WorldWideScience

Sample records for oral insulin delivery

  1. Intestinal micropatches for oral insulin delivery.

    Science.gov (United States)

    Banerjee, Amrita; Wong, Jessica; Gogoi, Rohan; Brown, Tyler; Mitragotri, Samir

    2017-03-19

    Diabetes mellitus has become a major public health issue that has almost reached epidemic proportions worldwide. Injectable insulin has been typically utilized for the management of this chronic disease. However, lack of patient compliance with injectable formulations has spurred the development of oral insulin formulations, which although appealing, face several delivery challenges. We have developed novel mucoadhesive intestinal patches, several hundred micrometers in dimension (micropatches) that address the challenges of oral insulin delivery. The micropatches adhere to the intestinal mucosa, release their drug load rapidly within 30 min and are effective in lowering blood glucose levels in vivo. When insulin-loaded micropatches were administered with a permeation enhancer and protease inhibitor, a peak efficacy of 34% drop in blood glucose levels was observed within 3 h. Efficacy further improved to 41% when micropatches were administered in multiple doses. Here, we describe the design of micropatches as an oral insulin formulation and report their in vivo efficacy.

  2. Self-nanoemulsifying drug delivery systems for oral insulin delivery

    DEFF Research Database (Denmark)

    Li, Ping; Tan, Angel; Prestidge, Clive A

    2014-01-01

    This study aims at evaluating the combination of self-nanoemulsifying drug delivery systems (SNEDDS) and enteric-coated capsules as a potential delivery strategy for oral delivery of insulin. The SNEDDS preconcentrates, loaded with insulin-phospholipid complex at different levels (0, 2.5 and 10% w...

  3. A review of biodegradable polymeric systems for oral insulin delivery.

    Science.gov (United States)

    Luo, Yue Yuan; Xiong, Xiang Yuan; Tian, Yuan; Li, Zi Ling; Gong, Yan Chun; Li, Yu Ping

    2016-07-01

    Currently, repeated routine subcutaneous injections of insulin are the standard treatment for insulin-dependent diabetic patients. However, patients' poor compliance for injections often fails to achieve the stable concentration of blood glucose. As a protein drug, the oral bioavailability of insulin is low due to many physiological reasons. Several carriers, such as macromolecules and liposomes have been used to deliver drugs in vivo. In this review article, the gastrointestinal barriers of oral insulin administration are described. Strategies for increasing the bioavailability of oral insulin, such absorption enhancers, enzyme inhibitors, enteric coatings are also introduced. The potential absorption mechanisms of insulin-loaded nanoparticles across the intestinal epithelium, including intestinal lymphatic route, transcellular route and paracellular route are discussed in this review. Natural polymers, such as chitosan and its derivates, alginate derivatives, γ-PGA-based materials and starch-based nanoparticles have been exploited for oral insulin delivery; synthetic polymers, such as PLGA, PLA, PCL and PEA have also been developed for oral administration of insulin. This review focuses on recent advances in using biodegradable natural and synthetic polymers for oral insulin delivery along with their future prospects.

  4. Concanavalin A conjugated biodegradable nanoparticles for oral insulin delivery

    Energy Technology Data Exchange (ETDEWEB)

    Hurkat, Pooja; Jain, Aviral; Jain, Ashish; Shilpi, Satish; Gulbake, Arvind; Jain, Sanjay K., E-mail: drskjainin@yahoo.com [Dr. Hari Singh Gour Vishwavidyalaya, Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences (India)

    2012-11-15

    Major research issues in oral protein delivery include the stabilization of protein in delivery devices which could increase its oral bioavailability. The study deals with development of oral insulin delivery system utilizing biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and modifying its surface with Concanavalin A to increase lymphatic uptake. Surface-modified PLGA nanoparticles were characterized for conjugation efficiency of ligand, shape and surface morphology, particle size, zeta potential, polydispersity index, entrapment efficiency, and in vitro drug release. Stability of insulin in the developed formulation was confirmed by SDS-PAGE, and integrity of entrapped insulin was assessed using circular dichroism spectrum. Ex vivo study was performed on Wistar rats, which exhibited the higher intestinal uptake of Con A conjugated nanoparticles. In vivo study performed on streptozotocin-induced diabetic rats which indicate that a surface-modified nanoparticle reduces blood glucose level effectively within 4 h of its oral administration. In conclusion, the present work resulted in successful production of Con A NPs bearing insulin with sustained release profile, and better absorption and stability. The Con A NPs showed high insulin uptake, due to its relative high affinity for non-reducing carbohydrate residues i.e., fucose present on M cells and have the potential for oral insulin delivery in effective management of Type 1 diabetes condition.

  5. Concanavalin A conjugated biodegradable nanoparticles for oral insulin delivery

    Science.gov (United States)

    Hurkat, Pooja; Jain, Aviral; Jain, Ashish; Shilpi, Satish; Gulbake, Arvind; Jain, Sanjay K.

    2012-11-01

    Major research issues in oral protein delivery include the stabilization of protein in delivery devices which could increase its oral bioavailability. The study deals with development of oral insulin delivery system utilizing biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and modifying its surface with Concanavalin A to increase lymphatic uptake. Surface-modified PLGA nanoparticles were characterized for conjugation efficiency of ligand, shape and surface morphology, particle size, zeta potential, polydispersity index, entrapment efficiency, and in vitro drug release. Stability of insulin in the developed formulation was confirmed by SDS-PAGE, and integrity of entrapped insulin was assessed using circular dichroism spectrum. Ex vivo study was performed on Wistar rats, which exhibited the higher intestinal uptake of Con A conjugated nanoparticles. In vivo study performed on streptozotocin-induced diabetic rats which indicate that a surface-modified nanoparticle reduces blood glucose level effectively within 4 h of its oral administration. In conclusion, the present work resulted in successful production of Con A NPs bearing insulin with sustained release profile, and better absorption and stability. The Con A NPs showed high insulin uptake, due to its relative high affinity for non-reducing carbohydrate residues i.e., fucose present on M cells and have the potential for oral insulin delivery in effective management of Type 1 diabetes condition.

  6. Multifunctional Composite Microcapsules for Oral Delivery of Insulin

    Directory of Open Access Journals (Sweden)

    Shaoping Sun

    2016-12-01

    Full Text Available In this study, we designed and developed a new drug delivery system of multifunctional composite microcapsules for oral administration of insulin. Firstly, in order to enhance the encapsulation efficiency, insulin was complexed with functional sodium deoxycholate to form insulin-sodium deoxycholate complex using hydrophobic ion pairing method. Then the complex was encapsulated into poly(lactide-co-glycolide (PLGA nanoparticles by emulsion solvent diffusion method. The PLGA nanoparticles have a mean size of 168 nm and a zeta potential of −29.2 mV. The encapsulation efficiency was increased to 94.2% for the complex. In order to deliver insulin to specific gastrointestinal regions and reduce the burst release of insulin from PLGA nanoparticles, hence enhancing the bioavailability of insulin, enteric targeting multifunctional composite microcapsules were further prepared by encapsulating PLGA nanoparticles into pH-sensitive hydroxypropyl methyl cellulose phthalate (HP55 using organic spray-drying method. A pH-dependent insulin release profile was observed for this drug delivery system in vitro. All these strategies help to enhance the encapsulation efficiency, control the drug release, and protect insulin from degradation. In diabetic fasted rats, administration of the composite microcapsules produced a great enhancement in the relative bioavailability, which illustrated that this formulation was an effective candidate for oral insulin delivery.

  7. Polyelectrolyte Biomaterial Interactions Provide Nanoparticulate Carrier for Oral Insulin Delivery

    OpenAIRE

    Reis, Catarina Pinto; Ribeiro, António J; Veiga, Francisco; Neufeld, Ronald J; Damgé, Christiane

    2008-01-01

    Nanospheres are being developed for the oral delivery of peptide-based drugs such as insulin. Mucoadhesive, biodegradable, biocompatible, and acid-protective biomaterials are described using a combination of natural polyelectrolytes, with particles formulated through nanoemulsion dispersion followed by triggered in situgel complexation. Biomaterials meeting these criteria include alginate, dextran, chitosan, and albumin in which alginate/dextran forms the core matrix complexed with chitosan a...

  8. A Novel Approach for Oral Delivery of Insulin via Desmodium gangeticum Aqueous Root Extract.

    Science.gov (United States)

    Kurian, Ga; Seetharaman, Av; Subramanian, Nr; Paddikkala, J

    2010-04-01

    Many challenges are associated with the oral delivery of insulin, relating to the physical and chemical stability of the hormone, and its absorption and metabolism in the human body. The present study aims to demonstrate the oral delivery of insulin in both normal and steptozotocin (STZ)-induced diabetic rats with the help of the aqueous extract of Desmodium gangeticum (DG) root. Human insulin was mixed with the aqueous extract of DG root (0.1 mg/ml) with human insulin (40 IU/ml) in ratio 1:1(v/v), to prepare oral insulin drug. Decreased plasma glucose level and increased plasma insulin in normal and STZ-induced diabetic rat suggested the probable absorption of insulin through GI tract when insulin was administered by mixing with DG extract. Indeed, insulin mixed DG potentially stimulates the release of insulin in STZ-induced diabetic rat rather than in normal animal. In vivo insulin secretaguage action of oral insulin drug was determined by isolated rat heart model and the results showed a significant cardio protection in STZ rat. The finding of this study suggests that insulin mixed with DG extract can be a promising vehicle for oral delivery of insulin. However, further studies are required to explore the exact compound(s) responsible for the protective delivery of insulin orally. Increased plasma insulin level by insulin mixed DG extract administration in STZ-treated diabetic rat indicates not only insulin secretaguage action of the mixture but also a probable altered insulin release mechanism in diabetic condition.

  9. Oral insulin delivery by means of solid lipid nanoparticles

    OpenAIRE

    Sarmento, Bruno; Martins, Susana; Ferreira, Domingos; Eliana B. Souto

    2007-01-01

    The aim of this work was to produce and characterize cetyl palmitate-based solid lipid nanoparticles (SLN) containing insulin, and to evaluate the potential of these colloidal carriers for oral administration. SLN were prepared by a modified solvent emulsification-evaporation method based on a w/o/w double emulsion. The particle size, zeta potential and association efficiency of unloaded and insulin-loaded SLN were determined and were found to be around 350 nm, negatively charged and the insu...

  10. Novel nanoparticles for oral insulin delivery via the paracellular pathway

    Science.gov (United States)

    Lin, Yu-Hsin; Chen, Chiung-Tong; Liang, Hsiang-Fa; Kulkarni, Anandrao R.; Lee, Po-Wei; Chen, Chun-Hung; Sung, Hsing-Wen

    2007-03-01

    Novel nanoparticles (NPs) coated with chitosan which allow insulin to be administered orally were developed. The NPs could transiently and reversibly open the tight junctions in Caco-2 cell monolayers, thus increasing their paracellular permeability. After oral administration of the FITC-labelled NPs, fluorescence signals, co-localized with ZO-1 proteins, were observed at cell-cell contact sites in the small intestine of rats. The intensity of fluorescence signals observed at the duodenum was stronger and appeared at a deeper level than at the jejunum and the ileum. The insulin-loaded NPs suspended in water were stable in typical storage conditions. Release of the loaded insulin depended greatly on the stability of the NPs at distinct pH environments. Oral administration of insulin in the form of NPs in diabetic rats demonstrated a sustained effect of decreasing the blood glucose level over at least 10 h, indicating the effect of the prepared NPs in enhancing the absorption of fully functional insulin.

  11. Microencapsulation techniques to develop formulations of insulin for oral delivery: a review.

    Science.gov (United States)

    Cárdenas-Bailón, Fernando; Osorio-Revilla, Guillermo; Gallardo-Velázquez, Tzayhrí

    2013-01-01

    Oral insulin delivery represents one of the most challenging goals for pharmaceutical industry. In general, it is accepted that oral administration of insulin would be more accepted by patients and insulin would be delivered in a more physiological way than the parenteral route. From all strategies to deliverer insulin orally, microencapsulation or nanoencapsulation of insulin are the most promising approaches because these techniques protect insulin from enzymatic degradation in stomach, show a good release profile at intestine pH values, maintain biological activity during formulation and enhance intestinal permeation at certain extent. From different microencapsulation techniques, it seems that complex coacervation, multiple emulsion and internal gelation are the most appropriate techniques to encapsulate insulin due to their relative ease of preparation. Besides that, the use of organic solvents is not required and can be scaled up at low cost; however, relative oral bioavailability still needs to be improved.

  12. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation.

    Science.gov (United States)

    Liu, Liyao; Zhou, Cuiping; Xia, Xuejun; Liu, Yuling

    2016-01-01

    Here, we investigated the formation and functional properties of self-assembled lecithin/chitosan nanoparticles (L/C NPs) loaded with insulin following insulin-phospholipid complex preparation, with the aim of developing a method for oral insulin delivery. Using a modified solvent-injection method, insulin-loaded L/C NPs were obtained by combining insulin-phospholipid complexes with L/C NPs. The nanoparticle size distribution was determined by dynamic light scattering, and morphologies were analyzed by cryogenic transmission electron microscopy. Fourier transform infrared spectroscopy analysis was used to disclose the molecular mechanism of prepared insulin-loaded L/C NPs. Fast ultrafiltration and a reversed-phase high-performance liquid chromatography assay were used to separate free insulin from insulin entrapped in the L/C NPs, as well as to measure the insulin-entrapment and drug-loading efficiencies. The in vitro release profile was obtained, and in vivo hypoglycemic effects were evaluated in streptozotocin-induced diabetic rats. Our results indicated that insulin-containing L/C NPs had a mean size of 180 nm, an insulin-entrapment efficiency of 94%, and an insulin-loading efficiency of 4.5%. Cryogenic transmission electron microscopy observations of insulin-loaded L/C NPs revealed multilamellar structures with a hollow core, encircled by several bilayers. In vitro analysis revealed that insulin release from L/C NPs depended on the L/C ratio. Insulin-loaded L/C NPs orally administered to streptozotocin-induced diabetic rats exerted a significant hypoglycemic effect. The relative pharmacological bioavailability following oral administration of L/C NPs was 6.01%. With the aid of phospholipid-complexation techniques, some hydrophilic peptides, such as insulin, can be successfully entrapped into L/C NPs, which could improve oral bioavailability, time-dependent release, and therapeutic activity.

  13. Poly(N-vinylcaprolactam-co-methacrylic acid) hydrogel microparticles for oral insulin delivery.

    Science.gov (United States)

    Mundargi, Raghavendra C; Rangaswamy, Vidhya; Aminabhavi, Tejraj M

    2011-01-01

    pH-sensitive copolymeric hydrogels prepared from N-vinylcaprolactam and methacrylic acid monomers by free radical polymerization offered 52% encapsulation efficiency and evaluated for oral delivery of human insulin. The in vitro experiments performed on insulin-loaded microparticles in pH 1.2 media (stomach condition) demonstrated no release of insulin in the first 2 h, but almost 100% insulin was released in pH 7.4 media (intestinal condition) in 6 h. The carrier was characterized by Fourier transform infrared, differential scanning calorimeter, thermogravimetry and nuclear magnetic resonance techniques to confirm the formation of copolymer, while scanning electron microscopy was used to assess the morphology of hydrogel microparticles. The in vivo experiments on alloxan-induced diabetic rats showed the biological inhibition up to 50% and glucose tolerance tests exhibited 44% inhibition. The formulations of this study are the promising carriers for oral delivery of insulin.

  14. Chitosan/lecithin liposomal nanovesicles as an oral insulin delivery system.

    Science.gov (United States)

    Al-Remawi, Mayyas; Elsayed, Amani; Maghrabi, Ibrahim; Hamaidi, Mohammad; Jaber, Nisrein

    2017-05-01

    In the present work, insulin-chitosan polyelectrolyte complexes associated to lecithin liposomes were investigated as a new carrier for oral delivery of insulin. The preparation was characterized in terms of particle size, zeta potential and encapsulation efficiency. Surface tension measurements revealed that insulin-chitosan polyelectrolyte complexes have some degree of hydrophobicity and should be added to lecithin liposomal dispersion and not the vice versa to prevent their adsorption on the surface. Stability of insulin was enhanced when it was associated to liposomes. Significant reduction of blood glucose levels was noticed after oral administration of liposomal preparation to streptozotocin diabetic rats compared to control. The hypoglycemic activity was more prolonged compared to subcutaneously administered insulin.

  15. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation

    Directory of Open Access Journals (Sweden)

    Liu LY

    2016-02-01

    Full Text Available Liyao Liu, Cuiping Zhou, Xuejun Xia, Yuling Liu State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China Purpose: Here, we investigated the formation and functional properties of self-assembled lecithin/chitosan nanoparticles (L/C NPs loaded with insulin following insulin–phospholipid complex preparation, with the aim of developing a method for oral insulin delivery.Methods: Using a modified solvent-injection method, insulin-loaded L/C NPs were obtained by combining insulin–phospholipid complexes with L/C NPs. The nanoparticle size distribution was determined by dynamic light scattering, and morphologies were analyzed by cryogenic transmission electron microscopy. Fourier transform infrared spectroscopy analysis was used to disclose the molecular mechanism of prepared insulin-loaded L/C NPs. Fast ultrafiltration and a reversed-phase high-performance liquid chromatography assay were used to separate free insulin from insulin entrapped in the L/C NPs, as well as to measure the insulin-entrapment and drug-loading efficiencies. The in vitro release profile was obtained, and in vivo hypoglycemic effects were evaluated in streptozotocin-induced diabetic rats.Results: Our results indicated that insulin-containing L/C NPs had a mean size of 180 nm, an insulin-entrapment efficiency of 94%, and an insulin-loading efficiency of 4.5%. Cryogenic transmission electron microscopy observations of insulin-loaded L/C NPs revealed multilamellar structures with a hollow core, encircled by several bilayers. In vitro analysis revealed that insulin release from L/C NPs depended on the L/C ratio. Insulin-loaded L/C NPs orally administered to streptozotocin-induced diabetic rats exerted a significant

  16. Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles.

    Science.gov (United States)

    Li, Xiuying; Guo, Shiyan; Zhu, Chunliu; Zhu, Quanlei; Gan, Yong; Rantanen, Jukka; Rahbek, Ulrik Lytt; Hovgaard, Lars; Yang, Mingshi

    2013-12-01

    Chitosan nanoparticles (NC) have excellent capacity for protein entrapment, favorable epithelial permeability, and are regarded as promising nanocarriers for oral protein delivery. Herein, we designed and evaluated a class of core shell corona nanolipoparticles (CSC) to further improve the absorption through enhanced intestinal mucus penetration. CSC contains chitosan nanoparticles as a core component and pluronic F127-lipid vesicles as a shell with hydrophilic chain and polyethylene oxide PEO as a corona. These particles were developed by hydration of a dry pluronic F127-lipid film with NC suspensions followed by extrusion. Insulin nested inside CSC was well protected from enzymatic degradation. Compared with NC, CSC exhibited significantly higher efficiency of mucosal penetration and, consequently, higher cellular internalization of insulin in mucus secreting E12 cells. The cellular level of insulin after CSC treatment was 36-fold higher compared to treatment with free insulin, and 10-fold higher compared to NC. CSC significantly facilitated the permeation of insulin across the ileum epithelia, as demonstrated in an ex vivo study and an in vivo absorption study. CSC pharmacological studies in diabetic rats showed that the hypoglycemic effects of orally administrated CSC were 2.5-fold higher compared to NC. In conclusion, CSC is a promising oral protein delivery system to enhance the stability, intestinal mucosal permeability, and oral absorption of insulin.

  17. Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system

    Directory of Open Access Journals (Sweden)

    Paul Pijush Kumar

    2017-06-01

    Full Text Available In this study, we investigate molecularly imprinted polymers (MIPs, which form a three-dimensional image of the region at and around the active binding sites of pharmaceutically active insulin or are analogous to b cells bound to insulin. This approach was employed to create a welldefined structure within the nanospace cavities that make up functional monomers by cross-linking. The obtained MIPs exhibited a high adsorption capacity for the target insulin, which showed a significantly higher release of insulin in solution at pH 7.4 than at pH 1.2. In vivo studies on diabetic Wistar rats showed that the fast onset within 2 h is similar to subcutaneous injection with a maximum at 4 h, giving an engaged function responsible for the duration of glucose reduction for up to 24 h. These MIPs, prepared as nanosized material, may open a new horizon for oral insulin delivery.

  18. Hydrophobic ion pairing of an insulin-sodium deoxycholate complex for oral delivery of insulin

    Directory of Open Access Journals (Sweden)

    Sun S

    2011-11-01

    Full Text Available Shaoping Sun1–3, Na Liang2, Yoshiaki Kawashima3, Dengning Xia2, Fude Cui21School of Chemistry and Material Science, Heilongjiang University, Harbin, 2School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China; 3School of Pharmaceutical Science, Aichi Gakuin University, Nissin, JapanAbstract: Insulin was complexed with sodium deoxycholate to form an insulin-sodium deoxycholate complex (Ins-SD-Comp using an hydrophobic ion pairing method in aqueous phase to enhance the liposolubility of insulin. In order to obtain the maximal complexation efficiency, the molar ratio of sodium deoxycholate to insulin was found. The zeta potential method was used to confirm the optimal ratio for formation of Ins-SD-Comp. The structural characteristics of Ins-SD-Comp were assessed using the Fourier transform infrared method. The apparent partition coefficient of insulin increased upon the formation of Ins-SD-Comp. Based on the preliminary study, Ins-SD-Comp was encapsulated into poly(lactide-co-glycolide (PLGA nanoparticles using an emulsion solvent diffusion method. The maximal encapsulation efficiency of Ins-SD-Comp into PLGA nanoparticles was 93.6% ± 2.81%, drug loading was about 4.8% ± 0.32%, and the mean diameter of the nanoparticles was 278 ± 13 nm. Biological activity and in vivo results revealed that the bioactivity of insulin was not destroyed during the preparation process. Ins-SD-Comp-loaded PLGA nanoparticles have the potential to reduce serum glucose levels and increase the oral bioavailability of insulin.Keywords: insulin complex, sodium deoxycholate, nanoparticles, zeta potential, oral bioavailability

  19. Oral colon delivery of insulin with the aid of functional adjuvants.

    Science.gov (United States)

    Maroni, Alessandra; Zema, Lucia; Del Curto, Maria Dorly; Foppoli, Anastasia; Gazzaniga, Andrea

    2012-05-01

    Oral colon delivery is currently considered of importance not only for the treatment of local pathologies, such as primarily inflammatory bowel disease (IBD), but also as a means of accomplishing systemic therapeutic goals. Although the large bowel fails to be ideally suited for absorption processes, it may indeed offer a number of advantages over the small intestine, including a long transit time, lower levels of peptidases and higher responsiveness to permeation enhancers. Accordingly, it has been under extensive investigation as a possible strategy to improve the oral bioavailability of peptide and protein drugs. Because of a strong underlying rationale, most of these studies have focused on insulin. In the present review, the impact of key anatomical and physiological characteristics of the colon on its viability as a protein release site is discussed. Moreover, the main formulation approaches to oral colon targeting are outlined along with the design features and performance of insulin-based devices.

  20. pH-Sensitive oral insulin delivery systems using Eudragit microspheres.

    Science.gov (United States)

    Mundargi, Raghavendra C; Rangaswamy, Vidhya; Aminabhavi, Tejraj M

    2011-08-01

    In this paper, we present in vitro and in vivo release data on pH-sensitive microspheres of Eudragit L100, Eudragit RS100 and their blend systems prepared by double emulsion-solvent evaporation technique for oral delivery of insulin. Of the three systems developed, Eudragit L100 was chosen for preclinical studies. Insulin was encapsulated and in vitro experiments performed on insulin-loaded microspheres in pH 1.2 media did not release insulin during the first 2 h, but maximum insulin was released in pH 7.4 buffer media from 4 to 6 h. The microspheres were characterized by scanning electron microscopy to understand particle size, shape and surface morphology. The size of microspheres ranged between 1 and 40 μm. Circular dichroism spectra indicated the structural integrity of insulin during encapsulation as well as after its release in pH 7.4 buffer media. The in vivo release studies on diabetic-induced rat models exhibited maximum inhibition of up to 86%, suggesting absorption of insulin in the intestine.

  1. Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin.

    Science.gov (United States)

    He, Zhiyu; Santos, Jose Luis; Tian, Houkuan; Huang, Huahua; Hu, Yizong; Liu, Lixin; Leong, Kam W; Chen, Yongming; Mao, Hai-Quan

    2017-06-01

    Controlled delivery of protein would find diverse therapeutic applications. Formulation of protein nanoparticles by polyelectrolyte complexation between the protein and a natural polymer such as chitosan (CS) is a popular approach. However, the current method of batch-mode mixing faces significant challenges in scaling up while maintaining size control, high uniformity, and high encapsulation efficiency. Here we report a new method, termed flash nanocomplexation (FNC), to fabricate insulin nanoparticles by infusing aqueous solutions of CS, tripolyphosphate (TPP), and insulin under rapid mixing condition (Re > 1600) in a multi-inlet vortex mixer. In comparison with the bulk-mixing method, the optimized FNC process produces CS/TPP/insulin nanoparticles with a smaller size (down to 45 nm) and narrower size distribution, higher encapsulation efficiency (up to 90%), and pH-dependent nanoparticle dissolution and insulin release. The CS/TPP/insulin nanoparticles can be lyophilized and reconstituted without loss of activity, and produced at a throughput of 5.1 g h(-1) when a flow rate of 50 mL min(-1) is used. Evaluated in a Type I diabetes rat model, the smaller nanoparticles (45 nm and 115 nm) control the blood glucose level through oral administration more effectively than the larger particles (240 nm). This efficient, reproducible and continuous FNC technique is amenable to scale-up in order to address the critical barrier of manufacturing for the translation of protein nanoparticles.

  2. Liposomes containing glycocholate as potential oral insulin delivery systems: preparation, in vitro characterization, and improved protection against enzymatic degradation

    Science.gov (United States)

    Niu, Mengmeng; Lu, Yi; Hovgaard, Lars; Wu, Wei

    2011-01-01

    Background: Oral delivery of insulin is challenging and must overcome the barriers of gastric and enzymatic degradation as well as low permeation across the intestinal epithelium. The present study aimed to develop a liposomal delivery system containing glycocholate as an enzyme inhibitor and permeation enhancer for oral insulin delivery. Methods: Liposomes containing sodium glycocholate were prepared by a reversed-phase evaporation method followed by homogenization. The particle size and entrapment efficiency of recombinant human insulin (rhINS)-loaded sodium glycocholate liposomes can be easily adjusted by tuning the homogenization parameters, phospholipid:sodium glycocholate ratio, insulin:phospholipid ratio, water:ether volume ratio, interior water phase pH, and the hydration buffer pH. Results: The optimal formulation showed an insulin entrapment efficiency of 30% ± 2% and a particle size of 154 ± 18 nm. A conformational study by circular dichroism spectroscopy and a bioactivity study confirmed the preserved integrity of rhINS against preparative stress. Transmission electron micrographs revealed a nearly spherical and deformed structure with discernable lamella for sodium glycocholate liposomes. Sodium glycocholate liposomes showed better protection of insulin against enzymatic degradation by pepsin, trypsin, and α-chymotrypsin than liposomes containing the bile salt counterparts of sodium taurocholate and sodium deoxycholate. Conclusion: Sodium glycocholate liposomes showed promising in vitro characteristics and have the potential to be able to deliver insulin orally. PMID:21822379

  3. Oral insulin delivery by self-assembled chitosan nanoparticles: In vitro and in vivo studies in diabetic animal model

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Piyasi; Sarkar, Kishor [Department of Polymer Science and Technology, 92, A.P.C. Road, Kolkata-700009, University of Calcutta (India); Chakraborty, Mousumi; Bhattacharya, Sourav; Mishra, Roshnara [Department of Physiology, 92, A.P.C. Road, Kolkata-700009, University of Calcutta (India); Kundu, P.P., E-mail: ppk923@yahoo.com [Department of Polymer Science and Technology, 92, A.P.C. Road, Kolkata-700009, University of Calcutta (India)

    2013-01-01

    We have developed self-assembled chitosan/insulin nanoparticles for successful oral insulin delivery. The main purpose of our study is to prepare chitosan/insulin nanoparticles by self-assembly method, to characterize them and to evaluate their efficiency in vivo diabetic model. The size and morphology of the nanoparticles were analyzed by dynamic light scattering (DLS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The average particle size ranged from 200 to 550 nm, with almost spherical or sub spherical shape. An average insulin encapsulation within the nanoparticles was {approx} 85%. In vitro release study showed that the nanoparticles were also efficient in retaining good amount of insulin in simulated gastric condition, while significant amount of insulin release was noticed in simulated intestinal condition. The oral administrations of chitosan/insulin nanoparticles were effective in lowering the blood glucose level of alloxan-induced diabetic mice. Thus, self-assembled chitosan/insulin nanoparticles show promising effects as potential insulin carrier system in animal models. Highlights: Black-Right-Pointing-Pointer Self-assembled chitosan/insulin nanoparticle preparation. Black-Right-Pointing-Pointer Almost spherical or sub-spherical nanoparticles observed under microscope. Black-Right-Pointing-Pointer Good insulin encapsulation of the nanoparticles. Black-Right-Pointing-Pointer Nanoparticles reduced blood glucose level significantly in diabetic mice.

  4. Liposomes containing glycocholate as potential oral insulin delivery systems: preparation, in vitro characterization, and improved protection against enzymatic degradation

    Directory of Open Access Journals (Sweden)

    Niu M

    2011-06-01

    Full Text Available Mengmeng Niu1, Yi Lu1, Lars Hovgaard2, Wei Wu11School of Pharmacy, Fudan University, Shanghai, People's Republic of China; 2Oral Formulation Development, Novo Nordisk A/S, Maalov, DenmarkBackground: Oral delivery of insulin is challenging and must overcome the barriers of gastric and enzymatic degradation as well as low permeation across the intestinal epithelium. The present study aimed to develop a liposomal delivery system containing glycocholate as an enzyme inhibitor and permeation enhancer for oral insulin delivery.Methods: Liposomes containing sodium glycocholate were prepared by a reversed-phase evaporation method followed by homogenization. The particle size and entrapment efficiency of recombinant human insulin (rhINS-loaded sodium glycocholate liposomes can be easily adjusted by tuning the homogenization parameters, phospholipid:sodium glycocholate ratio, insulin:phospholipid ratio, water:ether volume ratio, interior water phase pH, and the hydration buffer pH.Results: The optimal formulation showed an insulin entrapment efficiency of 30% ± 2% and a particle size of 154 ± 18 nm. A conformational study by circular dichroism spectroscopy and a bioactivity study confirmed the preserved integrity of rhINS against preparative stress. Transmission electron micrographs revealed a nearly spherical and deformed structure with discernable lamella for sodium glycocholate liposomes. Sodium glycocholate liposomes showed better protection of insulin against enzymatic degradation by pepsin, trypsin, and a-chymotrypsin than liposomes containing the bile salt counterparts of sodium taurocholate and sodium deoxycholate.Conclusion: Sodium glycocholate liposomes showed promising in vitro characteristics and have the potential to be able to deliver insulin orally.Keywords: liposomes, glycocholate, insulin, enzymatic degradation, oral

  5. Synthesis and characterization of insulin/zirconium phosphate@TiO2 hybrid composites for enhanced oral insulin delivery applications.

    Science.gov (United States)

    Safari, Mostafa; Kamari, Younes; Ghiaci, Mehran; Sadeghi-Aliabadi, Hojjat; Mirian, Mina

    2017-05-01

    In this work, a series of composites of insulin (Ins)/zirconium phosphate (ZrP) were synthesized by intercalation method, then, these composites were coated with TiO2 by sol-gel method to prepare Ins/ZrP@TiO2 hybrid composites and the drug release of the composites was investigated by using UV-Vis spectroscopy. Ins/ZrP (10, 30, 60 wt%) composites were prepared by intercalation of insulin into the ZrP layers in water. Then Ins/ZrP composites were coated with different amounts of TiO2 (30, 50, 100 wt %) by using titanium tetra n-butoxide, as precursor. Formation of intercalated Ins/ZrP and Ins/ZrP@TiO2 hybrid composites was characterized by FT-IR, FE-SEM, BET and XRD analysis. Zeta potential of the optimized Ins/ZrP@TiO2 hybrid composite was determined -27.2 mV. Cytotoxic effects of the optimized Ins/ZrP@TiO2 hybrid composite against HeLa and Hek293T cell lines were evaluated using MTT assay and the results showed that designed drug delivery system was not toxic in biological environment. Compared to the Ins/ZrP composites, incorporation of TiO2 coating enhanced the drug entrapment considerably, and reduced the drug release. The Ins/ZrP composites without TiO2 coating released the whole drug after 30 min in pH 7.4 (phosphate buffer solution) while the TiO2-coated composites released the entrapped drug after 20 h. In addition to increasing the shelf life of hormone, this nanoencapsulation and nanocoating method can convert the insulin utilization from injection to oral and present a painless and more comfortable treatment for diabetics.

  6. pH-sensitive thiolated nanoparticles facilitate the oral delivery of insulin in vitro and in vivo

    Science.gov (United States)

    Zhang, Yan; Lin, Xia; Du, Xuli; Geng, Sicong; Li, Hongren; Sun, Hong; Tang, Xing; Xiao, Wei

    2015-02-01

    In this work, we designed and developed a delivery system composed of enteric Eudragit L100-cysteine/reduced glutathione nanoparticles (Eul-cys/GSH NPs) for oral delivery of insulin. First, interactions between Eul-cys and mucin glycoproteins, which are believed to be the result of disulfide bonds, were confirmed using rheology experiments. Subsequently, the insulin-loaded Eul-cys/GSH NPs were prepared by the diffusion method using the rich gel network multipore structure at the surface of the Eul-cys when the pH was higher than the p Ka of Eul-cys polymer. The Eul-cys/GSH NPs obtained were characterized by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. The results obtained showed that the average particle size ranged from 240 to 280 nm, and the particles were almost spherical in shape. The in vitro drug release results showed that the Eul-cys/GSH NPs retained a large amount of insulin in simulated gastric fluid, while a significant insulin release was found in simulated intestinal fluid. The in situ release study suggested that NPs released a greater amount of FITC-insulin (49.2 %) into the intestinal mucus layer compared with that of FITC-insulin solution (16.4 %), which facilitating insulin delivery through the intestinal mucosa. Eul-cys/GSH NPs exhibited promising mucoadhesive properties demonstrated using an in vitro cell model. Consequently, NPs were introduced into the ileum loop of healthy rats, thus enhancing the intestinal absorption of insulin and providing a prolonged reduction in blood glucose levels. These results suggest that Eul-cys/GSH NPs may be a promising delivery system for the treatment of diabetes.

  7. pH-sensitive thiolated nanoparticles facilitate the oral delivery of insulin in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan [Shenyang University, Normal College (China); Lin, Xia; Du, Xuli; Geng, Sicong [Shenyang Pharmaceutical University, Department of Pharmaceutics (China); Li, Hongren; Sun, Hong [Shenyang University, Normal College (China); Tang, Xing, E-mail: tanglab@126.com [Shenyang Pharmaceutical University, Department of Pharmaceutics (China); Xiao, Wei, E-mail: wzhzh-nj@tom.com [Jiangsu Kanion Pharmaceutical Co., Ltd (China)

    2015-02-15

    In this work, we designed and developed a delivery system composed of enteric Eudragit L100-cysteine/reduced glutathione nanoparticles (Eul-cys/GSH NPs) for oral delivery of insulin. First, interactions between Eul-cys and mucin glycoproteins, which are believed to be the result of disulfide bonds, were confirmed using rheology experiments. Subsequently, the insulin-loaded Eul-cys/GSH NPs were prepared by the diffusion method using the rich gel network multipore structure at the surface of the Eul-cys when the pH was higher than the pKa of Eul-cys polymer. The Eul-cys/GSH NPs obtained were characterized by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. The results obtained showed that the average particle size ranged from 240 to 280 nm, and the particles were almost spherical in shape. The in vitro drug release results showed that the Eul-cys/GSH NPs retained a large amount of insulin in simulated gastric fluid, while a significant insulin release was found in simulated intestinal fluid. The in situ release study suggested that NPs released a greater amount of FITC-insulin (49.2 %) into the intestinal mucus layer compared with that of FITC-insulin solution (16.4 %), which facilitating insulin delivery through the intestinal mucosa. Eul-cys/GSH NPs exhibited promising mucoadhesive properties demonstrated using an in vitro cell model. Consequently, NPs were introduced into the ileum loop of healthy rats, thus enhancing the intestinal absorption of insulin and providing a prolonged reduction in blood glucose levels. These results suggest that Eul-cys/GSH NPs may be a promising delivery system for the treatment of diabetes.

  8. Needle-free insulin drug delivery

    Directory of Open Access Journals (Sweden)

    Patni Preeti

    2006-01-01

    Full Text Available For most patients with type 1 diabetes, the worst part of the disease is to tolerate needle after needle, both for glucose measurement and to deliver insulin. In the last two decades, concept of insulin therapy by multiple-dose injection has undergone a miraculous change. Needle-free insulin delivery appeared to be a wonderful approach, and its allure rested in being comfortable and safe. In today′s era, insulin delivery by alternative route is a topic of current interest in the design of drug delivery system. Major global pharmaceutical companies are showing encouraging progress in their attempts to develop alternative insulin delivery technologies. Many such drug delivery systems have been developed for oral, buccal and nasal route. This review article discusses, in brief, the novel and emerging technologies that are in pipeline, including insulin inhalers, insulin spray, insulin pill, insulin analogues, insulin complement, islet cell transplant, implantable insulin pumps and guardian continuous glucose monitoring system.

  9. Preparation, characterization, and evaluation in vivo of Ins-SiO₂-HP55 (insulin-loaded silica coating HP55) for oral delivery of insulin.

    Science.gov (United States)

    Zhao, Xiuhua; Shan, Chang; Zu, Yuangang; Zhang, Ying; Wang, Weiguo; Wang, Kunlun; Sui, Xiaoyu; Li, Ruiqiang

    2013-09-15

    Insulin is the most effective and durable drug in the treatment of advanced stage diabetes. However, oral delivering insulin was a tough task for rapid enzymatic degradation. In this work, we designed and developed a delivery system composed of enteric nanosphere for oral delivery of insulin. The silica was selected for loading insulin, which surface has a lot of pores with a powerful adsorption capacity, advantages for permeability and slow-release. The insulin-loaded silica (Ins-SiO2) was prepared by adsorption in HCl solution. The Ins-SiO2 obtained was coated with the hydroxypropyl methylcellulose phthalate (HP55) by desolvation method, which is a good enteric coating material. The Ins-SiO2-HP55, an enteric nanosphere of insulin obtained were characterized by transmission electron microscope (TEM), surface area, Fourier-transform infrared (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results showed that insulin was loaded most in the pores of silica, while the HP55 coated on the extent of Ins-SiO2. In vitro drug release results revealed that the release of insulin from Ins-SiO2-HP55 was markedly reduced in simulated gastric fluid (SGF). By contrast, the release amount of insulin from Ins-SiO2-HP55 was increased significantly in simulated intestinal fluid (SIF). In vivo evaluation on diabetic animals showed the blood glucose level of diabetic rats could be effectively reduced after oral administration Ins-SiO2-HP55. There is marked hypoglycemic effect after 1h of taking the Ins-SiO2-HP55. After 3h, the GLU of rats of the Ins-SiO2-HP55 stably kept from 4.85 to 2.67 mmol/L that was significantly less than the normal level (6.7 mmol/L). However, that of rats taking raw insulin kept from 8.03 to 6.56 mmol/L that is higher than the normal level. These results suggested that Ins-SiO2-HP55 could have potential value in oral administration systems of diabetes chemotherapy.

  10. Goblet cell targeting nanoparticle containing drug-loaded micelle cores for oral delivery of insulin.

    Science.gov (United States)

    Zhang, Peiwen; Xu, Yining; Zhu, Xi; Huang, Yuan

    2015-12-30

    Oral administration of insulin remains a challenge due to its poor enzymatic stability and inefficient permeation across epithelium. We herein developed a novel self-assembled polyelectrolyte complex nanoparticles by coating insulin-loaded dodecylamine-graft-γ-polyglutamic acid micelles with trimethyl chitosan (TMC). The TMC material was also conjugated with a goblet cell-targeting peptide to enhance the affinity of nanoparticles with epithelium. The developed nanoparticle possessed significantly enhanced colloid stability, drug protection ability and ameliorated drug release profile compared with graft copolymer micelles or ionic crosslinked TMC nanoparticles. For in vitro evaluation, Caco-2/HT29-MTX-E12 cell co-cultures, which composed of not only enterocyte-like cells but also mucus-secreting cells and secreted mucus layer, were applied to mimic the epithelium. Intracellular uptake and transcellular permeation of encapsulated drug were greatly enhanced for NPs as compared with free insulin or micelles. Goblet cell-targeting modification further increased the affinity of NPs with epithelium with changed cellular internalization mechanism. The influence of mucus on the cell uptake was also investigated. Ex vivo performed with rat mucosal tissue demonstrated that the nanoparticle could facilitate the permeation of encapsulated insulin across the intestinal epithelium. In vivo study preformed on diabetic rats showed that the orally administered nanoparticles elicited a prolonged hypoglycemic response with relative bioavailability of 7.05%.

  11. Liposomes containing cholesterol analogues of botanical origin as drug delivery systems to enhance the oral absorption of insulin.

    Science.gov (United States)

    Cui, Meng; Wu, Wei; Hovgaard, Lars; Lu, Yi; Chen, Dawei; Qi, Jianping

    2015-07-15

    In fear of animal-associated diseases, there is a trend in searching for non-animal derived substitutes for existing excipients in the pharmaceutical industries. This paper aimed to screen cholesterol analogues as membrane stabilizers of liposomes from botanical sterols, including β-sitosterol, stigmasterol, ergosterol and lanosterol. Liposomes containing four kinds of sterols were prepared and evaluated in vitro and in vivo as oral delivery system of insulin. Liposomes containing β-sitosterol (Si-Lip), stigmasterol (St-Lip) and lanosterol (La-Lip) was found not to protect insulin against degradation. Only 10% of the initial insulin in liposomes was preserved after a 30 min exposure to simulated gastric fluids. However, the protective ability of liposomes containing ergosterol (Er-Lip) was similar to that of liposomes containing sodium glycocholate (Sgc-Lip) and superior to that of liposomes containing cholesterol (Ch-Lip). In addition, the blood glucose level can decrease to about 50% of initial level after oral Er-Lip which was significantly superior to the in vivo performance of Si-Lip and Ch-Lip and similar to Sgc-Lip. Er-Lips of ergosterol/phospholipids ratios of 1:4 or 1:6 exerts more pronounced protective ability of insulin in simulated gastrointestinal fluids and hypoglycemic effects in rats than other formulations. Furthermore, Er-Lips exerted low toxicity to Caco-2 cells through a cell viability study. Meahwhile, insulin permeability was significantly increased across Caco-2 monolayers by encapsulating in Er-Lip. It was concluded that ergosterol could be used as a substitute for cholesterol and bile salt derivatives in liposomes to enhance oral bioavailability of insulin.

  12. Preparation of poly(lactic-co-glycolic acid) and chitosan composite nanocarriers via electrostatic self assembly for oral delivery of insulin.

    Science.gov (United States)

    Xu, Bin; Jiang, Guohua; Yu, Weijiang; Liu, Depeng; Liu, Yongkun; Kong, Xiangdong; Yao, Juming

    2017-09-01

    To improve insulin bioavailability and overcome multiple barriers for oral delivery of insulin, the composite nanocarriers (PLGA/FA-CS) prepared from poly(lactide-co-glycoside) (PLGA) and folic acid modified chitosan (FA-CS) were fabricated via electrostatic self-assembly method. The resultant composite nanocarriers exhibited low cytotoxicity against HT-29 cells and excellent stability against protein solution. The chemical stability of loaded insulin against digestive enzyme were established in presence of simulated gastric fluid (SGF) containing pepsin and simulated intestinal fluid (SIF) containing pancreatin, respectively. The uptake behavior of HT-29 cells was evaluated by confocal laser scanning microscope. After oral administration to the diabetic rats, an effective hypoglycemic effect was obtained compared with subcutaneous injection of insulin. This work suggests that the as-prepared composite nanocarriers may be a promising drug delivery system for oral administration of insulin and other biomacromolecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. In vitro and in vivo evaluation of an oral multiple-unit formulation for colonic delivery of insulin.

    Science.gov (United States)

    Maroni, Alessandra; Del Curto, Maria Dorly; Salmaso, Stefano; Zema, Lucia; Melocchi, Alice; Caliceti, Paolo; Gazzaniga, Andrea

    2016-11-01

    A multiple-unit formulation for time-dependent colonic release of insulin was obtained by coating insulin and sodium glycocholate immediate-release minitablets with: (i) Methocel® E50, a low-viscosity hydroxypropyl methylcellulose (inner coating), (ii) 5:1 w/w Eudragit® NE/Explotab® V17, a mixture of a neutral polymethacrylate with a pore-forming superdisintegrant (intermediate coating), and (iii) Aqoat® AS, enteric-soluble hydroxypropyl methylcellulose acetate succinate (outer coating). Sodium glycocholate was added as a permeation enhancer while the inner, intermediate and outer coatings were aimed, respectively, at delaying the onset of release through swelling/erosion processes, extending the duration of the lag phase by slowing down water penetration into the underlying functional layer, and overcoming variable gastric residence time. In vitro studies showed that neither insulin nor sodium glycocholate were released from the three-layer system during 2h of testing in 0.1N HCl, while complete release of the protein and of the enhancer occurred in phosphate buffer, pH 6.8, after consistent lag phases. No significant changes were noticed in the release profiles following twelve-month storage at 4°C. Oral administration of the novel formulation to diabetic rats elicited a peak in the plasma insulin concentration after 6h, which was associated with a sharp decrease in the glycemic levels. The relative bioavailability and pharmacological availability of such a formulation, as determined vs. the uncoated tablets, were 2.2 and 10.3, respectively. Based on these results, the three-layer system presented was considered a potentially interesting tool for oral colonic delivery of insulin and adjuvant compounds.

  14. Oral insulin--a perspective.

    Science.gov (United States)

    Raj, N K Kavitha; Sharma, Chandra P

    2003-01-01

    Diabetes mellitus is generally controlled quite well with the administration of oral medications or by the use of insulin injections. The current practice is the use of one or more doses, intermediate or long acting insulin per day. Oral insulin is a promising yet experimental method providing tight glycemic control for patients with diabetes. A biologically adhesive delivery systems offer important advantage over conventional drug delivery systems. The engineered polymer microspheres made of erodable polymer display strong adhesive interactions with gastrointestinal mucus and cellular lining can traverse both the mucosal epithelium and the follicle associated epithelium covering the lymphoid tissue of Peyer's patches. Alginate, a natural polymer recovered from seaweed is being developed as a nanoparticle for the delivery of insulin without being destroyed in the stomach. Alginate is in fact finding application in biotechnology industry as thickening agent, a gelling agent and a colloid stabilizer. Alginate has in addition, several other properties that have enabled it to be used as a matrix for entrapment and for the delivery of a variety of proteins such as insulin and cells. These properties include: a relatively inert aqueous environment within the matrix; a mild room temperature encapsulation process free of organic solvents; a high gel porosity which allows for high diffusion rates of macromolecules; the ability to control this porosity with simple coating procedures and dissolution and biodegradation of the system under normal physiological conditions.

  15. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation.

    Science.gov (United States)

    Cui, Fude; Shi, Kai; Zhang, Liqiang; Tao, Anjin; Kawashima, Yoshiaki

    2006-08-28

    Biodegradable nanoparticles loaded with insulin-phospholipid complex were prepared by a novel reverse micelle-solvent evaporation method, in which soybean phosphatidylcholine (SPC) was employed to improve the liposolubility of insulin, and biodegradable polymers as carrier materials to control drug release. Solubilization study, IR and X-ray diffraction analysis were employed to prove the complex formation. The effects of key parameters such as polymer/SPC weight ratio, organic phase and polymer type on the properties of the nanoparticles were investigated. Spherical particles of 200 nm mean diameter and a narrow size distribution were obtained under optimal conditions. The drug entrapment efficiency was up to 90%. The in vitro drug release was characterized by an initial burst and subsequent delayed release in both pH 6.8 and pH 1.2 dissolution mediums. The specific modality of drug release, i.e., free or SPC-combined, was investigated in the aid of ultracentrifugation and ultrafiltration methods. The influence of polymer type on the drug release was also discussed. The pharmacological effects of the nanoparticles made of PLGA 50/50 (Av.Mw 9500) were further evaluated to confirm their potential suitability for oral delivery. Intragastric administration of the 20 IU/kg nanoparticles reduced fasting plasma glucose levels to 57.4% within the first 8 h of administration and this continued for 12 h. PK/PD analysis indicated that 7.7% of oral bioavailability relative to subcutaneous injection was obtained.

  16. Oral delivery of insulin withDesmodium gangeticum root aqueous extract protects rat hearts against ischemia reperfusion injury in streptozotocin induced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Gino A Kurian; Jose Paddikkala

    2010-01-01

    Objective:To evaluate the effect of insulin administered via oral route with the help of aqueous extract ofDesmodium gangeticum (DG) root in rendering cardio protection against ischemia reperfusion injury in diabetic rats.Methods: Diabetes mellitus was induced in rats by theβ-cell toxin, streptozotocin (STZ, 60 mg/kg). Isolated rat (IR) heart was used to investigate the effect of insulin mixed DG pretreatment on ischemia reperfusion injury. Mitochondrial respiratory enzymes and microsomal enzymes were used to assess the metabolic recovery of myocardium. Cardiac marker enzymes were used to find the functional recovery, which were compared with that of the STZ treated IR rats.Results: Compared with IR control group, rat treated with insulin mixed DG showed a significant functional and metabolic recovery of myocardium from the insult of ischemia reperfusion. Even though orally administered insulin mixed DG displayed a slow but prolonged hypoglycemic effect, the cardio protection it provided was more significant than when it was given intra peritoneal. Furthermore the above result indicates that insulin mixed DG can overcome the barriers in the gastrointestinal tract and be absorbed.Conclusions: The above results indicate the efficacy of insulin mixed DG in protecting the heart from ischemia reperfusion induced injury in diabetic rats. Furthermore the study gives additional information that herbal extracts can be used to transport insulin across the membrane and found to be a feasible approach for developing the oral delivery of insulin, as well as other peptide drugs.

  17. New ways of insulin delivery.

    Science.gov (United States)

    Heinemann, L

    2010-02-01

    When Exubera (EXU), the first inhaled insulin formulation to make it through the clinical development process, was introduced to the market some years ago it was hoped that this would be the first in a series of novel insulin formulations applied by this route. In addition, it was hoped that inhaled insulin would pave the way for other alternative routes of insulin administration (ARIA), i.e. oral insulin, nasal insulin or transdermal insulin to mention only some of the different attempts that have been studied in the last 90 years. The failure of EXU, i.e. its withdrawal from the market due to insufficient market success, was followed by the cessation of nearly all other attempts to develop inhaled insulin formulations. Currently there is only one company (MannKind) which moves sturdily ahead with their Technosphere insulin. This company has submitted an NDA for their product recently and hopes to bring it to the market by the end of 2010 or early 2011. Even if the product is able to pass the approval hurdles in the USA and Europe, this does not guarantee that it will become a market success. Many diabetologists were sceptical about the need/advantages of inhaled insulin/EXU from the start and the introduction of this product has raised even more scepticism. Reports about 'side effects' (development of lung cancer in patients treated with EXU) of inhaled insulin are also not helpful, even if the causality of the appearance of cancer with this type of insulin therapy is not proven. One of the very negative consequences of stopping EXU are the huge financial losses to Pfizer. The managers in charge in other pharmaceutical companies and also most venture capitalists are reluctant to invest in ARIA nowadays. This in turn means that many of the small companies that try to develop new forms of insulin administration have issues when they try to find a big brother and/or sufficient financial support. Clearly the economic crisis has further aggravated this issue. One can

  18. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation

    OpenAIRE

    Liu LY; Zhou CP; Xia XJ; Liu YL

    2016-01-01

    Liyao Liu, Cuiping Zhou, Xuejun Xia, Yuling Liu State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China Purpose: Here, we investigated the formation and functional properties of self-assembled lecithin/chitos...

  19. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin.

    Science.gov (United States)

    Shan, Wei; Zhu, Xi; Liu, Min; Li, Lian; Zhong, Jiaju; Sun, Wei; Zhang, Zhirong; Huang, Yuan

    2015-03-24

    Nanoparticles (NPs) have demonstrated great potential for the oral delivery of protein drugs that have very limited oral bioavailability. Orally administered NPs could be absorbed by the epithelial tissue only if they successfully permeate through the mucus that covers the epithelium. However, efficient epithelial absorption and mucus permeation require very different surface properties of a nanocarrier. We herein report self-assembled NPs for efficient oral delivery of insulin by facilitating both of these two processes. The NPs possess a nanocomplex core composed of insulin and cell penetrating peptide (CPP), and a dissociable hydrophilic coating of N-(2-hydroxypropyl) methacrylamide copolymer (pHPMA) derivatives. After systematic screening using mucus-secreting epithelial cells, NPs exhibit excellent permeation in mucus due to the "mucus-inert" pHPMA coating, as well as high epithelial absorption mediated by CPP. The investigation of NP behavior shows that the pHPMA molecules gradually dissociate from the NP surface as it permeates through mucus, and the CPP-rich core is revealed in time for subsequent transepithelial transport through the secretory endoplasmic reticulum/Golgi pathway and endocytic recycling pathway. The NPs exhibit 20-fold higher absorption than free insulin on mucus-secreting epithelium cells, and orally administered NPs generate a prominent hypoglycemic response and an increase of the serum insulin concentration in diabetic rats. Our study provides the evidence of using pHPMA as dissociable "mucus-inert" agent to enhance mucus permeation of NPs, and validates a strategy to overcome the multiple absorption barriers using NP platform with dissociable hydrophilic coating and drug-loaded CPP-rich core.

  20. New ways of insulin delivery.

    Science.gov (United States)

    Heinemann, L

    2011-02-01

    even too short (see postprandial glycaemic excursions with test meals in the publication by Rosenstock et al. in The Lancet (1)). In the end a number of aspects are of relevance for the success of a given product; one key aspect is clearly the price. However, for patients also practical aspects (handling, need for regular pulmonary function test etc.) are of importance. We shall have to see how creatively MannKind will handle all such questions. Until now Al Mann and his colleagues were able to manage a number of challenges during the clinical development process successfully, so one can have hopes for the market success of TI. However, it is clear that at the same time, if TI fails like Exubera did before, this will be the end for pulmonary insulin in general. Not too many original publications presenting data from clinical trials were published in the last year when it comes to oral insulin (OI), nasal insulin or transdermal insulin developments; simply none with transdermal insulin. Also at the last international congresses not many studies about ARIA were presented. At least in part this might be still a reflection of the shockwaves that the failure of Exubera has sent out to pharmaceutical companies and venture capitalists; they are quite reluctant to invest in any of these developments. However, a considerable number of reviews (in some cases more than original papers!) were published about ARIA. These reviews are listed for completeness, but in most cases are not further commented. OI is still the area of research most companies are active in; however, in some cases it is not clear how active they really are (e.g. Diabetology). Nevertheless, at least some companies are quite active and progressed in their clinical development programme close to market approval, e.g. the large Indian company Biocon is in late phase 3 with IN-105 and the small Israel-based company Oramed is in phase 2b. It appears that other interesting OI developments (e.g. Diasome) were not very

  1. Acyl modified chitosan derivatives for oral delivery of insulin and curcumin.

    Science.gov (United States)

    Shelma, R; Sharma, Chandra P

    2010-07-01

    In the present investigation, bioadhesive property of chitosan (CS) was enhanced by the N-acylation with hexanoyl, lauroyl and oleoyl chlorides. The chemical structure of the modified polymer was characterized by FTIR and zeta potential measurements. The swelling ability was evaluated at alkaline pH. Mucin interactions and mucoadhesion experiments were performed under in vitro experimental conditions. Cytotoxicity experiments were employed to confirm the applicability of these particles as drug carriers. Finally in vitro evaluation of hydrophobic and hydrophilic drug release profile at acidic and alkaline pH was also conducted. A strong interaction between CS acyl derivatives and mucin was detected, which was further confirmed by an in situ mucoadhesion experiments with excised intestinal tissue. CS modified with oleoyl chloride showed better mucoadhesion property, as compared to the one modified with lower fatty acid groups. CS derivatives were found non-toxic on L-929 cell lines and provided sustained release of hydrophobic drugs under in vitro experimental conditions. From these studies it seems that hydrophobically modified CS is an interesting system for drug delivery applications.

  2. UNIQUE ORAL DRUG DELIVERY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Raphael M. Ottenbrite; ZHAO Ruifeng; Sam Milstein

    1995-01-01

    An oral drug delivery system using proteinoid microspheres is discussed with respect to its unique dependence on pH. It has been found that certain drugs such as insulin and heparin can be encapsulated in proteinoid spheres at stomach pH's (1-3). These spheres also dissemble at intestinal pH's (6-7) releasing the drug for absorption. Using this technique low molecular weight heparin and human growth hormone have been orally delivered successfully to several animal species. Future work has been proposed to study the interaction and binding of the specific drugs with synthesized oligopeptides.

  3. Alternative routes of insulin delivery

    Institute of Scientific and Technical Information of China (English)

    Ranjith K. Krishnankutty; Aju Mathew; Saikiran K. Sedimbi; Shrikumar Suryanarayan; Carani B. Sanjeevi

    2009-01-01

    Parenteral route of insulin administration has been the mode of treatment for all Type 1 diabetics and Type 2 diabetics with complications. Patient compliance has really been a major concern for this route of administration. Several alternative routes of administration are under consideration for effective glycemic control, including oral, inhaled, buccal, nasal, and patch routes. One of the approaches involving inhaled insulin has now reached the market. Several other candidates may reach the market in the near future, the promising one being oral insulin.

  4. Alternative routes of insulin delivery.

    Science.gov (United States)

    Krishnankutty, Ranjith K; Mathew, Aju; Sedimbi, Saikiran K; Suryanarayan, Shrikumar; Sanjeevi, Carani B

    2009-10-01

    Parenteral route of insulin administration has been the mode of treatment for all Type 1 diabetics and Type 2 diabetics with complications. Patient compliance has really been a major concern for this route of administration. Several alternative routes of administration are under consideration for effective glycemic control, including oral, inhaled, buccal, nasal, and patch routes. One of the approaches involving inhaled insulin has now reached the market. Several other candidates may reach the market in the near future, the promising one being oral insulin.

  5. New Insulin Delivery Recommendations.

    Science.gov (United States)

    Frid, Anders H; Kreugel, Gillian; Grassi, Giorgio; Halimi, Serge; Hicks, Debbie; Hirsch, Laurence J; Smith, Mike J; Wellhoener, Regine; Bode, Bruce W; Hirsch, Irl B; Kalra, Sanjay; Ji, Linong; Strauss, Kenneth W

    2016-09-01

    Many primary care professionals manage injection or infusion therapies in patients with diabetes. Few published guidelines have been available to help such professionals and their patients manage these therapies. Herein, we present new, practical, and comprehensive recommendations for diabetes injections and infusions. These recommendations were informed by a large international survey of current practice and were written and vetted by 183 diabetes experts from 54 countries at the Forum for Injection Technique and Therapy: Expert Recommendations (FITTER) workshop held in Rome, Italy, in 2015. Recommendations are organized around the themes of anatomy, physiology, pathology, psychology, and technology. Key among the recommendations are that the shortest needles (currently the 4-mm pen and 6-mm syringe needles) are safe, effective, and less painful and should be the first-line choice in all patient categories; intramuscular injections should be avoided, especially with long-acting insulins, because severe hypoglycemia may result; lipohypertrophy is a frequent complication of therapy that distorts insulin absorption, and, therefore, injections and infusions should not be given into these lesions and correct site rotation will help prevent them; effective long-term therapy with insulin is critically dependent on addressing psychological hurdles upstream, even before insulin has been started; inappropriate disposal of used sharps poses a risk of infection with blood-borne pathogens; and mitigation is possible with proper training, effective disposal strategies, and the use of safety devices. Adherence to these new recommendations should lead to more effective therapies, improved outcomes, and lower costs for patients with diabetes.

  6. Administração oral de peptídios e proteínas: III. Aplicação à insulina Oral delivery systems for peptides and proteins: III. Application to insulin

    Directory of Open Access Journals (Sweden)

    Catarina Silva

    2003-03-01

    Full Text Available A insulina é um peptídeo biologicamente ativo, normalmente administrado por via subcutânea, pelos obstáculos que se colocam a sua administração oral. O desenvolvimento de uma forma farmacêutica passível de ser administrada oralmente tem sido razão de uma investigação persistente, acentuada na última década, conforme é descrito. As estratégias utilizadas têm sido muito variadas, a saber, a utilização de inibidores das enzimas proteolíticas, promotores da absorção, modificação química e fórmulas farmacêuticas específicas, como sistemas de partículas, emulsões, sistemas de liberação targeting e sistemas bioadesivos. Embora ainda nenhuma abordagem tenha sido suficientemente eficaz, os resultados são encorajadores. A microencapsulação e, em particular, os métodos que utilizam polímeros naturais, mostram-se promissores neste propósito, pelas características vantajosas que apresentam.Insulin is an important therapeutic protein, generally administered subcutaneously due to the obstacles of oral delivery. A number of different methods have been explored to improve the low oral bioavailability of insulin, particularly in the last decade, namely protease inhibitors, absorption enhancers, chemical modification and the formulation approach which includes particulate systems, emulsions, targeting delivery systems and bioadhesive systems. Although an effective formulation for oral insulin delivery remains to be achieved, the results are encouraging. Microencapsulation has proven to be a promising method of choice, especially when using natural polymers.

  7. Efficient mucus permeation and tight junction opening by dissociable "mucus-inert" agent coated trimethyl chitosan nanoparticles for oral insulin delivery.

    Science.gov (United States)

    Liu, Min; Zhang, Jian; Zhu, Xi; Shan, Wei; Li, Lian; Zhong, Jiaju; Zhang, Zhirong; Huang, Yuan

    2016-01-28

    Oral administration of protein drugs is greatly impeded by the lack of drug carriers that can efficiently overcome the absorption barriers of mucosa tissue, which consists of not only epithelium but also a blanket of mucus gel. We herein report a novel self-assembled nanoparticle (NP) platform for oral delivery of insulin by facilitating the efficient permeation through both of these two barriers. The NP possesses a core composed of insulin and trimethyl chitosan (TMC), and a dissociable "mucus-inert" hydrophilic coating of N-(2-hydroxypropyl) methacrylamide copolymer (pHPMA) derivative. The NPs exhibited free Brownian motion and excellent permeability in mucus, which enabled the access of the NP core to the epithelial cell surface underneath the mucus. Moreover, investigation of NP behavior showed that the pHPMA molecules started to dissociate as the NP permeates through mucus, and the TMC NP core was then exposed to facilitate transepithelial transport via paracellular pathway. The pHPMA coating significantly improved transepithelial transport of TMC-based NP and their ability to open tight junctions between the mucus-secreting epithelial cells. Moreover, in diabetic rats, pHPMA coated NPs generated a prominent hypoglycemic response following oral administration, and exhibited a relative bioavailability 2.8-fold higher than that of uncoated TMC-based NPs. Our study provided the evidence of using pHPMA as "mucus-inert" agent to enhance mucus permeation of TMC-based NPs, and validated a novel strategy to overcome the multiple absorption barriers using NP platform with dissociable hydrophilic coating and TMC-based core possessing tight junction-opening ability.

  8. Unintended Insulin Pump Delivery in Hyperbaric Conditions.

    Science.gov (United States)

    Bertuzzi, Federico; Pintaudi, Basilio; Bonomo, Matteo; Garuti, Fabio

    2017-04-01

    Unintended pump insulin delivery was reported to occur as a consequence of decreased atmospheric pressure, probably mediated by air bubble formation and the expansion of existing bubbles. This observation has been used to explain some hypoglycemic episodes occurring in patients on insulin pump treatment in between 1 and 1 h 45 min after the flight takeoff. New models of insulin pumps have been introduced in the market, most of them are waterproof certified. It is not clear if in these new pumps the influence of atmospheric pressure changes on the insulin delivery is still present. Moreover, there are no evidences related to the insulin pump operations in hyperbaric conditions, like as during diving activities. Our aim is therefore to verify the eventual variation of insulin pump delivery determined by atmospheric pressure changes in hyperbaric conditions. Three new models of insulin pumps were tested in hyperbaric conditions at a flow rate of 2 U/h. Atmospheric pressure variation affected pump insulin release. An increase in the atmospheric pressure from 1 to 1.3 atmosphere (ATA) induced a decrease of pump basal insulin release (about -0.2 U/10 min); conversely, when the atmospheric pressure returned from 1.3 to 1 ATA, an unintended insulin delivery was observed (about +0.3 U/10 min). This phenomenon appeared to be independent of the insulin pump rate and dependent on the presence of air bubbles within the insulin tube setting and cartridge. Unintended insulin delivery driven by atmospheric pressure changes in hyperbaric conditions occurred in the new insulin pumps available. Patients should pay attention to possible variation of insulin rate during the flight or during diving activities.

  9. Oral delivery of anticancer drugs

    DEFF Research Database (Denmark)

    Thanki, Kaushik; Gangwal, Rahul P; Sangamwar, Abhay T

    2013-01-01

    The present report focuses on the various aspects of oral delivery of anticancer drugs. The significance of oral delivery in cancer therapeutics has been highlighted which principally includes improvement in quality of life of patients and reduced health care costs. Subsequently, the challenges...... incurred in the oral delivery of anticancer agents have been especially emphasized. Sincere efforts have been made to compile the various physicochemical properties of anticancer drugs from either literature or predicted in silico via GastroPlus™. The later section of the paper reviews various emerging...... trends to tackle the challenges associated with oral delivery of anticancer drugs. These invariably include efflux transporter based-, functional excipient- and nanocarrier based-approaches. The role of drug nanocrystals and various others such as polymer based- and lipid based...

  10. Silica-Coated Liposomes for Insulin Delivery

    Directory of Open Access Journals (Sweden)

    Neelam Dwivedi

    2010-01-01

    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  11. Evaluation of an oral insulin formulation in normal and diabetic rats

    Directory of Open Access Journals (Sweden)

    Hossein Najafzadeh

    2012-01-01

    Full Text Available Aim: As injection is not an ideal means for insulin delivery, various attempts have been made to administer insulin orally until now. The development of an oral dosage form of insulin would help diabetic patients and make the treatment more convenient. The aim of the present study is to evaluate the effectiveness of an oral insulin formulation containing polar and non-polar ingredients. Materials and Methods: New excipient for oral insulin administration in normal and diabetic rats was evaluated by measuring blood glucose concentrations in two groups (10 rats each of normal and streptozotocin-induced diabetic rats. Oral insulin was administrated and blood glucose was measured by glucometer at 0, 1, 2, 3 and 4 h post-feeding. The data was compared by Student′s t test. Results: Oral insulin formulation significantly (P<0.05 reduced blood glucose from 100 mg/dl to 33.73 mg/dl and 451.66 mg/dl to 200.83 mg/dl at 4 h in normal and diabetic rats, respectively. Conclusion: The novel excipient used could protect insulin from gastric and pancreatic enzymes and reduce blood glucose concentration in both healthy and diabetic rats suggesting that oral delivery of insulin is feasible in a near future.

  12. Algorithms for intravenous insulin delivery.

    Science.gov (United States)

    Braithwaite, Susan S; Clement, Stephen

    2008-08-01

    This review aims to classify algorithms for intravenous insulin infusion according to design. Essential input data include the current blood glucose (BG(current)), the previous blood glucose (BG(previous)), the test time of BG(current) (test time(current)), the test time of BG(previous) (test time(previous)), and the previous insulin infusion rate (IR(previous)). Output data consist of the next insulin infusion rate (IR(next)) and next test time. The classification differentiates between "IR" and "MR" algorithm types, both defined as a rule for assigning an insulin infusion rate (IR), having a glycemic target. Both types are capable of assigning the IR for the next iteration of the algorithm (IR(next)) as an increasing function of BG(current), IR(previous), and rate-of-change of BG with respect to time, each treated as an independent variable. Algorithms of the IR type directly seek to define IR(next) as an incremental adjustment to IR(previous). At test time(current), under an IR algorithm the differences in values of IR(next) that might be assigned depending upon the value of BG(current) are not necessarily continuously dependent upon, proportionate to, or commensurate with either the IR(previous) or the rate-of-change of BG. Algorithms of the MR type create a family of IR functions of BG differing according to maintenance rate (MR), each being an iso-MR curve. The change of IR(next) with respect to BG(current) is a strictly increasing function of MR. At test time(current), algorithms of the MR type use IR(previous) and the rate-of-change of BG to define the MR, multiplier, or column assignment, which will be used for patient assignment to the right iso-MR curve and as precedent for IR(next). Bolus insulin therapy is especially effective when used in proportion to carbohydrate load to cover anticipated incremental transitory enteral or parenteral carbohydrate exposure. Specific distinguishing algorithm design features and choice of parameters may be important to

  13. EFFECT OF ORAL INSULIN IN BLOOP G1UCOSE CONCENTRATION

    Directory of Open Access Journals (Sweden)

    DJ. FARID

    1993-07-01

    Full Text Available Gastrointestinal tract can not be used as a route for oral administration of polypeptid hormones because"nof their enzymatic degradation."nDegradation of these macromoleculcs in acidic and alkaline conditions determines the need for using"nprotective delivery systems."nIn this research microcmulsions were used for protection of insulin against proteolytic enzymesof"ngastrointestinal tract. Cholestrol and phospholipids of egg yolk have been used as lipid phase as lipid phase"nand Lecithin as surfactant."nInsulin Regular was used as aqueous phase, being entrapped with lipidic phase in W/O manner. Male"nrabbits with body weight of about 1-1.5 KG were accomplished and oral insulin was force fed to them."nBlood collection has been carried out from heart every 15 minutes after oral administration."nReduction in blood glucose level indicates the well being protection of insulin and absorbtion of it through"nepithelium of small intestine. Increasing of glucose level in placebo demonstrates that endogenous"ninsulin has not been responsible for serum glucose reduction."nThis experiment suggests that microemulsions formed with egg Yolk compounds have the ability to be an"nalternate for parenteral administration of insulin and other chemicals sensitive to enzymatic degradation, in"nhuman.

  14. Design and development of oral nanoparticulated insulin in multiple emulsion.

    Science.gov (United States)

    Siddhartha, T Venkata; Senthil, V; Kishan, Ilindra Sai; Khatwal, Rizwan Basha; Madhunapantula, SubbaRao V

    2014-01-01

    The present research aimed at developing an injection-free nanoparticulated formulation in multiple emulsion form, for oral delivery of insulin, which otherwise undergoes degradation in the gastric environment if administered orally. Insulin-polymeric nanoparticles were prepared using layer by layer (LbL) adsorption method and incorporated into an emulsion to form a nanoparticulated multiple emulsion. Using 0.6 M sodium chloride, the insulin nanoaggregates of 300-400 nm size were obtained about a yield of 94%. The characteristics of a representative nanoparticle were as follows: particle size - 391.9±0.41 nm, polydispersity index -0.425, zeta potential- +20.6 mv, encapsulation efficiency- 86.7±1.42% and percentage entrapment efficiency of the insulin-polymeric nanoparticles in the inner aqueous phase of emulsion was 84.6%. The FT-IR analysis confirms that there were no drug interactions with the polymers. Stability analysis carried out for 3 months at 8-40 °C, showed only minor changes at the end period. The release kinetics of the nanoparticulated multiple emulsion at pH 7.4 followed first order kinetics and obeyed the Fickian law. However, at pH 2.0 the release kinetics from nanoparticulated multiple emulsion followed zero order kinetics without obeying to the Fickian law. In conclusion, our data demonstrate that the nanoparticulated multiple emulsion formulation has good release characteristics and imparted a tolerable protection for insulin at different pH conditions, which may be exploited for oral administration.

