won Jai; Yoo, Jong Shin; Kim, Jin Young; Kim, Hyeran; Jung, Inhee; Jin, Shan; Lee, Kwang Hoon

    2015-06-01

    It is known that oestrogen influences skin wound healing by modulating the inflammatory response, cytokine expression and extracellular matrix deposition; accelerating re-epithelialization; and stimulating angiogenesis. To identify novel proteins associated with effects of oestrogen on keratinocyte, stable isotope labelling by amino acids in cell culture (SILAC)-based mass spectrometry was performed. Using SILAC, quantification of 1085 proteins was achieved. Among these proteins, 60 proteins were upregulated and 32 proteins were downregulated. Among significantly upregulated proteins, high-mobility group protein B1 (HMGB1) has been further evaluated for its role in the effect of oestrogen on keratinocytes. HMGB1 expression was strongly induced in oestrogen-treated keratinocytes in dose- and time-dependent manner. Further, HMGB1 was able to significantly accelerate the rate of HaCaT cell migration. To determine whether HMGB1 is involved in E2-induced HaCaT cell migration, cells were transfected with HMGB1 siRNA. Knockdown of HMGB1 blocked oestrogen-induced keratinocyte migration. Collectively, these experiments demonstrate that HMGB1 is a novel downstream mediator of oestrogen-stimulated keratinocyte migration. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Keratinocytes from APP/APLP2-deficient mice are impaired in proliferation, adhesion and migration in vitro

    International Nuclear Information System (INIS)

    Siemes, Christina; Quast, Thomas; Kummer, Christiane; Wehner, Sven; Kirfel, Gregor; Mueller, Ulrike; Herzog, Volker

    2006-01-01

    Growing evidence shows that the soluble N-terminal form (sAPPα) of the amyloid precursor protein (APP) represents an epidermal growth factor fostering keratinocyte proliferation, migration and adhesion. APP is a member of a protein family including the two mammalian amyloid precursor-like proteins APLP1 and APLP2. In the mammalian epidermis, only APP and APLP2 are expressed. APP and APLP2-deficient mice die shortly after birth but do not display a specific epidermal phenotype. In this report, we investigated the epidermis of APP and/or APLP2 knockout mice. Basal keratinocytes showed reduced proliferation in vivo by about 40%. Likewise, isolated keratinocytes exhibited reduced proliferation rates in vitro, which could be completely rescued by either exogenously added recombinant sAPPα, or by co-culture with dermal fibroblasts derived from APP knockout mice. Moreover, APP-knockout keratinocytes revealed reduced migration velocity resulting from severely compromised cell substrate adhesion. Keratinocytes from double knockout mice died within the first week of culture, indicating essential functions of APP-family members for survival in vitro. Our data indicate that sAPPα has to be considered as an essential epidermal growth factor which, however, in vivo can be functionally compensated to a certain extent by other growth factors, e.g., factors released from dermal fibroblasts

  9. Direct regulation of E-cadherin by targeted histone methylation of TALE-SET fusion protein in cancer cells.

    Science.gov (United States)

    Cho, Hyun-Soo; Kang, Jeong Gu; Lee, Jae-Hye; Lee, Jeong-Ju; Jeon, Seong Kook; Ko, Jeong-Heon; Kim, Dae-Soo; Park, Kun-Hyang; Kim, Yong-Sam; Kim, Nam-Soon

    2015-09-15

    TALE-nuclease chimeras (TALENs) can bind to and cleave specific genomic loci and, are used to engineer gene knockouts and additions. Recently, instead of using the FokI domain, epigenetically active domains, such as TET1 and LSD1, have been combined with TAL effector domains to regulate targeted gene expression via DNA and histone demethylation. However, studies of histone methylation in the TALE system have not been performed. Therefore, in this study, we established a novel targeted regulation system with a TAL effector domain and a histone methylation domain. To construct a TALE-methylation fusion protein, we combined a TAL effector domain containing an E-Box region to act as a Snail binding site and the SET domain of EHMT 2 to allow for histone methylation. The constructed TALE-SET module (TSET) repressed the expression of E-cadherin via by increasing H3K9 dimethylation. Moreover, the cells that overexpressed TSET showed increased cell migration and invasion. This is the first phenotype-based study of targeted histone methylation by the TALE module, and this new system can be applied in new cancer therapies to reduce side effects.

  10. Keratin-6 driven ODC expression to hair follicle keratinocytes enhances stemness and tumorigenesis by negatively regulating Notch

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, Aadithya; Weng, Zhiping; Chaudhary, Sandeep C.; Afaq, Farrukh [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019 (United States); Elmets, Craig A. [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019 (United States); Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019 (United States); Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2014-08-29

    Highlights: • Targeting ODC to hair follicle augments skin carcinogenesis and invasive SCCs. • Hair follicle ODC expands stem cell compartment carrying CD34{sup +}/K15{sup +}/p63{sup +} keratinocytes. • Negatively regulated Notch1 is associated with expansion of stem cell compartment. - Abstract: Over-expression of ornithine decarboxylase (ODC) is known to be involved in the epidermal carcinogenesis. However, the mechanism by which it enhances skin carcinogenesis remains undefined. Recently, role of stem cells localized in various epidermal compartments has been shown in the pathogenesis of skin cancer. To direct ODC expression in distinct epidermal compartments, we have developed keratin 6 (K6)-ODC/SKH-1 and keratin 14 (K14)-ODC/SKH-1 mice and employed them to investigate the role of ODC directed to these epidermal compartments on UVB-induced carcinogenesis. K6-driven ODC over-expression directed to outer root sheath (ORS) of hair follicle was more effective in augmenting tumorigenesis as compared to mice where K14-driven ODC expression was directed to inter-follicular epidermal keratinocytes. Chronically UVB-irradiated K6-ODC/SKH-1 developed 15 ± 2.5 tumors/mouse whereas K14-ODC/SKH-1 developed only 6.8 ± 1.5 tumors/mouse. K6-ODC/SKH-1 showed augmented UVB-induced proliferation and much higher pro-inflammatory responses than K14-ODC/SKH-1 mice. Tumors induced in K6-ODC/SKH-1 were rapidly growing, invasive and ulcerative squamous cell carcinoma (SCC) showing decreased expression of epidermal polarity marker E-cadherin and enhanced mesenchymal marker, fibronectin. Interestingly, the number of CD34/CK15/p63 positive stem-like cells was significantly higher in chronically UVB-irradiated K6-ODC/SKH-1 as compared to K14-ODC/SKH-1 mice. Reduced Notch1 expression was correlated with the expansion of stem cell compartment in these animals. However, other signaling pathways such as DNA damage response or mTOR signaling pathways were not significantly different in

  11. Keratin-6 driven ODC expression to hair follicle keratinocytes enhances stemness and tumorigenesis by negatively regulating Notch

    International Nuclear Information System (INIS)

    Arumugam, Aadithya; Weng, Zhiping; Chaudhary, Sandeep C.; Afaq, Farrukh; Elmets, Craig A.; Athar, Mohammad

    2014-01-01

    Highlights: • Targeting ODC to hair follicle augments skin carcinogenesis and invasive SCCs. • Hair follicle ODC expands stem cell compartment carrying CD34 + /K15 + /p63 + keratinocytes. • Negatively regulated Notch1 is associated with expansion of stem cell compartment. - Abstract: Over-expression of ornithine decarboxylase (ODC) is known to be involved in the epidermal carcinogenesis. However, the mechanism by which it enhances skin carcinogenesis remains undefined. Recently, role of stem cells localized in various epidermal compartments has been shown in the pathogenesis of skin cancer. To direct ODC expression in distinct epidermal compartments, we have developed keratin 6 (K6)-ODC/SKH-1 and keratin 14 (K14)-ODC/SKH-1 mice and employed them to investigate the role of ODC directed to these epidermal compartments on UVB-induced carcinogenesis. K6-driven ODC over-expression directed to outer root sheath (ORS) of hair follicle was more effective in augmenting tumorigenesis as compared to mice where K14-driven ODC expression was directed to inter-follicular epidermal keratinocytes. Chronically UVB-irradiated K6-ODC/SKH-1 developed 15 ± 2.5 tumors/mouse whereas K14-ODC/SKH-1 developed only 6.8 ± 1.5 tumors/mouse. K6-ODC/SKH-1 showed augmented UVB-induced proliferation and much higher pro-inflammatory responses than K14-ODC/SKH-1 mice. Tumors induced in K6-ODC/SKH-1 were rapidly growing, invasive and ulcerative squamous cell carcinoma (SCC) showing decreased expression of epidermal polarity marker E-cadherin and enhanced mesenchymal marker, fibronectin. Interestingly, the number of CD34/CK15/p63 positive stem-like cells was significantly higher in chronically UVB-irradiated K6-ODC/SKH-1 as compared to K14-ODC/SKH-1 mice. Reduced Notch1 expression was correlated with the expansion of stem cell compartment in these animals. However, other signaling pathways such as DNA damage response or mTOR signaling pathways were not significantly different in tumors induced

  12. Chemosensory Information Processing between Keratinocytes and Trigeminal Neurons

    Science.gov (United States)

    Sondersorg, Anna Christina; Busse, Daniela; Kyereme, Jessica; Rothermel, Markus; Neufang, Gitta; Gisselmann, Günter; Hatt, Hanns; Conrad, Heike

    2014-01-01

    Trigeminal fibers terminate within the facial mucosa and skin and transmit tactile, proprioceptive, chemical, and nociceptive sensations. Trigeminal sensations can arise from the direct stimulation of intraepithelial free nerve endings or indirectly through information transmission from adjacent cells at the peripheral innervation area. For mechanical and thermal cues, communication processes between skin cells and somatosensory neurons have already been suggested. High concentrations of most odors typically provoke trigeminal sensations in vivo but surprisingly fail to activate trigeminal neuron monocultures. This fact favors the hypothesis that epithelial cells may participate in chemodetection and subsequently transmit signals to neighboring trigeminal fibers. Keratinocytes, the major cell type of the epidermis, express various receptors that enable reactions to multiple environmental stimuli. Here, using a co-culture approach, we show for the first time that exposure to the odorant chemicals induces a chemical communication between human HaCaT keratinocytes and mouse trigeminal neurons. Moreover, a supernatant analysis of stimulated keratinocytes and subsequent blocking experiments with pyrodoxalphosphate-6-azophenyl-2′,4′-disulfonate revealed that ATP serves as the mediating transmitter molecule released from skin cells after odor stimulation. We show that the ATP release resulting from Javanol® stimulation of keratinocytes was mediated by pannexins. Consequently, keratinocytes act as chemosensors linking the environment and the trigeminal system via ATP signaling. PMID:24790106

  13. Foxn1 Transcription Factor Regulates Wound Healing of Skin through Promoting Epithelial-Mesenchymal Transition.

    Directory of Open Access Journals (Sweden)

    Barbara Gawronska-Kozak

    Full Text Available Transcription factors are key molecules that finely tune gene expression in response to injury. We focused on the role of a transcription factor, Foxn1, whose expression is limited to the skin and thymus epithelium. Our previous studies showed that Foxn1 inactivity in nude mice creates a pro-regenerative environment during skin wound healing. To explore the mechanistic role of Foxn1 in the skin wound healing process, we analyzed post-injured skin tissues from Foxn1::Egfp transgenic and C57BL/6 mice with Western Blotting, qRT-PCR, immunofluorescence and flow cytometric assays. Foxn1 expression in non-injured skin localized to the epidermis and hair follicles. Post-injured skin tissues showed an intense Foxn1-eGFP signal at the wound margin and in leading epithelial tongue, where it co-localized with keratin 16, a marker of activated keratinocytes. This data support the concept that suprabasal keratinocytes, expressing Foxn1, are key cells in the process of re-epithelialization. The occurrence of an epithelial-mesenchymal transition (EMT was confirmed by high levels of Snail1 and Mmp-9 expression as well as through co-localization of vimentin/E-cadherin-positive cells in dermis tissue at four days post-wounding. Involvement of Foxn1 in the EMT process was verified by co-localization of Foxn1-eGFP cells with Snail1 in histological sections. Flow cytometric analysis showed the increase of double positive E-cadherin/N-cadherin cells within Foxn1-eGFP population of post-wounded skin cells isolates, which corroborated histological and gene expression analyses. Together, our findings indicate that Foxn1 acts as regulator of the skin wound healing process through engagement in re-epithelization and possible involvement in scar formation due to Foxn1 activity during the EMT process.

  14. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals

    International Nuclear Information System (INIS)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-ichi; Kotani, Eiji; Hirano, Tomoko; Nakajima, Yumiko; Matsumoto, Goichi; Mori, Hajime

    2014-01-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase–Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. - Highlights: • 3D cultures using FGF-2 and FGF-7 microcrystals as a human skin model • Cytoprotection of keratinocytes against ROS by FGF-7 microcrystals • Overexpression of SOD and Prdx6 in keratinocytes by FGF-7 microcrystals

  15. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-ichi [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Kotani, Eiji [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan); Hirano, Tomoko [Venture Laboratory, Kyoto Institute of Technology, Kyoto (Japan); Nakajima, Yumiko [Functional Genomics Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa (Japan); Matsumoto, Goichi [Division of Oral Surgery, Yokohama Clinical Education Center of Kanagawa Dental University, Yokohama (Japan); Mori, Hajime, E-mail: hmori@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan)

    2014-09-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase–Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. - Highlights: • 3D cultures using FGF-2 and FGF-7 microcrystals as a human skin model • Cytoprotection of keratinocytes against ROS by FGF-7 microcrystals • Overexpression of SOD and Prdx6 in keratinocytes by FGF-7 microcrystals.

  16. Intermittent pressure decreases human keratinocyte proliferation in vitro.

    Science.gov (United States)

    Nasca, Maria R; Shih, Alan T; West, Dennis P; Martinez, Wanda M; Micali, Giuseppe; Landsman, Adam S

    2007-01-01

    The aim of this study was to investigate the correlation between pressure changes and keratinocyte proliferation by determining whether keratinocytes exposed to altered mechanical pressures would proliferate at different rates compared to control cells not subjected to pressure changes. Tissue culture flasks of human keratinocytes plated at an approximate density of 15,000 cells/cm(2) undergoing an intermittent cyclic pressure of 362 mm Hg at a frequency of 2.28 or 5.16 cycles/min (0.038 or 0.086 Hz) for 8 h were compared to control flasks grown at ambient room pressure. An in-line pressure transducer was used to monitor and adjust pressure within the cell chambers, using a solenoid valve. A thymidine incorporation assay assessed the amount of cell proliferation in each set of experiments. Differences in proliferation between keratinocytes subjected to cyclic pressure changes and control cells were found to be statistically significant (p < 0.05) in 4 out of 5 proliferation assays. Also, a higher frequency of pressure changes consistently generated a reduced proliferation rate compared to that seen in cells exposed to a lower frequency of pressure changes. These data indicate that keratinocytes undergoing intermittent pressure changes exhibit decreased proliferation rates compared to controls. Furthermore, an increased frequency rate seems to have a greater effect on proliferation than low-frequency rate pressure changes, suggesting that the stress caused by frequently changed pressure may play a greater role in reducing keratinocyte proliferation than the actual magnitude of load applied to the cells. Our results support the current treatment protocol of reducing speed and duration of walking on the site of the wound to promote healing of foot ulcers. (c) 2007 S. Karger AG, Basel.

  17. Effect of Nanodiamond and Nanoplatinum Liquid, DPV576, on Human Primary Keratinocytes.

    Science.gov (United States)

    Ghoneum, Mamdooh H; Katano, Hideki; Agrawal, Sudhanshu; Ganguly, Sreerupa; Agrawal, Anshu

    2017-01-01

    Nanofabrics are now being used in a wide range of products that come into direct contact with skin, including carpet, clothing, and medical fabrics. In the current study, we examined the effect of a dispersed aqueous mixture of nanodiamond (ND) and nanoplatinum (NP) (DPV576) on human primary keratinocytes with respect to transient receptor potential vanilloid (TRPV) channel expression, secretion of cytokines and production of nerve growth factor (NGF). Keratinocytes were treated with DPV576 at concentrations of 1:10 and 1:100 dilutions for 24 hours in vitro, and their activation of was determined by production of cytokines TNF-α, IL-1β, and prostaglandin (PGE2), and by production of NGF. Inhibitor experiments were carried out by incubating keratinocytes with the TRPV4-selective antagonist HC-067047. TRPV receptor expression (TRPV1, TRPV3 and TRPV4) on keratinocytes as well as changes in Ca2+ potential were examined by flow cytometry. DPV576 treatment of keratinocytes resulted in the following effects: (1) stimulation of keratinocytes as indicated by the significant secretion of cytokines IL-1β, TNF-α, and PGE2, an effect noted only at higher concentration (1:10); (2) significant decrease in the expression of TRPV4 on keratinocytes with a spike in the calcium flux, but no change in the expression of TRPV1 and TRPV3; (3) induction of cytokine secretion independent of TRPV4, as the addition of TRPV4 inhibitor had no significant effect on the cytokine production from keratinocytes; (4) induction of NGF secretion by keratinocytes. These results demonstrate that DPV576 activates keratinocytes via multiple signaling pathways which may reduce stress associated with inflammation, pain, and circadian rhythms. ND/NP-coated fabrics that target the modulation of local inflammation, pain, and circadian rhythms could potentially be of benefit to humans.

  18. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    OpenAIRE

    Bayer, Andreas; Tohidnezhad, Mersedeh; Lammel, Justus; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen

    2017-01-01

    Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF?) came recently into the physicians' focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiatio...

  19. Cadherin-Catenin Complex Dissociation in Lobular Neoplasia of the Breast

    Science.gov (United States)

    Morrogh, Mary; Andrade, Victor P.; Giri, Dilip; Sakr, Rita A.; Paik, Wooyul; Qin, Li-Xuan; Arroyo, Crispinita D.; Brogi, Edi; Morrow, Monica; King, Tari A.

    2015-01-01

    Background E-cadherin (E-CD) inactivation with loss of E-CD-mediated cell adhesion is the hallmark of lesions of the lobular phenotype. E-CD is typically absent by immunohistochemistry in both lobular carcinoma in situ (LCIS) and invasive lobular lesions, suggesting it occurs early in the neoplastic process. In laboratory models, downstream post-transcriptional modifiers such as TWIST and SNAIL contribute to the dissociation of the intracellular component of the cadherin-catenin complex (CCC), resulting in tumor progression and invasion. We hypothesized that complete CCC dissociation may play a role in lobular neoplasia progression. Here we explore the relationship between loss of E-CD and dissociation of the CCC in pure LCIS and LCIS associated with invasive cancer. Methods Fresh-frozen tissues were obtained from 36 patients undergoing mastectomy for pure LCIS (n=11), LCIS with ILC (n=18) or LCIS with IDC (n=7). Individual lesions were subject to laser-capture microdissection and gene-expression analysis (Affymetrix HG-U133A 2.0). Immunohistochemistry for ER,PR,HER2, E-CD,N-CD,α-,β-, and phosphoβ-catenin, TWIST, and SNAIL were evaluated in normal, in situ, and invasive components from matched formalin-fixed paraffin-embedded samples(n=36). CCC-dissociation was defined as negative membranous E-CD, α- and β-catenin expression. Results E-CD was negative in all LCIS and ILC lesions, and positive in all normal and IDC lesions. Membranous α and β-catenin expression decreased with the transition from LCIS to ILC (pure LCIS 82%;LCIS w/ILC 28%;ILC 0%), while TWIST expression increased (pure LCIS low;LCIS w/ILC moderate;ILC high). Gene expression paralleled IHC staining patterns with a stepwise downregulation of E-CD, α and β-catenin from normal to LCIS to invasive lesions, and increasing expression of TWIST from normal to LCIS to ILC. Conclusions Loss of E-CD expression is an early event in lobular neoplasia. Decreasing membranous catenin expression in tandem with

  20. Possible role of epidermal keratinocytes in the construction of acupuncture meridians.

    Science.gov (United States)

    Denda, Mitsuhiro; Tsutsumi, Moe

    2014-04-01

    Acupuncture meridians consist of a network of acupuncture points on the skin, stimulation of which is well established to have a variety of physiological effects. We have previously demonstrated that epidermal keratinocytes contain multiple sensory systems for temperature, mechanical stimuli, electric potentials and other stimuli. These sensory systems generate changes in the calcium-ion concentration in the epidermis, so epidermal keratinocytes can generate spatially-localized electro-physiological patterns in the skin. We have previously demonstrated signaling between epidermal keratinocytes and peripheral nerve systems. Therefore, stimuli sensed by epidermal keratinocytes might be transferred to the unmyelinated nerve fibers that are known to exist in the epidermis and, thence, to the spinal cord and brain. We propose that epidermal keratinocytes form an information-gathering network in the skin and that this network plays a key role in whole-body homeostasis in response to the changing environment. We also hypothesize that this network corresponds to the acupuncture meridians. As supporting examples, we present some striking calcium propagation patterns observed in cultured human keratinocytes after adenosine-triphosphate (ATP) stimulation. These results support the ideas that keratinocytes can generate spatially-restricted signaling patterns after environmental stimulation and that the cultures might be in-vitro models of meridians as an information-gathering network in skin. Copyright © 2014. Published by Elsevier B.V.

  1. The Herbal Bitter Drug Gentiana lutea Modulates Lipid Synthesis in Human Keratinocytes In Vitro and In Vivo.

    Science.gov (United States)

    Wölfle, Ute; Haarhaus, Birgit; Seiwerth, Jasmin; Cawelius, Anja; Schwabe, Kay; Quirin, Karl-Werner; Schempp, Christoph M

    2017-08-22

    Gentiana lutea is a herbal bitter drug that is used to enhance gastrointestinal motility and secretion. Recently we have shown that amarogentin, a characteristic bitter compound of Gentiana lutea extract (GE), binds to the bitter taste receptors TAS2R1 and TAS2R38 in human keratinocytes, and stimulates the synthesis of epidermal barrier proteins. Here, we wondered if GE also modulates lipid synthesis in human keratinocytes. To address this issue, human primary keratinocytes were incubated for 6 days with GE. Nile Red labeling revealed that GE significantly increased lipid synthesis in keratinocytes. Similarly, gas chromatography with flame ionization detector indicated that GE increases the amount of triglycerides in keratinocytes. GE induced the expression of epidermal ceramide synthase 3, but not sphingomyelinase. Lipid synthesis, as well as ceramide synthase 3 expression, could be specifically blocked by inhibitors of the p38 MAPK and PPARγ signaling pathway. To assess if GE also modulates lipid synthesis in vivo, we performed a proof of concept half side comparison on the volar forearms of 33 volunteers. In comparison to placebo, GE significantly increased the lipid content of the treated skin areas, as measured with a sebumeter. Thus, GE enhances lipid synthesis in human keratinocytes that is essential for building an intact epidermal barrier. Therefore, GE might be used to improve skin disorders with an impaired epidermal barrier, e.g., very dry skin and atopic eczema.

  2. Entre ritmo e poesia: rap e literatura oral urbana

    Directory of Open Access Journals (Sweden)

    Marcus Rogerio Salgado

    2015-11-01

    Full Text Available O objetivo do presente artigo é um estudo do rap enquanto manifestação de literatura oral urbana e forma de oralidade tecnológica. Para tanto, o artigo passará em revista as relações entre literatura e palavra falada/cantada, assim como as possibilidades de interface estética entre a literatura e a música que estão em questão quando tratamos do rap.

  3. Senescence-Derived Extracellular Molecules as Modulators of Oral Cancer Development: A Mini-Review.

    Science.gov (United States)

    Parkinson, Eric Kenneth; James, Emma L; Prime, Stephen S

    2016-01-01

    Oral cancers are predominantly oral squamous cell carcinomas (OSCCs) derived from keratinocytes, and there is now very detailed knowledge of the genetics and molecular biology of the epithelial tumourigenic component of these cancers, including the identification of cancer stem or tumour-initiating cells. Several key genetic alterations have been identified including the near ubiquitous loss of the CDKN2A/p16INK4A and p53 pathways and telomerase activation, together with frequent inactivation of the NOTCH1 canonical pathway either by somatic genetic alterations or by the presence of human papilloma virus. There is also evidence that OSCCs arise from a 'field' of altered cells and that malignant conversion takes place pre-dominantly at the microscopic level. However, in the last decade, it has been realised that tumour development and progression are influenced by the cells of the microenvironment with cross-talk between the epithelial (tumour) and mesenchymal components. OSCCs, especially those that have bypassed cellular senescence, produce an array of proteins and metabolites that induce cellular senescence in the normal surrounding cells; indeed, senescence is a common property of cancer-associated fibroblasts (CAFs). Cellular senescence is defined as an irreversible cell cycle arrest and is associated with the release of molecules known as the senescence-associated secretory phenotype that can selectively promote the growth of pre-neoplastic keratinocytes (osteopontin) and cancer invasion (transforming growth factor β, matrix metalloproteinases, interleukin 6 and lactate). In addition, both old and new work has shown that keratinocytes harbouring NOTCH loss-of-function mutations that lead to defective keratinocyte differentiation and loss of squamous epithelial barrier function may act as a tumour-promoting stimulus for initiated cells harbouring RAS pathway mutations by activating a wound response in the tumour mesenchyme. Thus, not all keratinocytes in the

  4. Effect of epicatechin against radiation-induced oral mucositis: in vitro and in vivo study.

    Directory of Open Access Journals (Sweden)

    Yoo Seob Shin

    Full Text Available PURPOSE: Radiation-induced oral mucositis limits the delivery of high-dose radiation to head and neck cancer. This study investigated the effectiveness of epicatechin (EC, a component of green tea extracts, on radiation-induced oral mucositis in vitro and in vivo. EXPERIMENTAL DESIGN: The effect of EC on radiation-induced cytotoxicity was analyzed in the human keratinocyte line HaCaT. Radiation-induced apoptosis, change in mitochondrial membrane potential (MMP, reactive oxygen species (ROS generation and changes in the signaling pathway were investigated. In vivo therapeutic effects of EC for oral mucositis were explored in a rat model. Rats were monitored by daily inspections of the oral cavity, amount of oral intake, weight change and survival rate. For histopathologic evaluation, hematoxylin-eosin staining and TUNEL staining were performed. RESULTS: EC significantly inhibited radiation-induced apoptosis, change of MMP, and intracellular ROS generation in HaCaT cells. EC treatment markedly attenuated the expression of p-JNK, p-38, and cleaved caspase-3 after irradiation in the HaCaT cells. Rats with radiation-induced oral mucositis showed decreased oral intake, weight and survival rate, but oral administration of EC significantly restored all three parameters. Histopathologic changes were significantly decreased in the EC-treated irradiated rats. TUNEL staining of rat oral mucosa revealed that EC treatment significantly decreased radiation-induced apoptotic cells. CONCLUSIONS: This study suggests that EC significantly inhibited radiation-induced apoptosis in keratinocytes and rat oral mucosa and may be a safe and effective candidate treatment for the prevention of radiation-induced mucositis.

  5. Integrin β4 Regulates Migratory Behavior of Keratinocytes by Determining Laminin-332 Organization*s

    Science.gov (United States)

    Sehgal, Bernd U.; DeBiase, Phillip J.; Matzno, Sumio; Chew, Teng-Leong; Claiborne, Jessica N.; Hopkinson, Susan B.; Russell, Alan; Marinkovich, M. Peter; Jones, Jonathan C. R.

    2010-01-01

    Whether α6β4 integrin regulates migration remains controversial. β4 integrin-deficient (JEB) keratinocytes display aberrant migration in that they move in circles, a behavior that mirrors the circular arrays of laminin (LM)-332 in their matrix. In contrast, wild-type keratinocytes and JEB keratinocytes, induced to express β4 integrin, assemble laminin-332 in linear tracks over which they migrate. Moreover, laminin-332-dependent migration of JEB keratinocytes along linear tracks is restored when cells are plated on wild-type keratinocyte matrix, whereas wild-type keratinocytes show rotation over circular arrays of laminn-332 in JEB keratinocyte matrix. The activities of Rac1 and the actin cytoskeleton-severing protein cofilin are low in JEB keratinocytes compared with wild-type cells but are rescued following expression of wild-type β4 integrin in JEB cells. Additionally, in wild-type keratinocytes Rac1 is complexed with α6β4 integrin. Moreover, Rac1 or cofilin inactivation induces wild-type keratinocytes to move in circles over rings of laminin-332 in their matrix. Together these data indicate that laminin-332 matrix organization is determined by the α6β4 integrin/actin cytoskeleton via Rac1/cofilin signaling. Furthermore, our results imply that the organizational state of laminin-332 is a key determinant of the motility behavior of keratinocytes, an essential element of skin wound healing and the successful invasion of epidermal-derived tumor cells. PMID:16973601

  6. Platelet-released growth factors inhibit proliferation of primary keratinocytes in vitro.

    Science.gov (United States)

    Bayer, Andreas; Tohidnezhad, Mersedeh; Berndt, Rouven; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Simanski, Maren; Gläser, Regine; Harder, Jürgen

    2018-01-01

    Autologous thrombocyte concentrate lysates as platelet-released growth factors (PRGF) or Vivostat Platelet Rich Fibrin (PRF ® ) represent important tools in modern wound therapy, especially in the treatment of chronic, hard-to-heal or infected wounds. Nevertheless, underlying cellular and molecular mechanisms of the beneficial clinical effects of a local wound therapy with autologous thrombocyte concentrate lysates are poorly understood. Recently, we have demonstrated that PRGF induces antimicrobial peptides in primary keratinocytes and accelerates keratinocytes' differentiation. In the present study we analyzed the influence of PRGF on primary human keratinocytes' proliferation. Using the molecular proliferation marker Ki-67 we observed a concentration- and time dependent inhibition of Ki-67 gene expression in PRGF treated primary keratinocytes. These effects were independent from the EGFR- and the IL-6-R pathway. Inhibition of primary keratinocytes' proliferation by PRGF treatment was confirmed in colorimetric cell proliferation assays. Together, these data indicate that the clinically observed positive effects of autologous thrombocytes concentrates in the treatment of chronic, hard-to-heal wounds are not based on an increased keratinocytes proliferation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Phosphorylated hepatocyte growth factor receptor/c-Met is associated with tumor growth and prognosis in patients with bladder cancer: correlation with matrix metalloproteinase-2 and -7 and E-cadherin.

    Science.gov (United States)

    Miyata, Yasuyoshi; Sagara, Yuji; Kanda, Shigeru; Hayashi, Tomayoshi; Kanetake, Hiroshi

    2009-04-01

    Hepatocyte growth factor receptor/c-Met is associated with malignant aggressiveness and survival in various cancers including bladder cancer. Although phosphorylation of hepatocyte growth factor receptor/c-Met is essential for its function, the pathologic significance of phosphorylated hepatocyte growth factor receptor/c-Met in bladder cancer remains elusive. We investigated the clinical significance of its expression, and its correlation with cancer cell progression-related molecules. The expression levels of 2 tyrosine residues of hepatocyte growth factor receptor/c-Met (pY1234/1235 and pY1349) were examined immunohistochemically in 133 specimens with nonmetastatic bladder cancer. We also investigated their correlation with matrix metalloproteinase-1, -2, -7, and -14; urokinase-type plasminogen activator; E-cadherin; CD44 standard, variant 3, and variant 6; and vascular endothelial growth factor. Expression of phosphorylated hepatocyte growth factor receptor/c-Met was detected in cancer cells, but was rare in normal urothelial cells. Although hepatocyte growth factor receptor/c-Met, pY1234/1235 hepatocyte growth factor receptor/c-Met, and pY1349 hepatocyte growth factor receptor/c-Met were associated with pT stage, multivariate analysis identified pY1349 hepatocyte growth factor receptor/c-met expression only as a significant factor for high pT stage. Expression of pY1349 hepatocyte growth factor receptor/c-Met was a marker of metastasis and (P = .001) and cause-specific survival (P = .003). Expressions of matrix metalloproteinase-2, matrix metalloproteinase-7, and E-cadherin correlated with pY1349 hepatocyte growth factor receptor/c-Met expression. Our results demonstrated that pY1349 hepatocyte growth factor receptor/c-Met plays an important role in tumor development, and its expression is a significant predictor of metastasis and survival of patients with bladder cancer. The results suggest that these activities are mediated, at least in part, by matrix

  8. FOXO1 expression in keratinocytes promotes connective tissue healing

    Science.gov (United States)

    Zhang, Chenying; Lim, Jason; Liu, Jian; Ponugoti, Bhaskar; Alsadun, Sarah; Tian, Chen; Vafa, Rameen; Graves, Dana T.

    2017-01-01

    Wound healing is complex and highly orchestrated. It is well appreciated that leukocytes, particularly macrophages, are essential for inducing the formation of new connective tissue, which requires the generation of signals that stimulate mesenchymal stem cells (MSC), myofibroblasts and fibroblasts. A key role for keratinocytes in this complex process has yet to be established. To this end, we investigated possible involvement of keratinocytes in connective tissue healing. By lineage-specific deletion of the forkhead box-O 1 (FOXO1) transcription factor, we demonstrate for the first time that keratinocytes regulate proliferation of fibroblasts and MSCs, formation of myofibroblasts and production of collagen matrix in wound healing. This stimulation is mediated by a FOXO1 induced TGFβ1/CTGF axis. The results provide direct evidence that epithelial cells play a key role in stimulating connective tissue healing through a FOXO1-dependent mechanism. Thus, FOXO1 and keratinocytes may be an important therapeutic target where healing is deficient or compromised by a fibrotic outcome. PMID:28220813

  9. Oral lichen planus: An update on pathogenesis and treatment

    Science.gov (United States)

    Lavanya, N; Jayanthi, P; Rao, Umadevi K; Ranganathan, K

    2011-01-01

    Oral lichen planus (OLP) is a chronic inflammatory disease that affects the mucus membrane of the oral cavity. It is a T-cell mediated autoimmune disease in which the cytotoxic CD8+ T cells trigger apoptosis of the basal cells of the oral epithelium. Several antigen-specific and nonspecific inflammatory mechanisms have been put forward to explain the accumulation and homing of CD8+ T cells subepithelially and the subsequent keratinocyte apoptosis. A wide spectrum of treatment modalities is available, from topical corticosteroids to laser ablation of the lesion. In this review, we discuss the various concepts in the pathogenesis and current treatment modalities of OLP. PMID:22529568

  10. Heavy metal-induced cytotoxicity to cultured human epidermal keratinocytes and effects of antioxidants.

    Science.gov (United States)

    Kappus, H; Reinhold, C

    1994-04-01

    Human epidermal keratinocytes which have been cultured were treated with the heavy metal ions of cadmium, mercury, copper and zinc. Cytotoxicity was measured either by protein estimation or by using the neutral red assay. Antioxidants were added in order to find out whether heavy metal-induced cytotoxicity is related to oxidative stress. All metals used showed considerable cytotoxic effects within 24 h in moderate concentrations. None of the antioxidants vitamin E (alpha-tocopherol), pyrogallol, propyl gallate, BHT or ebselen showed any protective or preventive effect. This indicates that oxidative stress may not be involved in the cytotoxicity induced by heavy metals in human epidermal keratinocytes. The cells used are, however, a valuable tool to study mechanisms of cytotoxicity.