  15. Influence of glucosamine on the bioactivity of insulin delivered subcutaneously and in an oral nanodelivery system.

    Science.gov (United States)

    Al-Kurdi, Zakieh I; Chowdhry, Babur Z; Leharne, Stephen A; Qinna, Nidal A; Al Omari, Mahmoud M H; Badwan, Adnan A

    2015-01-01

    The aim of the work reported herein was to study the effect of glucosamine HCl (GlcN·HCl) on the bioactivity (BA) of insulin, administered via subcutaneous (SC) and oral routes, in adult male Sprague Dawley rats. The oral insulin delivery system (insulin-chitosan reverse micelle [IC-RM]) was prepared by solubilizing insulin-chitosan (13 kDa) polyelectrolyte complex in a RM system consisting of oleic acid, PEG-8 caprylic/capric glycerides, and polyglycerol-6-dioleate. The BA of insulin in vivo was evaluated by measuring blood glucose level using a blood glucose meter; the results revealed that the extent of hypoglycemic activity of SC insulin was GlcN·HCl dose dependent when they were administered simultaneously. A significant reduction in blood glucose levels (Poral administration of GlcN·HCl for 5 consecutive days prior to insulin injection (Poral insulin administration via the IC-RM system, the presence of GlcN·HCl increased the hypoglycemic activity of insulin (Poral insulin delivery systems in order to enhance a reduction in blood glucose levels.

  16. Probing insulin bioactivity in oral nanoparticles produced by ultrasonication-assisted emulsification/internal gelation.

    Science.gov (United States)

    Lopes, Marlene A; Abrahim-Vieira, Bárbara; Oliveira, Claudia; Fonte, Pedro; Souza, Alessandra M T; Lira, Tammy; Sequeira, Joana A D; Rodrigues, Carlos R; Cabral, Lúcio M; Sarmento, Bruno; Seiça, Raquel; Veiga, Francisco; Ribeiro, António J

    2015-01-01

    Alginate-dextran sulfate-based particles obtained by emulsification/internal gelation technology can be considered suitable carriers for oral insulin delivery. A rational study focused on the emulsification and particle recovery steps was developed in order to reduce particles to the nanosize range while keeping insulin bioactivity. There was a decrease in size when ultrasonication was used during emulsification, which was more pronounced when a cosurfactant was added. Ultrasonication add-on after particle recovery decreased aggregation and led to a narrower nanoscale particle-size distribution. Insulin encapsulation efficiency was 99.3%±0.5%, attributed to the strong pH-stabilizing electrostatic effect between insulin and nanoparticle matrix polymers. Interactions between these polymers and insulin were predicted using molecular modeling studies through quantum mechanics calculations that allowed for prediction of the interaction model. In vitro release studies indicated well-preserved integrity of nanoparticles in simulated gastric fluid. Circular dichroism spectroscopy proved conformational stability of insulin and Fourier transform infrared spectroscopy technique showed rearrangements of insulin structure during processing. Moreover, in vivo biological activity in diabetic rats revealed no statistical difference when compared to nonencapsulated insulin, demonstrating retention of insulin activity. Our results demonstrate that alginate-dextran sulfate-based nanoparticles efficiently stabilize the loaded protein structure, presenting good physical properties for oral delivery of insulin.

  17. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary insulin delivery.

    Science.gov (United States)

    Chono, Sumio; Fukuchi, Rie; Seki, Toshinobu; Morimoto, Kazuhiro

    2009-07-20

    The pulmonary insulin delivery characteristics of liposomes were examined. Aerosolized liposomes containing insulin were administered into rat lungs and the enhancing effect on insulin delivery was evaluated by changes of plasma glucose levels. Liposomes with dipalmitoyl phosphatidylcholine (DPPC) enhanced pulmonary insulin delivery in rats, however, liposomes with dilauroyl, dimyristoyl, distearoyl or dioleoyl phosphatidylcholine did not. Liposomes with DPPC also enhanced the in vitro permeation of FITC dextran (Mw 4400, FD-4) through the calu-3 cell monolayer by reducing the transepithelial electrical resistance and did not harm lung tissues in rats. These findings suggest that liposomes with DPPC enhance pulmonary insulin delivery by opening the epithelial cell space in the pulmonary mucosa not mucosal cell damage. Liposomes with DPPC could be useful as a pulmonary delivery system for peptide and protein drugs.

  18. Inkjet printing of insulin microneedles for transdermal delivery.

    Science.gov (United States)

    Ross, Steven; Scoutaris, Nicolaos; Lamprou, Dimitrios; Mallinson, David; Douroumis, Dennis

    2015-08-01

    Inkjet printing technology was used to apply insulin polymeric layers on metal microneedles for transdermal delivery. A range of various polymers such as gelatin (GLN), polyvinyl caprolactame-polyvinyl acetate-polyethylene glycol (SOL), poly(2-ethyl-2-oxazoline) (POX) and trehalose (THL) were assessed for their capacity to form thin uniform and homogeneous layers that preserve insulin intact. Atomic force microscopy (AFM) showed homogeneous insulin-polymer layers without any phase separation while SOL demonstrated the best performance. Circular discroism (CD) analysis of rehydrated films showed that insulin's alpha helices and β-sheet were well preserved for THL and SOL. In contrast, GLN and POX insulin layers revealed small band shifts indicating possible conformational changes. Insulin release in Franz diffusion cells from MNs inserted into porcine skin showed rapid release rates for POX and GLN within the first 20 min. Inkjet printing was proved an effective approach for transdermal delivery of insulin in solid state.

  19. Oral delivery strategies for nutraceuticals: Delivery vehicles and absorption enhancers

    OpenAIRE

    Gleeson, John P.; Ryan, Sinéad M.; Braden, David James

    2016-01-01

    Lifestyle issues contribute to the development of obesity, type 2 diabetes, and cardiovascular disease. Together with appropriate diet and exercise, nutraceuticals may contribute to managing prevention at an early stage prior to therapeutic intervention. However, many useful food-derived bioactive compounds will not sufficiently permeate the small intestine to yield efficacy without appropriate oral delivery technology. The pharmaceutical industry uses commercialised approaches for oral deliv...

  20. Oral insulin (human, murine, or porcine) does not prevent diabetes in the non-obese diabetic mouse.

    Science.gov (United States)

    Pham, Minh N; Gibson, Claire; Rydén, Anna K E; Perdue, Nikole; Boursalian, Tamar E; Pagni, Philippe P; Coppieters, Ken; Skonberg, Christian; Porsgaard, Trine; von Herrath, Matthias; Vela, Jose Luis

    2016-03-01

    Studies have shown oral insulin prevents type 1 diabetes (T1D) in mouse models, however human trials were inconclusive. We tested the ability of different insulins to prevent T1D in non-obese diabetic mice. Mice received oral insulin or PBS twice weekly and disease was monitored. Contrary to previous studies, no insulin tested showed significant ability to prevent T1D, nor did testing of linked suppression in a delayed type hypersensitivity model have reproducible effect. To investigate delivery of antigen within the GI tract, blue dye was fed to mice. Dye traveled 5-8 cm from stomach to small intestine within 10s, suggesting orally administered antigen may not get digested in the stomach in mice. Insulin incubated with jejunum extracts was instantly digested. Thus, in humans large doses of insulin may be required to achieve tolerance as antigen may be more vulnerable to digestion in the stomach even before reaching the small intestine.

  1. Potential of single cationic amino acid molecule "Arginine" for stimulating oral absorption of insulin.

    Science.gov (United States)

    Kamei, Noriyasu; Khafagy, El-Sayed; Hirose, Jun; Takeda-Morishita, Mariko

    2017-04-15

    We have reported that cell-penetrating peptides, such as oligoarginine, act as powerful absorption enhancers for the development of oral insulin delivery systems. However, the minimal essential sequence of oligoarginine that stimulates intestinal insulin absorption remains unclear. Therefore, the present study was conducted to clarify this minimum sequence of oligoarginine and to examine the effect of single cationic amino acid arginine on the intestinal and oral absorption of insulin. The results demonstrated that a remarkable enhancement of intestinal insulin absorption was observed after coadministration of insulin with l-arginine. The efficacy of d-forms of oligoarginine/arginine tended to decrease with a decreasing number of amino acid residues, whereas the effect of l-arginine was the strongest of any of the l-forms of oligoarginine/arginine. Interestingly, the effect of l-arginine was stronger than that of d-arginine at various concentrations, and the effect of other cationic amino acids such as lysine and histidine was relatively lower than that of arginine. In addition, no leakage of lactate dehydrogenase from the intestinal epithelium and no change in the transepithelial electrical resistance of a Caco-2 cell monolayer were detected after administration of l-arginine as the single amino acid, which suggests that there were no undesirable effects of arginine on the integrity of cell membranes and paracellular tight junctions. Oral administration study in mice demonstrated that the stronger hypoglycemic effects were observed after coadministration of insulin with l-arginine. In this study, we found that arginine is a key cationic amino acid for delivering insulin across intestinal epithelial barriers and hopefully accelerating the clinical development of oral insulin delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Oral pulsatile delivery: rationale and chronopharmaceutical formulations.

    Science.gov (United States)

    Maroni, Alessandra; Zema, Lucia; Del Curto, Maria Dorly; Loreti, Giulia; Gazzaniga, Andrea

    2010-10-15

    Oral pulsatile/delayed delivery systems are designed to elicit programmable lag phases preceding a prompt and quantitative, repeated or prolonged release of drugs. Accordingly, they draw increasing interest because of the inherent suitability for accomplishing chronotherapeutic goals, which have recently been highlighted in connection with a number of widespread chronic diseases with typical night or early-morning recurrence of symptoms (e.g. bronchial asthma, cardiovascular disease, rheumatoid arthritis, early-morning awakening). In addition, time-based colonic release can be attained when pulsatile delivery systems are properly adapted to overcome unpredictable gastric emptying and provide delay phases that would approximately match the small intestinal transit time. Oral pulsatile delivery is pursued by means of a variety of release platforms, namely reservoir, capsular and osmotic devices. The aim of the present review is to outline the rationale and main formulation strategies behind delayed-release dosage forms intended for the pharmacological treatment of chronopathologies.

  3. Nanostructured lipid carriers: versatile oral delivery vehicle.

    Science.gov (United States)

    Poonia, Neelam; Kharb, Rajeev; Lather, Viney; Pandita, Deepti

    2016-09-01

    Oral delivery is the most accepted and economical route for drug administration and leads to substantial reduction in dosing frequency. However, this route still remains a challenge for the pharmaceutical industry due to poorly soluble and permeable drugs leading to poor oral bioavailability. Incorporating bioactives into nanostructured lipid carriers (NLCs) has helped in boosting their therapeutic functionality and prolonged release from these carrier systems thus providing improved pharmacokinetic parameters. The present review provides an overview of noteworthy studies reporting impending benefits of NLCs in oral delivery and highlights recent advancements for developing engineered NLCs either by conjugating polymers over their surface or modifying their charge to overcome the mucosal barrier of GI tract for active transport across intestinal membrane.

  4. Peroral insulin delivery : new concepts and excipients

    NARCIS (Netherlands)

    Sadeghi, Assal M.M.

    2008-01-01

    A number of chitosan derivatives were synthesized and compared to the previously synthesized derivatives for their permeation enhancing activity. Using these derivatives insulin nanoparticles were prepared and their effect was compared to the free polymer and insulin in Caco-2 cells. The results sug

  5. Influence of glucosamine on the bioactivity of insulin delivered subcutaneously and in an oral nanodelivery system

    Directory of Open Access Journals (Sweden)

    Al-Kurdi ZI

    2015-11-01

    Full Text Available Zakieh I Al-Kurdi,1,2 Babur Z Chowdhry,2 Stephen A Leharne,2 Nidal A Qinna,3 Mahmoud MH Al Omari,1 Adnan A Badwan1 1The Jordanian Pharmaceutical Manufacturing Company (PLC, Naor, Jordan; 2Faculty of Engineering and Science, University of Greenwich, Medway Campus, Kent, UK; 3Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan Abstract: The aim of the work reported herein was to study the effect of glucosamine HCl (GlcN·HCl on the bioactivity (BA of insulin, administered via subcutaneous (SC and oral routes, in adult male Sprague Dawley rats. The oral insulin delivery system (insulin–chitosan reverse micelle [IC-RM] was prepared by solubilizing insulin–chitosan (13 kDa polyelectrolyte complex in a RM system consisting of oleic acid, PEG-8 caprylic/capric glycerides, and polyglycerol-6-dioleate. The BA of insulin in vivo was evaluated by measuring blood glucose level using a blood glucose meter; the results revealed that the extent of hypoglycemic activity of SC insulin was GlcN·HCl dose dependent when they were administered simultaneously. A significant reduction in blood glucose levels (P<0.05 was found for the insulin:GlcN·HCl at mass ratios of 1:10 and 1:20, whereas lower ratios (eg, 1:1 and 1:4 showed no significant reduction. Furthermore, enhancement of the action of SC insulin was achieved by oral administration of GlcN·HCl for 5 consecutive days prior to insulin injection (P<0.05. For oral insulin administration via the IC-RM system, the presence of GlcN·HCl increased the hypoglycemic activity of insulin (P<0.05. The relative BA were 6.7% and 5.4% in the presence and absence of GlcN·HCl (ie, the increase in the relative BA was approximately 23% due to incorporating GlcN·HCl in the IC-RM system, respectively. The aforementioned findings offer an opportunity to incorporate GlcN·HCl in oral insulin delivery systems in order to enhance a reduction in blood

  6. Self-regulating insulin delivery systems I. Synthesis and characterization of glycosylated insulin

    NARCIS (Netherlands)

    Jeong, Seo Young; Kim, Sung Wan; Eenink, Martinus J.D.; Feijen, Jan

    1984-01-01

    A design for a self-regulating insulin delivery system based on the competitive binding of glucose and glycosylated insulin to the lectin Concanavalin A is proposed. A differnt approach to diabetes therapy is the attempt to effect a permanent cure of the disease by supplementing the patient's

  7. Challenges and recent advances in the subcutaneous delivery of insulin.

    Science.gov (United States)

    Guo, Xiaohui; Wang, Wei

    2017-06-01

    The morbidity of diabetes mellitus is increasing, and subcutaneous injection of exogenous insulin is well established as an effective therapeutic strategy for reducing complications associated with the disease. However, the pain that accompanies repeated injections is an important drawback, and can detrimentally affect the adherence to therapy. Recently, there have been great improvements in injection devices and techniques, including the development of microneedle systems and quantitative injection technologies, which have increased the accuracy of injection, decreased leakage of insulin to the skin surface, and reduced pain. Areas covered: This review highlights some limitations of current techniques for the injection of insulin and its analogs, and describes new methodologies and strategies that have been developed in an attempt to overcome these limitations. Furthermore, novel technologies currently under development that are potential future prospects for insulin delivery are discussed. Expert opinion: New technologies have provided easier and well-tolerated treatment regimens for diabetes patients. However, to further improve patients' satisfaction, self-regulated insulin delivery, automatic adjustment of needle length, memory function to the injection device, use of novel materials could be introduced into insulin injection. Intelligent control of insulin delivery and soluble microneedle arrays may be important areas of future research.

  8. Dose comparison of ultrasonic transdermal insulin delivery to subcutaneous insulin injection

    Science.gov (United States)

    Park, Eun-Joo; Dodds, Jeff; Barrie Smith, Nadine

    2010-03-01

    Prior studies have demonstrated the effectiveness of noninvasive transdermal insulin delivery using a cymbal transducer array. In this study the physiologic response to ultrasound mediated transdermal insulin delivery is compared to that of subcutaneously administered insulin. Anesthetized rats (350-550 g) were divided into four groups of four animals; one group representing ultrasound mediated insulin delivery and three representing subcutaneously administered insulin (0.15, 0.20, and 0.25 U/kg). The cymbal array was operated for 60 minutes at 20 kHz with 100 mW/cm2 spatial-peak temporal-peak intensity and a 20% duty cycle. The blood glucose level was determined at the beginning of the experiment and, following insulin administration, every 15 minutes for 90 minutes for both the ultrasound and injection groups. The change in blood glucose from baseline was compared between groups. When administered by subcutaneous injection at insulin doses of 0.15 and 0.20 U/kg, there was little change in the blood glucose levels over the 90 minute experiment. Following subcutaneous administration of insulin at a dose of 0.25 U/kg, blood glucose decreased by 190±96 mg/dl (mean±SD) at 90 minutes. The change in blood glucose following ultrasound mediated insulin delivery was -262±40 mg/dl at 90 minutes. As expected, the magnitude of change in blood glucose between the three injection groups was dependant on the dose of insulin administered. The change in blood glucose in the ultrasound group was greater than that observed in the injection groups suggesting that a higher effective dose of insulin was delivered.

  9. Statistical optimization of insulin-loaded Pluronic F-127 gels for buccal delivery of basal insulin.

    Science.gov (United States)

    Das, Nilanjana; Madan, Parshotam; Lin, Senshang

    2012-01-01

    The principle of statistical optimization was employed to fabricate insulin-loaded Pluronic F-127 (PF-127) gel formulations having the potential for buccal delivery of basal insulin. A two-level resolution III fractional factorial design was applied to simultaneously evaluate five independent formulation variables: PF-127 concentration, insulin concentration, sodium sulfate concentration, hydroxypropylmethyl cellulose (HPMC) concentration, and presence of sodium glycocholate. The amount of insulin released and permeated from gels as well as gelation time and mucoadhesion force of gels were measured and used as dependent response variables for formulation optimization. Optimization of a gel formulation was achieved by applying constrained optimization via regression analysis. In vitro permeation flux of insulin from the optimized formulation through procine buccal mucosa was 93.17 (±0.058, n = 3) μg/cm(2). Plasma insulin levels following buccal administration of the optimized formulation at 10, 25 and 50 IU/kg to healthy rats were found to be dose dependent and basal insulin levels were maintained at least for 8 h. Furthermore, continuous hypoglycemia for at least 8 h was observed with 89%, 51% and 25% of blood glucose reduction, respectively, for these three doses. The results of this investigation conclude the feasibility of development of optimized buccal insulin-loaded Pluronic F-127 gels for basal insulin delivery.

  10. Particle designs for the stabilization and controlled-delivery of protein drugs by biopolymers: a case study on insulin.

    Science.gov (United States)

    Lim, Hui-Peng; Tey, Beng-Ti; Chan, Eng-Seng

    2014-07-28

    Natural biopolymers have attracted considerable interest for the development of delivery systems for protein drugs owing to their biocompatibility, non-toxicity, renewability and mild processing conditions. This paper offers an overview of the current status and future perspectives of particle designs using biopolymers for the stabilization and controlled-delivery of a model protein drug--insulin. We first describe the design criteria for polymeric encapsulation and subsequently classify the basic principles of particle fabrication as well as the existing particle designs for oral insulin encapsulation. The performances of these existing particle designs in terms of insulin stability and in vitro release behavior in acidic and alkaline media, as well as their in vivo performance are compared and reviewed. This review forms the basis for future works on the optimization of particle design and material formulation for the development of an improved oral delivery system for protein drugs.

  11. The Relationship between 25-hydroxyvitamin D Levels, Insulin Sensitivity and Insulin Secretion in Women 3 Years after Delivery.

    Science.gov (United States)

    Tänczer, Tímea; Magenheim, Rita; Fürst, Ágnes; Domján, Beatrix; Janicsek, Zsófia; Szabó, Eszter; Ferencz, Viktória; Tabák, Ádám G

    2017-05-03

    There is a direct correlation between 25-hydroxyvitamin D (25[OH]D) levels and insulin sensitivity. Furthermore, women with gestational diabetes (GDM) may have lower levels of 25(OH)D compared to controls. The present study intended to investigate 25(OH)D levels and their association with insulin sensitivity and insulin secretion in women with prior GDM and in controls 3.2 years after delivery. A total of 87 patients with prior GDM and 45 randomly selected controls (age range, 22 to 44 years) with normal glucose tolerance during pregnancy nested within a cohort of all deliveries at Saint Margit Hospital, Budapest, between January 1 2005, and December 31 2006, were examined. Their 25(OH) D levels were measured by radioimmunoassay. Insulin sensitivity and fasting insulin secretion were estimated using the homeostasis model asssessment (HOMA) calculator and early insulin secretion by the insulinogenic index based on a 75 g oral glucose tolerance test. There was no significant difference in 25(OH)D levels between cases and controls (27.2±13.1 [±SD] vs. 26.9±9.8 ng/L). There was a positive association between HOMA insulin sensitivity and 25(OH)D levels (beta = 0.017; 95% CI 0.001 to 0.034/1 ng/mL) that was robust to adjustment for age and body mass index. There was a nonsignificant association between HOMA insulin secretion and 25(OH)D (p=0.099), while no association was found with the insulinogenic index. Prior GDM status was not associated with 25(OH)D levels; however, 25(OH) D levels were associated with HOMA insulin sensitivity. It is hypothesized that the association between HOMA insulin secretion and 25(OH)D levels is related to the autoregulation of fasting glucose levels because no association between 25(OH)D and insulinogenic index was found. Copyright © 2017 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  12. Oral salmon calcitonin enhances insulin action and glucose metabolism in diet-induced obese streptozotocin-diabetic rats

    DEFF Research Database (Denmark)

    Feigh, Michael; Hjuler, Sara T; Andreassen, Kim V

    2014-01-01

    We previously reported that oral delivery of salmon calcitonin (sCT) improved energy and glucose homeostasis and attenuated diabetic progression in animal models of diet-induced obesity (DIO) and type 2 diabetes, although the glucoregulatory mode of action was not fully elucidated. In the present....... Oral sCT by gavage was delivered as once-daily administration with lead-in (2mg/kg) and maintenance (0.5mg/kg) dose of oral sCT for a total of 21 days. Food intake, body weight, blood glucose, HbA1c, glucose and insulin tolerance test, and parameters of insulin sensitivity were investigated. Plasma...... glucoregulatory hormones and pancreatic insulin content were analyzed. Oral sCT treatment induced a pronounced anorectic action during the 7 days lead-in period and markedly reduced food intake and body weight in conjunction with improved glucose homeostasis. During the maintenance period, oral sCT normalized...

  13. NovoPen Echo® insulin delivery device

    Directory of Open Access Journals (Sweden)

    Hyllested-Winge J

    2016-01-01

    Full Text Available Jacob Hyllested-Winge,1 Thomas Sparre,2 Line Kynemund Pedersen2 1Novo Nordisk Pharma Ltd, Tokyo, Japan; 2Novo Nordisk A/S, Søborg, Denmark Abstract: The introduction of insulin pen devices has provided easier, well-tolerated, and more convenient treatment regimens for patients with diabetes mellitus. When compared with vial and syringe regimens, insulin pens offer a greater clinical efficacy, improved quality of life, and increased dosing accuracy, particularly at low doses. The portable and discreet nature of pen devices reduces the burden on the patient, facilitates adherence, and subsequently contributes to the improvement in glycemic control. NovoPen Echo® is one of the latest members of the NovoPen® family that has been specifically designed for the pediatric population and is the first to combine half-unit increment (=0.5 U of insulin dosing with a simple memory function. The half-unit increment dosing amendments and accurate injection of 0.5 U of insulin are particularly beneficial for children (and insulin-sensitive adults/elders, who often require small insulin doses. The memory function can be used to record the time and amount of the last dose, reducing the fear of double dosing or missing a dose. The memory function also provides parents with extra confidence and security that their child is taking insulin at the correct doses and times. NovoPen Echo is a lightweight, durable insulin delivery pen; it is available in two different colors, which may help to distinguish between different types of insulin, providing more confidence for both users and caregivers. Studies have demonstrated a high level of patient satisfaction, with 80% of users preferring NovoPen Echo to other pediatric insulin pens. Keywords: NovoPen Echo®, memory function, half-unit increment dosing, adherence, children, adolescents 

  14. Loading of microcontainers for oral drug delivery

    DEFF Research Database (Denmark)

    Marizza, Paolo

    , they are usually degraded before they are absorbed. These combined factors considerably reduce the bioavailability of many active ingredients. Several strategies have been developed to overcome these challenges. One of them are microfabricated drug delivery devices. Microreservoir based-systems are characterized...... of drugs and with the perspective of mass production. In a first instance, the suitability of inkjet printing as filling method was elucidated. Solutions containing furosemide and lipid based formulations of insulin were dispensed into microcontainers. Secondly, this technique was successfully utilized...... to dispense controlled amounts of polymer into microcontainers. Subsequently, polymer filled-containers were loaded with drug. To achieve this, supercritical impregnation technology was successfully employed. Furthermore, in vitro drug dissolution studies showed that the loading yields and the release...

  15. In vitro and in vivo evaluation of a novel oral insulin formulation

    Institute of Scientific and Technical Information of China (English)

    Er-li MA; Hong MA; Zheng LIU; Chang-xue ZHENG; Ming-xing DUAN

    2006-01-01

    Aim: To develop a stable self-emulsifying formulation for oral delivery of insulin. Methods: Caco-2 cell line and diabetic beagles were used as in vitro and in vivo models to study the absorption mechanism and the hypoglycemic efficacy of the formulation. In addition, various physicochemical parameters of the formulation such as droplet size, insulin encapsulation efficiency and stability were evaluated. Results: This formulation enabled changes in barrier properties of Caco-2 monolayers, as referred by transepithelial electrical resistance (TEER) and apparent permeability coefficients (Papp) of the paracellular marker ranitidine (20-fold greater than control) but not transcellular marker propranolol, suggesting that the opening of tight junctions was involved. In diabetic beagle dogs, the bioavailability of this formulation was up to 15.2% at a dose of 2.5 IU/kg in comparison with the hypoglycemic effect of native insulin (0.5 IU/kg) delivered by subcutaneous injection. Conclusion: This formulation, recently approved by the China State Food and Drug Administration to enter clinical trials, was stable, degradation-protected and absorption-enhanced, and provided a promising formulation for oral insulin delivery.

  16. Amphotericin B cochleates: a vehicle for oral delivery.

    Science.gov (United States)

    Perlin, David S

    2004-02-01

    Cochleates are a novel lipid-based delivery vehicle consisting of crystalline phospholipid-cation structures that form spiral lipid sheets. They represent a new technology platform for oral delivery of clinically important drugs that possess poor oral bioavailability. Orally administered cochleates containing amphotericin B (CAMB) showed broad-spectrum activity in murine infection models of candidiasis, aspergillosis and cryptococcosis. Initial biodistribution studies of CAMB administered orally in mice demonstrated that cochleates delivered significant levels of AMB to target organs. The lipid particulate nature of cochleates also imparted reduced toxicity that mimics other lipid-amphotericin B complexes. Cochleates are a promising new vehicle for oral delivery of amphotericin B at therapeutic levels.

  17. Discrepancy between plasma C-peptide and insulin response to oral and intravenous glucose

    DEFF Research Database (Denmark)

    Madsbad, S; Kehlet, H; Hilsted, J;

    1983-01-01

    Plasma insulin, proinsulin, and C-peptide responses to 25 g glucose orally and intravenously administered were measured in 10 healthy males. Plasma insulin response was higher during the oral load in accordance with the "incretin" concept. However, the actual amount of insulin secreted, as measur...... partially to a lower hepatic extraction of insulin....

  18. A New Approach to the Oral Administration of Insulin and Other Peptide Drugs

    Science.gov (United States)

    Saffran, Murray; Sudesh Kumar, G.; Savariar, Celin; Burnham, Jeffrey C.; Williams, Frederick; Neckers, Douglas C.

    1986-09-01

    The oral administration of peptide drugs is well known to be precluded by their digestion in the stomach and small intestine. As a new approach to oral delivery, peptide drugs were coated with polymers cross-linked with azoaromatic groups to form an impervious film to protect orally administered drugs from digestion in the stomach and small intestine. When the azopolymer-coated drug reached the large intestine, the indigenous microflora reduced the azo bonds, broke the cross-links, and degraded the polymer film, thereby releasing the drug into the lumen of the colon for local action or for absorption. The ability of the azopolymer coating to protect and deliver orally administered peptide drugs was demonstrated in rats with the peptide hormones vasopressin and insulin.

  19. Oral salmon calcitonin enhances insulin action and glucose metabolism in diet-induced obese streptozotocin-diabetic rats.

    Science.gov (United States)

    Feigh, Michael; Hjuler, Sara T; Andreassen, Kim V; Gydesen, Sofie; Ottosen, Ida; Henriksen, Jan Erik; Beck-Nielsen, Henning; Christiansen, Claus; Karsdal, Morten A; Henriksen, Kim

    2014-08-15

    We previously reported that oral delivery of salmon calcitonin (sCT) improved energy and glucose homeostasis and attenuated diabetic progression in animal models of diet-induced obesity (DIO) and type 2 diabetes, although the glucoregulatory mode of action was not fully elucidated. In the present study we hypothesized that oral sCT as pharmacological intervention 1) exerted anti-hyperglycemic efficacy, and 2) enhanced insulin action in DIO-streptozotocin (DIO-STZ) diabetic rats. Diabetic hyperglycemia was induced in male selectively bred DIO rats by a single low dose (30mg/kg) injection of STZ. Oral sCT by gavage was delivered as once-daily administration with lead-in (2mg/kg) and maintenance (0.5mg/kg) dose of oral sCT for a total of 21 days. Food intake, body weight, blood glucose, HbA1c, glucose and insulin tolerance test, and parameters of insulin sensitivity were investigated. Plasma glucoregulatory hormones and pancreatic insulin content were analyzed. Oral sCT treatment induced a pronounced anorectic action during the 7 days lead-in period and markedly reduced food intake and body weight in conjunction with improved glucose homeostasis. During the maintenance period, oral sCT normalized food intake and attenuated weight loss, albeit sustained glycemic control by reducing fasting blood glucose and HbA1c levels compared to those of vehicle-treated rats at the end of study. Notably, plasma levels of insulin, glucagon, leptin and adiponectin were unaltered, albeit insulin action was enhanced in conjunction with protection of pancreatic insulin content. The results of the present study indicate that oral sCT exerts a novel insulin-sensitizing effect to improve glucose metabolism in obesity and type 2 diabetes.

  20. Film coatings for oral colon delivery.

    Science.gov (United States)

    Maroni, Alessandra; Del Curto, Maria Dorly; Zema, Lucia; Foppoli, Anastasia; Gazzaniga, Andrea

    2013-12-05

    Oral colon delivery is pursued through a number of formulation strategies with the aim of enabling effective and well-tolerated treatments for large bowel pathologies or enhancing the intestinal absorption of peptide and protein drugs. According to such strategies, coated dosage forms for colonic release may be provided with microbiota, pH, pressure or time-dependent polymeric films. Microbiota-activated coatings are mostly obtained from polysaccharides of natural origin mixed with insoluble structuring excipients. Alternatively, synthetic azo compounds have been employed, generally requiring organic solvents for use as spray-coating agents. On the other hand, pH-sensitive films show responsiveness to pH changes in the lower gut, such as the rise generally observed in the terminal ileum and distal colon or the slight acidification of caecal contents by bacterial fermentation products. Pressure-sensitive coatings are intended for rupturing because of the relatively elevated pressure that may affect solid dosage forms in the large bowel. Finally, time-dependent films are expected to undergo timed erosion, break-up or permeabilization processes irrespective of the aforementioned physiological variables. In this review, the differing films applied for colon delivery purposes are surveyed, and details on their composition, manufacturing and performance are reported.

  1. Insulin delivery through nasal route using thiolated microspheres.

    Science.gov (United States)

    Nema, Tarang; Jain, Ashish; Jain, Aviral; Shilpi, Satish; Gulbake, Arvind; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    The aim of the present study was to investigate the potential of developed thiolated microspheres for insulin delivery through nasal route. In the present study, cysteine was immobilized on carbopol using EDAC. A total of 269.93 µmol free thiol groups per gram polymer were determined. The prepared nonthiolated and thiolated microspheres were studied for particle shape, size, drug content, swellability, mucoadhesion and in vitro insulin release. The thiolated microspheres exhibited higher mucoadhesion due to formation of covalent bonds via disulfide bridges with the mucus gel layer. Drug permeation through goat nasal mucosa of nonthiolated and thiolated microspheres were found as 52.62 ± 2.4% and 78.85 ± 3.1% in 6 h, respectively. Thiolated microspheres bearing insulin showed better reduction in blood glucose level (BGL) in comparison to nonthiolated microspheres as 31.23 ± 2.12% and 75.25 ± 0.93% blood glucose of initial BGL were observed at 6 h after nasal delivery of thiolated and nonthiolated microspheres in streptozotocin-induced diabetic rabbits.

  2. Sodium dodecyl sulfate/β-cyclodextrin vesicles embedded in chitosan gel for insulin delivery with pH-selective release

    Directory of Open Access Journals (Sweden)

    Zhuo Li

    2016-07-01

    Full Text Available In an answer to the challenge of enzymatic instability and low oral bioavailability of proteins/peptides, a new type of drug-delivery vesicle has been developed. The preparation, based on sodium dodecyl sulfate (SDS and β-cyclodextrin (β-CD embedded in chitosan gel, was used to successfully deliver the model drug-insulin. The self-assembled SDS/β-CD vesicles were prepared and characterized by particle size, zeta potential, appearance, microscopic morphology and entrapment efficiency. In addition, both the interaction of insulin with vesicles and the stability of insulin loaded in vesicles in the presence of pepsin were investigated. The vesicles were crosslinked into thermo-sensitive chitosan/β-glycerol phosphate solution for an in-situ gel to enhance the dilution stability. The in vitro release characteristics of insulin from gels in media at different pH values were investigated. The insulin loaded vesicles–chitosan hydrogel (IVG improved the dilution stability of the vesicles and provided pH-selective sustained release compared with insulin solution–chitosan hydrogel (ISG. In vitro, IVG exhibited slow release in acidic solution and relatively quick release in neutral solutions to provide drug efficacy. In simulated digestive fluid, IVG showed better sustained release and insulin protection properties compared with ISG. Thus IVG might improve the stability of insulin during its transport in vivo and contribute to the bioavailability and therapeutic effect of insulin.

  3. Sodium dodecyl sulfate/β-cyclodextrin vesicles embedded in chitosan gel for insulin delivery with pH-selective release.

    Science.gov (United States)

    Li, Zhuo; Li, Haiyan; Wang, Caifen; Xu, Jianghui; Singh, Vikramjeet; Chen, Dawei; Zhang, Jiwen

    2016-07-01

    In an answer to the challenge of enzymatic instability and low oral bioavailability of proteins/peptides, a new type of drug-delivery vesicle has been developed. The preparation, based on sodium dodecyl sulfate (SDS) and β-cyclodextrin (β-CD) embedded in chitosan gel, was used to successfully deliver the model drug-insulin. The self-assembled SDS/β-CD vesicles were prepared and characterized by particle size, zeta potential, appearance, microscopic morphology and entrapment efficiency. In addition, both the interaction of insulin with vesicles and the stability of insulin loaded in vesicles in the presence of pepsin were investigated. The vesicles were crosslinked into thermo-sensitive chitosan/β-glycerol phosphate solution for an in-situ gel to enhance the dilution stability. The in vitro release characteristics of insulin from gels in media at different pH values were investigated. The insulin loaded vesicles-chitosan hydrogel (IVG) improved the dilution stability of the vesicles and provided pH-selective sustained release compared with insulin solution-chitosan hydrogel (ISG). In vitro, IVG exhibited slow release in acidic solution and relatively quick release in neutral solutions to provide drug efficacy. In simulated digestive fluid, IVG showed better sustained release and insulin protection properties compared with ISG. Thus IVG might improve the stability of insulin during its transport in vivo and contribute to the bioavailability and therapeutic effect of insulin.

  4. Insulin delivery route for the artificial pancreas: subcutaneous, intraperitoneal, or intravenous? Pros and cons.

    Science.gov (United States)

    Renard, Eric

    2008-07-01

    Insulin delivery is a crucial component of a closed-loop system aiming at the development of an artificial pancreas. The intravenous route, which has been used in the bedside artificial pancreas model for 30 years, has clear advantages in terms of pharmacokinetics and pharmacodynamics, but cannot be used in any ambulatory system so far. Subcutaneous (SC) insulin infusion benefits from the broad expansion of insulin pump therapy that promoted the availability of constantly improving technology and fast-acting insulin analog use. However, persistent delays of insulin absorption and action, variability and shortterm stability of insulin infusion from SC-inserted catheters generate effectiveness and safety issues in view of an ambulatory, automated, glucose-controlled, artificial beta cell. Intraperitoneal insulin delivery, although still marginally used in diabetes care, may offer an interesting alternative because of its more-physiological plasma insulin profiles and sustained stability and reliability of insulin delivery.

  5. Developing a Commercial Air Ultrasonic Ceramic Transducer to Transdermal Insulin Delivery

    OpenAIRE

    Jabbari, Nasrollah; Asghari, Mohammad Hossein; Ahmadian, Hassan; Mikaili, Peyman

    2015-01-01

    The application of low-frequency ultrasound for transdermal delivery of insulin is of particular public interest due to the increasing problem of diabetes. The purpose of this research was to develop an air ultrasonic ceramic transducer for transdermal insulin delivery and evaluate the possibility of applying a new portable and low-cost device for transdermal insulin delivery. Twenty-four rats were divided into four groups with six rats in each group: one control group and three experimental ...

  6. Probing insulin bioactivity in oral nanoparticles produced by ultrasonication-assisted emulsification/internal gelation

    Directory of Open Access Journals (Sweden)

    Lopes MA

    2015-09-01

    Full Text Available Marlene A Lopes,1,2,* Bárbara Abrahim-Vieira,3,* Claudia Oliveira,4,5 Pedro Fonte,6,7 Alessandra M T Souza,3 Tammy Lira,3 Joana A D Sequeira,1,2 Carlos R Rodrigues,3 Lúcio M Cabral,3 Bruno Sarmento,6–8 Raquel Seiça,9 Francisco Veiga,1,2 António J Ribeiro1,4,5 1Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; 2CNC – Center for Neuroscience and Cell Biology, Coimbra, Portugal; 3Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; 4I3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal; 5Group Genetics of Cognitive Dysfunction, IBMC – Instituto de Biologia Molecular e Celular, Porto, Portugal; 6REQUIMTE, Department of Chemical Sciences – Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Porto, Portugal; 7CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal; 8INEB – Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal; 9IBILI – Institute of Biomedical Research in Light and Image, Faculty of Medicine, University of Coimbra, Coimbra, Portugal *These authors contributed equally to this work Abstract: Alginate–dextran sulfate-based particles obtained by emulsification/internal gelation technology can be considered suitable carriers for oral insulin delivery. A rational study focused on the emulsification and particle recovery steps was developed in order to reduce particles to the nanosize range while keeping insulin bioactivity. There was a decrease in size when ultrasonication was used during emulsification, which was more pronounced when a cosurfactant was added. Ultrasonication add-on after particle recovery decreased aggregation and led to a narrower nanoscale particle-size distribution. Insulin encapsulation efficiency was 99.3%±0.5%, attributed to the strong pH-stabilizing electrostatic effect between insulin and

  7. Insulin monotherapy compared with the addition of oral glucose-lowering agents to insulin for people with type 2 diabetes already on insulin therapy and inadequate glycaemic control

    NARCIS (Netherlands)

    Vos, Rimke C; van Avendonk, Mariëlle JP; Jansen, Hanneke; Goudswaard, Alexander N; van den Donk, Maureen; Gorter, Kees; Kerssen, Anneloes; Rutten, Guy EHM

    2016-01-01

    BACKGROUND: It is unclear whether people with type 2 diabetes mellitus on insulin monotherapy who do not achieve adequate glycaemic control should continue insulin as monotherapy or can benefit from adding oral glucose-lowering agents to the insulin therapy. OBJECTIVES: To assess the effects of insu

  8. Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats.

    Science.gov (United States)

    Ansari, Mohammad Javed; Anwer, Md Khalid; Jamil, Shahid; Al-Shdefat, Ramadan; Ali, Bahaa E; Ahmad, Mohammad Muqtader; Ansari, Mohammad Nazam

    2016-07-01

    Insulin is a hormone used in the treatment of diabetes mellitus. Multiple injections of insulin every day may causes pain, allergic reactions at injection site, which lead to low patient compliance. The aim of this work was to develop and evaluate an efficient solid lipid nanoparticle (SLN) carrier for oral delivery of insulin. SLNs were prepared by double emulsion solvent evaporation (w/o/w) technique, employing glyceryltrimyristate (Dynasan 114) as lipid phase and soy lecithin and polyvinyl alcohol as primary and secondary emulsifier, respectively, and evaluated in vitro for particle size, polydispersity index (PDI) and drug entrapment. Among the eight different developed formulae (F1-F8), F7 showed an average particle size (99 nm), PDI (0.021), high entrapment of drug (56.5%). The optimized formulation (F7) was further evaluated by FT-IR, DSC, XRD, in vitro release, permeation, stability, bioavailability and pharmacological studies. Insulin-loaded SLNs showed better protection from gastrointestinal environment as evident from the relative bioavailability, which was enhanced five times as compared to the insulin solution. A significant enhancement of relative bioavailability of insulin was observed, i.e. approximately five times of pure insulin solution when loaded in SLN (8.26% versus 1.7% only).

  9. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs

    DEFF Research Database (Denmark)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe...... biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral...... delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract...

  10. Orally active insulin mimics: where do we stand now?

    Indian Academy of Sciences (India)

    M Balasubramanyam; V Mohan

    2001-09-01

    The war against diabetes through the development of new drugs is an ongoing continuous process to counter the alarming global increase in the prevalence of diabetes and its complications, particularly in developing countries like India. Unfortunately, the speed with which our knowledge of diabetes and its effects is expanding is not matched by the availability of new drugs. Following the identification of the insulin receptor (IR), its intrinsic kinase activity and molecular cloning, many studies have looked at IR as an ideal drug target. This review summarizes in brief the latest advancements in this field with particular reference to the current situation in respect of the development of orally active insulin mimetics in the treatment of type 2 diabetes.

  11. Stimulation of insulin secretion in man by oral glycerol administration.

    Science.gov (United States)

    Zanoboni, A; Schwarz, D; Zanoboni-Muciaccia, W

    1976-01-01

    The effects of an orally administered glycerol load (1 g/Kg body weight) on blood glucose, plasma FFA, and plasma insulin levels have been determined in eight normal fasting or glucose loaded (1 g/Kg body weight) volunteers. Blood glucose levels were not affected by glycerol loading while glicemia followed the same pattern of a glucose tolerance test in the group treated with glucose plus glycerol. Plasma FFA were significantly lowered only 90 min after glycerol loading while they had markedly and persistently decreased by glycerol plus glucose per os. Finally, though glicemia did not change, insulinemia was markedly increased by glycereol, 90 min after loading; moreover, plasma IRI was significantly higher in the group treated with glycerol plus glucose than in the group treated with glucose alone. These data suggest that the release of insulin may be stimulated by a very small increment of blood glucose, which derives from glycerol.

  12. A DETAILED REVIEW ON ORAL MUCOSAL DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Radha Bhati

    2012-03-01

    Full Text Available Oral mucosal drug delivery system is widely applicable as novel site for administration of drug for immediate and controlled release action by preventing first pass metabolism and enzymatic degradation due to GI microbial flora. Oral mucosal drug delivery system provides local and systemic action. In this review, attention is focused to give regarding physiology of oral mucosal including tissue permeability, barriers to permeation and route of permeation, biopharmaceutics of buccal and sublingual absorption, factors affecting drug absorption, detailed information of penetration enhancers, design of oral mucosal drug delivery system and role of mucoadhesion and various theories of bioadhesion. Evaluation techniques and selection of animal model for in-vivo studies are also discussed.

  13. Oral controlled release drug delivery system and Characterization of oral tablets; A review

    Directory of Open Access Journals (Sweden)

    Muhammad Zaman

    2016-01-01

    Full Text Available Oral route of drug administration is considered as the safest and easiest route of drug administration. Control release drug delivery system is the emerging trend in the pharmaceuticals and the oral route is most suitable for such kind of drug delivery system. Oral route is more convenient for It all age group including both pediatric and geriatrics. There are various systems which are adopted to deliver drug in a controlled manner to different target sites through oral route. It includes diffusion controlled drug delivery systems; dissolution controlled drug delivery systems, osmotically controlled drug delivery systems, ion-exchange controlled drug delivery systems, hydrodynamically balanced systems, multi-Particulate drug delivery systems and microencapsulated drug delivery system. The systems are formulated using different natural, semi-synthetic and synthetic polymers. The purpose of the review is to provide information about the orally controlled drug delivery system, polymers which are used to formulate these systems and characterizations of one of the most convenient dosage form which is the tablets. 

  14. Novel Simple Insulin Delivery Device Reduces Barriers to Insulin Therapy in Type 2 Diabetes: Results From a Pilot Study

    OpenAIRE

    Hermanns, Norbert; Lilly, Leslie C.; Mader, Julia K.; Aberer, Felix; Ribitsch, Anja; Kojzar, Harald; Warner, Jay; Pieber, Thomas R.

    2015-01-01

    Background: The PaQ® insulin delivery system is a simple-to-use patch-on device that provides preset basal rates and bolus insulin on demand. In addition to feasibility of use, safety, and efficacy (reported elsewhere), this study analyzed the impact of PaQ on patient-reported outcomes, including barriers to insulin treatment, diabetes-related distress, and attitudes toward insulin therapy in patients with type 2 diabetes on a stable multiple daily injection (MDI) regimen. Methods: This singl...

  15. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose.

    Science.gov (United States)

    Niu, Mengmeng; Lu, Yi; Hovgaard, Lars; Guan, Peipei; Tan, Yanan; Lian, Ruyue; Qi, Jianping; Wu, Wei

    2012-06-01

    Oral delivery of protein or polypeptide drugs remains a challenge due to gastric and enzymatic degradation as well as poor permeation across the intestinal epithelia. In this study, liposomes containing bile salts were developed as a new oral insulin delivery system. The primary goal was to investigate the effect of cholate type, particle size and dosage of the liposomes on the hypoglycemic activity and oral bioavailability. Liposomes containing sodium glycocholate (SGC), sodium taurocholate (STC) or sodium deoxycholate (SDC) were prepared by a reversed-phase evaporation method. After oral administration, all liposomes elicited a certain degree of hypoglycemic effect in parallel with an increase in blood insulin level. The highest oral bioavailability of approximately 8.5% and 11.0% could be observed with subcutaneous insulin as reference for SGC-liposomes in non-diabetic and diabetic rats, respectively. Insulin-loaded liposomes showed slower and sustained action over a period of over 20 h with peak time around 8-12h. SGC-liposomes showed higher oral bioavailability than liposomes containing STC or SDC and conventional liposomes. The hypoglycemic effect was size-dependent with the highest at 150 nm or 400 nm and was proportionally correlated to the administered dose. The results supported the hypothesis of insulin absorption as intact liposomes.

  16. Developing a Commercial Air Ultrasonic Ceramic Transducer to Transdermal Insulin Delivery.

    Science.gov (United States)

    Jabbari, Nasrollah; Asghari, Mohammad Hossein; Ahmadian, Hassan; Mikaili, Peyman

    2015-01-01

    The application of low-frequency ultrasound for transdermal delivery of insulin is of particular public interest due to the increasing problem of diabetes. The purpose of this research was to develop an air ultrasonic ceramic transducer for transdermal insulin delivery and evaluate the possibility of applying a new portable and low-cost device for transdermal insulin delivery. Twenty-four rats were divided into four groups with six rats in each group: one control group and three experimental groups. Control group (C) did not receive any ultrasound exposure or insulin (untreated group). The second group (T1) was treated with subcutaneous insulin (Humulin(®) R, rDNA U-100, Eli Lilly and Co., Indianapolis, IN) injection (0.25 U/Kg). The third group (T2) topically received insulin, and the fourth group (T3) received insulin with ultrasound waves. All the rats were anesthetized by intraperitoneal injection of ketamin hydrochloride and xylazine hydrochloride. Blood samples were collected after anesthesia to obtain a baseline glucose level. Additional blood samples were taken every 15 min in the whole 90 min experiment. In order for comparison the changes in blood glucose levels" to " In order to compare the changes in blood glucose levels. The statistical multiple comparison (two-sided Tukey) test showed a significant difference between transdermal insulin delivery group (T2) and subcutaneous insulin injection group (T1) during 90 min experiment (P = 0.018). In addition, the difference between transdermal insulin delivery group (T2) and ultrasonic transdermal insulin delivery group (T3) was significant (P = 0.001). Results of this study demonstrated that the produced low-frequency ultrasound from this device enhanced the transdermal delivery of insulin across hairless rat skin.

  17. Determining pancreatic β-cell compensation for changing insulin sensitivity using an oral glucose tolerance test

    DEFF Research Database (Denmark)

    Solomon, Thomas; Malin, Steven K; Karstoft, Kristian

    2014-01-01

    Plasma glucose, insulin, and C-peptide responses during an OGTT are informative for both research and clinical practice in type 2 diabetes. The aim of this study was to use such information to determine insulin sensitivity and insulin secretion so as to calculate an oral glucose disposition index...

  18. Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature

    Science.gov (United States)

    Wang, Hong; Upchurch, Charles T.; Liu, Zhenqi

    2011-01-01

    Insulin, at physiological concentrations, regulates the volume of microvasculature perfused within skeletal and cardiac muscle. It can also, by relaxing the larger resistance vessels, increase total muscle blood flow. Both of these effects require endothelial cell nitric oxide generation and smooth muscle cell relaxation, and each could increase delivery of insulin and nutrients to muscle. The capillary microvasculature possesses the greatest endothelial surface area of the body. Yet, whether insulin acts on the capillary endothelial cell is not known. Here, we review insulin's actions at each of three levels of the arterial vasculature as well as recent data suggesting that insulin can regulate a vesicular transport system within the endothelial cell. This latter action, if it occurs at the capillary level, could enhance insulin delivery to muscle interstitium and thereby complement insulin's actions on arteriolar endothelium to increase insulin delivery. We also review work that suggests that this action of insulin on vesicle transport depends on endothelial cell nitric oxide generation and that insulin's ability to regulate this vesicular transport system is impaired by inflammatory cytokines that provoke insulin resistance. PMID:21610226

  19. Transmembrane transport of peptide type compounds: prospects for oral delivery

    Science.gov (United States)

    Lipka, E.; Crison, J.; Amidon, G. L.

    1996-01-01

    Synthesis and delivery of potential therapeutic peptides and peptidomimetic compounds has been the focus of intense research over the last 10 years. While it is widely recognized that numerous limitations apply to oral delivery of peptides, some of the limiting factors have been addressed and their mechanisms elucidated, which has lead to promising strategies. This article will briefly summarize the challenges, results and current approaches of oral peptide delivery and give some insight on future strategies. The barriers determining peptide bioavailability after oral administration are intestinal membrane permability, size limitations, intestinal and hepatic metabolism and in some cases solubility limitations. Poor membrane permeabilities of hydrophilic peptides might be overcome by structurally modifying the compounds, thus increasing their membrane partition characteristics and/or their affinity to carrier proteins. Another approach is the site-specific delivery of the peptide to the most permeable parts of the intestine. The current view on size limitation for oral drug delivery has neglected partition considerations. Recent studies suggest that compounds with a molecular weight up to 4000 might be significantly absorbed, assuming appropriate partition behavior and stability. Metabolism, probably the most significant factor in the absorption fate of peptides, might be controlled by coadministration of competitive enzyme inhibitors, structural modifications and administration of the compound as a well absorbed prodrug that is converted into the therapeutically active agent after its absorption. For some peptides poor solubility might present a limitation to oral absorption, an issue that has been addressed by mechanistically defining and therefore improving formulation parameters. Effective oral peptide delivery requires further development in understanding these complex mechanisms in order to maximize the therapeutic potential of this class of compounds.

  20. Fabrication and loading of microcontainers for oral drug delivery

    DEFF Research Database (Denmark)

    Petersen, Ritika Singh

    is achieved. Characterization of spin coating of drug-polymer films is thoroughly performed using microscopy, profilometry, differential scanning calorimetry, Raman spectroscopy, X-ray diffraction and microdissolution release tests. These films are applied for loading of microcontainers. Furosemide which......Oral drug delivery is considered as the most patient compliant delivery route. However, it faces many obstacles, especially due to the ever-increasing number of drugs that are poorly soluble and barely absorbed in the gastro-intestinal tract. Moreover, drugs can degrade in the harsh acidic...... environment of stomach before they reach the intestine. These issues lead to reduced bioavailability of active ingredients. To combat that novel oral drug delivery systems have been developed. Some of these systems that have gained significant interest in this field are reservoir based drug delivery...

  1. AN OVERVIEW ON VARIOUS APPROACHES TO ORAL CONTROLLED DRUG DELIVERY SYSTEM VIA GASTRORETENTIVE DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Bhalla.Neetika

    2012-04-01

    Full Text Available In recent years scientific and technological advancements have been made in the research and development of oral drug delivery system. Oral sustained drug delivery system is complicated by limited gastric residence times (GRTs. In order to understand various physiological difficulties to achieve gastric retention, we have summarized important factors controlling gastric retention. To overcome these limitations, various approaches have been proposed to increase gastric residence of drug delivery systems in the upper part of the gastrointestinal tract includes floating drug dosage systems (FDDS, swelling or expanding systems , mucoadhesive systems , magnetic systems, modified-shape systems, high density system and other delayed gastric emptying devices.

  2. Peptide-enhanced oral delivery of therapeutic peptides and proteins

    DEFF Research Database (Denmark)

    Kristensen, Mie; Foged, Camilla; Berthelsen, Jens;

    2013-01-01

    throughout the gastrointestinal (GI) tract, chemical stability is an inherent challenge when employing amino acid-based excipients for oral delivery, and multiple approaches have been investigated to improve this. The exact mechanisms of transepithelial translocation are discussed, and it is believed......Systemic therapy upon oral delivery of biologics, such as peptide and protein drugs is limited due to their large molecular size, their low enzymatic stability and their inability to cross the intestinal epithelium. Ways to overcome the epithelial barrier include the use of peptide-based excipients...

  3. Oral administration of a cholera toxin B subunit-insulin fusion protein produced in silkworm protects against autoimmune diabetes.

    Science.gov (United States)

    Gong, Zhaohui; Jin, Yongfeng; Zhang, Yaozhou

    2005-09-22

    The oral administration of disease-specific autoantigens can induce oral immune tolerance and prevent or delay the onset of autoimmune disease symptoms. Here, we describe the construction of an edible vaccine consisting of a fusion protein composed of cholera toxin B subunit (CTB) and insulin that is produced in silkworm larvae at levels of up to 0.3 mg/ml of hemolymph. The silkworm bioreactor produced this fusion protein vaccine as the pentameric CTB-insulin form, which retained the GM1-ganglioside binding affinity and the native antigenicity of CTB and insulin. Non-obese diabetic mice fed hemolymph containing microgram quantities of the CTB-insulin fusion protein showed a prominent reduction in pancreatic islet inflammation and a delay in the development of symptoms of clinical diabetes. These results demonstrate that the silkworm bioreactor is a feasible production and delivery system for an oral protein vaccine designed to develop immunological tolerance against T-cell-mediated autoimmune diabetes by regulatory T-cell induction.

  4. A novel pen-based Bluetooth-enabled insulin delivery system with insulin dose tracking and advice.

    Science.gov (United States)

    Bailey, Timothy S; Stone, Jenine Y

    2017-05-01

    Diabetes is growing in prevalence internationally. As more individuals require insulin as part of their treatment, technology evolves to optimize delivery, improve adherence, and reduce dosing errors. Insulin pens outperform vial and syringe in simplicity, dosing accuracy, and user preference. Bolus advisors improve dosing confidence and treatment adherence. The InPen System offers a novel approach to treatment via a wireless pen that syncs to a mobile application featuring a bolus advisor, enabling convenient insulin dose tracking and more accurate bolus advice among other features. Areas covered: Existing technology for insulin delivery and bolus advice are reviewed. The mechanics and functionality of the InPen device are delineated. Findings from formative testing and usability studies of the InPen system are reported. Future directions for the InPen system in the treatment of diabetes are discussed. Expert opinion: Diabetes management is complex and largely data-driven. The InPen System offers a promising new opportunity to avail insulin pen-users of features known to improve treatment efficacy, which have otherwise primarily been available to those using pumps. Given that the majority of insulin users do not use insulin pumps, the InPen System is poised to improve glucose control in a significant portion of the diabetes population.

  5. Mucoadhesive intestinal devices for oral delivery of salmon calcitonin.

    Science.gov (United States)

    Gupta, Vivek; Hwang, Byeong Hee; Lee, Joohee; Anselmo, Aaron C; Doshi, Nishit; Mitragotri, Samir

    2013-12-28

    One of the major challenges faced by therapeutic polypeptides remains their invasive route of delivery. Oral administration offers a potential alternative to injections; however, this route cannot be currently used for peptides due to their limited stability in the stomach and poor permeation across the intestine. Here, we report mucoadhesive devices for oral delivery that are inspired by the design of transdermal patches and demonstrate their capabilities in vivo for salmon calcitonin (sCT). The mucoadhesive devices were prepared by compressing a polymeric matrix containing carbopol, pectin and sodium carboxymethylcellulose (1:1:2), and were coated on all sides but one with an impermeable and flexible ethyl cellulose (EC) backing layer. Devices were tested for in vitro dissolution, mucoadhesion to intestinal mucosa, enhancement of drug absorption in vitro (Caco-2 monolayer transport) and in vivo in rats. Devices showed steady drug release with ≈75% cumulative drug released in 5h. Devices also demonstrated strong mucoadhesion to porcine small intestine to withstand forces up to 100 times their own weight. sCT-loaded mucoadhesive devices exhibited delivery of sCT across Caco-2 monolayers and across the intestinal epithelium in vivo in rats. A ≈52-fold (pharmacokinetic) and ≈44-fold (pharmacological) enhancement of oral bioavailability was observed with mucoadhesive devices when compared to direct intestinal injections. Oral delivery of devices in enteric coated capsules resulted in significant bioavailability enhancement.

  6. Clinical experience with an implanted closed-loop insulin delivery system

    National Research Council Canada - National Science Library

    Eric Renard

    2008-01-01

    ...: The Long-Term Sensor System® project assessed the feasibility of glucose control by the combined implantation of a pump for peritoneal insulin delivery and a central intravenous glucose sensor, connected physically by...

  7. Novel engineered systems for oral, mucosal and transdermal drug delivery.

    Science.gov (United States)

    Li, Hairui; Yu, Yuan; Faraji Dana, Sara; Li, Bo; Lee, Chi-Ying; Kang, Lifeng

    2013-08-01

    Technological advances in drug discovery have resulted in increasing number of molecules including proteins and peptides as drug candidates. However, how to deliver drugs with satisfactory therapeutic effect, minimal side effects and increased patient compliance is a question posted before researchers, especially for those drugs with poor solubility, large molecular weight or instability. Microfabrication technology, polymer science and bioconjugate chemistry combine to address these problems and generate a number of novel engineered drug delivery systems. Injection routes usually have poor patient compliance due to their invasive nature and potential safety concerns over needle reuse. The alternative non-invasive routes, such as oral, mucosal (pulmonary, nasal, ocular, buccal, rectal, vaginal), and transdermal drug delivery have thus attracted many attentions. Here, we review the applications of the novel engineered systems for oral, mucosal and transdermal drug delivery.

  8. Archaeal lipids in oral delivery of therapeutic peptides

    DEFF Research Database (Denmark)

    Jacobsen, Ann-Christin; Jensen, Sara M; Fricker, Gert;

    2017-01-01

    tetraether lipids. The inherent chemical stability and unique membrane-spanning characteristics of tetraether lipids render them interesting for oral drug delivery purposes. Archaeal lipids form liposomes spontaneously (archaeosomes) and may be incorporated in conventional liposomes (mixed vesicles). Both...... types of liposomes are promising to protect their drug cargo, such as therapeutic peptides, against the acidic environment of the stomach and proteolytic degradation in the intestine. They appear to withstand lipolytic enzymes and bile salts and may thus deliver orally administered therapeutic peptides...... to distant sections of the intestine or to the colon, where they may be absorbed, eventually by the help of absorption enhancers. Archaeal lipids and their semisynthetic derivatives may thus serve as biological source for the next generation oral drug delivery systems. The aim of this review is to present...

  9. Closed-loop insulin delivery for treatment of type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Elleri Daniela

    2011-11-01

    Full Text Available Abstract Type 1 diabetes is one of the most common endocrine problems in childhood and adolescence, and remains a serious chronic disorder with increased morbidity and mortality, and reduced quality of life. Technological innovations positively affect the management of type 1 diabetes. Closed-loop insulin delivery (artificial pancreas is a recent medical innovation, aiming to reduce the risk of hypoglycemia while achieving tight control of glucose. Characterized by real-time glucose-responsive insulin administration, closed-loop systems combine glucose-sensing and insulin-delivery components. In the most viable and researched configuration, a disposable sensor measures interstitial glucose levels, which are fed into a control algorithm controlling delivery of a rapid-acting insulin analog into the subcutaneous tissue by an insulin pump. Research progress builds on an increasing use of insulin pumps and availability of glucose monitors. We review the current status of insulin delivery, focusing on clinical evaluations of closed-loop systems. Future goals are outlined, and benefits and limitations of closed-loop therapy contrasted. The clinical utility of these systems is constrained by inaccuracies in glucose sensing, inter- and intra-patient variability, and delays due to absorption of insulin from the subcutaneous tissue, all of which are being gradually addressed.

  10. Insulin-based versus triple oral therapy for newly diagnosed type 2 diabetes: which is better?

    Science.gov (United States)

    Lingvay, Ildiko; Legendre, Jaime L; Kaloyanova, Polina F; Zhang, Song; Adams-Huet, Beverley; Raskin, Philip

    2009-10-01

    Early use of insulin after diagnosis of type 2 diabetes is met with resistance because of associated weight gain, hypoglycemia, and fear of decreased compliance and quality of life (QoL). In treatment-naive patients with newly diagnosed type 2 diabetes, insulin and metformin were initiated for a 3-month lead-in period, then patients were randomly assigned to insulin and metformin (insulin group) or metformin, pioglitazone, and glyburide (oral group) for 36 months. Hypoglycemic events, compliance, A1C, weight, QoL, and treatment satisfaction were assessed. Of 29 patients randomly assigned into each group, 83% (insulin group) and 72% (oral group) completed this 3-year study. At study completion, A1C was 6.1 +/- 0.6% (insulin group) versus 6.0 +/- 0.8% (oral group). Weight increased similarly in both groups (P = 0.09) by 4.47 kg (95% CI 0.89-8.04 kg) (insulin group) and 7.15 kg (95% CI 4.18-10.13 kg) (orals group). Hypoglycemic events did not differ between groups (mild 0.51 event/person-month in the insulin group vs. 0.68 event/person-month in the orals group, P = 0.18 and severe 0.04 event/person-year in the insulin group vs. 0.09 event/person-year in the orals group, P = 0.53). Compliance, QoL, and treatment satisfaction were similar between groups, with 100% of patients randomly assigned to insulin willing to continue such treatment. When compared with a clinically equivalent treatment regimen, insulin-based therapy is effective and did not cause greater weight gain or hypoglycemia nor decrease compliance, treatment satisfaction, or QoL. Insulin is safe, well-accepted, and effective for ongoing treatment of patients with newly diagnosed type 2 diabetes.

  11. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs

    DEFF Research Database (Denmark)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse;

    2015-01-01

    are summarized. Additionally, the paper provides an overview of recent studies on characterization of solid drug carriers for peptide/protein drugs, drug distribution in particles, drug release and stability in simulated GI fluids, as well as the absorption of peptide/protein drugs in cell-based models. The use......Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe...... biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral...

  12. Orally disintegrating films: A modern expansion in drug delivery system

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan

    2016-09-01

    Full Text Available Over the past few decades, tendency toward innovative drug delivery systems has majorly increased attempts to ensure efficacy, safety and patient acceptability. As discovery and development of new chemical agents is a complex, expensive and time consuming process, so recent trends are shifting toward designing and developing innovative drug delivery systems for existing drugs. Out of those, drug delivery system being very eminent among pediatrics and geriatrics is orally disintegrating films (ODFs. These fast disintegrating films have superiority over fast disintegrating tablets as the latter are associated with the risks of choking and friability. This drug delivery system has numerous advantages over conventional fast disintegrating tablets as they can be used for dysphasic and schizophrenic patients and are taken without water due to their ability to disintegrate within a few seconds releasing medication in mouth. Various approaches are employed for formulating ODFs and among which solvent casting and spraying methods are frequently used. Generally, hydrophilic polymers along with other excipients are used for preparing ODFs which allow films to disintegrate quickly releasing incorporated active pharmaceutical ingredient (API within seconds. Orally disintegrating films have potential for business and market exploitation because of their myriad of benefits over orally disintegrating tablets. This present review attempts to focus on benefits, composition, approaches for formulation and evaluation of ODFs. Additionally, the market prospect of this innovative dosage form is also targeted.

  13. Orally administered, insulin-loaded amidated pectin hydrogel beads sustain plasma concentrations of insulin in streptozotocin-diabetic rats.

    Science.gov (United States)

    Musabayane, C T; Munjeri, O; Bwititi, P; Osim, E E

    2000-01-01

    We report successful oral administration of insulin entrapped in amidated pectin hydrogel beads in streptozotocin (STZ)-diabetic rats, with a concomitant reduction in plasma glucose concentration. The pectin-insulin (PI) beads were prepared by the gelation of humilin-pectin solutions in the presence of calcium. Separate groups of STZ-diabetic rats were orally administered two PI beads (30 micrograms insulin) once or twice daily or three beads (46 micrograms) once daily for 2 weeks. Control non-diabetic and STZ-diabetic rats were orally administered pectin hydrogel drug-free beads. By comparison with control non-diabetic rats, untreated STZ-diabetic rats exhibited significantly low plasma insulin concentration (0.32+/-0. 03 ng/ml, n=6, compared with 2.60+/-0.44 ng/ml in controls, n=6) and increased plasma glucose concentrations (25.84+/-1.44 mmol/l compared with 10.72+/- 0.52 mmol/l in controls). Administration of two PI beads twice daily (60 micrograms active insulin) or three beads (46 micrograms) once a day to STZ-diabetic rats increased plasma insulin concentrations (0.89+/-0.09 ng/ml and 1.85+/- 0.26 ng/ml, respectively), with a concomitant reduction in plasma glucose concentration (15.45+/-1.63 mmol/l and 10.56+/-0.26 mmol/l, respectively). However, a single dose of PI beads (30 micrograms) did not affect plasma insulin concentrations, although plasma glucose concentrations (17.82+/-2.98 mmol/l) were significantly reduced compared with those in untreated STZ-diabetic rats. Pharmacokinetic parameters in STZ-diabetic rats show that the orally administered PI beads (30 micrograms insulin) were more effective in sustaining plasma insulin concentrations than was s.c. insulin (30 micrograms). The data from this study suggest that this insulin-loaded amidated pectin hydrogel bead formulation not only produces sustained release of insulin, but may also reduce plasma glucose concentration in diabetes mellitus.

  14. Preparation and characterization of glycoprotein-resistant starch complex as a coating material for oral bioadhesive microparticles for colon-targeted polypeptide delivery.

    Science.gov (United States)

    Situ, Wenbei; Li, Xiaoxi; Liu, Jia; Chen, Ling

    2015-04-29

    For effective oral delivery of polypeptide or protein and enhancement their oral bioavailability, a new resistant starch-glycoprotein complex bioadhesive carrier and an oral colon-targeted bioadhesive delivery microparticle system were developed. A glycoprotein, concanavalin A (Con A), was successfully conjugated to the molecules of resistant starch acetate (RSA), leading to the formation of resistant starch-glycoprotein complex. This Con A-conjugated RSA film as a coating material showed an excellent controlled-release property. In streptozotocin (STZ)-induced type II diabetic rats, the insulin-loaded microparticles coated with this Con A-conjugated RSA film exhibited good hypoglycemic response for keeping the plasma glucose level within the normal range for totally 44-52 h after oral administration with different insulin dosages. Oral glucose tolerance tests indicated that successive oral administration of these colon-targeted bioadhesive microparticles with insulin at a level of 50 IU/kg could achieve a hypoglycemic effect similar to that by injection of insulin at 35 IU/kg. Therefore, the potential of this new Con A-conjugated RSA film-coated microparticle system has been demonstrated to be capable of improving the oral bioavailability of bioactive proteins and peptides.

  15. Polymeric Micro- and Nanofabricatced Devices for Oral Drug Delivery

    Science.gov (United States)

    Fox, Cade Brylee

    While oral drug administration is by far the most preferred route, it is accompanied by many barriers that limit drug uptake such as the low pH of the stomach, metabolic and proteolytic enzymes, and limited permeability of the intestinal epithelium. As a result, many drugs ranging from small molecules to biological therapeutics have limited oral bioavailability, precluding them from oral administration. To address this issue, microfabrication has been applied to create planar, asymmetric devices capable of binding to the lining of the gastrointestinal tract and releasing drug at high concentrations, thereby increasing oral drug uptake. While the efficacy of these devices has been validated in vitro and in vivo, modifying their surfaces with nanoscale features has potential to refine their properties for enhanced drug delivery. This dissertation first presents an approach to fabricate polymeric microdevices coated with nanowires in a rapid, high throughput manner. The nanowires demonstrate rapid drug localization onto the surface of these devices via capillary action and increased adhesion to epithelial tissue, suggesting that this fabrication technique can be used to create devices with enhanced properties for oral drug delivery. Also presented are microdevices sealed with nanostraw membranes. The nanostraw membranes provide sustained drug release by limiting drug efflux from the devices, prevent drug degradation by limiting influx of outside biomolecules, and enhance device bioadhesion by penetrating into the mucus layer of the intestinal lining. Finally, an approach that dramatically increases the capacity and efficiency of drug loading into microdevices over previous methods is presented. A picoliter-volume printer is used to print drug directly into device reservoirs in an automated fashion. The technologies presented here expand the capabilities of microdevices for oral drug delivery by incorporating nanoscale structures that enhance device bioadhesion

  16. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems

    National Research Council Canada - National Science Library

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs...

  17. Position on zinc delivery to olfactory nerves in intranasal insulin phase I-III clinical trials.

    Science.gov (United States)

    Hamidovic, A

    2015-11-01

    Zinc in pancreatic insulin is essential for processing and action of the peptide, while in commercial preparations zinc promotes hexameric structure and prevents aggregate formation. In 2002, for the first time, insulin was delivered to humans intranasally with resulting cerebrospinal fluid insulin increases, but steady peripheral insulin levels. The novel method of increasing brain insulin levels without changes in the periphery resulted in an expansion of brain insulin research in clinical trials. As pre-clinical research has shown that brain insulin modulates a number functions, including food cravings and eating behavior, learning and memory functions, stress and mood regulation; realization of beneficial effects of insulin in modulating these functions in clinical populations became a possibility with the new direct-to-brain insulin delivery methodology. However, zinc, being integral to insulin structure and function, is neurotoxic, and has resulted in adverse effects to human health. In the last century, intranasal zinc was given preventively during the time of polio outbreak, and in the 21st century intranasal zinc was widely used over the counter to prevent common cold. In both cases, patients experienced partial or complete loss of smell. This paper is the first one to analyze zinc salts and concentrations of those two epidemiological adversities and directly compare formulations distributed to the public with animal toxicity data. The information gained from animal and epidemiological data provides a foundation for the formation of opinion given in this paper regarding safety of intranasal zinc in emerging clinical trials with intranasal insulin.