  11. Plasminogen Activator Inhibitor-1 Controls Vascular Integrity by Regulating VE-Cadherin Trafficking.

    Directory of Open Access Journals (Sweden)

    Anna E Daniel

    Full Text Available Plasminogen activator inhibitor-1 (PAI-1, a serine protease inhibitor, is expressed and secreted by endothelial cells. Patients with PAI-1 deficiency show a mild to moderate bleeding diathesis, which has been exclusively ascribed to the function of PAI-1 in down-regulating fibrinolysis. We tested the hypothesis that PAI-1 function plays a direct role in controlling vascular integrity and permeability by keeping endothelial cell-cell junctions intact.We utilized PAI-039, a specific small molecule inhibitor of PAI-1, to investigate the role of PAI-1 in protecting endothelial integrity. In vivo inhibition of PAI-1 resulted in vascular leakage from intersegmental vessels and in the hindbrain of zebrafish embryos. In addition PAI-1 inhibition in human umbilical vein endothelial cell (HUVEC monolayers leads to a marked decrease of transendothelial resistance and disrupted endothelial junctions. The total level of the endothelial junction regulator VE-cadherin was reduced, whereas surface VE-cadherin expression was unaltered. Moreover, PAI-1 inhibition reduced the shedding of VE-cadherin. Finally, we detected an accumulation of VE-cadherin at the Golgi apparatus.Our findings indicate that PAI-1 function is important for the maintenance of endothelial monolayer and vascular integrity by controlling VE-cadherin trafficking to and from the plasma membrane. Our data further suggest that therapies using PAI-1 antagonists like PAI-039 ought to be used with caution to avoid disruption of the vessel wall.

  12. Acetaldehyde dissociates the PTP1B–E-cadherin–β-catenin complex in Caco-2 cell monolayers by a phosphorylation-dependent mechanism

    Science.gov (United States)

    Sheth, Parimal; Seth, Ankur; Atkinson, Katherine J.; Gheyi, Tarun; Kale, Gautam; Giorgianni, Francesco; Desiderio, Dominic M.; Li, Chunying; Naren, Anjaparavanda; Rao, Radhakrishna

    2006-01-01

    Interactions between E-cadherin, β-catenin and PTP1B (protein tyrosine phosphatase 1B) are crucial for the organization of AJs (adherens junctions) and epithelial cell–cell adhesion. In the present study, the effect of acetaldehyde on the AJs and on the interactions between E-cadherin, β-catenin and PTP1B was determined in Caco-2 cell monolayers. Treatment of cell monolayers with acetaldehyde induced redistribution of E-cadherin and β-catenin from the intercellular junctions by a tyrosine phosphorylation-dependent mechanism. The PTPase activity associated with E-cadherin and β-catenin was significantly reduced and the interaction of PTP1B with E-cadherin and β-catenin was attenuated by acetaldehyde. Acetaldehyde treatment resulted in phosphorylation of β-catenin on tyrosine residues, and abolished the interaction of β-catenin with E-cadherin by a tyrosine kinase-dependent mechanism. Protein binding studies showed that the treatment of cells with acetaldehyde reduced the binding of β-catenin to the C-terminal region of E-cadherin. Pairwise binding studies using purified proteins indicated that the direct interaction between E-cadherin and β-catenin was reduced by tyrosine phosphorylation of β-catenin, but was unaffected by tyrosine phosphorylation of E-cadherin-C. Treatment of cells with acetaldehyde also reduced the binding of E-cadherin to GST (glutathione S-transferase)–PTP1B. The pairwise binding study showed that GST–E-cadherin-C binds to recombinant PTP1B, but this binding was significantly reduced by tyrosine phosphorylation of E-cadherin. Acetaldehyde increased the phosphorylation of β-catenin on Tyr-331, Tyr-333, Tyr-654 and Tyr-670. These results show that acetaldehyde induces disruption of interactions between E-cadherin, β-catenin and PTP1B by a phosphorylation-dependent mechanism. PMID:17087658

  13. Development of a tissue-engineered human oral mucosa equivalent based on an acellular allogeneic dermal matrix: a preliminary report of clinical application to burn wounds.

    Science.gov (United States)

    Iida, Takuya; Takami, Yoshihiro; Yamaguchi, Ryo; Shimazaki, Shuji; Harii, Kiyonori

    2005-01-01

    Tissue-engineered skin equivalents composed of epidermal and dermal components have been widely investigated for coverage of full-thickness skin defects. We developed a tissue-engineered oral mucosa equivalent based on an acellular allogeneic dermal matrix and investigated its characteristics. We also tried and assessed its preliminary clinical application. Human oral mucosal keratinocytes were separated from a piece of oral mucosa and cultured in a chemically-defined medium. The keratinocytes were seeded on to the acellular allogeneic dermal matrix and cultured. Histologically, the mucosa equivalent had a well-stratified epithelial layer. Immunohistochemical study showed that it was similar to normal oral mucosa. We applied this equivalent in one case with an extensive burn wound. The equivalent was transplanted three weeks after the harvest of the patient's oral mucosa and about 30% of the graft finally survived. We conclude that this new oral mucosa equivalent could become a therapeutic option for the treatment of extensive burns.

  14. Estudo da relação entre a imunoexpressão das proteínas caderina-E e DCC com o grau de diferenciação celular e o estadiamento TNM do adenocarcinoma colorretal Study of the expression of E-cadherin and DCC proteins with cell differentiation degree and staging in colorectal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Marcos Vinicius Araújo Denadai

    2007-10-01

    as to the expression of E-cadherin and delect in colon cancer (DCC proteins, being classified as positive whenever it was detected immunoexpression of such proteins in 50% or more tumor cells. RESULTS: For TNM, E-cadherin immunoexpression for stage I: positive in 72.7% and negative in 35.7%; stage IV: positive in 64.3% and negative in 35.7%. For DCC protein: 43.2% positive and 56.8% negative in stage I, and 50% positive and 50% negative in stage IV. Regarding the cell differentiation degree, the immunoexpression of E-cadherin - GI: positive in 70% and negative in 30%; GII: positive in 68.4% and negative in 31.6%; GIII: positive in 63.6% and negative in 36.4%. The immunoexpression of DCC - GI: 40% positive and 60% negative; GII: 46.8% positive and 53.2% negative; GIII: 54.5% positive and 45.5% negative. There was no significant difference among groups. CONCLUSION: The results of this research make it possible to come to the conclusion that there is no relationship between the immunoexpression of E-cadherin and DCC proteins with TNM staging (I and IV and cell differentiation degree in colorectal cancer.

  15. Effect of Wnt3a on Keratinocytes Utilizing in Vitro and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Ju-Suk Nam

    2014-03-01

    Full Text Available Wingless-type (Wnt signaling proteins participate in various cell developmental processes. A suppressive role of Wnt5a on keratinocyte growth has already been observed. However, the role of other Wnt proteins in proliferation and differentiation of keratinocytes remains unknown. Here, we investigated the effects of the Wnt ligand, Wnt3a, on proliferation and differentiation of keratinocytes. Keratinocytes from normal human skin were cultured and treated with recombinant Wnt3a alone or in combination with the inflammatory cytokine, tumor necrosis factor α (TNFα. Furthermore, using bioinformatics, we analyzed the biochemical parameters, molecular evolution, and protein–protein interaction network for the Wnt family. Application of recombinant Wnt3a showed an anti-proliferative effect on keratinocytes in a dose-dependent manner. After treatment with TNFα, Wnt3a still demonstrated an anti-proliferative effect on human keratinocytes. Exogenous treatment of Wnt3a was unable to alter mRNA expression of differentiation markers of keratinocytes, whereas an altered expression was observed in TNFα-stimulated keratinocytes. In silico phylogenetic, biochemical, and protein–protein interaction analysis showed several close relationships among the family members of the Wnt family. Moreover, a close phylogenetic and biochemical similarity was observed between Wnt3a and Wnt5a. Finally, we proposed a hypothetical mechanism to illustrate how the Wnt3a protein may inhibit the process of proliferation in keratinocytes, which would be useful for future researchers.

  16. Re-appraisal of keratinocytes' role in vitiligo pathogenesis

    Directory of Open Access Journals (Sweden)

    Ola Ahmed Bakry

    2018-01-01

    Full Text Available Background: Vitiligo is a common pigmentary disorder. Studies on its pathogenesis extensively investigated melanocytes' abnormalities and few studies searched for keratinocytes' role in disease development. Liver X receptor-α (LXR-α is a member of nuclear hormone receptors that acts as a transcription factor. Its target genes are the main regulators of melanocyte functions. Aim: The aim of this study is to investigate keratinocytes' role in vitiligo pathogenesis through immunohistochemical expression of LXR-α in lesional, perilesional, and distant nonlesional vitiligo skin. Materials and Methods: This case–control study was carried out on 44 participants. These included 24 patients with vitiligo and 20 age- and sex-matched normal individuals as a control group. Biopsies, from cases, were taken from lesional, perilesional, and distant nonlesional areas. Evaluation was done using immunohistochemical technique. Results: Keratinocyte LXR-α expression was upregulated in the lesional and perilesional skin (follicular and interfollicular epidermis compared with control skin (P<0.001 for all. There was significant association between higher histoscore (H-score in lesional epidermis (P<0.001 and in hair follicle (P=0.001 and the presence of angiogenesis. There was significant association between higher H-score in lesional epidermis and suprabasal vacuolization (P=0.02. No significant association was found between H-score or expression percentage and clinical data of selected cases. Conclusion: LXR-α upregulation is associated with keratinocyte damage in vitiligo lesional skin that leads to decreased keratinocyte-derived mediators and growth factors supporting the growth and/or melanization of surrounding melanocytes. Therefore, melanocyte function and survival are affected.

  17. Differential Activation of Human Keratinocytes by Leishmania Species Causing Localized or Disseminated Disease.

    Science.gov (United States)

    Scorza, Breanna M; Wacker, Mark A; Messingham, Kelly; Kim, Peter; Klingelhutz, Aloysius; Fairley, Janet; Wilson, Mary E

    2017-10-01

    All Leishmania species parasites are introduced into mammalian skin through a sand fly bite, but different species cause distinct clinical outcomes. Mouse studies suggest that early responses are critical determinants of subsequent adaptive immunity in leishmaniasis, yet few studies address the role of keratinocytes, the most abundant cell in the epidermis. We hypothesized that Leishmania infection causes keratinocytes to produce immunomodulatory factors that influence the outcome of infection. Incubation of primary or immortalized human keratinocytes with Leishmania infantum or Leishmania major, which cause visceral or cutaneous leishmaniasis, respectively, elicited dramatically different responses. Keratinocytes incubated with L. infantum significantly increased expression of proinflammatory genes for IL-6, IL-8, tumor necrosis factor, and IL-1B, whereas keratinocytes exposed to several L. major isolates did not. Furthermore, keratinocyte-monocyte co-incubation studies across a 4 µM semipermeable membrane suggested that L. infantum-exposed keratinocytes release soluble factors that enhance monocyte control of intracellular L. infantum replication (P Leishmania species that may affect the course of disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Cadherins mediate sequential roles through a hierarchy of mechanisms in the developing mammillary body

    Directory of Open Access Journals (Sweden)

    Nora eSzabo

    2015-03-01

    Full Text Available Expression of intricate combinations of cadherins (a family of adhesive membrane proteins is common in the developing central nervous system. On this basis, a combinatorial cadherin code has long been proposed to underlie neuronal sorting and to be ultimately responsible for the layers, columns and nuclei of the brain. However, experimental proof of this particular function of cadherins has proven difficult to obtain and the question is still not clear. Alternatively, non-specific, non-combinatorial, purely quantitative adhesive differentials have been proposed to explain neuronal sorting in the brain. Do cadherin combinations underlie brain cytoarchitecture? We approached this question using as model a well-defined forebrain nucleus, the mammillary body (MBO, which shows strong, homogeneous expression of one single cadherin (Cdh11 and patterned, combinatorial expression of Cdh6, -8 and -10.We found that, besides the known combinatorial Cdh pattern, MBO cells are organized into a second, non-overlapping pattern grouping neurons with the same date of neurogenesis. Abolition of Cdh11 expression in the entire MBO during development disrupted the combination-based as well as the birthdate-based sorting. In utero RNAi experiments knocking down Cdh11 in MBO-fated migrating neurons at one specific age showed that Cdh11 expression is required for chronological entrance in the MBO.Our results suggest that neuronal sorting in the developing MBO is caused by adhesion-based, non-combinatorial mechanisms that keep neurons sorted according to birthdate information (possibly matching them to target neurons chronologically sorted in the same manner. Non-specific adhesion mechanisms would also prevent cadherin combinations from altering the birthdate-based sorting. Cadherin combinations would presumably act later to support specific synaptogenesis through specific axonal fasciculation and final target recognition.

  19. Scleroderma keratinocytes promote fibroblast activation independent of transforming growth factor beta.

    Science.gov (United States)

    McCoy, Sara S; Reed, Tamra J; Berthier, Celine C; Tsou, Pei-Suen; Liu, Jianhua; Gudjonsson, Johann E; Khanna, Dinesh; Kahlenberg, J Michelle

    2017-11-01

    SSc is a devastating disease that results in fibrosis of the skin and other organs. Fibroblasts are a key driver of the fibrotic process through deposition of extracellular matrix. The mechanisms by which fibroblasts are induced to become pro-fibrotic remain unclear. Thus, we examined the ability of SSc keratinocytes to promote fibroblast activation and the source of this effect. Keratinocytes were isolated from skin biopsies of 9 lcSSc, 10 dcSSc and 13 control patients. Conditioned media was saved from the cultures. Normal fresh primary fibroblasts were exposed to healthy control and SSc keratinocyte conditioned media in the presence or absence of neutralizing antibodies for TGF-β. Gene expression was assessed by microarrays and real-time PCR. Immunocytochemistry was performed for α-smooth muscle actin (α-SMA), collagen type 1 (COL1A1) and CCL5 expression. SSc keratinocyte conditioned media promoted fibroblast activation, characterized by increased α-SMA and COL1A1 mRNA and protein expression. This effect was independent of TGF-β. Microarray analysis identified upregulation of nuclear factor κB (NF-κB) and downregulation of peroxisome proliferator-activated receptor γ (PPAR-γ) pathways in both SSc subtypes. Scleroderma keratinocytes exhibited increased expression of NF-κB-regulated cytokines and chemokines and lesional skin staining confirmed upregulation of CCL5 in basal keratinocytes. Scleroderma keratinocytes promote the activation of fibroblasts in a TGF-β-independent manner and demonstrate an imbalance in NF-κB1 and PPAR-γ expression leading to increased cytokine and CCL5 production. Further study of keratinocyte mediators of fibrosis, including CCL5, may provide novel targets for skin fibrosis therapy. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  20. Enhanced expression of IL-8 in normal human keratinocytes and human keratinocyte cell line HaCaT in vitro after stimulation with contact sensitizers, tolerogens and irritants.

    Science.gov (United States)

    Mohamadzadeh, M; Müller, M; Hultsch, T; Enk, A; Saloga, J; Knop, J

    1994-12-01

    To investigate the interleukin-8 production of keratinocytes after stimulation in vitro we have used various agents: (i) contact sensitizer (2,4-dinitrofluorobenzene, 3-n-pentadecylcatechol); (ii) tolerogen (5-methyl-3-n-pentadecylcatechol); (iii) irritant (sodium lauryl sulfate). Interleukin-8 gene expression was assessed by northern blot hybridization of the total cytoplasmic RNA extracted from subconfluent normal human keratinocyte cultures and the keratinocyte cell line HaCaT using a radiolabeled DNA probe specific for human interleukin-8. Interleukin-8 gene expression was markedly increased upon in vitro stimulation after 1-6 h with contact sensitizers, tolerogen and the irritant. In contrast, interleukin-8 production was not detectable in unstimulated normal human keratinocytes or the HaCaT keratinocyte cell line. These results suggest that the induction and production of interleukin-8 is a response to nonspecific stimuli and may play a critical role in the early response to immunogenic or inflammatory signals in man.

  1. Hyaluronan suppresses prostate tumor cell proliferation through diminished expression of N-cadherin and aberrant growth factor receptor signaling

    International Nuclear Information System (INIS)

    Bharadwaj, Alamelu G.; Goodrich, Nathaniel P.; McAtee, Caitlin O.; Haferbier, Katie; Oakley, Gregory G.; Wahl, James K.; Simpson, Melanie A.

    2011-01-01

    Hyaluronan (HA) production has been functionally implicated in prostate tumorigenesis and metastasis. We previously used prostate tumor cells overexpressing the HA synthesizing enzyme HAS3 or the clinically relevant hyaluronidase Hyal1 to show that excess HA production suppresses tumor growth, while HA turnover accelerates spontaneous metastasis from the prostate. Here, we examined pathways responsible for effects of HAS3 and Hyal1 on tumor cell phenotype. Detailed characterization of cell cycle progression revealed that expression of Hyal1 accelerated cell cycle re-entry following synchronization, whereas HAS3 alone delayed entry. Hyal1 expressing cells exhibited a significant reduction in their ability to sustain ERK phosphorylation upon stimulation by growth factors, and in their expression of the cyclin-dependent kinase inhibitor p21. In contrast, HAS3 expressing cells showed prolonged ERK phosphorylation and increased expression of both p21 and p27, in asynchronous and synchronized cultures. Changes in cell cycle regulatory proteins were accompanied by HA-induced suppression of N-cadherin, while E-cadherin expression and β-catenin expression and distribution remained unchanged. Our results are consistent with a model in which excess HA synthesis suppresses cell proliferation by promoting homotypic E-cadherin mediated cell-cell adhesion, consequently signaling to elevate cell cycle inhibitor expression and suppress G1- to S-phase transition.

  2. The transcriptional regulator gene E2 of the Human Papillomavirus (HPV) 16 influences the radiosensitivity of cervical keratinocytes

    International Nuclear Information System (INIS)

    Lindel, Katja; Rieken, Stefan; Daffinger, Sigrid; Weber, Klaus J; Villiers, Ethel-Michele de; Debus, Jürgen

    2012-01-01

    Clinical studies have demonstrated that HPV induced tumors constitute a specific subclass of cancer with a better response to radiation treatment. The purpose of this study was to investigate meaning of viral E2-gene for radiosensitivity. W12 cells contain episomal HPV 16 genomes, whereas S12 cells, which derive from the W12 line, contain HPV DNA as integrated copies. Clonogenic survival was analyzed using 96-well in vitro test. Using flow cytometry cell cycle analyses were performed. Expression of pRb and p53 were analyzed using intracellular staining. W12 cells (intact E2 gene) showed a lower survival fraction than S12 cells. W12 cells developed a G2/M block 24 h after irradiation with 2 Gy whereas S12 showed no G2/M bloc. After irradiation S12 cells developed polyploidy and pRb-positive cells decreased. W12 cells showed no change of pRb-positive cells. Depending on E2 gene status differences in cell cycle regulation might cause radioresistance. The E2/E7/pRb pathway seems to influence HPV-induced radiosensitivity. Our experiments demonstrated an effect of HPV on radiosensitivity of cervical keratinocytes via viral transcription regulator E2 pathway

  3. Filaggrin-dependent secretion of sphingomyelinase protects against staphylococcal α-toxin-induced keratinocyte death.

    Science.gov (United States)

    Brauweiler, Anne M; Bin, Lianghua; Kim, Byung Eui; Oyoshi, Michiko K; Geha, Raif S; Goleva, Elena; Leung, Donald Y M

    2013-02-01

    The skin of patients with atopic dermatitis (AD) has defects in keratinocyte differentiation, particularly in expression of the epidermal barrier protein filaggrin. AD skin lesions are often exacerbated by Staphylococcus aureus-mediated secretion of the virulence factor α-toxin. It is unknown whether lack of keratinocyte differentiation predisposes to enhanced lethality from staphylococcal toxins. We investigated whether keratinocyte differentiation and filaggrin expression protect against cell death induced by staphylococcal α-toxin. Filaggrin-deficient primary keratinocytes were generated through small interfering RNA gene knockdown. RNA expression was determined by using real-time PCR. Cell death was determined by using the lactate dehydrogenase assay. Keratinocyte cell survival in filaggrin-deficient (ft/ft) mouse skin biopsies was determined based on Keratin 5 staining. α-Toxin heptamer formation and acid sphingomyelinase expression were determined by means of immunoblotting. We found that filaggrin expression, occurring as the result of keratinocyte differentiation, significantly inhibits staphylococcal α-toxin-mediated pathogenicity. Furthermore, filaggrin plays a crucial role in protecting cells by mediating the secretion of sphingomyelinase, an enzyme that reduces the number of α-toxin binding sites on the keratinocyte surface. Finally, we determined that sphingomyelinase enzymatic activity directly prevents α-toxin binding and protects keratinocytes against α-toxin-induced cytotoxicity. The current study introduces the novel concept that S aureus α-toxin preferentially targets and destroys filaggrin-deficient keratinocytes. It also provides a mechanism to explain the increased propensity for S aureus-mediated exacerbation of AD skin disease. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  4. Homophilic and Heterophilic Interactions of Type II Cadherins Identify Specificity Groups Underlying Cell-Adhesive Behavior

    Directory of Open Access Journals (Sweden)

    Julia Brasch

    2018-05-01

    Full Text Available Summary: Type II cadherins are cell-cell adhesion proteins critical for tissue patterning and neuronal targeting but whose molecular binding code remains poorly understood. Here, we delineate binding preferences for type II cadherin cell-adhesive regions, revealing extensive heterophilic interactions between specific pairs, in addition to homophilic interactions. Three distinct specificity groups emerge from our analysis with members that share highly similar heterophilic binding patterns and favor binding to one another. Structures of adhesive fragments from each specificity group confirm near-identical dimer topology conserved throughout the family, allowing interface residues whose conservation corresponds to specificity preferences to be identified. We show that targeted mutation of these residues converts binding preferences between specificity groups in biophysical and co-culture assays. Our results provide a detailed understanding of the type II cadherin interaction map and a basis for defining their role in tissue patterning and for the emerging importance of their heterophilic interactions in neural connectivity. : Type II cadherins are a family of vertebrate cell adhesion proteins expressed primarily in the CNS. Brasch et al. measure binding between adhesive fragments, revealing homophilic and extensive selective heterophilic binding with specificities that define groups of similar cadherins. Structures reveal common adhesive dimers, with residues governing cell-adhesive specificity. Keywords: cell adhesion, crystal structure, hemophilic specificity, heterophilic specificity, neural patterning, synaptic targeting, cadherin

  5. UV Radiation Activates Toll-Like Receptor 9 Expression in Primary Human Keratinocytes, an Event Inhibited by Human Papillomavirus 38 E6 and E7 Oncoproteins.

    Science.gov (United States)

    Pacini, Laura; Ceraolo, Maria Grazia; Venuti, Assunta; Melita, Giusi; Hasan, Uzma A; Accardi, Rosita; Tommasino, Massimo

    2017-10-01

    Several lines of evidence indicate that cutaneous human papillomavirus (HPV) types belonging to the beta genus of the HPV phylogenetic tree synergize with UV radiation in the development of skin cancer. Accordingly, the E6 and E7 oncoproteins from some beta HPV types are able to deregulate pathways related to immune response and cellular transformation. Toll-like receptor 9 (TLR9), in addition to playing a role in innate immunity, has been shown to be involved in the cellular stress response. Using primary human keratinocytes as experimental models, we have shown that UV irradiation (and other cellular stresses) activates TLR9 expression. This event is closely linked to p53 activation. Silencing the expression of p53 or deleting its encoding gene affected the activation of TLR9 expression after UV irradiation. Using various strategies, we have also shown that the transcription factors p53 and c-Jun are recruited onto a specific region of the TLR9 promoter after UV irradiation. Importantly, the E6 and E7 oncoproteins from beta HPV38, by inducing the accumulation of the p53 antagonist ΔNp73α, prevent the UV-mediated recruitment of these transcription factors onto the TLR9 promoter, with subsequent impairment of TLR9 gene expression. This study provides new insight into the mechanism that mediates TLR9 upregulation in response to cellular stresses. In addition, we show that HPV38 E6 and E7 are able to interfere with this mechanism, providing another explanation for the possible cooperation of beta HPV types with UV radiation in skin carcinogenesis. IMPORTANCE Beta HPV types have been suggested to act as cofactors in UV-induced skin carcinogenesis by altering several cellular mechanisms activated by UV radiation. We show that the expression of TLR9, a sensor of damage-associated molecular patterns produced during cellular stress, is activated by UV radiation in primary human keratinocytes (PHKs). Two transcription factors known to be activated by UV radiation, p53

  6. T-plastin expression downstream to the calcineurin/NFAT pathway is involved in keratinocyte migration.

    Directory of Open Access Journals (Sweden)

    Cécilia Brun

    Full Text Available Cutaneous wound healing requires keratinocyte proliferation, migration and differentiation to restore the barrier function of the skin. The calcineurin/nuclear factor of activated-T-cell (NFAT signaling pathway has been recently shown to be involved in keratinocyte growth, differentiation and migration. It is induced by an increased intracellular calcium rate and its inhibition results in decreased capacities of keratinocytes to migrate. Nevertheless, the link between calcineurin activation and keratinocyte migration remains unknown. Recently, Orai1, a pore subunit of a store-operated calcium channel that favors calcium influx, was shown to play a critical role to control proliferation and migration of basal keratinocytes. Of interest, the actin-bundling T-plastin is crucial in cell motility through cross-linking to actin filament and its synthesis was shown to be induced by calcium influx and regulated by the calcineurin/NFAT pathway in tumor Sezary cells. We investigated herein the role of the calcineurin/NFAT pathway-dependent T-plastin in keratinocyte migration, by quantifying T-plastin expression in keratinocytes and by analyzing their migration under calcineurin inhibition or knockdown of NFAT2 or T-plastin. We did confirm the role of the calcineurin/NFAT pathway in keratinocyte migration as shown by their decreased capacities to migrate after FK506 treatment or siNFAT2 transfection in both scratching and Boyden assays. The expression of NFAT2 and T-plastin in keratinocytes was decreased under FK506 treatment, suggesting that T-plastin plays a role in keratinocyte migration downstream to the calcineurin/NFAT pathway. Accordingly, siRNA knockdown of T-plastin expression also decreased their migration capacities. Actin lamellipodia formation as well as FAK and β6-integrin expression were also significantly decreased after treatment with FK506 or siRNA, reinforcing that NFAT2-dependent T-plastin expression plays a role in keratinocyte

  7. N-cadherin in adult rat cardiomyocytes in culture. II. Spatio-temporal appearance of proteins involved in cell-cell contact and communication. Formation of two distinct N-cadherin/catenin complexes.

    Science.gov (United States)

    Hertig, C M; Butz, S; Koch, S; Eppenberger-Eberhardt, M; Kemler, R; Eppenberger, H M

    1996-01-01

    The spatio-temporal appearance and distribution of proteins forming the intercalated disc were investigated in adult rat cardiomyocytes (ARC). The 'redifferentiation model' of ARC involves extensive remodelling of the plasma membrane and of the myofibrillar apparatus. It represents a valuable system to elucidate the formation of cell-cell contact between cardiomyocytes and to assess the mechanisms by which different proteins involved in the cell-cell adhesion process are sorted in a precise manner to the sites of function. Appearance of N-cadherin, the catenins and connexin43 within newly formed adherens and gap junctions was studied. Here first evidence is provided for a formation of two distinct and separable N-cadherin/catenin complexes in cardiomyocytes. Both complexes are composed of N-cadherin and alpha-catenin which bind to either beta-catenin or plakoglobin in a mutually exclusive manner. The two N-cadherin/catenin complexes are assumed to be functionally involved in the formation of cell-cell contacts in ARC; however, the differential appearance and localization of the two types of complexes may also point to a specific role during ARC differentiation. The newly synthesized beta-catenin containing complex is more abundant during the first stages in culture after ARC isolation, while the newly synthesized plakoglobin containing complex progressively accumulates during the morphological changes of ARC. ARC formed a tissue-like pattern in culture whereby the new cell-cell contacts could be dissolved through Ca2+ depletion. Presence of cAMP and replenishment of Ca2+ content in the culture medium not only allowed reformation of cell-cell contacts but also affected the relative protein ratio between the two N-cadherin/catenin complexes, increasing the relative amount of newly synthesized beta-catenin over plakoglobin at a particular stage of ARC differentiation. The clustered N-cadherin/catenin complexes at the plasma membrane appear to be a prerequisite for the

  8. Kinetics of growth and differentiation of cultured human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Albers, K.M.

    1985-01-01

    A study was made of the interrelationship between replication and differentiation in cultures of human epidermal keratinocytes. Measures of both parameters were made using newly developed methods to quantify the rate at which keratinocytes replicate and the rate at which they withdraw from the cell cycle. Keratinocyte replication was measured by determining the cell doubling time, labeling index, and cell cycle duration. Cell cycle length was measured using a double label assay that determines the length of time between two successive phases of DNA synthesis. The first DNA synthesis phase was marked by labeling keratinocytes with 14 C-thymidine. At the next round of DNA synthesis, cells were labeled with bromodeoxyuridine, a heavy analog of thymidine. The cell cycle length is given by the time required for the 14 C-labeled DNA to become double labeled. To measure keratinocyte differentiation, the rate at which cells withdraw from the cell cycle was determined. To measure withdrawal, the percentage of cells labeled by a pulse of 14 C-thymidine that failed to undergo a second cycle of DNA synthesis, as measured by bromodeoxyuridine incorporation, was determined. Cells which failed to undergo a second cycle of synthesis were considered to have differentiated and withdrawn from the cell cycle

  9. Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.

    Science.gov (United States)

    Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De

    2016-10-01

    In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction.

    Science.gov (United States)

    Yan, Meiping; Zhang, Xinhua; Chen, Ao; Gu, Wei; Liu, Jie; Ren, Xiaojiao; Zhang, Jianping; Wu, Xiaoxiong; Place, Aaron T; Minshall, Richard D; Liu, Guoquan

    2017-11-01

    Intercellular adhesion molecule-1 (ICAM-1) mediates the firm adhesion of leukocytes to endothelial cells and initiates subsequent signaling that promotes their transendothelial migration (TEM). Vascular endothelial (VE)-cadherin plays a critical role in endothelial cell-cell adhesion, thereby controlling endothelial permeability and leukocyte transmigration. This study aimed to determine the molecular signaling events that originate from the ICAM-1-mediated firm adhesion of neutrophils that regulate VE-cadherin's role as a negative regulator of leukocyte transmigration. We observed that ICAM-1 interacts with Src homology domain 2-containing phosphatase-2 (SHP-2), and SHP-2 down-regulation via silencing of small interfering RNA in endothelial cells enhanced neutrophil adhesion to endothelial cells but inhibited neutrophil transmigration. We also found that VE-cadherin associated with the ICAM-1-SHP-2 complex. Moreover, whereas the activation of ICAM-1 leads to VE-cadherin dissociation from ICAM-1 and VE-cadherin association with actin, SHP-2 down-regulation prevented ICAM-1-VE-cadherin association and promoted VE-cadherin-actin association. Furthermore, SHP-2 down-regulation in vivo promoted LPS-induced neutrophil recruitment in mouse lung but delayed neutrophil extravasation. These results suggest that SHP-2- via association with ICAM-1-mediates ICAM-1-induced Src activation and modulates VE-cadherin switching association with ICAM-1 or actin, thereby negatively regulating neutrophil adhesion to endothelial cells and enhancing their TEM.-Yan, M., Zhang, X., Chen, A., Gu, W., Liu, J., Ren, X., Zhang, J., Wu, X., Place, A. T., Minshall, R. D., Liu, G. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction. © FASEB.

  11. Photodynamic toxicity of hematoporphyrin derivatives to human keratinocytes in culture.

    Science.gov (United States)

    Kappus, H; Reinhold, C; Artuc, M

    Human keratinocytes in culture were able to take up hematoporphyrin derivatives (HPDs) used during photodynamic chemotherapy of tumors. In the absence of light, HPDs showed no cytotoxic effects to keratinocytes. However, after irradiation with visible light, HPDs induced immediate cytotoxicity as measured by the neutral red uptake assay. On the other hand, cell attachment as measured by protein estimation was not affected. When the cells treated with HPDs and irradiated with light were cultured for a further 72 h, they partially lost their ability to attach to the collagen surface. Most of the cells remaining attached after 72 h were no longer viable following treatment with HPDs and light. All parameters measured depended on the intracellular concentration of HPDs used (7-50 ng/10(5) cells) and the time of irradiation (0-30 min). These results suggest that human keratinocytes are a good model to study cytotoxic effects of photodynamically active drugs. Further, keratinocytes were unable to recover after damage caused by HPDs and light.

  12. Negative correlation of LIV-1 and E-cadherin expression in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Rongxi Shen

    Full Text Available LIV-1, a zinc transporter, is a mediator downstream of STAT3 both in zebrafish and mammalian cells, and is involved in epithelial-mesenchymal transition (EMT. Despite LIV-1 participates in cancer growth and metastasis, little is known about the association of LIV-1 with human liver cancer development. Therefore, the expression of LIV-1 mRNA was analyzed by reverse transcriptase polymerase chain reaction (RT-PCR in 4 cultured cell lines (3 carcinoma and 1 normal liver cell lines, and the localization of LIV-1 protein was investigated by immunohistochemistry. Expression of LIV-1 protein was analyzed by Western blot both in 4 cultured cell lines and 120 liver tissues (100 carcinoma and 20 histologically normal tissues, and the relationship between its expression and clinicopathological finding was investigated in 100 hepatocellular carcinoma(HCC tissues. Then stable siRNA expressing Hep-G2 cells were generated to assess the function of LIV-1 in liver cancer cells. We found that LIV-1 mRNA was more highly expressed in liver cancer cell lines compared to normal liver cell line. Western blot showed the expression of LIV-1 was higher in 61% liver carcinoma tissues than that in normal liver tissues. Down-regulated LIV-1 cells showed significant inhibition of proliferation in vitro and reduction of tumor growth in vivo. Furthermore, E-cadherin expression increased in LIV-1 siRNA expressing Hep-G2. These findings indicated that LIV-1 may induce the EMT in HCC cells.

  13. Oral candidosis in relation to oral immunity.

    Science.gov (United States)

    Feller, L; Khammissa, R A G; Chandran, R; Altini, M; Lemmer, J

    2014-09-01

    Symptomatic oral infection with Candida albicans is characterized by invasion of the oral epithelium by virulent hyphae that cause tissue damage releasing the inflammatory mediators that initiate and sustain local inflammation. Candida albicans triggers pattern-recognition receptors of keratinocytes, macrophages, monocytes and dendritic cells, stimulating the production of IL-1β, IL-6 and IL-23. These cytokines induce the differentiation of Th17 cells and the generation of IL-17- and/or IL-22-mediated antifungal protective immuno-inflammatory responses in infected mucosa. Some immune cells including NKT cells, γδ T cells and lymphoid cells that are innate to the oral mucosa have the capacity to produce large quantities of IL-17 in response to C. albicans, sufficient to mediate effective protective immunity against C. albicans. On the other hand, molecular structures of commensal C. albicans blastoconidia, although detected by pattern-recognition receptors, are avirulent, do not invade the oral epithelium, do not elicit inflammatory responses in a healthy host, but induce regulatory immune responses that maintain tissue tolerance to the commensal fungi. The type, specificity and sensitivity of the protective immune response towards C. albicans is determined by the outcome of the integrated interactions between the intracellular signalling pathways of specific combinations of activated pattern-recognition receptors (TLR2, TLR4, Dectin-1 and Dectin-2). IL-17-mediated protective immune response is essential for oral mucosal immunity to C. albicans infection. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Nuclear translocation of β-catenin and decreased expression of epithelial cadherin in human papillomavirus-positive tonsillar cancer: an early event in human papillomavirus-related tumour progression?

    Science.gov (United States)

    Stenner, Markus; Yosef, Basima; Huebbers, Christian U; Preuss, Simon F; Dienes, Hans-Peter; Speel, Ernst-Jan M; Odenthal, Margarete; Klussmann, Jens P

    2011-06-01

    High-risk human papillomaviruses (HPVs) constitute an important risk factor for tonsillar cancer. This study describes changes in cell adhesion molecules during metastasis of HPV-related and HPV-unrelated tonsillar carcinomas. We examined 48 primary tonsillar carcinoma samples (25 HPV-16 DNA-positive, 23 HPV-16 DNA-negative) and their respective lymph node metastases for their HPV status and for the expression of p16, epithelial cadherin (E-cadherin), β-catenin, and vimentin. A positive HPV-specific polymerase chain reaction finding correlated significantly with p16 overexpression in both primary tumours and their metastases (P<0.0001 for both). In HPV-unrelated carcinomas, the expression of E-cadherin was significantly lower in metastases than in primary tumours (P<0.001). In contrast, the expression of nuclear β-catenin was significantly higher in metastases than in primary tumours (P=0.016). In HPV-related carcinomas, nuclear localization of β-catenin expression was already apparent in primary tumours (P=0.030). The expression of vimentin significantly correlated with the grading of the primary tumour (P=0.021). Our data indicate that the down-regulation of E-cadherin and the up-regulation of nuclear β-catenin expression might be crucial steps during tumour progression of tonsillar carcinomas, being already present in primary tumours in HPV-driven carcinomas, but becoming apparent in HPV-unrelated tumours later in the process of metastasis. © 2011 Blackwell Publishing Limited.

  15. Rab11b mediates melanin transfer between donor melanocytes and acceptor keratinocytes via coupled exo/endocytosis.

    Science.gov (United States)

    Tarafder, Abul K; Bolasco, Giulia; Correia, Maria S; Pereira, Francisco J C; Iannone, Lucio; Hume, Alistair N; Kirkpatrick, Niall; Picardo, Mauro; Torrisi, Maria R; Rodrigues, Inês P; Ramalho, José S; Futter, Clare E; Barral, Duarte C; Seabra, Miguel C

    2014-04-01

    The transfer of melanin from melanocytes to keratinocytes is a crucial process underlying maintenance of skin pigmentation and photoprotection against UV damage. Here, we present evidence supporting coupled exocytosis of the melanin core, or melanocore, by melanocytes and subsequent endocytosis by keratinocytes as a predominant mechanism of melanin transfer. Electron microscopy analysis of human skin samples revealed three lines of evidence supporting this: (1) the presence of melanocores in the extracellular space; (2) within keratinocytes, melanin was surrounded by a single membrane; and (3) this membrane lacked the melanosomal membrane protein tyrosinase-related protein 1 (TYRP1). Moreover, co-culture of melanocytes and keratinocytes suggests that melanin exocytosis is specifically induced by keratinocytes. Furthermore, depletion of Rab11b, but not Rab27a, caused a marked decrease in both keratinocyte-stimulated melanin exocytosis and transfer to keratinocytes. Thus, we propose that the predominant mechanism of melanin transfer is keratinocyte-induced exocytosis, mediated by Rab11b through remodeling of the melanosome membrane, followed by subsequent endocytosis by keratinocytes.

  16. The Nonreceptor Protein Tyrosine Phosphatase PTP1B Binds to the Cytoplasmic Domain of N-Cadherin and Regulates the Cadherin–Actin Linkage

    Science.gov (United States)

    Balsamo, Janne; Arregui, Carlos; Leung, TinChung; Lilien, Jack

    1998-01-01

    Cadherin-mediated adhesion depends on the association of its cytoplasmic domain with the actin-containing cytoskeleton. This interaction is mediated by a group of cytoplasmic proteins: α-and β- or γ- catenin. Phosphorylation of β-catenin on tyrosine residues plays a role in controlling this association and, therefore, cadherin function. Previous work from our laboratory suggested that a nonreceptor protein tyrosine phosphatase, bound to the cytoplasmic domain of N-cadherin, is responsible for removing tyrosine-bound phosphate residues from β-catenin, thus maintaining the cadherin–actin connection (Balsamo et al., 1996). Here we report the molecular cloning of the cadherin-associated tyrosine phosphatase and identify it as PTP1B. To definitively establish a causal relationship between the function of cadherin-bound PTP1B and cadherin-mediated adhesion, we tested the effect of expressing a catalytically inactive form of PTP1B in L cells constitutively expressing N-cadherin. We find that expression of the catalytically inactive PTP1B results in reduced cadherin-mediated adhesion. Furthermore, cadherin is uncoupled from its association with actin, and β-catenin shows increased phosphorylation on tyrosine residues when compared with parental cells or cells transfected with the wild-type PTP1B. Both the transfected wild-type and the mutant PTP1B are found associated with N-cadherin, and recombinant mutant PTP1B binds to N-cadherin in vitro, indicating that the catalytically inactive form acts as a dominant negative, displacing endogenous PTP1B, and rendering cadherin nonfunctional. Our results demonstrate a role for PTP1B in regulating cadherin-mediated cell adhesion. PMID:9786960

  17. VE-cadherin cleavage by LasB protease from Pseudomonas aeruginosa facilitates type III secretion system toxicity in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Guillaume Golovkine

    2014-03-01

    Full Text Available Infection of the vascular system by Pseudomonas aeruginosa (Pa occurs during bacterial dissemination in the body or in blood-borne infections. Type 3 secretion system (T3SS toxins from Pa induce a massive retraction when injected into endothelial cells. Here, we addressed the role of type 2 secretion system (T2SS effectors in this process. Mutants with an inactive T2SS were much less effective than wild-type strains at inducing cell retraction. Furthermore, secretomes from wild-types were sufficient to trigger cell-cell junction opening when applied to cells, while T2SS-inactivated mutants had minimal activity. Intoxication was associated with decreased levels of vascular endothelial (VE-cadherin, a homophilic adhesive protein located at endothelial cell-cell junctions. During the process, the protein was cleaved in the middle of its extracellular domain (positions 335 and 349. VE-cadherin attrition was T3SS-independent but T2SS-dependent. Interestingly, the epithelial (E-cadherin was unaffected by T2SS effectors, indicating that this mechanism is specific to endothelial cells. We showed that one of the T2SS effectors, the protease LasB, directly affected VE-cadherin proteolysis, hence promoting cell-cell junction disruption. Furthermore, mouse infection with Pa to induce acute pneumonia lead to significant decreases in lung VE-cadherin levels, whereas the decrease was minimal with T2SS-inactivated or LasB-deleted mutant strains. We conclude that the T2SS plays a pivotal role during Pa infection of the vascular system by breaching the endothelial barrier, and propose a model in which the T2SS and the T3SS cooperate to intoxicate endothelial cells.

  18. Stereotyped distribution of proliferating keratinocytes in disorders affecting the epidermis

    International Nuclear Information System (INIS)

    Pierard-Franchimont, C.; Pierard, G.E.

    1989-01-01

    We used the technique of autoradiography after incorporation of tritiated thymidine ( 3 H-TdR) to evaluate keratinocyte proliferation in basal, epibasal, and other epidermal layers in 30 diseases affecting the epidermis. The number and proportion of 3 H-TdR-labeled keratinocytes were counted in the different layers of the epidermis. Significant correlations were found between the proliferative indices of the different epidermal layers. Such links indicate that the epidermis responds in a rather stereotyped way to various pathological conditions. There exists some regulation in the distribution, number, and proportion of 3 H-TdR-labeled keratinocytes in the various layers of the epidermis

  19. α-Catenin localization and sarcomere self-organization on N-cadherin adhesive patterns are myocyte contractility driven.

    Directory of Open Access Journals (Sweden)

    Anant Chopra

    Full Text Available The N-cadherin (N-cad complex plays a crucial role in cardiac cell structure and function. Cadherins are adhesion proteins linking adjacent cardiac cells and, like integrin adhesions, are sensitive to force transmission. Forces through these adhesions are capable of eliciting structural and functional changes in myocytes. Compared to integrins, the mechanisms of force transduction through cadherins are less explored. α-catenin is a major component of the cadherin-catenin complex, thought to provide a link to the cell actin cytoskeleton. Using N-cad micropatterned substrates in an adhesion constrainment model, the results from this study show that α-catenin localizes to regions of highest internal stress in myocytes. This localization suggests that α-catenin acts as an adaptor protein associated with the cadherin mechanosensory apparatus, which is distinct from mechanosensing through integrins. Myosin inhibition in cells bound by integrins to fibronectin-coated patterns disrupts myofibiril organization, whereas on N-cad coated patterns, myosin inhibition leads to better organized myofibrils. This result indicates that the two adhesion systems provide independent mechanisms for regulating myocyte structural organization.

  20. Fos and jun proteins are specifically expressed during differentiation of human keratinocytes.

    Science.gov (United States)

    Mehic, Denis; Bakiri, Latifa; Ghannadan, Minoo; Wagner, Erwin F; Tschachler, Erwin

    2005-01-01

    Activator protein 1 (AP-1) proteins play key roles in the regulation of cell proliferation and differentiation. In this study we investigated the expression of Fos and Jun proteins in different models of terminal differentiation of human keratinocytes and in skin from psoriasis patients. All Jun and Fos proteins, with the exception of FosB, were efficiently expressed in keratinocytes in monolayer cultures. In contrast, in normal epidermis as well as in organotypic epidermal cultures, the expression pattern of AP-1 proteins was dependent on the differentiation stage. Fos proteins were readily detected in nuclei of keratinocytes of basal and suprabasal layers. JunB and JunD were expressed in all layers of normal epidermis. Interestingly, expression of c-Jun started suprabasally, then disappeared and became detectable again in distinct cells of the outermost granular layer directly at the transition zone to the stratum corneum. In psoriatic epidermis, c-Jun expression was prominent in both hyperproliferating basal and suprabasal keratinocytes, whereas c-Fos expression was unchanged. These data indicate that AP-1 proteins are expressed in a highly specific manner during terminal differentiation of keratinocytes and that the enhanced expression of c-Jun in basal and suprabasal keratinocytes might contribute to the pathogenesis of psoriasis.

  1. Effects of Human Mesenchymal Stem Cells Coculture on Calcium-Induced Differentiation of Normal Human Keratinocytes.

    Science.gov (United States)

    Sah, Shyam Kishor; Kim, Hae Young; Lee, Ji Hae; Lee, Seong-Wook; Kim, Hyung-Sik; Kim, Yeon-Soo; Kang, Kyung-Sun; Kim, Tae-Yoon

    2017-06-01

    The influence of mesenchymal stem cells (MSCs) on keratinocytes in altered microenvironments is poorly understood. Here, we cocultured umbilical cord blood-derived MSCs with normal human epidermal keratinocytes to evaluate their paracrine effect in the presence of high extracellular calcium (Ca 2+ ) concentration. High Ca 2+ environment to keratinocytes can disrupt normal skin barrier function due to abnormal/premature differentiation of keratinocytes. Surprisingly, we found that MSCs suppress both proliferation and differentiation of keratinocytes under a high Ca 2+ environment in transforming growth factors β1 (TGFβ1)-dependent manner. Furthermore, we determined that MSCs can regulate the mitogen-activated protein kinases, phosphatidylinositol 3-kinase/protein kinase B, and protein kinase C pathways in Ca 2+ -induced differentiated keratinocytes. Knockdown of TGFβ1 from MSCs results in decreased suppression of differentiation with significantly increased proliferation of keratinocytes compared with control MSCs. MSCs-derived TGFβ1 further induced growth inhibition of keratinocyte in high extracellular Ca 2+ environment as analyzed by a decrease in DNA synthesis, accumulation of phosphorylated retinoblastoma protein, cdc2, and increased mRNA level of p21, and independent of TGFβ1/SMAD pathway. Taken together, we found that MSCs-derived TGFβ1 is a critical regulator of keratinocyte function, and involves multiple proximal signaling cascades. Stem Cells 2017;35:1592-1602. © 2017 AlphaMed Press.

  2. A Novel Tenebrio molitor Cadherin Is a Functional Receptor for Bacillus thuringiensis Cry3Aa Toxin*

    OpenAIRE

    Fabrick, Jeff; Oppert, Cris; Lorenzen, Marcé D.; Morris, Kaley; Oppert, Brenda; Jurat-Fuentes, Juan Luis

    2009-01-01

    Cry toxins produced by the bacterium Bacillus thuringiensis are effective biological insecticides. Cadherin-like proteins have been reported as functional Cry1A toxin receptors in Lepidoptera. Here we present data that demonstrate that a coleopteran cadherin is a functional Cry3Aa toxin receptor. The Cry3Aa receptor cadherin was cloned from Tenebrio molitor larval midgut mRNA, and the predicted protein, TmCad1, has domain structure and a putative toxin binding region similar to those in lepid...

  3. SMAD4 regulates cell motility through transcription of N-cadherin in human pancreatic ductal epithelium.

    Directory of Open Access Journals (Sweden)

    Ya'an Kang

    Full Text Available Expression of the cellular adhesion protein N-cadherin is a critical event during epithelial-mesenchymal transition (EMT. The SMAD4 protein has been identified as a mediator of transforming growth factor-β (TGF-β superfamily signaling, which regulates EMT, but the mechanisms linking TGF-β signaling to N-cadherin expression remain unclear. When the TGF-β pathway is activated, SMAD proteins, including the common mediator SMAD4, are subsequently translocated into the nucleus, where they influence gene transcription via SMAD binding elements (SBEs. Here we describe a mechanism for control of CDH2, the gene encoding N-cadherin, through the canonical TGFβ-SMAD4 pathway. We first identified four previously undescribed SBEs within the CDH2 promoter. Using telomerase immortalized human pancreatic ductal epithelium, we found that TGF-β stimulation prompted specific SMAD4 binding to all four SBEs. Luciferase reporter and SMAD4-knockdown experiments demonstrated that specific SMAD4 binding to the SBE located at -3790 bp to -3795 bp within the promoter region of CDH2 was necessary for TGF-β-stimulated transcription. Expression of N-cadherin on the surface of epithelial cells facilitates motility and invasion, and we demonstrated that knockdown of SMAD4 causes decreased N-cadherin expression, which results in diminished migration and invasion of human pancreatic ductal epithelial cells. Similar reduction of cell motility was produced after CDH2 knockdown. Together, these findings suggest that SMAD4 is critical for the TGF-β-driven upregulation of N-cadherin and the resultant invasive phenotype of human pancreatic ductal epithelial cells during EMT.

  4. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.).

    Science.gov (United States)

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-03-01

    The Gram-positive bacterium Bacillus thuringiensis (Bt) produces Cry toxins that have been used to control important agricultural pests. Evolution of resistance in target pests threatens the effectiveness of these toxins when used either in sprayed biopesticides or in Bt transgenic crops. Although alterations of the midgut cadherin-like receptor can lead to Bt Cry toxin resistance in many insects, whether the cadherin gene is involved in Cry1Ac resistance of Plutella xylostella (L.) remains unclear. Here, we present experimental evidence that resistance to Cry1Ac or Bt var. kurstaki (Btk) in P. xylostella is not due to alterations of the cadherin gene. The bona fide P. xylostella cadherin cDNA sequence was cloned and analyzed, and comparisons of the cadherin cDNA sequence among susceptible and resistant P. xylostella strains confirmed that Cry1Ac resistance was independent of mutations in this gene. In addition, real-time quantitative PCR (qPCR) indicated that cadherin transcript levels did not significantly differ among susceptible and resistant P. xylostella strains. RNA interference (RNAi)-mediated suppression of cadherin gene expression did not affect larval susceptibility to Cry1Ac toxin. Furthermore, genetic linkage assays using four cadherin gDNA allelic biomarkers confirmed that the cadherin gene is not linked to resistance against Cry1Ac in P. xylostella. Taken together, our findings demonstrate that Cry1Ac resistance of P. xylostella is independent of the cadherin gene. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Keratinocytes at the uppermost layer of epidermis might act as sensors of atmospheric pressure change.

    Science.gov (United States)

    Denda, Mitsuhiro

    2016-01-01

    It has long been suggested that climate, especially atmospheric pressure change, can cause health problems ranging from migraine to myocardial infarction. Here, I hypothesize that the sensory system of epidermal keratinocytes mediates the influence of atmospheric pressure change on the human physiological condition. We previously demonstrated that even subtle changes of atmospheric pressure (5-20 hPa) induce elevation of intracellular calcium level in cultured human keratinocytes (excitation of keratinocytes). It is also established that communication occurs between epidermal keratinocytes and peripheral nerve systems. Moreover, various neurotransmitters and hormones that influence multiple systems (nervous, cardiovascular, endocrine, and immune systems) are generated and released from epidermal keratinocytes in response to various external stimuli. Thus, I suggest that pathophysiological phenomena induced by atmospheric pressure changes might be triggered by epidermal keratinocytes.

  6. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells

    Science.gov (United States)

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan

    2016-01-01

    Background We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. Objective We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. Methods To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Results Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. Conclusion These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation. PMID:27489424

  7. The incidence and multiplicity rates of keratinocyte cancers in Australia.

    Science.gov (United States)

    Pandeya, Nirmala; Olsen, Catherine M; Whiteman, David C

    2017-10-16

    To assess the incidence and multiplicity of keratinocyte cancers (basal cell carcinoma [BCC] and squamous cell carcinoma [SCC]) excised in Australia, and to examine variations by age, sex, state, and prior skin cancer history. Analysis of individual-level Medicare data for keratinocyte cancer treatments (identified by eight specific MBS item codes) during 2011-2014. Histological data from the QSkin prospective cohort study were analysed to estimate BCC and SCC incidence. A 10% systematic random sample of all people registered with Medicare during 1997-2014. People aged at least 20 years in 2011 who made at least one claim for any MBS medical service during 2011-2014 (1 704 193 individuals). Age-standardised incidence rates (ASRs) and standardised incidence ratios (SIRs). The person-based incidence of keratinocyte cancer excisions in Australia was 1531 per 100 000 person-years; incidence increased with age, and was higher for men than women (SIR, 1.43; 95% CI, 1.42-1.45). Lesion-based incidence was 3154 per 100 000 person-years. The estimated ASRs for BCC and SCC were 770 per 100 000 and 270 per 100 000 person-years respectively. During 2011-2014, 3.9% of Australians had one keratinocyte cancer excised, 2.7% had more than one excised; 74% of skin cancers were excised from patients who had two or more lesions removed. Multiplicity was strongly correlated with age; most male patients over 70 were treated for multiple lesions. Keratinocyte cancer incidence was eight times as high among people with a prior history of excisions as among those without. The incidence and multiplicity of keratinocyte cancer in Australia are very high, causing a large disease burden that has not previously been quantified.

  8. ADAM13 cleavage of cadherin-11 promotes CNC migration independently of the homophilic binding site.

    Science.gov (United States)

    Abbruzzese, Genevieve; Becker, Sarah F; Kashef, Jubin; Alfandari, Dominique

    2016-07-15

    The cranial neural crest (CNC) is a highly motile population of cells that is responsible for forming the face and jaw in all vertebrates and perturbing their migration can lead to craniofacial birth defects. Cell motility requires a dynamic modification of cell-cell and cell-matrix adhesion. In the CNC, cleavage of the cell adhesion molecule cadherin-11 by ADAM13 is essential for cell migration. This cleavage generates a shed extracellular fragment of cadherin-11 (EC1-3) that possesses pro-migratory activity via an unknown mechanism. Cadherin-11 plays an important role in modulating contact inhibition of locomotion (CIL) in the CNC to regulate directional cell migration. Here, we show that while the integral cadherin-11 requires the homophilic binding site to promote CNC migration in vivo, the EC1-3 fragment does not. In addition, we show that increased ADAM13 activity or expression of the EC1-3 fragment increases CNC invasiveness in vitro and blocks the repulsive CIL response in colliding cells. This activity requires the presence of an intact homophilic binding site on the EC1-3 suggesting that the cleavage fragment may function as a competitive inhibitor of cadherin-11 adhesion in CIL but not to promote cell migration in vivo. Copyright © 2015. Published by Elsevier Inc.

  9. Shining a Light on Black Holes in Keratinocytes.

    Science.gov (United States)

    Bowman, Shanna L; Marks, Michael S

    2018-03-01

    The mechanisms by which melanins are transferred from melanocytes and stored within keratinocytes to generate skin pigmentation are hotly debated. Correia et al. and Hurbain et al. provide evidence that melanin cores of melanosomes are secreted from melanocytes and taken up and stored within non-degradative membranous organelles in keratinocytes in the basal epidermis of human skin. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. fps/fes knockout mice display a lactation defect and the fps/fes tyrosine kinase is a component of E-cadherin-based adherens junctions in breast epithelial cells during lactation.

    Science.gov (United States)

    Truesdell, Peter F; Zirngibl, Ralph A; Francis, Sarah; Sangrar, Waheed; Greer, Peter A

    2009-10-15

    The fps/fes proto-oncogene encodes a cytoplasmic protein-tyrosine kinase implicated in vesicular trafficking and cytokine and growth factor signaling in hematopoietic, neuronal, vascular endothelial and epithelial lineages. Genetic evidence has suggested a tumor suppressor role for Fps/Fes in breast and colon. Here we used fps/fes knockout mice to investigate potential roles for this kinase in development and function of the mammary gland. Fps/Fes expression was induced during pregnancy and lactation, and its kinase activity was dramatically enhanced. Milk protein and fat composition from nursing fps/fes-null mothers was normal; however, pups reared by them gained weight more slowly than pups reared by wild-type mothers. Fps/Fes displayed a predominantly dispersed punctate intracellular distribution which was consistent with vesicles within the luminal epithelial cells of lactating breast, while a small fraction co-localized with beta-catenin and E-cadherin on their basolateral surfaces. Fps/Fes was found to be a component of the E-cadherin adherens junction (AJ) complex; however, the phosphotyrosine status of beta-catenin and core AJ components in fps/fes-null breast tissue was unaltered, and epithelial cell AJs and gland morphology were intact. We conclude that Fps/Fes is not essential for the maintenance of epithelial cell AJs in the lactating breast but may instead play important roles in vesicular trafficking and milk secretion.

  11. Perturbed desmosomal cadherin expression in grainy head-like 1-null mice.

    Science.gov (United States)

    Wilanowski, Tomasz; Caddy, Jacinta; Ting, Stephen B; Hislop, Nikki R; Cerruti, Loretta; Auden, Alana; Zhao, Lin-Lin; Asquith, Stephen; Ellis, Sarah; Sinclair, Rodney; Cunningham, John M; Jane, Stephen M

    2008-03-19

    In Drosophila, the grainy head (grh) gene plays a range of key developmental roles through the regulation of members of the cadherin gene family. We now report that mice lacking the grh homologue grainy head-like 1 (Grhl1) exhibit hair and skin phenotypes consistent with a reduction in expression of the genes encoding the desmosomal cadherin, desmoglein 1 (Dsg1). Grhl1-null mice show an initial delay in coat growth, and older mice exhibit hair loss as a result of poor anchoring of the hair shaft in the follicle. The mice also develop palmoplantar keratoderma, analogous to humans with DSG1 mutations. Sequence analysis, DNA binding, and chromatin immunoprecipitation experiments demonstrate that the human and mouse Dsg1 promoters are direct targets of GRHL1. Ultrastructural analysis reveals reduced numbers of abnormal desmosomes in the interfollicular epidermis. These findings establish GRHL1 as an important regulator of the Dsg1 genes in the context of hair anchorage and epidermal differentiation, and suggest that cadherin family genes are key targets of the grainy head-like genes across 700 million years of evolution.

  12. Micronucleus formation in cultured human keratinocytes: Involvement of intercellular bioactivation.

    Science.gov (United States)

    van Pelt, F N; Haring, R M; Weterings, P J

    1991-01-01

    Micronucleus formation in cultured human keratinocytes was studied after exposure to benzo[a]pyrene, cyclophosphamide and 12-O-tetradecanoylphorbol-13-acetate without the addition of an exogenous metabolizing system. The first two agents need bioactivation by specific isoenzymes of cytochrome P-450 to form genotoxic intermediates. Benzo[a]pyrene induced the micronucleus formation in both uninduced and Aroclor 1254-pretreated cultures. Clastogenic effects of cyclophosphamide were observed only in Aroclor 1254-pretreated cells. The tumour promotor 12-O-tetradecanoylphorbol-13-acetate did not affect the frequency of micronuclei in human keratinocytes. The data indicate that cultured human keratinocytes can be used to study the tissue-specific response to genotoxic agents as well as interindividual variation in biotransformation capacity.

  13. Base-metal dental casting alloy biocompatibility assessment using a human-derived 3D oral mucosal model

    OpenAIRE

    MORAN, GARY; MC GINLEY, EMMA LOUISE; FLEMING, GARRY

    2012-01-01

    PUBLISHED Nickel-chromium (Ni-Cr) alloys used in fixed prosthodontics have been associated with type IV nickel-induced hypersensitivity. We hypothesized the full-thickness human-derived oral mucosa model employed for biocompatibility testing of base-metal dental alloys would provide insights into mechanisms of nickel-induced toxicity. Primary oral keratinocytes and gingival fibroblasts were seeded onto Alloderm? and maintained until full-thickness was achieved prior to Ni-Cr and cobalt-chr...

  14. Attachment and growth of human keratinocytes in a serum-free environment.

    Science.gov (United States)

    Gilchrest, B A; Calhoun, J K; Maciag, T

    1982-08-01

    Using a serum-free system, we have investigated the influence of human fibronectin (HFN) and selected growth factors (GF) on the attachment and growth of normal human keratinocytes in vitro. Single-cell suspensions of keratinocytes from near-confluent primary plates, plated on 5-10 microgram/cm2 HFN, showed approximately 30-40% attachment after 2-24 hours of incubation at 37 degrees C, compared with 4-6% attachment on uncoated platic plates. Percentage of attached cells was independent of seed density, tissue donor age, in vitro culture age, or medium composition, while subsequent cellular proliferation was strongly dependent on these factors. Keratinocytes grown on an adequate HFN matrix in a previously described hormone-supplemented medium (Maciag et al., 1981a) achieved four to eight population doubling over 7-12 days at densities greater than or equal to 104 cell/cm2. Removal of most GF individually from the medium had little or no effect on growth, while removal of epidermal growth factor (EGF) alone reduced growth by 30-35% and removal of bovine brain extract (BE) alone reduced growth by approximately 90%. Conversely, EGF alone in basal medium supported approximately 10% control growth, BE alone supported 30-40% control growth, and the combination of EGF and BE approximately 70%. In addition to its major effect on proliferation in this system, BE was necessary to preserve normal keratinocyte morphology and protein production. These findings expand earlier observations that HFN facilitates keratinocyte attachment in vitro and that a brain-derived extract can exert a major positive influence on cultured keratinocytes.

  15. Essential role of integrin-linked kinase in regulation of phagocytosis in keratinocytes.

    Science.gov (United States)

    Sayedyahossein, Samar; Nini, Lylia; Irvine, Timothy S; Dagnino, Lina

    2012-10-01

    Phagocytic melanosome uptake by epidermal keratinocytes is a central protective mechanism against damage induced by ultraviolet radiation. Phagocytosis requires formation of pseudopodia via actin cytoskeleton rearrangements. Integrin-linked kinase (ILK) is an important modulator of actin cytoskeletal dynamics. We have examined the role of ILK in regulation of phagocytosis, using epidermal keratinocytes isolated from mice with epidermis-restricted Ilk gene inactivation. ILK-deficient cells exhibited severely impaired capacity to engulf fluorescent microspheres in response to stimulation of the keratinocyte growth factor (KGF) receptor or the protease-activated receptor-2. KGF induced ERK phosphorylation in ILK-expressing and ILK-deficient cells, suggesting that ILK is not essential for KGF receptor signaling. In contrast, KGF promoted activation of Rac1 and formation of pseudopodia in ILK-expressing, but not in ILK-deficient cells. Rac1-deficient keratinocytes also showed substantially impaired phagocytic ability, underlining the importance of ILK-dependent Rac1 function for particle engulfment. Finally, cross-modulation of KGF receptors by integrins may be another important element, as integrin β1-deficient keratinocytes also fail to show significant phagocytosis in response to KGF. Thus, we have identified a novel signaling pathway essential for phagocytosis in keratinocytes, which involves ILK-dependent activation of Rac1 in response to KGF, resulting in the formation of pseudopodia and particle uptake.

  16. Modulation of keratinocyte expression of antioxidants by 4-hydroxynonenal, a lipid peroxidation end product

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruijin [Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Environmental Health Science, New York Medical College, Valhalla, NY (United States); Mishin, Vladimir; Black, Adrienne T. [Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Shakarjian, Michael P. [Environmental Health Science, New York Medical College, Valhalla, NY (United States); Kong, Ah-Ng Tony; Laskin, Debra L. [Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2014-03-01

    4-Hydroxynonenal (4-HNE) is a lipid peroxidation end product generated in response to oxidative stress in the skin. Keratinocytes contain an array of antioxidant enzymes which protect against oxidative stress. In these studies, we characterized 4-HNE-induced changes in antioxidant expression in mouse keratinocytes. Treatment of primary mouse keratinocytes and PAM 212 keratinocytes with 4-HNE increased mRNA expression for heme oxygenase-1 (HO-1), catalase, NADPH:quinone oxidoreductase (NQO1) and glutathione S-transferase (GST) A1-2, GSTA3 and GSTA4. In both cell types, HO-1 was the most sensitive, increasing 86–98 fold within 6 h. Further characterization of the effects of 4-HNE on HO-1 demonstrated concentration- and time-dependent increases in mRNA and protein expression which were maximum after 6 h with 30 μM. 4-HNE stimulated keratinocyte Erk1/2, JNK and p38 MAP kinases, as well as PI3 kinase. Inhibition of these enzymes suppressed 4-HNE-induced HO-1 mRNA and protein expression. 4-HNE also activated Nrf2 by inducing its translocation to the nucleus. 4-HNE was markedly less effective in inducing HO-1 mRNA and protein in keratinocytes from Nrf2 −/− mice, when compared to wild type mice, indicating that Nrf2 also regulates 4-HNE-induced signaling. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that 4-HNE-induced HO-1 is localized in keratinocyte caveolae. Treatment of the cells with methyl-β-cyclodextrin, which disrupts caveolar structure, suppressed 4-HNE-induced HO-1. These findings indicate that 4-HNE modulates expression of antioxidant enzymes in keratinocytes, and that this can occur by different mechanisms. Changes in expression of keratinocyte antioxidants may be important in protecting the skin from oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a reactive aldehyde. • 4-HNE induces antioxidant proteins in mouse keratinocytes. • Induction of

  17. Oral melanoacanthoma and oral melanotic macule: a report of 8 cases, review of the literature, and immunohistochemical analysis.