  18. Current trend in drug delivery considerations for subcutaneous insulin depots to treat diabetes.

    Science.gov (United States)

    P V, Jayakrishnapillai; Nair, Shantikumar V; Kamalasanan, Kaladhar

    2017-05-01

    Diabetes mellitus (DM) is a metabolic disorder due to irregularities in glucose metabolism, as a result of insulin disregulation. Chronic DM (Type 1) is treated by daily insulin injections by subcutaneous route. Daily injections cause serious patient non-compliance and medication non-adherence. Insulin Depots (ID) are parenteral formulations designed to release the insulin over a specified period of time, to control the plasma blood glucose level for intended duration. Physiologically, pancreas produces and secretes insulin in basal and pulsatile mode into the blood. Delivery systems mimicking basal release profiles are known as open-loop systems and current marketed products are open-loop systems. Future trend in open-loop systems is to reduce the number of injections per week by enhancing duration of action, by modifying the depot properties. The next generation technologies are closed-loop systems that mimic the pulsatile mode of delivery by pancreas. In closed-loop systems insulin will be released in response to plasma glucose. This review focuses on future trend in open-loop systems; by understanding (a) the secretion of insulin from pancreas, (b) the insulin regulation normal and in DM, (c) insulin depots and (d) the recent progress in open-loop depot technology particularly with respect to nanosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. MICRONEEDLES AS A WAY TO INCREASE THE TRANSDERMAL INSULIN DELIVERY

    Directory of Open Access Journals (Sweden)

    E. G. Kuznetsova

    2016-01-01

    Full Text Available Aim: to prove the possibility of increasing the diffusion of insulin through the skin in vitro with pre-applying microneedles.Materials and methods. Microemulsion for transdermal therapeutic system of insulin has been used in vitro studies. Genetically engineered human insulin has been used in this research. Applicators with silicon microneedles (40 and 150 microns long have been used to enhance the diffusion fl ux of drug substance. The dynamics of insulin release from the transdermal therapeutic systems through the rabbit skin has been studied in glass Franz diffusion cells in analyzer diffusion of drugs HDT 1000 (Copley Scientifi c Ltd., UK. Insulin has been labeled with fl uorescein isothiocyanate to separate the insulin absorption spectrum from the spectra of native skin proteins at spectrophotometer measurements.Results. The amounts of insulin delivered through the skin in vitro after previous application of microneedles of 40 and 150 microns are 282.5 ± 61.1 and 372.3 ± 7.0 microgram, respectively. This is 1.4 and 1.9 times more than in the transdermal system without microneedles.Conclusion. The conditions for increasing the diffusion of insulin through the skin in a model transdermal therapeutic system with microneedles (length – 150 microns, duration of pre-application – 1 hour have been found.

  20. Micro and nano structures for biosensing and oral drug delivery

    DEFF Research Database (Denmark)

    Boisen, Anja

    2014-01-01

    , facilitating electrochemical measurements. In cantilever-­‐based sensing, micrometer sized cantilevers are functionalized on one side with probe molecules. As target analytes bind to the probe molecules the cantilever deflects due to changes in surface stress. This deflection is typically in the nm range...... spectroscopy on picoliter amount of sample. Vibrating micrometer sized strings can be used for efficient and sensitive mass detection and for chemical analysis of single nanoparticles. We will show examples from drug characterization and illustrate how the strings can be read-­‐out using blu-­‐ray optics....... Finally, we will show how agglutination based assays can be handled and read-­‐out using the disc platform – here targeting biomarkers for rapid diagnostics and prognostics. Micrometer sized containers can be used for oral drug delivery. The hypothesis is that oral drug delivery can be improved...

  1. Lipid-based nanocarriers for oral peptide delivery.

    Science.gov (United States)

    Niu, Zhigao; Conejos-Sánchez, Inmaculada; Griffin, Brendan T; O'Driscoll, Caitriona M; Alonso, María J

    2016-11-15

    This article is aimed to overview the lipid-based nanostructures designed so far for the oral administration of peptides and proteins, and to analyze the influence of their composition and physicochemical (particle size, zeta potential) and pharmaceutical (drug loading and release) properties, on their interaction with the gastro-intestinal environment, and the subsequent PK/PD profile of the associated drugs. The ultimate goal has been to highlight and comparatively analyze the key factors that may be determinant of the success of these nanocarriers for oral peptide delivery. The article ends with some prospects on the challenges to be addressed for the intended commercial success of these delivery vehicles. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Oral delivery of peptides and proteins using lipid-based drug delivery systems

    DEFF Research Database (Denmark)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-01-01

    most important barriers (extensive enzymatic degradation and poor transmucosal permeability). This paper also gives a clear-cut idea about advantages and drawbacks of using different lipidic colloidal carriers ((micro)emulsions, solid lipid core particles and liposomes) for oral delivery of peptides...

  3. Hypoglycemic efficacy of chitosan-coated insulin liposomes after oral administration in mice

    Institute of Scientific and Technical Information of China (English)

    Zheng-hong WU; Qi-neng PING; Yi WEI; Jia-ming LAI

    2004-01-01

    AIM: To evaluate the hypoglycemic efficacy of insulin liposomes coated by chitosan with different molecular weights and concentrations after oral administration in mice. METHODS: Insulin-liposomes were prepared by reversed-phase evaporation. Chitosan coating was carried out by incubation of the liposomal suspensions with the chitosan solution. The hypoglycemic efficacies of chitosan-coated insulin liposomes were investigated by monitoring the blood glucose level using the glucose oxidase method after oral administration to healthy mice. RESULTS:In all the insulin liposomes, the insulin liposomes coated by 0.2 % chitosan (M. 1000 kDa) showed a better hypoglycemic efficacy as compared with the other liposomes coated by chitosan. The minimum blood glucose level was 15.1%±6.0 % of the initial (n=6). The hypoglycemic efficacy lasted for 4 h after oral administration to mice.CONCLUSION: Chitosan-coated liposomes could reduce tryptic digestion on insulin, and enhance enteral absorption of insulin. The molecular weights and concentrations of chitosan had significant effects on hypoglycemic efficacy of chitosan-coated insulin liposomes after oral administration to healthy mice.

  4. Incretin hormone and insulin responses to oral versus intravenous lipid administration in humans

    DEFF Research Database (Denmark)

    Lindgren, Ola; Carr, Richard D; Deacon, Carolyn F;

    2011-01-01

    Context: The incretin effect is responsible for the higher insulin response to oral glucose than to iv glucose at matching glucose levels. It is notknownwhetherthis effect is restricted to glucose only. Objective: The aim of the study was to examine whether insulin and incretin hormone responses ...

  5. Insulin administration: present strategies and future directions for a noninvasive (possibly more physiological) delivery

    Science.gov (United States)

    Matteucci, Elena; Giampietro, Ottavio; Covolan, Vera; Giustarini, Daniela; Fanti, Paolo; Rossi, Ranieri

    2015-01-01

    Insulin is a life-saving medication for people with type 1 diabetes, but traditional insulin replacement therapy is based on multiple daily subcutaneous injections or continuous subcutaneous pump-regulated infusion. Nonphysiologic delivery of subcutaneous insulin implies a rapid and sustained increase in systemic insulin levels due to the loss of concentration gradient between portal and systemic circulations. In fact, the liver degrades about half of the endogenous insulin secreted by the pancreas into the venous portal system. The reverse insulin distribution has short- and long-term effects on glucose metabolism. Thus, researchers have explored less-invasive administration routes based on innovative pharmaceutical formulations, which preserve hormone stability and ensure the therapeutic effectiveness. This review examines some of the recent proposals from clinical and material chemistry point of view, giving particular attention to patients’ (and diabetologists’) ideal requirements that organic chemistry could meet. PMID:26124635

  6. Oral pulsatile delivery systems based on swellable hydrophilic polymers.

    Science.gov (United States)

    Gazzaniga, Andrea; Palugan, Luca; Foppoli, Anastasia; Sangalli, Maria Edvige

    2008-01-01

    Upon contact with aqueous fluids, swellable hydrophilic polymers undergo typical chain relaxation phenomena that coincide with a glassy-rubbery transition. In the rubbery phase, these polymers may be subject to swelling, dissolution and erosion processes or, alternatively, form an enduring gel barrier when cross-linked networks (hydrogels) are dealt with. Because of the peculiar hydration and biocompatibility properties, such materials are widely exploited in the pharmaceutical field, particularly as far as hydrophilic cellulose derivatives are concerned. In oral delivery, they have for long been employed in the manufacturing of prolonged release matrices and, more recently, for pulsatile (delayed) release devices as well. Pulsatile delivery, which is meant as the liberation of drugs following programmed lag phases, has drawn increasing interest especially in view of emerging chronotherapeutic approaches. In pursuit of pulsatile release, various design strategies have been proposed, chiefly including reservoir, capsular and osmotic formulations. In most cases, water-swellable polymers play a key role in the overall delivery mechanism after being activated by physiological media. Based on these premises, the aim of the present review is to survey the main oral pulsatile delivery systems, for which swelling, dissolution and/or erosion of hydrophilic polymers are primarily involved in the control of release.

  7. Development and evaluation of mucoadhesive nanoparticles based on thiolated Eudragit for oral delivery of protein drugs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan [Shenyang University, Normal College (China); Yang, Zhijie; Hu, Xi; Zhang, Ling [Shenyang Pharmaceutical University, Department of Pharmaceutics (China); Li, Feng; Li, Meimei [Shenyang University, Normal College (China); Tang, Xing [Shenyang Pharmaceutical University, Department of Pharmaceutics (China); Xiao, Wei, E-mail: wzhzh-nj@tom.com [Jiangsu Kanion Pharmaceutical Co., Ltd (China)

    2015-02-15

    The objective of this study was to develop pH-sensitive Eudragit L100–cysteine/reduced glutathione (Eul–cys/GSH) nanoparticles (NPs), which provided the mucoadhesion and protection for protein drugs against enzymatic degradation. Insulin was chosen as a model biomolecule for testing this system. The Eul–cys conjugate, which was obtained by grafting cysteine onto the carboxy group of Eudragit L100, was analyzed by HNMR and SEM, and the swelling degree (SD), cation binding, and enzymatic inhibition were also determined. The results obtained showed that the Eul–cys conjugate represent a pH-sensitive delivery system which effectively protected the insulin from being degraded by the proteases, and this is related to the mechanism of Ca{sup 2+} binding. Insulin-loaded Eul–cys/GSH NPs were prepared by a diffusion method involving an electrostatic interaction between the network structure of the polymer and the embedded proteins, including insulin and GSH. TEM images indicated that Eul–cys/GSH existed as smooth and spherical NPs in aqueous solution with particle sizes of 260 ± 20 nm. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) findings showed the presence of amorphous insulin in thiolated NPs and higher free thiol oxidation than the result obtained by Ellman’s reagent method. In addition, thiolated NPs showed excellent binding efficiency to the mucin in rat intestine, indicating that Eul–cys/GSH NPs have great potential to be applied as safe carriers for the oral administration of protein drugs.

  8. Non Inflammatory Boronate Based Glucose-Responsive Insulin Delivery Systems

    Science.gov (United States)

    Dasgupta, Indrani; Tanifum, Eric A.; Srivastava, Mayank; Phatak, Sharangdhar S.; Cavasotto, Claudio N.; Analoui, Mostafa; Annapragada, Ananth

    2012-01-01

    Boronic acids, known to bind diols, were screened to identify non-inflammatory cross-linkers for the preparation of glucose sensitive and insulin releasing agglomerates of liposomes (Agglomerated Vesicle Technology-AVT). This was done in order to select a suitable replacement for the previously used cross-linker, ConcanavalinA (ConA), a lectin known to have both toxic and inflammatory effects in vivo. Lead-compounds were selected from screens that involved testing for inflammatory potential, cytotoxicity and glucose-binding. These were then conjugated to insulin-encapsulating nanoparticles and agglomerated via sugar-boronate ester linkages to form AVTs. In vitro, the particles demonstrated triggered release of insulin upon exposure to physiologically relevant concentrations of glucose (10 mmoles/L–40 mmoles/L). The agglomerates were also shown to be responsive to multiple spikes in glucose levels over several hours, releasing insulin at a rate defined by the concentration of the glucose trigger. PMID:22272238

  9. ORAL MULTIPARTICULATE PULSATILE DRUG DELIVERY SYSTEMS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Shaji Jessy

    2011-02-01

    Full Text Available Pulsatile drug delivery aims to release drugs in a planned pattern i.e. at appropriate time and/or at a suitable site of action. Pharmaceutical invention and research are increasingly focusing on delivery systems which enhance desirable therapeutic objectives while minimising side effects. However, in recent pharmaceutical applications involving pulsatile delivery, multiparticulate dosage forms are gaining much favour over single-unit dosage forms because of their potential benefits like predictable gastric emptying, no risk of dose dumping, flexible release patterns and increased bioavailability with less inter- and intra-subject variability. Based on these, the present review aims to study multiparticulate pulsatile delivery systems, for which the Reservoir systems with rupturable polymeric coatings and Reservoir systems with erodible polymer coatings are primarily involved in the control of release. Multiparticulate drug delivery systems provide tremendous opportunities for designing new controlled and delayed release oral formulations, thus extending the frontier of future pharmaceutical development. The development of low density floating multiparticulate pulsed-release dosage forms possessing gastric retention capabilities has also been addressed with increasing focus on the upcoming multiparticulate-pulsatile technologies being exploited on an industrial scale.

  10. Liposomes as a carrier for oral administration of insulin: effect of formulation factors.

    Science.gov (United States)

    Choudhari, K B; Labhasetwar, V; Dorle, A K

    1994-01-01

    The present work was undertaken to study the effect of liposome formulation factors on its efficiency as a carrier for oral administration of insulin. The insulin-liposomes were prepared by two methods: solvent evaporation hydration and solvent spherule evaporation, with various variables such as concentration of insulin (I), lecithin (L), cholesterol (C), and Tween-80 (T). It was found that the insulin-liposomes when administered orally could produce hypoglycaemia. Variation in liposome composition was found to affect the efficiency of liposome as a carrier for oral administration of insulin. A liposome system containing L, 100 mg; C, 20 mg; I, 150 units; T, 1 per cent v/v, and prepared by the solvent spherule evaporation method was found to be most effective. The effect of insulin-liposome had prolonged action in diabetes-induced rabbits compared with that in normal rabbits. The results of the insulin-liposome system were comparable with the action of 1 unit of insulin/kg administered subcutaneously.

  11. Enhanced Oral Delivery of Protein Drugs Using Zwitterion-Functionalized Nanoparticles to Overcome both the Diffusion and Absorption Barriers.

    Science.gov (United States)

    Shan, Wei; Zhu, Xi; Tao, Wei; Cui, Yi; Liu, Min; Wu, Lei; Li, Lian; Zheng, Yaxian; Huang, Yuan

    2016-09-28

    Oral delivery of protein drugs based on nanoparticulate delivery system requires permeation of the nanoparticles through the mucus layer and subsequent absorption via epithelial cells. However, overcoming these two barriers requires very different or even contradictory surface properties of the nanocarriers, which greatly limits the oral bioavailability of macromolecular drugs. Here we report a simple zwitterions-based nanoparticle (NP) delivery platform, which showed a great potency in simultaneously overcoming both the mucus and epithelium barriers. The dense and hydrophilic coating of zwitterions endows the NPs with excellent mucus penetrating ability. Moreover, the zwitterions-based NPs also possessed excellent affinity with epithelial cells, which significantly improved (4.5-fold) the cellular uptake of DLPC NPs, compared to PEGylated NPs. Our results also indicated that this affinity was due to the interaction between zwitterions and the cell surface transporter PEPT1. Moreover, the developed NPs loaded with insulin could induce a prominent hypoglycemic response in diabetic rats following oral administration. These results suggest that zwitterions-based NPs might provide a new perspective for oral delivery of protein therapeutics.

  12. Finding the right route for insulin delivery - an overview of implantable pump therapy.

    OpenAIRE

    Bally, Lia; Thabit, Hood; Hovorka, Roman

    2016-01-01

    $\\textbf{Introduction}$: Implantable pump therapy adopting the intraperitoneal route of insulin delivery has been available for the past three decades. The key rationale for implantable pump therapy is the restoration of the portal-peripheral insulin gradient of the normal physiology. Uptake in clinical practice is limited to specialized centers and selected patient populations. $\\textbf{Areas covered}$: Implantable pump therapy is discussed, including technical aspects, rationale for it...

  13. Cavitation-enhanced delivery of insulin in agar and porcine models of human skin.

    Science.gov (United States)

    Feiszthuber, Helga; Bhatnagar, Sunali; Gyöngy, Miklós; Coussios, Constantin-C

    2015-03-21

    Ultrasound-assisted transdermal insulin delivery offers a less painful and less invasive alternative to subcutaneous insulin injections. However, ultrasound-based drug delivery, otherwise known as sonophoresis, is a highly variable phenomenon, in part dependent on cavitation. The aim of the current work is to investigate the role of cavitation in transdermal insulin delivery. Fluorescently stained, soluble Actrapid insulin was placed on the surface of human skin-mimicking materials subjected to 265 kHz, 10% duty cycle focused ultrasound. A confocally and coaxially aligned 5 MHz broadband ultrasound transducer was used to detect cavitation. Two different skin models were used. The first model, 3% agar hydrogel, was insonated with a range of pressures (0.25-1.40 MPa peak rarefactional focal pressure-PRFP), with and without cavitation nuclei embedded within the agar at a concentration of 0.05% w/v. The second, porcine skin was insonated at 1.00 and 1.40 MPa PRFP. In both models, fluorescence measurements were used to determine penetration depth and concentration of delivered insulin. Results show that in agar gel, both insulin penetration depth and concentration only increased significantly in the presence of inertial cavitation, with up to a 40% enhancement. In porcine skin the amount of fluorescent insulin was higher in the epidermis of those samples that were exposed to ultrasound compared to the control samples, but there was no significant increase in penetration distance. The results underline the importance of instigating and monitoring inertial cavitation during transdermal insulin delivery.

  14. Casein/pectin nanocomplexes as potential oral delivery vehicles.

    Science.gov (United States)

    Luo, Yangchao; Pan, Kang; Zhong, Qixin

    2015-01-01

    Delivery systems prepared with natural biopolymers are of particular interests for applications in food, pharmaceutics and biomedicine. In this study, nanocomplex particles of sodium caseinate (NaCas) and pectin were fabricated and investigated as potential oral delivery vehicles. Nanocomplexes were prepared with three mass ratios of NaCas/pectin by acidification using glucono-δ-lactone and thermal treatment. NaCas/pectin at 1:1 mass ratio resulted in dispersions with the lowest turbidity and the smallest and most uniform nanocomplexes. Thermal treatment at 85 °C for 30 min facilitated the formation of stable, compact, and spherical nanocomplexes. Heating not only greatly increased the yield of nanocomplexes but also significantly improved the encapsulation capability of rutin studied as a model compound. Pectin in nanocomplexes delayed the hydrolysis of NaCas by pepsin at gastric conditions and enabled the controlled release of most rutin in simulated intestinal conditions. The nanocomplexes based on food-sourced biopolymers have promising features for oral delivery of nutrients and medicines.

  15. Treatment intensification using long-acting insulin -predictors of future basal insulin supported oral therapy in the DIVE registry.

    Science.gov (United States)

    Danne, Thomas; Bluhmki, Tobias; Seufert, Jochen; Kaltheuner, Matthias; Rathmann, Wolfgang; Beyersmann, Jan; Bramlage, Peter

    2015-10-07

    In patients with type-2 diabetes receiving oral antidiabetic drugs (OADs), the addition of insulin is frequently required to achieve sufficient control over blood glucose levels. It is, however, difficult to predict if, when and in which patients insulin therapy will be needed. We aimed to identify patient related variables associated with the addition of basal insulin to oral therapy resulting in a basal supported oral therapy (BOT). DIVE (DIabetes Versorgungs-Evaluation) is a prospective, observational, multi-centre diabetes registry established in Germany in 2011. For the present explorative analysis, 31,008 patients with type-2 diabetes prescribed at least one OAD were included. Patients who had previously received insulin and those over 90 years old were excluded. The event of interest was defined as the initiation of BOT during the observational period. Cause-specific Cox proportional hazards models based on a competing risk framework were applied for risk quantification. Multivariable adjusted hazard ratios demonstrated that longer diabetes duration, higher BMI, poorer glycaemic control, documentation of any micro- or macrovascular comorbidity, the presence of concomitant non-antidiabetic pharmacotherapies, and greater numbers of prescribed OADs increased the likelihood of BOT initiation. On the other hand BOT initiation was less likely in patients with older age and female gender. Analysing the likelihood of OAD termination without initiation of BOT provided supportive evidence for the variables predictive of BOT initiation. Analysis of the DIVE registry has resulted in the identification of a number of factors that may be predictive for the initiation of BOT for type-2 diabetes patients initially prescribed one or more OADs. Poor glycaemic control, the presence of vascular comorbidities and concomitant medications, and a greater number of OADs were all detected to increase the risk of a switch to BOT. Female gender and younger age showed protective

  16. Use of an implantable pump for controlled subcutaneous insulin delivery in healthy cats.

    Science.gov (United States)

    Zini, E; Padrutt, I; Macha, K; Riederer, A; Pesaresi, M; Lutz, T A; Reusch, C E

    2017-01-01

    The aim of this study was to examine the safety and reliability of a research-grade implantable pump for controlled delivery of insulin glargine in cats. For this purpose, a small telemetrically controlled drug delivery pump with a refillable reservoir was implanted into the subcutaneous tissues of the dorsal neck in 10 clinically healthy cats. The reservoir was filled with insulin glargine, and the pump was programmed to deliver four boluses of 0.25 IU/kg, 2-3 weeks apart. As a control, insulin glargine (0.25 IU/kg) was injected SC. Blood glucose and plasma insulin glargine concentrations were measured before each bolus and SC injection and for 8 h afterward. Cats were monitored for signs of discomfort. Pumps were easily implanted and well tolerated by all cats. The experiment was completed in five of 10 cats. In four, the pump failed because of technical reasons; another cat developed severe hypoglycaemia attributable to insulin leakage. Overall, plasma insulin glargine increased after six of eight (75%) initial boluses and after one of 16 (6%) successive boluses. Glucose decreased after seven of eight (88%) initial boluses and after four of 16 (25%) successive boluses. Only the first bolus significantly increased plasma insulin glargine (P = 0.008) and decreased glucose (P = 0.008). Of 20 SC injections, 10 (50%) increased plasma insulin glargine (P pump did not cause discomfort in cats, but life-threatening hypoglycaemia occurred in one. Frequent device problems suggest that the pump needs improvements. Because successive boluses did not increase plasma insulin glargine, this type of insulin may not be appropriate with the pump.

  17. Pectin-based oral drug delivery to the colon.

    Science.gov (United States)

    Sande, Sverre Arne

    2005-05-01

    This review presents an overview of studies concerning oral formulations intended for site-specific drug delivery to the colon with pectin as the main excipient. The biological aspects covered include gastrointestinal transit and the enzymatic degradation of pectin. Scintigraphic methods demonstrating the functionality of pectin formulations are discussed. The main focus is on the various formulations reported, including matrix tablets, multiparticulate formulations as pellets and hydrogel beads, and pectin-based coatings. Also included is an evaluation of common excipients employed to improve colon specificity by crosslinking or increasing the hydrophobicity. Finally, properties of the pectin molecules that are important for successful formulations are examined. The conclusion is that the studies found in the literature provide an excellent platform for the development of pectin-based colon delivery systems.

  18. Non inflammatory boronate based glucose-responsive insulin delivery systems.

    Directory of Open Access Journals (Sweden)

    Indrani Dasgupta

    Full Text Available Boronic acids, known to bind diols, were screened to identify non-inflammatory cross-linkers for the preparation of glucose sensitive and insulin releasing agglomerates of liposomes (Agglomerated Vesicle Technology-AVT. This was done in order to select a suitable replacement for the previously used cross-linker, ConcanavalinA (ConA, a lectin known to have both toxic and inflammatory effects in vivo. Lead-compounds were selected from screens that involved testing for inflammatory potential, cytotoxicity and glucose-binding. These were then conjugated to insulin-encapsulating nanoparticles and agglomerated via sugar-boronate ester linkages to form AVTs. In vitro, the particles demonstrated triggered release of insulin upon exposure to physiologically relevant concentrations of glucose (10 mmoles/L-40 mmoles/L. The agglomerates were also shown to be responsive to multiple spikes in glucose levels over several hours, releasing insulin at a rate defined by the concentration of the glucose trigger.

  19. Effect of adrenomedullin gene delivery on insulin resistance in type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Hoda Y. Henein

    2011-01-01

    Full Text Available Type 2 diabetes mellitus is one of the common metabolic disorders that ultimately afflicts large number of individuals. Adrenomedullin (AM is a potent vasodilator peptide; previous studies reported development of insulin resistance in aged AM deficient mice. In this study, we employed a gene delivery approach to explore its potential role in insulin resistance. Four groups were included: control, diabetic, non-diabetic injected with the AM gene and diabetic injected with the AM gene. One week following gene delivery, serum glucose, insulin, triglycerides, leptin, adiponectin and corticosterone were measured as well as the insulin resistance index (HOMA-IR. Soleus muscle glucose uptake and RT-PCR of both AM and glucose transporter-4 (GLUT 4 gene expressions were assessed. A single tail vein injection of adrenomedullin gene in type 2 diabetic rats improved skeletal muscle insulin responsiveness with significant improvement of soleus muscle glucose uptake, HOMA-IR, serum glucose, insulin and triglycerides and significant increase in muscle GLUT 4 gene expression (P < 0.05 compared with the non-injected diabetic rats. The beneficial effects of AM gene delivery were accompanied by a significant increase in the serum level of adiponectin (2.95 ± 0.09 versus 2.33 ± 0.17 μg/ml in the non-injected diabetic group as well as a significant decrease in leptin and corticosterone levels (7.51 ± 0.51 and 262.88 ± 10.34 versus 10.63 ± 1.4 and 275.86 ± 11.19 ng/ml respectively in the non-injected diabetic group. The conclusion of the study is that AM gene delivery can improve insulin resistance and may have significant therapeutic applications in type 2 diabetes mellitus.

  20. In vitro and in vivo models for the study of oral delivery of nanoparticles.

    Science.gov (United States)

    Gamboa, Jennifer M; Leong, Kam W

    2013-06-15

    Oral delivery is an attractive route to deliver therapeutics via nanoparticles due to its ease of administration and patient compliance. This review discusses laboratory techniques for studying oral delivery of nanoparticles, which offer protection of cargo through the gastrointestinal tract. Some of the difficulties in modeling oral delivery include the harsh acidic environment, variable pH, and the tight monolayer of endothelial cells present throughout the gastrointestinal tract. The use of in vitro techniques including the Transwell ® system, simulated gastric/intestinal fluid, and diffusion chambers addresses these challenges. When studying effects after oral delivery in vivo, bioimaging of nanoparticle biodistribution using radioactive markers has been popular. Functional assays such as immune response and systemic protein concentration analysis can further define the merits of the oral delivery systems. As biologics become increasingly more important in chronic therapies, nanoparticle-mediated oral delivery will assume greater prominence, and more sophisticated in vitro and in vivo models will be required.

  1. Solidified self-nanoemulsifying formulation for oral delivery of combinatorial therapeutic regimen

    DEFF Research Database (Denmark)

    Jain, Amit K; Thanki, Kaushik; Jain, Sanyog

    2014-01-01

    PURPOSE: The present work reports rationalized development and characterization of solidified self-nanoemulsifying drug delivery system for oral delivery of combinatorial (tamoxifen and quercetin) therapeutic regimen. METHODS: Suitable oil for the preparation of liquid SNEDDS was selected based o...

  2. Preparation and physicochemical characterization of supercritically dried insulin-loaded microparticles for pulmonary delivery

    NARCIS (Netherlands)

    Amidi, Maryam; Pellikaan, Hubert C.; de Boer, Anne H.; Crommelin, Daan J. A.; Hennink, Wim E.; Jiskoot, Wim

    2008-01-01

    In the search for non-invasive delivery options for the increasing number of therapeutic proteins, pulmonary administration is an attractive route. Supercritical fluid (SCF) drying processes offer the possibility to produce dry protein formulations suitable for inhalation. In this study, insulin-loa

  3. Development of transferosomal gel for trans-dermal delivery of insulin using iodine complex.

    Science.gov (United States)

    Marwah, Harneet; Garg, Tarun; Rath, Goutam; Goyal, Amit K

    2016-06-01

    The main object of this current research was to examine transferosomes as a transdermal delivery system for insulin, to overwhelm the difficulties related with its subcutaneous delivery. Transferosomal gel formulations were prepared by rotary evaporation sonication technique. The result revealed that insulin was successfully entrapped (78%) in optimized formulations (2.5 I.U. of the drug and 25% of sodium cholate) with cumulative percent drug release (83.11 ± 3.782). The glucose lowering study revealed that the transferosomal gel with chemical penetration enhancer showed better glucose lowering effect as compared to the control gel. Consequently, this study authenticated that the transferosomal gel can be used as a possible substitute to the conventional formulations of insulin with progressive permeation characteristics for transdermal application.

  4. Assessing the impact of a new delivery method of insulin on glycemic control using a novel trial design

    Directory of Open Access Journals (Sweden)

    Thomas Strack

    2009-01-01

    Full Text Available Thomas Strack1, Luc Martinez2, Stefano Del Prato3, Larry Blonde4, Burkhard Göke5, Vincent Woo6, Ann Millward7, Ramon Gomis8, Bill Canovatchel1, David Lawrence1, Nick Freemantle9 on behalf of the EXPERIENCE Trial Team1Pfizer Inc., New York, NY, USA; 2Société Française de Médecine Générale, Issy les Moulineaux, France; 3University of Pisa, Pisa, Italy; 4Ochsner Medical Center, New Orleans, LO, USA; 5University of Munich, Munich, Germany; 6Health Sciences Centre, Winnipeg, Canada; 7Peninsula Medical School, Plymouth, UK; 8University of Barcelona, Barcelona, Spain; 9University of Birmingham, Birmingham, UKObjective: The purpose of the trial was to examine the impact of inhaled human insulin (INH on patient or physician willingness to adopt insulin after oral diabetes agent failure.Research design and methods: The EXPERIENCE trial was a one-year randomized controlled trial conducted at primary, secondary and tertiary care facilities in Europe and North America. The primary study endpoint was difference in glycated hemoglobin (A1c between randomized groups at 26 weeks, and results from that phase have been reported previously. The present report concerns results from the second 26-week extension phase. We also consider the applicability of the design. The trial recruited 727 patients with type 2 diabetes mellitus who, prior to randomization, were using two or more oral diabetes agents and whose A1c was ≥8.0%. Patients were randomized to two treatment settings: Group 1 (usual care with the option of INH or Group 2 (usual care only. Usual care included adjusting oral therapy (optimizing current regimen or adding/deleting agents and/or initiating subcutaneous (SC insulin.Results: At baseline, insulin was initiated by more (odds ratio [OR] 6.0;95% confidence interval [CI] 4.2 to 8.8; P < 0.0001 patients in Group 1 (86.2%; 76.7% INH plus 9.5% SC than in Group 2 (50.7%; SC insulin only. The largest reduction from baseline in A1c was in Group 1 (

  5. In vitro characterization of insulin containing thiomeric microparticles as nasal drug delivery system.

    Science.gov (United States)

    Deutel, Britta; Laffleur, Flavia; Palmberger, Thomas; Saxer, Andreas; Thaler, Marlene; Bernkop-Schnürch, Andreas

    2016-01-01

    This study focused on a novel two step preparation method for the generation of insulin containing thiomer microparticles. The first step utilized the interpolymer complexation between poly(vinyl pyrrolidone) (PVP) and poly(acrylic acid) (PAA) or poly(acrylic acid)-cysteine (PAA-Cys), respectively, in the presence of insulin. Thereafter lyophilized coprecipitates were micronized via air jet mill. Particles were evaluated regarding size, morphology, insulin release and the effect on ciliary beat frequency of human nasal epithelial cells in vitro. Results displayed mean particle sizes of 2.6±1.6μm and 2.8±1.7μm for PAA/PVP/insulin and PAA-Cys/PVP/insulin microparticles, respectively, in a range where volitional impaction of particles on nasal epithelium takes place. Multi unit dosage forms showed in addition release for the incorporated insulin and nasal safety as to results of ciliary beat frequency studies (CBF). The introduced jet milled microparticles might in conclusion display a safe nasal insulin drug delivery system leading to improved absorption.

  6. Insulin administration: present strategies and future directions for a noninvasive (possibly more physiological delivery

    Directory of Open Access Journals (Sweden)

    Matteucci E

    2015-06-01

    Full Text Available Elena Matteucci,1 Ottavio Giampietro,1 Vera Covolan,2 Daniela Giustarini,3 Paolo Fanti,4 Ranieri Rossi3 1Department of Clinical and Experimental Medicine, 2Department of Chemistry and Industrial Chemistry, University of Pisa, 3Department of Life Sciences, Laboratory of Pharmacology and Toxicology, University of Siena, Siena, Italy; 4Division of Nephrology, University of Texas Health Science Center San Antonio, South Texas Veteran Health Care System, San Antonio, Texas, USA Abstract: Insulin is a life-saving medication for people with type 1 diabetes, but traditional insulin replacement therapy is based on multiple daily subcutaneous injections or continuous subcutaneous pump-regulated infusion. Nonphysiologic delivery of subcutaneous insulin implies a rapid and sustained increase in systemic insulin levels due to the loss of concentration gradient between portal and systemic circulations. In fact, the liver degrades about half of the endogenous insulin secreted by the pancreas into the venous portal system. The reverse insulin distribution has short- and long-term effects on glucose metabolism. Thus, researchers have explored less-invasive administration routes based on innovative pharmaceutical formulations, which preserve hormone stability and ensure the therapeutic effectiveness. This review examines some of the recent proposals from clinical and material chemistry point of view, giving particular attention to patients’ (and diabetologists’ ideal requirements that organic chemistry could meet. Keywords: type 1 diabetes mellitus, drug formulations, drug administration routes, insulin, portal system, nanoparticles, biodegradable polymers

  7. Closed-Loop Noninvasive Ultrasound Glucose Sensing and Insulin Delivery

    Science.gov (United States)

    2007-09-01

    Appendix IV 54 21. Shankar P, Manjunath N, Lieberman J. The prospect of silencing disease using RNA interference. Jama 2005;293:1367-73. 22...Targeted Quantum Dot Conjugates for siRNA Delivery. Bioconjug Chem 2007. 44. Gabizon A, Catane R, Uziely B, et al. Prolonged circulation time and

  8. Mechanisms Underlying the Onset of Oral Lipid–Induced Skeletal Muscle Insulin Resistance in Humans

    Science.gov (United States)

    Nowotny, Bettina; Zahiragic, Lejla; Krog, Dorothea; Nowotny, Peter J.; Herder, Christian; Carstensen, Maren; Yoshimura, Toru; Szendroedi, Julia; Phielix, Esther; Schadewaldt, Peter; Schloot, Nanette C.; Shulman, Gerald I.; Roden, Michael

    2013-01-01

    Several mechanisms, such as innate immune responses via Toll-like receptor-4, accumulation of diacylglycerols (DAG)/ceramides, and activation of protein kinase C (PKC), are considered to underlie skeletal muscle insulin resistance. In this study, we examined initial events occurring during the onset of insulin resistance upon oral high-fat loading compared with lipid and low-dose endotoxin infusion. Sixteen lean insulin-sensitive volunteers received intravenous fat (iv fat), oral fat (po fat), intravenous endotoxin (lipopolysaccharide [LPS]), and intravenous glycerol as control. After 6 h, whole-body insulin sensitivity was reduced by iv fat, po fat, and LPS to 60, 67, and 48%, respectively (all P < 0.01), which was due to decreased nonoxidative glucose utilization, while hepatic insulin sensitivity was unaffected. Muscle PKCθ activation increased by 50% after iv and po fat, membrane Di-C18:2 DAG species doubled after iv fat and correlated with PKCθ activation after po fat, whereas ceramides were unchanged. Only after LPS, circulating inflammatory markers (tumor necrosis factor-α, interleukin-6, and interleukin-1 receptor antagonist), their mRNA expression in subcutaneous adipose tissue, and circulating cortisol were elevated. Po fat ingestion rapidly induces insulin resistance by reducing nonoxidative glucose disposal, which associates with PKCθ activation and a rise in distinct myocellular membrane DAG, while endotoxin-induced insulin resistance is exclusively associated with stimulation of inflammatory pathways. PMID:23454694

  9. Effect of Oral Insulin on the Severity and Recovery of Methotrexate-induced Gastrointestinal Mucositis in the Rat

    NARCIS (Netherlands)

    Kuiken, Nicoline S S; Rings, Edmond H H M; Havinga, Rick; van der Aa, Stijn A J; Groen, Albert K; Tissing, Wim J E

    2016-01-01

    OBJECTIVES: Gastrointestinal (GI) mucositis is a severe side effect of chemo- and radiotherapy. Oral insulin has been suggested as possible intestinal growth factor and possible intervention for GI mucositis. We aimed to determine the effect of oral insulin on the severity and recovery of mucositis

  10. Lipid-associated oral delivery: Mechanisms and analysis of oral absorption enhancement.

    Science.gov (United States)

    Rezhdo, Oljora; Speciner, Lauren; Carrier, Rebecca

    2016-10-28

    The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of permeation through the intestinal mucosa, and triggering drug precipitation upon lipid emulsion depletion (e.g., by digestion). The effect of lipids on drug absorption is currently not quantitatively predictable, in part due to the multiple complex dynamic processes that can be impacted by lipids. Quantitative mechanistic analysis of the processes significant to lipid system function and overall impact on drug absorption can aid in the understanding of drug-lipid interactions in the GI tract and exploitation of such interactions to achieve optimal lipid-based drug delivery. In this review, we discuss the impact of co-delivered lipids and lipid digestion on drug dissolution, partitioning, and absorption in the context of the experimental tools and associated kinetic expressions used to study and model these processes. The potential benefit of a systems-based consideration of the concurrent multiple dynamic processes occurring upon co-dosing lipids and drugs to predict the impact of lipids on drug absorption and enable rational design of lipid-based delivery systems is presented.

  11. Evaluation of hepatic glucose metabolism via gluconeogenesis and glycogenolysis after oral administration of insulin nanoparticles.

    Science.gov (United States)

    Woitiski, Camile B; Neufeld, Ronald J; Soares, Ana F; Figueiredo, Isabel V; Veiga, Francisco J; Carvalho, Rui A

    2012-12-01

    Nanoparticles were designed to promote insulin intestinal absorption via the oral route, to increase portal insulin levels to better mimic the physiological pathway, providing enhanced glucose control through glycogenolysis and gluconeogenesis. Nanoparticles were formulated with insulin encapsulated in the core material consisting of alginate and dextran sulfate, associated with poloxamer and subsequently coated with chitosan then albumin. A spherical and slightly rough core was observed in electron micrographs with the appearance of a concentration gradient of the polysaccharide structure toward the periphery of the nanoparticle. Atomic force microscopy showed that the fully formed nanoparticles are about 200 nm in diameter with smooth and spherical morphology. Histopathological analysis of organs and tissues of diabetic rats dosed daily for 15 days with insulin nanoparticles was used to evaluate toxicological issues. No morphological or pathological alterations were observed in rat liver, spleen, pancreas, kidney or intestinal sections. Following, the effect of nanoencapsulated insulin on inhibiting hepatic gluconeogenesis was evaluated after a single insulin administration and oral glucose tolerance test, which represents a significant metabolic challenge to the liver. Alterations in the hepatic glucose metabolism of fasted streptozotocin-diabetic rats were determined by the percent contribution of glycogenolysis and gluconeogenesis, measured by using metabolic tracers, however similar gluconeogenesis contribution to the hepatic metabolism was observed between diabetic rats receiving nanoencapsulated insulin or insulin solution. The metabolic results may be explained by the inability of a single dose in shifting the gluconeogenesis/glycogenolysis contributions, sampling time, fasting period or by influence of the kidney enzymes and impairment in insulin signaling observed in stz-diabetic rats.

  12. Oral Insulin Stimulates Intestinal Department and Enzyme Maturation in Newborn Pigs

    Institute of Scientific and Technical Information of China (English)

    WANG Tian; XU Ruo-jun; HUO Yong-jiu

    2004-01-01

    The effects of oral insulin on intestinal tissue growth and brush border enzyme activities in newborn pigs were examined in this study. Newborn unsuckled pigs were bottle-fed for3 days with artificial milk(M),milk supplemented with 60mIUmL-1 of insulin(IH)or hydrolyzed milk(HM). Compared with newborn unsuckled pigs,piglets bottle-fed for 3 days all gained in intestinal weight and length significantly despite a mild loss in body weight during the experimental period. The activities of lactase and alkaline phosphatase(AKP)in the small intestinal mucosa declined markedly in pigs fed with M,but the activity of maltase increased significantly during the experimental period. Dietary protein pre-hydrolysis had no significant effect on intestinal tissue mass or length,but it moderated the decline of intestinal lactase and AKP activities. Dietary supplementation of insulin significantly increased mucosal protein content and brush border activities of lactase,maltase,AKP and aminopeptidase(AP)in the small intestine.The effect. of insulin treatment was particularly obvious at the distal region of the small intestine. These results demonstrate that oral insulin can stimulate intestinal digestive enzyme activities in newborn pigs. The finding supports the hypothesis that milk-borne insulin plays a role in regulating postnatal gut development in the suckling young.

  13. Insulin versus oral agents in the management of Cystic Fibrosis Related Diabetes: a case based study

    Directory of Open Access Journals (Sweden)

    Langdon Leora J

    2006-06-01

    Full Text Available Abstract Background Insulin is the recommend therapeutic agent of choice for the management of Cystic Fibrosis Related Diabetes (CFRD, despite only sub-optimal reductions in glycemic control and increased morbidity and mortality reported by centers using this agent. The newer insulin sensitizing agents demonstrated to have anti-inflammatory mechanisms may provide an alternative management option for CFRD. Methods A prospective case based therapeutic comparison between insulin, sulfonylurea, metformin and thiazolidinedione was observed over one decade with 20 CFRD patients diagnosed using American Diabetes Association guideline standards. Patients entering the study elected treatment based on risk and benefit information provided for treatment options. Patients receiving organ transplant or requiring combination diabetic medications were excluded from the study. Results No statistical advantage was achieved regarding overall glycemic control for oral agents over insulin. Additional outcome measures including changes in weight, liver function testing and FEV1 were not statistically significant. Conclusion Insulin alone may not be the only therapeutic option in managing CFRD. Oral hypoglycemic agents were equally effective in treating CFRD and may provide an alternative class of agents for patients reluctant in using insulin.

  14. Modeling Day-to-Day Variability of Glucose-Insulin Regulation Over 12-Week Home Use of Closed-Loop Insulin Delivery.

    Science.gov (United States)

    Yue Ruan; Wilinska, Malgorzata E; Thabit, Hood; Hovorka, Roman

    2017-06-01

    Parameters of physiological models of glucose-insulin regulation in type 1 diabetes have previously been estimated using data collected over short periods of time and lack the quantification of day-to-day variability. We developed a new hierarchical model to relate subcutaneous insulin delivery and carbohydrate intake to continuous glucose monitoring over 12 weeks while describing day-to-day variability. Sensor glucose data sampled every 10-min, insulin aspart delivery and meal intake were analyzed from eight adults with type 1 diabetes (male/female 5/3, age 39.9 ± 9.5 years, BMI 25.4 ± 4.4kg/m(2), HbA1c 8.4 ± 0.6% ) who underwent a 12-week home study of closed-loop insulin delivery. A compartment model comprised of five linear differential equations; model parameters were estimated using the Markov chain Monte Carlo approach within a hierarchical Bayesian model framework. Physiologically, plausible a posteriori distributions of model parameters including insulin sensitivity, time-to-peak insulin action, time-to-peak gut absorption, and carbohydrate bioavailability, and good model fit were observed. Day-to-day variability of model parameters was estimated in the range of 38-79% for insulin sensitivity and 27-48% for time-to-peak of insulin action. In conclusion, a linear Bayesian hierarchical approach is feasible to describe a 12-week glucose-insulin relationship using conventional clinical data. The model may facilitate in silico testing to aid the development of closed-loop insulin delivery systems.

  15. Oral hypoglycaemic agents, insulin resistance and cardiovascular disease in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Hemmingsen, Bianca; Lund, Søren S; Wetterslev, Jørn

    2009-01-01

    This article is a narrative review of the current evidence of the effects on cardiovascular disease (CVD) of oral hypoglycaemic agents that increase insulin sensitivity in patients with type 2 diabetes (T2D). In overweight T2D patients, metformin has been demonstrated to reduce CVD risk, and this......This article is a narrative review of the current evidence of the effects on cardiovascular disease (CVD) of oral hypoglycaemic agents that increase insulin sensitivity in patients with type 2 diabetes (T2D). In overweight T2D patients, metformin has been demonstrated to reduce CVD risk......, and this beneficial effect may be conserved with the combination of metformin and insulin treatment. However, the effect of glitazones on CVD is uncertain. There is conflicting evidence from large randomized trials to support a protective effect against CVD of lowering blood glucose per se but a systematic review...

  16. New developments and opportunities in oral mucosal drug delivery for local and systemic disease.

    Science.gov (United States)

    Hearnden, Vanessa; Sankar, Vidya; Hull, Katrusha; Juras, Danica Vidović; Greenberg, Martin; Kerr, A Ross; Lockhart, Peter B; Patton, Lauren L; Porter, Stephen; Thornhill, Martin H

    2012-01-01

    The oral mucosa's accessibility, excellent blood supply, by-pass of hepatic first-pass metabolism, rapid repair and permeability profile make it an attractive site for local and systemic drug delivery. Technological advances in mucoadhesives, sustained drug release, permeability enhancers and drug delivery vectors are increasing the efficient delivery of drugs to treat oral and systemic diseases. When treating oral diseases, these advances result in enhanced therapeutic efficacy, reduced drug wastage and the prospect of using biological agents such as genes, peptides and antibodies. These technologies are also increasing the repertoire of drugs that can be delivered across the oral mucosa to treat systemic diseases. Trans-mucosal delivery is now a favoured route for non-parenteral administration of emergency drugs and agents where a rapid onset of action is required. Furthermore, advances in drug delivery technology are bringing forward the likelihood of transmucosal systemic delivery of biological agents.

  17. Drug Delivery Using Oral Vehicles: Controlled Release in the GI-tract

    OpenAIRE

    Sæther, Maren

    2012-01-01

    Oral delivery is considered a convenient route for administration of pharmaceuticals. Great effort has been made to optimize oral delivery vehicles to increase the bioavailability of the pharmaceutical, and enhance patient compliance to ease swallowing. Emulsion-based gelled matrices have shown promising features as delivery systems. They are soft chewable matrices that are easy to swallow, and have the ability to entrap the pharmaceutical, providing prolonged, and controlled release to avoid...

  18. Relapsing insulin-induced lipoatrophy, cured by prolonged low-dose oral prednisone: a case report

    Directory of Open Access Journals (Sweden)

    Chantelau Ernst A

    2011-12-01

    Full Text Available Abstract Introduction Circumscript, progressing lipoatrophy at the insulin injection sites is an unexplained, however rare condition in diabetes mellitus. Case presentation We report a case of severe localised lipoatrophy developing during insulin pump-treatment (continuous subcutaneous insulin infusion with the insulin analogue lispro (Humalog® in a woman with type-1 diabetes mellitus. After 11 months of progressing lipoatrophy at two spots on the abdomen, low-dose prednisone (5-10 mg p.o. was given at breakfast for 8 months, whereby the atrophic lesions centripetally re-filled with subcutaneous fat tissue (confirmed by MRI despite ongoing use of insulin lispro. However, 4 weeks after cessation of prednisone, lipoatrophy relapsed, but resolved after another 2 months of low-dose prednisone. No further relapse was noted during 12 months of follow-up on insulin-pump therapy with Humalog®. Conclusion Consistent with an assumed inflammatory nature of the condition, low-dose oral prednisone appeared to have cured the lipoatrophic reaction in our patient. Our observation suggests a temporary intolerance of the subcutaneous fat tissue to insulin lispro (Humalog®, triggered by an unknown endogenous mechanism.

  19. Spray-freeze-dried dry powder inhalation of insulin-loaded liposomes for enhanced pulmonary delivery.

    Science.gov (United States)

    Bi, Ru; Shao, Wei; Wang, Qun; Zhang, Na

    2008-11-01

    Nowadays, growing attention has been paid to the pulmonary region as a target for the delivery of peptide and protein drugs, especially macromolecules with systemic effect like insulin, since the pulmonary route exhibits numerous benefits to be an alternative for repeated injection. Furthermore, encapsulation of insulin into liposomal carriers is an attractive way to increase drug retention time and control the drug release in the lung; however, its long-term stability during storage in the reservoir and the process of aerosolization might be suspected when practically applied. Thus, the aim of this study was to design and characterize dry powder inhalation of insulin-loaded liposomes prepared by novel spray-freeze-drying method for enhanced pulmonary delivery. Process variables such as compressed air pressure, pump speed, and concentration were optimized for parameters such as mean particle diameter, moisture content, and fine particle fraction of the produced powders. Influence of different kinds and amounts of lyoprotectants was also evaluated for the best preservation of the drug entrapped in the liposome bilayers after the dehydration-rehydration cycle. The in vivo study of intratracheal instillation of insulin-loaded liposomes to diabetic rats showed successful hypoglycemic effect with low blood glucose level and long-lasting period and a relative pharmacological bioavailability as high as 38.38% in the group of 8 IU/kg dosage.

  20. [Silica-coated ethosome as a novel oral delivery system for enhanced oral bioavailability of curcumin].

    Science.gov (United States)

    Li, Chong; Deng, Li; Zhang, Yan; Su, Ting-Ting; Jiang, Yin; Chen, Zhang-Bao

    2012-11-01

    The aim of this study is to investigate the feasibility of silica-coated ethosome as a novel oral delivery system for the poorly water-soluble curcumin (as a model drug). The silica-coated ethosomes loading curcumin (CU-SE) were prepared by alcohol injection method with homogenization, followed by the precipitation of silica by sol-gel process. The physical and chemical features of CU-SEs, and curcumin release were determined in vitro. The pharmacodynamics and bioavailability measurements were sequentially performed. The mean diameter of CU-SE was (478.5 +/- 80.3) nm and the polydispersity index was 0.285 +/- 0.042, while the mean value of apparent drug entrapment efficiency was 80.77%. In vitro assays demonstrated that CU-SEs were significantly stable with improved release properties when compared with curcumin-loaded ethosomes (CU-ETs) without silica-coatings. The bioavailability of CU-SEs and CU-ETs was 11.86- and 5.25-fold higher, respectively, than that of curcumin suspensions (CU-SUs) in in vivo assays. The silica coatings significantly promoted the stability of ethosomes and CU-SEs exhibited 2.26-fold increase in bioavailablity relative to CU-ETs, indicating that the silica-coated ethosomes might be a potential approach for oral delivery of poorly water-soluble drugs especially the active ingredients of traditional Chinese medicine with improved bioavailability.

  1. Preparation and evaluation of chitosan-ethylenediaminetetraacetic acid hydrogel films for the mucoadhesive transbuccal delivery of insulin.

    Science.gov (United States)

    Cui, Fuying; He, Chunbai; He, Miao; Tang, Cui; Yin, Lichen; Qian, Feng; Yin, Chunhua

    2009-06-15

    This manuscript describes the development of a new porous, flexible bilaminated film for buccal protein administration by a simple and mild casting procedure. It consists of a mucoadhesive layer (chitosan-ethylenediaminetetraacetic acid hydrogel film) containing protein drugs and an impermeable protective layer made of ethylcellose. The obtained mucoadhesive layer was characterized in terms of Fourier transform infrared spectroscopy, rheology, swelling, and mucoadhesion. Rheology results showed that chitosan-ethylenediaminetetraacetic acid hydrogel (10:2) possessed the greatest degree of viscoelasticity and was well-structured compared with other hydrogels. The in vitro mucoadhesion studies also showed that the mucoadhesive force of the hydrogel remained over 17,000 N/m2 during 4 h in the simulated oral cavity. The insulin loaded bilaminated film showed a pronounced hypoglycemic effect following buccal administration to healthy rats, achieving a 17% pharmacological availability compared with subcutaneous insulin injection. According to these results, the bilaminated film would be a promising delivery carrier for protein drugs via the buccal route.

  2. Délivrance orale d'insuline par double encapsulation : développement et évaluation de l'efficacité et de la sécurité des systèmes entériques et nanoparticulaires

    OpenAIRE

    Guhmann, Pauline

    2013-01-01

    Up to date, the subcutaneous injection of insulin is the sole way available on market for blood glucose control in type 1 diabetic patients. This doctoral thesis is part of in ORAIL project, which aim is to develop a system for oral insulin delivery using double encapsulation, and validate its efficiency and safety in vitro, using an intestinal epithelium model, and in vivo in rats. The pharmaceutical carrier developed here in, comprises a capsule containing nanoparticles (NPs) of insulin for...

  3. Fasting Insulin is Better Partitioned according to Family History of Type 2 Diabetes Mellitus than Post Glucose Load Insulin of Oral Glucose Tolerance Test in Young Adults.

    Science.gov (United States)

    Francis, Saritha; Chandran, Sindhu Padinjareveedu; Nesheera, K K; Jacob, Jose

    2017-05-01

    Hyperinsulinemia is contributed by insulin resistance, hepatic insulin uptake, insulin secretion and rate of insulin degradation. Family history of type 2 diabetes mellitus has been reported to cause hyperinsulinemia. Correlation of fasting insulin with post glucose load Oral Glucose Tolerance Test (OGTT) insulin in young adults and their partitioning according to family history of type 2 diabetes. In this observational cross-sectional study, clinical evaluation and biochemical assays of insulin and diabetes related parameters, and secondary clinical influences on type 2 diabetes in volunteers were done for inclusion as participants (n=90) or their exclusion. Cut off levels of quantitative biochemical variables were fixed such that they included the effects of insulin resistance, but excluded other secondary clinical influences. Distribution was analysed by Shapiro-Wilk test; equality of variances by Levene's test; Log10 transformations for conversion of groups to Gaussian distribution and for equality of variances in the groups compared. When the groups compared had Gaussian distribution and there was equality of variance, parametric methods were used. Otherwise, non parametric methods were used. Fasting insulin was correlating significantly with 30, 60 and 120 minute OGTT insulin showing that hyperinsulinemia in the fasting state was related to hyperinsulinemia in the post glucose load states. When fasting and post glucose load OGTT insulin were partitioned into those without and with family history of type 2 diabetes, maximum difference was seen in fasting insulin (pinsulin. The 30 minute insulin could not be partitioned (p=0.574). Fasting, 60 and 120 minute OGTT insulin can be partitioned according to family history of type 2 diabetes, demonstrating stratification and heterogeneity in the insulin sample. Of these, fasting insulin was better partitioned and could be used for baseline reference interval calculations.

  4. Insulin secretion and incretin hormones after oral glucose in non-obese subjects with impaired glucose tolerance

    DEFF Research Database (Denmark)

    Rask, E; Olsson, T; Söderberg, S;

    2004-01-01

    Subjects with impaired glucose tolerance (IGT) are usually overweight and exhibit insulin resistance with a defective compensation of insulin secretion. In this study, we sought to establish the interrelation between insulin secretion and insulin sensitivity after oral glucose in non-obese subjects......). Plasma levels of GLP-1 and GIP increased after oral glucose. Total secretion of these incretin hormones during the 3-hour test did not differ between the 2 groups. However, the 30-minute increase in GLP-1 concentrations was lower in IGT than in NGT (P =.036). We conclude that also in non-obese subjects...

  5. Lipid polymer hybrid as emerging tool in nanocarriers for oral drug delivery.

    Science.gov (United States)

    Hallan, Supandeep Singh; Kaur, Prabhjot; Kaur, Veerpal; Mishra, Neeraj; Vaidya, Bhuvaneshwar

    2016-01-01

    The oral route for drug delivery is a widely accepted route. For that reason, many researchers are currently working to develop efficient oral drug delivery systems. Use of polymeric nanoparticles (NPs) and lipid carrier systems, including liposomes, solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLC), has limitations such as drug leakage and high water content of dispersions. Thus, lipid polymer hybrid nanoparticles (LPNs) have been explored by the researchers to provide a better effect using properties of both polymers and lipids. The present review is focused on the challenges, possibilities, and future perspectives of LPNs for oral delivery.

  6. Continuous glucose monitoring, oral glucose tolerance, and insulin - glucose parameters in adolescents with simple obesity.

    Science.gov (United States)

    El Awwa, A; Soliman, A; Al-Ali, M; Yassin, M; De Sanctis, V

    2012-09-01

    In obese adolescents pancreatic beta-cells may not be able to cope with insulin resistance leading to hyperglycemia and type2 diabetes (T2DM To assess oral glucose tolerance, 72-h continuous blood glucose concentrations (CGM) and calculate homeostatic model assessment (HOMA), and the quantitative insulin sensitivity check index (QUICKI) in 13 adolescents with simple obesity (BMI SDS=4 ± 1.06). OGTT performed in 13 obese adolescents (13.47 ± 3 years) revealed 3 cases (23%) with impaired fasting glucose (IFG: fasting glucose >5.6 mmol/L), 4 cases (30%) with impaired glucose tolerance (IGT: 2h blood glucose >7.8 7.8 and 11.1 mmol/L (diabetes) in one case (7.6%). Five cases had a minimum BG recorded of 2.6 and QUICKI values <0.35 denoting insulin resistance. Beta cell mass percent (B %) = 200 ± 94.8% and insulin sensitivity values (IS)=50.4 ± 45.5% denoted insulin resistance with hyper-insulinaemia and preserved beta cell mass. In obese adolescents, CGMS is superior to OGTT and HbA1C in detecting glycemic abnormalities, which appears to be secondary to insulin resistance.

  7. Finding the right route for insulin delivery - an overview of implantable pump therapy.

    Science.gov (United States)

    Bally, Lia; Thabit, Hood; Hovorka, Roman

    2017-09-01

    Implantable pump therapy adopting the intraperitoneal route of insulin delivery has been available for the past three decades. The key rationale for implantable pump therapy is the restoration of the portal-peripheral insulin gradient of the normal physiology. Uptake in clinical practice is limited to specialized centers and selected patient populations. Areas covered: Implantable pump therapy is discussed, including technical aspects, rationale for its use, and glycemic and non-glycemic effects. Target populations, summaries of clinical studies and issues related to implantable pump therapy are highlighted. Limitations of implantable pump therapy and its future outlook in clinical practice are presented. Expert opinion: Although intraperitoneal insulin delivery appears closer to the normal physiology, technical, pharmacological, and costs barriers prevent a wider adoption. Evidence from clinical studies remains scarce and inconclusive. As a consequence, the use of implantable pump therapy will be confined to a small population unless considerable technological progress is made and well-conducted studies can demonstrate glycemic and/or non-glycemic benefits justifying wider application.

  8. Solid lipid nanoparticles modified with stearic acid–octaarginine for oral administration of insulin

    Directory of Open Access Journals (Sweden)

    Zhang ZH

    2012-07-01

    Full Text Available Zhen-Hai Zhang,1,2 Yin-Long Zhang,2 Jian-Ping Zhou,2 Hui-Xia Lv21Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China; 2Department of Pharmaceutics, China Pharmaceutical University, Nanjing, ChinaAbstract: The aim of this study was to design and characterize solid lipid nanoparticles (SLNs modified with stearic acid–octaarginine (SA-R8 as carriers for oral administration of insulin (SA-R8-Ins-SLNs. The SLNs were prepared by spontaneous emulsion solvent diffusion methods. The mean particle size, zeta potential, drug loading, and encapsulation efficiency of the SA-R8-Ins-SLNs were 162 nm, 29.87 mV, 3.19%, and 76.54%, respectively. The zeta potential of the SLNs changed dramatically, from -32.13 mV to 29.87 mV, by binding the positively charged SA-R8. Morphological studies of SA-R8-Ins-SLNs using transmission electron microscopy showed that they were spherical. In vitro, a degradation experiment by enzymes showed that SLNs and SA-R8 could partially protect insulin from proteolysis. Compared to the insulin solution, the SA-R8-Ins-SLNs increased the Caco-2 cell's internalization by up to 18.44 times. In the in vivo studies, a significant hypoglycemic effect in diabetic rats over controls was obtained, with a SA-R8-Ins-SLN pharmacological availability value of 13.86 ± 0.79. These results demonstrate that SA-R8-modified SLNs promote the oral absorption of insulin.Keywords: solid lipid nanoparticles, cell penetration peptides, stearic acid octaarginine, insulin, oral administration 

  9. The relationship between maternal insulin-like growth factors 1 and 2 (IGF-1, IGF-2) and IGFBP-3 to gestational age and preterm delivery.

    LENUS (Irish Health Repository)

    Cooley, Sharon M

    2010-05-01

    To investigate the relationship between levels of insulin-like growth factors 1 and 2 (IGF-1, IGF-2), and insulin-like growth factor binding protein 3 (IGFBP-3) in antenatal maternal serum and gestational age at delivery.

  10. Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration

    DEFF Research Database (Denmark)

    Agrawal, Ashish Kumar; Harde, Harshad; Thanki, Kaushik;

    2014-01-01

    The present study reports the folic acid (FA) functionalized insulin loaded stable liposomes with improved bioavailability following oral administration. Liposomes were stabilized by alternating coating of negatively charged poly(acrylic acid) (PAA) and positively charged poly(allyl amine...

  11. Transdermal delivery of insulin by amidated pectin hydrogel matrix patch in streptozotocin-induced diabetic rats: effects on some selected metabolic parameters.

    Directory of Open Access Journals (Sweden)

    Silindile I Hadebe

    Full Text Available PURPOSE: Studies in our laboratory are concerned with developing optional insulin delivery routes based on amidated pectin hydrogel matrix gel. We therefore investigated whether the application of pectin insulin (PI-containing dermal patches of different insulin concentrations sustain controlled release of insulin into the bloodstream of streptozotocin (STZ-induced diabetic rats with concomitant alleviation of diabetic symptoms in target tissues, most importantly, muscle and liver. METHODS: Oral glucose test (OGT responses to PI dermal matrix patches (2.47, 3.99, 9.57, 16.80 µg/kg prepared by dissolving pectin/insulin in deionised water and solidified with CaCl2 were monitored in diabetic rats given a glucose load after an 18-h fast. Short-term (5 weeks metabolic effects were assessed in animals treated thrice daily with PI patches 8 hours apart. Animals treated with drug-free pectin and insulin (175 µg/kg, s.c. acted as untreated and treated positive controls, respectively. Blood, muscle and liver samples were collected for measurements of selected biochemical parameters. RESULTS: After 5 weeks, untreated diabetic rats exhibited hyperglycaemia and depleted hepatic and muscle glycogen concentrations. Compared to untreated STZ-induced diabetic animals, OGT responses of diabetic rats transdermally applied PI patches exhibited lower blood glucose levels whilst short-term treatments restored hepatic and muscle glycogen concentrations. Plasma insulin concentrations of untreated diabetic rats were low compared with control non-diabetic rats. All PI treatments elevated plasma insulin concentrations of diabetic rats although the levels induced by high doses (9.57 and 16.80 µg/kg were greater than those caused by low doses (2.47 and 3.99 µg/kg but comparable to those in sc insulin treated animals. CONCLUSIONS: The data suggest that the PI hydrogel matrix patch can deliver physiologically relevant amounts of pharmacologically active insulin. NOVELTY

  12. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin.

    Science.gov (United States)

    Yu, Weijiang; Jiang, Guohua; Liu, Depeng; Li, Lei; Chen, Hua; Liu, Yongkun; Huang, Qin; Tong, Zaizai; Yao, Juming; Kong, Xiangdong

    2017-02-01

    To reduce the inconvenience and pain of subcutaneous needle injection, the calcium sulfate and gelatin biodegradable composite microneedle patches with high aspect-ratio microneedles (MNs) and a flexible substrate have been developed. The microneedles with an aspect-ratio approximate 6:1 exhibit excellent mechanical property which can achieve 0.4N for each needle. The cross-section views show the inside of microneedles that have abundant pores and channels which offer potential for different drug-release profiles. The preparation procedures, degradable property for the biodegradable composite microneedle patches are described in the paper. Insulin, the drug to control blood glucose levels in diabetic patients, has been embedded into the biodegradable composite MNs. The hypoglycemic effect for transdermal delivery of insulin is studied using diabetic Sprague-Dawley (SD) rats as models in vivo. After transdermal administration to the diabetic rats, the released insulin from biodegradable composite MNs exhibit an obvious and effective hypoglycemic effect for longer time compared with that of subcutaneous injection route. This work suggests that biodegradable composite MNs containing of insulin have a potential application in diabetes treatment via transdermal ingestion.

  13. The Impact Of Dental Auxiliaries In Oral Health Delivery In Cameroon

    African Journals Online (AJOL)

    demography, training received and role in the clinic and opinion about their job. ... iaries in the oral healthcare delivery, their responsibilities, strength and limitations. .... school children from a rural community in Cameroon. SADJ. 1999 ...

  14. Insulin and GH Signaling in Human Skeletal Muscle In Vivo following Exogenous GH Exposure: Impact of an Oral Glucose Load

    OpenAIRE

    Thomas Krusenstjerna-Hafstrøm; Michael Madsen; Vendelbo, Mikkel H.; Pedersen, Steen B.; Christiansen, Jens S.; Niels Møller; Niels Jessen; Jørgensen, Jens O.L.

    2011-01-01

    INTRODUCTION: GH induces acute insulin resistance in skeletal muscle in vivo, which in rodent models has been attributed to crosstalk between GH and insulin signaling pathways. Our objective was to characterize time course changes in signaling pathways for GH and insulin in human skeletal muscle in vivo following GH exposure in the presence and absence of an oral glucose load. METHODS: Eight young men were studied in a single-blinded randomized crossover design on 3 occasions: 1) after an int...

  15. Adherence to treatment for diabetes mellitus: validation of instruments for oral antidiabetics and insulin

    Directory of Open Access Journals (Sweden)

    Lilian Cristiane Gomes-Villas Boas

    2014-01-01

    Full Text Available OBJECTIVES: to verify the face validity, criterion-related validity and the reliability of two distinct forms of presentation of the instrument Measurement of Adherence to Treatment, one being for ascertaining the adherence to the use of oral antidiabetics and the other for adherence to the use of insulin, as well as to assess differences in adherence between these two modes of drug therapy. METHOD: a methodological study undertaken with 90 adults with Type 2 Diabetes Mellitus. The criterion-related validity was verified using the Receiver Operating Characteristic curves; and for the reliability, the researchers calculated the Cronbach alpha coefficient, the item-total correlation, and the Pearson correlation coefficient. RESULTS: the oral antidiabetics and the other showed sensitivity of 0.84, specificity of 0.35 and a Cronbach correlation coefficient of 0.84. For the adherence to the use of insulin, the values found were, respectively, 0.60, 0.21 and 0.68. A statistically significant difference was found between the final scores of the two forms of the instrument, indicating greater adherence to the use of insulin than to oral antidiabetics. CONCLUSION: it is concluded that the two forms of the Measurement of Adherence to Treatment instrument are reliable and should be used to evaluate adherence to drug treatment among people with diabetes mellitus.

  16. In vitro characterization of microcontainers as an oral drug delivery system

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Keller, Stephan Sylvest; Petersen, Ritika Singh;

    We here present in vitro studies showing the promise of microcontainers (fabricated in either SU-8 or Poly(lactic acid) (PLLA)) as an oral drug delivery system for the poorly watersoluble drug, furosemide.......We here present in vitro studies showing the promise of microcontainers (fabricated in either SU-8 or Poly(lactic acid) (PLLA)) as an oral drug delivery system for the poorly watersoluble drug, furosemide....

  17. Role of nanoparticle size, shape and surface chemistry in oral drug delivery.

    Science.gov (United States)

    Banerjee, Amrita; Qi, Jianping; Gogoi, Rohan; Wong, Jessica; Mitragotri, Samir

    2016-09-28

    Nanoparticles find intriguing applications in oral drug delivery since they present a large surface area for interactions with the gastrointestinal tract and can be modified in various ways to address the barriers associated with oral delivery. The size, shape and surface chemistry of nanoparticles can greatly impact cellular uptake and efficacy of the treatment. However, the interplay between particle size, shape and surface chemistry has not been well investigated especially for oral drug delivery. To this end, we prepared sphere-, rod- and disc-shaped nanoparticles and conjugated them with targeting ligands to study the influence of size, shape and surface chemistry on their uptake and transport across intestinal cells. A triple co-culture model of intestinal cells was utilized to more closely mimic the intestinal epithelium. Results demonstrated higher cellular uptake of rod-shaped nanoparticles in the co-culture compared to spheres regardless of the presence of active targeting moieties. Transport of nanorods across the intestinal co-culture was also significantly higher than spheres. The findings indicate that nanoparticle-mediated oral drug delivery can be potentially improved with departure from spherical shape which has been traditionally utilized for the design of nanoparticles. We believe that understanding the role of nanoparticle geometry in intestinal uptake and transport will bring forth a paradigm shift in nanoparticle engineering for oral delivery and non-spherical nanoparticles should be further investigated and considered for oral delivery of therapeutic drugs and diagnostic materials.

  18. Nano-microdelivery systems for oral delivery of an active ingredient

    DEFF Research Database (Denmark)

    2014-01-01

    A composition for oral delivery of one or more active ingredients in the form of a lipid nano-micro-delivery system comprising a lipid nano-micro-structure comprising at least one lipid and at least one active ingredient, said at least one active ingredient being immobilized in said lipid nano...

  19. Combining insulins with oral antidiabetic agents: effect on hyperglycemic control, markers of cardiovascular risk and disease

    Directory of Open Access Journals (Sweden)

    Kjeld Hermansen

    2008-06-01

    Full Text Available Kjeld Hermansen, Lene Sundahl Mortensen, Marie-Louise HermansenDepartment of Endocrinology and Metabolism C, Aarhus University Hospital, DK-8000 Aarhus, DenmarkAbstract: Patients with type 2 diabetes mellitus (T2DM have an increased risk of cardiovascular disease (CVD. Unfortunately, several potential barriers exist for CVD risk management in diabetes, including the need for significant lifestyle changes, potential problems with hypoglycemia, weight gain, injection tolerability, treatment complexity with current diabetes therapies and other, unmodifiable factors. Improving glycemic control may impact CVD risk. Treatment of T2DM usually starts with lifestyle changes such as diet and exercise. When these become insufficient, pharmacotherapy is required. Various oral antidiabetic drugs (OADs are available that reduce hyperglycemia. The first line of therapy is usually metformin, since it does not increase weight and seems to have a beneficial effect on CVD mortality and risk factors. As T2DM progresses, insulin treatment becomes necessary for the majority of patients. The last few years have seen the development of long-acting, rapid-acting, and premixed insulin analog formulations. The treat-to-target algorithms of recent studies combining OADs plus insulin analogs have demonstrated that patients can reach glycemic treatment targets with low risk of hypoglycemia, greater convenience, and – with some analogs – limited weight gain vs conventional insulins. These factors may possibly have a positive influence on CVD risk. Future studies will hopefully elucidate the benefits of this approach.Keywords: diabetes mellitus, type 2 diabetes, cardiovascular disease, hyperglycemia, insulin, oral antidiabetic drugs

  20. 76 FR 25696 - Guidance for Industry on Dosage Delivery Devices for Orally Ingested OTC Liquid Drug Products...