    Science.gov (United States)

    Carlos-Bregni, Román; Contreras, Elisa; Netto, Ana Carolina; Mosqueda-Taylor, Adalberto; Vargas, Pablo Agustin; Jorge, Jacks; León, Jorge Esquiche; de Almeida, Oslei Paes

    2007-09-01

    Oral melanoacanthoma (MA) is a rare, benign pigmented lesion, similar to cutaneous MA, characterized by hyperplasia of spinous keratinocytes and dendritic melanocytes. The pathogenesis of oral MA remains uncertain, although its clinical behavior is suggestive of a reactive origin. The most common intraoral sites are the buccal mucosa, lip, palate and gingiva. The average age of presentation is 28 years, mainly in blacks, with a strong female predilection. The oral melanotic macule (MM) is a small, well-circumscribed brown-to-black macule that occurs on the lips and mucous membranes. The etiology is not clear and it may represent a physiologic or reactive process. The average age of presentation is 43 years, with a female predilection. A biopsy is recommended to distinguish these lesions from each other and from other oral melanocytic lesions. We depict four cases each of oral MA and MM, affecting Caucasian and Latin American mestizo patients. The clinicopathological features of these cases reflect its ample spectrum, and to the best of our knowledge, it is the first example of oral MA affecting a Caucasian boy reported in the English literature. Therefore oral MA and MM should be considered in the differential diagnosis of pigmented lesions in the oral mucosa in these populations.

  18. Human keratinocytes restrict chikungunya virus replication at a post-fusion step

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Eric [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Hamel, Rodolphe [Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle, UMR 5290 CNRS/IRD/UM1, Montpellier (France); Neyret, Aymeric [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Ekchariyawat, Peeraya [Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle, UMR 5290 CNRS/IRD/UM1, Montpellier (France); Molès, Jean-Pierre [INSERM U1058, UM1, CHU Montpellier (France); Simmons, Graham [Blood Systems Research Institute, San Francisco, CA 94118 (United States); Chazal, Nathalie [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Desprès, Philippe [Unité Interactions Moléculaires Flavivirus-Hôtes, Institut Pasteur, Paris (France); and others

    2015-02-15

    Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses. - Highlights: • Human keratinocytes support endocytosis of CHIKV and fusion of viral membranes. • CHIKV replication is blocked at a post entry step in these cells. • Infection upregulates type-I, –II and –III IFN genes expression. • Keratinocytes behave as immune sentinels against CHIKV.

  19. Human keratinocytes restrict chikungunya virus replication at a post-fusion step

    International Nuclear Information System (INIS)

    Bernard, Eric; Hamel, Rodolphe; Neyret, Aymeric; Ekchariyawat, Peeraya; Molès, Jean-Pierre; Simmons, Graham; Chazal, Nathalie; Desprès, Philippe

    2015-01-01

    Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses. - Highlights: • Human keratinocytes support endocytosis of CHIKV and fusion of viral membranes. • CHIKV replication is blocked at a post entry step in these cells. • Infection upregulates type-I, –II and –III IFN genes expression. • Keratinocytes behave as immune sentinels against CHIKV

  20. Air-Stimulated ATP Release from Keratinocytes Occurs through Connexin Hemichannels

    Science.gov (United States)

    Barr, Travis P.; Albrecht, Phillip J.; Hou, Quanzhi; Mongin, Alexander A.; Strichartz, Gary R.; Rice, Frank L.

    2013-01-01

    Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease. PMID:23457608

  1. Lactobacillus rhamnosus GG Lysate Increases Re-Epithelialization of Keratinocyte Scratch Assays by Promoting Migration.

    Science.gov (United States)

    Mohammedsaeed, Walaa; Cruickshank, Sheena; McBain, Andrew J; O'Neill, Catherine A

    2015-11-05

    A limited number of studies have investigated the potential of probiotics to promote wound healing in the digestive tract. The aim of the current investigation was to determine whether probiotic bacteria or their extracts could be beneficial in cutaneous wound healing. A keratinocyte monolayer scratch assay was used to assess re-epithelialization; which comprises keratinocyte proliferation and migration. Primary human keratinocyte monolayers were scratched then exposed to lysates of Lactobacillus (L) rhamnosus GG, L. reuteri, L. plantarum or L. fermentum. Re-epithelialization of treated monolayers was compared to that of untreated controls. Lysates of L. rhamnosus GG and L. reuteri significantly increased the rate of re-epithelialization, with L. rhamnosus GG being the most efficacious. L. reuteri increased keratinocyte proliferation while L. rhamnosus GG lysate significantly increased proliferation and migration. Microarray analysis of L. rhamnosus GG treated scratches showed increased expression of multiple genes including the chemokine CXCL2 and its receptor CXCR2. These are involved in normal wound healing where they stimulate keratinocyte proliferation and/or migration. Increased protein expression of both CXCL2 and CXCR2 were confirmed by ELISA and immunoblotting. These data demonstrate that L. rhamnosus GG lysate accelerates re-epithelialization of keratinocyte scratch assays, potentially via chemokine receptor pairs that induce keratinocyte migration.

  2. Expression of cadherin and NCAM in human small cell lung cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Møller, C; Bock, E

    1992-01-01

    examined. All tumours but one expressed both cadherin and NCAM. The tumours expressed one, two or rarely three cadherin bands, and different combinations of two major isoforms of NCAM with M(r)'s of approximately 190,000 and 135,000. Polysialylation of NCAM, a feature characteristic of NCAM during...

  3. Rapid adhesion and proliferation of keratinocytes on the gold colloid/chitosan film scaffold

    International Nuclear Information System (INIS)

    Zhang Yi; He Hong; Gao Wenjuan; Lu Shuangyun; Liu Yang; Gu Haiying

    2009-01-01

    The gold colloid/chitosan film scaffold, which could enhance the attached ratio and accelerate proliferation of newborn mice keratinocytes, was fabricated by nanotechnology and self-assembly technology. This nanometer scaffold was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The keratinocytes were cultured and observed on three different extracellular matrices (ECM): gold colloid/chitosan film scaffold, chitosan film and cell culture plastic (control groups). 6 h, 12 h, 24 h after inoculation, the cell attached ratios were calculated respectively. In comparison to control groups, this scaffold could significantly (P < 0.01) increase the attached ratio of keratinocytes and promote their growth. Meanwhile, there were not any fusiform fibroblasts growing on this scaffold. The rapidly proliferating keratinocytes were indentified and characterized by immunohistochemistry and transmissive electron microscope (TEM), which showed the cells maintain their biological activity well. The results indicated that gold colloid/chitosan film scaffold was nontoxic to keratinocytes, and was a good candidate for wound dressing in skin tissue engineering.

  4. Keratinocyte-derived laminin-332 protein promotes melanin synthesis via regulation of tyrosine uptake.

    Science.gov (United States)

    Chung, Heesung; Jung, Hyejung; Lee, Jung-Hyun; Oh, Hye Yun; Kim, Ok Bin; Han, Inn-Oc; Oh, Eok-Soo

    2014-08-01

    Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    International Nuclear Information System (INIS)

    Rubina, Kseniya A.; Surkova, Ekaterina I.; Semina, Ekaterina V.; Sysoeva, Veronika Y.; Kalinina, Natalia I.; Poliakov, Alexei A.; Treshalina, Helena M.; Tkachuk, Vsevolod A.

    2015-01-01

    T-cadherin is a glycosyl-phosphatidylinositol (GPI) anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate that T-cadherin overexpression leads to the increase in the expression of anti-angiogenic molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells

  6. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Rubina, Kseniya A., E-mail: rkseniya@mail.ru; Surkova, Ekaterina I.; Semina, Ekaterina V.; Sysoeva, Veronika Y.; Kalinina, Natalia I. [Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky av., 31/5, Moscow 119192 (Russian Federation); Poliakov, Alexei A. [Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA (United Kingdom); Treshalina, Helena M. [Federal State Budgetary Scietific Institution «N.N. Blokhin Russian Cancer Research Center» (FSBSI “N.N.Blokhin RCRC”), Kashirskoe Shosse 24, Moscow 115478 (Russian Federation); Tkachuk, Vsevolod A. [Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky av., 31/5, Moscow 119192 (Russian Federation)

    2015-07-21

    T-cadherin is a glycosyl-phosphatidylinositol (GPI) anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate that T-cadherin overexpression leads to the increase in the expression of anti-angiogenic molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells.

  7. Treatment of disseminated granuloma annulare with oral vitamin E: 'primum nil nocere'.

    Science.gov (United States)

    Poppe, Heiko; Poppe, Lidia M; Goebeler, Matthias; Trautmann, Axel

    2013-01-01

    Disseminated granuloma annulare (DGA) is a benign and usually asymptomatic skin disease. However, many patients feel aesthetically disfigured and ask for treatment. Until today, no standard therapy is recommended. To evaluate the safety and efficacy of oral vitamin E treatment compared to the natural course of DGA. This single-centre observational cohort study included 38 consecutive patients with histologically confirmed DGA. 21 patients underwent treatment with oral vitamin E, whereas 17 patients preferred a wait-and-see approach. Complete healing (40%) and improvement (30%) were frequently seen under oral vitamin E therapy. However, DGA also spontaneously disappeared in 31% and improved in 25% of untreated control patients. Vitamin E therapy was very well tolerated. Oral vitamin E treatment is a safe and probably effective therapy for DGA. As the natural course of DGA leads to complete healing or significant improvement in many cases, 'primum nil nocere' should be the maxim.

  8. VE-cadherin expression allows identification of a new class of hematopoietic stem cells within human embryonic liver.

    Science.gov (United States)

    Oberlin, Estelle; Fleury, Maud; Clay, Denis; Petit-Cocault, Laurence; Candelier, Jean-Jacques; Mennesson, Benoît; Jaffredo, Thierry; Souyri, Michèle

    2010-11-25

    Edification of the human hematopoietic system during development is characterized by the production of waves of hematopoietic cells separated in time, formed in distinct embryonic sites (ie, yolk sac, truncal arteries including the aorta, and placenta). The embryonic liver is a major hematopoietic organ wherein hematopoietic stem cells (HSCs) expand, and the future, adult-type, hematopoietic cell hierarchy becomes established. We report herein the identification of a new, transient, and rare cell population in the human embryonic liver, which coexpresses VE-cadherin, an endothelial marker, CD45, a pan-hematopoietic marker, and CD34, a common endothelial and hematopoietic marker. This population displays an outstanding self-renewal, proliferation, and differentiation potential, as detected by in vitro and in vivo hematopoietic assays compared with its VE-cadherin negative counterpart. Based on VE-cadherin expression, our data demonstrate the existence of 2 phenotypically and functionally separable populations of multipotent HSCs in the human embryo, the VE-cadherin(+) one being more primitive than the VE-cadherin(-) one, and shed a new light on the hierarchical organization of the embryonic liver HSC compartment.

  9. E2F6: a member of the E2F family that does not modulate squamous differentiation

    International Nuclear Information System (INIS)

    Wong, C.F.; Barnes, Liam M.; Smith, Louise; Popa, Claudia; Serewko-Auret, Magdalena M.; Saunders, Nicholas A.

    2004-01-01

    The inhibition of E2F has been demonstrated to be important in the initiation of squamous differentiation by two independent manners: promotion of growth arrest and the relief of the differentiation-suppressive properties of E2Fs. E2F6 is reported to behave as a transcriptional repressor of the E2F family. In this study, we examined the ability of E2F6 to act as the molecular switch required for E2F inhibition in order for keratinocytes to enter a terminal differentiation programme. Results demonstrated that whilst E2F6 was able to suppress E2F activity in proliferating keratinocytes, it did not modulate squamous differentiation in a differentiated keratinocyte. Furthermore, inhibition of E2F, by overexpressing E2F6, was not sufficient to sensitise either proliferating keratinocytes or the squamous cell carcinoma cell line, KJD-1/SV40, to differentiation-inducing agents. Significantly, although E2F6 could suppress E2F activity in proliferating cells, it could not inhibit proliferation of KJD-1/SV40 cells. These results demonstrate that E2F6 does not contain the domains required for modulation of squamous differentiation and imply isoform-specific functions for individual E2F family members

  10. Proline-rich tyrosine kinase 2 (Pyk2) mediates vascular endothelial-cadherin-based cell-cell adhesion by regulating beta-catenin tyrosine phosphorylation

    NARCIS (Netherlands)

    van Buul, Jaap D.; Anthony, Eloise C.; Fernandez-Borja, Mar; Burridge, Keith; Hordijk, Peter L.

    2005-01-01

    Vascular endothelial-cadherin (VE-cadherin) controls endothelial cell-cell adhesion and preserves endothelial integrity. In order to maintain endothelial barrier function, VE-cadherin function is tightly regulated through mechanisms that involve protein phosphorylation and cytoskeletal dynamics.

  11. Effect of irradiation on cell cycle, cell death and expression of its related proteins in normal human oral keratinocytes

    International Nuclear Information System (INIS)

    Kang, Mi Ae; Heo, Min Suk; Lee, Sam Sun; Oh, Sung Ook; Choi, Soon Chul; Park, Tae Won; Lee, Sul Mi; Jeon, In Seong

    2003-01-01

    To investigate the radiosensitivity of the normal human oral keratinocytes (NHOK), and the effect of irradiation on cell cycle and protein expression. To evaluate the radiosensitivity of NHOK, the number of colonies and cells were counted after irradiation and the SF2 (survival fraction as 2 Gy) value, and the cell survival curve fitted on a linear-quadratic model were obtained. LDH analysis was carried out to evaluate the necrosis of NHOK at 1, 2,3, and 4 days after 2, 10, and 20 Gy irradiation. Cell cycle arrest and the induction of apoptosis were analyzed using flow cytometry at 1, 2, 3, and 4 days after 2, 10, and 20 Gy irradiation. Finally, proteins related cell cycle arrest and apoptosis were analysed by Western blot. The number of survival cell was significantly decreased in a dose-dependent manner. The cell survival curve showed SF2, α, and β values to be 0.568, 0.209, and 0.020 respectively. At 20 Gy irradiated cells showed higher optical density than the control group. After irradiation, apoptosis was not observed but G2 arrest was observed in the NHOK cells. 1 day after 10 Gy irradiation, the expression of p53 remained unchanged, the p21 WAF1/Cip1 increased and the mdm2 decreased. The expression of bax, bcl-2, cyclin B1, and cyclin D remained unchanged. These results indicate that NHOK responds to irradiation by G2 arrest, which is possibly mediated by the expression of p21 WAF1/Cip1 , and that cell necrosis occurs by high dose irradiation.

  12. Membrane fluctuations mediate lateral interaction between cadherin bonds

    Science.gov (United States)

    Fenz, Susanne F.; Bihr, Timo; Schmidt, Daniel; Merkel, Rudolf; Seifert, Udo; Sengupta, Kheya; Smith, Ana-Sunčana

    2017-09-01

    The integrity of living tissues is maintained by adhesion domains of trans-bonds formed between cadherin proteins residing on opposing membranes of neighbouring cells. These domains are stabilized by lateral cis-interactions between the cadherins on the same cell. However, the origin of cis-interactions remains perplexing since they are detected only in the context of trans-bonds. By combining experimental, analytical and computational approaches, we identify bending fluctuations of membranes as a source of long-range cis-interactions, and a regulator of trans-interactions. Specifically, nanometric membrane bending and fluctuations introduce cooperative effects that modulate the affinity and binding/unbinding rates for trans-dimerization, dramatically affecting the nucleation and growth of adhesion domains. Importantly, this regulation relies on physical principles and not on details of protein-protein interactions. These omnipresent fluctuations can thus act as a generic control mechanism in all types of cell adhesion, suggesting a hitherto unknown physiological role for recently identified active fluctuations of cellular membranes.

  13. Upregulation of FOXM1 induces genomic instability in human epidermal keratinocytes

    Directory of Open Access Journals (Sweden)

    Philpott Michael P

    2010-02-01

    Full Text Available Abstract Background The human cell cycle transcription factor FOXM1 is known to play a key role in regulating timely mitotic progression and accurate chromosomal segregation during cell division. Deregulation of FOXM1 has been linked to a majority of human cancers. We previously showed that FOXM1 was upregulated in basal cell carcinoma and recently reported that upregulation of FOXM1 precedes malignancy in a number of solid human cancer types including oral, oesophagus, lung, breast, kidney, bladder and uterus. This indicates that upregulation of FOXM1 may be an early molecular signal required for aberrant cell cycle and cancer initiation. Results The present study investigated the putative early mechanism of UVB and FOXM1 in skin cancer initiation. We have demonstrated that UVB dose-dependently increased FOXM1 protein levels through protein stabilisation and accumulation rather than de novo mRNA expression in human epidermal keratinocytes. FOXM1 upregulation in primary human keratinocytes triggered pro-apoptotic/DNA-damage checkpoint response genes such as p21, p38 MAPK, p53 and PARP, however, without causing significant cell cycle arrest or cell death. Using a high-resolution Affymetrix genome-wide single nucleotide polymorphism (SNP mapping technique, we provided the evidence that FOXM1 upregulation in epidermal keratinocytes is sufficient to induce genomic instability, in the form of loss of heterozygosity (LOH and copy number variations (CNV. FOXM1-induced genomic instability was significantly enhanced and accumulated with increasing cell passage and this instability was increased even further upon exposure to UVB resulting in whole chromosomal gain (7p21.3-7q36.3 and segmental LOH (6q25.1-6q25.3. Conclusion We hypothesise that prolonged and repeated UVB exposure selects for skin cells bearing stable FOXM1 protein causes aberrant cell cycle checkpoint thereby allowing ectopic cell cycle entry and subsequent genomic instability. The aberrant

  14. Marked stimulation of growth and motility of human keratinocytes by hepatocyte growth factor

    International Nuclear Information System (INIS)

    Matsumoto, K.; Hashimoto, K.; Yoshikawa, K.; Nakamura, T.

    1991-01-01

    Effect of hepatocyte growth factor (HGF) on normal human epidermal keratinocytes cultured under conditions of low Ca2+ (0.1 mM, growth-promoting condition) and physiological Ca2+ (1.8 mM, differentiation-promoting condition) was investigated. In low Ca2+, HGF markedly enhanced the migration of keratinocytes while it suppressed cell growth and DNA synthesis in a dose-dependent manner. In contrast, HGF enhanced the migration, cell growth, and DNA synthesis of keratinocytes cultured under conditions of physiological Ca2+. The maximal stimulation of DNA synthesis (2.4-fold stimulation) in physiological Ca2+ was seen at 2.5-5 ng/ml HGF and the stimulatory effect of HGF was suppressed by transforming growth factor-beta 1. Analysis of the HGF receptor using 125I-HGF as a ligand showed that human keratinocytes expressed a single class of specific, saturable receptor for HGF in both low and physiological Ca2+ conditions, exhibiting a Kd = 17.3 pM and approximately 690 binding sites/cell under physiological Ca2+. Thus, HGF is a potent factor which enhances growth and migration of normal human keratinocytes under conditions of physiological Ca2+. HGF may play an important role in epidermal tissue repair as it enhances both the migration and growth of keratinocytes

  15. Culture technique of rabbit primary epidermal keratinocytes

    Directory of Open Access Journals (Sweden)

    Marini M

    2012-10-01

    Full Text Available The epidermis is the protective covering outer layer of the mammalian skin. The epidermal cells are stratified squamous epithelia which undergo continuous differentiation of loss and replacement of cells. Ninety per cent of epidermal cells consist of keratinocytes that are found in the basal layer of the stratified epithelium called epidermis. Keratinocytes are responsible for forming tight junctions with the nerves of the skin as well as in the process of wound healing. This article highlights the method of isolation and culture of rabbit primary epidermal keratinocytes in vitro. Approximately 2cm x 2cm oval shaped line was drawn on the dorsum of the rabbit to mark the surgical area. Then, the skin was carefully excised using a surgical blade and the target skin specimens harvested from the rabbits were placed in transport medium comprising of Dulbecco’s Modified Eagle Medium (DMEM and 1% of antibiotic-antimycotic solution. The specimens were transferred into a petri dish containing 70% ethanol and washed for 5 min followed by a wash in 1 x Dulbecco’s Phosphate Buffered Saline (DBPS. Then, the skin specimens were placed in DMEM and minced into small pieces using a scalpel. The minced pieces were placed in a centrifuge tube containing 0.6% Dispase and 1% antibiotic-antimycotic solution overnight at 4°C in a horizontal orientation. The epidermis layer (whitish, semi-transparent was separated from the dermis (pink, opaque, gooey with the aid of curved forceps by fixing the dermis with one pair of forceps while detaching the epidermis with the second pair. The cells were cultured at a density of 4 x 104 cells/cm2 in culture flask at 37°C and 5% CO2. The cell morphology of the keratinocytes was analyzed using inverted microscope.

  16. The protective effects of piceatannol from passion fruit (Passiflora edulis) seeds in UVB-irradiated keratinocytes.

    Science.gov (United States)

    Maruki-Uchida, Hiroko; Kurita, Ikuko; Sugiyama, Kenkichi; Sai, Masahiko; Maeda, Kazuhisa; Ito, Tatsuhiko

    2013-01-01

    The use of naturally occurring botanicals with substantial antioxidant activity to prevent photoageing is receiving increasing attention. We have previously identified piceatannol and scirpusin B, which is a dimer of piceatannol, as strong antioxidants that are present in passion fruit (Passiflora edulis) seeds. In the present study, the effects of passion fruit seed extract, piceatannol, and scirpusin B on human keratinocytes were investigated. The passion fruit seed extract and piceatannol upregulated the glutathione (GSH) levels in keratinocytes in a dose-dependent manner, indicating that piceatannol is an active component of the passion fruit seed extract in keratinocytes. The pretreatment with piceatannol also suppressed the UVB-induced generation of reactive oxygen species (ROS) in the keratinocytes. In addition, the transfer of the medium from the UVB-irradiated keratinocytes to non-irradiated fibroblasts enhanced matrix-metalloproteinase (MMP)-1 activity, and this MMP-1 induction was reduced when the keratinocytes were pretreated with piceatannol. These results suggest that piceatannol attenuates the UVB-induced activity of MMP-1 along with a reduction of ROS generation in keratinocytes. Thus, piceatannol and passion fruit seed extract containing high amounts of piceatannol are potential anti-photoageing cosmetic ingredients.

  17. Neurohumoral mechanisms of keratinocytes regulation in diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Ekaterina Viktorovna Artemova

    2016-12-01

    Full Text Available The extent of damage to the nervous, vascular and microcirculatory systems in diabetic patients determine the regulation of physiological events that lead to the formation of chronic wounds, reduction of patient quality of life and increase of the financial value of medical care. Successful physiological repair is impossible without the successive phases of inflammation, proliferation and wound healing. Keratinocytes are the major cellular barrier components of the epidermis. These cells play an important role in physiological repair, as suggested by recent research, with many cells able to secrete steroid hormones de novo. Damage to the integrity of the skin leads to keratinocyte activation, triggering a cascade of reactions that contribute to changes in epidermal cell phenotype and lead to their proliferation and migration, analogous to changes in cellular adhesion and configuration of the cytoskeleton. An open question remains as to how the keratinocyte cell cycle, which is altered under conditions of hyperglycemia, and neurotransmitter metabolism during different stages of physiological repair are regulated. Understanding these processes will provide a scientific basis for the development of new targets for pharmacotherapies.

  18. [Cultivated keratinocytes on micro-carriers: in vitro studies of a new carrier system].

    Science.gov (United States)

    Hecht, J; Hoefter, E A; Hecht, J; Haraida, S; Nerlich, A; Hartinger, A; Mühlbauer, W; Dimoudis, N

    1997-03-01

    Epidermal grafts from confluently cultivated keratinocytes have been used since the early eighties for the treatment of severe burns, where the shortage of donor sites for split-thickness skin grafts did not allow for adequate wound coverage. The difficult handling of these grafts as well as the advanced differentiation of their epithelial cells into a multilayer sheet poses a problem for their clinical application. The aim of the study was to characterize cultivated keratinocytes, as well as to observe their migration and proliferation from the MC onto a surface. Keratinocytes were isolated from human foreskin and cultivated in serum-free and serum-containing medium according to a modified method by Rheinwald and Green. Collagen-coated Dextran beads were used as MC. The MC were colonized with keratinocytes using the Spinner culture technique. After seeding the colonized MC into culture flasks, their migration and proliferation was monitored regularly through immunohistochemical studies and measurement of the metabolic cell activity. Immunohistological staining proved that the cells isolated from human foreskin represent keratinocytes of the basal type. Keratinocytes, cultivated with serum-containing and serum free medium, both adhered to the surface of the MC, then migrated onto the surface of the flasks and proliferated to form a multilayer of epithelial cells. In the long-term, a flexible epithelial graft consisting of poorly differentiated keratinocytes should be available, which is simple to produce and easy to handle. This would be an alternative method for treating wounds, where the conventional multilayer epithelial graft (ET) is insufficient.

  19. E-cadherin expression phenotypes associated with molecular subtypes in invasive non-lobular breast cancer: evidence from a retrospective study and meta-analysis.

    Science.gov (United States)

    Liu, Jiang-Bo; Feng, Chen-Yi; Deng, Miao; Ge, Dong-Feng; Liu, De-Chun; Mi, Jian-Qiang; Feng, Xiao-Shan

    2017-08-01

    This retrospective study and meta-analysis was designed to explore the relationship between E-cadherin (E-cad) expression and the molecular subtypes of invasive non-lobular breast cancer, especially in early-stage invasive ductal carcinoma (IDC). A total of 156 post-operative cases of early-stage IDCs were retrospectively collected for the immunohistochemistry (IHC) detection of E-cad expression. The association of E-cad expression with molecular subtypes of early-stage IDCs was analyzed. A literature search was conducted in March 2016 to retrieve publications on E-cad expression in association with molecular subtypes of invasive non-lobular breast cancer, and a meta-analysis was performed to estimate the relational statistics. E-cad was expressed in 82.7% (129/156) of early-stage IDCs. E-cad expression was closely associated with the molecular types of early-stage IDCs (P cancer (TNBC) than in other molecular subtypes (TNBC vs. luminal A: RR = 3.45, 95% CI = 2.79-4.26; TNBC vs. luminal B: RR = 2.41, 95% CI = 1.49-3.90; TNBC vs. HER2-enriched: RR = 1.95, 95% CI = 1.24-3.07). Early-stage IDCs or invasive non-lobular breast cancers with the TNBC molecular phenotype have a higher risk for the loss of E-cad expression than do tumors with non-TNBC molecular phenotypes, suggesting that E-cad expression phenotypes were closely related to molecular subtypes and further studies are needed to clarify the underlying mechanism.

  20. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    Directory of Open Access Journals (Sweden)

    Kseniya A. Rubina

    2015-07-01

    Full Text Available T-cadherin is a glycosyl-phosphatidylinositol (GPI anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells.

  1. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo

    Science.gov (United States)

    Broermann, Andre; Winderlich, Mark; Block, Helena; Frye, Maike; Rossaint, Jan; Zarbock, Alexander; Cagna, Giuseppe; Linnepe, Ruth; Schulte, Dörte; Nottebaum, Astrid Fee

    2011-01-01

    We have recently shown that vascular endothelial protein tyrosine phosphatase (VE-PTP), an endothelial membrane protein, associates with VE-cadherin and is required for optimal VE-cadherin function and endothelial cell contact integrity. The dissociation of VE-PTP from VE-cadherin is triggered by vascular endothelial growth factor (VEGF) and by the binding of leukocytes to endothelial cells in vitro, suggesting that this dissociation is a prerequisite for the destabilization of endothelial cell contacts. Here, we show that VE-cadherin/VE-PTP dissociation also occurs in vivo in response to LPS stimulation of the lung or systemic VEGF stimulation. To show that this dissociation is indeed necessary in vivo for leukocyte extravasation and VEGF-induced vascular permeability, we generated knock-in mice expressing the fusion proteins VE-cadherin-FK 506 binding protein and VE-PTP-FRB* under the control of the endogenous VE-cadherin promoter, thus replacing endogenous VE-cadherin. The additional domains in both fusion proteins allow the heterodimeric complex to be stabilized by a chemical compound (rapalog). We found that intravenous application of the rapalog strongly inhibited VEGF-induced (skin) and LPS-induced (lung) vascular permeability and inhibited neutrophil extravasation in the IL-1β inflamed cremaster and the LPS-inflamed lung. We conclude that the dissociation of VE-PTP from VE-cadherin is indeed required in vivo for the opening of endothelial cell contacts during induction of vascular permeability and leukocyte extravasation. PMID:22025303

  2. Immortalization of human foreskin keratinocytes by various human papillomavirus DNAs corresponds to their association with cervical carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Woodworth, C.D.; Doniger, J.; DiPaolo, J.A.

    1989-01-01

    Normal human foreskin keratinocytes cotransfected with the neomycin resistance gene and recombinant human papillomavirus (HPV) DNAs (types 16, 18, 31, and 33) that have a high or moderate association with cervical malignancy acquired immortality and contained integrated and transcriptionally active viral genomes. Only transcripts from the intact E6 and E7 genes were detected in at least one cell line, suggesting that one or both of these genes are responsible for immortalization. Recombinant HPV DNAs with low or no oncogenic potential for cervical cancer (HPV1a, -5, -6b, and -11) induced small G418-resistant colonies that senesced as did the nontransfected cells. These colonies contained only episomal virus DNA; therefore, integration of HPV sequences is important for immortalization of keratinocytes. This study suggests that the virus-encoded immortalization function contributes to the pathogenesis of cervical carcinoma.

  3. The peanut lectin-binding glycoproteins of human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Morrison, A.I.; Keeble, S.; Watt, F.M.

    1988-01-01

    The peanut lectin (PNA) is known to bind more strongly to keratinocytes that are undergoing terminal differentiation than to proliferating keratinocytes. In order to investigate the significance of this change in cell-surface carbohydrate authors have identified the PNA-binding glycoproteins of cultured human keratinocytes and antibodies against them. Two heavily glycosylated bands of 110 and 250 kDa were resolved by PAGE of [ 14 C]galactose- or [ 14 C]mannose- and [ 14 C]glucosamine-labeled cell extracts eluted with galactose from PNA affinity columns. The higher molecular weight band was also detected on PNA blots of unlabeled cell extracts transferred to nitrocellulose. Both bands were sensitive to pronase digestion, but only the 250-kDa band was digested with trypsin. A rabbit antiserum that we prepared (anti-PNA-gp) immunoprecipitated both bands from cell extracts. In contrast to PNA, anti-PNA-gp bound equally to proliferating and terminally differentiating cells, indicating that some epitope(s) of the PNA-binding glycoproteins is present on the cell surface prior to terminal differentiation. When keratinocytes grown as a monolayer in low-calcium medium were switched to medium containing 2 mM calcium ions in order to induce desmosome formation and stratification, there was a dramatic redistribution of the PNA-binding glycoproteins, which became concentrated at the boundaries between cells. This may suggest a role for the glycoproteins in cell-cell interactions during stratification

  4. Sonoporation delivery of monoclonal antibodies against human papillomavirus 16 E6 restores p53 expression in transformed cervical keratinocytes.

    Directory of Open Access Journals (Sweden)

    Melissa Togtema

    Full Text Available High-risk types of human papillomavirus (HPV, such as HPV16, have been found in nearly all cases of cervical cancer. Therapies targeted at blocking the HPV16 E6 protein and its deleterious effects on the tumour suppressor pathways of the cell can reverse the malignant phenotype of affected keratinocytes while sparing uninfected cells. Through a strong interdisciplinary collaboration between engineering and biology, a novel, non-invasive intracellular delivery method for the HPV16 E6 antibody, F127-6G6, was developed. The method employs high intensity focused ultrasound (HIFU in combination with microbubbles, in a process known as sonoporation. In this proof of principle study, it was first demonstrated that sonoporation antibody delivery into the HPV16 positive cervical carcinoma derived cell lines CaSki and SiHa was possible, using chemical transfection as a baseline for comparison. Delivery of the E6 antibody using sonoporation significantly restored p53 expression in these cells, indicating the antibody is able to enter the cells and remains active. This delivery method is targeted, non-cytotoxic, and non-invasive, making it more easily translatable for in vivo experiments than other transfection methods.

  5. Chimeric Human Skin Substitute Tissue: A Novel Treatment Option for the Delivery of Autologous Keratinocytes.

    Science.gov (United States)

    Rasmussen, Cathy A; Allen-Hoffmann, B Lynn

    2012-04-01

    For patients suffering from catastrophic burns, few treatment options are available. Chimeric coculture of patient-derived autologous cells with a "carrier" cell source of allogeneic keratinocytes has been proposed as a means to address the complex clinical problem of severe skin loss. Currently, autologous keratinocytes are harvested, cultured, and expanded to form graftable epidermal sheets. However, epidermal sheets are thin, are extremely fragile, and do not possess barrier function, which only develops as skin stratifies and matures. Grafting is typically delayed for up to 4 weeks to propagate a sufficient quantity of the patient's cells for application to wound sites. Fully stratified chimeric bioengineered skin substitutes could not only provide immediate wound coverage and restore barrier function, but would simultaneously deliver autologous keratinocytes to wounds. The ideal allogeneic cell source for this application would be an abundant supply of clinically evaluated, nontumorigenic, pathogen-free, human keratinocytes. To evaluate this potential cell-based therapy, mixed populations of a green fluorescent protein-labeled neonatal human keratinocyte cell line (NIKS) and unlabeled primary keratinocytes were used to model the allogeneic and autologous components of chimeric monolayer and organotypic cultures. Relatively few autologous keratinocytes may be required to produce fully stratified chimeric skin substitute tissue substantially composed of autologous keratinocyte-derived regions. The need for few autologous cells interspersed within an allogeneic "carrier" cell population may decrease cell expansion time, reducing the time to patient application. This study provides proof of concept for utilizing NIKS keratinocytes as the allogeneic carrier for the generation of bioengineered chimeric skin substitute tissues capable of providing immediate wound coverage while simultaneously supplying autologous human cells for tissue regeneration.

  6. TNFα-mediated loss of β-catenin/E-cadherin association and subsequent increase in cell migration is partially restored by NKX3.1 expression in prostate cells.