    Science.gov (United States)

    2011-05-05

    ... HUMAN SERVICES Food and Drug Administration Guidance for Industry on Dosage Delivery Devices for Orally... entitled ``Dosage Delivery Devices for Orally Ingested OTC Liquid Drug Products.'' This document is... over-the-counter (OTC) liquid drug products packaged with dosage delivery devices (e.g.,...

  1. Electrospun fish protein fibers as a biopolymer-based carrier – implications for oral protein delivery

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2014-01-01

    . The electrospinning process did not affect the functionality of the encapsulated insulin and it provided controlled release kinetics. The epithelial permeability enhancing effect and biocompatibility of the FSP fibers provide evidence for further investigating protein-based electrospun nanofibers for delivery...

  2. Effects of an oral insulin nanoparticle administration on hepatic glucose metabolism assessed by 13C and 2H isotopomer analysis

    NARCIS (Netherlands)

    Reis, C.P.; Neufeld, R.; Veiga, F.; Figueiredo, I.V.; Jones, J.; Soares, A.F.; Nunes, P.M.; Damg\\'e, C.; Carvalho, R.A.

    2012-01-01

    The purpose of this study was to evaluate hepatic glucose metabolism of diabetic induced rats after a daily oral load of insulin nanoparticles over 2 weeks. After the 2-week treatment, an oral glucose tolerance test was performed with [U-‘‘C] glucose and ‘H2O. Plasma glucose ‘H and ‘‘C enrichments w

  3. pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms.

    Science.gov (United States)

    Liu, Lin; Yao, WenDong; Rao, YueFeng; Lu, XiaoYang; Gao, JianQing

    2017-11-01

    Oral administration is a desirable alternative of parenteral administration due to the convenience and increased compliance to patients, especially for chronic diseases that require frequent administration. The oral drug delivery is a dynamic research field despite the numerous challenges limiting their effective delivery, such as enzyme degradation, hydrolysis and low permeability of intestinal epithelium in the gastrointestinal (GI) tract. pH-Responsive carriers offer excellent potential as oral therapeutic systems due to enhancing the stability of drug delivery in stomach and achieving controlled release in intestines. This review provides a wide perspective on current status of pH-responsive oral drug delivery systems prepared mainly with organic polymers or inorganic materials, including the strategies used to overcome GI barriers, the challenges in their development and future prospects, with focus on technology trends to improve the bioavailability of orally delivered drugs, the mechanisms of drug release from pH-responsive oral formulations, and their application for drug delivery, such as protein and peptide therapeutics, vaccination, inflammatory bowel disease (IBD) and bacterial infections.

  4. Changes of ghrelin following oral glucose tolerance test in obese children with insulin resistance

    Institute of Scientific and Technical Information of China (English)

    Xiu-Min Wang; You-Jun Jiang; Li Liang; Li-Zhong Du

    2008-01-01

    AIM: To characterize changes in ghrelin levels in response to oral glucose tolerance test (OGTT) and to correlate changes in ghrelin levels with changes in insulin and glucose following OGTT in Chinese obese children of Tanner I and Ⅱ stage with insulin resistance.METHODS: 22 obese children with insulin resistance state were divided into four groups according to their Tanner stage and gender: boys of Tanner I (BT-Ⅰ), boys of Tanner Ⅱ (BT- Ⅱ), girls of Tanner Ⅰ (GT-Ⅰ), girls of Tanner Ⅱ (GT-Ⅱ). Ghrelin, insulin and glucose were measured at 0, 30, 60 and 120 min following OGTT. The control children with normal BMI were divided into control boys of Tanner I (CBT-Ⅰ, n = 6), control boys of Tanner Ⅱ (CBT- Ⅱ, n = 5), control girls of Tanner I (CGT-1, n = 6), control girls of Tanner II (CGT- Ⅱ, n = 5). Fasting serum ghrelin levels were analyzed.RESULTS: Ghrelin levels were lower in obese groups. Ghrelin levels of control group decreased in Tanner Ⅱ stage (CGT-Ⅰ vs CGT-Ⅱ t = -4.703, P = 0.001; CBT-Ⅰ vs CBT-n t = -4.794, P = 0.001). Basal ghrelin levels in BT- Ⅱ decreased more significantly than that in BT-Ⅰ group (t = 2.547, P = 0.029). Ghrelin levels expressed a downward trend after OGTT among obese children. The decrease in ghrelin levels at 60 min with respect to basal values was 56.9% in BT-Ⅰ. Ghrelin concentrations at 0 min correlated directly with glucose level at 0 min in BT-Ⅰ (r = 0.898, P = 0.015). There wasn't a significant correlation of ghrelin changes with glucose changes and insulin changes during OGTT in obese children with insulin resistance.CONCLUSION: In conclusion, in obese children with insulin resistance, ghrelin levels decreased with advancing pubertal stage. Ghrelin secretion suppression following OGTT was influenced by gender and pubertal stage. Baseline ghrelin levels and ghrelin suppression after OGTT did not significantly correlate with the degree of insulin resistance and insulin sensitivity.

  5. Engineered nanoparticulate drug delivery systems: the next frontier for oral administration?

    Science.gov (United States)

    Diab, Roudayna; Jaafar-Maalej, Chiraz; Fessi, Hatem; Maincent, Philippe

    2012-12-01

    For the past few decades, there has been a considerable research interest in the area of oral drug delivery using nanoparticle (NP) delivery systems as carriers. Oral NPs have been used as a physical approach to improve the solubility and the stability of active pharmaceutical ingredients (APIs) in the gastrointestinal juices, to enhance the intestinal permeability of drugs, to sustain and to control the release of encapsulated APIs allowing the dosing frequency to be reduced, and finally, to achieve both local and systemic drug targeting. Numerous materials have been used in the formulation of oral NPs leading to different nanoparticulate platforms. In this paper, we review various aspects of the formulation and the characterization of polymeric, lipid, and inorganic NPs. Special attention will be dedicated to their performance in the oral delivery of drug molecules and therapeutic genes.

  6. Properties and formulation of oral drug delivery systems of protein and peptides

    Directory of Open Access Journals (Sweden)

    Semalty A

    2007-01-01

    Full Text Available Although most protein pharmaceuticals are usually formulated as a solution or suspension and delivered by invasive routes such as subcutaneous injections, major efforts in both academic and industrial laboratories have been directed towards developing effective oral formulations and increasing the oral absorption of intact protein through the use of formulations that protect the macromolecule and/or enhance it′s uptake into the intestinal mucosa. However, in spite of these major attempts, relatively little progress has been made. For the efficient delivery of peptides and proteins by non-parenteral route, in particular via the gastrointestinal tract, novel concepts are needed to overcome significant enzymatic and diffusion barriers. The properties of protein and peptides, which are of major interest in oral delivery, are highlighted in the article. This article reviews the various problems associated and novel approaches for formulation and development of oral protein and peptide drug delivery systems.

  7. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery.

    Science.gov (United States)

    Muchow, Marc; Maincent, Philippe; Muller, Rainer H

    2008-12-01

    Solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid-drug conjugates (LDC), commonly produced by high-pressure homogenization, are interesting vectors for oral delivery of lipophilic and, to a certain extent, hydrophilic substances. Their production can be done without the use of organic solvents. Techniques to make them a physically stable delivery system have been developed. Scaling up of the production process from lab-size to large-scale dimensions using high-pressure homogenization can be easily achieved by using a different type of homogenizer. The machines used for large-scale production often yield an even better product quality than the lab-scale types. This review article covers the methods of production, characterization, mechanisms of oral bioavailability enhancement, scale-up, final oral dosage forms, and regulatory aspects of lipid nanoparticles for oral drug delivery. It focuses mainly on high-pressure homogenization production methods.

  8. Insulin Micropump with Embedded Pressure Sensors for Failure Detection and Delivery of Accurate Monitoring

    Directory of Open Access Journals (Sweden)

    Dimitry Dumont-Fillon

    2014-11-01

    Full Text Available Improved glycemic control with insulin pump therapy in patients with type 1 diabetes mellitus has shown gradual reductions in nephropathy and retinopathy. More recently, the emerging concept of the artificial pancreas, comprising an insulin pump coupled to a continuous glucose meter and a control algorithm, would become the next major breakthrough in diabetes care. The patient safety and the efficiency of the therapy are directly derived from the delivery accuracy of rapid-acting insulin. For this purpose, a specific precision-oriented design of micropump has been built. The device, made of a stack of three silicon wafers, comprises two check valves and a pumping membrane that is actuated against stop limiters by a piezo actuator. Two membranes comprising piezoresistive strain gauges have been implemented to measure the pressure in the pumping chamber and at the outlet of the pump. Their high sensitivity makes possible the monitoring of the pumping accuracy with a tolerance of ±5% for each individual stroke of 200 nL. The capability of these sensors to monitor priming, reservoir overpressure, reservoir emptying, outlet occlusion and valve leakage has also been studied.

  9. Toward Automation of Insulin Delivery - Management Solutions for Type 1 Diabetes.

    Science.gov (United States)

    Nimri, Revital; Phillip, Moshe

    2016-01-01

    In the past decade, the field of type 1 diabetes was characterized by the efforts to integrate technology into the daily management of diabetes. Automated insulin delivery systems have emerged followed by the improvements in technology of pumps and sensors and automated close-loop systems that were developed around the world for overnight as well as for day and night use. Initially, these closed-loop systems were tested clinically in research centers, then at diabetes camps or hotels, and recently at patients' homes. The systems were tested in a wide range of populations of patients with type 1 diabetes: children, adolescents, adults, newly diagnosed, well and suboptimally controlled patients, the critically ill and pregnant women. The extensive clinical evaluation found these close-loop systems to be safe and efficient in controlling blood glucose levels. Now is the time to take these systems from research to industry and to get a regulatory approval of convenient devices for the use at home. Automated insulin delivery systems have the potential to change the way diabetes is treated and managed for the benefit of patients. This chapter summarizes the recent advances in this field.

  10. The role of insulin-like growth factor in prediction and prevention of preterm delivery

    Directory of Open Access Journals (Sweden)

    Bogavac Mirjana

    2010-01-01

    Full Text Available Background/Aim. Prediction and prevention of preterm delivery remain great challenge. It is important to include in everyday medical practice determination of certain markers that could help identifying pregnant women with preterm delivery. Insulin like growth factor (IGF is involved in the control mechanism of fetal and placental growth and development. The aim of this study was to examine the presence of insulin-like growth factor binding protein 1 (IGFBP-1 in cervicovaginal secretion of pregnant women with symptoms of preterm labor, but with apparently intact fetal membranes and to point out a possible application of the strip test for detection of phIGFBP-1 in diagnosis of preterm premature rupture of total membranes (PPROM in everyday medical practice. Methods. The study was performed at the Department for Obstetrics and Gynecology, Clinical Center of Vojvodina between October 2008 and May 2009. The study included 54 pregnant women between 20-35 weeks of gestation (WG, divided into two groups: the study group (16 pregnant women with symptoms of preterm delivery that gave birth before 37 WG and the control group (38 pregnant women with the normal course of pregnancy that gave birth on term. In cervicovaginal secretion of the examined pregnant women the level of IGFBP-1 was determined by the immunochromatographic assay with monoclonal antibodies 6303 as a detecting antibody (Actim PROM test, Medix Biochemica, Kauniainen, Finland. Results. Gestational age (GA at delivery in the study group was 32.6 WG and in the control group it was 38.4 WG. Weight of newborns in the study group was 2,021 g and in the control group 3,430 g. IGFBP test was positive in 15 women (93.75% of the study group, while in the control group it was positive only in 1 woman (2.63%. Conclusion. Test on phIGFBP-1 in cervicovaginal mucus was positive in 93.75% women with preterm delivery, suggesting that this test could be used in diagnosis of silent rupture of fetal

  11. Recent developments in oral lipid-based drug delivery

    DEFF Research Database (Denmark)

    Thomas, N.; Rades, T.; Müllertz, A.

    2013-01-01

    and characterization of LbDDS. In particular, the lack of standardized test protocols can be identified as the major obstacles for the broader application of LbDDS. This review seeks to summarize recent approaches in the field of lipid-based drug delivery that try to elucidate some critical steps in their development......The increasing number of poorly water-soluble drugs in development in the pharmaceutical industry has sparked interest in novel drug delivery options such as lipid-based drug delivery systems (LbDDS). Several LbDDS have been marketed successfully and have shown superior and more reliable...... bioavailability compared to conventional formulations. However, some reluctance in the broader application of LbDDS still appears, despite the growing commercial interest in lipids as a drug delivery platform. This reluctance might at least in part be related to the complexity associated with the development...

  12. Recent developments in oral lipid-based drug delivery

    DEFF Research Database (Denmark)

    Thomas, N.; Rades, T.; Müllertz, A.

    2013-01-01

    The increasing number of poorly water-soluble drugs in development in the pharmaceutical industry has sparked interest in novel drug delivery options such as lipid-based drug delivery systems (LbDDS). Several LbDDS have been marketed successfully and have shown superior and more reliable...... bioavailability compared to conventional formulations. However, some reluctance in the broader application of LbDDS still appears, despite the growing commercial interest in lipids as a drug delivery platform. This reluctance might at least in part be related to the complexity associated with the development...... and characterization of LbDDS. In particular, the lack of standardized test protocols can be identified as the major obstacles for the broader application of LbDDS. This review seeks to summarize recent approaches in the field of lipid-based drug delivery that try to elucidate some critical steps in their development...

  13. Once-daily basal insulin glargine versus thrice-daily prandial insulin lispro in people with type 2 diabetes on oral hypoglycaemic agents (APOLLO): an open randomised controlled trial

    DEFF Research Database (Denmark)

    Bretzel, R.G.; Nuber, U.; Landgraf, W.

    2008-01-01

    BACKGROUND: As type 2 diabetes mellitus progresses, oral hypoglycaemic agents often fail to maintain blood glucose control and insulin is needed. We investigated whether the addition of once-daily insulin glargine is non-inferior to three-times daily prandial insulin lispro in overall glycaemic c...

  14. Dosage Form Developments of Nanosuspension Drug Delivery System for Oral Administration Route.

    Science.gov (United States)

    Chen, Ang; Shi, Ye; Yan, Zhiqiang; Hao, Hongxun; Zhang, Yong; Zhong, Jian; Hou, Huiming

    2015-01-01

    A large amount of new drug candidates are practically insoluble in aqueous solvents and are even simultaneously poorly soluble in organic solvents. Nanosuspension drug delivery system (DDS) was firstly developed in 1994 and has attracted more and more attention as a formation solution for the poorly soluble drugs. By nansizing the poorly soluble drugs, nanosuspensions have several outstanding advantages for drug delivery. Among many administration routes of drug delivery, oral administration is the most preferred route due to its advantages such as ease of ingestion, versatility to accommodate various types of drug candidates, low production cost, high safety, good patient compliance, and pain avoidance. Current marketed pharmaceutical nanosuspension DDS products are mostly for oral administration. This review is to systematically summarize the nanosuspension DDS dosage form developments of poorly soluble drugs for oral administration use.

  15. Nanotechnology-based drug delivery systems for treatment of oral cancer: a review.

    Science.gov (United States)

    Calixto, Giovana; Bernegossi, Jéssica; Fonseca-Santos, Bruno; Chorilli, Marlus

    2014-01-01

    Oral cancer (oral cavity and oropharynx) is a common and aggressive cancer that invades local tissue, can cause metastasis, and has a high mortality rate. Conventional treatment strategies, such as surgery and chemoradiotherapy, have improved over the past few decades; however, they remain far from optimal. Currently, cancer research is focused on improving cancer diagnosis and treatment methods (oral cavity and oropharynx) nanotechnology, which involves the design, characterization, production, and application of nanoscale drug delivery systems. In medicine, nanotechnologies, such as polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, gold nanoparticles, hydrogels, cyclodextrin complexes, and liquid crystals, are promising tools for diagnostic probes and therapeutic devices. The objective of this study is to present a systematic review of nanotechnology-based drug delivery systems for oral cancers.

  16. The comparison of the intestinal adaptation effects of subcutaneous and oral insulin in a rats with short bowel syndrome

    Directory of Open Access Journals (Sweden)

    Unal Bicakci

    2013-01-01

    Full Text Available Aim: Insulin has been reported to have positive effects on intestinal adaptation after short bowel syndrome when applicated oral or subcutaneously. The purpose of this study is to compare the intestinal adaptation effects of subcutaneous and oral routes of insulin in rats with short bowel syndrome. Materials and Methods: The short bowel syndrome (SBS was performed through 70-75% of small intestinal resection and an end-to-end anastomosis. The control group rats underwent SBS only. In the second group, oral insulin (1 U/ml was administrated twice-daily. In the last group, the insulin was administrated subcutaneously (1 U/kg as in the control group. All rats were killed on day 15. Outcome parameters were weight of small intestine, the crypt length, villous depth, the blood levels of vascular endothelial growth factor (VEGF, and granolocyt-monocyst colony-stimulating factor (GMCSF. Results: Intestinal weight was significantly more in oral insulin group and subcutaneous insulin group than in the control group (72.6 ± 4.3, 78.6 ± 4.8 and 59.7 ± 4.8 (P 0.05. VEGF values were not statistically significant between the groups (200.3 ± 41.6, 178.9 ± 30.7 and 184.3 ± 52.2 (P > 0.05. GMCSF was statistically higher in the control group than in other groups (3.34 ± 1.34, 1.56 ± 0.44 and 1.56 ± 0.44 (P < 0.05. Conclusion: Insulin has positive effects on intestinal adaptation in short bowel syndrome. Subcutaneous administration is slightly more effective than the oral route.

  17. Gene transfer to hemophilia A mice via oral delivery of FVIII-chitosan nanoparticles.

    Science.gov (United States)

    Bowman, Katherine; Sarkar, Rita; Raut, Sanj; Leong, Kam W

    2008-12-18

    Effective oral delivery of a non-viral gene carrier would represent a novel and attractive strategy for therapeutic gene transfer. To evaluate the potential of this approach, we studied the oral gene delivery efficacy of DNA polyplexes composed of chitosan and Factor VIII DNA. Transgene DNA was detected in both local and systemic tissues following oral administration of the chitosan nanoparticles to hemophilia A mice. Functional factor VIII protein was detected in plasma by chromogenic and thrombin generation assays, reaching a peak level of 2-4% FVIII at day 22 after delivery. In addition, a bleeding challenge one month after DNA administration resulted in phenotypic correction in 13/20 mice given 250-600 microg of FVIII DNA in chitosan nanoparticles, compared to 1/13 mice given naked FVIII DNA and 0/6 untreated mice. While further optimization would be required to render this type of delivery system practical for hemophilia A gene therapy, the findings suggest the feasibility of oral, non-viral delivery for gene medicine applications.

  18. Intraperitoneal insulin delivery provides superior glycaemic regulation to subcutaneous insulin delivery in model predictive control-based fully-automated artificial pancreas in patients with type 1 diabetes: a pilot study.

    Science.gov (United States)

    Dassau, Eyal; Renard, Eric; Place, Jérôme; Farret, Anne; Pelletier, Marie-José; Lee, Justin; Huyett, Lauren M; Chakrabarty, Ankush; Doyle, Francis J; Zisser, Howard C

    2017-05-05

    To compare intraperitoneal (IP) to subcutaneous (SC) insulin delivery in an artificial pancreas (AP). Ten adults with type 1 diabetes participated in a non-randomized, non-blinded sequential AP study using the same SC glucose sensing and Zone Model Predictive Control (ZMPC) algorithm adjusted for insulin clearance. On first admission, subjects underwent closed-loop control with SC delivery of a fast-acting insulin analogue for 24 hours. Following implantation of a DiaPort IP insulin delivery system, the identical 24-hour trial was performed with IP regular insulin delivery. The clinical protocol included 3 unannounced meals with 70, 40 and 70 g carbohydrate, respectively. Primary endpoint was time spent with blood glucose (BG) in the range of 80 to 140 mg/dL (4.4-7.7 mmol/L). Percent of time spent within the 80 to 140 mg/dL range was significantly higher for IP delivery than for SC delivery: 39.8 ± 7.6 vs 25.6 ± 13.1 ( P  = .03). Mean BG (mg/dL) and percent of time spent within the broader 70 to 180 mg/dL range were also significantly better for IP insulin: 151.0 ± 11.0 vs 190.0 ± 31.0 ( P  = .004) and 65.7 ± 9.2 vs 43.9 ± 14.7 ( P  = .001), respectively. Superiority of glucose control with IP insulin came from the reduced time spent in hyperglycaemia (>180 mg/dL: 32.4 ± 8.9 vs 53.5 ± 17.4, P  = .014; >250 mg/dL: 5.9 ± 5.6 vs 23.0 ± 11.3, P  = .0004). Higher daily doses of insulin (IU) were delivered with the IP route (43.7 ± 0.1 vs 32.3 ± 0.1, P  time spent <70 mg/dL (IP: 2.5 ± 2.9 vs SC: 4.1 ± 5.3, P  = .42). Glycaemic regulation with fully-automated AP delivering IP insulin was superior to that with SC insulin delivery. This pilot study provides proof-of-concept for an AP system combining a ZMPC algorithm with IP insulin delivery. © 2017 John Wiley & Sons Ltd.

  19. Polymeric particulate technologies for oral drug delivery and targeting: A pathophysiological perspective

    DEFF Research Database (Denmark)

    Hunter, A. Christy; Elsom, Jacqueline; Wibroe, Peter Popp;

    2012-01-01

    to optimize drug targeting and bioavailability. Frequently the carrier systems used are either constructed from or contain polymeric materials. Examples of these nanocarriers include polymeric nanoparticles, solid lipid nanocarriers, self-nanoemulsifying drug delivery systems and nanocrystals......Publication year: 2012 Source:Maturitas, Volume 73, Issue 1 A. Christy Hunter, Jacqueline Elsom, Peter P. Wibroe, S. Moein Moghimi The oral route for delivery of pharmaceuticals is the most widely used and accepted. Nanoparticles and microparticles are increasingly being applied within this arena...

  20. Design and in vitro characterization of buccoadhesive drug delivery system of insulin

    Directory of Open Access Journals (Sweden)

    Sahni J

    2008-01-01

    Full Text Available A buccoadhesive drug delivery system of Insulin was prepared by solvent casting technique and characterized in vitro by surface pH, bioadhesive strength, drug release and skin permeation studies. Sodium carboxymethylcellulose-DVP was chosen as the controlled release matrix polymer. The optimized formulation J 4 contained Sodium carboxy methyl cellulose-DVP 2% (w/v, insulin (50 IU/film, propylene glycol (0.25 ml and Isopropyl alcohol: water (1:4 as solvent system. Bioadhesive strength of the prepared patches was measured on a modified physical balance using bovine cheek pouch as the model membrane. In vitro release studies were carried out at 37 ± 2° using phosphate buffer pH 6.6, in a modified dissolution apparatus fabricated for the purpose. Cumulative amount of drug released from the optimized formulation J 4 was 91.64% in 6 hours. In vitro permeation studies were carried out on J 4 at 37 ± 2° using Franz diffusion cell. Cumulative amount of drug permeated from J 4 was 6.63% in 6 hours. In order to enhance the permeation of protein drug, different permeation enhancers were evaluated. The results suggested that sodium deoxycholate 5% (w/v was the best permeation enhancer among those evaluated. It enhanced the permeation of insulin from 6.63% to 10.38% over a period of 6 hours. The optimized patches were also satisfactory in terms of surface pH and bioadhesive strength. It can also be easily concluded that the system is a success as compared to the conventional formulations with respect to invasiveness, requirement of trained persons for administration and most importantly, the first pass metabolism.

  1. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge

    DEFF Research Database (Denmark)

    Saxena, Richa; Hivert, Marie-France; Langenberg, Claudia

    2010-01-01

    Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958-30,620)......Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6......,958-30,620). We identify variants at the GIPR locus associated with 2-h glucose level (rs10423928, beta (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 x 10(-15)). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 x 10(-17); ratio of insulin...... with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09-1.15, P = 4.8 x 10(-18))....

  2. Use of anesthesia dramatically alters the oral glucose tolerance and insulin secretion in C57Bl/6 mice.

    Science.gov (United States)

    Windeløv, Johanne A; Pedersen, Jens; Holst, Jens J

    2016-06-01

    Evaluation of the impact of anesthesia on oral glucose tolerance in mice. Anesthesia is often used when performing OGTT in mice to avoid the stress of gavage and blood sampling, although anesthesia may influence gastrointestinal motility, blood glucose, and plasma insulin dynamics. C57Bl/6 mice were anesthetized using the following commonly used regimens: (1) hypnorm/midazolam repetitive or single injection; (2) ketamine/xylazine; (3) isoflurane; (4) pentobarbital; and (5) A saline injected, nonanesthetized group. Oral glucose was administered at time 0 min and blood glucose measured in the time frame -15 to +150 min. Plasma insulin concentration was measured at time 0 and 20 min. All four anesthetic regimens resulted in impaired glucose tolerance compared to saline/no anesthesia. (1) hypnorm/midazolam increased insulin concentrations and caused an altered glucose tolerance; (2) ketamine/xylazine lowered insulin responses and resulted in severe hyperglycemia throughout the experiment; (3) isoflurane did not only alter the insulin secretion but also resulted in severe hyperglycemia; (4) pentobarbital resulted in both increased insulin secretion and impaired glucose tolerance. All four anesthetic regimens altered the oral glucose tolerance, and we conclude that anesthesia should not be used when performing metabolic studies in mice.

  3. Challenges in oral drug delivery in patients with esophageal dysphagia

    NARCIS (Netherlands)

    Kappelle, W.F.; Siersema, P.D.; Bogte, A.; Vleggaar, F.P.

    2016-01-01

    INTRODUCTION: Esophageal dysphagia is a commonly reported symptom with various benign and malignant causes. Esophageal dysphagia can impede intake of oral medication, which often poses a major challenge for both patients and physicians. The best way to address this challenge depends of the cause of

  4. Solid Phospholipid Dispersions for Oral Delivery of Poorly Soluble Drugs

    DEFF Research Database (Denmark)

    Fong, Sophia Yui Kau; Martins, Susana A. M.; Brandl, Martin

    2016-01-01

    Celecoxib (CXB) is a Biopharmaceutical Classification System class II drug in which its oral bioavailability is limited by poor aqueous solubility. Although a range of formulations aiming to increase the solubility of CXB have been developed, it is not completely understood, whether (1) an increase...

  5. Nanotechnology-based drug delivery systems for treatment of oral cancer: a review

    Directory of Open Access Journals (Sweden)

    Calixto G

    2014-08-01

    Full Text Available Giovana Calixto, Jéssica Bernegossi, Bruno Fonseca-Santos, Marlus Chorilli School of Pharmaceutical Sciences, Department of Drugs and Pharmaceuticals, São Paulo State University (UNESP, São Paulo, Brazil Abstract: Oral cancer (oral cavity and oropharynx is a common and aggressive cancer that invades local tissue, can cause metastasis, and has a high mortality rate. Conventional treatment strategies, such as surgery and chemoradiotherapy, have improved over the past few decades; however, they remain far from optimal. Currently, cancer research is focused on improving cancer diagnosis and treatment methods (oral cavity and oropharynx nanotechnology, which involves the design, characterization, production, and application of nanoscale drug delivery systems. In medicine, nanotechnologies, such as polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, gold nanoparticles, hydrogels, cyclodextrin complexes, and liquid crystals, are promising tools for diagnostic probes and therapeutic devices. The objective of this study is to present a systematic review of nanotechnology-based drug delivery systems for oral cancers. Keywords: targeted delivery, oral squamous cell carcinoma, oral cancer treatment

  6. Insulin and GH signaling in human skeletal muscle in vivo following exogenous GH exposure: impact of an oral glucose load.

    Directory of Open Access Journals (Sweden)

    Thomas Krusenstjerna-Hafstrøm

    Full Text Available INTRODUCTION: GH induces acute insulin resistance in skeletal muscle in vivo, which in rodent models has been attributed to crosstalk between GH and insulin signaling pathways. Our objective was to characterize time course changes in signaling pathways for GH and insulin in human skeletal muscle in vivo following GH exposure in the presence and absence of an oral glucose load. METHODS: Eight young men were studied in a single-blinded randomized crossover design on 3 occasions: 1 after an intravenous GH bolus 2 after an intravenous GH bolus plus an oral glucose load (OGTT, and 3 after intravenous saline plus OGTT. Muscle biopsies were taken at t = 0, 30, 60, and 120. Blood was sampled at frequent intervals for assessment of GH, insulin, glucose, and free fatty acids (FFA. RESULTS: GH increased AUC(glucose after an OGTT (p<0.05 without significant changes in serum insulin levels. GH induced phosphorylation of STAT5 independently of the OGTT. Conversely, the OGTT induced acute phosphorylation of the insulin signaling proteins Akt (ser(473 and thr(308, and AS160.The combination of OGTT and GH suppressed Akt activation, whereas the downstream expression of AS160 was amplified by GH. WE CONCLUDED THE FOLLOWING: 1 A physiological GH bolus activates STAT5 signaling pathways in skeletal muscle irrespective of ambient glucose and insulin levels 2 Insulin resistance induced by GH occurs without a distinct suppression of insulin signaling proteins 3 The accentuation of the glucose-stimulated activation of AS 160 by GH does however indicate a potential crosstalk between insulin and GH. TRIAL REGISTRATION: ClinicalTrials.gov NCT00477997.

  7. Bicontinuous cubic liquid crystalline nanoparticles for oral delivery of Doxorubicin

    DEFF Research Database (Denmark)

    Swarnakar, Nitin K; Thanki, Kaushik; Jain, Sanyog

    2014-01-01

    PURPOSE: The present study explores the potential of bicontinous cubic liquid crystalline nanoparticles (LCNPs) for improving therapeutic potential of doxorubicin. METHODS: Phytantriol based Dox-LCNPs were prepared using hydrotrope method, optimized for various formulation components, process...... variables and lyophilized. Structural elucidation of the reconstituted formulation was performed using HR-TEM and SAXS analysis. The developed formulation was subjected to exhaustive cell culture experiments for delivery potential (Caco-2 cells) and efficacy (MCF-7 cells). Finally, in vivo pharmacokinetics...

  8. Soft-Template-Synthesized Mesoporous Carbon for Oral Drug Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Dipendu [ORNL; Warren, Kaitlyn E [ORNL; Naskar, Amit K [ORNL

    2014-01-01

    Template-synthesized mesoporous carbons were successfully used in in vitro investigations of controlled delivery of three model drugs, captopril, furosemide, and ranitidine hydrochloride. Captopril and furosemide exhibited desorption kinetics over 30 40 h, and ranitidine HCl had a complete release time of 5 10 h. As evident from the slow release kinetics, we contend that our mesoporous carbon is an improved drug-delivery medium compared to state-of-the-art porous silica-based substrates. The mesoporous carbons, synthesized from phloroglucinol and lignin, a synthetic and a sustainable precursor, respectively, exhibit BET surface area of 200 400 m2 g-1 and pore volume of 0.2 0.6 cm3 g-1. The phloroglucinol-based carbon has narrower pore widths and higher pore volume than the lignin-derived counterpart and maintains a longer release time. Numerical modeling of the release kinetics data reveals that the diffusivities of all the drugs from lignin-based carbon media are of equivalent magnitude (10-22 to 10-24 m2 s-1). However, a tailored reduction of pore width in the sorbent reduces the diffusivity of smaller drug molecules (captopril) by an order of magnitude. Thus, engineered pore morphology in our synthesized carbon sorbent, along with its potential to tailor the chemistry of its interaction with sorbet, can be exploited for optimal delivery system of a preferred drug within its therapeutic level and below the level of toxicity.

  9. Silica-based systems for oral delivery of drugs, macromolecules and cells.

    Science.gov (United States)

    Diab, Roudayna; Canilho, Nadia; Pavel, Ileana A; Haffner, Fernanda B; Girardon, Maxime; Pasc, Andreea

    2017-04-20

    According to the US Food and Drug Administration and the European Food Safety Authority, amorphous forms of silica and silicates are generally recognized to be safe as oral delivery ingredients in amounts up to 1500mg per day. Silica is used in the formulation of solid dosage forms, e.g. tablets, as glidant or lubricant. The synthesis of silica-based materials depends on the payload nature, drug, macromolecule or cell, and on the target release (active or passive). In the literature, most of the examples deal with the encapsulation of drugs in mesoporous silica nanoparticles. Still to date limited reports concerning the delivery of encapsulated macromolecules and cells have been reported in the field of oral delivery, despite the multiple promising examples demonstrating the compatibility of the sol-gel route with biological entities, likewise the interest of silica as an oral carrier. Silica diatoms appear as an elegant, cost-effective and promising alternative to synthetic sol-gel-based materials. This review reports the latest advances silica-based systems and discusses the potential benefits and drawbacks of using silica for oral delivery of drugs, macromolecules or cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Hot embossing and mechanical punching of biodegradable microcontainers for oral drug delivery

    DEFF Research Database (Denmark)

    Petersen, Ritika Singh; Mahshid, Rasoul; Andersen, Nis Korsgaard

    2015-01-01

    A process has been developed to fabricate discrete three-dimensional microcontainers for oral drug delivery application in Poly-L-Lactic Acid (PLLA) polymer. The method combines hot embossing for the definition of holes in a PLLA film and mechanical punching to penetrate the polymer layer around ...

  11. An oral delivery system for indomethicin engineered from cationic lipid emulsions and silica nanoparticles

    DEFF Research Database (Denmark)

    Simovic, Spomenka; Hui, He; Song, Yunmei;

    2010-01-01

    We report on a porous silica-lipid hybrid microcapsule (SLH) oral delivery system for indomethacin fabricated from Pickering emulsion templates, where the drug forms an electrostatic complex with cationic lipid present in the oil phase. Dry SLH microcapsules prepared either by spray drying...

  12. Insulin Pump Use and Glycemic Control in Adolescents with Type 1 Diabetes (T1D): Predictors of Change in Method of Insulin Delivery across Two Years

    Science.gov (United States)

    Wong, Jenise C.; Dolan, Lawrence M.; Yang, Tony T.; Hood, Korey K.

    2015-01-01

    Few studies have explored durability of insulin pump use, and none have explored the link between depression and pump discontinuation. To examine the relationship between depressive symptoms (measured by the Children’s Depression Inventory, CDI), method of insulin delivery, and A1c, mixed models were used with data from 150 adolescents with T1D and visits every 6 months for 2 years. Of the 63% who used a pump, compared to multiple daily injections (MDI) at baseline, there were higher proportions who were non-minorities, had caregivers with a college degree, private insurance, and two caregivers in the home (p≤0.01). After adjusting for time, sex, age, T1D duration, frequency of blood glucose monitoring, ethnicity, insurance, and caregiver number and education, baseline pump use was associated with −0.79% lower mean A1c (95% CI −1.48, −0.096; p=0.03). For those using a pump at baseline, but switching to MDI during the study (n=9), mean A1c was 1.38% higher (95% CI 0.68, 2.08; ppump use. Regarding the temporal relationship between CDI score and changing method of insulin delivery, prior higher CDI score was associated with switching from pump to MDI (OR=1.21; 95% CI 1.05, 1.39 p=0.007). Clinicians should be aware of the associations between depressive symptoms, change in insulin delivery method, and the effect on glycemic control. PMID:25387433

  13. Insulin pump use and glycemic control in adolescents with type 1 diabetes: Predictors of change in method of insulin delivery across two years.

    Science.gov (United States)

    Wong, Jenise C; Dolan, Lawrence M; Yang, Tony T; Hood, Korey K

    2015-12-01

    Few studies have explored durability of insulin pump use, and none have explored the link between depression and pump discontinuation. To examine the relationship between depressive symptoms [measured by the Children's Depression Inventory (CDI)], method of insulin delivery, and hemoglobin A1c (A1c), mixed models were used with data from 150 adolescents with type 1 diabetes (T1D) and visits every 6 months for 2 years. Of the 63% who used a pump, compared with multiple daily injections (MDI) at baseline, there were higher proportions who were non-minorities, had caregivers with a college degree, private insurance, and two caregivers in the home (p ≤ 0.01). After adjusting for time, sex, age, T1D duration, frequency of blood glucose monitoring, ethnicity, insurance, and caregiver number and education, baseline pump use was associated with -0.79% lower mean A1c [95% confidence interval (CI): -1.48, -0.096; p = 0.03]. For those using a pump at baseline, but switching to MDI during the study (n = 9), mean A1c was 1.38% higher (95% CI: 0.68, 2.08; p pump use. Regarding the temporal relationship between CDI score and changing method of insulin delivery, prior higher CDI score was associated with switching from pump to MDI (odds ratio = 1.21; 95% CI: 1.05, 1.39; p = 0.007). Clinicians should be aware of the associations between depressive symptoms, change in insulin delivery method, and the effect on glycemic control. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. On prilled Nanotubes-in-Microgel Oral Systems for protein delivery.

    Science.gov (United States)

    de Kruif, Jan Kendall; Ledergerber, Gisela; Garofalo, Carla; Fasler-Kan, Elizaveta; Kuentz, Martin

    2016-04-01

    Newly discovered active macromolecules are highly promising for therapy, but poor bioavailability hinders their oral use. Microencapsulation approaches, such as protein prilling into microspheres, may enable protection from gastrointestinal (GI) enzymatic degradation. This would increase bioavailability mainly for local delivery to GI lumen or mucosa. This work's purpose was to design a novel architecture, namely a Nanotubes-in-Microgel Oral System, by prilling for protein delivery. Halloysite nanotubes (HNT) were selected as orally acceptable clay particles and their lumen was enlarged by alkaline etching. This chemical modification increased the luminal volume to a mean of 216.3 μL g(-1) (+40.8%). After loading albumin as model drug, the HNT were entrapped in microgels by prilling. The formation of Nanoparticles-in-Microsphere Oral System (NiMOS) yielded entrapment efficiencies up to 63.2%. NiMOS shape was spherical to toroidal, with a diameter smaller than 320 μm. Release profiles depended largely on the employed system and HNT type. Protein stability was determined throughout prilling and after in vitro enzymatic degradation. Prilling did not harm protein structure, and NiMOS demonstrated higher enzymatic protection than pure nanotubes or microgels, since up to 82% of BSA remained unscathed after in vitro digestion. Therefore, prilled NiMOS was shown to be a promising and flexible multi-compartment system for oral (local) macromolecular delivery.

  15. The rule of five for non-oral routes of drug delivery: ophthalmic, inhalation and transdermal.

    Science.gov (United States)

    Choy, Young Bin; Prausnitz, Mark R

    2011-05-01

    The Rule of Five predicts suitability of drug candidates, but was developed primarily using orally administered drugs. Here, we test whether the Rule of Five predicts drugs for delivery via non-oral routes, specifically ophthalmic, inhalation and transdermal. We assessed 111 drugs approved by FDA for those routes of administration and found that >98% of current non-oral drugs have physicochemical properties within the limits of the Rule of Five. However, given the inherent bias in the dataset, this analysis was not able to assess whether drugs with properties outside those limits are poor candidates. Indeed, further analysis indicates that drugs well outside the Rule of Five limits, including hydrophilic macromolecules, can be delivered by inhalation. In contrast, drugs currently administered across skin fall within more stringent limits than predicted by the Rule of Five, but new transdermal delivery technologies may make these constraints obsolete by dramatically increasing skin permeability. The Rule of Five does appear to apply well to ophthalmic delivery. We conclude that although current non-oral drugs mostly have physicochemical properties within the Rule of Five thresholds, the Rule of Five should not be used to predict non-oral drug candidates, especially for inhalation and transdermal routes.

  16. In-vitro analysis of APA microcapsules for oral delivery of live bacterial cells.

    Science.gov (United States)

    Chen, H; Ouyang, W; Jones, M; Haque, T; Lawuyi, B; Prakash, S

    2005-08-01

    Oral administration of microcapsules containing live bacterial cells has potential as an alternative therapy for several diseases. This article evaluates the suitability of the alginate-poly-L-lysine-alginate (APA) microcapsules for oral delivery of live bacterial cells, in-vitro, using a dynamic simulated human gastro-intestinal (GI) model. Results showed that the APA microcapsules were morphologically stable in the simulated stomach conditions, but did not retain their structural integrity after a 3-day exposure in simulated human GI media. The microbial populations of the tested bacterial cells and the activities of the tested enzymes in the simulated human GI suspension were not substantially altered by the presence of the APA microcapsules, suggesting that there were no significant adverse effects of oral administration of the APA microcapsules on the flora of the human gastrointestinal tract. When the APA microcapsules containing Lactobacillus plantarum 80 (LP80) were challenged in the simulated gastric medium (pH = 2.0), 80.0% of the encapsulated cells remained viable after a 5-min incubation; however, the viability decreased considerably (8.3%) after 15 min and dropped to 2.6% after 30 min and lower than 0.2% after 60 min, indicating the limitations of the currently obtainable APA membrane for oral delivery of live bacteria. Further in-vivo studies are required before conclusions can be made concerning the inadequacy of APA microcapsules for oral delivery of live bacterial cells.

  17. Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake.

    Science.gov (United States)

    Luo, Yangchao; Teng, Zi; Li, Ying; Wang, Qin

    2015-05-20

    The poor stability of solid lipid nanoparticles (SLN) under acidic condition resulted in large aggregation in gastric environment, limiting their application as oral delivery systems. In this study, a series of SLN was prepared to investigate the effects of surfactant/cosurfactant and chitosan coating on their physicochemical properties as well as cellular uptake. SLN was prepared from Compritol 888 ATO using a low-energy method combining the solvent-diffusion and hot homogenization technique. Poloxamer 188 and polyethylene glycol (PEG) were effective emulsifiers to produce SLN with better physicochemical properties than SLN control. Chitosan-coated SLN exhibited the best stability under acidic condition by forming a thick layer around the lipid core, as clearly observed by transmission electron microscope. The intermolecular interactions in different formulations were monitored by Fourier transform infrared spectroscopy. Chitosan coating also significantly improved the mucoadhesive property of SLN as determined by Quartz Crystal Microbalance. In vitro drug delivery assays, cytotoxicity, and cellular uptake of SLN were studied by incorporating coumarin 6 as a fluorescence probe. Overall, chitosan-coated SLN was superior to other formulations and held promising features for its application as a potential oral drug delivery system for hydrophobic drugs.

  18. PLGA-Chitosan nanoparticle-mediated gene delivery for oral cancer treatment: A brief review

    Science.gov (United States)

    Bakar, L. M.; Abdullah, M. Z.; Doolaanea, A. A.; Ichwan, S. J. A.

    2017-08-01

    Cancer becomes a serious issue on society with increasing of their growth and proliferation, either in well economic developed countries or not. Recent years, oral cancer is one of the most threatening diseases impairing the quality of life of the patient. Scientists have emphasised on application of gene therapy for oral cancer by using nanoparticle as transportation vectors as a new alternative platform in order to overcome the limitations of conventional approaches. In modern medicine, nanotechnologies’ application, such as nanoparticles-mediated gene delivery, is one of promising tool for therapeutic devices. The objective of this article is to present a brief review summarizes on the current progress of nanotechnology-based gene delivery treatment system targeted for oral cancer.

  19. Bioadhesive polymers as platforms for oral controlled drug delivery III: oral delivery of chlorothiazide using a bioadhesive polymer.

    Science.gov (United States)

    Longer, M A; Ch'ng, H S; Robinson, J R

    1985-04-01

    Bioadhesive polymers that bind to the gastric mucin or epithelial cell surface are useful in drug delivery for the purposes of (a) retaining a dosage from in the GI tract and (b) increasing the intimacy and duration of contact of drug with the absorbing membrane. Polycarbophil has previously been shown to have bioadhesive properties in the rat stomach and small intestine and was employed in the present study with a sustained-release delivery system to demonstrate improved drug delivery. Using chlorothiazide as the model drug, drug containing albumin beads were prepared and used as the sustained-release system. The beads were physically mixed with equally sized particles of polycarbophil and placed in a capsule to produce a bioadhesive dosage form. When the dosage form contacts the stomach, the gelatin capsule dissolves, exposing the polycarbophil to the bathing fluid. The bioadhesive polymer rapidly hydrates, retaining the albumin beads and attaching to the mucin coating of the stomach. Plasma drug levels in rats showed a longer duration of action and greater bioavailability for the bioadhesive dosage form than for either albumin beads or drug powder alone. The results suggest that the principle of bioadhesion can significantly improve therapy, due to a reduced rate of gastric emptying, an increase in contact time, and the intimacy of contact of the drug with the absorbing membrane.

  20. Impact of lipid-based drug delivery systems on the transport and uptake of insulin across Caco-2 Cell monolayers

    DEFF Research Database (Denmark)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2016-01-01

    Self-(nano)-emulsifying drug delivery systems (SNEDDSs) used to deliver peptides and proteins across biological barriers, such as the small intestinal membrane, represents an increasingly interesting field in nanomedicine. Hence, the present study was designed to evaluate the impact of SNEDDS......V). The entrapment of insulin on dispersion in the experimental media ranged from 40% to 78% for all SNEDDSs. Fluorescent microscopy studies indicated that fluorescein isothiocyanate-labeled insulin when administered in solution, as well as when loaded into MCT1 or MCT2 SNEDDS, localized within the intercellular...

  1. Cost effectiveness of insulin glargine plus oral antidiabetes drugs compared with premixed insulin alone in patients with type 2 diabetes mellitus in Canada.

    Science.gov (United States)

    Tunis, Sandra L; Sauriol, Luc; Minshall, Michael E

    2010-01-01

    Several treatment options are available for patients with type 2 diabetes mellitus who are making the transition from oral antidiabetes drugs (OADs) to insulin. Two options currently recommended by the Canadian Diabetes Association for initiating insulin therapy in patients with type 2 diabetes who are no longer responsive to OADs alone are insulin glargine plus OADs, and premixed insulin therapy only. Because of differences in efficacy, adverse events (such as hypoglycaemia) and acquisition costs, these two treatment options may lead to different long-term clinical and economic outcomes. To determine the cost effectiveness of insulin glargine plus OADs compared with premixed insulin without OADs in insulin-naive patients with type 2 diabetes in Canada. Using treatment effects taken from a published clinical trial, the validated IMS-CORE Diabetes Model was used to simulate the long-term cost effectiveness of insulin glargine with OADs, versus premixed insulin. Input treatment effects for the two therapeutic approaches were based on changes in glycosylated haemoglobin A(1c) (HbA(1c)) at clinical trial endpoint, and hypoglycaemia rates. The analysis was conducted from the perspective of the Canadian Provincial payer. Direct treatment and complication costs were obtained from published sources (primarily from Ontario) and reported in $Can, year 2008 values. All base-case costs and outcomes were discounted at 5% per year. Sensitivity analyses were conducted around key parameters and assumptions used in the study. Outcomes included direct medical costs associated with both treatment and diabetes-related complications. Cost-effectiveness outcomes included total average lifetime (35 years) costs, life expectancy (LE), QALYs and incremental cost-effectiveness ratios (ICERs). Base-case analyses showed that, compared with premixed insulin only, insulin glargine in combination with OADs was associated with a 0.051-year increase in LE and a 0.043 increase in QALYs. Insulin

  2. Insulin resistance and lipid profile during an oral glucose tolerance test in women with and without gestational diabetes mellitus.

    Science.gov (United States)

    Liang, Zx; Wu, Y; Zhu, Xy; Fang, Q; Chen, Dq

    2016-01-01

    We aimed to compare changes in insulin levels during an oral glucose tolerance test (OGTT) between women with normal glucose tolerance (NGT) during pregnancy and those with gestational diabetes mellitus (GDM). Overall, 105 pregnant women between 24 and 28 weeks' gestation, 50 with NGT and 55 with GDM according to NDDG standard, were enrolled into the study. The levels of fasting blood glucose, insulin, triglyceride (TG) and total cholesterol (TC) and the insulin levels, blood glucose levels at 1, 2 and 3 hours post oral glucose administration during an OGTT (5.8, 10.6, 9.2 and 8.1 mmol/L, respectively) were measured. Then, insulin resistance (IR) index was calculated. There was no significant difference in fasting, 3-h insulin levels and 3-h blood glucose levels between those with NGT and those with GDM (P > 0.05). However, 1-h and 2-h insulin levels, fasting and 1-h and 2-h blood glucose levels in women with GDM were significantly higher than those in the NGT group (P women with GDM was significantly lower than that observed in those with NGT. Reducing IR and blood lipids in women with GDM could potentially improve maternal and foetal outcomes.

  3. Transepithelial Transport of Fc -Targeted Nanoparticles by the Neonatal Fc Receptor for Oral Delivery

    Science.gov (United States)

    Pridgen, Eric M.; Alexis, Frank; Kuo, Timothy T.; Levy-Nissenbaum, Etgar; Karnik, Rohit; Blumberg, Richard S.; Langer, Robert; Farokhzad, Omid C.

    2014-01-01

    Nanoparticles are poised to have a tremendous impact on the treatment of many diseases, but their broad application is limited because currently they can only be administered by parenteral methods. Oral administration of nanoparticles is preferred but remains a challenge because transport across the intestinal epithelium is limited. Here, we show that nanoparticles targeted to the neonatal Fc receptor (FcRn), which is known to mediate the transport of IgG antibodies across epithelial barriers, are efficiently transported across the intestinal epithelium using both in vitro and in vivo models. In mice, orally administered FcRn-targeted nanoparticles crossed the intestinal epithelium and reached systemic circulation with a mean absorption efficiency of 13.7%*h compared with only 1.2%*h for non-targeted nanoparticles. In addition, targeted nanoparticles containing insulin as a model nanoparticle-based therapy for diabetes were orally administered at a clinically relevant insulin dose of 1.1 U/kg and elicited a prolonged hypoglycemic response in wild-type mice. This effect was abolished in FcRn knockout mice, indicating the enhanced nanoparticle transport was due specifically to FcRn. FcRn-targeted nanoparticles may have a major impact on the treatment of many diseases by enabling drugs currently limited by low bioavailability to be efficiently delivered though oral administration. PMID:24285486

  4. Global oral health inequalities: task group--implementation and delivery of oral health strategies

    DEFF Research Database (Denmark)

    Sheiham, A; Alexander, D; Cohen, L

    2011-01-01

    their environment. There is a dearth of oral health research on social determinants that cause health-compromising behaviors and on risk factors common to some chronic diseases. The gap between what is known and implemented by other health disciplines and the dental fraternity needs addressing. To re-orient oral...... health research, practice, and policy toward a 'social determinants' model, a closer collaboration between and integration of dental and general health research is needed. Here, we suggest a research agenda that should lead to reductions in global inequalities in oral health....

  5. BAIT DEVELOPMENT FOR ORAL DELIVERY OF PHARMACEUTICALS TO RACCOONS (PROCYON LOTOR) AND STRIPED SKUNKS (MEPHITIS MEPHITIS).

    Science.gov (United States)

    Johnson, Shylo R; Crider, Nikki J; Weyer, Grant A; Tosh, Randall D; VerCauteren, Kurt C

    2016-10-01

    Oral vaccination is one tool used to control wildlife diseases. A challenge to oral vaccination is identifying baits specific to target species. The US has been conducting oral vaccination against rabies since the 1990s. Improvements in bait development will hasten disease elimination. In Colorado, we examined a novel bait for oral vaccination and offered two different flavors, sweet and fish, to captive raccoons ( Procyon lotor ) and striped skunks ( Mephitis mephitis ) to assess consumption and flavor preference and observed bait removal by target and nontarget species in the field. During captive trials, raccoons and skunks consumed 98% and 87% of offered baits, respectively. Baits contained a sachet to simulate a vaccine package. Raccoons and skunks consumed 98% and 94% of the sachets, respectively. All unconsumed sachets were punctured, suggesting that animals had oral exposure to the contents. Raccoons preferred fish-flavored bait, but skunks did not have a preference. In the field, raccoons consumed the most baits, followed by fox squirrels ( Sciurus niger ). Other rabies host species (striped skunks, red foxes [ Vulpes vulpes ], coyotes [ Canis latrans ]) had very low visitation and were never observed consuming baits. High consumption rates by raccoons and skunks in captivity and observance of raccoons consuming baits in the field suggest that these baits may be useful for oral delivery of pharmaceuticals. Further field research is warranted to determine how to best optimize bait delivery.

  6. Use of anesthesia dramatically alters the oral glucose tolerance and insulin secretion in C57Bl/6 mice

    DEFF Research Database (Denmark)

    Windeløv, Johanne A; Pedersen, Jens; Holst, Jens J

    2016-01-01

    Evaluation of the impact of anesthesia on oral glucose tolerance in mice. Anesthesia is often used when performing OGTT in mice to avoid the stress of gavage and blood sampling, although anesthesia may influence gastrointestinal motility, blood glucose, and plasma insulin dynamics. C57Bl/6 mice...... in the time frame -15 to +150 min. Plasma insulin concentration was measured at time 0 and 20 min. All four anesthetic regimens resulted in impaired glucose tolerance compared to saline/no anesthesia. (1) hypnorm/midazolam increased insulin concentrations and caused an altered glucose tolerance; (2) ketamine...... regimens altered the oral glucose tolerance, and we conclude that anesthesia should not be used when performing metabolic studies in mice....

  7. Enhanced oral absorption of insulin-loaded liposomes containing bile salts: a mechanistic study.

    Science.gov (United States)

    Niu, Mengmeng; Tan, Ya'nan; Guan, Peipei; Hovgaard, Lars; Lu, Yi; Qi, Jianping; Lian, Ruyue; Li, Xiaoyang; Wu, Wei

    2014-01-01

    Liposomes containing bile salts (BS-liposomes) significantly enhanced the oral bioavailability of insulin (rhINS). However, the underlying absorption mechanisms have not been well understood yet. In this study, the transiting fate of the liposomes was first investigated using fluorescent imaging tools to confirm the effect of enhanced gastrointestinal stability. In order to obtain evidence of enhanced transcellular permeation, the interaction between BS-liposomes and the biomembrane was investigated in Caco-2 cell lines. BS-liposomes were found to be more stable in the gastrointestinal tract by showing prolonged residence time in comparison with conventional liposomes. BS-liposomes were significantly more effective for cellular uptake and transport of rhINS; and this effect was found to be size- and concentration-dependent. A good linear correlation was observed between the concentration of the liposomes and uptake/transport of rhINS. Confocal laser scanning microscopy visualization further validated the transcellular transit of BS-liposomes. The BS-liposomes showed little effect on cytotoxicity and did not induce apoptosis within 24h investigation. It was concluded that BS-liposomes showed improved in vivo residence time and enhanced permeation across the biomemebranes. Mechanisms of trans-enterocytic internalization could be proposed as an interpretation for enhanced absorption of insulin-loaded liposomes.

  8. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    Science.gov (United States)

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  9. Recent developments in the use of bioadhesive systems for delivery of drugs to the oral cavity.

    Science.gov (United States)

    Smart, John D

    2004-01-01

    The delivery of therapeutic agents to, or via, the oral cavity is limited by the efficient removal mechanisms that exist in this area. Bioadhesive formulations have been developed to allow prolonged localized therapy and enhanced systemic delivery. The oral mucosa however, while avoiding first-pass effects, is a formidable barrier to drug absorption, especially for "biopharmaceutical" products arising from the recent innovations in genomics and proteomics. Bioadhesive polymers are typically hydrophilic macromolecules containing numerous hydrogen-bonding groups. Second-generation bioadhesives include modified or new polymers that allow enhanced adhesion and/or drug delivery, along with site-specific ligands such as lectins. Over the last 20 years, a range of bioadhesive formulations have been developed for the oral cavity, but only comparatively few have found their way onto the market. This review will consider some recent developments in the use of bioadhesive buccal systems, notably the development of new polymers, advanced delivery systems, and the exploitation of the multifunctional properties of some bioadhesives.

  10. Hemolysis is a major cause of variability in insulin measurement during oral glucose tolerance test in children.

    Science.gov (United States)

    Bellomo, Giorgio; Sulas, Maria Giovanna; Mairate, Elisabetta; Bardone, Maria Beatrice; Rolla, Roberta

    2012-01-01

    The oral glucose tolerance test (OGTT) is widely employed to evaluate insulin resistance in children with growth hormone deficiency. Due to the difficulty in blood sampling, hemolysis is a frequent pre-analytic interference. The present study was performed to characterize the effects of hemolysis on insulin assays, in order to assess the need to generate automatic hemolysis reports and/or to reject hemolyzed samples. Insulin plasma levels were measured using a Siemens ADVIA Centaur on samples obtained from children with suspected GH deficiency at risk for insulin resistance during OGTT. The presence of hemolysis (with a concentration of free hemoglobin above 75 mg/dL) promotes a dose- and time-dependent decrease in immunoreactive insulin at any time-point evaluated during OGTT. As a consequence, the variability of insulin is particularly high (often exceeding 100% of the mean value) as compared to that of glucose. This variability is markedly reduced after removal of the hemolyzed samples. When hemolysis is not taken into account a misinterpretation of insulin secretion pattern can occur. It is therefore imperative to: (i) analyze blood samples immediately after sampling, (ii) reject samples with a concentration of free hemoglobin equal to or above 125 mg/dL and (iii) always report the possible interference.

  11. The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems.

    Science.gov (United States)

    Sarparanta, Mirkka P; Bimbo, Luis M; Mäkilä, Ermei M; Salonen, Jarno J; Laaksonen, Päivi H; Helariutta, A M Kerttuli; Linder, Markus B; Hirvonen, Jouni T; Laaksonen, Timo J; Santos, Hélder A; Airaksinen, Anu J

    2012-04-01

    Impediments to intestinal absorption, such as poor solubility and instability in the variable conditions of the gastrointestinal (GI) tract plague many of the current drugs restricting their oral bioavailability. Particulate drug delivery systems hold great promise in solving these problems, but their effectiveness might be limited by their often rapid transit through the GI tract. Here we describe a bioadhesive oral drug delivery system based on thermally-hydrocarbonized porous silicon (THCPSi) functionalized with a self-assembled amphiphilic protein coating consisting of a class II hydrophobin (HFBII) from Trichoderma reesei. The HFBII-THCPSi nanoparticles were found to be non-cytotoxic and mucoadhesive in AGS cells, prompting their use in a biodistribution study in rats after oral administration. The passage of HFBII-THCPSi nanoparticles in the rat GI tract was significantly slower than that of uncoated THCPSi, and the nanoparticles were retained in stomach by gastric mucoadhesion up to 3 h after administration. Upon entry to the small intestine, the mucoadhesive properties were lost, resulting in the rapid transit of the nanoparticles through the remainder of the GI tract. The gastroretentive drug delivery system with a dual function presented here is a viable alternative for improving drug bioavailability in the oral route.

  12. Soybean Lecithin Acts as both Absorption Enhancer and Oily Phase in an Insulin-loaded Emulsion System for Transmucosal Delivery

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    An insulin- loaded emulsion system (IES) was developed as a hypoglycaemic drug for transmucosal delivery. The selected formulation was a stable oil/water emulsion system. The particles in the emulsion system were distributed evenly, and the particle size ranged from 20 to 260 nm ( average size: 67.5 nm). Soybean lecithin played an important role in the emulsion system due to its abilities of acting as both absorption enhancer for insulin uptake through sublingual mucosa and oily phase for the emulsion system. The laser confocal scanning microscopic (LCSM) study showed that FITC-labelled insulin could penetrate the sublingual mucosa of rabbits,and the phase diagrams of the emulsion system suggested that soybean lecithin could take the place of oily phase to construct a stable emulsion system even if the traditional oil was absent. The applications of soybean lecithin as pharmaceutical biomaterial were extended for the further usage by present studies.

  13. A Novel Multilayered Multidisk Oral Tablet for Chronotherapeutic Drug Delivery

    Directory of Open Access Journals (Sweden)

    Zaheeda Khan

    2013-01-01

    Full Text Available A Multilayered Multidisk Tablet (MLMDT comprising two drug-loaded disks enveloped by three drug-free barrier layers was developed for use in chronotherapeutic disorders, employing two model drugs, theophylline and diltiazem HCl. The MLMDT was designed to achieve two pulses of drug release separated by a lag phase. The polymer disk comprised hydroxyethylcellulose (HEC and ethylcellulose (EC granulated using an aqueous dispersion of EC. The polymeric barrier layers constituted a combination of pectin/Avicel (PBL (1st barrier layer and hydroxypropylmethylcellulose (HPMC (HBL1 and HBL2 as the 2nd and 3rd barrier layers, respectively. Sodium bicarbonate was incorporated into the diltiazem-containing formulation for delayed drug release. Erosion and swelling studies confirmed the manner in which the drug was released with theophylline formulations exhibiting a maximum swelling of 97% and diltiazem containing formulations with a maximum swelling of 119%. FTIR spectra displayed no interactions between drugs and polymers. Molecular mechanics simulations were undertaken to predict the possible orientation of the polymer morphologies most likely affecting the MLMDT performance. The MLMDT provided two pulses of drug release, separated by a lag phase, and additionally it displayed desirable friability, hardness, and uniformity of mass indicating a stable formulation that may be a desirable candidate for chronotherapeutic drug delivery.

  14. Development of nanosuspension formulation for oral delivery of quercetin.

    Science.gov (United States)

    Sun, Min; Gao, Yan; Pei, Yan; Guo, Chenyu; Li, Houli; Cao, Fengliang; Yu, Aihua; Zhai, Guangxi

    2010-08-01

    With the aim to enhance dissolution rate and oral bioavailability of quercetin, a poorly water-soluble drug, quercetin loaded nanosuspension (QT-NS) was fabricated by a tandem of nano-precipitation (NP) and high pressure homogenization (HPH) method. The formulation of nanosuspension was optimized by screening different stabilizers. Characterization of the original QT powder and QT-NS was carried out by transmission electron microscopy and scanning electron microscopy, X-ray diffraction (XRD) and dissolution tests. QT-NS presented a sphere-like shape under transmission electron microscopy with an average diameter of 393.5 nm and the zeta potential of -35.75 mV. XRD study suggested that QT was maintained in the state of crystalline during the fabrication process. The solubility of QT in nanosuspension was about 70-fold that of crude QT, and the dissolution of QT from QT-NS was increased as compared to that of the original QT powder. In plasma, QT-NS exhibited a significant reduction of clearance rate (2 +/- 0.1 mL/min vs. 15 +/- 4 mL/min) and increase of AUC(0-infinity), (53995 +/- 4126 microg/mL x min versus 3470 +/- 110.1 microg/mL x min) compared with the control suspension. Our results showed that the developed nanosuspension formulation had a great potential as a possible formulation of the poorly water-soluble QT to enhance the bioavailability.

  15. Use of SBA-15 for furosemide oral delivery enhancement.

    Science.gov (United States)

    Ambrogi, Valeria; Perioli, Luana; Pagano, Cinzia; Marmottini, Fabio; Ricci, Maurizio; Sagnella, Anna; Rossi, Carlo

    2012-05-12

    The objective of this research was to realize a new oral solid dosage form in order to improve the release of furosemide (FURO) in its preferential absorption region. In fact FURO is a drug labeled in class IV of the Biopharmaceutical Classification System (BCS) characterized by low and variable bioavailability due to both low solubility and low permeability and because of its weakly acid nature is preferentially absorbed in the stomach whereas its solubility is hampered. FURO was included in the mesoporous silica material SBA-15 obtaining an inorganic-organic compound fully characterized by: thermogravimetric analysis (TGA), X-ray Powder Diffraction (XRPD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption-desorption analysis and then submitted to in vitro dissolution. The results showed a remarkable dissolution rate improvement in comparison to the crystalline drug and to the marketed product Lasix®. The inclusion product was also submitted to physical stability studies that revealed the matrix ability to prevent re-organization in crystal nucleus of the drug molecules.

  16. Kefiran-alginate gel microspheres for oral delivery of ciprofloxacin.

    Science.gov (United States)

    Blandón, Lina M; Islan, German A; Castro, Guillermo R; Noseda, Miguel D; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2016-09-01

    Ciprofloxacin is a broad-spectrum antibiotic associated with gastric and intestinal side effects after extended oral administration. Alginate is a biopolymer commonly employed in gel synthesis by ionotropic gelation, but unstable in the presence of biological metal-chelating compounds and/or under dried conditions. Kefiran is a microbial biopolymer able to form gels with the advantage of displaying antimicrobial activity. In the present study, kefiran-alginate gel microspheres were developed to encapsulate ciprofloxacin for antimicrobial controlled release and enhanced bactericidal effect against common pathogens. Scanning electron microscopy (SEM) analysis of the hybrid gel microspheres showed a spherical structure with a smoother surface compared to alginate gel matrices. In vitro release of ciprofloxacin from kefiran-alginate microspheres was less than 3.0% and 5.0% at pH 1.2 (stomach), and 5.0% and 25.0% at pH 7.4 (intestine) in 3 and 21h, respectively. Fourier transform infrared spectroscopy (FTIR) of ciprofloxacin-kefiran showed the displacement of typical bands of ciprofloxacin and kefiran, suggesting a cooperative interaction by hydrogen bridges between both molecules. Additionally, the thermal analysis of ciprofloxacin-kefiran showed a protective effect of the biopolymer against ciprofloxacin degradation at high temperatures. Finally, antimicrobial assays of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhymurium, and Staphylococcus aureus demonstrated the synergic effect between ciprofloxacin and kefiran against the tested microorganisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Polysaccharide-based aerogel microspheres for oral drug delivery.

    Science.gov (United States)

    García-González, C A; Jin, M; Gerth, J; Alvarez-Lorenzo, C; Smirnova, I

    2015-03-06

    Polysaccharide-based aerogels in the form of microspheres were investigated as carriers of poorly water soluble drugs for oral administration. These bio-based carriers may combine the biocompatibility of polysaccharides and the enhanced drug loading capacity of dry aerogels. Aerogel microspheres from starch, pectin and alginate were loaded with ketoprofen (anti-inflammatory drug) and benzoic acid (used in the management of urea cycle disorders) via supercritical CO2-assisted adsorption. Amount of drug loaded depended on the aerogel matrix structure and composition and reached values up to 1.0×10(-3) and 1.7×10(-3) g/m(2) for ketoprofen and benzoic acid in starch microspheres. After impregnation, drugs were in the amorphous state in the aerogel microspheres. Release behavior was evaluated in different pH media (pH 1.2 and 6.8). Controlled drug release from pectin and alginate aerogel microspheres fitted Gallagher-Corrigan release model (R(2)>0.99 in both cases), with different relative contribution of erosion and diffusion mechanisms depending on the matrix composition. Release from starch aerogel microspheres was driven by dissolution, fitting the first-order kinetics due to the rigid starch aerogel structure, and showed different release rate constant (k1) depending on the drug (0.075 and 0.160 min(-1) for ketoprofen and benzoic acid, respectively). Overall, the results point out the possibilities of tuning drug loading and release by carefully choosing the polysaccharide used to prepare the aerogels.

  18. Spray-freeze-drying of nanosuspensions: the manufacture of insulin particles for needle-free ballistic powder delivery

    Science.gov (United States)

    Schiffter, Heiko; Condliffe, Jamie; Vonhoff, Sebastian

    2010-01-01

    The feasibility of preparing microparticles with high insulin loading suitable for needle-free ballistic drug delivery by spray-freeze-drying (SFD) was examined in this study. The aim was to manufacture dense, robust particles with a diameter of around 50 µm, a narrow size distribution and a high content of insulin. Atomization using ultrasound atomizers showed improved handling of small liquid quantities as well as narrower droplet size distributions over conventional two-fluid nozzle atomization. Insulin nanoparticles were produced by SFD from solutions with a low solid content (300 mg ml−1) consisting of trehalose, mannitol, dextran (10 kDa) and dextran (150 kDa) (abbreviated to TMDD) in order to maximize particle robustness and density after SFD. With the increase in insulin content, the viscosity of the nanosuspensions increased. Liquid atomization was possible up to a maximum of 250 mg of nano-insulin suspended in a 1.0 g matrix. However, if a narrow size distribution with a good correlation between theoretical and measurable insulin content was desired, no more than 150 mg nano-insulin could be suspended per gram of matrix formulation. Particles were examined by laser light diffraction, scanning electron microscopy and tap density testing. Insulin stability was assessed using size exclusion chromatography (SEC), reverse phase chromatography and Fourier transform infrared (FTIR) spectroscopy. Densification of the particles could be achieved during primary drying if the product temperature (Tprod) exceeded the glass transition temperature of the freeze concentrate (Tg′) of −29.4°C for TMDD (3∶3∶3∶1) formulations. Particles showed a collapsed and wrinkled morphology owing to viscous flow of the freeze concentrate. With increasing insulin loading, the d (v, 0.5) of the SFD powders increased and particle size distributions got wider. Insulin showed a good stability during the particle formation process with a maximum decrease in insulin monomer of

  19. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    Directory of Open Access Journals (Sweden)

    Priya Bawa

    2011-12-01

    Full Text Available Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments.

  20. pH-triggered drug release from biodegradable microwells for oral drug delivery

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Nagstrup, Johan; Gordon, Sarah;

    2015-01-01

    Microwells fabricated from poly-L-lactic acid (PLLA) were evaluated for their application as an oral drug delivery system using the amorphous sodium salt of furosemide (ASSF) as a model drug. Hot embossing of PLLA resulted in fabrication of microwells with an inner diameter of 240 μm and a height...... of microwell cavities with an Eudragit® layer prevented drug release in biorelevant gastric medium. An immediate release of the ASSF from coated microwells was observed in the intestinal medium. This pH-triggered release behavior demonstrates the future potential of PLLA microwells as a site-specific oral drug...

  1. Abnormal release of incretins and cortisol after oral glucose in subjects with insulin-resistant myotonic dystrophy

    DEFF Research Database (Denmark)

    Johansson, Asa; Olsson, Tommy; Cederquist, Kristina;

    2002-01-01

    OBJECTIVE: Although the incretins, gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), as well as glucagon and cortisol, are known to influence islet function, the role of these hormones in conditions of insulin resistance and development of type 2 diabetes is unknown...... response. Furthermore, cortisol and ACTH levels increased paradoxically in patients after glucose; this was more pronounced in patients with long CTG repeat expansions. CONCLUSIONS: This study showed that the GLP-1 and ACTH/cortisol responses to oral glucose are abnormal in insulin-resistant DM1 patients...

  2. Use of anesthesia dramatically alters the oral glucose tolerance and insulin secretion in C57Bl/6 mice

    DEFF Research Database (Denmark)

    Windeløv, Johanne A; Pedersen, Jens; Holst, Jens J

    2016-01-01

    were anesthetized using the following commonly used regimens: (1) hypnorm/midazolam repetitive or single injection; (2) ketamine/xylazine; (3) isoflurane; (4) pentobarbital; and (5) A saline injected, nonanesthetized group. Oral glucose was administered at time 0 min and blood glucose measured...... in the time frame -15 to +150 min. Plasma insulin concentration was measured at time 0 and 20 min. All four anesthetic regimens resulted in impaired glucose tolerance compared to saline/no anesthesia. (1) hypnorm/midazolam increased insulin concentrations and caused an altered glucose tolerance; (2) ketamine...