    Directory of Open Access Journals (Sweden)

    Bilge Debelec-Butuner

    Full Text Available Inflammation-induced carcinogenesis is associated with increased proliferation and migration/invasion of various types of tumor cells. In this study, altered β-catenin signaling upon TNFα exposure, and relation to loss of function of the tumor suppressor NKX3.1 was examined in prostate cancer cells. We used an in vitro prostate inflammation model to demonstrate altered sub-cellular localization of β-catenin following increased phosphorylation of Akt(S473 and GSK3β(S9. Consistently, we observed that subsequent increase in β-catenin transactivation enhanced c-myc, cyclin D1 and MMP2 expressions. Consequently, it was also observed that the β-catenin-E-cadherin association at the plasma membrane was disrupted during acute cytokine exposure. Additionally, it was demonstrated that disrupting cell-cell interactions led to increased migration of LNCaP cells in real-time migration assay. Nevertheless, ectopic expression of NKX3.1, which is degraded upon proinflammatory cytokine exposure in inflammation, was found to induce the degradation of β-catenin by inhibiting Akt(S473 phosphorylation, therefore, partially rescued the disrupted β-catenin-E-cadherin interaction as well as the cell migration in LNCaP cells upon cytokine exposure. As, the disrupted localization of β-catenin at the cell membrane as well as increased Akt(S308 priming phosphorylation was observed in human prostate tissues with prostatic inflammatory atrophy (PIA, high-grade prostatic intraepithelial neoplasia (H-PIN and carcinoma lesions correlated with loss of NKX3.1 expression. Thus, the data indicate that the β-catenin signaling; consequently sub-cellular localization is deregulated in inflammation, associates with prostatic atrophy and PIN pathology.

  7. Human papillomavirus types detected in skin warts and cancer differ in their transforming properties but commonly counteract UVB induced protective responses in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Shterzer, Naama; Heyman, Dariya; Shapiro, Beny; Yaniv, Abraham; Jackman, Anna [Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Serour, Francis [Department of Pediatric Surgery, The E. Wolfson Medical Center, Holon (Israel); Chaouat, Malka [Laboratory of Experimental Surgery, Hadassah University Hospital, Ein Karem, Jerusalem (Israel); Gonen, Pinhas [Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Tommasino, Massimo [International Agency for Research on Cancer, World Health Organization, Lyon (France); Sherman, Levana [Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv (Israel)

    2014-11-15

    In the present study, E6E7 and E6 proteins of human papillomaviruses (HPVs) associated with skin warts and cancer were compared for their transforming and carcinogenic abilities in primary human keratinocytes (PHKs). We show that E6E7 of cancer associated beta HPV types, notably 49 and 24, were able to extend the life span and enhance the clonogenic efficiency of PHKs when maintained in serum free/low calcium medium. Activities of the beta HPV E6E7 were lower than those of HPV16 E6E7. In contrast, E6 proteins from HPV types detected in skin warts or cancer, notably 10, 49 and 38, attenuated UVB induced protective responses in PHKs including cell death, proliferation arrest and accumulation of the proapoptotic proteins, p53, bax or bak. Together, this investigation revealed functional differences and commonalities between HPVs associated with skin warts and cancer, and allowed the identification of specific properties of beta HPVs supporting their involvement in skin carcinogenesis. - Highlights: • Primary keratinocytes were used to evaluate transforming and carcinogenic abilities of cutaneous HPVs. • E6E7 of cancer associated β HPV types transform primary human keratinocytes. • E6 proteins of cancer and wart associated HPVs inhibit UVB induced cell death. • E6s of cancer and wart associated HPVs attenuate UVB induced proliferation arrest. • E6s of cancer and wart associated HPVs attenuate UVB induced apoptosis signaling.

  8. Human papillomavirus types detected in skin warts and cancer differ in their transforming properties but commonly counteract UVB induced protective responses in human keratinocytes

    International Nuclear Information System (INIS)

    Shterzer, Naama; Heyman, Dariya; Shapiro, Beny; Yaniv, Abraham; Jackman, Anna; Serour, Francis; Chaouat, Malka; Gonen, Pinhas; Tommasino, Massimo; Sherman, Levana

    2014-01-01

    In the present study, E6E7 and E6 proteins of human papillomaviruses (HPVs) associated with skin warts and cancer were compared for their transforming and carcinogenic abilities in primary human keratinocytes (PHKs). We show that E6E7 of cancer associated beta HPV types, notably 49 and 24, were able to extend the life span and enhance the clonogenic efficiency of PHKs when maintained in serum free/low calcium medium. Activities of the beta HPV E6E7 were lower than those of HPV16 E6E7. In contrast, E6 proteins from HPV types detected in skin warts or cancer, notably 10, 49 and 38, attenuated UVB induced protective responses in PHKs including cell death, proliferation arrest and accumulation of the proapoptotic proteins, p53, bax or bak. Together, this investigation revealed functional differences and commonalities between HPVs associated with skin warts and cancer, and allowed the identification of specific properties of beta HPVs supporting their involvement in skin carcinogenesis. - Highlights: • Primary keratinocytes were used to evaluate transforming and carcinogenic abilities of cutaneous HPVs. • E6E7 of cancer associated β HPV types transform primary human keratinocytes. • E6 proteins of cancer and wart associated HPVs inhibit UVB induced cell death. • E6s of cancer and wart associated HPVs attenuate UVB induced proliferation arrest. • E6s of cancer and wart associated HPVs attenuate UVB induced apoptosis signaling

  9. Aldefluor protocol to sort keratinocytes stem cells from skin

    OpenAIRE

    Noronha, Samuel Marcos Ribeiro; Gragnani, Alfredo; Pereira, Thiago Antônio Calado; Correa, Silvana Aparecida Alves; Bonucci, Jessica; Ferreira, Lydia Masako

    2017-01-01

    Abstract Purpose: To investigate the use Aldefluor® and N, N - Dimethylaminobenzaldehyde (DEAB) to design a protocol to sort keratinocyte stem cells from cultured keratinocytes from burned patients. Methods: Activated Aldefluor® aliquots were prepared and maintained at temperature between 2 to 8°C, or stored at -20°C. Next, the cells were collected following the standard protocol of sample preparation. Results: Best results were obtained with Aldefluor® 1.5µl and DEAB 15 µl for 1 x 106 c...

  10. Gelatin for purification and proliferation of primary keratinocyte culture for use in chronic wounds and burns.

    Science.gov (United States)

    Rahsaz, Marjan; Geramizadeh, Bita; Kaviani, Maryam; Marzban, Saeed

    2015-04-01

    Human epidermal keratinocytes are currently established as a treatment for burns and wounds and have laboratory applications. Keratinocyte culture contamination by unwanted cells and inhibition of cell proliferation are barriers in primary keratinocyte culture. According to the recent literature, these cells are hard to culture. The present study was conducted to evaluate the efficacy of gelatin-coated surfaces in keratinocyte cultures. After enzymatic isolation of keratinocytes from normal epidermis by trypsin, the cells were cultured on gelatin-coated flasks in serum-free medium. Another group of cells were cultured as a control group without gelatin coating. We showed positive effects of surface coating with gelatin on the primary culture of keratinocytes. Culture of these cells on a gelatincoated surface showed better proliferation with suitable morphology. By using gelatin, adhesion of these cells to the surface was more efficient and without contamination by small round cells. Successful primary culture of keratinocytes on a gelatin-coated surface may provide better yield and optimal number of cells for research and clinical applications.

  11. The Effects of Antifungal Azoles on Inflammatory Cytokine Production in Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    K Zomorodian

    2008-04-01

    Full Text Available ABSTRACT: Introduction & Objective: Azoles drugs are being used successfully in treatment of fungal infections. Recently, immunosuppressive effects of some of these agents have been reported. Keratinocytes, as the major cells of the skin, have an important role in innate immunity against pathogenic agents. Considering the scanty of information about the effects of azoles on immune responces, this study was conducted to assess the expression and secretion of inflammatory cytokines in keratinocytes following treatment with azole drugs. Materials & Methods: This is an exprimental study conducted in in molecular biology division in Tehran University of Medical Sciences and Immunodermatology Department in Vienna Medical University. Primery keratinocytes were cultured and treated with different concentrations of fluconazole, itraconazole, ketoconazole and griseofulvin. Secreted IL1, IL6 and TNF-α by keratinocytes in culture supernatant were measured by quantitative enzyme immunoassay technique. Moreover, expression of the genes encoding IL1 and IL8 was evaluated by Real Time-PCR. Results: Treatment of keratinocytes with different concentrations of fluconazole and low concentration of ketoconazole resulted in decrease in IL1 secretion, but Itraconazole and griseofulvin did not show such an effect at the same concentrations. In addition, none of the examined drugs had an effect on secretion level of IL6 and TNF-α. Quantitative analysis of IL1 and IL8 encoding genes revealed that transcription on these genes might be suppressed following treatment with fluconazole or ketoconazole. Conclusion: Fluconazole and ketoconazole might modulate the expression and secretion of IL1 and IL8 and affect the direction of immune responses induced by keratinocytes

  12. Lactobacillus rhamnosus GG Inhibits the Toxic Effects of Staphylococcus aureus on Epidermal Keratinocytes

    Science.gov (United States)

    Mohammedsaeed, Walaa; McBain, Andrew J.; Cruickshank, Sheena M.

    2014-01-01

    Few studies have evaluated the potential benefits of the topical application of probiotic bacteria or material derived from them. We have investigated whether a probiotic bacterium, Lactobacillus rhamnosus GG, can inhibit Staphylococcus aureus infection of human primary keratinocytes in culture. When primary human keratinocytes were exposed to S. aureus, only 25% of the keratinocytes remained viable following 24 h of incubation. However, in the presence of 108 CFU/ml of live L. rhamnosus GG, the viability of the infected keratinocytes increased to 57% (P = 0.01). L. rhamnosus GG lysates and spent culture fluid also provided significant protection to keratinocytes, with 65% (P = 0.006) and 57% (P = 0.01) of cells, respectively, being viable following 24 h of incubation. Keratinocyte survival was significantly enhanced regardless of whether the probiotic was applied in the viable form or as cell lysates 2 h before or simultaneously with (P = 0.005) or 12 h after (P = 0.01) S. aureus infection. However, spent culture fluid was protective only if added before or simultaneously with S. aureus. With respect to mechanism, both L. rhamnosus GG lysate and spent culture fluid apparently inhibited adherence of S. aureus to keratinocytes by competitive exclusion, but only viable bacteria or the lysate could displace S. aureus (P = 0.04 and 0.01, respectively). Furthermore, growth of S. aureus was inhibited by either live bacteria or lysate but not spent culture fluid. Together, these data suggest at least two separate activities involved in the protective effects of L. rhamnosus GG against S. aureus, growth inhibition and reduction of bacterial adhesion. PMID:25015889

  13. Matrix Metalloproteinase Stromelysin-1 Triggers a Cascade of Molecular Alterations that leads to stable epithelial-to-Mesenchymal Conversion and a Premalignant Phenotype in Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, A.; Galosy, S.; Muschler, J.; Freedman, N.; Werb, Z.; Bissell, M.J.

    1997-08-11

    Matrix metalloproteinases (MMPs) regulate ductal morphogenesis, apoptosis, and neoplastic progression in mammary epithelial cells. To elucidate the direct effects of MMPs on mammary epithelium, we generated functionally normal cells expressing an inducible autoactivating stromelysin-1 (SL-1) transgene. Induction of SL-1 expression resulted in cleavage of E-cadherin, and triggered progressive phenotypic conversion characterized by disappearance of E-cadherin and catenins from cell-cell contacts, downregulation of cytokeratins, upregulation of vimentin, induction of keratinocyte growth factor expression and activation, and upregulation of endogenous MMPs. Cells expressing SL-1 were unable to undergo lactogenic differentiation and became invasive. Once initiated, this phenotypic conversion was essentially stable, and progressed even in the absence of continued SL-1 expression. These observations demonstrate that inappropriate expression of SL-1 initiates a cascade of events that may represent a coordinated program leading to loss of the differentiated epithelial phenotype and gain of some characteristics of tumor cells. Our data provide novel insights into how MMPs function in development and neoplastic conversion.

  14. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes

    International Nuclear Information System (INIS)

    Xie, Xin; Dai, Hui; Zhuang, Binyu; Chai, Li; Xie, Yanguang; Li, Yuzhen

    2016-01-01

    The effects and the underlying mechanisms of hydrogen sulfide (H 2 S) on keratinocyte proliferation and differentiation are still less known. In the current study, we investigated the effects and the underlying mechanisms of exogenous H 2 S on keratinocyte proliferation and differentiation. Human keratinocytes (HaCaT cells) were treated with various concentrations (0.05, 0.25, 0.5 and 1 mM) of sodium hydrosulfide (NaHS, a donor of H 2 S) for 24 h. A CCK-8 assay was used to assess cell viability. Western blot analysis was performed to determine the expression levels of proteins associated with differentiation and autophagy. Transmission electron microscopy was performed to observe autophagic vacuoles, and flow cytometry was applied to evaluate apoptosis. NaHS promoted the viability, induced the differentiation, and enhanced autophagic activity in a dose-dependent manner in HaCaT cells but had no effect on cell apoptosis. Blockage of autophagy by ATG5 siRNA inhibited NaHS-induced cell proliferation and differentiation. The current study demonstrated that autophagy in response to exogenous H 2 S treatment promoted keratinocyte proliferation and differentiation. Our results provide additional insights into the potential role of autophagy in keratinocyte proliferation and differentiation. - Highlights: • Exogenous H 2 S promotes keratinocyte proliferation and differentiation. • The effects of H 2 S on proliferation and differentiation is modulated by autophagy. • Exogenous H 2 S has no effect on keratinocyte apoptosis.

  15. Cadherin-11 controls otolith assembly: evidence for extracellular cadherin activity

    Science.gov (United States)

    Clendenon, Sherry G.; Shah, Bijal; Miller, Caroline A; Schmeisser, Glen; Walter, Amanda; Gattone, Vincent H.; Barald, Kate F.; Liu, Qin; Marrs, James A.

    2009-01-01

    Cadherin-11/Cdh11 is expressed through early development and strongly during inner ear development (otic placode and vesicle). Here we show that antisense knockdown of Cdh11 during early zebrafish development interferes with otolith formation. Immunofluorescence labeling showed that Cdh11 expression was concentrated on and within the otolith. Cdh11 was faintly detected at the lateral surface (sites of cell-cell contact) of otic epithelial cells and in the cytoplasm. Strongly labeled Cdh11 containing puncta were detected within the otolymph (the fluid within the otic vesicle) and associated with the otolith surface. BODIPY-ceramine labeled vesicular structures detected in the otolymph were larger and more numerous in Cdh11 knockdown embryos. We present evidence supporting a working model that vesicular structures containing Cdh11 (perhaps containing biomineralization components) are exported from the otic epithelium into the otolymph, adhere to one another and to the surface of the growing otolith, facilitating otolith growth. PMID:19582870

  16. Total glucosides of paeony (TGP) inhibits the production of inflammatory cytokines in oral lichen planus by suppressing the NF-κB signaling pathway.

    Science.gov (United States)

    Wang, Yanni; Zhang, Han; Du, Guanhuan; Wang, Yufeng; Cao, Tianyi; Luo, Qingqiong; Chen, Junjun; Chen, Fuxiang; Tang, Guoyao

    2016-07-01

    Total glucosides of paeony (TGP) is a bioactive compound extracted from paeony roots and has been widely used to ameliorate inflammation in several autoimmune and inflammatory diseases. However, the anti-inflammatory effect of TGP on oral lichen planus (OLP), a chronic inflammatory oral condition characterized by T-cell infiltration and abnormal epithelial keratinization cycle remains unclear. In this study, we found that TLR4 was highly expressed and activation of the NF-κB signaling pathway was obviously observed in the OLP tissues. Moreover, there was significant higher mRNA expression of inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in OLP keratinocytes than normal oral epithelial keratinocytes. With the help of the cell culture model by stimulating the keratinocyte HaCaT cells with lipopolysaccharides (LPS), we mimicked the local inflammatory environment of OLP. And we further confirmed that TGP could inhibit LPS-induced production of IL-6 and TNF-α in HaCaT cells via a dose-dependent manner. TGP treatment decreased the phosphorylation of IκBα and NF-κB p65 proteins, thus leading to less nuclear translocation of NF-κB p65 in HaCaT cells. Therefore, our data suggested that TGP may be a new potential candidate for the therapy of OLP. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effectiveness of E-Learning in Oral Radiology Education: A Systematic Review.

    Science.gov (United States)

    Santos, Glaucia Nize M; Leite, André F; Figueiredo, Paulo T de S; Pimentel, Nara M; Flores-Mir, Carlos; de Melo, Nilce S; Guerra, Eliete N S; De Luca Canto, Graziela

    2016-09-01

    E-learning has been used recently in dental curricula to support traditional learning methods. However, the published literature concerning e-learning in oral radiology has shown mixed conclusions. The aim of this systematic review was to provide a synthesis of the effectiveness of e-learning in oral radiology education when compared with traditional classroom learning methods. A search of the literature was conducted on the LILACS, PubMed, Science Direct, Scopus, and Web of Science databases. Trials registries were also consulted for ongoing trials, and a partial grey literature search was conducted. Controlled trials about oral radiology education that compared any e-learning method with a control group using any traditional classroom instruction method were included. E-learning effectiveness was measured using three outcomes from Kirkpatrick's model of evaluation: attitudes about e-learning, knowledge gain, and performance on clinical procedures. Data were analyzed descriptively. Qualitative appraisal was performed according to the Cochrane risk of bias tool for randomized trials and MINORS tool for non-randomized trials. Eleven studies met the inclusion criteria. Risk of bias was identified related to the selection procedures, blinding, lack of sample size calculation, and incomplete analyses. Ten studies reported that students had positive attitude when using e-learning. Results from the knowledge gain outcome were mixed. Only two studies examined performance on clinical procedures, showing contrasting results. The evidence reviewed in this study suggests that e-learning in oral radiology is at least as effective as traditional learning methods and that students have positive attitudes about e-learning.

  18. N-cadherin and integrin blockade inhibit arteriolar myogenic reactivity but not pressure-induced increases in intracellular Ca2+

    Directory of Open Access Journals (Sweden)

    Teresa Y. Jackson

    2010-12-01

    Full Text Available The vascular myogenic response is characterized by arterial constriction in response to an increase in intraluminal pressure and dilatation to a decrease in pressure. This mechanism is important for the regulation of blood flow, capillary pressure and arterial pressure. The identity of the mechanosensory mechanism(s for this response is incompletely understood but has been shown to include the integrins as cell-extracellular matrix receptors. The possibility that a cell-cell adhesion receptor is involved has not been studied. Thus, we tested the hypothesis that N-cadherin, a cell-cell adhesion molecule in vascular smooth muscle cells (VSMCs, was important for myogenic responsiveness. The purpose of this study was to investigate:
    1. whether cadherin inhibition blocks myogenic responses to increases in intraluminal pressure and 2. the effect of the cadherin or integrin blockade on pressure-induced changes in [Ca2+]i. Cadherin blockade was tested in isolated rat cremaster arterioles on myogenic responses to acute pressure steps from 60 – 100 mmHg and changes in VSMC Ca2+ were measured using fura-2. In the presence of a synthetic cadherin inhibitory peptide or a function blocking antibody, myogenic responses were inhibited. In contrast, during N-cadherin blockade, pressure-induced changes in [Ca2+]i were not altered. Similarly, vessels treated with function-blocking β1- or β3-integrin antibodies maintained pressure-induced [Ca2+]i responses despite inhibition of myogenic constriction. Collectively, these data suggest that both cadherins and integrins play a fundamental role in mediating myogenic constriction but argue against their direct involvement in mediating pressure-induced [Ca2+]i increases.

  19. MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2

    International Nuclear Information System (INIS)

    Zhu, Haigang; Hou, Liyue; Liu, Jingjing; Li, Zhiming

    2016-01-01

    MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 by luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. - Highlights: • miR-217 is down-regulated in psoriasis skin lesions. • miR-217 inhibits the proliferation and promotes differentiation of keratinocytes. • GRHL2 is a novel target of miR-217 in keratinocytes. • GRHL2 is up-regulated and inversely correlated with miR-217 in psoriasis skin lesions.

  20. MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Haigang; Hou, Liyue; Liu, Jingjing; Li, Zhiming, E-mail: lizm_1001@sina.com

    2016-02-26

    MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 by luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. - Highlights: • miR-217 is down-regulated in psoriasis skin lesions. • miR-217 inhibits the proliferation and promotes differentiation of keratinocytes. • GRHL2 is a novel target of miR-217 in keratinocytes. • GRHL2 is up-regulated and inversely correlated with miR-217 in psoriasis skin lesions.

  1. Pimecrolimus enhances TLR2/6-induced expression of antimicrobial peptides in keratinocytes.

    Science.gov (United States)

    Büchau, Amanda S; Schauber, Jürgen; Hultsch, Thomas; Stuetz, Anton; Gallo, Richard L

    2008-11-01

    Calcineurin inhibitors are potent inhibitors of T-cell-receptor mediated activation of the adaptive immune system. The effects of this class of drug on the innate immune response system are not known. Keratinocytes are essential to innate immunity in skin and rely on toll-like receptors (TLRs) and antimicrobial peptides to appropriately recognize and respond to injury or microbes. In this study we examined the response of cultured human keratinocytes to pimecrolimus. We observed that pimecrolimus enhances distinct expression of cathelicidin, CD14, and human beta-defensin-2 and beta-defensin-3 in response to TLR2/6 ligands. Some of these responses were further enhanced by 1,25 vitamin D3. Pimecrolimus also increased the functional capacity of keratinocytes to inhibit growth of Staphylococcus aureus and decreased TLR2/6-induced expression of IL-10 and IL-1beta. Furthermore, pimecrolimus inhibited nuclear translocation of NFAT and NF-kappaB in keratinocytes. These observations uncover a previously unreported function for pimecrolimus in cutaneous innate host defense.

  2. Epithelial-mesenchymal transition in keloid tissues and TGF-β1-induced hair follicle outer root sheath keratinocytes.

    Science.gov (United States)

    Yan, Li; Cao, Rui; Wang, Lianzhao; Liu, Yuanbo; Pan, Bo; Yin, Yanhua; Lv, Xiaoyan; Zhuang, Qiang; Sun, Xuejian; Xiao, Ran

    2015-01-01

    Keloid is a skin fibrotic disease with the characteristics of recurrence and invasion, its pathogenesis still remains unrevealed. The epithelial-mesenchymal transition (EMT) is critical for wound healing, fibrosis, recurrence, and invasion of cancer. We sought to investigate the EMT in keloid and the mechanism through which the EMT regulates keloid formation. In keloid tissues, the expressions of EMT-associated markers and transforming growth factor (TGF)-β1/Smad3 signaling were examined by immunohistochemistry. In the keloid epidermis and dermal tissue, the expressions of genes related to the regulation of skin homeostasis, fibroblast growth factor receptor 2 (FGFR2) and p63, were analyzed using quantitative real-time polymerase chain reaction. The results showed that accompanying the loss of the epithelial marker E-cadherin and the gain of the mesenchymal markers fibroblast-specific protein 1 (FSP1) and vimentin in epithelial cells from epidermis and skin appendages, and in endothelial cells from dermal microvessels, enhanced TGF-β1 expression and Smad3 phosphorylation were noted in keloid tissues. Moreover, alternative splicing of the FGFR2 gene switched the predominantly expressed isoform from FGFR2-IIIb to -IIIc, concomitant with the decreased expression of ΔNp63 and TAp63, which changes might partially account for abnormal epidermis and appendages in keloids. In addition, we found that TGF-β1-induced hair follicle outer root sheath keratinocytes (ORSKs) and normal skin epithelial cells underwent EMT in vitro with ORSKs exhibiting more obvious EMT changes and more similar expression profiles for EMT-associated and skin homeostasis-related genes as in keloid tissues, suggesting that ORSKs might play crucial roles in the EMT in keloids. Our study provided insights into the molecular mechanisms mediating the EMT pathogenesis of keloids. © 2015 by the Wound Healing Society.

  3. AKT delays the early-activated apoptotic pathway in UVB-irradiated keratinocytes via BAD translocation.

    Science.gov (United States)

    Claerhout, Sofie; Decraene, David; Van Laethem, An; Van Kelst, Sofie; Agostinis, Patrizia; Garmyn, Marjan

    2007-02-01

    Upon irradiation with a high dose of UVB, keratinocytes undergo apoptosis as a protective mechanism. In previous work, we demonstrated the existence of an early-activated UVB-induced apoptotic pathway in growth factor-depleted human keratinocytes, which can be substantially delayed by the exclusive supplementation of IGF-1. We now show that in human keratinocytes, IGF-1 inhibits the onset of UVB-triggered apoptosis through a transcriptional independent, AKT-mediated mechanism, involving BAD serine 136 phosphorylation. Our results show that the early UVB-induced apoptosis in growth factor-depleted human keratinocytes is exclusively triggered through the mitochondrial pathway. It is accompanied by BAX translocation, cytochrome c release, and procaspase-9 cleavage, but not by procaspase-8 or BID cleavage. In human keratinocytes, IGF-1 supplementation inhibits these events in a transcription-independent manner. Both IGF-1 supplementation and the transduction of a membrane-targeted form of AKT result in a shift of the BH3-only protein BAD from the mitochondria to the cytoplasm, paralleled by an increase of AKT-specific Ser136 phospho-BAD bound to 14-3-3zeta protein. These data indicate that AKT-induced BAD phosphorylation and its subsequent cytoplasmic sequestration by 14-3-3zeta is a major mechanism responsible for the postponement of UVB-induced apoptosis in human keratinocytes.

  4. Enhanced secretion of TIMP-1 by human hypertrophic scar keratinocytes could contribute to fibrosis.

    Science.gov (United States)

    Simon, Franck; Bergeron, Daniele; Larochelle, Sébastien; Lopez-Vallé, Carlos A; Genest, Hervé; Armour, Alexis; Moulin, Véronique J

    2012-05-01

    Hypertrophic scars are a pathological process characterized by an excessive deposition of extracellular matrix components. Using a tissue-engineered reconstructed human skin (RHS) method, we previously reported that pathological keratinocytes induce formation of a fibrotic dermal matrix. We further investigated keratinocyte action using conditioned media. Results showed that conditioned media induce a similar action on dermal thickness similar to when an epidermis is present. Using a two-dimensional electrophoresis technique, we then compared conditioned media from normal or hypertrophic scar keratinocytes and determined that TIMP-1 was increased in conditioned media from hypertrophic scar keratinocytes. This differential profile was confirmed using ELISA, assaying TIMP-1 presence on media from monolayer cultured keratinocytes and from RHS. The dermal matrix of these RHS was recreated using mesenchymal cells from three different origins (skin, wound and hypertrophic scar). The effect of increased TIMP-1 levels on dermal fibrosis was also validated independently from the mesenchymal cell origin. Immunodetection of TIMP-1 showed that this protein was increased in the epidermis of hypertrophic scar biopsies. The findings of this study represent an important advance in understanding the role of keratinocytes as a direct potent modulator for matrix degradation and scar tissue remodeling, possibly through inactivation of MMPs. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  5. Chemotherapy-induced oral mucositis and associated infections in a novel organotypic model.

    Science.gov (United States)

    Sobue, T; Bertolini, M; Thompson, A; Peterson, D E; Diaz, P I; Dongari-Bagtzoglou, A

    2018-06-01

    Oral mucositis is a common side effect of cancer chemotherapy, with significant adverse impact on the delivery of anti-neoplastic treatment. There is a lack of consensus regarding the role of oral commensal microorganisms in the initiation or progression of mucositis because relevant experimental models are non-existent. The goal of this study was to develop an in vitro mucosal injury model that mimics chemotherapy-induced mucositis, where the effect of oral commensals can be studied. A novel organotypic model of chemotherapy-induced mucositis was developed based on a human oral epithelial cell line and a fibroblast-embedded collagen matrix. Treatment of organotypic constructs with 5-fluorouracil (5-FU) reproduced major histopathologic characteristics of oral mucositis, such as DNA synthesis inhibition, apoptosis and cytoplasmic vacuolation, without compromising the three-dimensional structure of the multilayer organotypic mucosa. Although structural integrity of the model was preserved, 5-FU treatment resulted in a widening of epithelial intercellular spaces, characterized by E-cadherin dissolution from adherens junctions. In a neutrophil transmigration assay we discovered that this treatment facilitated transport of neutrophils through epithelial layers. Moreover, 5-FU treatment stimulated key proinflammatory cytokines that are associated with the pathogenesis of oral mucositis. 5-FU treatment of mucosal constructs did not significantly affect fungal or bacterial biofilm growth under the conditions tested in this study; however, it exacerbated the inflammatory response to certain bacterial and fungal commensals. These findings suggest that commensals may play a role in the pathogenesis of oral mucositis by amplifying the proinflammatory signals to mucosa that is injured by cytotoxic chemotherapy. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. A genome-wide screen identifies conserved protein hubs required for cadherin-mediated cell–cell adhesion

    Science.gov (United States)

    Toret, Christopher P.; D’Ambrosio, Michael V.; Vale, Ronald D.; Simon, Michael A.

    2014-01-01

    Cadherins and associated catenins provide an important structural interface between neighboring cells, the actin cytoskeleton, and intracellular signaling pathways in a variety of cell types throughout the Metazoa. However, the full inventory of the proteins and pathways required for cadherin-mediated adhesion has not been established. To this end, we completed a genome-wide (∼14,000 genes) ribonucleic acid interference (RNAi) screen that targeted Ca2+-dependent adhesion in DE-cadherin–expressing Drosophila melanogaster S2 cells in suspension culture. This novel screen eliminated Ca2+-independent cell–cell adhesion, integrin-based adhesion, cell spreading, and cell migration. We identified 17 interconnected regulatory hubs, based on protein functions and protein–protein interactions that regulate the levels of the core cadherin–catenin complex and coordinate cadherin-mediated cell–cell adhesion. Representative proteins from these hubs were analyzed further in Drosophila oogenesis, using targeted germline RNAi, and adhesion was analyzed in Madin–Darby canine kidney mammalian epithelial cell–cell adhesion. These experiments reveal roles for a diversity of cellular pathways that are required for cadherin function in Metazoa, including cytoskeleton organization, cell–substrate interactions, and nuclear and cytoplasmic signaling. PMID:24446484

  7. Dysregulation of suppressor of cytokine signaling 3 in keratinocytes causes skin inflammation mediated by interleukin-20 receptor-related cytokines.

    Directory of Open Access Journals (Sweden)

    Ayako Uto-Konomi

    Full Text Available Homeostatic regulation of epidermal keratinocytes is controlled by the local cytokine milieu. However, a role for suppressor of cytokine signaling (SOCS, a negative feedback regulator of cytokine networks, in skin homeostasis remains unclear. Keratinocyte specific deletion of Socs3 (Socs3 cKO caused severe skin inflammation with hyper-production of IgE, epidermal hyperplasia, and S100A8/9 expression, although Socs1 deletion caused no inflammation. The inflamed skin showed constitutive STAT3 activation and up-regulation of IL-6 and IL-20 receptor (IL-20R related cytokines, IL-19, IL-20 and IL-24. Disease development was rescued by deletion of the Il6 gene, but not by the deletion of Il23, Il4r, or Rag1 genes. The expression of IL-6 in Socs3 cKO keratinocytes increased expression of IL-20R-related cytokines that further facilitated STAT3 hyperactivation, epidermal hyperplasia and neutrophilia. These results demonstrate that skin homeostasis is strictly regulated by the IL-6-STAT3-SOCS3 axis. Moreover, the SOCS3-mediated negative feedback loop in keratinocytes has a critical mechanistic role in the prevention of skin inflammation caused by hyperactivation of STAT3.

  8. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xin [Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province (China); Dai, Hui [Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province (China); Zhuang, Binyu [Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province (China); Chai, Li; Xie, Yanguang [Institute of Dermatology of Heilongjiang Province, Harbin, 150001, Heilongjiang Province (China); Li, Yuzhen, E-mail: liyuzhen@medmail.com.cn [Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province (China)

    2016-04-08

    The effects and the underlying mechanisms of hydrogen sulfide (H{sub 2}S) on keratinocyte proliferation and differentiation are still less known. In the current study, we investigated the effects and the underlying mechanisms of exogenous H{sub 2}S on keratinocyte proliferation and differentiation. Human keratinocytes (HaCaT cells) were treated with various concentrations (0.05, 0.25, 0.5 and 1 mM) of sodium hydrosulfide (NaHS, a donor of H{sub 2}S) for 24 h. A CCK-8 assay was used to assess cell viability. Western blot analysis was performed to determine the expression levels of proteins associated with differentiation and autophagy. Transmission electron microscopy was performed to observe autophagic vacuoles, and flow cytometry was applied to evaluate apoptosis. NaHS promoted the viability, induced the differentiation, and enhanced autophagic activity in a dose-dependent manner in HaCaT cells but had no effect on cell apoptosis. Blockage of autophagy by ATG5 siRNA inhibited NaHS-induced cell proliferation and differentiation. The current study demonstrated that autophagy in response to exogenous H{sub 2}S treatment promoted keratinocyte proliferation and differentiation. Our results provide additional insights into the potential role of autophagy in keratinocyte proliferation and differentiation. - Highlights: • Exogenous H{sub 2}S promotes keratinocyte proliferation and differentiation. • The effects of H{sub 2}S on proliferation and differentiation is modulated by autophagy. • Exogenous H{sub 2}S has no effect on keratinocyte apoptosis.

  9. H{sup +}/peptide transporter (PEPT2) is expressed in human epidermal keratinocytes and is involved in skin oligopeptide transport

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Michiko; Katayoshi, Takeshi; Kobayashi-Nakamura, Kumiko [DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025 (Japan); Akagawa, Mitsugu [Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Tsuji-Naito, Kentaro, E-mail: knaito@dhc.co.jp [DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025 (Japan)

    2016-07-08

    Peptide transporter 2 (PEPT2) is a member of the proton-coupled oligopeptide transporter family, which mediates the cellular uptake of oligopeptides and peptide-like drugs. Although PEPT2 is expressed in many tissues, its expression in epidermal keratinocytes remains unclear. We investigated PEPT2 expression profile and functional activity in keratinocytes. We confirmed PEPT2 mRNA expression in three keratinocyte lines (normal human epidermal keratinocytes (NHEKs), immortalized keratinocytes, and malignant keratinocytes) by reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR. In contrast to PEPT1, PEPT2 expression in the three keratinocytes was similar or higher than that in HepG2 cells, used as PEPT2-positive cells. Immunolocalization analysis using human skin showed epidermal PEPT2 localization. We studied keratinocyte transport function by measuring the oligopeptide content using liquid chromatography/tandem mass spectrometry. Glycylsarcosine uptake in NHEKs was pH-dependent, suggesting that keratinocytes could absorb small peptides in the presence of an inward H{sup +} gradient. We also performed a skin-permeability test of several oligopeptides using skin substitute, suggesting that di- and tripeptides pass actively through the epidermis. In conclusion, PEPT2 is expressed in keratinocytes and involved in skin oligopeptide uptake. -- Highlights: •PEPT2 is expressed in keratinocytes, which are more common than other skin cells. •Immunolocalization analysis using human skin revealed epidermal PEPT2 localization. •Keratinocytes could absorb small peptides in the presence of an inward H{sup +} gradient. •Di- and tripeptide pass actively through the epidermis.

  10. δ-Catenin Regulates Spine Architecture via Cadherin and PDZ-dependent Interactions*

    Science.gov (United States)

    Yuan, Li; Seong, Eunju; Beuscher, James L.; Arikkath, Jyothi

    2015-01-01

    The ability of neurons to maintain spine architecture and modulate it in response to synaptic activity is a crucial component of the cellular machinery that underlies information storage in pyramidal neurons of the hippocampus. Here we show a critical role for δ-catenin, a component of the cadherin-catenin cell adhesion complex, in regulating spine head width and length in pyramidal neurons of the hippocampus. The loss of Ctnnd2, the gene encoding δ-catenin, has been associated with the intellectual disability observed in the cri du chat syndrome, suggesting that the functional roles of δ-catenin are vital for neuronal integrity and higher order functions. We demonstrate that loss of δ-catenin in a mouse model or knockdown of δ-catenin in pyramidal neurons compromises spine head width and length, without altering spine dynamics. This is accompanied by a reduction in the levels of synaptic N-cadherin. The ability of δ-catenin to modulate spine architecture is critically dependent on its ability to interact with cadherin and PDZ domain-containing proteins. We propose that loss of δ-catenin during development perturbs synaptic architecture leading to developmental aberrations in neural circuit formation that contribute to the learning disabilities in a mouse model and humans with cri du chat syndrome. PMID:25724647

  11. The effect of 'allergenic' and 'nonallergenic' antibiotics on dog keratinocyte viability in vitro.

    Science.gov (United States)

    Voie, Katrine L; Lucas, Benjamin E; Schaeffer, David; Kim, Dewey; Campbell, Karen L; Lavergne, Sidonie N

    2013-10-01

    Immune-mediated adverse drug reactions (drug hypersensitivity) are relatively common in veterinary medicine, but their pathogenesis is not well understood. For an unknown reason, delayed drug hypersensitivity often targets the skin. Antibiotics, especially β-lactams and sulfonamides, are commonly associated with these adverse events. The 'danger theory' hypothesizes that 'danger' signals, such as drug-induced cell death, might be part of the pathogenesis of drug hypersensitivity reactions. The goal of this study was to determine whether antibiotics that are commonly associated with cutaneous drug hypersensitivity (allergenic) decrease canine keratinocyte viability in vitro more than antibiotics that rarely cause such reactions (nonallergenic). Immortalized canine keratinocytes (CPEK cells) were exposed to a therapeutic range of drug concentrations of four 'allergenic' antibiotics (two β-lactams, i.e. amoxicillin and cefalexin, and two sulfonamides, i.e. sulfamethoxazole and sulfadimethoxine) or two 'nonallergenic' antibiotics (enrofloxacin and amikacin) over 48 h (2, 4, 8, 24 and 48 h). The reactive nitroso metabolite of sulfamethoxazole was also tested. Cefalexin (2 mmol/L) significantly decreased cell viability after 48 h (28 ± 7%; P = 0.035). The nitroso metabolite of sulfamethoxazole (100 μmol/L) decreased cell viability after 2 h (21 ± 7%; P = 0.049), but cell numbers were increased after 8 h (22 ± 6%; P = 0.018). In addition, enrofloxacin (500 μmol/L) also significantly decreased cell viability by 37% (±6%; P = 0.0035) at 24 h and by 70% (±8%; P good predictor of the 'allergenic' potential of an antibiotic. Further work is required to investigate other drug-induced 'danger' signals in dog keratinocytes exposed to 'allergenic' antibiotics in vitro. © 2013 ESVD and ACVD.

  12. Oral Trauma and Tooth Avulsion Following Explosion of E-Cigarette.

    Science.gov (United States)

    Rogér, James M; Abayon, Maricelle; Elad, Sharon; Kolokythas, Antonia

    2016-06-01

    Electronic cigarettes (E-cigarettes), or personal vaporizers, were introduced in 2003 and have been available in the United States since 2007. In addition to the health and safety concerns of the aerosol delivery of nicotine through E-cigarettes, during the past 8 years, reports of explosions and fires caused by the E-cigarette devices have led the US Fire Administration to evaluate the safety of these devices. These explosions have been observed frequently enough that the US Department of Transportation has recently banned E-cigarette devices in checked baggage aboard airplanes. This report contributes to existing knowledge about the hazards related to E-cigarettes by describing oral hard and soft tissue injuries from an E-cigarette explosion. Copyright © 2016 The American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Th17 cell-mediated immune responses promote mast cell proliferation by triggering stem cell factor in keratinocytes

    International Nuclear Information System (INIS)

    Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee; Woo, So-Youn

    2017-01-01

    Although mast cells are traditionally thought to function as effector cells in allergic responses, they have increasingly been recognized as important regulators of various immune responses. Mast cells mature locally; thus, tissue-specific influences are important for promoting mast cell accumulation and survival in the skin and the gastrointestinal tract. In this study, we determined the effects of keratinocytes on mast cell accumulation during Th17-mediated skin inflammation. We observed increases in dermal mast cells in imiquimod-induced psoriatic dermatitis in mice accompanied by the expression of epidermal stem cell factor (SCF), a critical mast cell growth factor. Similar to mouse epidermal keratinocytes, SCF was highly expressed in the human HaCaT keratinocyte cell line following stimulation with IL−17. Further, keratinocytes promoted mast cell proliferation following stimulation with IL−17 in vitro. However, the effects of keratinocytes on mast cells were significantly diminished in the presence of anti−CD117 (stem cell factor receptor) blocking antibodies. Taken together, our results revealed that the Th17-mediated inflammatory environment promotes mast cell accumulation through keratinocyte-derived SCF. - Highlights: • Psoriasis-like skin inflammation increase dermal mast cells. • Keratinocyte produce stem cell factor in psoriasis-like skin inflammation. • Keratinocyte promote mast cell proliferation by stem cell factor dependent manner

  14. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma

    Science.gov (United States)

    Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron

    2016-01-01

    Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651

  15. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Grasieli de Oliveira Ramos

    Full Text Available Cell migration is regulated by adhesion to the extracellular matrix (ECM through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC. We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad, plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization.

  16. Dysregulated ΔNp63α inhibits expression of Ink4a/arf, blocks senescence, and promotes malignant conversion of keratinocytes.

    Directory of Open Access Journals (Sweden)

    Linan Ha

    Full Text Available p63 is critical for squamous epithelial development, and elevated levels of the ΔNp63α isoform are seen in squamous cell cancers of various organ sites. However, significant controversy exists regarding the role of p63 isoforms as oncoproteins or tumor suppressors. Here, lentiviruses were developed to drive long-term overexpression of ΔNp63α in primary keratinocytes. Elevated levels of ΔNp63α in vitro promote long-term survival and block both replicative and oncogene-induced senescence in primary keratinocytes, as evidenced by the expression of SA-β-gal and the presence of nuclear foci of heterochromatin protein 1γ. The contribution of ΔNp63α to cancer development was assessed using an in vivo grafting model of experimental skin tumorigenesis that allows distinction between benign and malignant tumors. Grafted lenti-ΔNp63α keratinocytes do not form tumors, whereas lenti-GFP/v-ras(Ha keratinocytes develop well-differentiated papillomas. Lenti-ΔNp63α/v-ras(Ha keratinocytes form undifferentiated carcinomas. The average volume of lenti-ΔNp63α/v-ras(Ha tumors was significantly higher than those in the lenti-GFP/v-ras(Ha group, consistent with increased BrdU incorporation detected by immunohistochemistry. The block in oncogene-induced senescence corresponds to sustained levels of E2F1 and phosphorylated AKT, and is associated with loss of induction of p16(ink4a/p19(arf. The relevance of p16(ink4a/p19(arf loss was demonstrated in grafting studies of p19(arf-null keratinocytes, which develop malignant carcinomas in the presence of v-ras(Ha similar to those arising in wildtype keratinocytes that express lenti-ΔNp63α and v-ras(Ha. Our findings establish that ΔNp63α has oncogenic activity and its overexpression in human squamous cell carcinomas contributes to the malignant phenotype, and implicate its ability to regulate p16(ink4a/p19(arf in the process.

  17. Connective tissue growth factor enhances the migration of gastric cancer through downregulation of E-cadherin via the NF-κB pathway.

    Science.gov (United States)

    Mao, Zhengfa; Ma, Xiaoyan; Rong, Yefei; Cui, Lei; Wang, Xuqing; Wu, Wenchuan; Zhang, Jianxin; Jin, Dayong

    2011-01-01

    Local invasion and distant metastasis are difficult problems for surgical intervention and treatment in gastric cancer. Connective tissue growth factor (CTGF/CCN2) was considered to have an important role in this process. In this study, we demonstrated that expression of CTGF was significantly upregulated in clinical tissue samples of gastric carcinoma (GC) samples. Forced expression of CTGF in AGS GC cells promoted their migration in culture and significantly increased tumor metastasis in nude mice, whereas RNA interference-mediated knockdown of CTGF in GC cells significantly inhibited cell migration in vitro. We disclose that CTGF downregulated the expression of E-cadherin through activation of the nuclear factor-κappa B (NF-κB) pathway. The effects of CTGF in GC cells were abolished by dominant negative IκappaB. Collectively, these data reported here demonstrate CTGF could modulate the NF-κappaB pathway and perhaps be a promising therapeutic target for gastric cancer invasion and metastasis. © 2010 Japanese Cancer Association.

  18. Keratinocytes express fibrillin and assemble microfibrils: implications for dermal matrix organization.

    Science.gov (United States)

    Haynes, S L; Shuttleworth, C A; Kielty, C M

    1997-07-01

    Fibrillin-containing microfibrils are key architectural structures of the upper dermis and integral components of the dermal elastic fibre network. Microfibril bundles intercalate into the dermal-epithelial junction and provide an elastic connection between the dermal elastic fibre network and the epidermis. Immunohistochemical studies have suggested that they are laid down both at the dermal-epithelial junction and in the deep dermis. While dermal fibroblasts are responsible for deposition of the elastin and microfibrillar components that comprise the elastic fibres of the deep dermis, the cellular origin of the microfibril bundles that extrude from the dermal-epithelial junction is not well defined. We have used fresh tissues, freshly isolated epidermis and primary human and porcine keratinocyte cultures to investigate the possibility that keratinocytes are responsible for deposition of these microfibrils. We have shown that keratinocytes in vivo and in vitro synthesize both fibrillin-1 and fibrillin-2, and assemble beaded microfibrils concurrently with expression of basement membrane collagen. These observations suggest that keratinocytes co-ordinate the secretion, deposition and assembly of these distinct structural elements of the dermal matrix, and have important implications for skin remodelling.

  19. Platelet-Rich Plasma (PRP) Rinses for the Treatment of Non-Responding Oral Lichen Planus: A Case Report

    OpenAIRE

    Elisabetta Merigo; Aldo Oppici; Anna Parlatore; Luigi Cella; Fabio Clini; Matteo Fontana; Carlo Fornaini

    2018-01-01

    Platelet-rich plasma (PRP) has been proposed for different applications in the medical field and in maxillofacial surgery thanks to its many growth factors, such as epidermal growth factor (EGF), fibroblast growth factor (FGF), and keratinocyte growth factor (KGF). Oral lichen planus (OLP) is a disease that affects the oral mucosa in a chronic way. This disease frequently worsens the quality of life of patients, particularly when clinical manifestations are of the erythematous or erosive/ulce...

  20. Analysis of aquaporin 9 expression in human epidermis and cultured keratinocytes

    Directory of Open Access Journals (Sweden)

    Yoshinori Sugiyama

    2014-01-01

    Full Text Available Aquaporin 9 (AQP9 is a member of the aquaglyceroporin family that transports glycerol, urea and other small solutes as well as water. Compared to the expression and function in epidermal keratinocytes of AQP3, another aquaglyceroporin, our knowledge of epidermal AQP9 remains elusive. In this study, we investigated the expression of AQP9 in the human epidermis and cultured keratinocytes. Immunofluorescence studies revealed that AQP9 expression is highly restricted to the stratum granulosum of the human epidermis, where occludin is also expressed at the tight junctions. Interestingly, the AQP3 staining decreased sharply below the cell layers in which AQP9 is expressed. In cultured normal human epidermal keratinocytes (NHEK, knock-down of AQP9 expression in the differentiated cells induced by RNA interference reduced glycerol uptake, which was not as pronounced as was the case with AQP3 knock-down cells. In contrast, similar reduction of urea uptake was detected in AQP9 and AQP3 knock-down cells. These findings suggested that AQP9 expression in NHEK facilitates at least the transport of glycerol and urea. Finally, we analyzed the effect of retinoic acid (RA, a potent stimulator of keratinocyte proliferation, on AQP3 and AQP9 mRNA expression in differentiated NHEK. Stimulation with RA at 1 μM for 24 h augmented AQP3 expression and down-regulated AQP9 expression. Collectively, these results indicate that AQP9 expression in epidermal keratinocytes is regulated in a different manner from that of AQP3.

  1. Upregulated N-cadherin expression is associated with poor prognosis in epithelial-derived solid tumours: A meta-analysis.

    Science.gov (United States)

    Luo, Yong; Yu, Ting; Zhang, Qiongwen; Fu, Qingyu; Hu, Yuzhu; Xiang, Mengmeng; Peng, Haoning; Zheng, Tianying; Lu, Li; Shi, Huashan

    2018-04-01

    N-cadherin is an important molecular in epithelial-mesenchymal transition (EMT) and has been reported to be associated with aggressive behaviours of tumours. However, prognostic value of N-cadherin in solid malignancies remains controversially. The Pubmed/MELINE and EMBASE databases were used for a comprehensive literature searching. Pooled risk ratio (RR) and hazard ratio (HR) with their corresponding 95% confidence intervals (CIs) were employed to quantify the prognostic role. Involving 36 studies with 5705 patients were performed to investigate relationships between N-cadherin upregulation and clinicopathological features, survival. Results suggested upregulated N-cadherin was associated with lymph node metastasis (RR = 1.16, 95% CI [1.00, 1.35]), higher histological grade (RR = 1.36, 95%CI [1.14, 1.62]), angiolymphatic invasion (RR = 1.19, 95% CI [1.06, 1.34]) and advanced clinical stage (RR = 1.32, 95% CI [1.06, 1.64]), while upregulated N-cadherin was apt to be associated with distant metastasis (RR = 1.43, 95% CI [0.99, 2.05]). Moreover, N-cadherin was correlated with poor prognosis of 3-year survival (HR = 1.78, 95% CI [1.51, 2.10]), 5-year survival (HR = 1.57, 95% CI [1.17, 2.10]) and overall survival (OS) (HR = 1.32, 95% CI [1.20, 1.44]). Subgroup analyses according to cancer types were also conducted for applying these conclusions to some tumours more properly. No publication bias was found except subgroup analysis of distant metastasis (P = .652 for Begg's test and 0.023 for Egger's test). Taken together, upregulation of N-cadherin is associated with more aggressive behaviours of epithelial-derived solid malignancies and can be regarded as a predictor of poor survival. © 2018 The Authors. European Journal of Clinical Investigation published by John Wiley & Sons Ltd on behalf of Stichting European Society for Clinical Investigation Journal Foundation.

  2. Insulin binding properties of normal and transformed human epidermal cultured keratinocytes

    International Nuclear Information System (INIS)

    Verrando, P.; Ortonne, J.P.

    1985-01-01

    Insulin binding to its receptors was studied in cultured normal and transformed (A431 line) human epidermal keratinocytes. The specific binding was a temperature-dependent, saturable process. Normal keratinocytes possess a mean value of about 80,000 receptors per cell. Fifteen hours exposure of the cells to insulin lowered their receptor number (about 65% loss in available sites); these reappeared when the hormone was removed from the culture medium. In the A431 epidermoid carcinoma cell line, there is a net decrease in insulin binding (84% of the initial bound/free hormone ratio in comparison with normal cells) essentially related to a loss in receptor affinity for insulin. Thus, cultured human keratinocytes which express insulin receptors may be a useful tool in understanding skin pathology related to insulin disorders

  3. A Regulatory Network Involving β‐Catenin, e‐Cadherin, PI3k/Akt, and Slug Balances Self‐Renewal and Differentiation of Human Pluripotent Stem Cells In Response to Wnt Signaling

    Science.gov (United States)

    Huang, Tyng‐Shyan; Li, Li; Moalim‐Nour, Lilian; Jia, Deyong; Bai, Jian; Yao, Zemin; Bennett, Steffany A. L.; Figeys, Daniel

    2015-01-01

    Abstract The mechanisms underlying disparate roles of the canonical Wnt signaling pathway in maintaining self‐renewal or inducing differentiation and lineage specification in embryonic stem cells (ESCs) are not clear. In this study, we provide the first demonstration that self‐renewal versus differentiation of human ESCs (hESCs) in response to Wnt signaling is predominantly determined by a two‐layer regulatory circuit involving β‐catenin, E‐cadherin, PI3K/Akt, and Slug in a time‐dependent manner. Short‐term upregulation of β‐catenin does not lead to the activation of T‐cell factor (TCF)‐eGFP Wnt reporter in hESCs. Instead, it enhances E‐cadherin expression on the cell membrane, thereby enhancing hESC self‐renewal through E‐cadherin‐associated PI3K/Akt signaling. Conversely, long‐term Wnt activation or loss of E‐cadherin intracellular β‐catenin binding domain induces TCF‐eGFP activity and promotes hESC differentiation through β‐catenin‐induced upregulation of Slug. Enhanced expression of Slug leads to a further reduction of E‐cadherin that serves as a β‐catenin “sink” sequestering free cytoplasmic β‐catenin. The formation of such a framework reinforces hESCs to switch from a state of temporal self‐renewal associated with short‐term Wnt/β‐catenin activation to definitive differentiation. Stem Cells 2015;33:1419–1433 PMID:25538040

  4. Menadione (Vitamin K3) induces apoptosis of human oral cancer cells and reduces their metastatic potential by modulating the expression of epithelial to mesenchymal transition markers and inhibiting migration.

    Science.gov (United States)

    Suresh, Shruthy; Raghu, Dinesh; Karunagaran, Devarajan

    2013-01-01

    Oral cancer is one of the most commonly occurring cancers worldwide, decreasing the patient's survival rate due to tumor recurrence and metastasis. Menadione (Vitamin K3) is known to exhibit cytotoxicity in various cancer cells but the present study focused on its effects on viability, apoptosis, epithelial to mesenchymal transition (EMT), anchorage independent growth and migration of oral cancer cells. The results show that menadione is more cytotoxic to SAS (oral squamous carcinoma) cells but not to non-tumorigenic HEK293 and HaCaT cells. Menadione treatment increased the expression of pro-apoptotic proteins, Bax and p53, with a concurrent decrease in anti-apoptotic proteins, Bcl-2 and p65. Menadione induced the expression of E-cadherin but reduced the expression of EMT markers, vimentin and fibronectin. Menadione also inhibited anchorage independent growth and migration in SAS cells. These findings reveal and confirm that menadione is a potential candidate in oral cancer therapy as it exhibits cytotoxic, antineoplastic and antimigratory effects besides effectively blocking EMT in oral cancer cells.

  5. Extracellular calcium alters the effects of retinoic acid on DNA synthesis in cultured murine keratinocytes

    International Nuclear Information System (INIS)

    Tong, P.; Mayes, D.; Wheeler, L.

    1986-01-01

    The rate of proliferation of epidermal keratinocytes was manipulated by growing the cells in medium containing high or low concentrations of calcium. Keratinocytes cultured in high extracellular Ca ++ (1.4 mM and 2.8 mM) proliferated twice as fast as those grown in low Ca ++ medium (0.09 mM) as measured by incorporation of [ 3 H] thymidine into DNA. Exposure of high calcium keratinocytes to all-trans retinoic acid for 4 days caused a dose-related inhibition of DNA synthesis with an IC 50 of about 10 μM. In contrast, incubating low calcium keratinocytes with all-trans retinoic acid caused a dose-related stimulation of DNA synthesis with maximum increase of 278% over control at 10 μM. This increase was accompanied by increases in culture confluency with maximum increase of 109% in cell number of control at 10 μM. These results are of importance since they suggest Ca ++ may influence the effect of retinoids on keratinocytes

  6. Atomic Force Microscopy Provides New Mechanistic Insights into the Pathogenesis of Pemphigus

    Directory of Open Access Journals (Sweden)

    Franziska Vielmuth

    2018-03-01

    Full Text Available Autoantibodies binding to the extracellular domains of desmoglein (Dsg 3 and 1 are critical in the pathogenesis of pemphigus by mechanisms leading to impaired function of desmosomes and blister formation in the epidermis and mucous membranes. Desmosomes are highly organized protein complexes which provide strong intercellular adhesion. Desmosomal cadherins such as Dsgs, proteins of the cadherin superfamily which interact via their extracellular domains in Ca2+-dependent manner, are the transmembrane adhesion molecules clustered within desmosomes. Investigations on pemphigus cover a wide range of experimental approaches including biophysical methods. Especially atomic force microscopy (AFM has recently been applied increasingly because it allows the analysis of native materials such as cultured cells and tissues under near-physiological conditions. AFM provides information about the mechanical properties of the sample together with detailed interaction analyses of adhesion molecules. With AFM, it was recently demonstrated that autoantibodies directly inhibit Dsg interactions on the surface of living keratinocytes, a phenomenon which has long been considered the main mechanism causing loss of cell cohesion in pemphigus. In addition, AFM allows to study how signaling pathways altered in pemphigus control binding properties of Dsgs. More general, AFM and other biophysical studies recently revealed the importance of keratin filaments for regulation of Dsg binding and keratinocyte mechanical properties. In this mini-review, we reevaluate AFM studies in pemphigus and keratinocyte research, recapitulate what is known about the interaction mechanisms of desmosomal cadherins and discuss the advantages and limitations of AFM in these regards.

  7. GRHL3 binding and enhancers rearrange as epidermal keratinocytes transition between functional states.

    Directory of Open Access Journals (Sweden)

    Rachel Herndon Klein

    2017-04-01

    Full Text Available Transcription factor binding, chromatin modifications and large scale chromatin re-organization underlie progressive, irreversible cell lineage commitments and differentiation. We know little, however, about chromatin changes as cells enter transient, reversible states such as migration. Here we demonstrate that when human progenitor keratinocytes either differentiate or migrate they form complements of typical enhancers and super-enhancers that are unique for each state. Unique super-enhancers for each cellular state link to gene expression that confers functions associated with the respective cell state. These super-enhancers are also enriched for skin disease sequence variants. GRHL3, a transcription factor that promotes both differentiation and migration, binds preferentially to super-enhancers in differentiating keratinocytes, while during migration, it binds preferentially to promoters along with REST, repressing the expression of migration inhibitors. Key epidermal differentiation transcription factor genes, including GRHL3, are located within super-enhancers, and many of these transcription factors in turn bind to and regulate super-enhancers. Furthermore, GRHL3 represses the formation of a number of progenitor and non-keratinocyte super-enhancers in differentiating keratinocytes. Hence, chromatin relocates GRHL3 binding and enhancers to regulate both the irreversible commitment of progenitor keratinocytes to differentiation and their reversible transition to migration.

  8. Gallic acid modulates phenotypic behavior and gene expression in oral squamous cell carcinoma cells by interfering with leptin pathway.

    Science.gov (United States)

    Santos, Eliane Macedo Sobrinho; da Rocha, Rogério Gonçalves; Santos, Hércules Otacílio; Guimarães, Talita Antunes; de Carvalho Fraga, Carlos Alberto; da Silveira, Luiz Henrique; Batista, Paulo Ricardo; de Oliveira, Paulo Sérgio Lopes; Melo, Geraldo Aclécio; Santos, Sérgio Henrique; de Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena; Farias, Lucyana Conceição

    2018-01-01

    Gallic acid is a polyphenolic compost appointed to interfere with neoplastic cells behavior. Evidence suggests an important role of leptin in carcinogenesis pathways, inducing a proliferative phenotype. We investigated the potential of gallic acid to modulate leptin-induced cell proliferation and migration of oral squamous cell carcinoma cell lines. The gallic acid effect on leptin secretion by oral squamous cell carcinoma cells, as well as the underlying molecular mechanisms, was also assessed. For this, we performed proliferation, migration, immunocytochemical and qPCR assays. The expression levels of cell migration-related genes (MMP2, MMP9, Col1A1, and E-cadherin), angiogenesis (HIF-1α, mir210), leptin signaling (LepR, p44/42 MAPK), apoptosis (casp-3), and secreted leptin levels by oral squamous cell carcinoma cells were also measured. Gallic acid decreased proliferation and migration of leptin-treated oral squamous cell carcinoma cells, and reduced mRNA expression of MMP2, MMP9, Col1A1, mir210, but did not change HIF-1α. Gallic acid decreased levels of leptin secreted by oral squamous cell carcinoma cells, accordingly with downregulation of p44/42 MAPK expression. Thus, gallic acid appears to break down neoplastic phenotype of oral squamous cell carcinoma cells by interfering with leptin pathway. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Inhibitors of cysteine cathepsin and calpain do not prevent ultraviolet-B-induced apoptosis in human keratinocytes and HeLa cells

    DEFF Research Database (Denmark)

    Bang, Bo; Baadsgaard, Ole; Skov, Lone

    2004-01-01

    been demonstrated to play a role in the execution of programmed cell death induced by other stimuli, e.g. TNF-alpha. The purpose of the present study was therefore to investigate whether inhibitors of cysteine cathepsins and calpains could prevent UVB-induced apoptosis in HeLa cells and keratinocytes....... This was done by investigating the effect of the irreversible cysteine protease inhibitor zFA-fmk, the cathepsin B inhibitor CA-074-Me and the calpain inhibitor ALLN on the viability of UVB-irradiated human keratinocytes and HeLa cells. At concentrations of 10 microM and above zVAD-fmk conferred partial dose......-dependent protection against UVB-induced apoptosis in HeLa cells and keratinocytes. Moreover, caspase-3 activity was completely blocked at zVAD-fmk concentrations of 1 microM in HeLa cells. This indicates that caspase-independent mechanisms could be involved in UVB-induced apoptosis. However, the protease inhibitors z...

  10. Increased ICAM-1 Expression in Transformed Human Oral Epithelial Cells: Molecular Mechanism and Functional Role in Peripheral Blood Mononuclear Cell Adhesion and Lymphokine-Activated-Killer Cell Cytotoxicity

    Science.gov (United States)

    Huang, George T.-J.; Zhang, Xinli; Park, No-Hee

    2012-01-01

    The intercellular adhesion molecule-1 (ICAM-1, CD54) serves as a counter-receptor for the β2-integrins, LFA-1 and Mac-1, which are expressed on leukocytes. Although expression of ICAM-1 on tumor cells has a role in tumor progression and development, information on ICAM-1 expression and its role in oral cancer has not been established. Normal human oral keratinocytes (NHOK), human papilloma virus (HPV)-immortalized human oral keratinocyte lines (HOK-16B, HOK-18A, and HOK-18C), and six human oral neoplastic cell lines (HOK-16B-BaP-T1, SCC-4, SCC-9, HEp-2, Tu-177 and 1483) were used to study ICAM-1 expression and its functional role in vitro. Our results demonstrated that NHOK express negligible levels of ICAM-1, whereas immortalized human oral keratinocytes and cancer cells express significantly higher levels of ICAM-1, except for HOK-16B-BaP-T1 and HEp-2. Altered mRNA half-lives did not fully account for the increased accumulation of ICAM-1 mRNA. Adhesion of peripheral blood mononuclear cells (PBMC) to epithelial cells correlated with cell surface ICAM-1 expression levels. This adhesion was inhibited by antibodies specific for either ICAM-1 or LFA-1/Mac-1, suggesting a role for these molecules in adhesion. In contrast, lymphokine-activated-killer (LAK) cell cytotoxic killing of epithelial cells did not correlate with ICAM-1 levels or with adhesion. Nonetheless, within each cell line, blocking of ICAM-1 or LFA-1/Mac-1 reduced LAK cells killing, suggesting that ICAM-1 is involved in mediating this killing. PMID:10938387

  11. Downregulation and Mutation of a Cadherin Gene Associated with Cry1Ac Resistance in the Asian Corn Borer, Ostrinia furnacalis (Guenée

    Directory of Open Access Journals (Sweden)

    Tingting Jin

    2014-09-01

    Full Text Available Development of resistance in target pests is a major threat to long-term use of transgenic crops expressing Bacillus thuringiensis (Bt Cry toxins. To manage and/or delay the evolution of resistance in target insects through the implementation of effective strategies, it is essential to understand the basis of resistance. One of the most important mechanisms of insect resistance to Bt crops is the alteration of the interactions between Cry toxins and their receptors in the midgut. A Cry1Ac-selected strain of Asian corn borer (ACB, Ostrinia furnacalis, a key pest of maize in China, evolved three mutant alleles of a cadherin-like protein (OfCAD (MPR-r1, MPR-r2 and MPR-r3, which mapped within the toxin-binding region (TBR. Each of the three mutant alleles possessed two or three amino acid substitutions in this region, especially Thr1457→Ser. In highly resistant larvae (ACB-Ac200, MPR-r2 had a 26-amino acid residue deletion in the TBR, which resulted in reduced binding of Cry1Ac compared to the MPR from the susceptible strain, suggesting that the number of amino acid deletions influences the level of resistance. Furthermore, downregulation of OfCAD gene (ofcad transcription was observed in the Cry1Ac resistant strain, ACB-Ac24, suggesting that Cry1Ac resistance in ACB is associated with the downregulation of the transcript levels of the cadherin-like protein gene. The OfCAD identified from ACB exhibited a high degree of similarity to other members of the cadherin super-family in lepidopteran species.

  12. Crucial role of vinexin for keratinocyte migration in vitro and epidermal wound healing in vivo

    International Nuclear Information System (INIS)

    Kioka, Noriyuki; Ito, Takuya; Yamashita, Hiroshi; Uekawa, Natsuko; Umemoto, Tsutomu; Motoyoshi, Soh; Imai, Hiroshi; Takahashi, Kenzo; Watanabe, Hideto; Yamada, Masayasu; Ueda, Kazumitsu

    2010-01-01

    In the process of tissue injury and repair, epithelial cells rapidly migrate and form epithelial sheets. Vinexin is a cytoplasmic molecule of the integrin-containing cell adhesion complex localized at focal contacts in vitro. Here, we investigated the roles of vinexin in keratinocyte migration in vitro and wound healing in vivo. Vinexin knockdown using siRNA delayed migration of both HaCaT human keratinocytes and A431 epidermoid carcinoma cells in scratch assay but did not affect cell proliferation. Induction of cell migration by scratching the confluent monolayer culture of these cells activated both EGFR and ERK, and their inhibitors AG1478 and U0126 substantially suppressed scratch-induced keratinocyte migration. Vinexin knockdown in these cells inhibited the scratch-induced activation of EGFR, but not that of ERK, suggesting that vinexin promotes cell migration via activation of EGFR. We further generated vinexin (-/-) mice and isolated their keratinocytes. They similarly showed slow migration in scratch assay. Furthermore, vinexin (-/-) mice exhibited a delay in cutaneous wound healing in both the back skin and tail without affecting the proliferation of keratinocytes. Together, these results strongly suggest a crucial role of vinexin in keratinocyte migration in vitro and cutaneous wound healing in vivo.

  13. δ-Catenin Regulates Spine Architecture via Cadherin and PDZ-dependent Interactions.

    Science.gov (United States)

    Yuan, Li; Seong, Eunju; Beuscher, James L; Arikkath, Jyothi

    2015-04-24

    The ability of neurons to maintain spine architecture and modulate it in response to synaptic activity is a crucial component of the cellular machinery that underlies information storage in pyramidal neurons of the hippocampus. Here we show a critical role for δ-catenin, a component of the cadherin-catenin cell adhesion complex, in regulating spine head width and length in pyramidal neurons of the hippocampus. The loss of Ctnnd2, the gene encoding δ-catenin, has been associated with the intellectual disability observed in the cri du chat syndrome, suggesting that the functional roles of δ-catenin are vital for neuronal integrity and higher order functions. We demonstrate that loss of δ-catenin in a mouse model or knockdown of δ-catenin in pyramidal neurons compromises spine head width and length, without altering spine dynamics. This is accompanied by a reduction in the levels of synaptic N-cadherin. The ability of δ-catenin to modulate spine architecture is critically dependent on its ability to interact with cadherin and PDZ domain-containing proteins. We propose that loss of δ-catenin during development perturbs synaptic architecture leading to developmental aberrations in neural circuit formation that contribute to the learning disabilities in a mouse model and humans with cri du chat syndrome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Cryopreservation of dermal fibroblasts and keratinocytes in hydroxyethyl starch-based cryoprotectants.