  3. Insulin versus an oral antidiabetic agent as add-on therapy in type 2 diabetes after failure of an oral antidiabetic regimen: a meta-analysis

    OpenAIRE

    Gamble, JM; Simpson, Scot H.; Brown, Lauren C.; Johnson, Jeffrey A

    2008-01-01

    Background Although evidence-based guidelines for the treatment of type 2 diabetes mellitus provide clear recommendations for initial therapy, evidence on an optimal treatment strategy after secondary failure is unclear. Purpose To compare the efficacy of add-on therapy using basal insulin versus an additional oral antidiabetic agent in patients with type 2 diabetes and secondary failure. Data sources We searched the following electronic databases from inception until June 2007: MEDLINE; EMBA...

  4. Riluzole 5 mg/mL oral suspension: for optimized drug delivery in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Dyer AM

    2016-12-01

    Full Text Available Ann Margaret Dyer, Alan Smith PharmaSci Consulting Limited, Nottingham, UK Abstract: The aim of the present work is to extensively evaluate the pharmaceutical attributes of currently available riluzole presentations. The article describes the limitations and risks associated with the administration of crushed tablets, including the potential for inaccurate dosing and reduced rate of absorption when riluzole is administered with high-fat foods, and the advantages that a recently approved innovative oral liquid form of riluzole confers on amyotrophic lateral sclerosis (ALS patients. The article further evaluates the patented and innovative controlled flocculation technology used in the pseudoplastic suspension formulation to reduce the oral anesthesia seen with crushed tablets, resulting in optimized drug delivery for riluzole. Riluzole is the only drug licensed for treating ALS, which is the most common form of motor neurone disease and a highly devastating neurodegenerative condition. The licensed indication is to extend life or the time to mechanical ventilation. Until recently, riluzole was only available as an oral tablet dosage form in the UK; however, an innovative oral liquid form, Teglutik® 5 mg/mL oral suspension, is now available. An oral liquid formulation provides an important therapeutic option for patients with ALS, >80% of who may become unable to swallow solid oral dosage forms due to disease-related dysphagia. Prior to the launch of riluzole oral suspension, the only way for many patients to continue to take riluzole as their disease progressed was through crushed tablets. A novel suspension formulation enables more accurate dosing and consistent ongoing administration of riluzole. There are clear and important advantages such as enhanced patient compliance compared with crushed tablets administered with food or via an enteral feeding tube and the potential for an improved therapeutic outcome and enhanced quality of life for

  5. Enteric trimethyl chitosan nanoparticles containing hepatitis B surface antigen for oral delivery.

    Science.gov (United States)

    Farhadian, Asma; Dounighi, Naser Mohammadpour; Avadi, Mohammadreza

    2015-01-01

    Oral vaccination is the preferred route of immunization. However, the degradative condition of the gastrointestinal tract and the higher molecular size of peptides pose major challenges in developing an effective oral vaccination system. One of the most excellent methods used in the development of oral vaccine delivery system relies on the entrapment of the antigen in polymeric nanoparticles. In this work, trimethyl chitosan (TMC) nanoparticles were fabricated using ionic gelation teqnique by interaction hydroxypropyl methylcellulose phthalate (HPMCP), a pH-sensitive polymer, with TMC and the utility of the particles in the oral delivery of hepatitis B surface antigen (HBsAg) was evaluated employing solutions that simulated gastric and intestinal conditions. The particle size, morphology, zeta potential, loading capacity, loading efficiency, in vitro release behavior, structure, and morphology of nanoparticles were evaluated, and the activity of the loaded antigen was assessed. Size of the optimized TMC/HPMCP nanoparticles and that of the antigen-loaded nanoparticles were 85 nm and 158 nm, respectively. Optimum loading capacity (76.75%) and loading efficiency (86.29%) were achieved at 300 µg/mL concentration of the antigen. SEM images revealed a spherical shape as well as a smooth and near-homogenous surface of nanoparticles. Results of the in vitro release studies showed that formulation with HPMCP improved the acid stability of the TMC nanoparticles as well as their capability to preserve the loaded HBsAg from gastric destruction. The antigen showed good activity both before and after loading. The results suggest that TMC/HPMCP nanoparticles could be used in the oral delivery of HBsAg vaccine.

  6. Self-Micro Emulsifying Drug Delivery Systems: a Strategy to Improve Oral Bioavailability

    Directory of Open Access Journals (Sweden)

    Vijay K. Sharma

    Full Text Available Aim: Oral route has always been the favorite route of drug administration in many diseases and till today it is the first way investigated in the development of new dosage forms. The major problem in oral drug formulations is low and erratic bioavailability, which mainly results from poor aqueous solubility, thereby pose problems in their formulation. For the therapeutic delivery of lipophilic active moieties (BCS class II drugs, lipid based formulations are inviting increasing attention. Methods: To that aim, from the web sites of PubMed, HCAplus, Thomson, and Registry were used as the main sources to perform the search for the most significant research articles published on the subject. The information was then carefully analyzed, highlighting the most important results in the formulation and development of self-micro emulsifying drug delivery systems as well as its therapeutic activity. Results: Self-emulsifying drug delivery system (SMEDDS has gained more attention due to enhanced oral bio-availability enabling reduction in dose, more consistent temporal profiles of drug absorption, selective targeting of drug(s toward specific absorption window in GIT, and protection of drug(s from the unreceptive environment in gut. Conclusions: This article gives a complete overview of SMEDDS as a promising approach to effectively deal with the problem of poorly soluble molecules.

  7. Synthesis and characterization of pH-responsive nanoscale hydrogels for oral delivery of hydrophobic therapeutics.

    Science.gov (United States)

    Puranik, Amey S; Pao, Ludovic P; White, Vanessa M; Peppas, Nicholas A

    2016-11-01

    pH-responsive, polyanionic nanoscale hydrogels were developed for the oral delivery of hydrophobic therapeutics, such as common chemotherapeutic agents. Nanoscale hydrogels were designed to overcome physicochemical and biological barriers associated with oral delivery of hydrophobic therapeutics such as low solubility and poor permeability due to P-glycoprotein related drug efflux. Synthesis of these nanoscale materials was achieved by a robust photoemulsion polymerization method. By varying hydrophobic monomer components, four formulations were synthesized and screened for optimal physicochemical properties and in vitro biocompatibility. All of the responsive nanoscale hydrogels were capable of undergoing a pH-dependent transition in size. Depending on the selection of the hydrophobic monomer, the sizes of the nanoparticles vary widely from 120nm to about 500nm at pH 7.4. Polymer composition was verified using Fourier transform infrared spectroscopy and (1)H-nuclear magnetic resonance spectroscopy. Polymer biocompatibility was assessed in vitro with an intestinal epithelial cell model. All formulations were found to have no appreciable cytotoxicity, defined as greater than 80% viability after polymer incubation. We demonstrate that these nanoscale hydrogels possess desirable physicochemical properties and exhibit agreeable in vitro biocompatibility for oral delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Pectin matrix as oral drug delivery vehicle for colon cancer treatment.

    Science.gov (United States)

    Wong, Tin Wui; Colombo, Gaia; Sonvico, Fabio

    2011-03-01

    Colon cancer is the fourth most common cancer globally with 639,000 deaths reported annually. Typical chemotherapy is provided by injection route to reduce tumor growth and metastasis. Recent research investigates the oral delivery profiles of chemotherapeutic agents. In comparison to injection, oral administration of drugs in the form of a colon-specific delivery system is expected to increase drug bioavailability at target site, reduce drug dose and systemic adverse effects. Pectin is suitable for use as colon-specific drug delivery vehicle as it is selectively digested by colonic microflora to release drug with minimal degradation in upper gastrointestinal tract. The present review examines the physicochemical attributes of formulation needed to retard drug release of pectin matrix prior to its arrival at colon, and evaluate the therapeutic value of pectin matrix in association with colon cancer. The review suggests that multi-particulate calcium pectinate matrix is an ideal carrier to orally deliver drugs for site-specific treatment of colon cancer as (1) crosslinking of pectin by calcium ions in a matrix negates drug release in upper gastrointestinal tract, (2) multi-particulate carrier has a slower transit and a higher contact time for drug action in colon than single-unit dosage form, and (3) both pectin and calcium have an indication to reduce the severity of colon cancer from the implication of diet and molecular biology studies. Pectin matrix demonstrates dual advantages as drug carrier and therapeutic for use in treatment of colon cancer.

  9. Formulation of 20(S)-protopanaxadiol nanocrystals to improve oral bioavailability and brain delivery.

    Science.gov (United States)

    Chen, Chen; Wang, Lisha; Cao, Fangrui; Miao, Xiaoqing; Chen, Tongkai; Chang, Qi; Zheng, Ying

    2016-01-30

    The aim of this study was to fabricate 20(S)-protopanaxadiol (PPD) nanocrystals to improve PPD's oral bioavailability and brain delivery. PPD nanocrystals were fabricated using an anti-solvent precipitation approach where d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) was optimized as the stabilizer. The fabricated nanocrystals were nearly spherical with a particle size and drug loading of 90.44 ± 1.45 nm and 76.92%, respectively. They are in the crystalline state and stable at 4°C for at least 1 month. More than 90% of the PPD could be rapidly released from the nanocrystals, which was much faster than the physical mixture and PPD powder. PPD nanocrystals demonstrated comparable permeability to solution at 2.52 ± 0.44×10(-5)cm/s on MDCK monolayers. After oral administration of PPD nanocrystals to rats, PPD was absorbed quickly into the plasma and brain with significantly higher Cmax and AUC0-t compared to those of the physical mixture. However, no brain targeting was observed, as the ratios of the plasma AUC0-t to brain AUC0-t for the two groups were similar. In summary, PPD nanocrystals are a potential oral delivery system to improve PPD's poor bioavailability and its delivery into the brain for neurodegenerative disease and intracranial tumor therapies in the future.

  10. Challenges and Future Prospects for the Delivery of Biologics: Oral Mucosal, Pulmonary, and Transdermal Routes.

    Science.gov (United States)

    Morales, Javier O; Fathe, Kristin R; Brunaugh, Ashlee; Ferrati, Silvia; Li, Song; Montenegro-Nicolini, Miguel; Mousavikhamene, Zeynab; McConville, Jason T; Prausnitz, Mark R; Smyth, Hugh D C

    2017-02-13

    Biologic products are large molecules such as proteins, peptides, nucleic acids, etc., which have already produced many new drugs for clinical use in the last decades. Due to the inherent challenges faced by biologics after oral administration (e.g., acidic stomach pH, digestive enzymes, and limited permeation through the gastrointestinal tract), several alternative routes of administration have been investigated to enable sufficient drug absorption into systemic circulation. This review describes the buccal, sublingual, pulmonary, and transdermal routes of administration for biologics with relevant details of the respective barriers. While all these routes avoid transit through the gastrointestinal tract, each has its own strengths and weaknesses that may be optimal for specific classes of compounds. Buccal and sublingual delivery enable rapid drug uptake through a relatively permeable barrier but are limited by small epithelial surface area, stratified epithelia, and the practical complexities of maintaining a drug delivery system in the mouth. Pulmonary delivery accesses the highly permeable and large surface area of the alveolar epithelium but must overcome the complexities of safe and effective delivery to the alveoli deep in the lung. Transdermal delivery offers convenient access to the body for extended-release delivery via the skin surface but requires the use of novel devices and formulations to overcome the skin's formidable stratum corneum barrier. New technologies and strategies advanced to overcome these challenges are reviewed, and critical views in future developments of each route are given.

  11. Stabilization challenges and formulation strategies associated with oral biologic drug delivery systems.

    Science.gov (United States)

    Truong-Le, Vu; Lovalenti, Phillip M; Abdul-Fattah, Ahmad M

    2015-10-01

    Delivery of proteins to mucosal tissues of GI tract typically utilize formulations which protect against proteolysis and target the mucosal tissues. Using case studies from literature and the authors' own work, the in-process stability and solid state storage stability of biopharmaceuticals formulated in delivery systems designed for oral delivery to the GI tract will be reviewed. Among the range of delivery systems, biodegradable polymer systems for protection and controlled release of proteins have been the most studied; hence these systems will be covered in greater depth. These delivery systems include polymeric biodegradable microspheres or nanospheres that contain proteins or vaccines, which are designed to reduce the number of administrations/inoculations and the total protein dose required to achieve the desired biological effect. Specifically, this review will include a landscape survey of the systems that have been studied, the manufacturing processes involved, stability through the manufacturing process, key pharmaceutical formulation parameters that impact stability of the encased proteins, and storage stability of the encapsulated proteins in these delivery systems.

  12. Effectiveness and tolerability of treatment intensification to basal–bolus therapy in patients with type 2 diabetes on previous basal insulin-supported oral therapy with insulin glargine or supplementary insulin therapy with insulin glulisine: the PARTNER observational study

    Directory of Open Access Journals (Sweden)

    Pfohl M

    2015-11-01

    Full Text Available Martin Pfohl,1 Thorsten Siegmund,2 Stefan Pscherer,3 Katrin Pegelow,4 Jochen Seufert5 1Medizinische Klinik I, Evangelisches Bethesda-Klinikum GmbH, Duisburg, Germany; 2Städtisches Klinikum München GmbH, Klinikum Bogenhausen, III. Medizinische Abteilung, München, Germany; 3Klinisches Diabeteszentrum Südostbayern, Innere Medizin – Diabetologie, Traunstein, Germany; 4Sanofi-Aventis Deutschland GmbH, Berlin, Germany; 5Medizinische Universitätsklinik, Klinik für Innere Medizin II, Abteilung für Endokrinologie und Diabetologie, Freiburg, Germany Background: Due to the progressive nature of type 2 diabetes mellitus (T2DM, antidiabetic treatment needs to be continuously intensified to avoid long-term complications. In T2DM patients on either basal insulin-supported oral therapy (BOT or supplementary insulin therapy (SIT presenting with HbA1c values above individual targets for 3–6 months, therapy should be intensified. This study investigated effectiveness and tolerability of an intensification of BOT or SIT to a basal–bolus therapy (BBT regimen in T2DM patients in daily clinical practice. Methods: This noninterventional, 8-month, prospective, multicenter study evaluated parameters of glucose control, occurrence of adverse events (eg, hypoglycemia, and acceptance of devices in daily clinical practice routine after 12 and 24 weeks of intensifying insulin therapy to a BBT regimen starting from either preexisting BOT with insulin glargine (pre-BOT or preexisting SIT with ≥3 daily injections of insulin glulisine (pre-SIT. Results: A total of 1,530 patients were documented in 258 German medical practices. A total of 1,301 patients were included in the full analysis set (55% male, 45% female; age median 64 years; body mass index median 30.8 kg/m2; pre-BOT: n=1,072; pre-SIT: n=229, and 1,515 patients were evaluated for safety. After 12 weeks, HbA1c decreased versus baseline (pre-BOT 8.67%; pre-SIT 8.46% to 7.73% and 7.66%, respectively (Δ mean

  13. REVIEW ON FLOATING DRUG DELIVERY SYSTEMS: AN APPROACH TO ORAL CONTROLLED DRUG DELIVERY VIA GASTRIC RETENTION

    Directory of Open Access Journals (Sweden)

    Kadam Shashikant M

    2011-06-01

    Full Text Available Controlled release (CR dosage forms have been extensively used to improve therapy with many important drugs. Several approaches are currently utilized in prolongation of gastric residence time, including floating drug delivery system, swelling and expanding system, polymeric bioadhesive system, modified shape system, high density system and other delayed gastric emptying devices. However, the development processes are faced with several physiological difficulties such as the inability to restrain and localize the system within the desired region of the gastrointestinal tract and the highly variable nature of the gastric emptying process. On the other hand, incorporation of the drug in a controlled release gastroretentive dosage forms (CR-GRDF which can remain in the gastric region for several hours would significantly prolong the gastric residence time of drugs and improve bioavailability, reduce drug waste, and enhance the solubility of drugs that are less soluble in high pH environment. Gastroretention would also facilitate local drug delivery to the stomach and proximal small intestine. Thus, gastroretention could help to provide greater availability of new products and consequently improved therapeutic activity and substantial benefits to patients. The purpose of this paper is to review the recent literature and current technology used in the development of gastroretentive dosage forms.

  14. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery.

    Science.gov (United States)

    Das, Surajit; Chaudhury, Anumita

    2011-03-01

    Lipid nanoparticles based on solid matrix have emerged as potential drug carriers to improve gastrointestinal (GI) absorption and oral bioavailability of several drugs, especially lipophilic compounds. These formulations may also be used for sustained drug release. Solid lipid nanoparticle (SLN) and the newer generation lipid nanoparticle, nanostructured lipid carrier (NLC), have been studied for their capability as oral drug carriers. Biodegradable, biocompatible, and physiological lipids are generally used to prepare these nanoparticles. Hence, toxicity problems related with the polymeric nanoparticles can be minimized. Furthermore, stability of the formulations might increase than other liquid nano-carriers due to the solid matrix of these lipid nanoparticles. These nanoparticles can be produced by different formulation techniques. Scaling up of the production process from lab scale to industrial scale can be easily achieved. Reasonably high drug encapsulation efficiency of the nanoparticles was documented. Oral absorption and bioavailability of several drugs were improved after oral administration of the drug-loaded SLNs or NLCs. In this review, pros and cons, different formulation and characterization techniques, drug incorporation models, GI absorption and oral bioavailability enhancement mechanisms, stability and storage condition of the formulations, and recent advances in oral delivery of the lipid nanoparticles based on solid matrix will be discussed. © 2010 American Association of Pharmaceutical Scientists

  15. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals.

    Science.gov (United States)

    Rajabalaya, Rajan; Musa, Muhammad Nuh; Kifli, Nurolaini; David, Sheba R

    2017-01-01

    Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations.

  16. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals

    Science.gov (United States)

    Rajabalaya, Rajan; Musa, Muhammad Nuh; Kifli, Nurolaini; David, Sheba R

    2017-01-01

    Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations. PMID:28243062

  17. A facile nanoaggregation strategy for oral delivery of hydrophobic drugs by utilizing acid base neutralization reactions

    Science.gov (United States)

    Chen, Huabing; Wan, Jiangling; Wang, Yirui; Mou, Dongsheng; Liu, Hongbin; Xu, Huibi; Yang, Xiangliang

    2008-09-01

    Nanonization strategies have been used to enhance the oral availability of numerous drugs that are poorly soluble in water. Exploring a facile nanonization strategy with highly practical potential is an attractive focus. Here, we report a novel facile nanoaggregation strategy for constructing drug nanoparticles of poorly soluble drugs with pH-dependent solubility by utilizing acid-base neutralization in aqueous solution, thus facilitating the exploration of nanonization in oral delivery for general applicability. We demonstrate that hydrophobic itraconazole dissolved in acid solution formed a growing core and aggregated into nanoparticles in the presence of stabilizers. The nanoparticles, with an average diameter of 279.3 nm and polydispersity index of 0.116, showed a higher dissolution rate when compared with the marketed formulation; the average dissolution was about 91.3%. The in vivo pharmacokinetic studies revealed that the nanoparticles had a rapid absorption and enhanced oral availability. The diet state also showed insignificant impact on the absorption of itraconazole from nanoparticles. This nanoaggregation strategy is a promising nanonization method with a facile process and avoidance of toxic organic solvents for oral delivery of poorly soluble drugs with pH-dependent solubility and reveals a highly practical potential in the pharmaceutical and chemical industries.

  18. Fast Dissolving Oral Film: A Novel and Innovative Drug Delivery system

    Directory of Open Access Journals (Sweden)

    Ankita Keshari

    2014-03-01

    Full Text Available The oral route is more suitable than other route of administration of therapeutic agents due to low cost of therapy and ease of administration and of patient compliance. This is noninvasive method and produce less side effect. There are some oral solid dosage forms like capsules and tablets. In geriatric, pediatric and dysphagia like patients find it difficult to swallow capsules and tablets and cannot take their medicines as prescribed manner. In some condition such as, sudden allergic attack, coughing, motion sickness, fear of choking and an unavailability of water, the swallowing of capsules or tablet or may become difficult. To overcome from these types of problem, the pharmaceutical industries are design and develop the new type of drug delivery system such as fast dissolving drug delivery systems. This innovative Oral fast dissolving film is a new dosage form in which a thin film is prepared by using hydrophilic polymers with suitable excipients. The film dissolved quickly in mouth without taking of water. The oral films are prepared by the solvent casting method or hot melt extrusion.

  19. SELF EMULSIFYING DELIVERY SYSTEM -MOSTLY DISCUSSED BUT STILL REMAINED CHALLENGING ASPECT TO ENHANCE THE ORAL ABSORPTION OF LIPOPHILIC DRUG

    National Research Council Canada - National Science Library

    Niranjan Chivate; Kiran Wadkar; Rohit Shah; Anuradha Chivate

    2016-01-01

    ... in the gastro-intestinal lumen or other aqueous media. Therefore in order to be delivered orally and to achieve acceptable bioavailability, lipophilic drugs require a co-administered drug delivery system...

  20. Custom fractional factorial designs to develop atorvastatin self-nanoemulsifying and nanosuspension delivery systems--enhancement of oral bioavailability

    National Research Council Canada - National Science Library

    Hashem, Fahima M; Al-Sawahli, Majid M; Nasr, Mohamed; Ahmed, Osama A A

    2015-01-01

    ...) and solid nanosuspensions (NS) in order to enhance the oral delivery of atorvastatin (ATR). According to the design, 14 experimental runs of ATR SNEDDS were formulated utilizing the highly ATR solubilizing SNEDDS components...

  1. Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection

    Directory of Open Access Journals (Sweden)

    Yang Z

    2014-01-01

    Full Text Available Zhiwen Yang,1,3 Meiwan Chen,2 Muhua Yang,1 Jian Chen,1 Weijun Fang,1 Ping Xu11Department of Pharmacy, Songjiang Hospital Affiliated The First People's Hospital, Shanghai Jiao Tong University, Shanghai, 2State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 3Shanghai Songjiang Hospital Affiliated Nanjing Medical University, Nanjing, People's Republic of ChinaAbstract: The oral administration of amphotericin B (AmB has a major drawback of poor bioavailability. The aim of this study was to investigate the potential of glyceryl monoolein (GMO cubosomes as lipid nanocarriers to improve the oral efficacy of AmB. Antifungal efficacy was determined in vivo in rats after oral administration, to investigate its therapeutic use. The human colon adenocarcinoma cell line (Caco-2 was used in vitro to evaluate transport across a model of the intestinal barrier. In vivo antifungal results showed that AmB, loaded in GMO cubosomes, could significantly enhance oral efficacy, compared against Fungizone®, and that during a 2 day course of dosage 10 mg/kg the drug reached effective therapeutic concentrations in renal tissue for treating fungal infections. In the Caco-2 transport studies, GMO cubosomes resulted in a significantly larger amount of AmB being transported into Caco-2 cells, via both clathrin- and caveolae-mediated endocytosis, but not macropinocytosis. These results suggest that GMO cubosomes, as lipid nanovectors, could facilitate the oral delivery of AmB.Keywords: glyceryl monoolein cubosomes, oral delivery, amphotericin B, antifungal activity, absorption mechanism

  2. Novel insulin delivery profiles for mixed meals for sensor-augmented pump and closed-loop artificial pancreas therapy for type 1 diabetes mellitus.

    Science.gov (United States)

    Srinivasan, Asavari; Lee, Joon Bok; Dassau, Eyal; Doyle, Francis J

    2014-09-01

    Maintaining euglycemia for people with type 1 diabetes is highly challenging, and variations in glucose absorption rates with meal composition require meal type specific insulin delivery profiles for optimal blood glucose control. Traditional basal/bolus therapy is not fully optimized for meals of varied fat contents. Thus, regimens for low- and high-fat meals were developed to improve current insulin pump therapy. Simulations of meals with varied fat content demonstrably replicated published data. Subsequently, an insulin profile library with optimized delivery regimens under open and closed loop for various meal compositions was constructed using particle swarm optimization. Calculations showed that the optimal basal bolus insulin profiles for low-fat meals comprise a normal bolus or a short wave. The preferred delivery for high-fat meals is typically biphasic, but can extend to multiple phases depending on meal characteristics. Results also revealed that patients that are highly sensitive to insulin could benefit from biphasic deliveries. Preliminary investigations of the optimal closed-loop regimens also display bi- or multiphasic patterns for high-fat meals. The novel insulin delivery profiles present new waveforms that provide better control of postprandial glucose excursions than existing schemes. Furthermore, the proposed novel regimens are also more or similarly robust to uncertainties in meal parameter estimates, with the closed-loop schemes demonstrating superior performance and robustness. © 2014 Diabetes Technology Society.

  3. Oral insulin stimulates intestinal epithelial cell turnover following massive small bowel resection in a rat and a cell culture model.

    Science.gov (United States)

    Ben Lulu, Shani; Coran, Arnold G; Shehadeh, Naim; Shamir, Raanan; Mogilner, Jorge G; Sukhotnik, Igor

    2012-02-01

    We have recently reported that oral insulin (OI) stimulates intestinal adaptation after bowel resection and that OI enhances enterocyte turnover in correlation with insulin receptor expression along the villus-crypt axis. The purpose of the present study was to evaluate the effect of OI on intestinal epithelial cell proliferation and apoptosis in a rat model of short bowel syndrome (SBS) and in a cell culture model. Caco-2 cells were incubated with increasing concentrations of insulin. Cell proliferation and apoptosis were determined by FACS cytometry. Cell viability was investigated using the Alamar Blue technique. Male rats were divided into three groups: Sham rats underwent bowel transection, SBS rats underwent a 75% bowel resection, and SBS-OI rats underwent bowel resection and were treated with OI given in drinking water (1 U/ml) from the third postoperative day. Parameters of intestinal adaptation, enterocyte proliferation and apoptosis were determined on day 15. Real time PCR was used to determine the level of bax and bcl-2 mRNA and western blotting was used to determine bax, bcl-2, p-ERK and AKT protein levels. Statistical analysis was performed using the one-way ANOVA test, with P statistically significant. Treatment of Caco-2 cells with insulin resulted in a significant increase in cell proliferation (twofold increase after 24 h and 37% increase after 48 h) and cell viability (in a dose-dependent manner), but did not change cell apoptosis. In a rat model of SBS, treatment with OI resulted in a significant increase in all parameters of intestinal adaptation. Elevated cell proliferation rate in insulin treated rats was accompanied by elevated AKT and p-ERK protein levels. Decreased cell apoptosis in SBS-INS rats corresponded with a decreased bax/bcl-2 ratio. Oral insulin stimulates intestinal epithelial cell turnover after massive small bowel resection in a rat model of SBS and a cell culture model.

  4. Advanced progress of microencapsulation technologies: in vivo and in vitro models for studying oral and transdermal drug deliveries.

    Science.gov (United States)

    Lam, P L; Gambari, R

    2014-03-28

    This review provides an overall discussion of microencapsulation systems for both oral and transdermal drug deliveries. Clinically, many drugs, especially proteins and peptides, are susceptible to the gastrointestinal tract and the first-pass metabolism after oral administration while some drugs exhibit low skin permeability through transdermal delivery route. Medicated microcapsules as oral and transdermal drug delivery vehicles are believed to offer an extended drug effect at a relatively low dose and provide a better patient compliance. The polymeric microcapsules can be produced by different microencapsulation methods and the drug microencapsulation technology provides the quality preservation for drug stabilization. The release of the entrapped drug is controlled and prolonged for specific usages. Some recent studies have focused on the evaluation of drug containing microcapsules on potential biological and therapeutic applications. For the oral delivery, in vivo animal models were used for evaluating possible treatment effects of drug containing microcapsules. For the transdermal drug delivery, skin delivery models were introduced to investigate the potential skin delivery of medicated microcapsules. Finally, the challenges and limitations of drug microencapsulation in real life are discussed and the commercially available drug formulations using microencapsulation technology for oral and transdermal applications are shown.

  5. Enhancement of oral bioavailability of cyclosporine A: comparison of various nanoscale drug-delivery systems.

    Science.gov (United States)

    Wang, Kai; Qi, Jianping; Weng, Tengfei; Tian, Zhiqiang; Lu, Yi; Hu, Kaili; Yin, Zongning; Wu, Wei

    2014-01-01

    A variety of nanoscale delivery systems have been shown to enhance the oral absorption of poorly water-soluble and poorly permeable drugs. However, the performance of these systems has seldom been evaluated simultaneously. The aim of this study was to compare the bioavailability enhancement effect of lipid-based nanocarriers with poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) to highlight the importance of the lipid composition, with cyclosporine A (CyA) as a model drug. CyA-loaded PLGA NPs, nanostructured lipid carriers (NLCs), and self-microemulsifying drug-delivery systems (SMEDDS) were prepared. The particle size of PLGA NPs (182.2 ± 12.8 nm) was larger than that of NLCs (89.7 ± 9.0 nm) and SMEDDS (26.9 ± 1.9 nm). All vehicles are charged negatively. The entrapment efficiency of PLGA NPs and NLCs was 87.6%± 1.6% and 80.3%± 0.6%, respectively. In vitro release tests indicated that the cumulative release of CyA was lower than 4% from all vehicles, including Sandimmun Neoral(®), according to the dialysis method. Both NLCs and SMEDDS showed high relative oral bioavailability, 111.8% and 73.6%, respectively, after oral gavage administration to beagle dogs, which was not statistically different from commercial Sandimmun Neoral(®). However, PLGA NPs failed to achieve efficient absorption, with relative bioavailability of about 22.7%. It is concluded that lipid-based nanoscale drug-delivery systems are superior to polymeric NPs in enhancing oral bioavailability of poorly water-soluble and poorly permeable drugs.

  6. Randomized Clinical Trial To Compare The Effects Of Preoperative Oral Carbohydrate Loading Versus Placebo On Insulin Resistance And Cortisol Level After Laparoscopic Cholecystectomy*

    Directory of Open Access Journals (Sweden)

    Pędziwiatr Michał

    2015-08-01

    Full Text Available Postoperative insulin resistance, used as a marker of stress response, is clearly an adverse event. It may induce postoperative hyperglycemia, which according to some authors can increase the risk of postoperative complications. One of the elements of modern perioperative care is preoperative administration of oral carbohydrate loading (CHO-loading, which shortens preoperative fasting and reduces insulin resistance.

  7. The birth weight lowering C-allele of rs900400 near LEKR1 and CCNL1 associates with elevated insulin release following an oral glucose challenge

    DEFF Research Database (Denmark)

    Andersson, Ehm A; Harder, Marie N; Pilgaard, Kasper

    2011-01-01

    study and furthermore to evaluate associations between rs900400 and indices of insulin secretion and insulin sensitivity obtained by oral glucose tolerance tests in adults from the Danish Inter99 study and the Finnish, Metabolic Syndrome in Men (METSIM) sample. Methods For 4,744 of 6,784 Inter99...

  8. Formulation development and evaluation of controlled porosity osmotic pump delivery system for oral delivery of atenolol

    Directory of Open Access Journals (Sweden)

    Garvendra S Rathore

    2012-01-01

    Full Text Available In the present study, we developed and evaluated the controlled porosity osmotic pump (CPOP based drug delivery system of sparingly water soluble drug atenolol (ATL. We selected target release profile and optimized different variables to help us achieve this. Formulation variables, such as, the levels of solubility enhancer (0-15% w/w of drug, ratio of the drug to the osmogents, coat thickness of the semipermeable membrane (SPM and level of pore former (0-20% w/w of polymer were found to effect the drug release from the developed formulations. Cellulose acetate (CA 398-10 was used as the semipermeable membrane containing polyethylene glycol 400 as the Cplasticizer. ATL release was directly proportional to the level of the solubility enhancer, osmotic pressure generated by osmotic agent and level of pore former; however, was inversely proportional to the coat thickness of SPM. Drug release from developed formulations was independent of the pH and agitation intensities of release media. Burst strength of the exhausted shells decreased with increase in the level of pore former. The optimized formulations were subjected to stability studies as per International Conference on Harmonisation (ICH guidelines, and formulations were found to be stable after 3 months study. Steady-state plasma levels of drug were predicted by the method of superposition.

  9. Effect of an Enhanced Nose-to-Brain Delivery of Insulin on Mild and Progressive Memory Loss in the Senescence-Accelerated Mouse.

    Science.gov (United States)

    Kamei, Noriyasu; Tanaka, Misa; Choi, Hayoung; Okada, Nobuyuki; Ikeda, Takamasa; Itokazu, Rei; Takeda-Morishita, Mariko

    2017-03-06

    Insulin is now considered to be a new drug candidate for treating dementias, such as Alzheimer's disease, whose pathologies are linked to insulin resistance in the brain. Our recent work has clarified that a noncovalent strategy involving cell-penetrating peptides (CPPs) can increase the direct transport of insulin from the nasal cavity into the brain parenchyma. The present study aimed to determine whether the brain insulin level increased by intranasal coadministration of insulin with the CPP penetratin has potential for treating dementia. The pharmacological actions of insulin were investigated at different stages of memory impairment using a senescence-accelerated mouse-prone 8 (SAMP8) model. The results of spatial learning tests suggested that chronic intranasal administration of insulin with l-penetratin to SAMP8 slowed the progression of memory loss in the early stage of memory impairment. However, contrary to expectations, this strategy using penetratin was ineffective in recovering the severe cognitive dysfunction in the progressive stage, which involves brain accumulation of amyloid β (Aβ). Immunohistological examination of hippocampal regions of samples from SAMP8 in the progressive stage suggested that accelerated nose-to-brain insulin delivery had a partial neuroprotective function but unexpectedly increased Aβ plaque deposition in the hippocampus. These findings suggest that the efficient nose-to-brain delivery of insulin combined with noncovalent CPP strategy has different effects on dementia during the mild and progressive stages of cognitive dysfunction.

  10. Visualization and Quantitative Assessment of the Brain Distribution of Insulin through Nose-to-Brain Delivery Based on the Cell-Penetrating Peptide Noncovalent Strategy.

    Science.gov (United States)

    Kamei, Noriyasu; Shingaki, Tomotaka; Kanayama, Yousuke; Tanaka, Misa; Zochi, Riyo; Hasegawa, Koki; Watanabe, Yasuyoshi; Takeda-Morishita, Mariko

    2016-03-07

    Our recent work suggested that intranasal coadministration with the cell-penetrating peptide (CPP) penetratin increased the brain distribution of the peptide drug insulin. The present study aimed to distinctly certify the ability of penetratin to facilitate the nose-to-brain delivery of insulin by quantitatively evaluating the distribution characteristics in brain using radioactive (64)Cu-NODAGA-insulin. Autoradiography and analysis using a gamma counter of brain areas demonstrated that the accumulation of radioactivity was greatest in the olfactory bulb, the anterior part of the brain closest to the administration site, at 15 min after intranasal administration of (64)Cu-NODAGA-insulin with l- or d-penetratin. The brain accumulation of (64)Cu-NODAGA-insulin with penetratin was confirmed by ELISA using unlabeled insulin in which intact insulin was delivered to the brain after intranasal coadministration with l- or d-penetratin. By contrast, quantification of cerebrospinal fluid (CSF) samples showed increased insulin concentration in only the anterior portion of the CSF at 15 min after intranasal coadministration with l-penetratin. This study gives the first concrete proof that penetratin can accelerate the direct transport of insulin from the nasal cavity to the brain parenchyma. Further optimization of intranasal administration with CPP may increase the efficacy of delivery of biopharmaceuticals to the brain while reducing the risk of systemic drug exposure.

  11. Orally dissolving strips: A new approach to oral drug delivery system.

    Science.gov (United States)

    Bala, Rajni; Pawar, Pravin; Khanna, Sushil; Arora, Sandeep

    2013-04-01

    Recently, fast dissolving films are gaining interest as an alternative of fast dissolving tablets. The films are designed to dissolve upon contact with a wet surface, such as the tongue, within a few seconds, meaning the consumer can take the product without need for additional liquid. This convenience provides both a marketing advantage and increased patient compliance. As the drug is directly absorbed into systemic circulation, degradation in gastrointestinal tract and first pass effect can be avoided. These points make this formulation most popular and acceptable among pediatric and geriatric patients and patients with fear of choking. Over-the-counter films for pain management and motion sickness are commercialized in the US markets. Many companies are utilizing transdermal drug delivery technology to develop thin film formats. In the present review, recent advancements regarding fast dissolving buccal film formulation and their evaluation parameters are compiled.

  12. Enhancement of oral bioavailability of cyclosporine A: comparison of various nanoscale drug-delivery systems

    Directory of Open Access Journals (Sweden)

    Wang K

    2014-10-01

    Full Text Available Kai Wang,1–3 Jianping Qi,1 Tengfei Weng,1,2 Zhiqiang Tian,1 Yi Lu,1 Kaili Hu,4 Zongning Yin,2 Wei Wu1 1School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of Ministry of Education, Shanghai, People’s Republic of China; 2West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 3Tropical Crops Genetic Resources Institute, Hainan Provincial Engineering Research Center for Blumea Balsamifera, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, People’s Republic of China; 4Murad Research Center for Modernized Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of ChinaAbstract: A variety of nanoscale delivery systems have been shown to enhance the oral absorption of poorly water-soluble and poorly permeable drugs. However, the performance of these systems has seldom been evaluated simultaneously. The aim of this study was to compare the bioavailability enhancement effect of lipid-based nanocarriers with poly(lactic-co-glycolic acid (PLGA nanoparticles (NPs to highlight the importance of the lipid composition, with cyclosporine A (CyA as a model drug. CyA-loaded PLGA NPs, nanostructured lipid carriers (NLCs, and self-microemulsifying drug-delivery systems (SMEDDS were prepared. The particle size of PLGA NPs (182.2±12.8 nm was larger than that of NLCs (89.7±9.0 nm and SMEDDS (26.9±1.9 nm. All vehicles are charged negatively. The entrapment efficiency of PLGA NPs and NLCs was 87.6%±1.6% and 80.3%±0.6%, respectively. In vitro release tests indicated that the cumulative release of CyA was lower than 4% from all vehicles, including Sandimmun Neoral®, according to the dialysis method. Both NLCs and SMEDDS showed high relative oral bioavailability, 111.8% and 73.6%, respectively, after oral gavage administration to beagle dogs, which was not statistically different from commercial Sandimmun Neoral®. However, PLGA NPs

  13. Insulin Initiation in Insulin-Naïve Korean Type 2 Diabetic Patients Inadequately Controlled on Oral Antidiabetic Drugs in Real-World Practice: The Modality of Insulin Treatment Evaluation Study

    Directory of Open Access Journals (Sweden)

    Sang Soo Kim

    2015-12-01

    Full Text Available BackgroundThe Modality of Insulin Treatment Evaluation (MOTIV study was performed to provide real-world data concerning insulin initiation in Korean type 2 diabetes mellitus (T2DM patients with inadequate glycemic control with oral hypoglycemic agents (OHAs.MethodsThis multicenter, non-interventional, prospective, observational study enrolled T2DM patients with inadequate glycemic control (glycosylated hemoglobin [HbA1c] ≥7.0% who had been on OHAs for ≥3 months and were already decided to introduce basal insulin by their physician prior to the start of the study. All treatment decisions were at the physician's discretion to reflect real-world practice.ResultsA total of 9,196 patients were enrolled, and 8,636 patients were included in the analysis (mean duration of diabetes, 8.9 years; mean HbA1c, 9.2%. Basal insulin plus one OHA was the most frequently (51.0% used regimen. After 6 months of basal insulin treatment, HbA1c decreased to 7.4% and 44.5% of patients reached HbA1c <7%. Body weight increased from 65.2 kg to 65.5 kg, which was not significant. Meanwhile, there was significant increase in the mean daily insulin dose from 16.9 IU at baseline to 24.5 IU at month 6 (P<0.001. Overall, 17.6% of patients experienced at least one hypoglycemic event.ConclusionIn a real-world setting, the initiation of basal insulin is an effective and well-tolerated treatment option in Korean patients with T2DM who are failing to meet targets with OHA therapy.

  14. Long-term stability, biocompatibility and oral delivery potential of risperidone-loaded solid lipid nanoparticles.

    Science.gov (United States)

    Silva, A C; Kumar, A; Wild, W; Ferreira, D; Santos, D; Forbes, B

    2012-10-15

    A solid lipid nanoparticles (SLN) formulation to improve the oral delivery of risperidone (RISP), a poorly water-soluble drug, was designed and tested. Initially, lipid-RISP solubility was screened to select the best lipid for SLN preparation. Compritol(®)-based formulations were chosen and their long-term stability was assessed over two years of storage (at 25 °C and 4 °C) by means of particle size, polydispersity index (PI), zeta potential (ZP) and encapsulation efficiency (EE) measurements. SLN shape was observed by transmission electron microscopy (TEM) at the beginning and end of the study. The oxidative potential (OP) of the SLN was measured and their biocompatibility with Caco-2 cells was evaluated using the (4,5-dimethylthiazol-2-yl)2,5-dyphenyl-tetrazolium bromide (MTT) assay. In vitro drug release and transport studies were performed to predict the in vivo release profile and to evaluate the drug delivery potential of the SLN formulations, respectively. The RISP-loaded SLN systems were stable and had high EE and similar shape to the placebo formulations before and after storage. Classical Fickian diffusion was identified as the release mechanism for RISP from the SLN formulation. Biocompatibility and dose-dependent RISP transport across Caco-2 cells were observed for the prepared SLN formulations. The viability of SLN as formulations for oral delivery of poorly water-soluble drugs such as RISP was illustrated.

  15. Size-exclusive effect of nanostructured lipid carriers on oral drug delivery.

    Science.gov (United States)

    Li, Huipeng; Chen, Minglei; Su, Zhigui; Sun, Minjie; Ping, Qineng

    2016-09-10

    Nanostructured lipid carriers (NLCs) are generally recognized as safe (GRAS) to form a controlled nanostructure are a new generation of lipid nanoparticles. In addition to formulation and particle surface properties, particle size had great influence for overcoming gastrointestinal (GI) barriers on the oral drug delivery of lipid based nanoparticles. In the present study, we investigated the effect of size on oral drug delivery for NLCs. The NLCs with different particle sizes (NLCs100nm, NLCs200nm and NLCs300nm) were prepared by using solvent evaporation method and the coumarin-6 (C6) or DiO/DiI was loaded in the nanoparticles as the fluorescence probe. The MTT assay indicated that both blank NLCs and C6-loaded NLCs displayed relatively low toxicity towards Caco-2 cells. Cellular uptake mechanisms of NLCs with different sizes were found to be similar and governed by active endocytosis, clathrin- and caveolae-mediated process. However, the smaller nanoparticle (NLC-100nm) showed higher uptake efficiency in Caco-2 cell (Poral administration. NLC-100nm exhibited the most stability according to the most stable FRET signal. In situ rat intestinal absorption experiments and in vitro ligated rat intestinal loops model demonstrated that all NLCs could rapidly penetrate duodenum versus jejunum, ileum and colon (Poral drug delivery of lipid based nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Emerging integrated nanohybrid drug delivery systems to facilitate the intravenous-to-oral switch in cancer chemotherapy.

    Science.gov (United States)

    Luo, Cong; Sun, Jin; Du, Yuqian; He, Zhonggui

    2014-02-28

    Nanohybrid drug delivery systems have presented lots of characteristic advantages as an efficient strategy to facilitate oral drug delivery. Nonetheless, oral administration of chemotherapy agents by nanoparticulate delivery technology still faces great challenges owing to the multiple biobarriers ranging from poorly physicochemical properties of drugs, to complex gastrointestinal disposition and to presystemic metabolism. This review briefly analyzes a series of biobarriers hindering oral absorption and describes the multiple aspects for facilitating the intravenous-to-oral switch in cancer therapy. Moreover, the developed nanoparticulate drug delivery strategies to overcome the above obstacles are provided, including metabolic enzyme inhibition, enteric-coated nanocarriers, bioadhesive and mucus-penetrating strategies, P-gp inhibition and active targeting. On these foundations, the emerging trends of integrated hybrid nanosystems in response to the present low-efficiency drug delivery of any single approach are summarized, such as mixed polymeric micelles and nanocomposite particulate systems. Finally, the recent advances of high-efficiency hybrid nanoparticles in oral chemotherapy are highlighted, with special attention on integrated approach to design drug delivery nanosystems.

  17. Design and development of insulin emulgel formulation for transdermal drug delivery and its evaluation.

    Science.gov (United States)

    Akram, Muhammad; Naqvi, Syed Baqirshyum; Khan, Ahmad

    2013-03-01

    The objective of the present study was to formulate an insulin emulgel, selection of an optimize formulation through in vitro drug release kinetics and finally evaluate its hypoglycemic activity in animal model. Insulin emulgel was prepared using emu oil as penetration enhancer with the combination of carbomer or hydroxypropyl methylcellulose (HPMC) as gelling agent and polysorbate 80 as emulsifier. The response of gelling agent type (carbomer or HPMC) and concentration of other two variables penetration enhancer and emulsifier were studied using 2(3)factorial design during in vitro drug release through excised rat skin. Biological activity of emulgel formulation was also investigated using Albino rabbits alone and in combination with iontophoresis. The in vivo efficacy of insulin emulgel was assessed by measuring the blood glucose level at start of the experiment and after every 15 minutes interval for 120 minutes. Total eight formulations were studied. F4 formulation showed maximum insulin permeation flux (4.88 ± 0.09 μg/cm(2)/hour) through excised rat skin. Insulin permeation from these formulations was found to follow the Korsmeyer-Peppas model (r(2) =0.975 to 0.998) during 24 hour with non-Fickian mechanism. Formulation F4 was further investigated in Albino rabbits. For the first group (treated with insulin emulgel alone) the blood glucose level decreased from initial value 250±10mg/dl to 185±7mg/dl at 120 minutes and for the second group (treated with insulin emulgel plus iontophoresis) the blood glucose level decreased to 125±5mg/dl in 120 minutes (Pemulgel was greater in combination with iontophoresis to decrease blood glucose level. On the basis of this study, it has been shown that application of insulin emulgel iontophoretically can be used as alternative (acceptable & painless) to injectable insulin subject to further studies on large animals.

  18. Development and optimization of ifosfamide nanostructured lipid carriers for oral delivery using response surface methodology

    Science.gov (United States)

    Velmurugan, Ramaiyan; Selvamuthukumar, Subramanian

    2016-02-01

    The research focuses on the development and optimization of ifosfamide nanostructured lipid carriers for oral delivery with the application of response surface methodology. The objectives of the study were to develop a formulation for ifosfamide to be delivered orally, overcome the instability of the drug in acidic environment during oral administration, to sustain the release, drug leakage during storage and low loading capacity. A modified solvent diffusion method in aqueous system was applied to prepare nanostructured lipid nanoparticles. Hydrophilic polymers such as chitosan and sodium alginate were used as coating materials. Glycerol mono oleate and oleic acid were used as solid and liquid lipid, respectively. Poloxamer is used as stabilizers. The central composite rotatable design consisting of three-factored factorial design with three levels was used in this study. The physiochemical characterization included evaluation of surface morphology, particle size and surface charge of the drug in the delivery system. The in vitro drug release, entrapment and drug loading efficiency and as well as the storage stability were evaluated. The results showed that the optimal formulation was composed of drug/lipid ratio of 1:3, organic/aqueous phase ratio of 1:10 and concentration of surfactant of 1 % w/v. Ifosfamide nanostructured lipid carrier under the optimized conditions gave rise to the entrapment efficiency of 77 %, drug loading of 6.14 %, mean diameter of 223 nm and zeta potential value of -25 mV. Transmission electron microscopy analysis showed spherical particles. The in vitro experiment proved that ifosfamide from the delivery system released gradually over the period of 72 h. Sodium alginate cross-linked chitosan nanostructured lipid carrier demonstrated enhanced stability of ifosfamide, high entrapment efficiency and sustained release.

  19. The challenges and future of oral drug delivery: An interview with David Brayden.

    Science.gov (United States)

    Brayden, David J

    2016-12-01

    David Brayden speaks to Hannah Makin, Commissioning Editor: David Brayden is a Full Professor (Advanced Drug Delivery) at the School of Veterinary Medicine, University College Dublin (UCD) and also a Fellow of the UCD Conway Institute. Following a PhD in Pharmacology at the University of Cambridge, UK (1989), and a postdoctoral research fellowship at Stanford University, CA, USA, he set up Elan Biotechnology Research's in vitro pharmacology laboratory in Dublin (1991). At Elan, he became a senior scientist and project manager of several of Elan's joint-venture drug delivery research collaborations with US biotech companies. In 2001, he joined UCD as a lecturer in veterinary pharmacology and was appointed Associate Professor in 2006 and Full Professor in 2014. He was a Director of the Science Foundation Ireland Research Cluster (The Irish Drug Delivery Research Network) from 2007 to 2013, is a Deputy Coordinator of an FP7 Consortium on oral peptides in nanoparticles ('TRANS-INT', 2012-2017), and is a Co-Principal Investigator in 'CURAM', Science Foundation Ireland's new Centre for Medical Devices (2014-2020 [ 1 ]). He was made a Fellow of the Controlled Release Society in 2012. He is the author or co-author of >200 research publications and patents. D Brayden serves on the Editorial Advisory Boards of Drug Discovery Today, European Journal of Pharmaceutical Sciences, Advanced Drug Delivery Reviews and the Journal of Veterinary Pharmacology and Therapeutics, and is an Associate Editor of Therapeutic Delivery. D Brayden works as an independent consultant for drug delivery companies.

  20. Food-Grade Organisms as Vaccine Biofactories and Oral Delivery Vehicles.

    Science.gov (United States)

    Rosales-Mendoza, Sergio; Angulo, Carlos; Meza, Beatriz

    2016-02-01

    The use of food-grade organisms as recombinant vaccine expression hosts and delivery vehicles has been explored during the past 25 years, opening new avenues for vaccinology. Considering that oral immunization is a beneficial approach in terms of costs, patient comfort, and protection of mucosal tissues, the use of food-grade organisms can lead to highly advantageous vaccines in terms of costs, easy administration, and safety. The organisms currently used for this purpose are bacteria (Lactobacillus and Bacillus), yeasts, algae, plants, and insect species. Herein, a comparative and updated scenario on the production of oral vaccines in food-grade organisms is provided and placed in perspective. The status of clinical evaluations and the adoption of this technology by the industry are highlighted.

  1. Inhaled insulin: A “puff” than a “shot” before meals

    Directory of Open Access Journals (Sweden)

    Dick B. S. Brashier

    2015-01-01

    Full Text Available Diabetes is a metabolic disorder characterized by relative or absolute deficiency of insulin, resulting in hyperglycemia. The main treatment of diabetes relies on subcutaneous insulin administration by injection or continuous infusion to control glucose levels, besides oral hypoglycemic agents for type 2 diabetes. Novel routes of insulin administration are an area of research in the diabetes field as insulin injection therapy is burdensome and painful for many patients. Inhalational insulin is a potential alternative to subcutaneous insulin in the management of diabetes. The large surface area, good vascularization, immense capacity for solute exchange and ultra-thinness of the alveolar epithelium facilitates systemic delivery of insulin via pulmonary administration. Inhaled insulin has been recently approved by Food and Drug Administration (FDA. It is a novel, rapid-acting inhaled insulin with a pharmacokinetic profile that is different from all other insulin products and comparatively safer than the previous failed inhaled insulin (Exubera.

  2. Evidence does not support absorption of intact solid lipid nanoparticles via oral delivery

    Science.gov (United States)

    Hu, Xiongwei; Fan, Wufa; Yu, Zhou; Lu, Yi; Qi, Jianping; Zhang, Jian; Dong, Xiaochun; Zhao, Weili; Wu, Wei

    2016-03-01

    Whether and to what extent solid lipid nanoparticles (SLNs) can be absorbed integrally via oral delivery should be clarified because it is the basis for elucidation of absorption mechanisms. To address this topic, the in vivo fate of SLNs as well as their interaction with biomembranes is investigated using water-quenching fluorescent probes that can signal structural variations of lipid-based nanocarriers. Live imaging indicates prolonged retention of SLNs in the stomach, whereas in the intestine, SLNs can be digested quickly. No translocation of intact SLNs to other organs or tissues can be observed. The in situ perfusion study shows bioadhesion of both SLNs and simulated mixed micelles (SMMs) to intestinal mucus, but no evidence of penetration of integral nanocarriers. Both SLNs and SMMs exhibit significant cellular uptake, but fail to penetrate cell monolayers. Confocal laser scanning microscopy reveals that nanocarriers mainly concentrate on the surface of the monolayers, and no evidence of penetration of intact vehicles can be obtained. The mucous layer acts as a barrier to the penetration of both SLNs and SMMs. Both bile salt-decoration and SMM formulation help to strengthen the interaction with biomembranes. It is concluded that evidence does not support absorption of intact SLNs via oral delivery.Whether and to what extent solid lipid nanoparticles (SLNs) can be absorbed integrally via oral delivery should be clarified because it is the basis for elucidation of absorption mechanisms. To address this topic, the in vivo fate of SLNs as well as their interaction with biomembranes is investigated using water-quenching fluorescent probes that can signal structural variations of lipid-based nanocarriers. Live imaging indicates prolonged retention of SLNs in the stomach, whereas in the intestine, SLNs can be digested quickly. No translocation of intact SLNs to other organs or tissues can be observed. The in situ perfusion study shows bioadhesion of both SLNs and

  3. Functionalized carbon nanomaterials: exploring the interactions with Caco-2 cells for potential oral drug delivery

    Directory of Open Access Journals (Sweden)

    Coyuco JC

    2011-10-01

    Full Text Available Jurja C Coyuco, Yuanjie Liu, Bee-Jen Tan, Gigi NC ChiuDepartment of Pharmacy, Faculty of Science, National University of Singapore, SingaporeAbstract: Although carbon nanomaterials (CNMs have been increasingly studied for their biomedical applications, there is limited research on these novel materials for oral drug delivery. As such, this study aimed to explore the potential of CNMs in oral drug delivery, and the objectives were to evaluate CNM cytotoxicity and their abilities to modulate paracellular transport and the P-glycoprotein (P-gp efflux pump. Three types of functionalized CNMs were studied, including polyhydroxy small-gap fullerenes (OH-fullerenes, carboxylic acid functionalized single-walled carbon nanotubes (fSWCNT-COOH and poly(ethylene glycol functionalized single-walled carbon nanotubes (fSWCNT-PEG, using the well-established Caco-2 cell monolayer to represent the intestinal epithelium. All three CNMs had minimum cytotoxicity on Caco-2 cells, as demonstrated through lactose dehydrogenase release and 3-(4,5-dimethyliazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays. Of the three CNMs, fSWCNT-COOH significantly reduced transepithelial electrical resistance and enhanced transport of Lucifer Yellow across the Caco-2 monolayer. Confocal fluorescence microscopy showed that fSWCNT-COOH treated cells had the highest perturbation in the distribution of ZO-1, a protein marker of tight junction, suggesting that fSWCNT-COOH could enhance paracellular permeability via disruption of tight junctions. This modulating effect of fSWCNT-COOH can be reversed over time. Furthermore, cellular accumulation of the P-gp substrate, rhodamine-123, was significantly increased in cells treated with fSWCNT-COOH, suggestive of P-gp inhibition. Of note, fSWCNT-PEG could increase rhodamine-123 accumulation without modifying the tight junction. Collectively, these results suggest that the functionalized CNMs could be useful as modulators for oral drug

  4. Diazepam submicron emulsions containing soya-bean oil and intended for oral or rectal delivery.

    Science.gov (United States)

    Gajewska, M; Sznitowska, M; Janicki, S

    2001-03-01

    Physically stable diazepam submicron emulsions were prepared using soya-bean oil. Diazepam concentration 4 mg/ml, suitable for rectal or oral delivery, was achieved in 20% emulsions. Mixture of egg lecithin (1.2%) and poloxamer (2.0%) has been chosen as the most suitable emulsifying agent. Composition of the emulsion may be supplemented with alpha-tocopherol and parabens. However, the system was not stable when either phenylethanol or chlorhexidine gluconate was added. Taste masking agents commonly used as food additives decreased stability of the preparation and were not efficient in elimination of a bitter taste of the drug-loaded emulsions.

  5. Gene Silencing in Adult Aedes aegypti Mosquitoes Through Oral Delivery of Double-Stranded RNA

    Science.gov (United States)

    2012-01-01

    OR I GI N AL C ONTR I BUTI O N Gene silencing in adult Aedes aegypti mosquitoes through oral delivery of double-stranded RNA M. R. Coy1, N. D...we tested whether such an approach could be used in the yellow fever mosquito, Aedes aegypti . Using a non-specific dsRNA construct, we found that...adult Ae. aegypti ingested dsRNA through this method and that the ingested dsRNA can be recovered from the mosquitoes post-feeding. Through the feeding of

  6. Encapsulation of Liposomes within pH Responsive Microspheres for Oral Colonic Drug Delivery

    Directory of Open Access Journals (Sweden)

    M. J. Barea

    2012-01-01

    Full Text Available A novel liposome-in-microsphere (LIM formulation has been created comprising drug-loaded liposomes within pH responsive Eudragit S100 microspheres. The liposomes contained the model drug 5-ASA and were coated with chitosan in order to protect them during encapsulation within the microspheres and to improve site-specific release characteristics. In vitro drug release studies showed that LIMs prevented drug release within simulated stomach and small intestine conditions with subsequent drug release occurring in large intestine conditions. The formulation therefore has potential for oral colonic drug delivery.

  7. Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling.

    Science.gov (United States)

    Brankatschk, Marko; Dunst, Sebastian; Nemetschke, Linda; Eaton, Suzanne

    2014-10-02

    The Insulin signaling pathway couples growth, development and lifespan to nutritional conditions. Here, we demonstrate a function for the Drosophila lipoprotein LTP in conveying information about dietary lipid composition to the brain to regulate Insulin signaling. When yeast lipids are present in the diet, free calcium levels rise in Blood Brain Barrier glial cells. This induces transport of LTP across the Blood Brain Barrier by two LDL receptor-related proteins: LRP1 and Megalin. LTP accumulates on specific neurons that connect to cells that produce Insulin-like peptides, and induces their release into the circulation. This increases systemic Insulin signaling and the rate of larval development on yeast-containing food compared with a plant-based food of similar nutritional content.

  8. An introduction to fast dissolving oral thin film drug delivery systems: a review.

    Science.gov (United States)

    Kathpalia, Harsha; Gupte, Aasavari

    2013-12-01

    Many pharmaceutical companies are switching their products from tablets to fast dissolving oral thin films (OTFs). Films have all the advantages of tablets (precise dosage, easy administration) and those of liquid dosage forms (easy swallowing, rapid bioavailability). Statistics have shown that four out of five patients prefer orally disintegrating dosage forms over conventional solid oral dosages forms. Pediatric, geriatric, bedridden, emetic patients and those with Central Nervous System disorders, have difficulty in swallowing or chewing solid dosage forms. Many of these patients are non-compliant in administering solid dosage forms due to fear of choking. OTFs when placed on the tip or the floor of the tongue are instantly wet by saliva. As a result, OTFs rapidly hydrate and then disintegrate and/or dissolve to release the medication for local and/or systemic absorption. This technology provides a good platform for patent non- infringing product development and for increasing the patent life-cycle of the existing products. The application of fast dissolving oral thin films is not only limited to buccal fast dissolving system, but also expands to other applications like gastroretentive, sublingual delivery systems. This review highlights the composition including the details of various types of polymers both natural and synthetic, the different types of manufacturing techniques, packaging materials and evaluation tests for the OTFs.

  9. Non-Oral Drug Delivery Strategies: From Early Diagnosis to Advanced Treatments

    Directory of Open Access Journals (Sweden)

    Claudia Trenkwalder

    2015-08-01

    Full Text Available This educational symposium, sponsored by Britannia Pharmaceuticals Limited, was held during the 1st Congress of the European Academy of Neurology (EAN, which took place from 20th-23rd June 2015 in Berlin, Germany. The symposium reviewed the role of non-oral drug delivery strategies in patients with Parkinson’s disease (PD and how they can overcome problems that occur with the gastrointestinal (GI route of administration in many patients. GI dysfunction is recognised as a common problem in PD and may in fact be a preclinical marker of the disease. It can affect the absorption of oral medication resulting in OFF periods and unreliable control of motor symptoms, which in turn can have a negative impact on quality of life (QoL. Delayed time-to-ON (TTO after an oral levodopa dose and dose failures are known to be significant contributors to total OFF time. Results of the recently completed AM-IMPAKT trial in patients with morning akinesia due to a delay in the onset of oral levodopa effect demonstrate that apomorphine intermittent injection (penject is able to provide rapid and effective resolution of such complications, restoring patients to the ON state quickly and allowing them to get on with their daily activities.

  10. Enhanced Oral Delivery of Docetaxel Using Thiolated Chitosan Nanoparticles: Preparation, In Vitro and In Vivo Studies

    Science.gov (United States)

    Saremi, Shahrooz; Kebriaeezadeh, Abbas; Ostad, Seyed Nasser; Atyabi, Fatemeh

    2013-01-01

    The aim of this study was to evaluate a nanoparticulate system with mucoadhesion properties composed of a core of polymethyl methacrylate surrounded by a shell of thiolated chitosan (Ch-GSH-pMMA) for enhancing oral bioavailability of docetaxel (DTX), an anticancer drug. DTX-loaded nanoparticles were prepared by emulsion polymerization method using cerium ammonium nitrate as an initiator. Physicochemical properties of the nanoparticles such as particle size, size distribution, morphology, drug loading, and entrapment efficiency were characterized. The pharmacokinetic study was carried out in vivo using wistar rats. The half-life of DTX-loaded NPs was about 9 times longer than oral DTX used as positive control. The oral bioavailability of DTX was increased to 68.9% for DTX-loaded nanoparticles compared to 6.5% for positive control. The nanoparticles showed stronger effect on the reduction of the transepithelial electrical resistance (TEER) of Caco-2 cell monolayer by opening the tight junctions. According to apparent permeability coefficient (Papp) results, the DTX-loaded NPs showed more specific permeation across the Caco-2 cell monolayer in comparison to the DTX. In conclusion, the nanoparticles prepared in this study showed promising results for the development of an oral drug delivery system for anticancer drugs. PMID:23971023

  11. Enhanced Oral Delivery of Docetaxel Using Thiolated Chitosan Nanoparticles: Preparation, In Vitro and In Vivo Studies

    Directory of Open Access Journals (Sweden)

    Shahrooz Saremi

    2013-01-01

    Full Text Available The aim of this study was to evaluate a nanoparticulate system with mucoadhesion properties composed of a core of polymethyl methacrylate surrounded by a shell of thiolated chitosan (Ch-GSH-pMMA for enhancing oral bioavailability of docetaxel (DTX, an anticancer drug. DTX-loaded nanoparticles were prepared by emulsion polymerization method using cerium ammonium nitrate as an initiator. Physicochemical properties of the nanoparticles such as particle size, size distribution, morphology, drug loading, and entrapment efficiency were characterized. The pharmacokinetic study was carried out in vivo using wistar rats. The half-life of DTX-loaded NPs was about 9 times longer than oral DTX used as positive control. The oral bioavailability of DTX was increased to 68.9% for DTX-loaded nanoparticles compared to 6.5% for positive control. The nanoparticles showed stronger effect on the reduction of the transepithelial electrical resistance (TEER of Caco-2 cell monolayer by opening the tight junctions. According to apparent permeability coefficient (Papp results, the DTX-loaded NPs showed more specific permeation across the Caco-2 cell monolayer in comparison to the DTX. In conclusion, the nanoparticles prepared in this study showed promising results for the development of an oral drug delivery system for anticancer drugs.

  12. Proliposomes for oral delivery of dehydrosilymarin: preparation and evaluation in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Chang CHU; Shan-shan TONG; Ying XU; Li WANG; Min FU; Yan-ru GE; Jiang-nan YU; Xi-ming XU

    2011-01-01

    Aim: To formulate proliposomes with a polyphase dispersed system composed of soybean phospholipids, cholesterol, isopropyl myristate and sodium cholate to improve the oral bioavailability of dehydrosilymarin, an oxidized form of herbal drug silymarin.Methods: Dehydrosilymarin was synthesized from air oxidation of silymarin in the presence of pyridine, and proliposomes were prepared by a film dispersion-freeze drying method. Morphological characterization of proliposomes was observed using a transmission electron microscope. Particle size and encapsulation efficiency of proliposomes were measured. The in vitro release of dehydrosilymarin from suspension and proliposomes was evaluated. The oral bioavailability of dehydrosilymarin suspension and proliposomes was investigated in rabbits.Results: The proliposomes prepared under the optimum conditions were spherical and smooth with a mean particle size in the range of 7 to 50 nm. Encapsulation efficiency was 81.59%+0.24%. The in vitro accumulative release percent of dehydrosilymarinloaded proliposomes was stable, which was slow in pH 1.2, and increased continuously in pH 6.8, and finally reached 86.41% at 12 h. After oral administration in rabbits, the relative bioavailability of proliposomes versus suspension in rabbits was 228.85%.Conclusion: Proliposomes may be a useful vehicle for oral delivery of dehydrosilymarin, a drug poorly soluble in water.

  13. Characterization and evaluation of nanostructured lipid carrier as a vehicle for oral delivery of etoposide.

    Science.gov (United States)

    Zhang, Tiecheng; Chen, Jianian; Zhang, Yi; Shen, Qi; Pan, Weisan

    2011-06-14

    Nanostructured lipid carriers (NLCs) are a new generation of lipid nanoparticles, which have showed some advantages over traditional lipid nanoparticles, such as improved drug incorporation and release properties. The purpose of this study is to develop an optimized nanostructured lipid carrier formulation for etoposide (VP16), and to estimate the potential of NLCs as oral delivery system. VP16-NLCs were prepared by an emulsification and low-temperature solidification method. The average drug entrapment efficiency, particle size and zeta potential of VP16-NLCs, VP16-PEG40-St-modified NLCs (VP16-PEG40-NLCs) and VP16-DSPE-PE- modified NLCs (VP16-DSPE-NLCs) were 57.9-89.7%, 125.9-91.2 nm and -28.49 to -15.34 mV, respectively. The absorption of VP16-NLCs in the intestine was performed by the diffusion chamber. It was found that VP16-DSPE-NLCs with a smaller particle size made the drug transport easy from mucosal to serosal side. A pharmacokinetic study was conducted in rats. After oral administration of VP16 at a dose of 180 mg/kg in the form of either VP16-NLCs or suspension, the relative bioavailability of VP16-NLCs, VP16-PEG40-NLCs and VP16-DSPE-NLCs were enhanced about 1.8-, 3.0- and 3.5-fold, respectively, compared with VP16 suspension. Furthermore, VP16-DSPE-NLCs displayed the highest cytotoxicity against human epithelial-like lung carcinoma cells. The NLCs formulation remarkably improved the oral bioavailability of VP16 and demonstrated a promising perspective for oral delivery of VP16. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  14. Hyaluronic acid-coated cationic nanostructured lipid carriers for oral vincristine sulfate delivery.

    Science.gov (United States)

    Gao, Xuan; Zhang, Jun; Xu, Qiang; Huang, Zun; Wang, Yiyue; Shen, Qi

    2017-04-01

    The goal of this research is to structure a hyaluronic acid modified nanostructured lipid carrier (HA-NLCs) for vincristine sulfate (VCR) delivery, and detect its efficiency to improve the oral bioavailability. Emulsion solvent evaporation method was used to prepare the HA-NLCs nanoparticles. The particle size, zeta potential and entrapment efficiency of VCR-NLCs and HA-NLCs were 187 ± 3.52 nm, -8.61 ± 1.29 mV, 33.12 ± 1.16% and 192 ± 4.41 nm, -32.82 ± 2.64 mV, 34.41 ± 2.21%, respectively. HA-NLCs could significantly improve the cellular uptake efficiency and cytotoxicity in MCF-7 cells than other VCR formulations. The expressions of apoptosis related protein Caspase-3, Caspase-9, Bax and Bcl-2 were estimated by western blot assay in MCF-7 cells, and HA-NLCs exhibited the strongest effect in promoting cell apoptosis. The pharmacokinetics of HA-NLCs was evaluated in Sprague-Dawley male rats and the relative oral bioavailability of HA-NLCs and VCR-NLCs was improved about 1.8-fold and two-fold compared with VCR solution, respectively. Therefore, these results indicated that HA-NLCs could significantly improve the oral bioavailability and was a promising vehicle for the oral delivery of VCR.

  15. Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Greenfield, Jerry R; Farooqi, I Sadaf; Keogh, Julia M

    2008-01-01

    plasma insulin concentrations. Glutamine stimulated glucagon secretion in all 3 study groups. CONCLUSION: Glutamine effectively increases circulating GLP-1, GIP, and insulin concentrations in vivo and may represent a novel therapeutic approach to stimulating insulin secretion in obesity and type 2...... objective was to determine whether glutamine increases circulating GLP-1 and GIP concentrations in vivo and, if so, whether this is associated with an increase in plasma insulin. DESIGN: We recruited 8 healthy normal-weight volunteers (LEAN), 8 obese individuals with type 2 diabetes or impaired glucose...... tolerance (OB-DIAB) and 8 obese nondiabetic control subjects (OB-CON). Oral glucose (75 g), glutamine (30 g), and water were administered on 3 separate days in random order, and plasma concentrations of GLP-1, GIP, insulin, glucagon, and glucose were measured over 120 min. RESULTS: Oral glucose led...

  16. Preserved glucagon-like peptide-1 responses to oral glucose, but reduced incretin effect, insulin secretion and sensitivity in young Asians with type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Yeow, Toh Peng; Pacini, Giovanni; Tura, Andrea

    2017-01-01

    are scarce. We examined the insulin resistance, β-cell function (BC), glucagon-like peptide (GLP)-1 hormone and incretin effect in Asian YT2DM. RESEARCH DESIGN AND METHODS: This case-control study recruited 25 Asian YT2DM and 15 healthy controls, matched for gender, ethnicity and body mass index. Serum......OBJECTIVE: Youth onset type 2 diabetes mellitus (YT2DM) is a globally rising phenomenon with substantial Asians representation. The understanding of its pathophysiology is derived largely from studies in the obese African-American and Caucasian populations, while studies on incretin effect...... glucose, insulin, C peptide and GLP-1 were sampled during 2-hour oral glucose tolerance tests (OGTTs) and 1-hour intravenous glucose tolerance tests (IVGTTs). Insulin sensitivity was derived from the Quantitative Insulin Sensitivity Check Index (QUICKI), Oral Glucose Insulin Sensitivity Index (OGIS...

  17. [Expression of human insulin in lactic acid bacteria and its oral administration in non-obese diabetic mice].

    Science.gov (United States)

    Chen, Si-Wei; Zhong, Jin; Huan, Lian-Dong

    2007-12-01

    Type 1 diabetes mellitus (T1DM) is an auto-immune disease while oral administrating its autoantigens could be a treatment of T1DM. To express human insulin gene (ins) in lactic acid bacteria (LAB) for oral vaccine, ins gene was replaced by LAB bias codon and an 8-amino-acid-residue linker peptide forming a beta-turn was designed to link insulin chain A and B. After synthesized by primer annealing method, the whole ins gene was fused with signal peptide sequence SP(Usp45), subcloned into a LAB secretory expressive vector pSW501 and then introduced to Lactococcus lactis (L. lactis) MG1363 and Lactobacillus casei (Lb. casei ) ATCC27092 respectively. Western blot showed that the expression product (SP(Usp45)-INS protein) targeted mainly at the cell wall while little was found in cytoplasm or supernatant. The highest expression level emerged in exponential phase when the optical density at 600nm of the culture was 0.4. The culture of the recombinant strain Lb. casei/pSW501 was administered to non-obese diabetic (NOD) mice orally. ELISA and Western blot results showed that the recombinant strain could induce SP(Usp45)-INS-specific antibodies and raise IL-4 level (38.583 +/- 2.083 pg/mL, P < 0.05) in the mice' s sera. Expression of insulin in the food-grade vehicle LAB could induce oral immune tolerance in NOD mice and protect it from pancreas injury, suggesting it might be a new way to the treatment of T1DM.

  18. Efficacy and safety of oral antidiabetic drugs in comparison to insulin in treating gestational diabetes mellitus: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Nalinee Poolsup

    Full Text Available OBJECTIVE: To assess the efficacy and safety of oral antidiabetic drugs (OADs in gestational diabetes mellitus (GDM in comparison to insulin. METHODS: A meta-analysis of randomized controlled trials was conducted. The efficacy and safety of OADs in comparison to insulin in GDM patients were explored. Studies were identified by conducting a literature search using the electronic databases of Medline, CENTRAL, CINAHL, LILACS, Scopus and Web of Science in addition to conducting hand search of relevant journals from inception until October 2013. RESULTS: Thirteen studies involving 2,151 patients met the inclusion criteria. These studies were randomized controlled trials of metformin and glyburide in comparison to insulin therapy. Our results indicated a significant increase in the risk for preterm births (RR, 1.51; 95% CI, 1.04-2.19, p = 0.03 with metformin compared to insulin. However, a significant decrease in the risk for gestational hypertension (RR, 0.54; 95% CI, 0.31-0.91, p = 0.02 was found. Postprandial glucose levels also decreased significantly in patients receiving metformin (MD, -2.47 mg/dL; 95% CI, -4.00, -0.94, p = 0.002. There was no significant difference between the two groups for the remaining outcomes. There were significant increases in the risks of macrosomia (RR, 2.34; 95% CI, 1.18-4.63, p = 0.03 and neonatal hypoglycemia (RR, 2.06; 95% CI, 1.27-3.34, p = 0.005 in the glyburide group compared to insulin whereas results for the other analyzed outcomes remained non-significant. CONCLUSION: The available evidence suggests favorable effects of metformin in treating GDM patients. Metformin seems to be an efficacious alternative to insulin and a better choice than glyburide especially those with mild form of disease.

  19. Oral Delivery of Pentameric Glucagon-Like Peptide-1 by Recombinant Lactobacillus in Diabetic Rats

    Science.gov (United States)

    Krogh-Andersen, Kasper; Pelletier, Julien; Marcotte, Harold; Östenson, Claes-Göran; Hammarström, Lennart

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone produced by intestinal cells and stimulates insulin secretion from the pancreas in a glucose-dependent manner. Exogenously supplied GLP-1 analogues are used in the treatment of type 2 diabetes. An anti-diabetic effect of Lactobacillus in lowering plasma glucose levels and its use as a vehicle for delivery of protein and antibody fragments has been shown previously. The aim of this study was to employ lactobacilli as a vehicle for in situ production and delivery of GLP-1 analogue to normalize blood glucose level in diabetic GK (Goto-Kakizaki) rats. In this study, we designed pentameric GLP-1 (5×GLP-1) analogues which were both expressed in a secreted form and anchored to the surface of lactobacilli. Intestinal trypsin sites were introduced within 5×GLP-1, leading to digestion of the pentamer into an active monomeric form. The E. coli-produced 5×GLP-1 peptides delivered by intestinal intubation to GK rats resulted in a significant improvement of glycemic control demonstrated by an intraperitoneal glucose tolerance test. Meanwhile, the purified 5×GLP-1 (trypsin-digested) from the Lactobacillus cultures stimulated insulin secretion from HIT-T15 cells, similar to the E. coli-produced 5×GLP-1 peptides. When delivered by gavage to GK rats, non-expressor L. paracasei significantly lowered the blood glucose level but 5×GLP-1 expression did not provide an additional anti-diabetic effect, possibly due to the low levels produced. Our results indicate that lactobacilli themselves might be used as an alternative treatment method for type 2 diabetes, but further work is needed to increase the expression level of GLP-1 by lactobacilli in order to obtain a significant insulinotropic effect in vivo. PMID:27610615

  20. Using observational data to inform the design of a prospective effectiveness study for a novel insulin delivery device

    Directory of Open Access Journals (Sweden)

    Grabner M

    2013-09-01

    Full Text Available Michael Grabner,1 Yong Chen,2 Matthew Nguyen,3 Scott D Abbott,3 Ralph Quimbo1 1HealthCore, Inc., Wilmington, DE, USA; 2Merck and Co., Inc., Whitehouse Station, NJ, USA; 3Valeritas, Inc., Bridgewater, NJ, USA Objective: To inform the design and assess the feasibility of a prospective effectiveness study evaluating an insulin delivery device for patients with diabetes mellitus to be conducted within the membership of a large US commercial insurer. Methods: Providers who issued ≥1 insulin prescription between January 1, 2011 and September 30, 2011 were selected from administrative claims contained in the HealthCore Integrated Research DatabaseSM. Adult diabetes patients with visits to these providers were identified. Providers were dichotomized into high- [HVPs] and low-volume providers [LVPs] based on median number of diabetes patients per provider. Results: We identified 15,349 HVPs and 15,313 LVPs (median number of patients = 14. Most HVPs were located in the Midwest (6,291 [41.0%] and South (5,092 [33.2%], while LVPs were evenly distributed across regions. Over 80% (12,769 of HVPs practiced family or internal medicine; 6.4% (989 were endocrinologists. HVPs prescribed insulin to an average of 25% of patients. Patients of HVPs (522,527 had similar characteristics as patients of LVPs (80,669, except for geographical dispersion, which followed that of providers. Approximately 65% of patients were aged 21-64 years and 97% had type 2 diabetes. Among patients with ≥1 available HbA1C result during 2011 (103,992, 48.3% (50,193 had an average HbA1C ≥7.0%. Among patients initiating insulin, 79.6% (22,205 had an average HbA1C ≥7.0%. Conclusion: The observed provider and patient populations support the feasibility of the prospective study. Sampling of patients from HVPs is efficient while minimizing bias as patient characteristics are similar to those from LVPs. The study also highlights unmet needs for improved glycemic control since approximately

  1. Cysteine-Functionalized Nanostructured Lipid Carriers for Oral Delivery of Docetaxel: A Permeability and Pharmacokinetic Study.

    Science.gov (United States)

    Fang, Guihua; Tang, Bo; Chao, Yanhui; Xu, Helin; Gou, Jingxin; Zhang, Yu; Xu, Hui; Tang, Xing

    2015-07-06

    Here we report the development and evaluation of cysteine-modified nanostructured lipid carriers (NLCs) for oral delivery of docetaxel (DTX). The NLCs ensure high encapsulation efficiency of docetaxel, while the cysteine bound the NLCs with PEG2000-monostearate (PEG2000-MSA) as a linker, and allowed a specific interaction with mucin of the intestinal mucus layer and facilitated the intestinal transport of docetaxel. The cysteine-modified NLCs (cNLCs) had a small particle size (cysteine group on the surface of the NLCs obtained by X-ray photoelectron spectroscopy (XPS). The cNLCs significantly improved the mucoadhesion properties compared with uNLCs. The intestinal absorption of cNLCs in total intestinal segments was greatly improved in comparison with uNLCs and docetaxel solution (DTX-Sol), and the in vivo imaging system captured pictures also showed not only increased intestinal absorption but also improved accumulation in blood. The cNLCs could be absorbed into the enterocytes via both endocytosis and passive transport. The results of the in vivo pharmacokinetic study indicated that the AUC0-t of cNLCs (1533.00 ng/mL·h) was markedly increased 12.3-fold, and 1.64-fold compared with docetaxel solution and uNLCs, respectively. Overall, the cysteine modification makes nanostructured lipid carriers more suitable as nanocarriers for oral delivery of docetaxel.

  2. N-trimethyl chitosan-modified liposomes as carriers for oral delivery of salmon calcitonin.

    Science.gov (United States)

    Huang, Aiwen; Makhlof, Abdallah; Ping, Qineng; Tozuka, Yuichi; Takeuchi, Hirofumi

    2011-11-01

    Therapeutic peptide and protein drugs have high specificity and activity in their functions but present challenges in their administration route, requiring development of new delivery systems to improve their bioavailability. The aim of this work was to investigate the role of N-trimethyl chitosan- (TMC-) coated liposomes in the oral administration of calcitonin. TMC with a degree of quaternization around 78% was synthesized and its mucoadhesive properties were examined in vitro using the mucin-particle method, which confirmed that TMC showed mucoadhesion comparable to that of chitosan. TMC-coated liposomes containing calcitonin were prepared and characterized as having a particle size of 262 nm, zeta potential of 35.8 mV and high entrapment efficiency (89.1%). The in vivo evaluation of mucoadhesion was carried out using confocal laser microscopy to observe the residence time and permeation extent after intragastric administration. The results showed that TMC-coated liposomes prolonged the residence time and increased the penetration effect of the liposomal system compared to non-coated liposomes. The study of pharmacological effects confirmed that TMC-coated liposomes increased the area above the blood calcium concentration-time curves (AAC) from 3.13 ± 20.50 to 448.84 ± 103.56 compared to the calcitonin solution. These results support the feasibility of TMC-coated liposomes as a new oral delivery system for peptide and protein drugs.

  3. Production of dosage forms for oral drug delivery by laminar extrusion of wet masses.

    Science.gov (United States)

    Müllers, Katrin C; Wahl, Martin A; Pinto, João F

    2013-08-01

    Laminar extrusion of wet masses was studied as a novel technology for the production of dosage forms for oral drug delivery. Extrusion was carried out with a ram extruder. Formulations contained either microcrystalline cellulose (MCC) or dicalcium phosphate (DCP) as diluent, hydroxypropyl methylcellulose (HPMC), lactose, and water. Extrudates were characterized for their tensile strength, Young's modulus of elasticity, water absorption, gel forming capacity, and release of two model drugs, coumarin (COU) and propranolol hydrochloride (PRO). Cohesive extrudates could be produced with both filling materials (MCC and DCP) when HPMC was included as a binder at low amounts (3.3-4.5% w/w dry weight). Employing more HPMC, the elasticity of the wet masses increased which resulted in distinct surface defects. For MCC, the maximum HPMC amount that could be included in the formulations (15% w/w dry weight) did not affect the mechanical properties or decrease the drug release significantly. For DCP extrudates, the maximally effective HPMC amount was 30% (w/w dry weight) with influence on both the mechanical properties and drug release. This study suggests that laminar extrusion of wet masses is a feasible technique for the production of dosage forms for oral drug delivery.

  4. Abnormal transient rise in hepatic glucose production after oral glucose in non-insulin-dependent diabetic subjects.

    Science.gov (United States)

    Thorburn, A; Litchfield, A; Fabris, S; Proietto, J

    1995-05-01

    A transient rise in hepatic glucose production (HGP) after an oral glucosa load has been reported in some insulin-resistant states such as in obese fa/fa Zucker rats. The aim of this study was to determine whether this rise in HGP also occurs in subjects with established non-insulin-dependent diabetes mellitus (NIDDM). Glucose kinetics were measured basally and during a double-label oral glucose tolerance test (OGTT) in 12 NIDDM subjects and 12 non-diabetic 'control' subjects. Twenty minutes after the glucose load, HGP had increased 73% above basal in the NIDDM subjects (7.29 +/- 0.52 to 12.58 +/- 1.86 mumol/kg/min, P < 0.02). A transient rise in glucagon (12 pg/ml above basal, P < 0.004) occurred at a similar time. In contrast, the control subjects showed no rise in HGP or plasma glucagon. HGP began to suppress 40-50 min after the OGTT in both the NIDDM and control subjects. A 27% increase in the rate of gut-derived glucose absorption was also observed in the NIDDM group, which could be the result of increased gut glucose absorption or decreased first pass extraction of glucose by the liver. Therefore, in agreement with data in animal models of NIDDM, a transient rise in HGP partly contributes to the hyperglycemia observed after an oral glucose load in NIDDM subjects.

  5. Buccal bioadhesive drug delivery--a promising option for orally less efficient drugs.

    Science.gov (United States)

    Sudhakar, Yajaman; Kuotsu, Ketousetuo; Bandyopadhyay, A K

    2006-08-10

    Rapid developments in the field of molecular biology and gene technology resulted in generation of many macromolecular drugs including peptides, proteins, polysaccharides and nucleic acids in great number possessing superior pharmacological efficacy with site specificity and devoid of untoward and toxic effects. However, the main impediment for the oral delivery of these drugs as potential therapeutic agents is their extensive presystemic metabolism, instability in acidic environment resulting into inadequate and erratic oral absorption. Parenteral route of administration is the only established route that overcomes all these drawbacks associated with these orally less/inefficient drugs. But, these formulations are costly, have least patient compliance, require repeated administration, in addition to the other hazardous effects associated with this route. Over the last few decades' pharmaceutical scientists throughout the world are trying to explore transdermal and transmucosal routes as an alternative to injections. Among the various transmucosal sites available, mucosa of the buccal cavity was found to be the most convenient and easily accessible site for the delivery of therapeutic agents for both local and systemic delivery as retentive dosage forms, because it has expanse of smooth muscle which is relatively immobile, abundant vascularization, rapid recovery time after exposure to stress and the near absence of langerhans cells. Direct access to the systemic circulation through the internal jugular vein bypasses drugs from the hepatic first pass metabolism leading to high bioavailability. Further, these dosage forms are self-administrable, cheap and have superior patient compliance. Developing a dosage form with the optimum pharmacokinetics is a promising area for continued research as it is enormously important and intellectually challenging. With the right dosage form design, local environment of the mucosa can be controlled and manipulated in order to

  6. Kidneys cytomembranes stability in pregnant women with type 1 diabetes and pregnancy outcomes dependingon the method of insulin delivery

    Directory of Open Access Journals (Sweden)

    Zul'fiya Raisovna Alimetova

    2012-12-01

    Full Text Available Objective. To evaluate of kidney cytomembranes stability during pregnancy and its outcomes in patients with diabetes mellitus type on type 1 with different stages of diabetic nephropathy (DN according to the route of insulin administration.Materials and Methods. We study 100 pregnant women with type 1 diabetes with the introduction of insulin in the mode of multiple subcutaneous injections (MSII and with portable dispenser with a continuous subcutaneous insulin infusion (CSII. DN stage determined by the level of albumin in the daily urine. Cytomembranes stability assessment conducted on daily excretion of ethanolamine and phospholipids with urine in each trimester. Pregnancy outcomes were analyzed in 52 patients with type 1 diabetes. In the group of pregnant women with delivery at term 38-40 weeks we also analyzed the status of newborns.Results. Indicators of cytomembranes stability of kidneys in pregnant women on CSII consistent with those in healthy pregnant women (p>0.05 the whole pregnancy, regardless of the level of daily urinary albumin excretion. There were no differences in cytomembrana stability of kidneys between the group of patients on MSII with normal albumin excretion (NAU and the control group regardless to the gestational age (p>0.05. With the introduction of insulin in the mode of MSII on the stage of microalbuminuria (MAU in the 3rd trimester we found the increase of ethanolamine excretion as compared to control groupy (U=8,00, p=0.012 and the group on CSII with a similar stage of nephropathy (U=2.00, p=0.033. In patients with proteinuria (PU in the group on the MSII in the third trimester phospholipids excretion is increased with a daily urine (U=27,5, p=0.03 and U=22,00, p=0.07 for patients MSII and CSII, respectively. The use of an insulin pump allowed to prolong gestational period, even in severe proteinuric stage of nephropathy. Manifestations of diabetic fetopathy as macrosomia, hypoglycemia in the fetus at birth time

  7. Cortisol, glucagon and growth hormone responses to oral glucose in non-insulin-dependent diabetes in the young.

    Science.gov (United States)

    Jialal, I; Joubert, S M

    1982-10-09

    Cortisol and growth hormone (GH) responses to a 100 g oral glucose load were measured in 85 Indian patients with non-insulin-dependent diabetes in the young (NIDDY) and 50 reference subjects; in 16 patients and 12 reference subjects the glucagon responses were also assessed. Fasting serum cortisol and plasma glucagon levels were significantly higher in the NIDDY group (P less than 0.001); in contrast, GH levels in the NIDDY patients were significantly lower (P less than 0.01). Plasma glucagon was only significantly suppressed 150 minutes after oral glucose loading in the NIDDY group, in contrast to the reference group, which showed maximum suppression at 90 minutes; at all time intervals plasma glucagon levels were significantly higher in the NIDDY patients. Obesity did not affect fasting plasma glucagon levels. In response to the oral glucose load serum cortisol levels in the NIDDY patients were suppressed in parallel with those in the reference group but remained significantly higher throughout the period of observation at all time intervals. Obese NIDDY patients had higher fasting cortisol levels, but their response to orally administered glucose was no different from that of the NIDDY group as a whole. GH suppression by oral glucose in NIDDY patients was less than that in the reference group, and the rebound rise occurred earlier. Obese NIDDY patients had higher fasting GH levels than their non-obese counterparts, but responses to the glucose load were not different.

  8. The minor C-allele of rs2014355 in ACADS is associated with reduced insulin release following an oral glucose load

    DEFF Research Database (Denmark)

    Hornbak, Malene; Banasik, Karina; Justesen, Johanne Marie;

    2011-01-01

    insulin release following an oral glucose load or with T2D. Methods The variants were genotyped using KASPar(R) PCR SNP genotyping system and investigated for associations with estimates of insulin release and insulin sensitivity following an oral glucose tolerance test (OGTT) in a random sample of middle...... an oral glucose load (per allele effect (beta)=-3.8% (-6.3%;-1.3%), P=0.003), reduced incremental area under the insulin curve (beta=-3.6% (-6.3%;-0.9%), P=0.009), reduced acute insulin response (beta=-2.2% (-4.2%;0.2%), P=0.03), and with increased insulin sensitivity ISIMatsuda (beta= 2.9% (0.5%;5.2%), P......=0.02). The C-allele did not associate with two other measures of insulin sensitivity or with a derived disposition index. The C-allele was not associated with T2D in the case-control analysis (OR 1.07, 95% CI 0.96-1.18, P=0.21). rs11161510 of ACADM did not associate with any indices of glucose...

  9. Plasma insulin levels are increased by sertraline in rats under oral glucose overload

    Directory of Open Access Journals (Sweden)

    Gomez R.

    2001-01-01

    Full Text Available Recognition and control of depression symptoms are important to increase patient compliance with treatment and to improve the quality of life of diabetic patients. Clinical studies indicate that selective serotonin reuptake inhibitors (SSRI are better antidepressants for diabetic patients than other drugs. However, preclinical trials have demonstrated that not all SSRI reduce plasma glucose levels. In fact, fluoxetine increases and sertraline decreases glycemia in diabetic and non-diabetic rats. In the present study we evaluated plasma insulin levels during fasting and after glucose overload after treatment with sertraline. Adult male Wistar rats were fasted and treated with saline or 30 mg/kg sertraline and submitted or not to glucose overload (N = 10. Blood was collected and plasma insulin was measured. The mean insulin levels were: fasting group: 25.9 ± 3.86, sertraline + fasting group: 31.10 ± 2.48, overload group: 34.1 ± 3.40, and overload + sertraline group: 43.73 ± 5.14 µU/ml. Insulinemia was significantly increased in the overload + sertraline group. There were no differences between the other groups. No difference in glucose/insulin ratios could be detected between groups. The overload + sertraline group was the only one in which a significant number of individuals exceeded the upper confidence limit of insulin levels. This study demonstrates that sertraline increases glucose-stimulated insulin secretion without any change in peripheral insulin sensitivity.

  10. Higher incremental insulin area under the curve during oral glucose tolerance test predicts less food intake and weight gain.

    Science.gov (United States)

    He, J; Votruba, S; Venti, C; Krakoff, J

    2011-12-01

    To investigate the correlation of peripheral insulin concentrations with food intake and body weight. Cross sectional and longitudinal clinical study: we investigated the association of peripheral insulin concentrations in response to an oral glucose tolerance test (OGTT) with subsequent measures of ad libitum food intake and body weight change. Food intake analysis: Pima Indians (n=67, 63% male; body mass index (mean ± s.d.) 34.2 ± 9.4 kg m(-2)) with normal glucose regulation (NGR; fasting glucose libitum food intake measured over 3 days by an automated vending machine system. Weight change analysis: Pima Indians with NGR (n=339) who also participated in a longitudinal study of risks for type 2 diabetes and had follow-up weights. Food intake analysis: incremental area under the curve (iAUC) for insulin during the OGTT was negatively associated with mean daily ad libitum energy intake (DEI) (r=-0.26, P=0.04), calories consumed as percent weight-maintenance energy needs (%WMEN) (r=-0.38, P=0.002) and carbohydrate intake (gram per day) (r=-0.35, P=0.005). Adjustment for age and sex attenuated the association of iAUC with DEI (P=0.06) not with %WMEN and carbohydrate intake (P=0.005, P=0.008). Weight change analysis: after adjustment for age, sex, follow-up time and initial body weight, higher insulin iAUC predicted less absolute and percent weight change (β=-6.9, P=0.02; β=-0.08, P=0.008, respectively). In healthy Pima Indians with NGR, higher plasma iAUC during an OGTT predicted lower food intake and carbohydrate consumption and less weight gain. These data indicated a role for peripheral insulin as a negative feedback signal in the regulation of energy intake and body weight.

  11. Preparation and In Vitro Release of Drug-Loaded Microparticles for Oral Delivery Using Wholegrain Sorghum Kafirin Protein

    Directory of Open Access Journals (Sweden)

    Esther T. L. Lau

    2015-01-01

    Full Text Available Kafirin microparticles have been proposed as an oral nutraceutical and drug delivery system. This study investigates microparticles formed with kafirin extracted from white and raw versus cooked red sorghum grains as an oral delivery system. Targeted delivery to the colon would be beneficial for medication such as prednisolone, which is used in the management of inflammatory bowel disease. Therefore, prednisolone was loaded into microparticles of kafirin from the different sources using phase separation. Differences were observed in the protein content, in vitro protein digestibility, and protein electrophoretic profile of the various sources of sorghum grains, kafirin extracts, and kafirin microparticles. For all of the formulations, the majority of the loaded prednisolone was not released in in vitro conditions simulating the upper gastrointestinal tract, indicating that most of the encapsulated drug could reach the target area of the lower gastrointestinal tract. This suggests that these kafirin microparticles may have potential as a colon-targeted nutraceutical and drug delivery system.

  12. The relationship between maternal insulin-like growth factors 1 and 2 (IGF-1, IGF-2) and IGFBP-3 to gestational age and preterm delivery.

    LENUS (Irish Health Repository)

    Cooley, Sharon M

    2012-02-01

    AIMS: To investigate the relationship between levels of insulin-like growth factors 1 and 2 (IGF-1, IGF-2), and insulin-like growth factor binding protein 3 (IGFBP-3) in antenatal maternal serum and gestational age at delivery. METHODS: Prospective cohort study of 1650 low-risk Caucasian women in a London University teaching hospital. Maternal IGF-1, IGF-2 and IGFBP-3 were measured in maternal blood at booking and analyzed with respect to gestational age at delivery. RESULTS: There was no significant association between maternal IGF-1 or IGF-2 and preterm birth (PTB). A significant reduction in mean IGFBP-3 levels was noted with delivery <32 completed weeks (P=0.02). CONCLUSION: Maternal mean IGFBP-3 levels are significantly reduced in cases complicated by delivery <32 completed weeks.

  13. A new drug nanocrystal self-stabilized Pickering emulsion for oral delivery of silybin.

    Science.gov (United States)

    Yi, Tao; Liu, Chuan; Zhang, Jiao; Wang, Fan; Wang, Jirui; Zhang, Jifen

    2017-01-01

    A new silybin nanocrystal self-stabilized Pickering emulsion (SN-SSPE) has been developed using a high pressure homogenization method to improve the oral bioavailability of silybin. Influences of homogenization pressure and drug content on the formation of SN-SSPE were studied. The morphology, structure and size of Pickering emulsion droplets were characterized using a scanning electron micrograph, confocal laser scanning microscopy and atomic force microscopy. The stability, in vitro release and in vivo oral bioavailability of SN-SSPE were investigated. Results indicated that the particle size of silybin nanocrystals (SN-NC) decreased when homogenization pressure increased until 100MPa. When the content of silybin reached 300mg or above, a stable Pickering emulsion of silybin could be formed by sufficient SN-NC covering surfaces of oil droplets completely and thus self-stabilizing the Pickering emulsion. The emulsion droplet of SN-SSPE with the size of 27.3±3.1μm showed a core-shell structure consisting of a core of oil and a shell of SN-NC. SN-SSPE has shown high stability over 40days. The in vitro release rate of SN-SSPE was faster than silybin coarse powder and similar to silybin nanocrystalline suspension (SN-NCS). The peak concentration of silybin of SN-SSPE following intragastric administration in rats was increased by 2.5-fold and 3.6-fold compared with SN-NCS and silybin coarse powder, respectively. The AUC of SN-SSPE was increased by 1.6-fold and 4.0-fold compared with SN-NCS and silybin coarse powder, respectively. All these results showed that the Pickering emulsion of silybin could be stabilized by nanocrystals of silybin itself and increased the oral bioavailability of silybin. The drug nanocrystalline self-stabilized Pickering emulsion was a promising oral drug delivery system for poorly soluble drugs.

  14. Strategies for Developing Oral Vaccines for Human Papillomavirus (HPV) Induced Cancer using Nanoparticle mediated Delivery System.

    Science.gov (United States)

    Uddin, Mohammad Nasir; Kouzi, Samir A; Hussain, Muhammad Delwar

    2015-01-01

    Human Papillomaviruses (HPV) are a diverse group of small non-enveloped DNA viruses. Some HPVs are classified as low-risk as they are very rarely associated with neoplasia or cancer in the general population, and cause lenient warts. Other HPVs are considered as high-risk types because they are responsible for several important human cancers, including cervical cancer, a large proportion of other anogenital cancers, and a growing number of head and neck cancers. Transmission of HPV occurs primarily by skin-to-skin contact. The risk of contracting genital HPV infection and cervical cancer is influenced by sexual activity. Currently two prophylactic HPV vaccines, Gardasil® (Merck, USA) and Cervarix® (GlaxoSmithKline, UK), are available and recommended for mass immunization of adolescents. However, these vaccines have limitations as they are expensive and require cold chain storage and trained personnel to administer them by injection. The use of nano or micro particulate vaccines could address most of these limitations as they are stable at room temperature, inexpensive to produce and distribute to resource poor regions, and can be administered orally without the need for adjuvants in the formulation. Also it is possible to increase the efficiency of these particulate vaccines by decorating the surface of the nano or micro particulates with suitable ligands for targeted delivery. Oral vaccines, which can be delivered using particulate formulations, have the added potential to stimulate mucosa-associated lymphoid tissue located in the digestive tract and the gut-associated lymphoid tissue, both of which are important for the induction of effective mucosal response against many viruses. In addition, oral vaccines provide the opportunity to reduce production and administration costs and are very patient compliant. This review elaborately discusses different strategies that can be pursued to develop a nano or micro particulate oral vaccine for HPV induced cancers and

  15. Nanostructured lipid carriers used for oral delivery of oridonin: an effect of ligand modification on absorption.

    Science.gov (United States)

    Zhou, Xiaotong; Zhang, Xingwang; Ye, Yanghuan; Zhang, Tianpeng; Wang, Huan; Ma, Zhiguo; Wu, Baojian

    2015-02-20

    Oridonin (Ori) is a natural compound with notable anti-inflammation and anti-cancer activities. However, therapeutic use of this compound is limited by its poor solubility and low bioavailability. Here a novel biotin-modified nanostructured lipid carrier (NLC) was developed to enhance the bioavailability of Ori. The effect of ligand (biotin) modification on oral absorption of Ori encapsulated in NLCs was also explored. Ori-loaded NLCs (Ori-NLCs) were prepared by the melt dispersion-high pressure homogenization method. Biotin modification of Ori-NLCs was achieved by EDC and NHS in aqueous phase. The obtained biotin-decorated Ori-NLCs (Bio-Ori-NLCs) were 144.9nm in size with an entrapment efficiency of 49.54% and a drug load of 4.81%. Oral bioavailability was enhanced by use of Bio-Ori-NLCs with a relative bioavailability of 171.01%, while the value of non-modified Ori-NLCs was improved to 143.48%. Intestinal perfusion showed that Ori solution unexpectedly exhibited a moderate permeability, indicating that permeability was not a limiting factor of Ori absorption. Ori could be rapidly metabolized that was the main cause of low bioavailability. However, there was a difference in the enhancement of bioavailability between Bio-Ori-NLCs and conventional NLCs. Although severe lipolyses happened both on Bio-Ori-NLCs and non-modified NLCs, the performance of Bio-Ori-NLCs in the bioavailability improvement was more significant. Overall, Bio-Ori-NLCs can further promote the oral absorption of Ori by a ligand-mediated active transport. It may be a promising carrier for the oral delivery of Ori. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs.

    Science.gov (United States)

    Dahan, Arik; Hoffman, Amnon

    2008-07-02

    As a consequence of modern drug discovery techniques, there has been a consistent increase in the number of new pharmacologically active lipophilic compounds that are poorly water soluble. A great challenge facing the pharmaceutical scientist is making these molecules into orally administered medications with sufficient bioavailability. One of the most popular approaches to improve the oral bioavailability of these molecules is the utilization of a lipid based drug delivery system. Unfortunately, current development strategies in the area of lipid based delivery systems are mostly empirical. Hence, there is a need for a simplified in vitro method to guide the selection of a suitable lipidic vehicle composition and to rationalize the delivery system design. To address this need, a dynamic in vitro lipolysis model, which provides a very good simulation of the in vivo lipid digestion process, has been developed over the past few years. This model has been extensively used for in vitro assessment of different lipid based delivery systems, leading to enhanced understanding of the suitability of different lipids and surfactants as a delivery system for a given poorly water soluble drug candidate. A key goal in the development of the dynamic in vitro lipolysis model has been correlating the in vitro data of various drug-lipidic delivery system combinations to the resultant in vivo drug profile. In this paper, we discuss and review the need for this model, its underlying theory, practice and limitations, and the available data accumulated in the literature. Overall, the dynamic in vitro lipolysis model seems to provide highly useful initial guidelines in the development process of oral lipid based drug delivery systems for poorly water soluble drugs, and it predicts phenomena that occur in the pre-enterocyte stages of the intestinal absorption cascade.

  17. Polymer-filled microcontainers for oral delivery loaded using supercritical impregnation

    DEFF Research Database (Denmark)

    Marizza, Paolo; Keller, Stephan Sylvest; Müllertz, Anette

    2014-01-01

    In the last years a large variety of drug delivery systems have been developed to improve bioavailability of therapeutics in oral administration. An increasing interest has arisen in reservoir-based microdevices designed for active ingredients like water insoluble compounds and fragile biomolecules...... procedures. This work proposes an effective loading technique for a poorly soluble model drug in microcontainers, by combining inkjet printing and supercritical fluid impregnation. Well defined quantities of poly(vinyl pyrrolidone) (PVP) solutions are dispensed into microcontainers by inkjet printing...... with a quasi-no-waste performance. Then ketoprofen is impregnated in the polymer matrix by using supercritical carbon dioxide (scCO2) as loading medium. The amount of polymer is controlled by the volume and the number of droplets of dispensed polymer and drug loading is tuned by varying the impregnation...

  18. Preparation of multiparticulate systems for oral delivery of a micronized or nanosized poorly soluble drug.

    Science.gov (United States)

    Cerea, Matteo; Pattarino, Franco; Foglio Bonda, Andrea; Palugan, Luca; Segale, Lorena; Vecchio, Carlo

    2016-09-01

    The purpose of the present work was to prepare multiparticulate drug delivery systems for oral administration of a poorly soluble drug such as itraconazole. Multiparticulate systems were prepared by extrusion/spheronization technique using a mix of crospovidone, low viscosity hypromellose, microcrystalline cellulose, micronized drug and water. In order to improve the release performance of the multiparticulate systems, the micronized drug was suspended in water with polysorbate 20 and nanonized by a high-pressure homogenization. The suspension of drug nanoparticles was then spray-dried for enabling an easy handling of the drug and for preventing the over-wetting of the powders during extrusion/spheronization processing. Both multiparticulate units prepared with micronized or nanonized drug showed acceptable disintegrating properties. The nanosizing of micronized drug powder provided a significant improvement of drug dissolution rates of the multiparticulates.

  19. Mixed-micellar proliposomal systems for enhanced oral delivery of progesterone.

    Science.gov (United States)

    Potluri, Praveen; Betageri, Guru V

    2006-01-01

    The objective of our study was to develop a mixed-micellar proliposomal formulation of poorly water-soluble drug progesterone and evaluate the dissolution profile and membrane transport. Several formulations of proliposomes were prepared by mixing different concentrations of lipid, progesterone, polysorbate 80, and microcrystalline cellulose. The mixed-micellar formulation of drug:dimyristoyl-phosphatidycholine:polysorbate 80 (1:20:3.3) exhibited the maximum dissolution (75.27%), while pure progesterone resulted in low dissolution. The above formulation showed a 4-fold increase in transport in Caco-2 cells and a 6-fold increase in transport across the everted rat intestinal sac experiments compared with control. Proliposomal formulations enhance the extent of dissolution and membrane transport of progesterone and serve as ideal carriers for oral delivery of drugs with low water solubility.

  20. Biodegradable microcontainers as an oral drug delivery system for poorly soluble drugs

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Nagstrup, Johan; Keller, Stephan Sylvest

    2013-01-01

    -equilibration of the dissolution cell with the intestinal medium, a release of furosemide was observed after 1 min with an increased release after 5 min of dissolution. CONCLUSIONS: Biodegradable microcontainers were successfully fabricated and loaded with drug. Coating with Eudragit L-100 proved to be useful for protecting drug......PURPOSE: To fabricate microcontainers in biodegradable polylactic acid (PLLA) polymer films using hot embossing, and investigate the application of fabricated microcontainers as an oral drug delivery system for a poorly soluble drug. METHODS: For fabrication of the PLLA microcontainers, a film...... of PLLA was produced by spin coating. The film was heated above the polymer glass transition temperature (Tg), and a stamp was forced into the film. Following cooling of the film the stamp was removed, exposing the formed microcontainers. Microcontainers were filled with amorphous furosemide sodium salt...

  1. Status of governmental oral health care delivery system in Haryana, India

    Directory of Open Access Journals (Sweden)

    Ashish Vashist

    2016-01-01

    Full Text Available Background: Health system should be organized to meet the needs of entire population of the nation. This means that the state has the direct responsibility for the health of its population and improving the quality of life through research, education, and provision of health services. The present study was conducted to evaluate the government oral health care delivery system in Haryana, India. Materials and Methods: The present cross-sectional study was conducted among 135 dental care units (DCUs of various primary health centers (PHCs, community health centers (CHCs, and general hospitals (GHs existing in the state by employing a cluster random sampling technique. Data regarding the provision of water and electricity supply, dental man power and their qualification, number and type of instruments in the dental operatory unit, etc., were collected on a structured format. Statistical analysis was done using number and percentages (SPSS package version 16. Results: Alternative source of electricity (generator existed in only a few of health centers. About 93.4% (155 of the staff were graduates (BDS and 6.6% (11 were postgraduates (MDS. Ultrasonic scaler was available at dental units of 83.1% (64 of PHCs, 73.1% (19 of CHCs, and 93.8% (30 of GHs. Patient drapes were provided in 48.1% (65 of the DCUs, doctor′s aprons were provided in 74.1% (100 of the places. Conclusion: There is a shortfall in infrastructure and significant problem with the adequacy of working facilities. A great deal of effort is required to harmonize the oral health care delivery system.

  2. Preparation and characterization of salmon calcitonin-sodium triphosphate ionic complex for oral delivery.

    Science.gov (United States)

    Lee, Hea Eun; Lee, Min Jung; Park, Cho Rong; Kim, A Young; Chun, Kyung Hwa; Hwang, Hee Jin; Oh, Dong Ho; Jeon, Sang Ok; Kang, Jae Seon; Jung, Tae Sung; Choi, Guang Jin; Lee, Sangkil

    2010-04-19

    Even though salmon calcitonin (sCT) has been known as a potent hypocalcemic agent, only injection or nasal spray products are available on the market. In order to develop oral delivery system of the agent, a novel sCT-sodium tripolyphosphate (STPP) ionic complex was fabricated and also characterized. For the optimization of the ionic complexation, the effect of incubation time and molar ratio between sCT and STPP was evaluated. Particle size of the ionic complex in aqueous media, SEM images, DSC, FT-IR, in vitro release test, stability within the simulated intestinal fluid, and hypocalcemic effect were evaluated. The optimal molar complexation ratio of sCT to STPP was ranged from 1:5 to 1:10 and the complexation efficiency was about 95%. The SEM image has shown that the freeze dried ionic complex has rough morphology in their surface and the particle size in PBS (pH 7.4) was about 220nm. The DSC and FT-IR results provided evidences for ionic interaction between -NH(2) groups and -P horizontal lineO groups of sCT and STPP, respectively. The sCT ionic complex has shown sustained sCT releasing characteristics for 3weeks. The sCT-STPP ionic complex was protective to enzymatic attack and in vivo animal data revealed that the present ionic complex would show continuous hypocalcemic effect. Conclusively, the present sCT-STPP ionic complex formulation thought to be a novel oral delivery candidate for the treatment of osteoporosis.

  3. Formulation and evaluation of controlled porosity osmotic pump for oral delivery of ketorolac.

    Science.gov (United States)

    Dasankoppa, Fatima Sanjeri; Ningangowdar, Mahesh; Sholapur, Hasanpasha

    2012-12-01

    The osmotic drug delivery systems suitable for oral administration typically consist of a compressed tablet core that is coated with a semipermeable membrane that has an orifice drilled on it by means of a laser beam or mechanical drill. Ketorolac is a nonsteroidal agent with powerful analgesic. Oral bioavailability of ketorolac was reported to be 90% with very low hepatic first-pass elimination; the biological half-life of 4-6 hours requires frequent administration to maintain the therapeutic effect. The aim of the current study was to design a controlled porosity osmotic pump (CPOP)based drug delivery system for controlled release of an NSAID agent, ketorolac tromethamine, which is expected to improve patient compliance due to reduced frequency; it also eliminates the need for complicated and expensive laser drilling and maintain continuous therapeutic concentration. The CPOP was designed containing pore-forming water-soluble additives in the coating membrane, which after coming in contact with water, dissolve, resulting in an in situ formation of a micro porous structure. The effect of different formulation variables, namely level of pore former (PVP), plasticizer (dibutyl phthalate) in the membrane, and membrane weight gain were studied. Drug release was inversely proportional to the membrane weight but directly related to the initial concentration of pore former (PVP) in the membrane. Drug release was independent of pH and agitational intensity, but dependent on the osmotic pressure of the release media. Based on the in vitro dissolution profile, formulation F3C1 (containing 0.5 g PVP and 1 g dibutyl phthalate in coating membrane) exhibited Peppas kinetic with Fickian diffusion-controlled release mechanism with a drug release of 93.67% in 12 hours and hence it was selected as optimized formulation. SEM studies showed the formation of pores in the membrane. The formulations were stable after 3 months of accelerated stability studies. CPOP was designed for

  4. Thrice-daily biphasic insulin aspart 30 may be another therapeutic option for Chinese patients with type 2 diabetes inadequately controlled with oral antidiabetic agents

    Institute of Scientific and Technical Information of China (English)

    YANG Wen-ying; JI Qiu-he; ZHU Da-long; YANG Jin-kui; CHEN Lu-lu; LIU Zhi-min; YU De-min; YAN Li

    2009-01-01

    In subjects with type 2 diabetes inadequately controlled with oral antidiabetic agents (OADs), insulin therapy is usually started to improve glycaemic control after failure of diet, exercise and OADs.1 Although there is no standard way to introduce insulin treatment, premixed formulations are a popular option. They offer an alternative to basal-bolus therapy and provide basal and prandial coverage with a single injection. Indeed, Koivisto et al2 in 1999 reported that 39% of patients with type 2 diabetes worldwide used premixed insulin as part of their therapeutic regimen. The modem premixed insulins, such as biphasic insulin aspart 30 (BIAsp 30) are most frequently prescribed twice-daily (BID) in clinical Department of Endocrinology, China-Japan Friendship Hospital, Beijing 100029, China (Yang WY)

  5. Generation of pH responsive fluorescent nano capsules through simple steps for the oral delivery of low pH susceptible drugs

    Science.gov (United States)

    Radhakumary, Changerath; Sreenivasan, Kunnatheeri

    2016-11-01

    pH responsive nano capsules are promising as it can encapsulate low pH susceptible drugs like insulin and guard them from the hostile environments in the intestinal tract. The strong acidity of the gastro-intestinal tract and the presence of proteolytic enzymes are the tumbling blocks for the design of drug delivery vehicles through oral route for drugs like insulin. Nano capsules are normally built over templates which are subsequently removed by further steps. Such processes are complex and often lead into deformed and collapsed capsules. In this study, we choose calcium carbonate (CaCO3) nano particles to serve as template. Over CaCO3 nanoparticles, silica layers were built followed by polymethacrylic acid chains to acquire pH responsiveness. During the polymerization process of the methacrylic acid, the calcium carbonate core particles were dissolved leading to the formation of nano hollow capsules having a size that ranges from 225 to 246 nm and thickness from 19 to 58 nm. The methodology is simple and devoid of additional steps. The nano shells exhibited 80% release of the loaded model drug, insulin at pH 7.4 while at pH 2.0 the capsules nearly stopped the release of the drug. Polymethacrylic acid shows pH responsive swelling behavior that it swells at intestinal pH (7.0-7.5) and shrinks at gastric pH (˜2.0) thus enabling the safe unloading of the drug from the nano capsules.

  6. The Type 2 Diabetes Associated Minor Allele of rs2237895 KCNQ1 Associates with Reduced Insulin Release Following an Oral Glucose Load

    DEFF Research Database (Denmark)

    Brunak, Søren; Holmkvist, J; Banasik, K

    2009-01-01

    , and rs2237897) on estimates of glucose stimulated insulin release. METHODOLOGY/PRINCIPAL FINDINGS: Genotypes were examined for associations with serum insulin levels following an oral glucose tolerance test (OGTT) in a population-based sample of 6,039 middle-aged and treatment-naïve individuals. Insulin......+/-SD: (CC) 277+/-160 vs. (AC) 280+/-164 vs. (AA) 299+/-200 pmol/l, p = 0.008) after an oral glucose load, insulinogenic index (29.6+/-17.4 vs. 30.2+/-18.7vs. 32.2+/-22.1, p = 0.007), incremental area under the insulin curve (20,477+/-12,491 vs. 20,503+/-12,386 vs. 21,810+/-14,685, p = 0.02) among the 4......,568 individuals who were glucose tolerant. Adjustment for the degree of insulin sensitivity had no effect on the measures of reduced insulin release. The rs2237895 genotype had a similar impact in the total sample of treatment-naïve individuals. No association with measures of insulin release were identified...

  7. Heat-Stable Dry Powder Oxytocin Formulations for Delivery by Oral Inhalation.

    Science.gov (United States)

    Fabio, Karine; Curley, Kieran; Guarneri, Joseph; Adamo, Benoit; Laurenzi, Brendan; Grant, Marshall; Offord, Robin; Kraft, Kelly; Leone-Bay, Andrea

    2015-12-01

    In this work, heat stable dry powders of oxytocin (OT) suitable for delivery by oral inhalation were prepared. The OT dry powders were prepared by spray drying using excipients chosen to promote OT stability including trehalose, isoleucine, polyvinylpyrrolidone, citrate (sodium citrate and citric acid), and zinc salts (zinc chloride and zinc citrate). Characterization by laser diffraction indicated that the OT dry powders had a median particle size of 2 μm, making them suitable for delivery by inhalation. Aerodynamic performance upon discharge from proprietary dry powder inhalers was evaluated by Andersen cascade impaction (ACI) and in an anatomically correct airway (ACA) model, and confirmed that the powders had excellent aerodynamic performance, with respirable fractions up to 77% (ACI, 30 L/min). Physicochemical characterization demonstrated that the powders were amorphous (X-ray diffraction) with high glass transition temperature (modulated differential scanning calorimetry, MDSC), suggesting the potential for stabilization of the OT in a glassy amorphous matrix. OT assay and impurity profile were conducted by reverse phase HPLC and liquid chromatography-mass spectrometry (LC-MS) after storage up to 32 weeks at 40°C/75%RH. Analysis demonstrated that OT dry powders containing a mixture of citrate and zinc salts retained more than 90% of initial assay after 32 weeks storage and showed significant reduction in dimers and trisulfide formation (up to threefold reduction compared to control).

  8. A novel in situ gel formulation of ranitidine for oral sustained delivery.

    Science.gov (United States)

    Xu, Haoping; Shi, Min; Liu, Ying; Jiang, Jinling; Ma, Tao

    2014-02-01

    The main purpose of this study was to develop a novel, in situ gel system for sustained delivery of ranitidine hydrochloride. Ranitidine in situ gels at 0.2%, 0.5%, and 1.0% gellan gum concentration (w/v) were prepared, respectively, and characterized in terms of preparation, viscosity and in vitro release. The viscosity of the gellan gum formulations in solution increased with increasing concentrations of gellan gum. In vitro study showed that the release of ranitidine from these gels was characterized by an initial phase of high release (burst effect) and translated to the second phase of moderate release. Single photon emission computing tomography technique was used to evaluate the stomach residence time of gel containing (99m)Tc tracer. The animal experiment suggested in situ gel had feasibility of forming gels in stomach and sustained the ranitidine release from the gels over the period of at least 8 h. In conclusion, the in situ gel system is a promising approach for the oral delivery of ranitidine for the therapeutic effects improvement.

  9. Permanent neonatal diabetes mellitus due to KCNJ11 mutation in a Portuguese family: transition from insulin to oral sulfonylureas.

    Science.gov (United States)

    Dupont, Juliette; Pereira, Carla; Medeira, Ana; Duarte, Rui; Ellard, Sian; Sampaio, Lurdes

    2012-01-01

    Permanent neonatal diabetes mellitus (PNDM) is a rare form of diabetes diagnosed within the first 6 months of life. Heterozygous activation mutations in KCNJ11, encoding the Kir6.2 subunit of the ATP-sensitive potassium (K(ATP)) channel, which acts as a key role in insulin secretion regulation, account for about half of the cases of PNDM. The majority of the patients represent isolated cases resulting from de novo mutations. Approximately 20% have associated neurologic features: the most severe form, which includes epilepsy and developmental delay, is called developmental delay, epilepsy, and neonatal diabetes (DEND) syndrome and the milder form, with less severe developmental delay and without epilepsy, is designated intermediate DEND syndrome. Individuals with KCNJ11 mutations have been successfully transitioned from insulin to sulfonylurea (SU) therapy. Furthermore, there have been cases reported with variable improvement in neurological function following a successful switching. We describe a 12-year-old Portuguese girl with PNDM due to the previously reported R201C mutation in the KCNJ11 gene. Her medical history includes prematurity and moderate developmental delay. The mutation was inherited from her mother who has isolated PNDM. The patient was successfully transferred from insulin to SU, whereas her mother showed SU resistance. Despite good glycemic control, no improvements in the cognitive performance were verified. We present our experience in switching treatment from insulin to oral SUs in this family, and also discuss whether or not the girl's developmental delay is related with the Kir6.2 mutation. To our knowledge, this is the first Portuguese patient reported with successful transition to SU treatment.

  10. Chitosan-aprotinin coated liposomes for oral peptide delivery: Development, characterisation and in vivo evaluation.

    Science.gov (United States)

    Werle, Martin; Takeuchi, Hirofumi

    2009-03-31

    In order to improve the systemic uptake of therapeutic peptides/proteins after oral administration, the polymer-protease inhibitor conjugate chitosan-aprotinin was synthesised and polyelectrolyte complexes between negatively charged multilamellar vesicles (MLV) and positively charged chitosan-aprotinin conjugate were prepared. It could be demonstrated that chitosan-aprotinin was capable of significantly inhibiting Trypsin in vitro in concentrations of 0.05% and 0.1%, whereas no inhibition was observed in the presence of 0.1% chitosan. The size range of the prepared MLV was between 3 and 4.5microm and the initially negative zeta potential (ca. -90mV) of the core liposomes switched to a positive value after polymer coating (ca. +40mV). Confocal laser microscopy studies showed comparable mucoadhesive properties of chitosan-aprotinin coated MLV and chitosan coated MLV. In comparison to calcitonin in solution, the area above the blood calcium concentration-time curve (AAC) after oral administration of calcitonin loaded chitosan coated MLV to rats increased around 11-fold, and around 15-fold in the case of calcitonin loaded chitosan-aprotinin coated MLV. Data gained in the current study are believed to contribute to the development of novel polymer-protease inhibitor based delivery systems.

  11. A ceramic drug delivery vehicle for oral administration of highly potent opioids.

    Science.gov (United States)

    Forsgren, Johan; Jämstorp, Erik; Bredenberg, Susanne; Engqvist, Håkan; Strømme, Maria

    2010-01-01

    Pellets composed of the ceramic material Halloysite and microcrystalline cellulose were synthesized with the aim of producing a drug delivery vehicle for sustained release of the opioid Fentanyl with low risk for dose dumping at oral intake of the highly potent drug. Drug release profiles of intact and crushed pellets, to simulate swallowing without or with chewing, in pH 6.8, pH 1, and in 48% ethanol were recorded in order to replicate the conditions in the small intestines, in the stomach, as well as cointake of the drug with alcohol. The drug release was analyzed by employing the Weibull equation, which showed that the release profiles were either governed by fickian diffusion (intact pellets in pH 6.8 and in ethanol) or by diffusion in a fractal or disordered pore network (intact pellets in pH 1 and crushed pellets in all solutions). A sustained release for approximately 3-4 h was obtained in all studied solutions from intact pellets, whereas crushed pellets released the drug content during approximately 2-3 h. The finding that a sustained release profile could be obtained both in alcohol and after crushing of the pellets, shows that the ceramic carrier under investigation, at least to some extent, hampers dose dumping, and may thus be a promising material in future developments of new opioid containing oral dosage forms.

  12. Preparation and characterization of docetaxel self-nanoemulsifying powders (SNEPs): A strategy for improved oral delivery

    Energy Technology Data Exchange (ETDEWEB)

    Sunkavalli, Sharath; Eedara, Basanth Babu; Janga, Karthik Yadav; Velpula, Ashok; Jukanti, Raju; Bandari, Suresh [St. Peter' s Institute of Pharmaceutical Sciences, Warangal (India)

    2016-03-15

    Liquid self-nanoemulsifying drug delivery systems (L-SNEDDS) of docetaxel were prepared using varying ratios of Capmul PG 8 NF (oil), Cremophor EL (surfactant) and Transcutol-P (co-surfactant). The optimized L-SNEDDS (L{sub 11}) was transformed into self-nanoemulsifying powder (SNEP) by physical adsorption on to Neusilin US2 and evaluated for dissolution behavior, in vitro cytotoxicity and in vivo oral bioavailability. Optimized L-SNEDDS (L{sub 11}) composed of 50% of oil, 41.7% of surfactant and 8.3% co-surfactant produced stable emulsion with smaller globules (43±3 nm). In vitro dissolution studies showed the rapid drug release within 5min (95.42±1%) from SNEP{sub N}. In vitro cytotoxicity assessed by the MTT assay using MCF-7 human breast cancer cell lines revealed that L-SNEDDS significantly reduced the IC{sub 50} value and was 2.3 times lower than the pure docetaxel. Further, the oral bioavailability studies in male Wistar rats showed higher C{sub max} values following treatment with SNEP{sub N} (0.98±0.13 μg/mL) and L-SNEDDS (1.09± 0.06 μg/mL) compared to pure docetaxel (0.37±0.04 μg/mL).

  13. Homogeneous PLGA-lipid nanoparticle as a promising oral vaccine delivery system for ovalbumin

    Directory of Open Access Journals (Sweden)

    Tongtong Ma

    2014-06-01

    Full Text Available In this study, a polymeric lipid nanoparticle (NP (simplified as Lipid NP was reported as a promising oral vaccine delivery system. The Lipid NPs composed of a hydrophobic polymeric poly(d,l-lactide-co-glycolide (PLGA core and a surface coating of lipid monolayer. Membrane emulsification technique was used to obtain uniform-sized Lipid NPs. Ovalbumin (OVA was used as a model vaccine. Compared with the pure PLGA NPs, the Lipid NPs achieved higher loading capacity (LC and entrapment efficiency (EE for the encapsulated OVA. An in vitro oral release profile showed that the OVA-Lipid NPs were with lower initial burst and could protect the loaded OVA from the harsh gastrointestinal (GI environment for a long time. In addition, a human microfold cell (M-cell transcytotic assay demonstrated that due to a lipid layer structure on the particle surface, the Lipid NPs showed higher affinity to the M-cells. Since the M-cell in the intestinal epithelium played an important role in particle transportation as well as intimately associated with the underlying immune cells, the OVA-Lipid NPs effectively induced mucosal and humoral immune responses.

  14. An oral oligonucleotide delivery system based on a thiolated polymer: Development and in vitro evaluation.

    Science.gov (United States)

    Martien, Ronny; Hoyer, Herbert; Perera, Glen; Schnürch, Andreas Bernkop

    2011-08-01

    The purpose of this study was to develop and evaluate an oral oligonucleotide delivery system based on a thiolated polymer/reduced glutathione (GSH) system providing a protective effect toward nucleases and permeation enhancement. A polycarbophil-cysteine conjugate (PCP-Cys) was synthesized. Enzymatic degradation of a model oligonucleotide by DNase I and within freshly collected intestinal fluid was investigated in the absence and presence of PCP-Cys. Permeation studies with PCP-Cys/GSH versus control were performed in vitro on Caco-2 cell monolayers and ex vivo on rat intestinal mucosa. PCP-Cys displayed 223 ± 13.8 μmol thiol groups per gram polymer. After 4h, 61% of the free oligonucleotides were degraded by DNase I and 80% within intestinal fluid. In contrast, less than 41% (DNase I) and 60% (intestinal fluid) were degraded in the presence of 0.02% (m/v) PCP-Cys. Permeation studies revealed an 8-fold (Caco-2) and 10-fold (intestinal mucosa) increase in apparent permeability compared to buffer control. Hence, this PCP-Cys/GSH system might be a promising tool for the oral administration of oligonucleotides as it allows a significant protection toward degrading enzymes and facilitates their transport across intestinal membranes.

  15. Quantitative estimation of insulin sensitivity in type 1 diabetic subjects wearing a sensor-augmented insulin pump.

    Science.gov (United States)

    Schiavon, Michele; Dalla Man, Chiara; Kudva, Yogish C; Basu, Ananda; Cobelli, Claudio

    2014-01-01

    The goal was to develop a new index of insulin sensitivity in patients with type 1 diabetes estimated from continuous glucose monitoring (CGM) and subcutaneous insulin delivery data under carefully controlled conditions. The database consists of 12 subjects with type 1 diabetes, studied during breakfast, lunch, and dinner, in a clinical research unit, wearing both subcutaneous insulin pump and CGM device. Frequent blood samples were drawn for measurements of plasma glucose and insulin concentrations in order to estimate insulin sensitivity with the oral minimal model (SI(MM)). The new index of insulin sensitivity (SI(SP)) was calculated with a simple algebraic formula for each meal, using only CGM and insulin pump data and compared with SI(MM). SI(SP) was well correlated with SI(MM) (r = 0.825; P insulin sensitivity in subjects with type 1 diabetes on sensor-augmented insulin pump therapy has been presented. This new index correlates well with the reference oral minimal model estimate of insulin sensitivity. The knowledge of patient-specific insulin sensitivity and its diurnal variation can help in optimizing insulin therapy in type 1 diabetes and could also inform next-generation closed-loop control systems.

  16. A randomised trial to evaluate preoperative oral carbohydrate administration on insulin resistance in off-pump coronary artery bypass patients.

    Science.gov (United States)

    Lee, Bora; Soh, Sarah; Shim, Jae-Kwang; Kim, Ha Y; Lee, Hyelin; Kwak, Young-Lan

    2017-04-21

    In fasting cardiac surgery patients, preoperative carbohydrate (CHO) drink intake attenuated insulin resistance and improved cardiac metabolism, although its beneficial effects were not evident after cardiac surgery possibly due to cardiopulmonary bypass-related extreme systemic inflammation. We aimed to evaluate whether preoperative CHO intake affected insulin resistance and free-fatty acid (FFA) concentrations in off-pump coronary revascularisation. A randomised controlled trial. Primary care in a university hospital in Korea from January 2015 to July 2016. Sixty patients who underwent elective multi-vessel off-pump coronary revascularisation were randomised into two groups. Three patients were excluded from analysis and 57 patients completed study. The CHO group received oral CHO (400 ml) the prior evening and 2 to 3 h before surgery, and the control group was fasted from food and water according to standard protocol. Insulin resistance was assessed twice, after anaesthetic induction and after surgery via short insulin tolerance test. FFA, C-reactive protein and creatine kinase-myocardial band concentrations were determined serially for 48 h after surgery. Insulin sensitivity was greater (P = 0.002) and plasma FFA concentrations were lower (P = 0.001) after anaesthetic induction in the CHO group compared with the Control group, although there were no intergroup differences after surgery. The postoperative peak creatine kinase-myocardial band concentration was significantly lower in the CHO group compared with the Control group [8.8 (5.4 to 18.2) vs. 6.4 (3.5 to 9.7) ng ml, P = 0.031]. A preoperative CHO supplement significantly reduced insulin resistance and FFA concentrations compared with fasting at the beginning of the surgery, but these benefits were lost after off-pump coronary revascularisation. Despite their transient nature, these beneficial effects resulted in less myocardial injury, mandating further studies focused on the impact

  17. Drug-polymer filled micro-containers for oral delivery loaded using supercritical CO2 aided-impregnation

    DEFF Research Database (Denmark)

    Marizza, Paolo; Keller, Stephan Sylvest; Rades, T.

    2013-01-01

    In this work we present an effective loading technique of micro-containers for oral drug delivery of a poorly water soluble drug in a solid dispersion with polymer. By combining inkjet printing and supercritical CO2 impregnation we load ketoprofen in a solid dispersion with poly...

  18. Development of an acid-resistant Salmonella Typhi Ty21a attenuated vector for improved oral vaccine delivery

    Science.gov (United States)

    The licensed oral, live-attenuated bacterial vaccine for typhoid fever, Salmonella Typhi strain Ty21a, has also been utilized as a vaccine delivery platform for expression of diverse foreign antigens that stimulate protection against shigellosis, anthrax, plague, or human papilloma virus. However, T...

  19. Synthesis and Characterization of PEG-scutellarin Conjugates, a Potential PEG Ester Prodrug for the Oral Delivery of Scutellarin

    Institute of Scientific and Technical Information of China (English)

    Qing Song ZHOU; Xue Hua JIANG; Jia Rui YU; Ke Jia LI

    2006-01-01

    Highly water soluble esters of scutellarin with variable molecular weight polyethylene glycol (PEG) were prepared via PEGylation. The physicochemical properties and the stabilities under different conditions were investigated. By PEG modification, the greatly increased water solubility and desirable partition coefficient of scutellarin were obtained, and the results showed that these conjugates were potential prodrugs for the oral delivery of scutellarin.

  20. Self-assembly of green tea catechin derivatives in nanoparticles for oral lycopene delivery.

    Science.gov (United States)

    Li, Weikun; Yalcin, Murat; Lin, Qishan; Ardawi, Mohammed-Salleh M; Mousa, Shaker A

    2017-02-28

    Lycopene is a natural anti-oxidant that has attracted much attention due to its varied applications such as protection against loss of bone mass, chronic diseases, skin cancer, prostate cancer, and cardiovascular disease. However, high instability and extremely low oral bioavailability limit its further clinical development. We selected a green tea catechin derivative, oligomerized (-)-epigallocatechin-3-O-gallate (OEGCG) as a carrier for oral lycopene delivery. Lycopene-loaded OEGCG nanoparticles (NPs) were prepared by a nano-precipitation method, followed by coating with chitosan to form a shell. This method not only can easily control the size of the NP to be around 200nm to improve its bioavailability, but also can effectively protect the lycopene against degradation due to EGCG's anti-oxidant property. OEGCG was carefully characterized with nuclear magnetic resonance spectroscopy and mass spectrometry. Lycopene-loaded polylactic-co-glycolic acid (PLGA) NPs were prepared by the same method. Chitosan-coated OEGCG/lycopene NPs had a diameter of 152±32nm and a ζ-potential of 58.3±4.2mv as characterized with transmission electron microscopy and dynamic light scattering. The loading capacity of lycopene was 9% and encapsulation efficiency was 89%. FT-IR spectral analysis revealed electrostatic interaction between OEGCG and chitosan. Freeze drying of the NPs was also evaluated as a means to improve shelf life. Dynamic light scattering data showed that no aggregation occurred, and the size of the NP increased 1.2 times (Sf/Si ratio) in the presence of 10% sucrose after freeze drying. The in vitro release study showed slow release of lycopene in simulated gastric fluid at acidic pH and faster release in simulated intestinal fluid. In an in vivo study in mice, lycopene pharmacokinetic parameters were improved by lycopene/OEGCG/chitosan NPs, but not improved by lycopene/PLGA/chitosan NPs. The self-assembled nanostructure of OEGCG combined with lycopene may be a

  1. SiRNA In Vivo-Targeted Delivery to Murine Dendritic Cells by Oral Administration of Recombinant Yeast.

    Science.gov (United States)

    Xu, Kun; Liu, Zhongtian; Zhang, Long; Zhang, Tingting; Zhang, Zhiying

    2016-01-01

    SiRNA therapeutics promise a future where any target in the transcriptome could be potentially addressed. However, the delivery of SiRNAs and targeting of particular cell types or organs are major challenges. A novel, efficient, and safe delivery system for promising the introduction of SiRNAs into particular cell types within living organisms is of great significance. Our previous studies have proved that recombinant protein (MSTN) and exogenous gene (EGFP) as vaccines, and furthermore functional CD40 shRNA expression can be delivered into dendritic cells (DCs) in mouse by oral administration of recombinant yeast (Saccharomyces cerevisiae). Here, we describe the details of the promising and innovative approach based on oral administration of recombinant yeast that allows in vivo-targeted delivery of functional SiRNA to murine intestinal DCs.

  2. Preparation and physicochemical characterization of supercritically dried insulin-loaded microparticles for pulmonary delivery

    NARCIS (Netherlands)

    Amidi, Maryam; Pellikaan, Hubert C.; de Boer, Anne H.; Crommelin, Daan J. A.; Hennink, Wim E.; Jiskoot, Wim

    In the search for non-invasive delivery options for the increasing number of therapeutic proteins, pulmonary administration is an attractive route. Supercritical fluid (SCF) drying processes offer the possibility to produce dry protein formulations suitable for inhalation. In this study,

  3. Oral Cholera Vaccination Delivery Cost in Low- and Middle-Income Countries: An Analysis Based on Systematic Review.

    Science.gov (United States)

    Mogasale, Vittal; Ramani, Enusa; Wee, Hyeseung; Kim, Jerome H

    2016-12-01

    Use of the oral cholera vaccine (OCV) is a vital short-term strategy to control cholera in endemic areas with poor water and sanitation infrastructure. Identifying, estimating, and categorizing the delivery costs of OCV campaigns are useful in analyzing cost-effectiveness, understanding vaccine affordability, and in planning and decision making by program managers and policy makers. To review and re-estimate oral cholera vaccination program costs and propose a new standardized categorization that can help in collation, analysis, and comparison of delivery costs across countries. Peer reviewed publications listed in PubMed database, Google Scholar and World Health Organization (WHO) websites and unpublished data from organizations involved in oral cholera vaccination. The publications and reports containing oral cholera vaccination delivery costs, conducted in low- and middle-income countries based on World Bank Classification. Limits are humans and publication date before December 31st, 2014. No participants are involved, only costs are collected. Oral cholera vaccination and cost estimation. A systematic review was conducted using pre-defined inclusion and exclusion criteria. Cost items were categorized into four main cost groups: vaccination program preparation, vaccine administration, adverse events following immunization and vaccine procurement; the first three groups constituting the vaccine delivery costs. The costs were re-estimated in 2014 US dollars (US$) and in international dollar (I$). Ten studies were identified and included in the analysis. The vaccine delivery costs ranged from US$0.36 to US$ 6.32 (in US$2014) which was equivalent to I$ 0.99 to I$ 16.81 (in I$2014). The vaccine procurement costs ranged from US$ 0.29 to US$ 29.70 (in US$2014), which was equivalent to I$ 0.72 to I$ 78.96 (in I$2014). The delivery costs in routine immunization systems were lowest from US$ 0.36 (in US$2014) equivalent to I$ 0.99 (in I$2014). The reported cost categories

  4. Glucose-sensitive gel rheology of dextran-concanavalin A mixtures suitable for self-regulating insulin delivery.

    Science.gov (United States)

    Taylor, M Joan; Tanna, Sangeeta; Sahota, Tarsem S

    2010-01-01

    Aqueous concentrated plain mixtures of dextran and concanavalin A (con A) were examined for their rheological response to glucose for comparison with previously studied partially photopolymerized acrylic derivatives. Non-destructive oscillatory tests were undertaken within the linear viscoelastic range to examine the relationship between the rheometry and the stoichiometry of the interactive materials and to examine rheological parameters as affected by molecular weight, component ratio, temperature and glucose concentrations between 0 and 1% w/w. These simple formulations were studied at 1 and 10 Hz at 0.5% strain at both 20 and 37 degrees C. A second simplified rheological test was undertaken to demonstrate gel-sol reversibility and to produce a measure of equilibria created between these gels and glucose solutions with which they are in contact. This mimics the conditions in which the gel acts as a responsive gateway in the insulin delivery device. It proved that the gels equilibrate with glucose solutions, rather than indiscriminately removing glucose. This is important in terms of producing a delivery device that can respond in a reversible, glucose concentration-dependent manner. The method used for this is capable of relative values only but provides information not obtainable from conventional rheometry.

  5. Administração oral de peptídios e proteínas: I. Estratégias gerais para aumento da biodisponibilidade oral Oral delivery system for peptides and proteins: I. Approaches to improve oral bioavailability

    Directory of Open Access Journals (Sweden)

    Catarina Silva

    2002-06-01

    Full Text Available Existem, atualmente, centenas de peptídios e proteínas com ação terapêutica. Os obstáculos inerentes à sua administração oral têm impulsionado a investigação de estratégias capazes de os ultrapassar. Nesta revisão são abordados estes dois aspectos. A microencapsulação, pela sua versatilidade, sobressai entre as demais estratégias, afirmando-se como escolha potencial na administração oral de fármacos peptídicos.There are hundreds of peptides and proteins clinically relevant. The difficulties associated with their oral administration have been responsible for the major efforts in developing ways to improve oral bioavailability. Both these subjects are described in this review. The potentiality of microencapsulation presents this technique as a privileged approach for the oral delivery of peptide and protein drugs.

  6. Limitations in the use of indices using glucose and insulin levels to predict insulin sensitivity: impact of race and gender and superiority of the indices derived from oral glucose tolerance test in African Americans.

    Science.gov (United States)

    Pisprasert, Veeradej; Ingram, Katherine H; Lopez-Davila, Maria F; Munoz, A Julian; Garvey, W Timothy

    2013-04-01

    OBJECTIVE To examine the utility of commonly used insulin sensitivity indices in nondiabetic European Americans (EAs) and African Americans (AAs). RESEARCH DESIGN AND METHODS Two-hundred forty nondiabetic participants were studied. Euglycemic-hyperinsulinemic clamp was the gold standard approach to assess glucose disposal rates (GDR) normalized by lean body mass. The homeostatic model assessment for insulin resistance (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI) were calculated from fasting plasma glucose and insulin (FIL). Oral glucose tolerance test (OGTT) was performed to determine Matsuda index, the simple index assessing insulin sensitivity (SI(is)OGTT), Avignon index, and Stomvoll index. Relationships among these indices with GDR were analyzed by multiple regression. RESULTS GDR values were similar in EA and AA subgroups; even so, AA exhibited higher FIL and were insulin-resistant compared with EA, as assessed by HOMA-IR, QUICKI, Matsuda index, SI(is)OGTT, Avignon index, and Stumvoll index. In the overall study population, GDR was significantly correlated with all studied insulin sensitivity indices (/r/ = 0.381-0.513); however, these indices were not superior to FIL in predicting GDR. Race and gender affected the strength of this relationship. In AA males, FIL and HOMA-IR were not correlated with GDR. In contrast, Matsuda index and SI(is)OGTT were significantly correlated with GDR in AA males, and Matsuda index was superior to HOMA-IR and QUICKI in AAs overall. CONCLUSIONS Insulin sensitivity indices based on glucose and insulin levels should be used cautiously as measures of peripheral insulin sensitivity when comparing mixed gender and mixed race populations. Matsuda index and SI(is)OGTT are reliable in studies that include AA males.

  7. Latent autoimmune diabetes of adults: From oral hypoglycemic agents to early insulin

    Directory of Open Access Journals (Sweden)

    Resham R Poudel

    2012-01-01

    Full Text Available Approximately 10% of phenotypic type 2 diabetics have islet autoantibodies and are referred to as having latent autoimmune diabetes of adults (LADA, and they land on early sulfonylurea failure and require insulin. Diagnosing LADA has treatment implications because of high risk of progression to insulin dependency. But often there is delay in insulin therapy, as there are no recommendations for islet antibody testing in adult-onset diabetes currently. LADA clinical risk score can identify adults at high risk who may benefit from antibody testing. The optimal treatment of LADA is not established. Early insulin therapy helps to achieve good metabolic control and better long-term outcomes by preserving b-cells and endogenous C-peptide secretion. Sulfonylureas are better avoided as they exhaust b-cells; glitazones and exenatide have favorable outcomes, whereas metformin needs to be used with caution. Understanding LADA will also bring new windows in managing type 1 diabetes. Information acquisition was done by reviewing the medical literature published since 1987, with particular attention to the natural history, genetic factors, and treatment of LADA.

  8. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake.

    Science.gov (United States)

    Cho, Hyun-Jong; Park, Jin Woo; Yoon, In-Soo; Kim, Dae-Duk

    2014-01-01

    Docetaxel is a potent anticancer drug, but development of an oral formulation has been hindered mainly due to its poor oral bioavailability. In this study, solid lipid nanoparticles (SLNs) surface-modified by Tween 80 or D-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS 1000) were prepared and evaluated in terms of their feasibility as oral delivery systems for docetaxel. Tween 80-emulsified and TPGS 1000-emulsified tristearin-based lipidic nanoparticles were prepared by a solvent-diffusion method, and their particle size distribution, zeta potential, drug loading, and particle morphology were characterized. An in vitro release study showed a sustained-release profile of docetaxel from the SLNs compared with an intravenous docetaxel formulation (Taxotere®). Tween 80-emulsified SLNs showed enhanced intestinal absorption, lymphatic uptake, and relative oral bioavailability of docetaxel compared with Taxotere in rats. These results may be attributable to the absorption-enhancing effects of the tristearin nanoparticle. Moreover, compared with Tween 80-emulsified SLNs, the intestinal absorption and relative oral bioavailability of docetaxel in rats were further improved in TPGS 1000-emulsified SLNs, probably due to better inhibition of drug efflux by TPGS 1000, along with intestinal lymphatic uptake. Taken together, it is worth noting that these surface-modified SLNs may serve as efficient oral delivery systems for docetaxel.