    Science.gov (United States)

    Naaldijk, Yahaira; Johnson, Adiv A; Friedrich-Stöckigt, Annett; Stolzing, Alexandra

    2016-12-01

    Preservation of human skin fibroblasts and keratinocytes is essential for the creation of skin tissue banks. For successful cryopreservation of cells, selection of an appropriate cryoprotectant agent (CPA) is imperative. The aim of this study was to identify CPAs that minimize toxic effects and allow for the preservation of human fibroblasts and keratinocytes in suspension and in monolayers. We cryopreserved human fibroblasts and keratinocytes with different CPAs and compared them to fresh, unfrozen cells. Cells were frozen in the presence and absence of hydroxyethyl starch (HES) or dimethyl sulfoxide (DMSO), the latter of which is a commonly used CPA known to exert toxic effects on cells. Cell numbers were counted immediately post-thaw as well as three days after thawing. Cellular structures were analyzed and counted by labeling nuclei, mitochondria, and actin filaments. We found that successful cryopreservation of suspended or adherent keratinocytes can be accomplished with a 10% HES or a 5% HES, 5% DMSO solution. Cell viability of fibroblasts cryopreserved in suspension was maintained with 10% HES or 5% HES, 5% DMSO solutions. Adherent, cryopreserved fibroblasts were successfully maintained with a 5% HES, 5% DMSO solution. We conclude that skin tissue cells can be effectively cryopreserved by substituting all or a portion of DMSO with HES. Given that DMSO is the most commonly used CPA and is believed to be more toxic than HES, these findings are of clinical significance for tissue-based replacement therapies. Therapies that require the use of keratinocyte and fibroblast cells, such as those aimed at treating skin wounds or skin burns, may be optimized by substituting a portion or all of DMSO with HES during cryopreservation protocols.

  15. Anti-tumor Effect of Rhaponticum uniflorum Ethyl Acetate Extract by Regulation of Peroxiredoxin1 and Epithelial-to-Mesenchymal Transition in Oral Cancer

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2017-11-01

    Full Text Available Objective: To explore whether Rhaponticum uniflorum (R. uniflorum had anti-tumor effects in oral cancer and investigate the molecular mechanisms involved in these anti-tumor effects.Methods: Chemical compositions of R. uniflorum ethyl acetate (RUEA extracts were detected by ultra-performance liquid chromatography-Q/time-of-flight mass spectrometry (UPLC-Q/TOF-MS, followed by pharmacology-based network prediction analysis. The effects of RUEA extracts on proliferation, apoptosis, migration, and invasion ability of human oral squamous cell carcinoma (OSCC cell line SCC15 were evaluated by CCK8 assay, Annexin V- fluorescein isothiocyanate/propidium iodide staining, wound healing assay, and Matrigel invasion assay, respectively. The mRNA and protein expression of peroxiredoxin1 (Prx1, the epithelial-to-mesenchymal transition (EMT marker E-cadherin, vimentin, and Snail were determined by quantitative real-time reverse transcription polymerase chain reaction and western blotting. A mouse xenograft model of SCC15 cells was established to further evaluate the effect of RUEA extracts in vivo. Immunohistochemical assessment of Ki67 and terminal deoxynucleotidyl transferase dUTP nick end labeling staining of apoptotic cells were performed on the tumor tissues to assess the effects of RUEA extracts on proliferation and apoptosis.Results: Fourteen compounds were identified from RUEA extracts by UPLC-Q/TOF-MS. The pharmacology-based network prediction analysis showed that Prx1 could be a potential binder of RUEA extracts. In SCC15 cells, RUEA extracts inhibited cell viability, induced apoptosis, and suppressed cell invasion and migration in a concentration-dependent manner. After treatment with RUEA extracts, the mRNA and protein expression of E-cadherin increased, whereas those of Prx1, vimentin, and Snail decreased. RUEA extracts also affected the EMT program and suppressed cell invasion and migration in Prx1 knockdown SCC15 cells. In an OSCC mouse

  16. A Novel Tenebrio molitor Cadherin Is a Functional Receptor for Bacillus thuringiensis Cry3Aa Toxin*

    Science.gov (United States)

    Fabrick, Jeff; Oppert, Cris; Lorenzen, Marcé D.; Morris, Kaley; Oppert, Brenda; Jurat-Fuentes, Juan Luis

    2009-01-01

    Cry toxins produced by the bacterium Bacillus thuringiensis are effective biological insecticides. Cadherin-like proteins have been reported as functional Cry1A toxin receptors in Lepidoptera. Here we present data that demonstrate that a coleopteran cadherin is a functional Cry3Aa toxin receptor. The Cry3Aa receptor cadherin was cloned from Tenebrio molitor larval midgut mRNA, and the predicted protein, TmCad1, has domain structure and a putative toxin binding region similar to those in lepidopteran cadherin B. thuringiensis receptors. A peptide containing the putative toxin binding region from TmCad1 bound specifically to Cry3Aa and promoted the formation of Cry3Aa toxin oligomers, proposed to be mediators of toxicity in lepidopterans. Injection of TmCad1-specific double-stranded RNA into T. molitor larvae resulted in knockdown of the TmCad1 transcript and conferred resistance to Cry3Aa toxicity. These data demonstrate the functional role of TmCad1 as a Cry3Aa receptor in T. molitor and reveal similarities between the mode of action of Cry toxins in Lepidoptera and Coleoptera. PMID:19416969

  17. Galectin-7 overexpression is associated with the apoptotic process in UVB-induced sunburn keratinocytes

    Science.gov (United States)

    Bernerd, Francoise; Sarasin, Alain; Magnaldo, Thierry

    1999-01-01

    Galectin-7 is a β-galactoside binding protein specifically expressed in stratified epithelia and notably in epidermis, but barely detectable in epidermal tumors and absent from squamous carcinoma cell lines. Galectin-7 gene is an early transcriptional target of the tumor suppressor protein P53 [Polyak, K., Xia, Y., Zweier, J., Kinzler, K. & Vogelstein, B. (1997) Nature (London) 389, 300–305]. Because p53 transcriptional activity is increased by genotoxic stresses we have examined the possible effects of ultraviolet radiations (UVB) on galectin-7 expression in epidermal keratinocytes. The amounts of galectin-7 mRNA and protein are increased rapidly after UVB irradiation of epidermal keratinocytes. The increase of galectin-7 is parallel to P53 stabilization. UVB irradiation of skin reconstructed in vitro and of human skin ex vivo demonstrates that galectin-7 overexpression is associated with sunburn/apoptotic keratinocytes. Transfection of a galectin-7 expression vector results in a significant increase in terminal deoxynucleotidyltransferase-mediated UTP end labeling-positive keratinocytes. The present findings demonstrate a keratinocyte-specific protein involved in the UV-induced apoptosis, an essential process in the maintenance of epidermal homeostasis. PMID:10500176

  18. Concentration-dependent effect of platelet-rich plasma on keratinocyte and fibroblast wound healing.

    Science.gov (United States)

    Xian, Law Jia; Chowdhury, Shiplu Roy; Bin Saim, Aminuddin; Idrus, Ruszymah Bt Hj

    2015-03-01

    Platelet-rich plasma (PRP) has been found to contain a high concentration of growth factors that are present during the process of healing. Studies conducted found that application of PRP accelerates wound healing. In this study, we characterized the skin cell suspension harvested using the co-isolation technique and evaluated the effects of PRP (10% and 20%, v/v) on co-cultured keratinocytes and fibroblasts in terms of wound healing. Human keratinocytes and fibroblasts were harvested via co-isolation technique and separated via differential trypsinization. These cells were then indirectly co-cultured in medium supplemented with 10% or 20% PRP for 3 days without medium change for analysis of wound-healing potential. The wound-healing potential of keratinocytes and fibroblasts was evaluated in terms of growth property, migratory property, extracellular matrix gene expression and soluble factor secretion. The co-isolation technique yielded a skin cell population dominated by fibroblasts and keratinocytes, with a small amount of melanocytes. Comparison between the 10% and 20% PRP cultures showed that the 10% PRP culture exhibited higher keratinocyte apparent specific growth rate, and secretion of hepatocyte growth factor, monocyte chemoattractant protein-1, epithelial-derived neutrophil-activating protein 78 and vascular endothelial growth factor A, whereas the 20% PRP culture has significantly higher collagen type 1 and collagen type 3 expressions and produced more granulocyte-macrophage colony-stimulating factor. PRP concentration modulates keratinocyte and fibroblast wound healing potential, whereby the 10% PRP promotes wound remodeling, whereas the 20% PRP enhances inflammation and collagen deposition. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  19. Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle

    Science.gov (United States)

    Boëda, Batiste; El-Amraoui, Aziz; Bahloul, Amel; Goodyear, Richard; Daviet, Laurent; Blanchard, Stéphane; Perfettini, Isabelle; Fath, Karl R.; Shorte, Spencer; Reiners, Jan; Houdusse, Anne; Legrain, Pierre; Wolfrum, Uwe; Richardson, Guy; Petit, Christine

    2002-01-01

    Deaf-blindness in three distinct genetic forms of Usher type I syndrome (USH1) is caused by defects in myosin VIIa, harmonin and cadherin 23. Despite being critical for hearing, the functions of these proteins in the inner ear remain elusive. Here we show that harmonin, a PDZ domain-containing protein, and cadherin 23 are both present in the growing stereocilia and that they bind to each other. Moreover, we demonstrate that harmonin b is an F-actin-bundling protein, which is thus likely to anchor cadherin 23 to the stereocilia microfilaments, thereby identifying a novel anchorage mode of the cadherins to the actin cytoskeleton. Moreover, harmonin b interacts directly with myosin VIIa, and is absent from the disorganized hair bundles of myosin VIIa mutant mice, suggesting that myosin VIIa conveys harmonin b along the actin core of the developing stereocilia. We propose that the shaping of the hair bundle relies on a functional unit composed of myosin VIIa, harmonin b and cadherin 23 that is essential to ensure the cohesion of the stereocilia. PMID:12485990

  20. Contato com antígenos paternos pela mucosa vaginal e oral e o aborto de repetição Contact with paternal antigens in oral and vaginal mucosa and recurrent abortion

    Directory of Open Access Journals (Sweden)

    Rosiane Mattar

    2004-03-01

    Full Text Available OBJETIVO: determinar se a prática do sexo oral e vaginal, com ou sem exposição ao ejaculado, diminui a ocorrência de abortamento recorrente. MÉTODO: estudo caso-controle desenvolvido entre maio de 2000 e abril de 2003. Foi aplicado questionário no qual foram assinaladas algumas características de antecedentes clínicos, obstétricos e sexuais da mulher. Foram constituídos dois grupos de estudo: grupo caso, com 116 mulheres com antecedente obstétrico de dois ou mais abortamentos espontâneos, sem a ocorrência prévia de gestação acima de 22 semanas, e grupo controle, com 241 mulheres cujo antecedente obstétrico mostrasse uma ou mais gestações a termo com filho vivo e sem a presença de abortamentos. As variáveis analisadas relacionaram-se ao número de parceiros com os quais a mulher manteve relações sexuais, uso rotineiro de preservativo masculino, prática de sexo oral e exposição da mucosa oral feminina ao material ejaculado. RESULTADOS: relataram somente um parceiro 38,8% das mulheres do grupo caso e 35,7% das do grupo controle. Em ambos os grupos cerca de 75% das mulheres relataram que seus parceiros não usavam rotineiramente preservativo. Aproximadamente 55% das mulheres de ambos os grupos referiram que praticavam sexo oral, sendo que 13,8% das com aborto de repetição e 20,3% das com história de sucesso gestacional o faziam com exposição da mucosa oral ao ejaculado. Não houve diferença entre as pacientes com aborto de repetição e as com sucesso gestacional quanto ao número de parceiros, uso de preservativo, prática de sexo oral e exposição da mucosa oral ao ejaculado pelo parceiro. CONCLUSÃO: nossos resultados não confirmam a hipótese de que o comportamento sexual tenha influência sobre a ocorrência do aborto espontâneo de repetição.PURPOSE: to evaluate whether oral and vaginal sex practice, with or without exposure to semen, decrease the occurrence of recurrent spontaneous abortion. METHOD: this

  1. Cadherin 2/4 signaling via PTP1B and catenins is crucial for nucleokinesis during radial neuronal migration in the neocortex.

    Science.gov (United States)

    Martinez-Garay, Isabel; Gil-Sanz, Cristina; Franco, Santos J; Espinosa, Ana; Molnár, Zoltán; Mueller, Ulrich

    2016-06-15

    Cadherins are crucial for the radial migration of excitatory projection neurons into the developing neocortical wall. However, the specific cadherins and the signaling pathways that regulate radial migration are not well understood. Here, we show that cadherin 2 (CDH2) and CDH4 cooperate to regulate radial migration in mouse brain via the protein tyrosine phosphatase 1B (PTP1B) and α- and β-catenins. Surprisingly, perturbation of cadherin-mediated signaling does not affect the formation and extension of leading processes of migrating neocortical neurons. Instead, movement of the cell body and nucleus (nucleokinesis) is disrupted. This defect is partially rescued by overexpression of LIS1, a microtubule-associated protein that has previously been shown to regulate nucleokinesis. Taken together, our findings indicate that cadherin-mediated signaling to the cytoskeleton is crucial for nucleokinesis of neocortical projection neurons during their radial migration. © 2016. Published by The Company of Biologists Ltd.

  2. Classic cadherin expressions balance postnatal neuronal positioning and dendrite dynamics to elaborate the specific cytoarchitecture of the mouse cortical area.

    Science.gov (United States)

    Egusa, Saki F; Inoue, Yukiko U; Asami, Junko; Terakawa, Youhei W; Hoshino, Mikio; Inoue, Takayoshi

    2016-04-01

    A unique feature of the mammalian cerebral cortex is in its tangential parcellation via anatomical and functional differences. However, the cellular and/or molecular machinery involved in cortical arealization remain largely unknown. Here we map expression profiles of classic cadherins in the postnatal mouse barrel field of the primary somatosensory area (S1BF) and generate a novel bacterial artificial chromosome transgenic (BAC-Tg) mouse line selectively illuminating nuclei of cadherin-6 (Cdh6)-expressing layer IV barrel neurons to confirm that tangential cellular assemblage of S1BF is established by postnatal day 5 (P5). When we electroporate the cadherins expressed in both barrel neurons and thalamo-cortical axon (TCA) terminals limited to the postnatal layer IV neurons, S1BF cytoarchitecture is disorganized with excess elongation of dendrites at P7. Upon delivery of dominant negative molecules for all classic cadherins, tangential cellular positioning and biased dendritic arborization of barrel neurons are significantly altered. These results underscore the value of classic cadherin-mediated sorting among neuronal cell bodies, dendrites and TCA terminals in postnatally elaborating the S1BF-specific tangential cytoarchitecture. Additionally, how the "protocortex" machinery affects classic cadherin expression profiles in the process of cortical arealization is examined and discussed. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  3. Ocupação e câncer da cavidade oral e orofaringe Occupational status and cancer of the oral cavity and oropharynx

    Directory of Open Access Journals (Sweden)

    Magda Andreotti

    2006-03-01

    Full Text Available Estudo caso-controle conduzido para avaliar a associação de exposições ocupacionais e câncer oral e orofaringe na Região Metropolitana de São Paulo. Inclui 325 casos e 468 controles, recrutados por freqüência de sexo e faixa etária, entrevistados entre janeiro de 1999 e março de 2002. A análise por ramos de atividade e ocupações foi restrita aos homens (266 casos, 362 controles e os odds ratios (OR, calculados por regressão logística não-condicional, foram controlados por idade, tabagismo e consumo de álcool. Observou-se risco em trabalhadores de oficinas mecânicas (26 casos, 12 controles OR = 2,45 (IC95%: 1,14-5,27, que aumentou nos que estavam empregados por dez ou mais anos (OR = 7,90; IC95%: 2,03-30,72. Os mecânicos de veículos (14 casos, 7 controles apresentaram OR = 2,10 (IC95%: 0,78-5,68, e os expostos por 10 ou mais anos OR = 26,21 (IC95%: 2,34-294,06. Outros ramos de atividade e ocupações apresentaram OR > 1,5, porém não estatisticamente significantes. Em conclusão, emprego em oficinas mecânicas e a profissão de mecânico de automóveis revelaram risco para câncer oral e orofaringe, independente da idade, tabaco e álcool. Longas exposições aumentaram o risco.To estimate the risk of occupation in oral and oropharyngeal cancer, a hospital-based case-control study was conducted in Greater Metropolitan São Paulo, Brazil. The study included 325 cases and 468 controls, frequency-matched with cases by sex and age, and interviewed from January 1999 to March 2002. Occupational risks were examined by industry and job titles and restricted to males (266 cases, 362 controls. Odds ratios (OR were calculated by unconditional logistic regression, controlling for age, smoking, and alcohol. Males working in vehicle maintenance shops (26 cases, 12 controls showed adjusted OR = 2.45 (95%CI: 1.14-5.27, increasing among those employed 10 or more years (OR = 7.90; 95%CI: 2.03-30.72. Occupation as vehicle repair worker (14

  4. Staphylococcus aureus keratinocyte invasion is mediated by integrin-linked kinase and Rac1.

    Science.gov (United States)

    Sayedyahossein, Samar; Xu, Stacey X; Rudkouskaya, Alena; McGavin, Martin J; McCormick, John K; Dagnino, Lina

    2015-02-01

    Staphylococcus aureus is a major component of the skin microbiota and causes a large number of serious infections. S. aureus first interacts with epidermal keratinocytes to breach the epidermal barrier through mechanisms not fully understood. By use of primary keratinocytes from mice with epidermis-restricted Ilk gene inactivation and control integrin-linked kinase (ILK)-expressing littermates, we investigated the role of ILK in epidermal S. aureus invasion. Heat-killed, but not live, bacteria were internalized to Rab5- and Rab7-positive phagosomes, and incubation with keratinocyte growth factor increased their uptake 2.5-fold. ILK-deficient mouse keratinocytes internalized bacteria 2- to 4-fold less efficiently than normal cells. The reduced invasion by live S. aureus of ILK-deficient cells was restored in the presence of exogenous, constitutively active Rac1. Thus, Rac1 functions downstream from ILK during invasion. Further, invasion by S. aureus of Rac1-deficient cells was 2.5-fold lower than in normal cells. Paradoxically, staphylococcal cutaneous penetration of mouse skin explants with ILK-deficient epidermis was 35-fold higher than that of normal skin, indicating defects in epidermal barrier function in the absence of ILK. Thus, we identified an ILK-Rac1 pathway essential for bacterial invasion of keratinocytes, and established ILK as a key contributor to prevent invasive staphylococcal cutaneous infection. © FASEB.

  5. Tofacitinib Represses the Janus Kinase-Signal Transducer and Activators of Transcription Signalling Pathway in Keratinocytes.

    Science.gov (United States)

    Srivastava, Ankit; Ståhle, Mona; Pivarcsi, Andor; Sonkoly, Enikö

    2018-05-08

    Tofacitinib is a Janus kinase (JAK) inhibitor, which has shown efficacy in treating psoriasis. The mode of action of tofacitinib is not completely understood but it has been thought to be mediated by the inhibition of CD4+ T-cell activation. Here, we investigated whether the molecular targets of tofacitinib are expressed in keratinocytes, and whether tofacitinib can modulate the activity of the JAK/Signal Transducer and Activators of Transcription (STAT)-pathway in keratinocytes. Transcriptomic profiling of human keratinocytes treated with IL-22 in combination with tofacitinib revealed that tofacitinib could prevent the majority of IL-22-mediated gene expression changes. Pathway analysis of tofacitinib-regulated genes in keratinocytes revealed enrichment of genes involved in the JAK/STAT signalling pathway. Quantitative real-time-PCR confirmed the upregulation of S100A7 and downregulation of EGR1 expression by IL-22, which was prevented by tofacitinib pre-treatment. These results indicate a direct effect of tofacinitib on keratinocytes, which can have relevance for systemic as well as for topical treatment of psoriasis with tofacitinib.

  6. Gene expression studies on human keratinocytes transduced with human growth hormone gene for a possible utilization in gene therapy

    International Nuclear Information System (INIS)

    Mathor, Monica Beatriz.

    1994-01-01

    Taking advantage of the recent progress in the DNA-recombinant techniques and of the potentiality of normal human keratinocytes primary culture to reconstitute the epidermis, it was decided to genetically transform these keratinocytes to produce human growth hormone under controllable conditions that would be used in gene therapy at this hormone deficient patients. The first step to achieve this goal was to standardize infection of keratinocytes with retrovirus producer cells containing a construct which included the gene of bacterial b-galactosidase. The best result was obtained cultivating the keratinocytes for 3 days in a 2:1 mixture of retrovirus producer cells and 3T3-J2 fibroblasts irradiated with 60 Gy, and splitting these infected keratinocytes on 3T3-J2 fibroblasts feeder layer. Another preliminary experiment was to infect normal human keratinocytes with interleukin-6 gene (hIL-6) that, in pathologic conditions, could be reproduced by keratinocytes and secreted to the blood stream. Thus, we verify that infected keratinocytes secrete an average amount of 500 ng/10 6 cell/day of cytokin during the in vitro life time, that certify the stable character of the injection. These keratinocytes, when grafted in mice, secrete hIL-6 to the blood stream reaching levels of 40 pg/ml of serum. After these preliminary experiments, we construct a retroviral vector with the human growth hormone gene (h GH) driven by human metallothionein promoter (h PMT), designated DChPMTGH. Normal human keratinocytes were infected with DChPMTGH producer cells, following previously standardized protocol, obtaining infected keratinocytes secreting to the culture media 340 ng h GH/10 6 cell/day without promoter activation. This is the highest level of h GH secreted in human keratinocytes primary culture described in literature. The h GH value increases approximately 10 times after activation with 100 μM Zn +2 for 8-12 hours. (author). 158 refs., 42 figs., 6 tabs

  7. Transforming growth factor β induces bone marrow mesenchymal stem cell migration via noncanonical signals and N-cadherin.

    Science.gov (United States)

    Dubon, Maria Jose; Yu, Jinyeong; Choi, Sanghyuk; Park, Ki-Sook

    2018-01-01

    Transforming growth factor-beta (TGF-β) induces the migration and mobilization of bone marrow-derived mesenchymal stem cells (BM-MSCs) to maintain bone homeostasis during bone remodeling and facilitate the repair of peripheral tissues. Although many studies have reported the mechanisms through which TGF-β mediates the migration of various types of cells, including cancer cells, the intrinsic cellular mechanisms underlying cellular migration, and mobilization of BM-MSCs mediated by TGF-β are unclear. In this study, we showed that TGF-β activated noncanonical signaling molecules, such as Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), focal adhesion kinase (FAK), and p38, via TGF-β type I receptor in human BM-MSCs and murine BM-MSC-like ST2 cells. Inhibition of Rac1 by NSC23766 and Src by PP2 resulted in impaired TGF-β-mediated migration. These results suggested that the Smad-independent, noncanonical signals activated by TGF-β were necessary for migration. We also showed that N-cadherin-dependent intercellular interactions were required for TGF-β-mediated migration using functional inhibition of N-cadherin with EDTA treatment and a neutralizing antibody (GC-4 antibody) or siRNA-mediated knockdown of N-cadherin. However, N-cadherin knockdown did not affect the global activation of noncanonical signals in response to TGF-β. Therefore, these results suggested that the migration of BM-MSCs in response to TGF-β was mediated through N-cadherin and noncanonical TGF-β signals. © 2017 Wiley Periodicals, Inc.

  8. Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.

    Science.gov (United States)

    Noguchi, Fumihito; Nakajima, Takeshi; Inui, Shigeki; Reddy, Janardan K; Itami, Satoshi

    2014-01-01

    MED1 (Mediator complex subunit 1) is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/-)) that develop epidermal hyperplasia. Herein, to investigate the function(s) of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/-) and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/-) mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/-) mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/-) keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/-) keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/-) keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/-) keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/-) mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/-) mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/-) mice, indicating a decreased contribution of hair

  9. Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.

    Directory of Open Access Journals (Sweden)

    Fumihito Noguchi

    Full Text Available MED1 (Mediator complex subunit 1 is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/- that develop epidermal hyperplasia. Herein, to investigate the function(s of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/- and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/- mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/- mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/- keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/- keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/- keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/- keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/- mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/- mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/- mice, indicating a decreased contribution of hair

  10. Death penalty for keratinocytes: apoptosis versus cornification.

    Science.gov (United States)

    Lippens, S; Denecker, G; Ovaere, P; Vandenabeele, P; Declercq, W

    2005-11-01

    Homeostasis implies a balance between cell growth and cell death. This balance is essential for the development and maintenance of multicellular organisms. Homeostasis is controlled by several mechanisms including apoptosis, a process by which cells condemned to death are completely eliminated. However, in some cases, total destruction and removal of dead cells is not desirable, as when they fulfil a specific function such as formation of the skin barrier provided by corneocytes, also known as terminally differentiated keratinocytes. In this case, programmed cell death results in accumulation of functional cell corpses. Previously, this process has been associated with apoptotic cell death. In this overview, we discuss differences and similarities in the molecular regulation of epidermal programmed cell death and apoptosis. We conclude that despite earlier confusion, apoptosis and cornification occur through distinct molecular pathways, and that possibly antiapoptotic mechanisms are implicated in the terminal differentiation of keratinocytes.

  11. Correlation of serum MCP-1 and VE-cadherin levels with neural function and carotid atherosclerosis in patients with acute cerebral infarction

    Directory of Open Access Journals (Sweden)

    Yan-Bing Xi

    2017-05-01

    Full Text Available Objective: To study the correlation of serum monocyte chemoattractant protein-1 (MCP-1 and vascular endothelial cadherin (VE-cadherin levels with neural function and carotid atherosclerosis in patients with acute cerebral infarction. Methods: A total of 78 patients who were diagnosed with acute cerebral infarction in our hospital between May 2013 and August 2016 were selected as pathological group, and 80 healthy volunteers who received physical examination in our hospital during the same period were selected as control group. Serum was collected to determine the levels of MCP-1, VE-cadherin, nerve injury molecules, inflammatory mediators, proteases and their hydrolysate. Results: Serum MCP-1, VE-cadherin, NGB, NSE, S100β, HMGB-1, sCD40L, YKL-40, visfatin, CatK, MMP9 and ICTP levels of pathological group were significantly higher than those of control group; serum MCP-1 and VE-cadherin levels of pathological group were positively correlated with NGB, NSE, S100β, HMGB-1, sCD40L, YKL-40, visfatin, CatK, MMP9 and ICTP levels. Conclusion: Serum MCP-1 and VE-cadherin levels abnormally increase in patients with acute cerebral infarction, and are closely related to the nerve injury and atherosclerosis process.

  12. A pilot study on implementation of an e-learning course for clinical education in oral medicine

    Directory of Open Access Journals (Sweden)

    Vlaho Brailo

    2015-09-01

    Full Text Available This study presents the process of implementing an e-learning course for clinical education in oral medicine and examines its impact on students’ knowledge and satisfaction. Thirty six (39.6% fifth-year undergraduate students participated in the study. Every week before their clinical practice, students studied relevant e-learning materials and completed an assessment test. At the end of the semester, students’ knowledge and attitudes towards e-learning were assessed by the knowledge test and anonymous questionnaire. Students who had access to the e-learning course had significantly better knowledge than students who did not have access to the e-learning course. Exposure to the e-learning course contributed to a better understanding of oral medicine curriculum, increased confidence with oral medicine patients and easier participation in oral medicine clinical practice. This study provided evidence that the e-learning can be implemented as a valuable adjunct to clinical education in oral medicine.

  13. The function of 7D-cadherins: a mathematical model predicts physiological importance for water transport through simple epithelia

    Directory of Open Access Journals (Sweden)

    Walcher Sebastian

    2011-06-01

    Full Text Available Abstract Background 7D-cadherins like LI-cadherin are cell adhesion molecules and represent exceptional members of the cadherin superfamily. Although LI-cadherin was shown to act as a functional Ca2+-dependent adhesion molecule, linking neighboring cells together, and to be dysregulated in a variety of diseases, the physiological role is still enigmatic. Interestingly 7D-cadherins occur only in the lateral plasma membranes of cells from epithelia of water transporting tissues like the gut, the liver or the kidney. Furthermore LI-cadherin was shown to exhibit a highly cooperative Ca2+-dependency of the binding activity. Thus it is tempting to assume that LI-cadherin regulates the water transport through the epithelium in a passive fashion by changing its binding activity in dependence on the extracellular Ca2+. Results We developed a simple mathematical model describing the epithelial lining of a lumen with a content of variable osmolarity covering an interstitium of constant osmolarity. The width of the lateral intercellular cleft was found to influence the water transport significantly. In the case of hypertonic luminal content a narrow cleft is necessary to further increase concentration of the luminal content. If the cleft is too wide, the water flux will change direction and water is transported into the lumen. Electron microscopic images show that in fact areas of the gut can be found where the lateral intercellular cleft is narrow throughout the lateral cell border whereas in other areas the lateral intercellular cleft is widened. Conclusions Our simple model clearly predicts that changes of the width of the lateral intercellular cleft can regulate the direction and efficiency of water transport through a simple epithelium. In a narrow cleft the cells can increase the concentration of osmotic active substances easily by active transport whereas if the cleft is wide, friction is reduced but the cells can hardly build up high osmotic

  14. Response of human epidermal keratinocytes to UV light

    International Nuclear Information System (INIS)

    Kartasova, A.A.

    1987-01-01

    This thesis presents a study on the response of human epidermal keratinocytes to UV light as well as to other agents like 4-NQO and TPA. The effects of ultraviolet (UV) light on the protein synthesis in cultured keratinocytes are presented in ch. III. The next chapter describes the construction of a cDNA library using mRNA isolated from UV irradiated kernatinocytes. This library was differentially screened with cDNA probes synthesized on mRNA from either UV irradiated or nonirradiated cells. Several groups of cDNA clones corresponding to transcripts whose level in the cytoplasm seem to be affected by exposure to UV light have been isolated and characterized by cross-hybridization, sequencing and Northern blot analysis. More detailed analysis of some of the cDNA clones is presented in the two chapters following ch. IV. The complete cDNA sequence of the proteinase inhibitor cystatin A and the modulation of its expression by UV light and the carcinogen 4-nitroquinoline 1-oxide (4-NQO) in keratinocytes are described in ch. V. Two other groups of cDNA clones have been isolated which do not cross-hybridize with each other on Southern blots. However, the primary structures of the proteins deduced from the nucleotide sequences of these two groups of cDNA clones are very similar. 212 refs.; 33 figs.; 2 tabs

  15. Efficient generation of integration-free human induced pluripotent stem cells from keratinocytes by simple transfection of episomal vectors.

    Science.gov (United States)

    Piao, Yulan; Hung, Sandy Shen-Chi; Lim, Shiang Y; Wong, Raymond Ching-Bong; Ko, Minoru S H

    2014-07-01

    Keratinocytes represent an easily accessible cell source for derivation of human induced pluripotent stem (hiPS) cells, reportedly achieving higher reprogramming efficiency than fibroblasts. However, most studies utilized a retroviral or lentiviral method for reprogramming of keratinocytes, which introduces undesirable transgene integrations into the host genome. Moreover, current protocols of generating integration-free hiPS cells from keratinocytes are mostly inefficient. In this paper, we describe a more efficient, simple-to-use, and cost-effective method for generating integration-free hiPS cells from keratinocytes. Our improved method using lipid-mediated transfection achieved a reprogramming efficiency of ∼0.14% on average. Keratinocyte-derived hiPS cells showed no integration of episomal vectors, expressed stem cell-specific markers and possessed potentials to differentiate into all three germ layers by in vitro embryoid body formation as well as in vivo teratoma formation. To our knowledge, this represents the most efficient method to generate integration-free hiPS cells from keratinocytes. ©AlphaMed Press.

  16. Changes in dermal matrix in the absence of Rac1 in keratinocytes

    DEFF Research Database (Denmark)

    Stanley, Alanna; Pedersen, Esben Ditlev Kølle; Brakebusch, Cord

    2016-01-01

    Keratinocytes, in response to irritants, secrete pro-inflammatory mediators which recruit and activate immune and mesenchymal cells, including fibroblasts, to repair the skin. Fibroblasts respond by synthesising collagen and promoting the crosslinking extracellular matrix (ECM). We recently showed....... As inflammation is intimately linked with fibrotic disease in the skin, this raised the question as to whether this deletion may also affect the deposition and arrangement of the dermal ECM. This study assessed the effects of Rac1 deletion in keratinocytes and of the heightened inflammatory status by induction...... that this increase in the diameter of collagen fibrils due to inflammation may serve as pre-fibrotic marker enabling earlier determination of fibrosis and earlier treatment. This study has revealed previously unknown effects on the ECM due to the deletion of Rac1 in keratinocytes....