  9. FETAL FIBRONECTIN AND PHOSPHORILATED INSULIN- LIKE GROWTH FACTOR BINDING PROTEIN-1 AS PREDICTORS OF SPONTANEUS PRETERM DELIVERY

    Directory of Open Access Journals (Sweden)

    Marija Hadži-Lega

    2014-09-01

    Full Text Available The aim of the paper was to assess the combined use of cervical length, fetal fibronectin and cervical phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1 in the prediction of preterm delivery in symptomatic women in the following 14 days. Cervical length was prospectively measured in 58 consecutive singleton pregnancies with intact membranes and regular contractions at 24–36 weeks; fetal fibronectin and phIGFBP-1 were also assessed. Demographic data was evaluated (history of previous preterm delivery, history of spontaneous abortion, parity, BMI, maternal age, Islamic or Orthodox religion. Values of all variables were evaluated (demographic data, cervical length and values of phIGFBP1 and fetal fibronectin alone and in combination with cervical length of ≤ 15mm and more than 15 mm. PhIGFPB was positive in 30 patients (22 of them gave birth in 14 days. In women with cervical length less than 15 mm phIGFBP-1, it was positive in 9 pregnant women who were delivered in 14 days. In women with cervical length less than 25 mm phIGFBP-1 was positive in 26 patients (2 of them gave birth in 14 days. In patients with cervical length more than 25 mm phIGFBP-1 was positive in 4 patients (2 of them gave birth in 14 days. Using logistic regression we confirmed that with OR 0.117 and CI 95% (0.046-0.295 and p<0.01 odds for preterm birth among patients with negative test results, phIGFBP-1 was by 0.117 lower than the odds for preterm birth among patients with positive test results. Using the same test, we confirmed that with OR=14,722 (CI 95% 5.27-41.1, (p<0.01 cervical length less than 25 mm was a good predictor of preterm delivery in symptomatic patients. Probability for delivery in the following 14 days in patients with positive phIGFBP-1 and cervical length≤15 mm is 0.88 or probability for not delivering in those patients is 0.12. Eighty-eight percents of patients with positive phIGFBP-1 and cervical length ≤15 mm will give birth

  10. Self-assembled nanoparticles based on amphiphilic chitosan derivative and arginine for oral curcumin delivery

    Directory of Open Access Journals (Sweden)

    Raja MA

    2016-09-01

    compared with free Cur. Furthermore, the in vivo pharmacokinetic results in rats demonstrated that the AN–CS–Arg/Cur NPs could remarkably improve the oral bioavailability of Cur. Therefore, the developed AN–CS–Arg/Cur NPs might be a promising nano-candidate for oral delivery of Cur. Keywords: curcumin, self-assembled, nanoparticles, cytotoxicity, cell uptake studies, oral bioavailability

  11. New perspectives on lipid and surfactant based drug delivery systems for oral delivery of poorly soluble drugs

    DEFF Research Database (Denmark)

    Müllertz, Anette; Ogbonna, Anayo; Ren, Shan

    2010-01-01

    The aim of this review is to highlight relevant considerations when implementing a rational strategy for the development of lipid and surfactant based drug delivery system and to discuss shortcomings and challenges to the current classification of these delivery systems. We also aim to offer...

  12. Safety and Efficacy of 24-h Closed-Loop Insulin Delivery in Well-Controlled Pregnant Women With Type 1 Diabetes

    Science.gov (United States)

    Murphy, Helen R.; Kumareswaran, Kavita; Elleri, Daniela; Allen, Janet M.; Caldwell, Karen; Biagioni, Martina; Simmons, David; Dunger, David B.; Nodale, Marianna; Wilinska, Malgorzata E.; Amiel, Stephanie A.; Hovorka, Roman

    2011-01-01

    OBJECTIVE To evaluate the safety and efficacy of closed-loop insulin delivery in well-controlled pregnant women with type 1 diabetes treated with continuous subcutaneous insulin infusion (CSII). RESEARCH DESIGN AND METHODS A total of 12 women with type 1 diabetes (aged 32.9 years, diabetes duration 17.6 years, BMI 27.1 kg/m2, and HbA1c 6.4%) were randomly allocated to closed-loop or conventional CSII. They performed normal daily activities (standardized meals, snacks, and exercise) for 24 h on two occasions at 19 and 23 weeks’ gestation. Plasma glucose time in target (63–140 mg/dL) and time spent hypoglycemic were calculated. RESULTS Plasma glucose time in target was comparable for closed-loop and conventional CSII (median [interquartile range]: 81 [59–87] vs. 81% [54–90]; P = 0.75). Less time was spent hypoglycemic (<45 mg/dL [0.0 vs. 0.3%]; P = 0.04), with a lower low blood glucose index (2.4 [0.9–3.5] vs. 3.3 [1.9–5.1]; P = 0.03), during closed-loop insulin delivery. CONCLUSIONS Closed-loop insulin delivery was as effective as conventional CSII, with less time spent in extreme hypoglycemia. PMID:22011408

  13. Preserved glucagon-like peptide-1 responses to oral glucose, but reduced incretin effect, insulin secretion and sensitivity in young Asians with type 2 diabetes mellitus

    Science.gov (United States)

    Yeow, Toh Peng; Pacini, Giovanni; Tura, Andrea; Lim, Shueh Lin; Tan, Florence Hui Sieng; Tong, Chin Voon; Hong, Janet Yeow Hua; Md Zain, Fuziah; Holst, Jens Juul; Wan Mohamud, Wan Nazaimoon

    2017-01-01

    Objective Youth onset type 2 diabetes mellitus (YT2DM) is a globally rising phenomenon with substantial Asians representation. The understanding of its pathophysiology is derived largely from studies in the obese African-American and Caucasian populations, while studies on incretin effect are scarce. We examined the insulin resistance, β-cell function (BC), glucagon-like peptide (GLP)-1 hormone and incretin effect in Asian YT2DM. Research design and methods This case–control study recruited 25 Asian YT2DM and 15 healthy controls, matched for gender, ethnicity and body mass index. Serum glucose, insulin, C peptide and GLP-1 were sampled during 2-hour oral glucose tolerance tests (OGTTs) and 1-hour intravenous glucose tolerance tests (IVGTTs). Insulin sensitivity was derived from the Quantitative Insulin Sensitivity Check Index (QUICKI), Oral Glucose Insulin Sensitivity Index (OGIS) in OGTT and surrogate index of SI from the minimal model (calculated SI, CSI). Acute insulin response (AIR) was obtained from IVGTT. Total BC was computed as incremental area under the curve of insulin/incremental area under the curve of glucose, during OGTT (BCOG) and IVGTT (BCIV), respectively. Disposition index (DI) was calculated using the product of insulin sensitivity and insulin secretion. GLP-1 response to oral glucose was calculated as incremental area under the curve of GLP-1 (ΔAUCGLP-1). Per cent incretin effect was estimated as 100×(BCOG−BCIV)/BCOG). Results The YT2DM had marked impairment in BC (>80% reduction in AIR and BCOG, p<0.001) and lower QUICKI (p<0.001), OGIS (p<0.001) and CSI (p=0.015) compared with controls. There was no difference in GLP-1 at all time points and ΔAUCGLP-1 but the per cent incretin effect was reduced in the YT2DM compared with controls (12.1±8.93 vs 70.0±4.03, p<0.001). Conclusions Asian YT2DM showed similar GLP-1 response to oral glucose as controls but reduced incretin effect, BC and insulin sensitivity. The lack of compensatory

  14. Development of enteric submicron particle formulation of papain for oral delivery

    Directory of Open Access Journals (Sweden)

    Sharma M

    2011-09-01

    Full Text Available Manu Sharma1, Vinay Sharma2, Amulya K Panda3, Dipak K Majumdar41Department of Pharmacy, Banasthali Vidhyapith, Banasthali, India; 2Department of Bioscience and Biotechnology, Banasthali Vidhyapith, Banasthali, India; 3National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India; 4Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, University of Delhi, New Delhi, IndiaBackground: Particulate systems have received increasing attention for oral delivery of biomolecules. The objective of the present study was to prepare submicron particulate formulations of papain for pH-dependent site-specific release using pH-sensitive polymers.Methods: Enteric submicron particle formulations of papain were prepared by w/o/w emulsion solvent evaporation using hydroxypropyl methylcellulose phthalate (HPMCP, Eudragit L100, and Eudragit S100, to avoid gastric inactivation of papain.Results: Smaller internal and external aqueous phase volumes provided maximum encapsulation efficiency (75.58%–82.35%, the smallest particle size (665.6–692.4 nm, and 25%–30% loss of enzyme activity. Release studies in 0.1 N HCl confirmed the gastroresistance of the formulations. The anionic submicron particles aggregated in 0.1 N HCl (ie, gastric pH 1.2 due to protonation of carboxylic groups in the enteric polymer. Aggregates < 500 µm size would not impede gastric emptying. However, at pH > 5.0 (duodenal pH, the submicron particles showed deaggregation due to restoration of surface charge. HPMCP submicron particles facilitated almost complete release of papain within 30 minutes at pH 6.0, while Eudragit L100 and Eudragit S100 particles released 88.82% and 53.00% of papain at pH 6.8 and pH 7.4, respectively, according to the Korsmeyer–Peppas equation. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and fluorescence spectroscopy confirmed that the structural integrity of the enzyme was maintained during encapsulation. Fourier

  15. Chitosan–Pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study

    Directory of Open Access Journals (Sweden)

    Ostad SN

    2012-04-01

    Full Text Available Hosniyeh Hosseinzadeh1, Fatemeh Atyabi1, Rassoul Dinarvand1, Seyed Naser Ostad21Nanotechnology Research Centre, 2Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IranAbstract: Nanoparticles have proven to be an effective delivery system with few side effects for anticancer drugs. In this study, gemcitabine-loaded nanoparticles have been prepared by an ionic gelation method using chitosan and Pluronic® F-127 as a carrier. Prepared nanoparticles were characterized using dynamic light scattering, Fourier transform infrared spectroscopy (FT-IR, differential scanning calorimetry (DSC, scanning electron microscopy, and transmission electron microscopy. Different parameters such as concentration of sodium tripolyphosphate, chitosan, Pluronic, and drug on the properties of the prepared nanoparticles were evaluated. In vitro drug release was studied in phosphate-buffered saline (PBS; pH = 7.4. The cytotoxicity of the nanoparticles was assayed in the HT-29 colon cancer cell line. The mucoadhesion behavior of the nanoparticles was also studied by mucus glycoprotein assay. The prepared nanoparticles had a spherical shape with positive charge and a mean diameter ranging between 80 to 170 nm. FT-IR and DSC studies found that the drug was dispersed in its amorphous form due to its potent interaction with nanoparticle matrix. Maximum drug encapsulation efficiency was achieved at 0.4 mg/mL gemcitabine while maximum drug loading was 6% obtained from 0.6 mg/mL gemcitabine. An in vitro drug release study at 37°C in PBS (pH = 7.4 exhibited a controlled release profile for chitosan–Pluronic® F-127 nanoparticles. A cytotoxicity assay of gemcitabine-loaded nanoparticles showed an increase in the cytotoxicity of gemcitabine embedded in the nanoparticles in comparison with drug alone. The mucoadhesion study results suggest that nanoparticles could be considered as an efficient oral formulation for colon

  16. Engineered chylomicron mimicking carrier emulsome for lymph targeted oral delivery of methotrexate.

    Science.gov (United States)

    Paliwal, Rishi; Paliwal, Shivani Rai; Mishra, Neeraj; Mehta, Abhinav; Vyas, Suresh P

    2009-10-01

    The aim of the present study was to develop chylomicron mimicking carrier emulsome for oral lymphatic delivery of methotrexate (MTX), an anticancer drug. The compritol 888 ATO (CA) was used as lipid core and soya lecithin (PC) as stabilizer. The optimized emulsome (1:1.2 mole ratio of CA:PC) showed mean particle size of 160.3+/-10.2 nm and with 72.8+/-6.5% drug entrapment efficiency. The differential scanning calorimetric studies revealed a depression in endothermic onset for MTX loaded emulsome. The rapid burst release of the drug was observed in simulated gastric fluid (SGF pH 1.2) with significant increase in particle size of emulsome. However in simulated intestinal fluid (SIF, pH 7.4) a slow and consistent release of the drug was obtained over period of 24 h. Storage stability studies were performed at different temperatures (4+/-1 and 25+/-1 degrees C) for 3 months which suggested that EML remain more stable when stored at refrigerated condition. The in vivo studies were carried out on albino rats and response was estimated collecting blood and lymph both. The pharmacokinetic parameters C(max), t(max) and AUC(0-->12h) after duodenal administration of optimized emulsomal formulation and plain MTX solution were 7.1 and 2.4 microg/mL, 4 and 1 h, 40.45 and 7.2 h microg/mL respectively. The relative bioavailability of MTX was enhanced nearly 5.7 times with optimized EML formulation when compared to plain MTX solution with higher uptake and longer residence time of MTX molecules in lymphatics. Thus, emulsome could be used as lymphotropic carrier for delivery of bioactive(s) and hence for bioavailability enhancement.

  17. Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery

    Directory of Open Access Journals (Sweden)

    Bhandari J

    2017-03-01

    Full Text Available Jyoti Bhandari,1 Harshita Mishra,1 Pawan Kumar Mishra,2 Rupert Wimmer,2,3 Farhan J Ahmad,1 Sushama Talegaonkar1 1Department of Pharmaceutics, Jamia Hamdard, New Delhi, India; 2Department of Wood Science, Mendel University in Brno, Brno, Czech Republic; 3Institute for Natural Materials Technology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Austria Abstract: Cellulose nanofiber (CNF aerogels with favorable floatability and mucoadhesive properties prepared by the freeze-drying method have been introduced as new possible carriers for oral controlled drug delivery system. Bendamustine hydrochloride is considered as the model drug. Drug loading was carried out by the physical adsorption method, and optimization of drug-loaded formulation was done using central composite design. A very lightweight-aerogel-with-matrix system was produced with drug loading of 18.98%±1.57%. The produced aerogel was characterized for morphology, tensile strength, swelling tendency in media with different pH values, floating behavior, mucoadhesive detachment force and drug release profiles under different pH conditions. The results showed that the type of matrix was porous and woven with excellent mechanical properties. The drug release was assessed by dialysis, which was fitted with suitable mathematical models. Approximately 69.205%±2.5% of the drug was released in 24 hours in medium of pH 1.2, whereas ~78%±2.28% of drug was released in medium of pH 7.4, with floating behavior for ~7.5 hours. The results of in vivo study showed a 3.25-fold increase in bioavailability. Thus, we concluded that CNF aerogels offer a great possibility for a gastroretentive drug delivery system with improved bioavailability. Keywords: cellulose nanofiber, aerogel, controlled release, gastroretentive, floating behavior, swelling behavior, mucoadhesion, bioavailability

  18. Second generation lipid nanoparticles (NLC) as an oral drug carrier for delivery of lercanidipine hydrochloride.

    Science.gov (United States)

    Ranpise, Nisharani S; Korabu, Swati S; Ghodake, Vinod N

    2014-04-01

    Lercanidipine hydrochloride is a calcium channel blocker used in the treatment of hypertension. It is a poor water soluble drug with absolute bioavailability of 10%. The aim of this study was to design lercanidipine hydrochloride-loaded nanostructured lipid carriers to investigate whether the bioavailability of the same can be improved by oral delivery. Lercanidipine hydrochloride nanostructured lipid carriers were prepared by the method of solvent evaporation at a high temperature and solidification by freeze drying. The nanostructured lipid carriers were evaluated for particle size analysis, zeta potential, entrapment efficiency, in vitro drug diffusion, ex vivo permeation studies and pharmacodynamic study. The resultant nanostructured lipid carriers had a mean size of 214.97 nm and a zeta potential of -31.6 ± 1.5 mV. More than 70% lercanidipine hydrochloride was entrapped in the NLCs. The SEM studies indicated the formation of type 2 nanostructured lipid carriers. The in vitro release studies demonstrated 19.36% release in acidic buffer pH 1.2 indicating that the drug entrapped in the nanostructured lipid carriers remains entrapped at acidic pH. The ex vivo studies indicated that the drug release was enhanced from 10% to 60.54% at blood pH in 24h. The in vivo pharmacodynamic study showed that NLCs released lercanidipine hydrochloride in a controlled manner for a prolonged period of time as compared to plain drug. These results clearly indicate that nanostructured lipid carriers are a potential controlled release formulation for lercanidipine hydrochloride and may be a promising drug delivery system for the treatment of hypertension. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Dressing liposomal particles with chitosan and poly(vinylic alcohol) for oral vaccine delivery.

    Science.gov (United States)

    Rescia, Vanessa C; Takata, Célia S; de Araujo, Pedro S; Bueno da Costa, Maria H

    2011-03-01

    Liposomes have been used as adjuvants since 1974. One major limitation for the use of liposomes in oral vaccines is the lipid structure instability caused by enzyme activities. Our aim was to combine liposomes that could encapsulate antigens (i.e., Dtxd, diphtheria toxoid) with chitosan, which protects the particles and promotes mucoadhesibility. We employed physical techniques to understand the process by which liposomes (SPC: Cho, 3:1) can be sandwiched with chitosan (Chi) and stabilized by PVA (poly-vinylic alcohol), which are biodegradable, biocompatible polymers. Round, smooth-surfaced particles of REVs-Chi (reversed-phase vesicles sandwiched by Chi) stabilized by PVA were obtained. The REVs encapsulation efficiencies (Dtxd was used as the antigen) were directly dependent on the Chi and PVA present in the formulation. Chi adsorption on the REVs surface was accompanied by an increase of ζ-potential. In contrast, PVA adsorption on the REVs-Chi surface was accompanied by a decrease of ζ-potential. The presence of Dtxd increased the Chi surface-adsorption efficiency. The PVA affinity by mucine was 2,000 times higher than that observed with Chi alone and did not depend on the molecule being in solution or adsorbed on the liposomal surface. The liberation of encapsulated Dtxd was retarded by encapsulation within REVs-Chi-PVA. These results lead us to conclude that these new, stabilized particles were able to be adsorbed by intestinal surfaces, resisted degradation, and controlled antigen release. Therefore, REVs-Chi-PVA particles can be used as an oral delivery adjuvant.

  20. Modified-chitosan nanoparticles: Novel drug delivery systems improve oral bioavailability of doxorubicin.

    Science.gov (United States)

    Khdair, Ayman; Hamad, Islam; Alkhatib, Hatim; Bustanji, Yasser; Mohammad, Mohammad; Tayem, Rabab; Aiedeh, Khaled

    2016-10-10

    The efficacy of most anticancer drugs is highly limited in vivo due mainly to poor pharmacokinetics behavior including poor bioavailability after extravascular administration. We have developed novel chitosan-modified polymeric nanoparticles for oral as well as i.v. administration. Nanoparticles were developed utilizing the double emulsion solvent evaporation technique for sustained delivery of various anticancer drugs. Chitosan diacetate (CDA) and chitosan triacetate (CTA) polymers were previously modified in our laboratory and used as novel matrix. Nanoparticles, loaded with various anticancer drugs, were characterized for particle size using dynamic light scattering as well as transmission electron microscopy and net surface charge using dynamic light scattering. Particles size was below 100nm in diameter and zeta potential ranged - (25-30). Encapsulation efficiency of anticancer drugs varied considerably and was dependent on the physicochemical characteristics of the encapsulated drug. However, chitosan triacetate nanoparticles showed relatively higher encapsulation efficiency than chitosan diacetate nanoparticles. In vitro release of encapsulated drugs was sustained over a period of 14days. Nanoparticles enhanced cellular accumulation of encapsulated drugs, compared to the free drugs, in vitro in MCF-7 and Caco-II tumor cell lines. In conclusion, diacetate and triacetate chitosan are novel polymers that can be used to formulate nanoparticles which efficiently encapsulated anticancer drugs, and sustained the release and enhanced tumor cellular uptake of these drugs. Further, chitosan triacetate nanoparticles enhanced oral bioavailability of doxorubicin. CDA and CTA nanoparticles can be used to efficiently deliver anticancer drugs and improve their in vivo profile. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Oral Delivery of a Synthetic Sterol Reduces Axonopathy and Inflammation in a Rodent Model of Glaucoma

    Science.gov (United States)

    Lambert, Wendi S.; Carlson, Brian J.; Formichella, Cathryn R.; Sappington, Rebecca M.; Ahlem, Clarence; Calkins, David J.

    2017-01-01

    Glaucoma is a group of optic neuropathies associated with aging and sensitivity to intraocular pressure (IOP). The disease is the leading cause of irreversible blindness worldwide. Early progression in glaucoma involves dysfunction of retinal ganglion cell (RGC) axons, which comprise the optic nerve. Deficits in anterograde transport along RGC axons to central visual structures precede outright degeneration, and preventing these deficits is efficacious at abating subsequent progression. HE3286 is a synthetic sterol derivative that has shown therapeutic promise in models of inflammatory disease and neurodegenerative disease. We examined the efficacy of HE3286 oral delivery in preventing loss of anterograde transport in an inducible model of glaucoma (microbead occlusion). Adult rats received HE3286 (20 or 100 mg/kg) or vehicle daily via oral gavage for 4 weeks. Microbead occlusion elevated IOP ~30% in all treatment groups, and elevation was not affected by HE3286 treatment. In the vehicle group, elevated IOP reduced anterograde axonal transport to the superior colliculus, the most distal site in the optic projection, by 43% (p = 0.003); HE3286 (100 mg/kg) prevented this reduction (p = 0.025). HE3286 increased brain-derived neurotrophic factor (BDNF) in the optic nerve head and retina, while decreasing inflammatory and pathogenic proteins associated with elevated IOP compared to vehicle treatment. Treatment with HE3286 also increased nuclear localization of the transcription factor NFκB in collicular and retinal neurons, but decreased NFκB in glial nuclei in the optic nerve head. Thus, HE3286 may have a neuroprotective influence in glaucoma, as well as other chronic neurodegenerations. PMID:28223915

  2. In vivo evaluation of a conjugated poly(lactide-ethylene glycol nanoparticle depot formulation for prolonged insulin delivery in the diabetic rabbit model

    Directory of Open Access Journals (Sweden)

    Tomar L

    2013-02-01

    Full Text Available Lomas Tomar,1,2 Charu Tyagi,1,3 Manoj Kumar,2 Pradeep Kumar,1 Harpal Singh,2 Yahya E Choonara,1 Viness Pillay11University of the Witwatersrand, Faculty of Health Sciences, Department of Pharmacy and Pharmacology, Johannesburg, Gauteng, South Africa; 2Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, India; 3VSPG College, Chaudhary Charan Singh University, Meerut, IndiaAbstract: Poly(ethylene glycol (PEG and polylactic acid (PLA-based copolymeric nanoparticles were synthesized and investigated as a carrier for prolonged delivery of insulin via the parenteral route. Insulin loading was simultaneously achieved with particle synthesis using a double emulsion solvent evaporation technique, and the effect of varied PEG chain lengths on particle size and insulin loading efficiency was determined. The synthesized copolymer and nanoparticles were analyzed by standard polymer characterization techniques of gel permeation chromatography, dynamic light scattering, nuclear magnetic resonance, and transmission electron microscopy. In vitro insulin release studies performed under simulated conditions provided a near zero-order release pattern up to 10 days. In vivo animal studies were undertaken with varied insulin loads of nanoparticles administered subcutaneously to fed diabetic rabbits and, of all doses administered, nanoparticles containing 50 IU of insulin load per kg body weight controlled the blood glucose level within the physiologically normal range of 90–140 mg/dL, and had a prolonged effect for more than 7 days. Histopathological evaluation of tissue samples from the site of injection showed no signs of inflammation or aggregation, and established the nontoxic nature of the prepared copolymeric nanoparticles. Further, the reaction profiles for PLA-COOH and NH2-PEGDA-NH2 were elucidated using molecular mechanics energy relationships in vacuum and in a solvated system by exploring the spatial disposition of various

  3. Comparative study of chitosan- and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids

    Energy Technology Data Exchange (ETDEWEB)

    Durán-Lobato, Matilde; Martín-Banderas, Lucía, E-mail: luciamartin@us.es [Universidad de Sevilla, Departmento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia (España) (Spain); Gonçalves, Lídia M. D. [Universidade de Lisboa, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade de Farmácia (Portugal); Fernández-Arévalo, Mercedes [Universidad de Sevilla, Departmento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia (España) (Spain); Almeida, Antonio J. [Universidade de Lisboa, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade de Farmácia (Portugal)

    2015-02-15

    The cannabinoid derivative 1-naphthalenyl[4-(pentyloxy)-1-naphthalenyl]methanone (CB13) has an important therapeutic potential as analgesic in chronic pain states that respond poorly to conventional drugs. However, the incidence of its mild-to-moderate and dose-dependent adverse effects, as well as its pharmacokinetic profile, actually holds back its use in humans. Thus, the use of a suitable carrier system for oral delivery of CB13 becomes an attractive strategy to develop a valuable therapy. Polymeric poly(lactic-co-glycolic) acid (PLGA) and lipid nanoparticles (LNPs) are widely studied delivery vehicles that improve the bioavailability of lipophilic compounds and present special interest in oral delivery. Their surface can be modified to improve the adhesion of particles to the oral mucosa and increase their circulation time in blood with additives such as chitosan (CS) and polyethylene glycol (PEG), which can be feasibly incorporated onto these particles in a post-production step. In this work, CS- and PEG-modified polymeric PLGA and LNPs were successfully obtained and comparatively evaluated under the same experimental conditions as oral carriers for CB13. All the formulations presented adequate blood compatibility and absence of cytotoxicity in Caco-2 cells. Coating with CS led to a higher interaction with Caco-2 cells and a limited uptake in THP1 cells, while coating with PEG led to a limited uptake in Caco-2 cells and strongly prevented THP1 cells uptake. The performance of each formulation is discussed as a comparison of the potential of these carriers as oral delivery systems of CB13.

  4. The minor C-allele of rs2014355 in ACADS is associated with reduced insulin release following an oral glucose load

    Directory of Open Access Journals (Sweden)

    Pisinger Charlotta

    2011-01-01

    Full Text Available Abstract Background A genome-wide association study (GWAS using metabolite concentrations as proxies for enzymatic activity, suggested that two variants: rs2014355 in the gene encoding short-chain acyl-coenzyme A dehydrogenase (ACADS and rs11161510 in the gene encoding medium-chain acyl-coenzyme A dehydrogenase (ACADM impair fatty acid β-oxidation. Chronic exposure to fatty acids due to an impaired β-oxidation may down-regulate the glucose-stimulated insulin release and result in an increased risk of type 2 diabetes (T2D. We aimed to investigate whether the two variants associate with altered insulin release following an oral glucose load or with T2D. Methods The variants were genotyped using KASPar® PCR SNP genotyping system and investigated for associations with estimates of insulin release and insulin sensitivity following an oral glucose tolerance test (OGTT in a random sample of middle-aged Danish individuals (nACADS = 4,324; nACADM = 4,337. The T2D-case-control study involved a total of ~8,300 Danish individuals (nACADS = 8,313; nACADM = 8,344. Results In glucose-tolerant individuals the minor C-allele of rs2014355 of ACADS associated with reduced measures of serum insulin at 30 min following an oral glucose load (per allele effect (β = -3.8% (-6.3%;-1.3%, P = 0.003, reduced incremental area under the insulin curve (β = -3.6% (-6.3%;-0.9%, P = 0.009, reduced acute insulin response (β = -2.2% (-4.2%;0.2%, P = 0.03, and with increased insulin sensitivity ISIMatsuda (β = 2.9% (0.5%;5.2%, P = 0.02. The C-allele did not associate with two other measures of insulin sensitivity or with a derived disposition index. The C-allele was not associated with T2D in the case-control analysis (OR 1.07, 95% CI 0.96-1.18, P = 0.21. rs11161510 of ACADM did not associate with any indices of glucose-stimulated insulin release or with T2D. Conclusions In glucose-tolerant individuals the minor C-allele of rs2014355 of ACADS was associated with reduced

  5. The type 2 diabetes associated minor allele of rs2237895 KCNQ1 associates with reduced insulin release following an oral glucose load.

    Directory of Open Access Journals (Sweden)

    Johan Holmkvist

    Full Text Available BACKGROUND: Polymorphisms in the potassium channel, voltage-gated, KQT-like subfamily, member 1 (KCNQ1 have recently been reported to associate with type 2 diabetes. The primary aim of the present study was to investigate the putative impact of these KCNQ1 polymorphisms (rs2283228, rs2237892, rs2237895, and rs2237897 on estimates of glucose stimulated insulin release. METHODOLOGY/PRINCIPAL FINDINGS: Genotypes were examined for associations with serum insulin levels following an oral glucose tolerance test (OGTT in a population-based sample of 6,039 middle-aged and treatment-naïve individuals. Insulin release indices estimated from the OGTT and the interplay between insulin sensitivity and insulin release were investigated using linear regression and Hotelling T2 analyses. Applying an additive genetic model the minor C-allele of rs2237895 was associated with reduced serum insulin levels 30 min (mean+/-SD: (CC 277+/-160 vs. (AC 280+/-164 vs. (AA 299+/-200 pmol/l, p = 0.008 after an oral glucose load, insulinogenic index (29.6+/-17.4 vs. 30.2+/-18.7vs. 32.2+/-22.1, p = 0.007, incremental area under the insulin curve (20,477+/-12,491 vs. 20,503+/-12,386 vs. 21,810+/-14,685, p = 0.02 among the 4,568 individuals who were glucose tolerant. Adjustment for the degree of insulin sensitivity had no effect on the measures of reduced insulin release. The rs2237895 genotype had a similar impact in the total sample of treatment-naïve individuals. No association with measures of insulin release were identified for the less common diabetes risk alleles of rs2237892, rs2237897, or rs2283228. CONCLUSION: The minor C-allele of rs2237895 of KCNQ1, which has a prevalence of about 42% among Caucasians was associated with reduced measures of insulin release following an oral glucose load suggesting that the increased risk of type 2 diabetes, previously reported for this variant, likely is mediated through an impaired beta cell function.

  6. Association of oral contraceptive and metformin did not improve insulin resistance in women with polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Margareth Chiharu Iwata

    2015-06-01

    Full Text Available Summary Objective: Objective: to compare clinical and laboratory parameters in women with polycystic ovary syndrome (PCOS using metformin or combined oral contraceptive (COC after 6 months. Methods: retrospective study analyzing records of patients with PCOS using the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS Society criteria. The groups were: I-COC (21 tablets, pause of 7 days; n=16; II-metformin (850mg 12/12h, n=16; III-COC plus metformin (n=9. Body mass index (BMI, acne (% of improvement, modified Ferriman-Gallway index and menstrual cycle index (MCI, luteinizing hormone (LH, follicle-stimulating hormone (FSH, total testosterone (TT, androstenedione (A and homeostasis model assessment: insulin resistance (HOMA-IR index were assessed Results: isolated use of COC compared to metformin was better regarding to acne, Ferriman index, MCI, LH, TT and A levels. On the other hand, metformin was better in the HOMA-IR index (4.44 and 1.67 respectively, p=0.0007. The association COC plus metformin, compared to metformin alone shows the maintenance of improvement of acne, Ferriman index, MCI, and testosterone levels. The HOMA-IR index remained lower in the metformin alone group (4.19 and 1.67, respectively; p=0,046. The comparison between COC plus metformin and COC alone, in turn, shows no difference in the improvement of acne, Ferriman index, MCI, LH, TT and A levels, indicating that the inclusion of metformin did not lead to additional benefits in these parameters. Still, the HOMA-IR index was similar in both groups (4.19 and 4.44 respectively; p=0.75, showing that the use of metformin associated with COC may not improve insulin resistance as much as it does if used alone. Conclusion: our data suggest that the combination of metformin and contraceptive does not improve insulin resistance as observed with metformin alone.

  7. Transient B-cell depletion with anti-CD20 in combination with proinsulin DNA vaccine or oral insulin: immunologic effects and efficacy in NOD mice.

    Directory of Open Access Journals (Sweden)

    Ghanashyam Sarikonda

    Full Text Available A recent type 1 diabetes (T1D clinical trial of rituximab (a B cell-depleting anti-CD20 antibody achieved some therapeutic benefit in preserving C-peptide for a period of approximately nine months in patients with recently diagnosed diabetes. Our previous data in the NOD mouse demonstrated that co-administration of antigen (insulin with anti-CD3 antibody (a T cell-directed immunomodulator offers better protection than either entity alone, indicating that novel combination therapies that include a T1D-related autoantigen are possible. To accelerate the identification and development of novel combination therapies that can be advanced into the clinic, we have evaluated the combination of a mouse anti-CD20 antibody with either oral insulin or a proinsulin-expressing DNA vaccine. Anti-CD20 alone, given once or on 4 consecutive days, produced transient B cell depletion but did not prevent or reverse T1D in the NOD mouse. Oral insulin alone (twice weekly for 6 weeks was also ineffective, while proinsulin DNA (weekly for up to 12 weeks showed a trend toward modest efficacy. Combination of anti-CD20 with oral insulin was ineffective in reversing diabetes in NOD mice whose glycemia was controlled with SC insulin pellets; these experiments were performed in three independent labs. Combination of anti-CD20 with proinsulin DNA was also ineffective in diabetes reversal, but did show modest efficacy in diabetes prevention (p = 0.04. In the prevention studies, anti-CD20 plus proinsulin resulted in modest increases in Tregs in pancreatic lymph nodes and elevated levels of proinsulin-specific CD4+ T-cells that produced IL-4. Thus, combination therapy with anti-CD20 and either oral insulin or proinsulin does not protect hyperglycemic NOD mice, but the combination with proinsulin offers limited efficacy in T1D prevention, potentially by augmentation of proinsulin-specific IL-4 production.

  8. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers

    Directory of Open Access Journals (Sweden)

    Chih-Hung Lin

    2017-04-01

    Full Text Available Chemical and enzymatic barriers in the gastrointestinal (GI tract hamper the oral delivery of many labile drugs. The GI epithelium also contributes to poor permeability for numerous drugs. Drugs with poor aqueous solubility have difficulty dissolving in the GI tract, resulting in low bioavailability. Nanomedicine provides an opportunity to improve the delivery efficiency of orally administered drugs. Solid lipid nanoparticles (SLNs are categorized as a new generation of lipid nanoparticles consisting of a complete solid lipid matrix. SLNs used for oral administration offer several benefits over conventional formulations, including increased solubility, enhanced stability, improved epithelium permeability and bioavailability, prolonged half-life, tissue targeting, and minimal side effects. The nontoxic excipients and sophisticated material engineering of SLNs tailor the controllable physicochemical properties of the nanoparticles for GI penetration via mucosal or lymphatic transport. In this review, we highlight the recent progress in the development of SLNs for disease treatment. Recent application of oral SLNs includes therapies for cancers, central nervous system-related disorders, cardiovascular-related diseases, infection, diabetes, and osteoporosis. In addition to drugs that may be active cargos in SLNs, some natural compounds with pharmacological activity are also suitable for SLN encapsulation to enhance oral bioavailability. In this article, we systematically introduce the concepts and amelioration mechanisms of the nanomedical techniques for drug- and natural compound-loaded SLNs.

  9. Update on mathematical modeling research to support the development of automated insulin delivery systems.

    Science.gov (United States)

    Steil, Garry M; Hipszer, Brian; Reifman, Jaques

    2010-05-01

    One year after its initial meeting, the Glycemia Modeling Working Group reconvened during the 2009 Diabetes Technology Meeting in San Francisco, CA. The discussion, involving 39 scientists, again focused on the need for individual investigators to have access to the clinical data required to develop and refine models of glucose metabolism, the need to understand the differences among the distinct models and control algorithms, and the significance of day-to-day subject variability. The key conclusion was that model-based comparisons of different control algorithms, or the models themselves, are limited by the inability to access individual model-patient parameters. It was widely agreed that these parameters, as opposed to the average parameters that are typically reported, are necessary to perform such comparisons. However, the prevailing view was that, if investigators were to make the parameters available, it would limit their ability (and that of their institution) to benefit from the invested work in developing their models. A general agreement was reached regarding the importance of each model having an insulin pharmacokinetic/pharmacodynamic profile that is not different from profiles reported in the literature (88% of the respondents agreed that the model should have similar curves or be analyzed separately) and the importance of capturing intraday variance in insulin sensitivity (91% of the respondents indicated that this could result in changes in fasting glucose of >or=15%, with 52% of the respondents believing that the variability could effect changes of >or=30%). Seventy-six percent of the participants indicated that high-fat meals were thought to effect changes in other model parameters in addition to gastric emptying. There was also widespread consensus as to how a closed-loop controller should respond to day-to-day changes in model parameters (with 76% of the participants indicating that fasting glucose should be within 15% of target, with 30% of the

  10. Development of mannosylated liposomes for bioadhesive oral drug delivery via M cells of Peyer's patches.

    Science.gov (United States)

    Pukanud, Pongthep; Peungvicha, Penchom; Sarisuta, Narong

    2009-07-01

    The aim of this study was to develop mannosylated liposomes as bioadhesive carriers for oral drug delivery. Two kinds of acyclovir (ACV)-entrapped mannosylated liposomes, i.e. ManN-ACV-lip and PAM-ACV-lip, were prepared by the use of mannosamine HCl (ManN) and p-aminophenyl-alpha-D-mannopyranoside (PAM), respectively. The mean sizes, drug entrapment efficiency, and loading capacity values of all liposomal formulations were in the ranges of 233-371 nm, 82-95%, and 42-47%, respectively. The mean size of PAM-ACV-lip was significantly smaller than those of conventional ACV liposomes and ManN-ACV-lip due to the more conical packing parameter of mannose-conjugated phospholipid. The mannosylating group grafted into bilayer membrane resulted in a decrease in drug entrapment, owing to competitive binding. The in vitro drug absorptions through everted sacs of mice ileum of both mannosylated ACV liposomes were significantly higher than those of conventional ACV liposomes or suspension.

  11. Immobilization of coacervate microcapsules in multilayer sodium alginate beads for efficient oral anticancer drug delivery.

    Science.gov (United States)

    Feng, Chao; Song, Ruixi; Sun, Guohui; Kong, Ming; Bao, Zixian; Li, Yang; Cheng, Xiaojie; Cha, Dongsu; Park, Hyunjin; Chen, Xiguang

    2014-03-10

    We have designed and evaluated coacervate microcapsules-immobilized multilayer sodium alginate beads (CMs-M-ALG-Beads) for oral drug delivery. The CMs-M-ALG-Beads were prepared by immobilization of doxorubicin hydrochloride (DOX) loaded chitosan/carboxymethyl coacervate microcapsules (DOX:CS/CMCS-CMs) in the core and layers of the multilayer sodium alginate beads. The obtained CMs-M-ALG-beads exhibited layer-by-layer structure and rough surface with many nanoscale particles. The swelling characteristic and drug release results indicated that 4-layer CMs-M-ALG-Beads possessed favorable gastric acid tolerance (the swelling rate <5%, the cumulative drug release rate <3.8%). In small intestine, the intact DOX:CS/CMCS-CMs were able to rapidly release from CMs-M-ALG-Beads with the dissolution of ALG matrix. Ex vivo intestinal mucoadhesive and permeation showed that CMs-M-ALG-Beads exhibited continued growth for P(app) values of DOX, which was 1.07-1.15 folds and 1.28-1.38 folds higher than DOX:CS:CMCS-CMs in rat jejunum and ileum, respectively, demonstrating that CMs-M-ALG-Beads were able to enhance the absorption of DOX by controlled releasing DOX:CS/CMCS-CMs and prolonging the contact time between the DOX:CS/CMCS-CMs and small intestinal mucosa.

  12. Diatom silica microparticles for sustained release and permeation enhancement following oral delivery of prednisone and mesalamine.

    Science.gov (United States)

    Zhang, Hongbo; Shahbazi, Mohammad-Ali; Mäkilä, Ermei M; da Silva, Tiago H; Reis, Rui L; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2013-12-01

    Diatoms are porous silica-based materials obtained from single cell photosynthetic algae. Despite low cost, easy purification process, environmentally safe properties, and rapidly increasing potentials for medical applications, the cytotoxicity of diatoms and the effect on drug permeation of oral formulations have not been studied so far. Herein, we have evaluated the potential of diatom silica microparticles (DSMs) for the delivery of mesalamine and prednisone, which are two commonly prescribed drugs for gastrointestinal (GI) diseases. Transmission electron microscopy analysis of the morphological surface changes of Caco-2/HT-29 monolayers and the cell viability data in colon cancer cells (Caco-2, HT-29 and HCT-116) showed very low toxicity of diatoms at concentrations up to 1000 μg/mL. The mesalamine and prednisone release under simulated GI conditions indicated prolonged release of both drugs from the diatoms. Furthermore, drug permeation across Caco-2/HT-29 co-culture monolayers demonstrated that diatoms are capable to enhance the drug permeability. Overall, this study evaluated DSMs' cytotoxicity in colon cancer cells and the effect of DSMs on drug permeability across Caco-2/HT-29 monolayers. Our results demonstrate that DSMs can be considered as a non-cytotoxic biomaterial with high potential to improve the mesalamine and prednisone bioavailability by sustaining the drug release and enhancing drug permeability.

  13. Formulation and evaluation of gastroretentive microballoons containing baclofen for a floating oral controlled drug delivery system.

    Science.gov (United States)

    Dube, T S; Ranpise, N S; Ranade, A N

    2014-01-01

    The objective of the present study was to fabricate and evaluate a multiparticulate oral gastroretentive dosage form of baclofen characterized by a central large cavity (hollow core) promoting unmitigated floatation with practical applications to alleviate the signs and symptoms of spasticity and muscular rigidity. Solvent diffusion and evaporation procedure were applied to prepare floating microspheres with a central large cavity using various combinations of ethylcellulose (release retardant) and HPMC K4M (release modifier) dissolved in a mixture of dichloromethane and methanol (2:1). The obtained microspheres (700-1000 µm) exhibit excellent floating ability (86 ± 2.00%) and release characteristics with entrapment efficiency of 95.2 ± 0.32%. Microspheres fabricated with ethylcellulose to HPMC K4M in the ratio 8.5:1.5 released 98.67% of the entrapped drug in 12 h. Muscle relaxation caused by baclofen microspheres impairs the rotarod performance for more than 12 h. Abdominal X-ray images showed that the gastroretention period of the floating barium sulfate- labeled microspheres was no less than 10 h. The buoyant baclofen microspheres provide a promising gastroretentive drug delivery system to deliver baclofen in spastic patients with a sustained release rate.

  14. Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast.

    Science.gov (United States)

    Hébrard, Géraldine; Hoffart, Valérie; Beyssac, Eric; Cardot, Jean-Michel; Alric, Monique; Subirade, Muriel

    2010-01-01

    Viable Saccharomyces boulardii, used as a biotherapeutic agent, was encapsulated in food-grade whey protein isolate (WP) and alginate (ALG) microparticles, in order to protect and vehicle them in gastrointestinal environment. Yeast-loaded microparticles with a WP/ALG ratio of 62/38 were produced with high encapsulation efficiency (95%) using an extrusion/cold gelation method and coated with ALG or WP by a simple immersion method. Swelling, yeast survival, WP loss and yeast release in simulated gastric and intestinal fluids (SGF and SIF, pH 1.2 and 7.5) with and without their respective digestive enzymes (pepsin and pancreatin) were investigated. In SGF, ALG network shrinkage limited enzyme diffusion into the WP/ALG matrix. Coated and uncoated WP/ALG microparticles were resistant in SGF even with pepsin. Survival of yeast cells in microparticles was 40% compared to 10% for free yeast cells and was improved to 60% by coating. In SIF, yeast cell release followed coated microparticle swelling with a desirable delay. Coated WP/ALG microparticles appear to have potential as oral delivery systems for Saccharomyces boulardii or as encapsulation means for probiotic cells in pharmaceutical or food processing applications.

  15. Poly(acrylic acid)-cysteine for oral vitamin B12 delivery.

    Science.gov (United States)

    Sarti, Federica; Iqbal, Javed; Müller, Christiane; Shahnaz, Gul; Rahmat, Deni; Bernkop-Schnürch, Andreas

    2012-01-01

    The aim of this study was to investigate the potential of poly(acrylic acid)-cysteine (PAA-cys) solution and microparticles to enhance the transport of vitamin B12 (VB 12) across Caco-2 cell monolayer and rat intestinal mucosa. Thiolated PAA was synthesized by covalent attachment of L-cysteine. Microparticles were prepared by spray-drying and characterized regarding their size, morphology, thiol group content, VB 12 payload and release, swelling behavior, mucoadhesion, permeation-enhancing effect, and cytotoxicity. Particles with a mean diameter of 2.452±2.26 μm, a payload of 1.11±0.72%, and 190.2±8.85 μmol of free thiol groups per gram were prepared. Swelling behavior studies revealed that the stability of thiolated particles was improved compared with unmodified ones. Of the total VB 12 loaded, 95±0.12% was released within 3 h from thiolated particles. PAA-cys particles exhibited 2.24-fold higher mucoadhesive properties compared with unmodified particles. Permeation experiments with Caco-2 cells proved that permeability of VB 12 with PAA-cys solution and particles was 3.8- and 3.6-fold higher than control, respectively, and with rat intestinal mucosa it was 4.8- and 4.4-fold higher than control, respectively. Negligible cytotoxicity was assessed. PAA-cys is a promising excipient for oral delivery of VB 12 as a solution and as microparticles.

  16. Atorvastatin-loaded nanostructured lipid carriers (NLCs): strategy to overcome oral delivery drawbacks.

    Science.gov (United States)

    Elmowafy, Mohammed; Ibrahim, Hany M; Ahmed, Mohammed A; Shalaby, Khaled; Salama, Ayman; Hefesha, Hossam

    2017-11-01

    Atorvastatin (AT) is a widely used lipid-regulating drug to reduce cholesterol and triglycerides. Its poor aqueous solubility and hepatic metabolism require development of drug delivery systems able to improve its solubility and bypass hepatic effect. For this purpose, atorvastatin nanostructured lipid carriers (AT-NLCs) were prepared and characterized. AT-NLCs were prepared by emulsification using high-speed homogenization followed by ultrasonication. The prepared NLCs showed particle size between 162.5 ± 12 and 865.55 ± 28 nm while zeta potential values varied between -34 ± 0.29 and -23 ± 0.36 mV. They also showed high encapsulation efficiency (>87%) and amorphous state of the drug in lipid matrix. Pharmacokinetic parameters of optimized formulation (NLC-1; composed of 2% Gelucire(®) 43/01, 8% Capryol(®) PGMC, 2% Pluronic(®)F68 and 0.5% lecithin) revealed 3.6- and 2.1-fold increase in bioavailability as compared to atorvastatin suspension and commercial product (Lipitor(®)), respectively. Administration of NLC-1 led to significant reduction (p oral bioavailability and in vivo performance of AT.

  17. Evaluation of critical formulation parameters in design and differentiation of self-microemulsifying drug delivery systems (SMEDDSs) for oral delivery of aciclovir.

    Science.gov (United States)

    Janković, Jovana; Djekic, Ljiljana; Dobričić, Vladimir; Primorac, Marija

    2016-01-30

    The study investigated the influence of formulation parameters for design of self-microemulsifying drug delivery systems (SMEDDSs) comprising oil (medium chain triglycerides) (10%), surfactant (Labrasol(®), polysorbate 20, or Kolliphor(®) RH40), cosurfactant (Plurol(®) Oleique CC 497) (q.s. ad 100%), and cosolvent (glycerol or macrogol 400) (20% or 30%), and evaluate their potential as carriers for oral delivery of a poorly permeable antivirotic aciclovir (acyclovir). The drug loading capacity of the prepared formulations ranged from 0.18-31.66 mg/ml. Among a total of 60 formulations, three formulations meet the limits for average droplet size (Z-ave) and polydispersity index (PdI) that have been set for SMEDDSs (Z-ave≤100nm, PdIdrug release rates of 0.325 mg cm(-2)min(-1) and 0.323 mg cm(-2)min(-1), respectively, and significantly enhanced drug permeability in the parallel artificial membrane permeability assay (PAMPA), in comparison with the pure drug substance. The results revealed that development of SMEDDSs with enhanced drug loading capacity and oral delivery potential, required optimization of hydrophilic ingredients, in terms of size of hydrophilic moiety of the surfactant, surfactant-to-cosurfactant mass ratio (Km), and log P of the cosolvent.

  18. Cytotoxicity and Acute Gastrointestinal Toxicity of Bacterial Cellulose-Poly (acrylamide-sodium acrylate Hydrogel: A Carrier for Oral Drug Delivery

    Directory of Open Access Journals (Sweden)

    Manisha Pandey 1,2 * , Hira Choudhury 1, Mohd Cairul Iqbal Mohd Amin 2

    2016-12-01

    Full Text Available Background: Preliminary safety evaluation of polymer intended to use as drug delivery carrier is essential. Methods: In this study polyacrylamide grafted bacterial cellulose (BC/AM hydrogel was prepared by microwave irradiation initiated free radical polymerization. The synthesized hydrogel was subjected to in vitro cytotoxicity and acute gastrointestinal toxicity studies to evaluate its biological safety as potential oral drug delivery carrier. Results: The results indicate that hydrogel was non cytotoxic and did not show any histopathological changes in GI tract after a high dose of oral administration. Conclusion: The results revealed that hydrogel composed of bacterial cellulose and polyacrylamide is safe as oral drug delivery carrier.

  19. Insulin therapy in type 2 diabetes.

    Science.gov (United States)

    Mudaliar, S; Edelman, S V

    2001-12-01

    Type 2 diabetes is a common disorder often accompanied by numerous metabolic abnormalities leading to a high risk of cardiovascular morbidity and mortality. Results from the UKPDS have confirmed that intensive glucose control delays the onset and retards the progression of microvascular disease and possibly of macrovascular disease in patients with type 2 diabetes. In the early stages of the disease, insulin resistance plays a major role in the development of hyperglycemia and other metabolic abnormalities, and patients with type 2 diabetes often benefit from measures to improve insulin sensitivity such as weight loss, dietary changes, and exercise. Later, the use of oral insulin secretagogues and insulin sensitizers as monotherapy and in combination helps maintain glycemia for varying periods of time. Ultimately, because of the progressive nature of the disease and the progressive decline in pancreatic beta-cell function, insulin therapy is almost always obligatory to achieve optimal glycemic goals. Not all patients are candidates for aggressive insulin management; therefore, the goals of therapy should be modified, especially in elderly individuals and those with co-morbid conditions. Candidates for intensive management should be motivated, compliant, and educable, without other major medical conditions and physical limitations that would preclude accurate and reliable HGM and insulin administration. In selected patients, combination therapy with insulin and oral antidiabetic medications can be an effective method for normalizing glycemia without the need for rigorous multiple-injection regimens. The patients for whom combination therapy is most commonly successful are those who do not achieve adequate glycemic control using daytime oral agents but who still show some evidence of responsiveness to the medications. Bedtime intermediate-acting or predinner premixed intermediate- and rapid-acting insulin is administered and progressively increased until the FPG

  20. Mucoadhesive alginate/poly (L-lysine)/thiolated alginate microcapsules for oral delivery of Lactobacillus salivarius 29.

    Science.gov (United States)

    Islam, Mohammad Ariful; Bajracharya, Prati; Kang, Sang-Kee; Yun, Cheol-Heui; Kim, Eun-Mi; Jeong, Hwan-Jeong; Choi, Yun-Jaie; Kim, Eun-Bae; Cho, Chong-Su

    2011-08-01

    In this study, thiolated alginate was synthesized by introduction of cysteine to alginate to prepare mucoadhesive alginate/poly (L-lysine)/thiolated alginate (APTA) microcapsules for efficient oral delivery of Lactobacillus salivarius 29 (LS29), a novel therapeutic Lactobacillus strain, in vitro and in vivo. About 759 +/- 32.4 microM of cysteine per gram of alginate was introduced by estimation of Ellman's reagent reaction. LS29-loaded APTA microcapsules provided suitable morphology, size, and a high loading content and efficiency. LS29 in LS29-loaded APTA microcapsules were effectively protected from simulated gastric condition (pH 2.0) than that of unprotected LS29. LS29 were released from APTA microcapsules in simulated intestinal condition (pH 7.2) with a time-dependent manner. The in vitro and in vivo mucoadhesion study suggested that APTA microcapsules had remarkably stronger mucoadhesive property and provided a promising delivery system for oral administration of LS29.

  1. Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: Relevance for oral drug delivery.

    Science.gov (United States)

    Neves, Ana Rute; Queiroz, Joana Fontes; Costa Lima, Sofia A; Figueiredo, Francisco; Fernandes, Rui; Reis, Salette

    2016-02-01

    Oral administration is the preferred route for drug delivery and nanosystems represent a promising tool for protection and transport of hardly soluble, chemically unstable and poorly permeable drugs through the intestinal barrier. In the present work, we have studied lipid nanoparticles cellular uptake, internalization pathways and transcytosis routes through Caco-2 cell monolayers. Both lipid nanosystems presented similar size (∼180nm) and surface charge (-30mV). Nanostructured lipid carriers showed a higher cellular uptake and permeability across the barrier, but solid lipid nanoparticles could enter cells faster than the former. The internalization of lipid nanoparticles occurs mainly through a clathrin-mediated endocytosis mechanism, although caveolae-mediated endocytosis is also involved in the uptake. Both lipid nanoparticles were able to cross the intestinal barrier by a preferential transcellular route. This work contributed to a better knowledge of the developed nanosystems for the oral delivery of a wide spectrum of drugs. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity

    DEFF Research Database (Denmark)

    Vrieze, Anne; Out, Carolien; Fuentes, Susana

    2014-01-01

    in humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism. METHODS: In this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7 days of amoxicillin 500 mg t.i.d. or 7 days of vancomycin 500 mg t.i.d....... At baseline and after 1 week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-(2)H2]-glucose tracer) were measured. RESULTS: Vancomycin reduced...

  3. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge

    NARCIS (Netherlands)

    R. Saxena (Richa); M.-F. Hivert (Marie-France); C. Langenberg (Claudia); T. Tanaka (Toshiko); J.S. Pankow (James); P. Vollenweider (Peter); V. Lyssenko (Valeriya); N. Bouatia-Naji (Nabila); J. Dupuis (Josée); A.U. Jackson (Anne); W.H.L. Kao (Wen); M. Li (Man); N.L. Glazer (Nicole); A.K. Manning (Alisa); J. Anluan (Jian); H.M. Stringham (Heather); I. Prokopenko (Inga); T. Johnson (Toby); N. Grarup (Niels); T.W. Boesgaard (Trine); C. Lecoeur (Cécile); P. Shrader (Peter); J.R. O´Connell; E. Ingelsson (Erik); D.J. Couper (David); K. Rice (Kenneth); K. Song (Kijoung); C.H. Andreasen (Camilla); C. Dina (Christian); A. Köttgen (Anna); O.L. Bacquer (Olivier); F. Pattou (François); J. Taneera (Jalal); V. Steinthorsdottir (Valgerdur); D. Rybin (Denis); K.G. Ardlie (Kristin); M.J. Sampson (Michael); L. Qi (Lu); M.V. Hoek; M.N. Weedon (Michael); Y.S. Aulchenko (Yurii); B.F. Voight (Benjamin); H. Grallert (Harald); B. Balkau (Beverley); R.N. Bergman (Richard); S.J. Bielinski (Suzette); A. Bonnefond (Amélie); L.L. Bonnycastle (Lori); K. Borch-Johnsen; Y. Böttcher (Yvonne); E. Brunner (Eric); T.A. Buchanan (Thomas); S. Bumpstead (Suzannah); C. Cavalcanti-Proença (Christine); G. Charpentier (Guillaume); C. Chen (Chao); P.S. Chines (Peter); F.S. Collins (Francis); M. Cornelis (Marilyn); G. Crawford (Gabe); J. Delplanque (Jerome); A.S.F. Doney (Alex); J.M. Egan (Josephine); M.R. Erdos (Michael); M. Firmann (Mathieu); N.G. Forouhi (Nita); C.S. Fox (Caroline); M. Goodarzi (Mark); J. Graessler (Jürgen); A. Hingorani (Aroon); B. Isomaa (Bo); T. Jørgensen (Torben); M. Kivimaki (Mika); P. Kovacs (Peter); K. Krohn (Knut); M. Kumari (Meena); T. Lauritzen (Torsten); C. Lévy-Marchal (Claire); V. Mayor (Vladimir); J.B. McAteer (Jarred); D. Meyre (David); B.D. Mitchell (Braxton); K.L. Mohlke (Karen); M.A. Morken (Mario); N. Narisu (Narisu); C.N.A. Palmer (Colin); R. Pakyz (Ruth); L. Pascoe (Laura); F. Payne (Felicity); D. Pearson (Daniel); W. Rathmann (Wolfgang); A. Sandbaek (Annelli); A.A. Sayer; L.J. Scott (Laura); S.J. Sharp (Stephen); E.J.G. Sijbrands (Eric); A. Singleton (Andrew); D.S. Siscovick (David); N.L. Smith (Nicholas); T. Sparsø (Thomas); A.J. Swift (Amy); H. Syddall (Holly); G. Thorleifsson (Gudmar); A. Tönjes (Anke); T. Tuomi (Tiinamaija); J. Tuomilehto (Jaakko); T.T. Valle (Timo); G. Waeber (Gérard); A. Walley (Andrew); D. Waterworth (Dawn); E. Zeggini (Eleftheria); J.H. Zhao; G. Consortium (Giant); T. Illig (Thomas); H.E. Wichmann (Erich); J.F. Wilson (James); C.M. van Duijn (Cock); F.B. Hu (Frank); A.D. Morris (Andrew); T.M. Frayling (Timothy); A.T. Hattersley (Andrew); U. Thorsteinsdottir (Unnur); J-A. Zwart (John-Anker); P. Nilsson (Peter); A.C. Syvänen; A.R. Shuldiner (Alan); M. Walker (Mark); S.R. Bornstein (Stefan); P. Schwarz (Peter); G.H. Williams (Gordon); D.M. Nathan (David); J. Kuusisto (Johanna); M. Laakso (Markku); C. Cooper (Charles); M. Marmot (Michael); L. Ferrucci (Luigi); V. Mooser (Vincent); M. Stumvoll (Michael); R.J.F. Loos (Ruth); D. Altshuler (David); B.M. Psaty (Bruce); J.I. Rotter (Jerome); E.A. Boerwinkle (Eric); T. Hansen (Torben); O. Pedersen (Oluf); J.C. Florez (Jose); M.I. McCarthy (Mark); M. Boehnke (Michael); I. Barroso (Inês); R. Sladek (Rob); P. Froguel (Philippe); J.B. Meigs (James); L. Groop (Leif); N.J. Wareham (Nick); R.M. Watanabe (Richard)

    2010-01-01

    textabstractGlucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n =

  4. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity

    NARCIS (Netherlands)

    Vrieze, Anne; Out, Carolien; Fuentes, Susana; Jonker, Lisanne; Reuling, Isaie; Kootte, Ruud S.; van Nood, Els; Holleman, Frits; Knaapen, Max; Romijn, Johannes A.; Soeters, Maarten R.; Blaak, Ellen E.; Dallinga-Thie, Geesje M.; Reijnders, Dorien; Ackermans, Mariette T.; Serlie, Mireille J.; Knop, Filip K.; Holst, Jenst J.; van der Ley, Claude; Kema, Ido P.; Zoetendal, Erwin G.; de Vos, Willem M.; Hoekstra, Joost B. L.; Stroes, Erik S.; Groen, Albert K.; Nieuwdorp, Max

    Background & Aims: Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters bile acid and glucose metabolism in mice. Hence, we hypothesized that short term administration of oral antibiotics in

  5. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge

    NARCIS (Netherlands)

    R. Saxena (Richa); M.-F. Hivert (Marie-France); C. Langenberg (Claudia); T. Tanaka (Toshiko); J.S. Pankow (James); P. Vollenweider (Peter); V. Lyssenko (Valeriya); N. Bouatia-Naji (Nabila); J. Dupuis (Josée); A.U. Jackson (Anne); W.H.L. Kao (Wen); M. Li (Man); N.L. Glazer (Nicole); A.K. Manning (Alisa); J. Anluan (Jian); H.M. Stringham (Heather); I. Prokopenko (Inga); T. Johnson (Toby); N. Grarup (Niels); T.W. Boesgaard (Trine); C. Lecoeur (Cécile); P. Shrader (Peter); J.R. O´Connell; E. Ingelsson (Erik); D.J. Couper (David); K. Rice (Kenneth); K. Song (Kijoung); C.H. Andreasen (Camilla); C. Dina (Christian); A. Köttgen (Anna); O.L. Bacquer (Olivier); F. Pattou (François); J. Taneera (Jalal); V. Steinthorsdottir (Valgerdur); D. Rybin (Denis); K.G. Ardlie (Kristin); M.J. Sampson (Michael); L. Qi (Lu); M.V. Hoek; M.N. Weedon (Michael); Y.S. Aulchenko (Yurii); B.F. Voight (Benjamin); H. Grallert (Harald); B. Balkau (Beverley); R.N. Bergman (Richard); S.J. Bielinski (Suzette); A. Bonnefond (Amélie); L.L. Bonnycastle (Lori); K. Borch-Johnsen; Y. Böttcher (Yvonne); E. Brunner (Eric); T.A. Buchanan (Thomas); S. Bumpstead (Suzannah); C. Cavalcanti-Proença (Christine); G. Charpentier (Guillaume); C. Chen (Chao); P.S. Chines (Peter); F.S. Collins (Francis); M. Cornelis (Marilyn); G. Crawford (Gabe); J. Delplanque (Jerome); A.S.F. Doney (Alex); J.M. Egan (Josephine); M.R. Erdos (Michael); M. Firmann (Mathieu); N.G. Forouhi (Nita); C.S. Fox (Caroline); M. Goodarzi (Mark); J. Graessler (Jürgen); A. Hingorani (Aroon); B. Isomaa (Bo); T. Jørgensen (Torben); M. Kivimaki (Mika); P. Kovacs (Peter); K. Krohn (Knut); M. Kumari (Meena); T. Lauritzen (Torsten); C. Lévy-Marchal (Claire); V. Mayor (Vladimir); J.B. McAteer (Jarred); D. Meyre (David); B.D. Mitchell (Braxton); K.L. Mohlke (Karen); M.A. Morken (Mario); N. Narisu (Narisu); C.N.A. Palmer (Colin); R. Pakyz (Ruth); L. Pascoe (Laura); F. Payne (Felicity); D. Pearson (Daniel); W. Rathmann (Wolfgang); A. Sandbaek (Annelli); A.A. Sayer; L.J. Scott (Laura); S.J. Sharp (Stephen); E.J.G. Sijbrands (Eric); A. Singleton (Andrew); D.S. Siscovick (David); N.L. Smith (Nicholas); T. Sparsø (Thomas); A.J. Swift (Amy); H. Syddall (Holly); G. Thorleifsson (Gudmar); A. Tönjes (Anke); T. Tuomi (Tiinamaija); J. Tuomilehto (Jaakko); T.T. Valle (Timo); G. Waeber (Gérard); A. Walley (Andrew); D. Waterworth (Dawn); E. Zeggini (Eleftheria); J.H. Zhao; G. Consortium (Giant); T. Illig (Thomas); H.E. Wichmann (Erich); J.F. Wilson (James); C.M. van Duijn (Cock); F.B. Hu (Frank); A.D. Morris (Andrew); T.M. Frayling (Timothy); A.T. Hattersley (Andrew); U. Thorsteinsdottir (Unnur); J-A. Zwart (John-Anker); P. Nilsson (Peter); A.C. Syvänen; A.R. Shuldiner (Alan); M. Walker (Mark); S.R. Bornstein (Stefan); P. Schwarz (Peter); G.H. Williams (Gordon); D.M. Nathan (David); J. Kuusisto (Johanna); M. Laakso (Markku); C. Cooper (Charles); M. Marmot (Michael); L. Ferrucci (Luigi); V. Mooser (Vincent); M. Stumvoll (Michael); R.J.F. Loos (Ruth); D. Altshuler (David); B.M. Psaty (Bruce); J.I. Rotter (Jerome); E.A. Boerwinkle (Eric); T. Hansen (Torben); O. Pedersen (Oluf); J.C. Florez (Jose); M.I. McCarthy (Mark); M. Boehnke (Michael); I. Barroso (Inês); R. Sladek (Rob); P. Froguel (Philippe); J.B. Meigs (James); L. Groop (Leif); N.J. Wareham (Nick); R.M. Watanabe (Richard)

    2010-01-01

    textabstractGlucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,95

  6. Oral delivery of ivermectin using a fast dissolving oral film: Implications for repurposing ivermectin as a pharmacotherapy for alcohol use disorder.

    Science.gov (United States)

    Yardley, Megan M; Huynh, Nhat; Rodgers, Kathleen E; Alkana, Ronald L; Davies, Daryl L

    2015-09-01

    Individuals suffering from an alcohol-use disorder (AUD) constitute a major health concern. Preclinical studies in our laboratory show that acute and chronic intraperitoneal (i.p.) administration of ivermectin (IVM) reduces alcohol intake and preference in mice. To enable clinical investigation to use IVM for the treatment of an AUD, development of an oral formulation that can be used in animals as well as long-term preclinical toxicology studies are required. The present work explores the use of a promising alternative dosage form of IVM, fast-dissolving oral films (Cure Pharmaceutical®), to test the efficacy and safety of oral IVM in conjunction with alcohol exposure. We tested the effect of IVM (0.21 mg) using a fast-dissolving oral film delivery method on reducing 10% v/v alcohol (10E) intake in female C57BL/6 mice using a 24-h access two-bottle choice paradigm for 6 weeks (5 days per week). Differences in ethanol intake, preference for ethanol, water intake, fluid intake, food intake, changes in mouse and organ weights, as well as histological changes to kidney, liver, and brain were analyzed. The IVM group drank significantly less ethanol over the 30-day period compared to the placebo (blank strip) and the no-treatment groups. Organ weights did not differ between the groups. Histological evaluation showed no differences in the brain and kidney between groups. In the liver, there was a slight increase in the incidence of microvesicular fatty and degenerative changes of the animals receiving the thin strips. No overt hepatocellular necrosis or perivascular inflammation was noted. Overall, these data support the use of this novel method of oral drug delivery for longer-term studies and should facilitate FDA required preclinical testing that is necessary to repurpose IVM for treatment of an AUD.

  7. Enzyme coated beta-cyclodextrin for effective adsorption and glucose-responsive closed-loop insulin delivery.

    Science.gov (United States)

    Anirudhan, T S; Nair, Anoop S; Nair, Syam S

    2016-10-01

    Inconsistent dosage of insulin (INS) for type 2 diabetes patients lead to severe adverse effects like limb amputation, blindness and fatal hypo or hyper glycaemia. Hence, a drug delivery system (DDS) capable of consistent INS release by sensing changes in blood glucose level is essential. Herein, we report a glucose responsive DDS comprised of oleic acid-grafted-aminated beta cyclodextrin (OA-g-ACD) copolymer, coated with a dispersion of glucose oxidase (GOx) and catalase (CAT). The prepared DDS was characterised using FTIR, Optical Microscopy, H(1) NMR, DLS and SEM. Hydrophobicity and drug loading capacity was ascertained using contact angle measurements and confocal laser scanning microscopy (CLSM) respectively. Extent of swelling was observed to be a function of glucose concentration. INS release profile showed a cumulative release of 78.0 % after 240min. Flow cytometry studies revealed greater population of INS on HeLa cells indicating application of DDS as potential candidate for the intravenous administration of INS. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Supercritical impregnation of polymer matrices spatially confined in microcontainers for oral drug delivery: Effect of temperature, pressure and time

    DEFF Research Database (Denmark)

    Marizza, Paolo; Pontoni, L.; Rindzevicius, Tomas

    2016-01-01

    parameters(temperature, pressure, time, drug concentration in the supercritical phase) was elucidated with respectto the loading capacity. The microcontainer filling was observed by means of optical macroimaging, X-ray microtomography and scanning electron microscopy. The physical state of the drug...... described. The drug loading can be controlled with high accuracy and reproducibility andthe impregnated drug is in amorphous state. These results demonstrate that SCI can be used as a highthroughput loading technique for microfabricated devices for oral drug delivery....

  9. Preparation and characterization of spray-dried powders intended for pulmonary delivery of insulin with regard to the selection of excipients.

    Science.gov (United States)

    Razavi Rohani, Seyed Salman; Abnous, Khalil; Tafaghodi, Mohsen

    2014-04-25

    The aim of this study was to produce microparticles with optimal aerodynamic diameter for deep lung delivery (i.e., 1-3μm) of a protein drug intended for systemic absorption, using a combination of generally regarded as safe (GRAS) excipients. Based on the preliminary experiments, mannitol, l-alanine, sodium alginate, chitosan and dipalmitoylphosphatidilcholine (DPPC) were chosen as excipients and human insulin as a model protein drug. Dry powders were prepared by spray-drying. Powders with varying yields (29-80%) and low tapped densities (0.22-0.38 g/cm(3)) were obtained. Scanning electron microscopy (SEM) revealed distinctive particle morphologies among formulations from isolated spherical to highly folded particles. Aerodynamic properties were assessed by next generation impactor (NGI). Mass median aerodynamic diameter (MMAD) and fine particle fraction (FPF) ranged from 2.1 to 4.6 μm and 46 to 81%, respectively. A comparative study of protein release from microparticles was conducted in vitro using an open membrane system with more than 50% cumulative release in all formulations which followed different kinetic models. Insulin's integrity was investigated by spectrofluorimetry and electrophoresis, and no tangible changes were observed in the structure of insulin. Of the formulations studied, the third, containing mannitol/sodium alginate/insulin/sodium citrate showed promising characteristics, optimal for systemic delivery of proteins via deep lung deposition. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Oral Administration of Apple Procyanidins Ameliorates Insulin Resistance via Suppression of Pro-Inflammatory Cytokine Expression in Liver of Diabetic ob/ob Mice.

    Science.gov (United States)

    Ogura, Kasane; Ogura, Masahito; Shoji, Toshihiko; Sato, Yuichi; Tahara, Yumiko; Yamano, Gen; Sato, Hiroki; Sugizaki, Kazu; Fujita, Naotaka; Tatsuoka, Hisato; Usui, Ryota; Mukai, Eri; Fujimoto, Shimpei; Inagaki, Nobuya; Nagashima, Kazuaki

    2016-11-23

    Procyanidins, the main ingredient of apple polyphenols, are known to possess antioxidative and anti-inflammatory effects associated closely with the pathophysiology of insulin resistance and type 2 diabetes. We investigated the effects of orally administered apple procyanidins (APCs) on glucose metabolism using diabetic ob/ob mice. We found no difference in body weight or body composition between mice treated with APCs and untreated mice. A 4 week oral administration of APCs containing water [0.5% (w/v)] ameliorated glucose tolerance, insulin resistance, and hepatic gluconeogenesis in ob/ob mice. APCs also suppressed the increase in the level of the pancreatic β-cell. Insulin-stimulated Akt phosphorylation was significantly enhanced; pro-inflammatory cytokine expression levels were significantly decreased, and c-Jun N-terminal kinase phosphorylation was downregulated in the liver of those mice treated with APCs. In conclusion, APCs ameliorate insulin resistance by improving hepatic insulin signaling through suppression of hepatic inflammation in ob/ob mice, which may be a mechanism with possible beneficial health effects of APCs in disturbed glucose metabolism.

  11. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment.