  17. Líquen plano oral (LPO: diagnóstico clínico e complementar Oral lichen planus (OLP: clinical and complementary diagnosis

    Directory of Open Access Journals (Sweden)

    Alan Motta do Canto

    2010-10-01

    Full Text Available O líquen plano é uma desordem comum do epitélio escamoso estratificado que acomete as mucosas oral e genital, a pele, as unhas e o couro cabeludo. O líquen plano oral (LPO afeta mulheres de meiaidade e apresenta padrões e distribuição característicos, como estriações brancas, pápulas ou placas brancas, eritema, erosões e bolhas, que podem estar associadas a medicações e/ou materiais dentários no paciente. O diagnóstico clínico somente poderá ser feito se a doença apresentar padrões clássicos, como lesões concomitantes na mucosa oral e na pele. O diagnóstico laboratorial por meio do exame histopatológico se caracteriza pela presença de projeções do epitélio em forma de dentes de serra e corpos de Civatte, e possibilita excluir condições de displasia e malignidade. A imunofluorescência direta é utilizada em suspeita de outras doenças, como pênfigo e penfigoide. O LPO é tratado com agentes anti-inflamatórios, principalmente, corticosteroides tópicos, e novos agentes e técnicas têm-se demonstrado eficazes. A transformação maligna do LPO e sua incidência exata permanecem controversas. Este trabalho tem como objetivo apresentar, com base na revisão da literatura, a etiopatogenia, o diagnóstico clínico, exames complementares e complicações do LPO.Lichen planus is a common disorder of the stratified squamous epithelium that affects oral and genital mucous membranes, skin, nails, and scalp. Oral Lichen Planus (OLP affects middle-aged women and shows distribution patterns and characteristics such as white striations, white plaques or papules, erythema, blisters and erosions, and may be associated with medication and/or dental materials used by the patient. The clinical diagnosis can only be made if the disease presents classical patterns such as concomitant lesions in the oral mucosa and skin. The laboratory diagnosis is histopathologically characterized by the presence of projections of the epithelium in the

  18. Effect of 1,24R-dihydroxyvitamin D3 on the growth of human keratinocytes.

    LENUS (Irish Health Repository)

    Matsumoto, K

    1990-02-01

    The effect of 1,24R-dihydroxyvitamin D3 (1,24R(OH)2D3), a synthetic analogue of a biologically active form of vitamin D3 (1,25-dihydroxyvitamin D3, 1,25(OH)2D3), on the growth of human keratinocytes cultured in serum-free medium was investigated. The growth of cultured normal human keratinocytes was inhibited by 65% by 10(-8)M 1,24R(OH)2D3 and by 90% by 10(-7)M 1,24(OH)2D3. It inhibited cell growth almost completely at 10(-6)M. The DNA synthesis of keratinocytes was also inhibited with 1,24R(OH)2D3 by 27% at 10(-8)M, 59% at 10(-7)M, and 92% at 10(-6)M. The inhibition of cell growth and DNA synthesis were more remarkable by 1,24R(OH)2D3 than by 1,25(OH)2D3. 1,24R(OH)2D3 also inhibited the growth of keratinocytes derived from patients with psoriasis vulgaris; the growth inhibitory effect was again more remarkable with 1,24R(OH)2D3 than with 1,25(OH)2D3. The viability and protein synthesis of keratinocytes were not affected by 1,24R(OH)2D3, suggesting that the growth inhibitory effect is due to its biological activity, not to cytotoxicity. The binding of [3H]-labeled 1,25(OH)2D3 to its receptor in the cytosolic fraction of cultured keratinocytes was competitively substituted by unlabeled 1,24R(OH)2D3 as well as 1,25(OH)2D3, suggesting that 1,24R(OH)2D3 binds to the 1,25(OH)2D3 receptor. It was found that the affinity of 1,24R(OH)2D3 for the receptor was slightly higher than that of 1,25(OH)2D3. These results demonstrate that 1,24R(OH)2D3 functions as a potent growth inhibitor in vitro in human keratinocytes from both normal and psoriatic epidermis, and it possesses a higher affinity for the 1,25(OH)2D3 receptor in cultured human keratinocytes. The difference in affinity of 1,24R(OH)2D3 for the 1,25(OH)2D3 receptor correlates with its greater inhibition of keratinocyte growth than 1,25(OH)2D3. 1,24R(OH)2D3 may be useful in the treatment of psoriasis.

  19. Micronucleus formation in cultured human keratinocytes following exposure to mitomycin C and cyclophosphamide.

    Science.gov (United States)

    van Pelt, F N; Haring, R M; Overkamp, M J; Weterings, P J

    1991-02-01

    A method is described to investigate the induction of micronuclei in cultured human keratinocytes after short-term exposure to known clastogenic agents. The cytokinesis-block method was applied to facilitate the scoring of micronucleated cells. Mitomycin C, a direct-acting compound, caused a 5-20-fold increase in micronuclei over the controls at the highest concentration tested (1 microgram/ml). Cyclophosphamide, an agent requiring metabolic activation, did not induce the formation of micronuclei in cultured keratinocytes. However, after pretreatment of the keratinocyte cultures with Aroclor 1254 for 72 h, exposure to cyclophosphamide resulted in a 3-fold increase in micronucleus frequency over the controls. No cytogenetic effect of Aroclor 1254 was observed in control experiments.

  20. Derivation of keratinocytes from chicken embryonic stem cells: Establishment and characterization of differentiated proliferative cell populations

    Directory of Open Access Journals (Sweden)

    Mathilde Couteaudier

    2015-03-01

    Full Text Available A common challenge in avian cell biology is the generation of differentiated cell-lines, especially in the keratinocyte lineage. Only a few avian cell-lines are available and very few of them show an interesting differentiation profile. During the last decade, mammalian embryonic stem cell-lines were shown to differentiate into almost all lineages, including keratinocytes. Although chicken embryonic stem cells had been obtained in the 1990s, few differentiation studies toward the ectodermal lineage were reported. Consequently, we explored the differentiation of chicken embryonic stem cells toward the keratinocyte lineage by using a combination of stromal induction, ascorbic acid, BMP4 and chicken serum. During the induction period, we observed a downregulation of pluripotency markers and an upregulation of epidermal markers. Three homogenous cell populations were derived, which were morphologically similar to chicken primary keratinocytes, displaying intracellular lipid droplets in almost every pavimentous cell. These cells could be serially passaged without alteration of their morphology and showed gene and protein expression profiles of epidermal markers similar to chicken primary keratinocytes. These cells represent an alternative to the isolation of chicken primary keratinocytes, being less cumbersome to handle and reducing the number of experimental animals used for the preparation of primary cells.

  1. Flow cytometry of human primary epidermal and follicular keratinocytes.

    Science.gov (United States)

    Gragnani, Alfredo; Ipolito, Michelle Zampieri; Sobral, Christiane S; Brunialti, Milena Karina Coló; Salomão, Reinaldo; Ferreira, Lydia Masako

    2008-02-19

    The aim of this study was to characterize using flow cytometry cultured human primary keratinocytes isolated from the epidermis and hair follicles by different methods. Human keratinocytes derived from discarded fragments of total skin and scalp hair follicles from patients who underwent plastic surgery in the Plastic Surgery Division at UNIFESP were used. The epidermal keratinocytes were isolated by using 3 different methods: the standard method, upon exposure to trypsin for 30 minutes; the second, by treatment with dispase for 18 hours and with trypsin for 10 minutes; and the third, by treatment with dispase for 18 hours and with trypsin for 30 minutes. Follicular keratinocytes were isolated using the standard method. On comparing the group treated with dispase for 18 hours and with trypsin for 10 minutes with the group treated with dispase for 18 hours and with trypsin for 30 minutes, it was observed that the first group presented the largest number of viable cells, the smallest number of cells in late apoptosis and necrosis with statistical significance, and no difference in apoptosis. When we compared the group treated with dispase for 18 hours and with trypsin for 10 minutes with the group treated with trypsin, the first group presented the largest number of viable cells, the smallest number of cells in apoptosis with statistical significance, and no difference in late apoptosis and necrosis. When we compared the results of the group treated with dispase for 18 hours and with trypsin for 10 minutes with the results for follical isolation, there was a statistical difference in apoptosis and viable cells. The isolation method of treatment with dispase for 18 hours and with trypsin for 10 minutes produced the largest number of viable cells and the smallest number of cells in apoptosis/necrosis.

  2. Sustainability of keratinocyte gene transfer and cell survival in vivo.

    Science.gov (United States)

    Choate, K A; Khavari, P A

    1997-05-20

    The epidermis is an attractive site for therapeutic gene delivery because it is accessible and capable of delivering polypeptides to the systemic circulation. A number of difficulties, however, have emerged in attempts at cutaneous gene delivery, and central among these is an inability to sustain therapeutic gene production. We have examined two major potential contributing factors, viral vector stamina and involvement of long-lived epidermal progenitor cells. Human keratinocytes were either untreated or transduced with a retroviral vector for beta-galactosidase (beta-Gal) at > 99% efficiency and then grafted onto immunodeficient mice to regenerate human epidermis. Human epidermis was monitored in vivo after grafting for clinical and histologic appearance as well as for gene expression. Although integrated vector sequences persisted unchanged in engineered epidermis at 10 weeks post-grafting, retroviral long terminal repeat (LTR)-driven beta-Gal expression ceased in vivo after approximately 4 weeks. Endogenous cellular promoters, however, maintained consistently normal gene expression levels without evidence of time-dependent decline, as determined by immunostaining with species-specific antibodies for human involucrin, filaggrin, keratinocyte transglutaminase, keratin 10, type VII collagen, and Laminin 5 proteins out to week 14 post-grafting. Transduced human keratinocytes generated multilayer epidermis sustained through multiple epidermal turnover cycles; this epidermis demonstrated retention of a spatially appropriate pattern of basal and suprabasal epidermal marker gene expression. These results confirm previous findings suggesting that viral promoter-driven gene expression is not durable and demonstrate that keratinocytes passaged in vitro can regenerate and sustain normal epidermis for prolonged periods.

  3. Sodium Solute Symporter and Cadherin Proteins Act as Bacillus thuringiensis Cry3Ba Toxin Functional Receptors in Tribolium castaneum*

    Science.gov (United States)

    Contreras, Estefanía; Schoppmeier, Michael; Real, M. Dolores; Rausell, Carolina

    2013-01-01

    Understanding how Bacillus thuringiensis (Bt) toxins interact with proteins in the midgut of susceptible coleopteran insects is crucial to fully explain the molecular bases of Bt specificity and insecticidal action. In this work, aminopeptidase N (TcAPN-I), E-cadherin (TcCad1), and sodium solute symporter (TcSSS) have been identified by ligand blot as putative Cry3Ba toxin-binding proteins in Tribolium castaneum (Tc) larvae. RNA interference knockdown of TcCad1 or TcSSS proteins resulted in decreased susceptibility to Cry3Ba toxin, demonstrating the Cry toxin receptor functionality for these proteins. In contrast, TcAPN-I silencing had no effect on Cry3Ba larval toxicity, suggesting that this protein is not relevant in the Cry3Ba toxin mode of action in Tc. Remarkable features of TcSSS protein were the presence of cadherin repeats in its amino acid sequence and that a TcSSS peptide fragment containing a sequence homologous to a binding epitope found in Manduca sexta and Tenebrio molitor Bt cadherin functional receptors enhanced Cry3Ba toxicity. This is the first time that the involvement of a sodium solute symporter protein as a Bt functional receptor has been demonstrated. The role of this novel receptor in Bt toxicity against coleopteran insects together with the lack of receptor functionality of aminopeptidase N proteins might account for some of the differences in toxin specificity between Lepidoptera and Coleoptera insect orders. PMID:23645668

  4. Non-recessive Bt toxin resistance conferred by an intracellular cadherin mutation in field-selected populations of cotton bollworm.

    Directory of Open Access Journals (Sweden)

    Haonan Zhang

    Full Text Available Transgenic crops producing Bacillus thuringiensis (Bt toxins have been planted widely to control insect pests, yet evolution of resistance by the pests can reduce the benefits of this approach. Recessive mutations in the extracellular domain of toxin-binding cadherin proteins that confer resistance to Bt toxin Cry1Ac by disrupting toxin binding have been reported previously in three major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Here we report a novel allele from cotton bollworm with a deletion in the intracellular domain of cadherin that is genetically linked with non-recessive resistance to Cry1Ac. We discovered this allele in each of three field-selected populations we screened from northern China where Bt cotton producing Cry1Ac has been grown intensively. We expressed four types of cadherin alleles in heterologous cell cultures: susceptible, resistant with the intracellular domain mutation, and two complementary chimeric alleles with and without the mutation. Cells transfected with each of the four cadherin alleles bound Cry1Ac and were killed by Cry1Ac. However, relative to cells transfected with either the susceptible allele or the chimeric allele lacking the intracellular domain mutation, cells transfected with the resistant allele or the chimeric allele containing the intracellular domain mutation were less susceptible to Cry1Ac. These results suggest that the intracellular domain of cadherin is involved in post-binding events that affect toxicity of Cry1Ac. This evidence is consistent with the vital role of the intracellular region of cadherin proposed by the cell signaling model of the mode of action of Bt toxins. Considered together with previously reported data, the results suggest that both pore formation and cell signaling pathways contribute to the efficacy of Bt toxins.

  5. Human keratinocytes produce the complement inhibitor factor H: synthesis is regulated by interferon-gamma

    NARCIS (Netherlands)

    Timár, Krisztina K.; Pasch, Marcel C.; van den Bosch, Norbert H. A.; Jarva, Hanna; Junnikkala, Sami; Meri, Seppo; Bos, Jan D.; Asghar, Syed S.

    2006-01-01

    Locally synthesized complement is believed to play an important role in host defense and inflammation at organ level. In the epidermis, keratinocytes have so far been shown to synthesize two complement components, C3 and factor B. Here, we studied the synthesis of factor H by human keratinocytes. We

  6. The Antimicrobial Peptide Human Beta-Defensin-3 Is Induced by Platelet-Released Growth Factors in Primary Keratinocytes

    Directory of Open Access Journals (Sweden)

    Andreas Bayer

    2017-01-01

    Full Text Available Platelet-released growth factors (PRGF and its related clinically used formulations (e.g., Vivostat Platelet-Rich Fibrin (PRF® contain a variety of chemokines, cytokines, and growth factors and are therefore used to support healing of chronic, hard-to-heal, or infected wounds. Human beta-defensin-3 (hBD-3 is an antimicrobial peptide inducibly expressed in human keratinocytes especially upon wounding. The potent antimicrobial activity of hBD-3 together with its wound closure-promoting activities suggests that hBD-3 may play a crucial role in wound healing. Therefore, we analyzed the influence of PRGF on hBD-3 expression in human primary keratinocytes in vitro. In addition, we investigated the influence of Vivostat PRF on hBD-3 expression in artificially generated human skin wounds in vivo. PRGF treatment of primary keratinocytes induced a significant, concentration- and time-dependent increase in hBD-3 gene expression which was partially mediated by the epidermal growth factor receptor (EGFR. In line with these cell culture data, in vivo experiments revealed an enhanced hBD-3 expression in experimentally produced human wounds after the treatment with Vivostat PRF. Thus, the induction of hBD-3 may contribute to the beneficial effects of thrombocyte concentrate lysates in the treatment of chronic or infected wounds.

  7. The Antimicrobial Peptide Human Beta-Defensin-3 Is Induced by Platelet-Released Growth Factors in Primary Keratinocytes

    Science.gov (United States)

    Lammel, Justus; Tohidnezhad, Mersedeh; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Cremer, Jochen; Jahr, Holger; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen

    2017-01-01

    Platelet-released growth factors (PRGF) and its related clinically used formulations (e.g., Vivostat Platelet-Rich Fibrin (PRF®)) contain a variety of chemokines, cytokines, and growth factors and are therefore used to support healing of chronic, hard-to-heal, or infected wounds. Human beta-defensin-3 (hBD-3) is an antimicrobial peptide inducibly expressed in human keratinocytes especially upon wounding. The potent antimicrobial activity of hBD-3 together with its wound closure-promoting activities suggests that hBD-3 may play a crucial role in wound healing. Therefore, we analyzed the influence of PRGF on hBD-3 expression in human primary keratinocytes in vitro. In addition, we investigated the influence of Vivostat PRF on hBD-3 expression in artificially generated human skin wounds in vivo. PRGF treatment of primary keratinocytes induced a significant, concentration- and time-dependent increase in hBD-3 gene expression which was partially mediated by the epidermal growth factor receptor (EGFR). In line with these cell culture data, in vivo experiments revealed an enhanced hBD-3 expression in experimentally produced human wounds after the treatment with Vivostat PRF. Thus, the induction of hBD-3 may contribute to the beneficial effects of thrombocyte concentrate lysates in the treatment of chronic or infected wounds. PMID:28811680

  8. Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience

    Energy Technology Data Exchange (ETDEWEB)

    Barui, Ananya [Centre for Healthcare Science and Technology, BESU, Shibpur, Howrah 711103, West Bengal (India); Mandal, Naresh [Dept. of Electronics and Telecommunication Engg., BESU, Shibpur, Howrah 711103, West Bengal (India); Majumder, Subhadipa [Department of Biochemistry, University of Calcutta Ballygunge, Circular Road, Kolkata 700 019, West Bengal (India); Das, Raunak Kumar [School of Medical Science and Technology, IIT, Kharagpur 721 302, West Bengal (India); Sengupta, Sanghamitra [Department of Biochemistry, University of Calcutta Ballygunge, Circular Road, Kolkata 700 019, West Bengal (India); Banerjee, Provas [School of Medical Science and Technology, IIT, Kharagpur 721 302, West Bengal (India); Ray, Ajoy Kumar; RoyChaudhuri, Chirosree [Dept. of Electronics and Telecommunication Engg., BESU, Shibpur, Howrah 711103, West Bengal (India); Chatterjee, Jyotirmoy, E-mail: jchatterjee@smst.iitkgp.ernet.in [School of Medical Science and Technology, IIT, Kharagpur 721 302, West Bengal (India)

    2013-08-01

    Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. - Highlights: • Role of honey based matrix is evaluated in wound re-epithelialization. • Healing impact of matrix studied in 2D in vitro keratinocyte (HaCaT) wound model. • Faster impedance restoration indicated rapid healing rate of HaCaT under honey. • PCR observations showed faster initiation of cell proliferation under honey. • ICC study indicated better up-regulation of healing markers under honey matrix.

  9. Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience

    International Nuclear Information System (INIS)

    Barui, Ananya; Mandal, Naresh; Majumder, Subhadipa; Das, Raunak Kumar; Sengupta, Sanghamitra; Banerjee, Provas; Ray, Ajoy Kumar; RoyChaudhuri, Chirosree; Chatterjee, Jyotirmoy

    2013-01-01

    Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. - Highlights: • Role of honey based matrix is evaluated in wound re-epithelialization. • Healing impact of matrix studied in 2D in vitro keratinocyte (HaCaT) wound model. • Faster impedance restoration indicated rapid healing rate of HaCaT under honey. • PCR observations showed faster initiation of cell proliferation under honey. • ICC study indicated better up-regulation of healing markers under honey matrix

  10. Vitamin D regulates tyrosine hydroxylase expression: N-cadherin a possible mediator.

    Science.gov (United States)

    Cui, X; Pertile, R; Liu, P; Eyles, D W

    2015-09-24

    Vitamin D is a neuroactive steroid. Its genomic actions are mediated via the active form of vitamin D, 1,25(OH)2D3, binding to the vitamin D receptor (VDR). The VDR emerges in the rat mesencephalon at embryonic day 12, representing the peak period of dopaminergic cell birth. Our prior studies reveal that developmental vitamin D (DVD)-deficiency alters the ontogeny of dopaminergic neurons in the developing mesencephalon. There is also consistent evidence from others that 1,25(OH)2D3 promotes the survival of dopaminergic neurons in models of dopaminergic toxicity. In both developmental and toxicological studies it has been proposed that 1,25(OH)2D3 may modulate the differentiation and maturation of dopaminergic neurons; however, to date there is lack of direct evidence. The aim of the current study is to investigate this both in vitro using a human SH-SY5Y cell line transfected with rodent VDR and in vivo using a DVD-deficient model. Here we show that in VDR-expressing SH-SY5Y cells, 1,25(OH)2D3 significantly increased production of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. This effect was dose- and time-dependent, but was not due to an increase in TH-positive cell number, nor was it due to the production of trophic survival factors for dopamine neurons such as glial-derived neurotrophic factor (GDNF). In accordance with 1,25(OH)2D3's anti-proliferative actions in the brain, 1,25(OH)2D3 reduced the percentage of dividing cells from approximately 15-10%. Given the recently reported role of N-cadherin in the direct differentiation of dopaminergic neurons, we examined here whether it may be elevated by 1,25(OH)2D3. We confirmed this in vitro and more importantly, we showed DVD-deficiency decreases N-cadherin expression in the embryonic mesencephalon. In summary, in our in vitro model we have shown 1,25(OH)2D3 increases TH expression, decreases proliferation and elevates N-cadherin, a potential factor that mediates these processes

  11. Induction of PDGF-B in TCA-treated epidermal keratinocytes.

    Science.gov (United States)

    Yonei, Nozomi; Kanazawa, Nobuo; Ohtani, Toshio; Furukawa, Fukumi; Yamamoto, Yuki

    2007-11-01

    Trichloroacetic acid (TCA) is one of the most widely used peeling agents, and induces full necrosis of the whole epidermis, followed by reconstitution of the epidermis and the matrix of the papillary dermis. The cytotoxic effects of TCA, such as suppressing proliferation of keratinocytes and fibroblasts and protein synthesis by fibroblasts, have already been reported. However, the entire biological mechanism responsible for TCA peeling has yet to be determined. Hypothetical activation effects of TCA treatment on epidermal cells to induce production of growth factors and cytokines are examined, and are compared with its cytotoxic effects in terms of time course and applied TCA concentrations. After various periods of incubation with TCA, viability of Pam212 murine keratinocytes was investigated with MTT assay and dye exclusion assay, and production of growth factors and cytokines with reverse transcription-polymerase chain reaction (RT-PCR). Changes in platelet-derived growth factor (PDGF)-B mRNA expression and protein production in the human skin specimens after TCA application were then examined by RT-PCR and immunohistochemistry, respectively. Incubation with TCA showed cytotoxicity and induced death of Pam212 cells, depending on the incubation period and the TCA concentration. In addition, expressions of PDGF-B, tumor growth factor (TGF)-alpha, TGF- beta1 and vascular endothelial growth factor, which are the growth factors reportedly secreted from keratinocytes during wound healing, were all detected in Pam212 cells after short-term treatment with TCA. Expressions of inflammatory cytokines such as interleukin (IL)-1 and IL-10 were also induced. In TCA-treated NIH-3T3 fibroblasts, in contrast, observed was upregulation of only keratinocyte growth factor, which is reportedly secreted from fibroblasts, as well as the similar cytotoxic effect. In human skin, PDGF-B mRNA expression became significantly upregulated after TCA application, and then immediately

  12. TCDD induces dermal accumulation of keratinocyte-derived matrix metalloproteinase-10 in an organotypic model of human skin

    Energy Technology Data Exchange (ETDEWEB)

    De Abrew, K. Nadira [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Thomas-Virnig, Christina L.; Rasmussen, Cathy A. [Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States); Bolterstein, Elyse A. [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Schlosser, Sandy J. [Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States); Allen-Hoffmann, B. Lynn, E-mail: blallenh@wisc.edu [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States)

    2014-05-01

    The epidermis of skin is the first line of defense against the environment. A three dimensional model of human skin was used to investigate tissue-specific phenotypes induced by the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Continuous treatment of organotypic cultures of human keratinocytes with TCDD resulted in intracellular spaces between keratinocytes of the basal and immediately suprabasal layers as well as thinning of the basement membrane, in addition to the previously reported hyperkeratinization. These tissue remodeling events were preceded temporally by changes in expression of the extracellular matrix degrading enzyme, matrix metalloproteinase-10 (MMP-10). In organotypic cultures MMP-10 mRNA and protein were highly induced following TCDD treatment. Q-PCR and immunoblot results from TCDD-treated monolayer cultures, as well as indirect immunofluorescence and immunoblot analysis of TCDD-treated organotypic cultures, showed that MMP-10 was specifically contributed by the epidermal keratinocytes but not the dermal fibroblasts. Keratinocyte-derived MMP-10 protein accumulated over time in the dermal compartment of organotypic cultures. TCDD-induced epidermal phenotypes in organotypic cultures were attenuated by the keratinocyte-specific expression of tissue inhibitor of metalloproteinase-1, a known inhibitor of MMP-10. These studies suggest that MMP-10 and possibly other MMP-10-activated MMPs are responsible for the phenotypes exhibited in the basement membrane, the basal keratinocyte layer, and the cornified layer of TCDD-treated organotypic cultures. Our studies reveal a novel mechanism by which the epithelial–stromal microenvironment is altered in a tissue-specific manner thereby inducing structural and functional pathology in the interfollicular epidermis of human skin. - Highlights: • TCDD causes hyperkeratosis and basement membrane changes in a model of human skin. • TCDD induces MMP-10 expression in organotypic cultures

  13. Curcuma longa Is Able to Induce Apoptotic Cell Death of Pterygium-Derived Human Keratinocytes.

    Science.gov (United States)

    Sancilio, Silvia; Di Staso, Silvio; Sebastiani, Stefano; Centurione, Lucia; Di Girolamo, Nick; Ciancaglini, Marco; Di Pietro, Roberta

    2017-01-01

    Pterygium is a relatively common eye disease that can display an aggressive clinical behaviour. To evaluate the in vitro effects of Curcuma longa on human pterygium-derived keratinocytes, specimens of pterygium from 20 patients undergoing pterygium surgical excision were collected. Pterygium explants were put into culture and derived keratinocytes were treated with an alcoholic extract of 1.3% Curcuma longa in 0.001% Benzalkonium Chloride for 3, 6, and 24 h. Cultured cells were examined for CAM5.2 (anti-cytokeratin antibody) and CD140 (anti-fibroblast transmembrane glycoprotein antibody) expression between 3th and 16th passage to assess cell homogeneity. TUNEL technique and Annexin-V/PI staining in flow cytometry were used to detect keratinocyte apoptosis. We showed that Curcuma longa exerts a proapoptotic effect on pterygium-derived keratinocytes already after 3 h treatment. Moreover, after 24 h treatment, Curcuma longa induces a significant increase in TUNEL as well as Annexin-V/PI positive cells in comparison to untreated samples. Our study confirms previous observations highlighting the expression, in pterygium keratinocytes, of nuclear VEGF and gives evidence for the first time to the expression of nuclear and cytoplasmic VEGF-R1. All in all, these findings suggest that Curcuma longa could have some therapeutic potential in the treatment and prevention of human pterygium.

  14. Curcuma longa Is Able to Induce Apoptotic Cell Death of Pterygium-Derived Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Silvia Sancilio

    2017-01-01

    Full Text Available Pterygium is a relatively common eye disease that can display an aggressive clinical behaviour. To evaluate the in vitro effects of Curcuma longa on human pterygium-derived keratinocytes, specimens of pterygium from 20 patients undergoing pterygium surgical excision were collected. Pterygium explants were put into culture and derived keratinocytes were treated with an alcoholic extract of 1.3% Curcuma longa in 0.001% Benzalkonium Chloride for 3, 6, and 24 h. Cultured cells were examined for CAM5.2 (anti-cytokeratin antibody and CD140 (anti-fibroblast transmembrane glycoprotein antibody expression between 3th and 16th passage to assess cell homogeneity. TUNEL technique and Annexin-V/PI staining in flow cytometry were used to detect keratinocyte apoptosis. We showed that Curcuma longa exerts a proapoptotic effect on pterygium-derived keratinocytes already after 3 h treatment. Moreover, after 24 h treatment, Curcuma longa induces a significant increase in TUNEL as well as Annexin-V/PI positive cells in comparison to untreated samples. Our study confirms previous observations highlighting the expression, in pterygium keratinocytes, of nuclear VEGF and gives evidence for the first time to the expression of nuclear and cytoplasmic VEGF-R1. All in all, these findings suggest that Curcuma longa could have some therapeutic potential in the treatment and prevention of human pterygium.

  15. Toxicity of silver nanoparticles in monocytes and keratinocytes

    DEFF Research Database (Denmark)

    Orłowski, Piotr; Krzyzowska, Malgorzata; Winnicka, Anna

    2012-01-01

    Silver nanoparticles are of interest to be used as antimicrobial agents in wound dressings and coatings in medical devices, but potential adverse effects have been reported in the literature. The possible local inflammatory response to silver nanoparticles and the role of cell death in determining...... these effects are largely unknown. Effects of the mixture of silver nanoparticles of different sizes were compared in in vitro assays for cytotoxicity, caspase-1 and caspase-9 activity and bax expression. In all tested concentrations, silver nanoparticles were more toxic for RAW 264.7 monocytes than for 291.03C...... keratinocytes and induced significant caspase-1 activity and necrotic cell death. In keratinocytes, more significantly than in macrophages, silver nanoparticles led to increase of caspase-9 activity and apoptosis. These results indicate that effects of silver nanoparticles depend on the type of exposed cells...

  16. The vitamin D receptor is required for activation of cWnt and hedgehog signaling in keratinocytes.

    Science.gov (United States)

    Lisse, Thomas S; Saini, Vaibhav; Zhao, Hengguang; Luderer, Hilary F; Gori, Francesca; Demay, Marie B

    2014-10-01

    Alopecia (hair loss) in vitamin D receptor (VDR)-null mice is due to absence of ligand-independent actions of the VDR that are required for initiation of postmorphogenic hair cycles. Investigations were undertaken to determine whether the VDR is required for the induction of signaling pathways that play an important role in this process. The induction of cWnt and hedgehog target genes that characterizes early anagen was found to be dramatically attenuated in VDR(-/-) mice, relative to wild-type (WT) mice. To determine whether this reflects impaired responsiveness to cWnt ligands, in vitro studies were performed in primary keratinocytes. These studies demonstrated impaired induction of cWnt target genes in response to Wnt3a in VDR(-/-) keratinocytes, relative to wild-type keratinocytes. Chromatin immunoprecipitation analyses revealed that the VDR was recruited to the regulatory regions of cWnt and hedgehog target genes in WT keratinocytes but not in VDR(-/-) or Lef1(-/-) keratinocytes. Lef1 was enriched on these same regulatory regions in WT keratinocytes but not in VDR(-/-) keratinocytes. In vivo studies were performed to determine whether activation of the hedgehog pathway could bypass the defect in cWnt signaling observed in the absence of the unliganded VDR. In WT, but not VDR(-/-), mice, hedgehog agonist treatment resulted in an induction of cWnt and hedgehog target genes and the generation of mature anagen hair follicles. Thus, these studies demonstrate that the unliganded VDR interacts with regulatory regions in the cWnt and hedgehog target genes and is required for the induction of these pathways during the postnatal hair cycle.

  17. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines

    Science.gov (United States)

    Chazeau, Anaël; Garcia, Mikael; Czöndör, Katalin; Perrais, David; Tessier, Béatrice; Giannone, Grégory; Thoumine, Olivier

    2015-01-01

    The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin–coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain. PMID:25568337

  18. Inability of keratinocytes lacking their specific transglutaminase to form cross-linked envelopes: Absence of envelopes as a simple diagnostic test for lamellar ichthyosis

    OpenAIRE

    Jeon, Saewha; Djian, Philippe; Green, Howard

    1998-01-01

    Epidermal keratinocytes, late in their terminal differentiation, form cross-linked envelopes resistant to ionic detergent and reducing agent. Because the cross-linking process is catalyzed by the keratinocyte transglutaminase, the absence of active transglutaminase should result in failure of the keratinocyte to form a cross-linked envelope. Three keratinocyte strains bearing mutations in the keratinocyte transglutaminase were examined: two contained no detectable transglutaminase mRNA and no...

  19. A novel role for integrin-linked kinase in epithelial sheet morphogenesis.

    Science.gov (United States)

    Vespa, Alisa; D'Souza, Sudhir J A; Dagnino, Lina

    2005-09-01

    Integrin-linked kinase (ILK) is a multidomain protein involved in cell motility and cell-extracellular matrix interactions. ILK is found in integrin-containing focal adhesions in undifferentiated primary epidermal keratinocytes. Induction of keratinocyte differentiation by treatment with Ca(2+) triggers formation of cell-cell junctions, loss of focal adhesions, and ILK distribution to cell borders. We now show that Ca(2+) treatment of keratinocytes induces rapid (6 h) localization of tight junction (TJ) proteins. The kinetics of ILK movement toward the cell periphery mimics that of AJ components, suggesting that ILK plays a role in the early formation of cell-cell contacts. Whereas the N terminus in ILK mediates localization to cell borders, expression of an ILK deletion mutant incapable of localizing to the cell membrane (ILK 191-452) interferes with translocation of E-cadherin/beta-catenin to cell borders, precluding Ca(2+)-induced AJ formation. Cells expressing ILK 191-452 also fail to form TJ and sealed cell-cell borders and do not form epithelial sheets. Thus, we have uncovered a novel role for ILK in epithelial cell-cell adhesion, independent of its well-established role in integrin-mediated adhesion and migration.

  20. The over expression of long non-coding RNA ANRIL promotes epithelial-mesenchymal transition by activating the ATM-E2F1 signaling pathway in pancreatic cancer: An in vivo and in vitro study.

    Science.gov (United States)

    Chen, Shi; Zhang, Jia-Qiang; Chen, Jiang-Zhi; Chen, Hui-Xing; Qiu, Fu-Nan; Yan, Mao-Lin; Chen, Yan-Ling; Peng, Cheng-Hong; Tian, Yi-Feng; Wang, Yao-Dong

    2017-09-01

    This study aims to investigate the roles of lncRNA ANRIL in epithelial-mesenchymal transition (EMT) by regulating the ATM-E2F1 signaling pathway in pancreatic cancer (PC). PC rat models were established and ANRIL overexpression and interference plasmids were transfected. The expression of ANRIL, EMT markers (E-cadherin, N-cadherin and Vimentin) and ATM-E2F1 signaling pathway-related proteins (ATM, E2F1, INK4A, INK4B and ARF) were detected. Small molecule drugs were applied to activate and inhibit the ATM-E2F1 signaling pathway. Transwell assay and the scratch test were adopted to detect cell invasion and migration abilities. ANRIL expression in the PC cells was higher than in normal pancreatic duct epithelial cells. In the PC rat models and PC cells, ANRIL interference promoted the expressions of INK4B, INK4A, ARF and E-cadherin, while reduced N-cadherin and Vimentin expression. Over-expressed ANRIL decreased the expression of INK4B, INK4A, ARF and E-cadherin, but raised N-cadherin and Vimentin expressions. By inhibiting the ATM-E2F1 signaling pathway in PC cells, E-cadherin expression increased but N-cadherin and Vimentin expressions decreased. After ANRIL was silenced or the ATM-E2F1 signaling pathway inhibited, PC cell migration and invasion abilities were decreased. In conclusion, over-expression of lncRNA ANRIL can promote EMT of PC cells by activating the ATM-E2F1 signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.