    Science.gov (United States)

    Bagre, Archana Pataskar; Jain, Keerti; Jain, Narendra K

    2013-11-01

    The objective of present research work was to develop alginate coated chitosan core shell nanoparticles (Alg-CS-NPs) for oral delivery of low molecular weight heparin, enoxaparin. Chitosan nanoparticles (CS-NPs) were synthesized by ionic gelation of chitosan using sodium tripolyphosphate. Core shell nanoparticles were prepared by coating CS-NPs with alginate solution under mild agitation. The Alg-CS-NPs were characterized for surface morphology, surface coating, particle size, polydispersity index, zeta potential, drug loading and entrapment efficiency using SEM, Zeta-sizer, FTIR and DSC techniques. Alginate coating increased the size of optimized chitosan nanoparticles from around 213 nm to about 335 nm as measured by dynamic light scattering in zeta sizer and further confirmed by SEM analysis. The performance of optimized enoxaparin loaded Alg-CS-NPs was evaluated by in vitro drug release studies, in vitro permeation study across intestinal epithelium, in vivo venous thrombosis model, particulate uptake by intestinal epithelium using fluorescence microscopy and pharmacokinetic studies in rats. Coating of alginate over the CS-NPs improved the release profile of enoxaparin from the nanoparticles for successful oral delivery. In vitro permeation studies elucidated that more than 75% enoxaparin permeated across the intestinal epithelium with Alg-CS-NPs. The Alg-CS-NPs significantly increased (p<0.05) the oral bioavailability of enoxaparin in comparison to plain enoxaparin solution as revealed by threefold increase in AUC of plasma drug concentration time curve and around 60% reduction in thrombus formation in rat venous thrombosis model. The core shell Alg-CS-NPs showed promising potential for oral delivery and significantly enhanced the in vivo oral absorption of enoxaparin.

  12. Glucose-reducing effect of the ORMD-0801 oral insulin preparation in patients with uncontrolled type 1 diabetes: a pilot study.

    Directory of Open Access Journals (Sweden)

    Roy Eldor

    Full Text Available UNLABELLED: The unpredictable behavior of uncontrolled type 1 diabetes often involves frequent swings in blood glucose levels that impact maintenance of a daily routine. An intensified insulin regimen is often unsuccessful, while other therapeutic options, such as amylin analog injections, use of continuous glucose sensors, and islet or pancreas transplantation are of limited clinical use. In efforts to provide patients with a more compliable treatment method, Oramed Pharmaceuticals tested the capacity of its oral insulin capsule (ORMD-0801, 8 mg insulin in addressing this resistant clinical state. Eight Type I diabetes patients with uncontrolled diabetes (HbA1c: 7.5-10% were monitored throughout the 15-day study period by means of a blind continuous glucose monitoring device. Baseline patient blood glucose behavior was monitored and recorded over a five-day pretreatment screening period. During the ensuing ten-day treatment phase, patients were asked to conduct themselves as usual and to self-administer an oral insulin capsule three times daily, just prior to meal intake. CGM data sufficient for pharmacodynamics analyses were obtained from 6 of the 8 subjects. Treatment with ORMD-0801 was associated with a significant 24.4% reduction in the frequencies of glucose readings >200 mg/dL (60.1 ± 7.9% pretreatment vs. 45.4 ± 4.9% during ORMD-0801 treatment; p = 0.023 and a significant mean 16.6% decrease in glucose area under the curve (AUC (66055 ± 5547 mg/dL/24 hours vs. 55060 ± 3068 mg/dL/24 hours, p = 0.023, with a greater decrease during the early evening hours. In conclusion, ORMD-0801 oral insulin capsules in conjunction with subcutaneous insulin injections, well tolerated and effectively reduced glycemia throughout the day. TRIAL REGISTRATION: Clinicaltrials.gov NCT00867594.

  13. Self-nanoemulsifying drug delivery systems ameliorate the oral delivery of silymarin in rats with Roux-en-Y gastric bypass surgery

    Directory of Open Access Journals (Sweden)

    Chen CH

    2015-03-01

    Full Text Available Chun-Han Chen,1,2 Cheng-Chih Chang,1 Tsung-Hsien Shih,2 Ibrahim A Aljuffali,3 Ta-Sen Yeh,4,5 Jia-You Fang6–8 1Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, 2Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; 3Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; 4Department of Surgery, Chang Gung Memorial Hospital, 5School of Medicine, College of Medicine, 6Pharmaceutics Laboratory, Graduate Institute of Natural Products, 7Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, 8Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan Abstract: Roux-en-Y gastric bypass (RYGB is a popular surgery to reduce the body weight of obese patients. Although food intake is restricted by RYGB, drug absorption is also decreased. The purpose of this study was to develop novel self-nanoemulsifying drug delivery systems (SNEDDS for enhancing the oral delivery of silymarin, which has poor water solubility. The SNEDDS were characterized by size, zeta potential, droplet number, and morphology. A technique of RYGB was performed in Sprague-Dawley rats. SNEDDS were administered at a silymarin dose of 600 mg/kg in normal and RYGB rats for comparison with silymarin aqueous suspension and polyethylene glycol (PEG 400 solution. Plasma silibinin, the main active ingredient in silymarin, was chosen for estimating the pharmacokinetic parameters. SNEDDS diluted in simulated gastric fluid exhibited a droplet size of 190 nm with a spherical shape. The nanocarriers promoted silibinin availability via oral ingestion in RYGB rats by 2.5-fold and 1.5-fold compared to the suspension and PEG 400 solution, respectively. A significant double-peak concentration of silibinin was detected for RYGB rats receiving SNEDDS. Fluorescence

  14. Oral administration of insulin-like growth factor-I from colostral whey reduces blood glucose in streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Hwang, Kyung-A; Hwang, Yu-Jin; Ha, Woelkyu; Choo, Young-Kug; Ko, Kisung

    2012-07-14

    The aim of the present study was to investigate the effects of oral administration of the insulin-like growth factor-I-rich fraction (IGF-I-RF) from bovine colostral whey on the regulation of blood glucose levels in streptozotocin (STZ)-induced diabetic mice. We obtained a peptide fraction containing IGF-I (10 ng/mg protein) from Holstein colostrum within 24 h after parturition by using ultrafiltration. The blood glucose levels of STZ-induced diabetic mice fed with IGF-I-RF (50 μg/kg per d) were significantly reduced by 11 and 33 % at weeks 2 and 4, respectively (P insulin-resistant patients.

  15. Solid lipid nanoparticles as vesicles for oral delivery of olmesartan medoxomil: formulation, optimization and in vivo evaluation.

    Science.gov (United States)

    Nooli, Mounika; Chella, Naveen; Kulhari, Hitesh; Shastri, Nalini R; Sistla, Ramakrishna

    2017-04-01

    Olmesartan medoxomil (OLM) is an antihypertensive drug with low oral bioavailability (28%) resulting from poor aqueous solubility, presystemic metabolism and P-glycoprotein mediated efflux. The present investigation studies the role of lipid nanocarriers in enhancing the OLM bioavailability through oral delivery. Solid lipid nanoparticles (SLN) were prepared by solvent emulsion-evaporation method. Statistical tools like regression analysis and Pareto charts were used to detect the important factors effecting the formulations. Formulation and process parameters were then optimized using mean effect plot and contour plots. The formulations were characterized for particle size, size distribution, surface charge, percentage of drug entrapped in nanoparticles, drug-excipients interactions, powder X-ray diffraction analysis and drug release in vitro. The optimized formulation comprised glyceryl monostearate, soya phosphatidylcholine and Tween 80 as lipid, co-emulsifier and surfactant, respectively, with an average particle size of 100 nm, PDI 0.291, zeta potential of -23.4 mV and 78% entrapment efficiency. Pharmacokinetic evaluation in male Sprague Dawley rats revealed 2.32-fold enhancement in relative bioavailability of drug from SLN when compared to that of OLM plain drug on oral administration. In conclusion, SLN show promising approaches as a vehicle for oral delivery of drugs like OLM.

  16. Production of recombinant human growth hormone conjugated with a transcytotic peptide in Pichia pastoris for effective oral protein delivery.

    Science.gov (United States)

    Lee, Jun-Yeong; Kang, Sang-Kee; Li, Hui-Shan; Choi, Chang-Yun; Park, Tae-Eun; Bok, Jin-Duck; Lee, Seung-Ho; Cho, Chong-Su; Choi, Yun-Jaie

    2015-05-01

    Among the possible delivery routes, the oral administration of a protein is simple and achieves high patient compliance without pain. However, the low bioavailability of a protein drug in the intestine due to the physical barriers of the intestinal epithelia is the most critical problem that needs to be solved. To overcome the low bioavailability of a protein drug in the intestine, we aimed to construct a recombinant Pichia pastoris expressing a human growth hormone (hGH) fusion protein conjugated with a transcytotic peptide (TP) that was screened through peroral phage display to target goblet cells in the intestinal epithelia. The TP-conjugated hGH was successfully produced in P. pastoris in a secreted form at concentrations of up to 0.79 g/l. The function of the TP-conjugated hGH was validated by in vitro and in vivo assays. The transcytotic function of the TP through the intestinal epithelia was verified only in the C terminus conjugated hGH, which demonstrated the induction of IGF-1 in a HepG2 cell culture assay, a higher translocation of recombinant hGH into the ileal villi after oral administration in rats and both IGF-1 induction and higher body weight gain in rats after oral administration. The present study introduces the possibility for the development of an effective oral protein delivery system in the pharmaceutical and animal industries through the introduction of an effective TP into hGH.

  17. Solid lipid nanoparticles (SLN)--based hydrogels as potential carriers for oral transmucosal delivery of risperidone: preparation and characterization studies.

    Science.gov (United States)

    Silva, A C; Amaral, M H; González-Mira, E; Santos, D; Ferreira, D

    2012-05-01

    Two different solid lipid nanoparticles (SLN)-based hydrogels (HGs) formulations were developed as potential mucoadhesive systems for risperidone (RISP) oral transmucosal delivery. The suitability of the prepared semi-solid formulations for application on oral mucosa was assessed by means of rheological and textural analysis, during 30 days. Plastic flows with thixotropy and high adhesiveness were obtained for all the tested systems, which predict their success for the oral transmucosal application proposed. The SLN remained within the colloidal range after HGs preparation. However, after 30 days of storage, a particle size increase was detected in one type of the HGs formulations. In vitro drug release studies revealed a more pronounced RISP release after SLN hydrogel entrapment, when compared to the dispersions alone. In addition, a pH-dependent release was observed as well. The predicted in vivo RISP release mechanism was Fickian diffusion alone or combined with erosion.

  18. Improved Oral Bioavailability Using a Solid Self-Microemulsifying Drug Delivery System Containing a Multicomponent Mixture Extracted from Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Xiaolin Bi

    2016-04-01

    Full Text Available The active ingredients of salvia (dried root of Salvia miltiorrhiza include both lipophilic (e.g., tanshinone IIA, tanshinone I, cryptotanshinone and dihydrotanshinone I and hydrophilic (e.g., danshensu and salvianolic acid B constituents. The low oral bioavailability of these constituents may limit their efficacy. A solid self-microemulsifying drug delivery system (S-SMEDDS was developed to load the various active constituents of salvia into a single drug delivery system and improve their oral bioavailability. A prototype SMEDDS was designed using solubility studies and phase diagram construction, and characterized by self-emulsification performance, stability, morphology, droplet size, polydispersity index and zeta potential. Furthermore, the S-SMEDDS was prepared by dispersing liquid SMEDDS containing liposoluble extract into a solution containing aqueous extract and hydrophilic polymer, and then freeze-drying. In vitro release of tanshinone IIA, salvianolic acid B, cryptotanshinone and danshensu from the S-SMEDDS was examined, showing approximately 60%–80% of each active component was released from the S-SMEDDS in vitro within 20 min. In vivo bioavailability of these four constituents indicated that the S-SMEDDS showed superior in vivo oral absorption to a drug suspension after oral administration in rats. It can be concluded that the novel S-SMEDDS developed in this study increased the dissolution rate and improved the oral bioavailability of both lipophilic and hydrophilic constituents of salvia. Thus, the S-SMEDDS can be regarded as a promising new method by which to deliver salvia extract, and potentially other multicomponent drugs, by the oral route.

  19. N-succinyl chitosan as buccal penetration enhancer for delivery of herbal agents in treatment of oral mucositis.

    Science.gov (United States)

    Dhawan, Neha; Kumar, Krishan; Kalia, A N; Arora, Saahil

    2014-01-01

    Oral mucositis is one of the major side effects of cancer chemotherapy (30-76%) and radiotherapy (over 50%). Current palliative treatments of oral mucositis include specialized agents like pelifermin, platelet derived factors etc. or oral hygienic agents which suffered from various drawbacks like systemic side effect, least effect owing to fast wash out of buccal mucosa, patient unfriendly delivery systems, and mere symptomatic relief. In this research work, N-succinyl chitosan gel delivery system of microemulsified eugenol, honey and sodium hyaluronate was prepared to explore their multiple and synergistic effects on various pathological factors of oral mucositis. N-succinyl chitosan was synthesized in our laboratory and loaded with microemulsified eugenol (10% v/v), honey (10% v/v) and sodium hyaluronate (0.2% w/v) to prepare orogel with optimum pH, spreadability, mucoadhesion strength, and viscosity. In vitro eugenol release from N-succinyl chitosan gel after 8 hours in PBS (pH-6.4) was found to be 87.45±0.14%, which was better in comparison to that released from chitosan gel. Ex vivo penetration studies using rat buccal mucosal tissue also suggested better J-efflux of eugenol through N-succinyl chitosan in comparison to chitosan gel with enhancement ratio (ER) of 1.71. The antimicrobial effect of N-succinyl chitosan based orogel against S. aureus and C. albicans efficacy was found to be statistically high in comparison to chitosan based orogel as well as marketed formulation of chlorhexidine (pgel formulation within 15 days. The formulation was successful in elevating the survival and reducing the inflammation in the oral mucosa of animals compared to disease control (p<0.05) and hence suggesting the potential of N-succinyl chitosan orogel in the treatment of oral mucositis.

  20. Improved Oral Bioavailability Using a Solid Self-Microemulsifying Drug Delivery System Containing a Multicomponent Mixture Extracted from Salvia miltiorrhiza.

    Science.gov (United States)

    Bi, Xiaolin; Liu, Xuan; Di, Liuqing; Zu, Qiang

    2016-04-08

    The active ingredients of salvia (dried root of Salvia miltiorrhiza) include both lipophilic (e.g., tanshinone IIA, tanshinone I, cryptotanshinone and dihydrotanshinone I) and hydrophilic (e.g., danshensu and salvianolic acid B) constituents. The low oral bioavailability of these constituents may limit their efficacy. A solid self-microemulsifying drug delivery system (S-SMEDDS) was developed to load the various active constituents of salvia into a single drug delivery system and improve their oral bioavailability. A prototype SMEDDS was designed using solubility studies and phase diagram construction, and characterized by self-emulsification performance, stability, morphology, droplet size, polydispersity index and zeta potential. Furthermore, the S-SMEDDS was prepared by dispersing liquid SMEDDS containing liposoluble extract into a solution containing aqueous extract and hydrophilic polymer, and then freeze-drying. In vitro release of tanshinone IIA, salvianolic acid B, cryptotanshinone and danshensu from the S-SMEDDS was examined, showing approximately 60%-80% of each active component was released from the S-SMEDDS in vitro within 20 min. In vivo bioavailability of these four constituents indicated that the S-SMEDDS showed superior in vivo oral absorption to a drug suspension after oral administration in rats. It can be concluded that the novel S-SMEDDS developed in this study increased the dissolution rate and improved the oral bioavailability of both lipophilic and hydrophilic constituents of salvia. Thus, the S-SMEDDS can be regarded as a promising new method by which to deliver salvia extract, and potentially other multicomponent drugs, by the oral route.

  1. Agreement and Reliability of Fasted and Oral Glucose Tolerance Test-Derived Indices of Insulin Sensitivity and Beta Cell Function in Boys.

    Science.gov (United States)

    Cockcroft, Emma Joanne; Williams, Craig Anthony; Jackman, Sarah Rebecca; Armstrong, Neil; Barker, Alan R

    2017-06-01

    Assessment of plasma insulin and glucose outcomes is important in paediatric studies aimed at reducing future risk of type 2 diabetes and cardiovascular disease. The aims of this study are to determine the between-method agreement and the day-to-day reliability of fasting and oral glucose tolerance test (OGTT)-derived estimates of insulin sensitivity and β-cell function in healthy boys. Fasting and OGTT assesments of insulin resistance and β-cell function were performed on 28 boys (12.3±2.9 years). Measurements were repeated after 1 week (fasting, n=28) and 1 day (OGTT, n=8). Agreement between estimates of insulin resistance and β-cell function was examined using Pearson's correlation coefficient. Reliability was assessed using change in the mean, Pearson's correlation coefficient, and typical error expressed as a coefficient of variation (CV). The Matsuda index was positively related with QUICKI (r=0.88, P0.05). For reliability, QUICKI had the lowest CV% for the fasting (4.7%) and the Cederholm index for the OGTT (6.4%) estimates. The largest CV% was observed in fasting insulin (30.8%) and insulinogenic index 30' (62.5%). This study highlights differences in between-method agreement and day-to-day reliability for estimates of insulin resistance in youth. The low CV supports the use of the FGIR (fasting) and Cederholm (OGTT) indices in this population. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Comparative Evaluation of Whole Body and Hepatic Insulin Resistance Using Indices from Oral Glucose Tolerance Test in Morbidly Obese Subjects with Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Kamran Qureshi

    2010-01-01

    Full Text Available Nonalcoholic Fatty Liver Disease (NAFLD is the hepatic manifestation of metabolic syndrome and is a marker of Insulin Resistance (IR. Euglycemic-hyperinsulinemic clamp is the gold standard for measuring whole body IR (hepatic + peripheral IR. However, it is an invasive and expensive procedure. Homeostasis Model Assessment Index for Insulin Sensitivity (HOMA-IS, Quantitative Insulin Sensitivity Check Index (QUICKI for hepatic IR and Insulin Sensitivity Index (ISI0,120, and Whole Body Insulin Sensitivity Index (WBISI for whole body IR are the indices calculated after Oral Glucose Tolerance Test (OGTT. We used these indices as noninvasive methods of IR (inverse of insulin sensitivity estimation and compared hepatic/peripheral components of whole body IR in NAFLD. Methods. 113 morbidly obese, nondiabetic subjects who underwent gastric bypass surgery and intraoperative liver biopsy were included in the study. OGTT was performed preoperatively and the indices were calculated. Subjects were divided into closely matched groups as normal, fatty liver (FL and Non-Alcoholic Steatohepatitis (NASH based on histology. Results. Whole body IR was significantly higher in both FL and NASH groups (NAFLD as compared to Normal, while hepatic IR was higher only in NASH from Normal. Conclusions. FL is a manifestation of peripheral IR but not hepatic IR.

  3. A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles.

    Science.gov (United States)

    Zariwala, M Gulrez; Elsaid, Naba; Jackson, Timothy L; Corral López, Francisco; Farnaud, Sebastien; Somavarapu, Satyanarayana; Renshaw, Derek

    2013-11-18

    Iron (Fe) loaded solid lipid nanoparticles (SLN's) were formulated using stearic acid and iron absorption was evaluated in vitro using the cell line Caco-2 with intracellular ferritin formation as a marker of iron absorption. Iron loading was optimised at 1% Fe (w/w) lipid since an inverse relation was observed between initial iron concentration and SLN iron incorporation efficiency. Chitosan (Chi) was included to prepare chitosan coated SLN's. Particle size analysis revealed a sub-micron size range (300.3±31.75 nm to 495.1±80.42 nm), with chitosan containing particles having the largest dimensions. As expected, chitosan (0.1%, 0.2% and 0.4% w/v) conferred a net positive charge on the particle surface in a concentration dependent manner. For iron absorption experiments equal doses of Fe (20 μM) from selected formulations (SLN-FeA and SLN-Fe-ChiB) were added to Caco-2 cells and intracellular ferritin protein concentrations determined. Caco-2 iron absorption from SLN-FeA (583.98±40.83 ng/mg cell protein) and chitosan containing SLN-Fe-ChiB (642.77±29.37 ng/mg cell protein) were 13.42% and 24.9% greater than that from ferrous sulphate (FeSO4) reference (514.66±20.43 ng/mg cell protein) (p≤0.05). We demonstrate for the first time preparation, characterisation and superior iron absorption in vitro from SLN's, suggesting the potential of these formulations as a novel system for oral iron delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The impact of maternal obesity, age, pre-eclampsia and insulin dependent diabetes on severe maternal morbidity by mode of delivery-a register-based cohort study.

    Science.gov (United States)

    Pallasmaa, Nanneli; Ekblad, Ulla; Gissler, Mika; Alanen, Anna

    2015-02-01

    To determine the rate of severe maternal morbidity related to delivery by delivery mode and to assess if the impact of studied risk factors varies by delivery mode. A register-based study including all women having singleton delivery in Finland in 2007-2011, n = 292,253, data derived from the Finnish Medical Birth Registry and Hospital Discharge Registry. Diagnoses and interventions indicating a severe maternal complication were searched and the mode of delivery was assessed by data linkage. The impact of obesity, maternal age 35 years or more, pre-eclampsia and insulin dependent diabetes on severe maternal morbidity (all severe complications, severe infections and severe) was studied in each mode of delivery and calculated as Odds ratios. The overall incidence of severe complications was 12.8/1,000 deliveries. The total complication rate was lowest in vaginal deliveries (VD) in all risk groups. Obesity increased the risk for all severe complications and severe infections in the total population, but not significantly in specific delivery modes. Age increased the risk of hemorrhage in VD. Pre-eclampsia increased the risk for hemorrhage in all deliveries except elective CS. In women with pre-eclampsia, overall morbidity was similar in VD, attempted VD and elective CS. The presence of any studied risk factor increased the risk for complications within the risk groups by the high proportion of emergency CS performed. An attempt of VD is the safest way to deliver even for high-risk women with the exception of women with pre-eclampsia, who had a similar risk in an attempt of VD and elective CS.

  5. Evaluation of current trends and recent development in insulin therapy for management of diabetes mellitus.

    Science.gov (United States)

    Nawaz, Muhammad Sarfraz; Shah, Kifayat Ullah; Khan, Tahir Mehmood; Rehman, Asim Ur; Rashid, Haroon Ur; Mahmood, Sajid; Khan, Shahzeb; Farrukh, Muhammad Junaid

    2017-07-08

    Diabetes mellitus is a major health problem in developing countries. There are various insulin therapies to manage diabetes mellitus. This systematic review evaluates various insulin therapies for management of diabetes mellitus worldwide. This review also focuses on recent developments being explored for better management of diabetes mellitus. We reviewed a number of published articles from 2002 to 2016 to find out the appropriate management of diabetes mellitus. The paramount parameters of the selected studies include the insulin type & its dose, type of diabetes, duration and comparison of different insulin protocols. In addition, various newly developed approaches for insulin delivery with potential output have also been evaluated. A great variability was observed in managing diabetes mellitus through insulin therapy and the important controlling factors found for this therapy include; dose titration, duration of insulin use, type of insulin used and combination therapy of different insulin. A range of research articles on current trends and recent advances in insulin has been summarized, which led us to the conclusion that multiple daily insulin injections or continuous subcutaneous insulin infusion (insulin pump) is the best method to manage diabetes mellitus. In future perspectives, development of the oral and inhalant insulin would be a tremendous breakthrough in Insulin therapy. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  6. Self-double-emulsifying drug delivery system (SDEDDS): a new way for oral delivery of drugs with high solubility and low permeability.

    Science.gov (United States)

    Qi, Xiaole; Wang, Lishuang; Zhu, Jiabi; Hu, Zhenyi; Zhang, Jie

    2011-05-16

    Water-in-oil-in-water (w/o/w) double emulsions are potential for enhancing oral bioavailability of drugs with high solubility and low permeability, but their industrial application is limited due to the instability. Herein, we developed a novel formulation, self-double-emulsifying drug delivery systems (SDEDDS) by formulating mixtures of hydrophilic surfactants and water-in-oil (w/o) emulsions, which were easier to be stable through formulations optimization. SDEDDS can spontaneously emulsify to water-in-oil-in-water (w/o/w) double emulsions in the mixed aqueous gastrointestinal environment, with drugs encapsulated in the internal water phase of the double emulsions. We employed SDEDDS to improve the oral absorption of pidotimod, a peptide-like drug with high solubility and low permeability. The optimized pidotimod-SDEDDS were found to be stable up to 6 months under 25°C. Plasma concentration-time profiles from pharmacokinetic studies in rats dosed with SDEDDS showed 2.56-fold (p<0.05) increased absorption of pidotimod, compared to the pidotimod solution. Histopathologic studies confirmed that SDEDDS exerted absorption promoting effect without serious local damages. These studies demonstrate that SDEDDS may be a promising strategy for peroral delivery of peptide and peptidomimetic drugs.

  7. Use of V-Go(®) Insulin Delivery Device in Patients with Sub-optimally Controlled Diabetes Mellitus: A Retrospective Analysis from a Large Specialized Diabetes System.

    Science.gov (United States)

    Lajara, Rosemarie; Fetchick, Dianne A; Morris, Tracy L; Nikkel, Carla

    2015-10-15

    Tight glycemic control and timely treatment can improve outcomes in patients with diabetes yet many remain sub-optimally controlled. The objective of the current study was to evaluate the effect of switching patients with sub-optimally controlled diabetes to the V-Go(®) (Valeritas Inc., Bridgewater, NJ, USA) Disposable Insulin Delivery device. A retrospective analysis of electronic medical records was conducted to assess patients with sub-optimal glycemic control defined as a glycated hemoglobin (HbA1c) >7%, switched to V-Go. Blood glucose control defined as change from baseline in HbA1c, prescribed insulin doses, body weight, concomitant anti-hyperglycemic agents, and reported hypoglycemia were collected prior to switching to V-Go and during V-Go use. Two-hundred and four patients were evaluated during the study period. Overall, there was a significant decrease in HbA1c after switching to V-Go at the 14- and 27-week follow-up visits. The least-squares mean (LSM) change in HbA1c (95% confidence interval) from baseline to 14 weeks was -1.53% (-1.69% to -1.37%; P Go (86-99 LSM units/day at baseline to 58 LSM units/day at 27 weeks; P Go than on previous therapy. V-Go is safe and effective in patients with sub-optimally controlled diabetes requiring insulin therapy. Glycemic control improved significantly, less insulin was required, and hypoglycemic events were similar after patients switched to insulin delivery by V-Go. Valeritas, Inc.

  8. Bioavailability Enhancement of Paclitaxel via a Novel Oral Drug Delivery System: Paclitaxel-Loaded Glycyrrhizic Acid Micelles

    Directory of Open Access Journals (Sweden)

    Fu-Heng Yang

    2015-03-01

    Full Text Available Paclitaxel (PTX, taxol, a classical antitumor drug against a wide range of tumors, shows poor oral bioavailability. In order to improve the oral bioavailability of PTX, glycyrrhizic acid (GA was used as the carrier in this study. This was the first report on the preparation, characterization and the pharmacokinetic study in rats of PTX-loaded GA micelles The PTX-loaded micelles, prepared with ultrasonic dispersion method, displayed small particle sizes and spherical shapes. Differential scanning calorimeter (DSC thermograms indicated that PTX was entrapped in the GA micelles and existed as an amorphous state. The encapsulation efficiency was about 90%, and the drug loading rate could reach up to 7.90%. PTX-loaded GA micelles displayed a delayed drug release compared to Taxol in the in vitro release experiment. In pharmacokinetic study via oral administration, the area under the plasma concentration-time curve (AUC0→24 h of PTX-loaded GA micelles was about six times higher than that of Taxol (p < 0.05. The significant oral absorption enhancement of PTX from PTX-loaded GA micelles could be largely due to the increased absorption in jejunum and colon intestine. All these results suggested that GA would be a promising carrier for the oral delivery of PTX.

  9. Evaluation of fasting state-/oral glucose tolerance test-derived measures of insulin release for the detection of genetically impaired β-cell function.

    Directory of Open Access Journals (Sweden)

    Silke A Herzberg-Schäfer

    Full Text Available BACKGROUND: To date, fasting state- and different oral glucose tolerance test (OGTT-derived measures are used to estimate insulin release with reasonable effort in large human cohorts required, e.g., for genetic studies. Here, we evaluated twelve common (or recently introduced fasting state-/OGTT-derived indices for their suitability to detect genetically determined β-cell dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: A cohort of 1364 White European individuals at increased risk for type 2 diabetes was characterized by OGTT with glucose, insulin, and C-peptide measurements and genotyped for single nucleotide polymorphisms (SNPs known to affect glucose- and incretin-stimulated insulin secretion. One fasting state- and eleven OGTT-derived indices were calculated and statistically evaluated. After adjustment for confounding variables, all tested SNPs were significantly associated with at least two insulin secretion measures (p≤0.05. The indices were ranked according to their associations' statistical power, and the ranks an index obtained for its associations with all the tested SNPs (or a subset were summed up resulting in a final ranking. This approach revealed area under the curve (AUC(Insulin(0-30/AUC(Glucose(0-30 as the best-ranked index to detect SNP-dependent differences in insulin release. Moreover, AUC(Insulin(0-30/AUC(Glucose(0-30, corrected insulin response (CIR, AUC(C-Peptide(0-30/AUC(Glucose(0-30, AUC(C-Peptide(0-120/AUC(Glucose(0-120, two different formulas for the incremental insulin response from 0-30 min, i.e., the insulinogenic indices (IGI(2 and IGI(1, and insulin 30 min were significantly higher-ranked than homeostasis model assessment of β-cell function (HOMA-B; p<0.05. AUC(C-Peptide(0-120/AUC(Glucose(0-120 was best-ranked for the detection of SNPs involved in incretin-stimulated insulin secretion. In all analyses, HOMA-β displayed the highest rank sums and, thus, scored last. CONCLUSIONS/SIGNIFICANCE: With AUC(Insulin(0

  10. Altered distribution of regulatory lymphocytes by oral administration of soy-extracts exerts a hepatoprotective effect alleviating immune mediated liver injury, non-alcoholic steatohepatitis and insulin resistance

    Science.gov (United States)

    Khoury, Tawfik; Ben Ya'acov, Ami; Shabat, Yehudit; Zolotarovya, Lidya; Snir, Ram; Ilan, Yaron

    2015-01-01

    AIM: To determine the immune-modulatory and the hepatoprotective effects of oral administration of two soy extracts in immune mediated liver injury and non-alcoholic steatohepatitis (NASH). METHODS: Two soy extracts, M1 and OS, were orally administered to mice with concanavalin A (ConA) immune-mediated hepatitis, to high-fat diet (HFD) mice and to methionine and choline reduced diet combined with HFD mice. Animals were followed for disease and immune biomarkers. RESULTS: Oral administration of OS and M1 had an additive effect in alleviating ConA hepatitis manifested by a decrease in alanine aminotransferase and aspartate aminotransferase serum levels. Oral administration of the OS and M1 soy derived fractions, ameliorated liver injury in the high fat diet model of NASH, manifested by a decrease in hepatic triglyceride levels, improvement in liver histology, decreased serum cholesterol and triglycerides and improved insulin resistance. In the methionine and choline reduced diet combined with the high fat diet model, we noted a decrease in hepatic triglycerides and improvement in blood glucose levels and liver histology. The effects were associated with reduced serum tumor necrosis factor alpha and alteration of regulatory T cell distribution. CONCLUSION: Oral administration of the combination of OS and M1 soy derived extracts exerted an adjuvant effect in the gut-immune system, altering the distribution of regulatory T cells, and alleviating immune mediated liver injury, hyperlipidemia and insulin resistance. PMID:26139990

  11. Preparation and characterization of insulin-surfactant complexes for loading into lipid-based drug delivery systems

    DEFF Research Database (Denmark)

    Li, Ping; Nielsen, Hanne Mørck; Fano, Mathias

    2013-01-01

    as complexing surfactant and dimethyl sulfoxide (DMSO) as solvent. Significant change in secondary structure of insulin freeze dried from DMSO was observed using Fourier transform infrared spectroscopy. Changes were quantitatively smaller in the presence of surfactants, demonstrating both a stabilizing effect...... of insulin after freeze-drying from DMSO, constituting a potential generic issue with this technique for protein processing. In the specific case of insulin, the changes were found to be reversible, explaining the success of this strategy in previous studies....

  12. Probiotic Ferulic Acid Esterase Active Lactobacillus fermentum NCIMB 5221 APA Microcapsules for Oral Delivery: Preparation and in Vitro Characterization.

    Science.gov (United States)

    Tomaro-Duchesneau, Catherine; Saha, Shyamali; Malhotra, Meenakshi; Coussa-Charley, Michael; Kahouli, Imen; Jones, Mitchell L; Labbé, Alain; Prakash, Satya

    2012-02-16

    Probiotics possess potential therapeutic and preventative effects for various diseases and metabolic disorders. One important limitation for the oral delivery of probiotics is the harsh conditions of the upper gastrointestinal tract (GIT) which challenge bacterial viability and activity. One proposed method to surpass this obstacle is the use of microencapsulation to improve the delivery of bacterial cells to the lower GIT. The aim of this study is to use alginate-poly-L-lysine-alginate (APA) microcapsules to encapsulate Lactobacillus fermentum NCIMB 5221 and characterize its enzymatic activity and viability through a simulated GIT. This specific strain, in previous research, was characterized for its inherent ferulic acid esterase (FAE) activity which could prove beneficial in the development of a therapeutic for the treatment and prevention of cancers and metabolic disorders. Our findings demonstrate that the APA microcapsule does not slow the mass transfer of substrate into and that of the FA product out of the microcapsule, while also not impairing bacterial cell viability. The use of simulated gastrointestinal conditions led to a significant 2.5 log difference in viability between the free (1.10 × 104 ± 1.00 × 103 cfu/mL) and the microencapsulated (5.50 × 106 ± 1.00 × 105 cfu/mL) L. fermentum NCIMB 5221 following exposure. The work presented here suggests that APA microencapsulation can be used as an effective oral delivery method for L. fermentum NCIMB 5221, a FAE-active probiotic strain.

  13. Probiotic Ferulic Acid Esterase Active Lactobacillus fermentum NCIMB 5221 APA Microcapsules for Oral Delivery: Preparation and in Vitro Characterization

    Directory of Open Access Journals (Sweden)

    Catherine Tomaro-Duchesneau

    2012-02-01

    Full Text Available Probiotics possess potential therapeutic and preventative effects for various diseases and metabolic disorders. One important limitation for the oral delivery of probiotics is the harsh conditions of the upper gastrointestinal tract (GIT which challenge bacterial viability and activity. One proposed method to surpass this obstacle is the use of microencapsulation to improve the delivery of bacterial cells to the lower GIT. The aim of this study is to use alginate-poly-L-lysine-alginate (APA microcapsules to encapsulate Lactobacillus fermentum NCIMB 5221 and characterize its enzymatic activity and viability through a simulated GIT. This specific strain, in previous research, was characterized for its inherent ferulic acid esterase (FAE activity which could prove beneficial in the development of a therapeutic for the treatment and prevention of cancers and metabolic disorders. Our findings demonstrate that the APA microcapsule does not slow the mass transfer of substrate into and that of the FA product out of the microcapsule, while also not impairing bacterial cell viability. The use of simulated gastrointestinal conditions led to a significant 2.5 log difference in viability between the free (1.10 × 104 ± 1.00 × 103 cfu/mL and the microencapsulated (5.50 × 106 ± 1.00 × 105 cfu/mL L. fermentum NCIMB 5221 following exposure. The work presented here suggests that APA microencapsulation can be used as an effective oral delivery method for L. fermentum NCIMB 5221, a FAE-active probiotic strain.

  14. Cysteine modified and bile salt based micelles: preparation and application as an oral delivery system for paclitaxel.

    Science.gov (United States)

    Xu, Wei; Fan, Xiaohui; Zhao, Yanli; Li, Lingbing

    2015-04-01

    The aim of the present study is to construct a cysteine modified polyion complex micelles made of Pluronic F127-chitosan (PF127-CS), Pluronic F127-cysteine (PF127-cysteine) and sodium cholate (NaC) and to evaluate the potential of the micelles as an oral drug delivery system for paclitaxel. Systematic studies on physicochemical properties including size distribution, zeta-potential and morphology were conducted to validate the formation of micelle structure. Compared with Pluronic micelles, drug-loading capacity of PF127-CS/PF127-cysteine/NaC micelles was increased from 3.35% to 12.77%. Both the critical micelle concentration and the stability test confirmed that the PF127-CS/PF127-cysteine/NaC micelles were more stable in aqueous solution than sodium cholate micelles. Pharmacokinetic study demonstrated that when oral administration the area under the plasma concentration-time curve (AUC0-∞) and the absolute bioavailability of paclitaxel-loaded micelles were five times greater than that of the paclitaxel solution. In general, PF127-CS/PF127-cysteine/NaC micelles were proven to be a potential oral drug delivery system for paclitaxel.

  15. Miconazole-loaded nanostructured lipid carriers (NLC) for local delivery to the oral mucosa: improving antifungal activity.

    Science.gov (United States)

    Mendes, A I; Silva, A C; Catita, J A M; Cerqueira, F; Gabriel, C; Lopes, C M

    2013-11-01

    Miconazole is a widely used antifungal agent with poor aqueous solubility, which requires the development of drug delivery systems able to improve its therapeutic activity. For this purpose, a miconazole-loaded nanostructured lipid carriers (NLC) dispersion was prepared and characterized. Further, the dispersion was used to prepare a NLC-based hydrogel formulation proposed as an alternative system to improve the local delivery of miconazole to the oral mucosa. NLC dispersion showed particles in the nanometer range (≈ 200 nm) with low polidispersity index (87%). A controlled miconazole release was observed from NLC and NLC-based hydrogel formulations, in contrast to a commercial oral gel formulation, which demonstrated a faster release. Additionally, it was observed that the encapsulation of miconazole in the NLC improved its antifungal activity against Candida albicans. Therefore, it was demonstrated that the encapsulation of miconazole in NLC allows for obtaining the same therapeutic effect of a commercial oral gel formulation, using a 17-fold lower dose of miconazole. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Reduced hypoglycemia and increased time in target using closed-loop insulin delivery during nights with or without antecedent afternoon exercise in type 1 diabetes.

    Science.gov (United States)

    Sherr, Jennifer L; Cengiz, Eda; Palerm, Cesar C; Clark, Bud; Kurtz, Natalie; Roy, Anirban; Carria, Lori; Cantwell, Martin; Tamborlane, William V; Weinzimer, Stuart A

    2013-10-01

    Afternoon exercise increases the risk of nocturnal hypoglycemia (NH) in subjects with type 1 diabetes. We hypothesized that automated feedback-controlled closed-loop (CL) insulin delivery would be superior to open-loop (OL) control in preventing NH and maintaining a higher proportion of blood glucose levels within the target blood glucose range on nights with and without antecedent afternoon exercise. Subjects completed two 48-h inpatient study periods in random order: usual OL control and CL control using a proportional-integrative-derivative plus insulin feedback algorithm. Each admission included a sedentary day and an exercise day, with a standardized protocol of 60 min of brisk treadmill walking to 65-70% maximum heart rate at 3:00 p.m. Among 12 subjects (age 12-26 years, A1C 7.4±0.6%), antecedent exercise increased the frequency of NH (reference blood glucoseexercise during CL control (P=0.04 vs. OL nights). Overnight, the percentage of glucose values in target range was increased with CL control (Pexercise on CL versus OL, P=0.008. CL insulin delivery provides an effective means to reduce the risk of NH while increasing the percentage of time spent in target range, regardless of activity level in the mid-afternoon. These data suggest that CL control could be of benefit to patients with type 1 diabetes even if it is limited to the overnight period.

  17. Effect of oral glucose administration on rebound growth hormone release in normal and obese women: the role of adiposity, insulin sensitivity and ghrelin.

    Directory of Open Access Journals (Sweden)

    Lara Pena-Bello

    Full Text Available Metabolic substrates and nutritional status play a major role in growth hormone (GH secretion. Uncovering the mechanisms involved in GH secretion following oral glucose (OG administration in normal and obese patients is a pending issue.The aim of this study was to investigate GH after OG in relation with adiposity, insulin secretion and action, and ghrelin secretion in obese and healthy women, to further elucidate the mechanism of GH secretion after OG and the altered GH secretion in obesity.We included 64 healthy and obese women. After an overnight fast, 75 g of OG were administered; GH, glucose, insulin and ghrelin were obtained during 300 minutes. Insulin secretion and action indices and the area under the curve (AUC were calculated for GH, glucose, insulin and ghrelin. Univariate and multivariate linear regression analyses were employed.The AUC of GH (μg/L•min was lower in obese (249.8±41.8 than in healthy women (490.4±74.6, P=0.001. The AUC of total ghrelin (pg/mL•min was lower in obese (240995.5±11094.2 than in healthy women (340797.5±37757.5, P=0.042. There were significant correlations between GH secretion and the different adiposity, insulin secretion and action, and ghrelin secretion indices. After multivariate analysis only ghrelin AUC remained a significant predictor for fasting and peak GH.

  18. Enhancing in vivo Bioavailability in Beagle Dogs of GLM-7 as a Novel Anti-Leukemia Drug through a Self-Emulsifying Drug Delivery System for Oral Delivery.

    Science.gov (United States)

    Wang, Yuli; Yu, Ning; Guo, Rui; Yang, Meiyan; Shan, Li; Huang, Wei; Gong, Wei; Shao, Shuai; Chen, Xiaoping; Gao, Chunsheng

    2016-01-01

    GLM-7 is a novel anti-leukemia drug in the pre-clinical study. The previous study shows that GLM-7 is a poorly water-soluble drug with low oral bioavailability. In this study, we employed the self-emulsifying drug delivery system (SEDDS) to improve the oral bioavailability of GLM-7. The GLM-7 SEDDS formulation was prepared using MCT as oil, ovolecithin as surfactant and Transcutol as co-surfactant, and the formulation parameters were optimized by the response surface methodology. The optimized GLM-7 SEDDS formulation showed a stable liquid state, and can automatically emulsify to form the isotropic emulsion once exposure to the water phase. The generated emulsion showed the spherical shape, and had an average size of about 399 nm and a zeta potential of about -42 mV. Compared to the GLM-7 dissolution less than 1.4% from pure GLM-7 powder (reference), the GLM-7 SEDDS formulation could remarkably enhance the in vitro dissolution to 83% in the medium of 0.1N HCL. The in vivo oral bioavailability of GLM-7 SEDDS formulation was investigated in beagle dogs. The results demonstrated that the GLM-7 SEDDS formulation significantly enhanced the plasma concentrations of GLM-7, and the Cmax reached to 878 ng/ml and was 9.2 folds as high as the Cmax 95.85 ng/ml of reference. Moreover, the area under the curve (AUC) of GLM-7 SEDDS formulation was 13.6 times higher than that of reference, which suggested that the SEDDS formulation remarkably increased the oral bioavailability of GLM-7.

  19. Oral Delivery of a Novel Recombinant Streptococcus mitis Vector Elicits Robust Vaccine Antigen-Specific Oral Mucosal and Systemic Antibody Responses and T Cell Tolerance.

    Directory of Open Access Journals (Sweden)

    Emily Xie

    Full Text Available The pioneer human oral commensal bacterium Streptococcus mitis has unique biologic features that make it an attractive mucosal vaccine or therapeutic delivery vector. S. mitis is safe as a natural persistent colonizer of the mouth, throat and nasopharynx and the oral commensal bacterium is capable of inducing mucosal antibody responses. A recombinant S. mitis (rS. mitis that stably expresses HIV envelope protein was generated and tested in the germ-free mouse model to evaluate the potential usefulness of this vector as a mucosal vaccine against HIV. Oral vaccination led to the efficient and persistent bacterial colonization of the mouth and the induction of both salivary and systemic antibody responses. Interestingly, persistently colonized animals developed antigen-specific systemic T cell tolerance. Based on these findings we propose the use of rS. mitis vaccine vector for the induction of mucosal antibodies that will prevent the penetration of the mucosa by pathogens such as HIV. Moreover, the first demonstration of rS. mitis having the ability to elicit T cell tolerance suggest the potential use of rS. mitis as an immunotherapeutic vector to treat inflammatory, allergic and autoimmune diseases.

  20. Effects of oral L-carnitine supplementation on insulin sensitivity indices in response to glucose feeding in lean and overweight/obese males.

    Science.gov (United States)

    Galloway, Stuart D R; Craig, Thomas P; Cleland, Stephen J

    2011-07-01

    Infusion of carnitine has been observed to increase non-oxidative glucose disposal in several studies, but the effect of oral carnitine on glucose disposal in non-diabetic lean versus overweight/obese humans has not been examined. This study examined the effects of 14 days of L-carnitine L-tartrate oral supplementation (LC) on blood glucose, insulin, NEFA and GLP-1 responses to an oral glucose tolerance test (OGTT). Sixteen male participants were recruited [lean (n = 8) and overweight/obese (n = 8)]. After completing a submaximal predictive exercise test, participants were asked to attend three experimental sessions. These three visits were conducted in the morning to obtain fasting blood samples and to conduct 2 h OGTTs. The first visit was a familiarisation trial and the final two visits were conducted 2 weeks apart following 14 days of ingestion of placebo (PL, 3 g glucose/day) and then LC (3 g LC/day) ingested as two capsules 3×/day with meals. On each visit, blood was drawn at rest, at intervals during the OGTT for analysis of glucose, insulin, non-esterified fatty acids (NEFA) and total glucagon-like peptide-1 (GLP-1). Data obtained were used for determination of usual insulin sensitivity indices (HOMA-IR, AUC glucose, AUC insulin, 1st phase and 2nd phase β-cell function, estimated insulin sensitivity index and estimated metabolic clearance rate). Data were analysed using RMANOVA and post hoc comparisons where appropriate. There was a significant difference between groups for body mass, % fat and BMI with no significant difference in age and height. Mean (SEM) plasma glucose concentration at 30 min was significantly lower (p supplementation induces changes in blood glucose handling/disposal during an OGTT, which is not influenced by GLP-1. The glucose handling/disposal response to oral LC is different between lean and overweight/obese suggesting that further investigation is required. LC effects on gastric emptying and/or direct 'insulin-like' actions on

  1. A novel bile salts-lipase polymeric film-infused minitablet system for enhanced oral delivery of cholecalciferol.

    Science.gov (United States)

    Braithwaite, Miles C; Choonara, Yahya E; Kumar, Pradeep; Tomar, Lomas K; Du Toit, Lisa C; Pillay, Viness

    2016-11-01

    Few researchers have investigated the use of multiple physiological enhancers combined with synthetic carriers to augment delivery of nutraceuticals. The current work describes the development of an oral delivery system termed a bioactive association platform (BAP) capable of delivering nutraceutical actives from a formulation framework specifically for enhancing the in vitro and in vivo performance of model vitamin, cholecalciferol (Vitamin D3). Synthesis of a novel triple vitamin minitablet and an optimized bile salt/lipase alginate-glycerin film provided unique oral components for inclusion in a BAP capsule. Component validation and physicochemical characterizations included comparative ex vivo permeability, chemical structure mapping, thermodynamic analysis and magnetic resonance imaging. In vitro dissolution studies of the BAP produced an area under the dissolution curve (AUC) for cholecalciferol release that was 28% greater than a conventional comparator product. A total of 84.01% of cholecalciferol was released from the BAP within 3 h versus only 59% from a comparator. Ex vivo permeation studies revealed superior cholecalciferol membrane diffusion from the triple vitamin minitablet BAP component. In vivo performance showed a greater mean change from baseline cholecalciferol to peak plasma levels (Cmax) from the BAP compared to the comparator (55.66 versus 46.05 ng/mL). Cholecalciferol bioavailability was improved in vivo with an AUC0-inf from the BAP that was 3.2× greater than the conventional product. The BAP was also superior at improving and maintaining serum levels of the main metabolite, 25-hydroxyvitamin D3, compared to the conventional system. In vitro and in vivo results thus confirmed improvements in cholecalciferol dissolution, membrane permeability and plasma drug levels. The study results position the BAP as an ideal oral vehicle for enhanced delivery of cholecalciferol.

  2. Development of self-nanoemulsifying drug delivery system for oral bioavailability enhancement of valsartan in beagle dogs.

    Science.gov (United States)

    Li, Zhenbao; Zhang, Wenjuan; Gao, Yan; Xiang, Rongwu; Liu, Yan; Hu, Mingming; Zhou, Mei; Liu, Xiaohong; Wang, Yongjun; He, Zhonggui; Sun, Yinghua; Sun, Jin

    2017-02-01

    Valsartan, an angiotensin II receptor antagonist, is widely used to treat high blood pressure in the clinical setting. However, its poor water solubility results in the low oral bioavailability. The aim of this study was to improve dissolution rate and oral bioavailability by developing a self-nanoemulsifying drug delivery system. Saturation solubility of valsartan in various oils, surfactants, and cosurfactants was investigated, and the optimized formulation was determined by central composite design-response surface methodology. The shape of resultant VAL-SNEDDS was spherical with an average diameter of about 27 nm. And the drug loading efficiency is approximately 14 wt%. Differential scanning calorimetry and XRD studies disclosed the molecular or amorphous state of valsartan in VAL-SNEDDS. The dissolution study indicated that the self-nanoemulsifying drug delivery systems (SNEDDS) exhibited significantly enhanced dissolution compared with market capsules (Diovan®) in various media. Furthermore, the stability of formulation revealed that valsartan SNEDDS was stable under low temperature and accelerated test condition. Furthermore, the pharmacokinetics demonstrated that C max and AUC(0-∞) of SNEDDS capsules were about three- and twofold higher than Diovan® in beagle dogs, respectively. Meanwhile, the safety evaluation implied that VAL-SNEDDS was innocuous to beagle dogs during 15 days of continuous administration. Our results suggested that VAL-SNEDDS was a potential and safe delivery system with enhanced dissolution rate and oral bioavailability, as well as offered a strategy for the engineering of poorly water-soluble drugs in the clinical setting.

  3. Physicochemical Properties of Solid Phospholipid Particles as a Drug Delivery Platform for Improving Oral Absorption of Poorly Soluble Drugs.

    Science.gov (United States)

    Kawakami, Kohsaku; Miyazaki, Aoi; Fukushima, Mayuko; Sato, Keiko; Yamamura, Yuko; Mohri, Kohta; Sakuma, Shinji

    2017-01-01

    A novel drug delivery platform, mesoporous phospholipid particle (MPP), is introduced. Its physicochemical properties and ability as a carrier for enhancing oral absorption of poorly soluble drugs are discussed. MPP was prepared through freeze-drying a cyclohexane/t-butyl alcohol solution of phosphatidylcholine. Its basic properties were revealed using scanning electron microscopy, x-ray diffraction, thermal analysis, hygroscopicity measurement, and so on. Fenofibrate was loaded to MPP as a poorly soluble model drug, and effect of MPP on the oral absorption behavior was observed. MPP is spherical in shape with a diameter typically in the range of 10-15 μm and a wide surface area that exceeds 10 m(2)/g. It has a bilayer structure that may accommodate hydrophobic drugs in the acyl chain region. When fenofibrate was loaded in MPP as a model drug, it existed partially in a crystalline state and improvement in the dissolution behavior was achieved in the presence of a surfactant, because of the formation of mixed micelles composed of phospholipids and surfactants in the dissolution media. MPP greatly improved the oral absorption of fenofibrate compared to that of the crystalline drug and its efficacy was almost equivalent to that of an amorphous drug dispersion. MPP is a promising option for improving the oral absorption of poorly soluble drugs based on the novel mechanism of dissolution improvement.

  4. How can insulin initiation delivery in a dual-sector health system be optimised? A qualitative study on healthcare professionals’ views

    Directory of Open Access Journals (Sweden)

    Lee Ping Yein

    2012-04-01

    Full Text Available Abstract Background The prevalence of type 2 diabetes is increasing at an alarming rate in developing countries. However, glycaemia control remains suboptimal and insulin use is low. One important barrier is the lack of an efficient and effective insulin initiation delivery approach. This study aimed to document the strategies used and proposed by healthcare professionals to improve insulin initiation in the Malaysian dual-sector (public–private health system. Methods In depth interviews and focus group discussions were conducted in Klang Valley and Seremban, Malaysia in 2010–11. Healthcare professionals consisting of general practitioners (n = 11, medical officers (n = 8, diabetes educators (n = 3, government policy makers (n = 4, family medicine specialists (n = 10 and endocrinologists (n = 2 were interviewed. We used a topic guide to facilitate the interviews, which were audio recorded, transcribed verbatim and analysed using a thematic approach. Results Three main themes emerged from the interviews. Firstly, there was a lack of collaboration between the private and public sectors in diabetes care. The general practitioners in the private sector proposed an integrated system for them to refer patients to the public health services for insulin initiation programmes. There could be shared care between the two sectors and this would reduce the disproportionately heavy workload at the public sector. Secondly, besides the support from the government health authority, the healthcare professionals wanted greater involvement of non-government organisations, media and pharmaceutical industry in facilitating insulin initiation in both the public and private sectors. The support included: training of healthcare professionals; developing and disseminating patient education materials; service provision by diabetes education teams; organising programmes for patients’ peer group sessions; increasing awareness and demystifying

  5. How can insulin initiation delivery in a dual-sector health system be optimised? A qualitative study on healthcare professionals' views.

    Science.gov (United States)

    Lee, Ping Yein; Lee, Yew Kong; Ng, Chirk Jenn

    2012-04-30

    The prevalence of type 2 diabetes is increasing at an alarming rate in developing countries. However, glycaemia control remains suboptimal and insulin use is low. One important barrier is the lack of an efficient and effective insulin initiation delivery approach. This study aimed to document the strategies used and proposed by healthcare professionals to improve insulin initiation in the Malaysian dual-sector (public-private) health system. In depth interviews and focus group discussions were conducted in Klang Valley and Seremban, Malaysia in 2010-11. Healthcare professionals consisting of general practitioners (n = 11), medical officers (n = 8), diabetes educators (n = 3), government policy makers (n = 4), family medicine specialists (n = 10) and endocrinologists (n = 2) were interviewed. We used a topic guide to facilitate the interviews, which were audio recorded, transcribed verbatim and analysed using a thematic approach. Three main themes emerged from the interviews. Firstly, there was a lack of collaboration between the private and public sectors in diabetes care. The general practitioners in the private sector proposed an integrated system for them to refer patients to the public health services for insulin initiation programmes. There could be shared care between the two sectors and this would reduce the disproportionately heavy workload at the public sector. Secondly, besides the support from the government health authority, the healthcare professionals wanted greater involvement of non-government organisations, media and pharmaceutical industry in facilitating insulin initiation in both the public and private sectors. The support included: training of healthcare professionals; developing and disseminating patient education materials; service provision by diabetes education teams; organising programmes for patients' peer group sessions; increasing awareness and demystifying insulin via public campaigns; and subsidising glucose

  6. [Alcohol tolerance in patients with non-insulin-dependent diabetes (type 2) treated orally with drugs--derivatives of sulphonylurea].

    Science.gov (United States)

    Lao, B; Czyzyk, A; Szutowski, M; Szczepanik, Z

    1993-06-01

    The oral ethanol loading test (0.5 g per kg b.m. given as 40% solution) was carried out in 5 groups, each of 10 patients with non-insulin-dependent (type 2) diabetes before and after 10 days of treatment with one of the following sulphonylurea derivatives: tolbutamide 0.5 t.i.d., chlorpropamide 0.5 once daily morning, glibornuride 0.025 t.i.d, glibenclamide 0.005 t.i.d. and glipizide 0.005 t.i.d. The response to alcohol (facial flush, heart rate, blood pressure) were compared, and blood concentration of ethanol, acetaldehyde, pyruvate, lactate, carbonates as well as blood pH, pO2 and pCO2 were determined in fasting state and during 6 hours after alcohol ingestion. In all patients the family history of diabetes and the presence and degree of vascular complications were registered. Evident flushing phenomenon was observed in 6 patients treated with chlorpropamide, in 3 treated with tolbutamide, in 2 treated with glibenclamide, in one receiving glibornuride and in none treated with glipizide. All drugs caused a greater rise of blood ethanol and acetaldehyde levels in relation to the control tests, but the difference reached statistical significance only in the group receiving chlorpropamide. Moreover, patients (pooled) with positive thermographic response had also significantly higher blood levels of ethanol and acetaldehyde during the second test. The ratio of acetaldehyde to ethanol concentration in blood (mumol:mmol) was not significantly changed in any group indicating parallel impairment of both steps of ethanol metabolism. All studied drugs intensified to a similar degree the alcohol-induced hypoglycaemia, but had no significant effect on the decrease of blood pyruvate level neither on the increase of blood lactate level. They didn't change the post-alcohol decrease of blood bicarbonate and pH, and didn't modify the behaviour of partial gas pressure. There was also no difference between pooled groups of patients with positive and negative thermographic reaction

  7. Experiences of continuous subcutaneous insulin infusion in pregnant women with type 1 diabetes during delivery from four Italian centers: a retrospective observational study.

    Science.gov (United States)

    Fresa, Raffaella; Visalli, Natalia; Di Blasi, Vincenzo; Cavallaro, Vincenzo; Ansaldi, Egle; Trifoglio, Oria; Abbruzzese, Santina; Bongiovanni, Marzia; Agrusta, Mariano; Napoli, Angela

    2013-04-01

    An optimized metabolic control during delivery is mandatory to prevent maternal-neonatal complications. The primary aim of this study was to evaluate the efficacy and safety of continuous subcutaneous insulin infusion (CSII) during delivery in pregnant women with type 1 diabetes. The secondary aim was to assess the impact of real-time continuous glucose monitoring (RT-CGM) added to CSII versus CSII alone. This was a multicenter observational retrospective study. A standardized protocol, to use CSII throughout pregnancy and delivery, foresaw three different insulin basal rates according to blood glucose level: profile A, the last basal rate in use; profile B, preventive 50% reduction of the last basal rate in use; and profile C, 0.1-0.2 U/h for blood glucose level <70 mg/dL, activated just before anesthesia or at the beginning of active labor. An alternative intravenous protocol (IVP) was given in case of complications and relevant metabolic deterioration. Blood glucose in the target range (70-140 mg/dL) throughout delivery and percentage of activation of the IVP were primary outcomes. Sixty-five pregnant women with diabetes included in the study (56-86% cesarean section; 9-14% spontaneous/stimulated vaginal delivery). Mean blood glucose level was 102 ± 31 mg/dL at 0 min, 109 ± 42 mg/dL at 30 min, 120 ± 48 mg/dL at 60 min, and 99 ± 34 mg/dL at 24 h. Mean basal rate during delivery was 0.6 ± 0.4 U/h (profile B). Mean capillary blood glucose (CBG) level was lower in the RT-CGM group relative to the CSII-alone group: 80 ± 14 mg/dL versus 111 ± 32 mg/dL at 0 min (P<0.01), 79 ± 11 mg/dL versus 109 ± 42 mg/dL at 30 min (P<0.02), and 98 ± 20 mg/dL versus 125 ± 51 mg/dL at 60 min (difference not significant). Eleven newborns experienced transient neonatal hypoglycemia. None of the women switched to IVP. No major differences were observed according to delivery procedure. CSII is possible and safe in different types of delivery in selected and educated women. RT

  8. Low Molecular Weight Chitosan–Insulin Polyelectrolyte Complex: Characterization and Stability Studies

    Directory of Open Access Journals (Sweden)

    Zakieh I. Al-Kurdi

    2015-03-01

    Full Text Available The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte complex (I-LMWC PEC in a reverse micelle (RM system, administered to diabetic rats, results in an oral delivery system for insulin with acceptable bioactivity.

  9. Insulin therapy - new directions of research.

    Science.gov (United States)

    Cichocka, Edyta; Wietchy, Anna; Nabrdalik, Katarzyna; Gumprecht, Janusz

    2016-01-01

    Insulin therapy is the most effective method of lowering blood glucose. Over 100 years have passed the studies for the optimisation of insulin action. To date, subcutaneous insulin administration has been the basic route of insulin delivery. The search for insulin therapy is simultaneously conducted in the following directions: the optimisation of insulin action, automatisation, and the decrease in the invasiveness of insulin delivery methods. The optimisation of insulin action has led to the discovery of ultra-rapid-acting human insulin analogues, ultra-long-acting human insulin analogues, and biosimilar insulin. Automatisation referred to the "artificial pancreas" and closing the loop system in insulin pump therapy. The decrease in the invasiveness of insulin delivery methods is focused on alternative routes of insulin administration. (Endokrynol Pol 2016; 67 (3): 314-324).

  10. Achieving therapeutic goals in insulin-using diabetic patients with non-insulin-dependent diabetes mellitus. A weight reduction-exercise-oral agent approach.

    Science.gov (United States)

    Lucas, C P; Patton, S; Stepke, T; Kinhal, V; Darga, L L; Carroll-Michals, L; Spafford, T R; Kasim, S

    1987-09-18

    Non-insulin-dependent diabetes mellitus (NIDDM) is the most common form of diabetes in the civilized world. Its consequences include microvascular and macrovascular disease, both of which appear to evolve from a common background of obesity and physical inactivity. The current study was undertaken in obese patients with NIDDM to see whether improvements could be made in glycemic control as well as in many cardiovascular risk factors (obesity, hypertension, lipid abnormalities, and physical inactivity) that are typical of this condition. Fifteen obese insulin-using patients with NIDDM (average body mass index, 34.0) were treated with a 500-calorie formula diet for eight to 12 weeks. Administration of insulin and diuretics was discontinued at the onset of the study. A eucaloric diet was begun at eight to 12 weeks and maintained until Week 24. A behaviorally oriented nutrition-exercise program was instituted at the beginning of the study. Glipizide or placebo was added (randomized) at Week 15 if the fasting plasma glucose level in patients exceeded 115 mg/dl. Patients lost an average of 22 pounds over the course of 24 weeks. Frequency and duration of physical activity increased significantly from baseline, as did the maximal oxygen consumption rate. Glycemic control by 15 weeks (without insulin) was similar to baseline (with insulin). With the addition of glipizide at Week 15, both fasting plasma glucose and glucose tolerance improved significantly. This improvement was not observed with placebo. In addition, both systolic and diastolic blood pressure decreased by about 10 mm Hg. There were no significant changes in the levels of serum lipids or glycosylated hemoglobin. In conclusion, a multifaceted intervention program, employing weight reduction, exercise, diet, and glipizide therapy, can be instituted in insulin-using patients with NIDDM, with improvement in glycemic control and in certain risk factors (hypertension, obesity, physical inactivity) for cardiovascular

  11. Lipid-based cochleates: a promising formulation platform for oral and parenteral delivery of therapeutic agents.

    Science.gov (United States)

    Rao, Ravi; Squillante, Emilio; Kim, Kwon H

    2007-01-01

    Cochleates are lipid-based supramolecular assemblies that display great potential as delivery systems for systemic delivery of drugs, including peptides, proteins, vaccines, oligonucleotides, and genes. This is mainly attributed to their high stability and biocompatibility and their ability to deliver both hydrophilic and lipophilic drugs. Cochleates have a unique multilayered spiral structure, which is composed of a negatively charged phospholipid and a divalent cation, and can encapsulate diverse drug molecules of various shapes and sizes while minimizing toxicity associated with polymeric materials present in micro- and nanoparticle systems. This review describes current technological advances in the preparation methods, physicochemical characterization, and potential applications of cochleates as a drug delivery system for systemic delivery of various types of therapeutic agents.

  12. Fabrication, Modeling and Characterization of Multi-Crosslinked Methacrylate Copolymeric Nanoparticles for Oral Drug Delivery

    Directory of Open Access Journals (Sweden)

    Riaz A. Khan

    2011-09-01

    Full Text Available Nanotechnology remains the field to explore in the quest to enhance therapeutic efficacies of existing drugs. Fabrication of a methacrylate copolymer-lipid nanoparticulate (MCN system was explored in this study for oral drug delivery of levodopa. The nanoparticles were fabricated employing multicrosslinking technology and characterized for particle size, zeta potential, morphology, structural modification, drug entrapment efficiency and in vitro drug release. Chemometric Computational (CC modeling was conducted to deduce the mechanism of nanoparticle synthesis as well as to corroborate the experimental findings. The CC modeling deduced that the nanoparticles synthesis may have followed the mixed triangular formations or the mixed patterns. They were found to be hollow nanocapsules with a size ranging from 152 nm (methacrylate copolymer to 321 nm (methacrylate copolymer blend and a zeta potential range of 15.8–43.3 mV. The nanoparticles were directly compressible and it was found that the desired rate of drug release could be achieved by formulating the nanoparticles as a nanosuspension, and then directly compressing them into tablet matrices or incorporating the nanoparticles directly into polymer tablet matrices. However, sustained release of MCNs was achieved only when it was incorporated into a polymer matrix. The experimental results were well corroborated by the CC modeling. The developed technology may be potentially useful for the fabrication of multi-crosslinked polymer blend nanoparticles for oral drug delivery.

  13. Self-Nanoemulsifying Lyophilized Tablets for Flash Oral Transmucosal Delivery of Vitamin K: Development and Clinical Evaluation.

    Science.gov (United States)

    El-Say, Khalid M; Ahmed, Tarek A; Ahmed, Osama A A; Hosny, Khaled M; Abd-Allah, Fathy I

    2017-09-01

    Owing to limited solubility, vitamin K undergoes low bioavailability with large inter-individual variability after oral administration. This article aimed to prepare self-nanoemulsifying lyophilized tablets (SNELTs) for the flash oral transmucosal delivery of vitamin K. Twenty-one formulae of vitamin K self-nanoemulsifying drug delivery systems (SNEDDS) were prepared using different concentrations of vitamin K, Labrasol, and Transcutol according to mixture design. The SNEDDS was loaded on porous carriers and formulated as lyophilized tablets. The release profile and the pharmacokinetic parameters of vitamin K SNELTs were evaluated in comparison with commercial tablets and ampoules on human volunteers. Results revealed that the optimized SNEDDS showed the smallest and most stable nanoemulsion globules. SNELTs were prepared successfully and showed substantial superiority drug release compared with the commercial tablets. Interestingly, SNELTs enhanced both rate and extent of vitamin K absorption as well as relative bioavailability (169.67%) in healthy subjects compared with the commercial tablets. SNELTs revealed promising no significant difference in the area under the curve compared with the commercial intramuscular injection. SNELTs enhanced dissolution and bioavailability that expected to have the strong impact on the efficiency of vitamin K in the prophylaxis and treatment of bleeding disorders in patients with hepatic dysfunction. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Lipid-based oral delivery systems for skin deposition of a potential chemopreventive DIM derivative: characterization and evaluation.

    Science.gov (United States)

    Boakye, Cedar H A; Patel, Ketan; Patel, Apurva R; Faria, Henrique A M; Zucolotto, Valtencir; Safe, Stephen; Singh, Mandip

    2016-10-01

    The objective of this study was to explore the oral route as a viable potential for the skin deposition of a novel diindolylmethane derivative (DIM-D) for chemoprevention activity. Various lipid-based oral delivery systems were optimized and compared for enhancing DIM-D's oral bioavailability and skin deposition. Preformulation studies were performed to evaluate the log P and solubility of DIM-D. Microsomal metabolism, P-glycoprotein efflux, and caco-2 monolayer permeability of DIM-D were determined. Comparative evaluation of the oral absorption and skin deposition of DIM-D-loaded various lipid-based formulations was performed in rats. DIM-D showed pH-dependent solubility and a high log P value. It was not a strong substrate of microsomal degradation and P-glycoprotein. SMEDDs comprised of medium chain triglycerides, monoglycerides, and kolliphor-HS15 (36.70 ± 0.42 nm). SNEDDs comprised of long chain triglycerides, cremophor RH40, labrasol, and TPGS (84.00 ± 14.14 nm). Nanostructured lipid carriers (NLC) consisted of compritol, miglyol, and surfactants (116.50 ± 2.12 nm). The blank formulations all showed >70 % cell viability in caco-2 cells. Differential Scanning Calorimetry confirmed the amorphization of DIM-D within the lipid matrices while Atomic Force Microscopy showed particle size distribution similar to the dynamic light scattering data. DIM-D also showed reduced permeation across caco-2 monolayer that was enhanced (p drug, SMEDDs, and NLC, respectively, at 2 h following oral administration and shows a viable potential for use in skin cancer chemoprevention. Graphical Abstract ᅟ.

  15. Re-Training of Type 2 Diabetic Patients for Better Adherence to Diabetes Care Plan in Oral Anti-Diabetics and Plus Insulin Treatment Groups

    Directory of Open Access Journals (Sweden)

    Soner Cander

    2015-06-01

    Full Text Available Purpose: This prospective observational single-centre study was designed to evaluate the effect of patient re-training for better adherence to regular self-monitoring of blood glucose (SMBG, standard diabetic diet and exercise program in ambulatory patients with type 2 diabetes mellitus (T2DM receiving oral anti-diabetic (OAD and OAD plus insulin treatments. Material and Method: In this study, we enrolled a total of 61 patients with T2DM in whom ongoing therapy with OAD (n=34 and OAD+insulin (n=27 failed to achieve adequate glycemic control. The patients were educated for lifestyle behavior, adherence to diet and exercise therapy, close monitoring with SMBG without change in their ongoing drugs and dosing. Changes in glycemic parameters, serum lipids and anthropometrics at the end of 3rd month were compared between the treatment groups. Results: During the course of the study, a significant decrease in the body weight and fat were observed in OAD (p<0.001 and p=0.002 and OAD+insulin groups (p=0.044 and p=0.008, respectively. A significant decrease in the HbA1c % (6.1%; 8.2% to 7.6% was observed in the overall population (p<0.001 as well as in OAD (p=0.011 and OAD+insulin (p=0.001 groups. A significant decrease was noted in the post-prandial capillary blood glucose levels in only OAD+insulin group. Discussion: Re-training approach with close follow-up and frequent SMBG seems to be important factors for the maintenance of achieved glycemic control. In our study, the effect of diabetes education on postprandial capillary blood glucose levels was more pronounced in OAD+insulin group. Turk Jem 2015; 19: 49-54

  16. Intraoral film containing insulin-phospholipid microemulsion: formulation and in vivo hypoglycemic activity study.

    Science.gov (United States)

    Rachmawati, Heni; Haryadi, Bernard Manuel; Anggadiredja, Kusnandar; Suendo, Veinardi

    2015-06-01

    Non-invasive administration of insulin is expected for better diabetes mellitus therapy. In this report, we developed intraoral preparation for insulin. Insulin was encapsulated into nanocarrier using self-assembly emulsification process. To increase lipophilicity of insulin, it was dispersed in phospholipid resulted in insulin-phospholipid solid dispersion. The microemulsion formula was established from our previous work which contained glyceryl monooleate (GMO), Tween 20, and polyethylene glycol (PEG 400) in a ratio of 1:8:1. To confirm the formation of insulin-phospholipid solid dispersion, PXRD, FTIR spectroscopy, and Raman spectroscopy were performed. Then, the microemulsion was evaluated for droplet size and distribution, zeta potential, entrapment efficiency, physical stability, and Raman spectroscopy. In addition, microemulsion with expected characteristic was evaluated for in vitro release, in vitro permeation, and in vivo activity. The droplets size of ∼100 nm with narrow distribution and positive charge of +0.56 mV were formed. The insulin encapsulated in the oil droplet was accounted of >90%. Water-soluble chitosan seems to be a promising film matrix polymer which also functioned as insulin release controller. Oral administration of insulin microemulsion to healthy Swiss-Webster mice showed hypoglycemic effect indicating the success of this protein against a harsh environment of the gastrointestinal tract. This effectiveness significantly increased by fourfold as compared to free insulin. Taken together, microemulsion seems to be a promising carrier for oral delivery of insulin.

  17. Insulin initiation and intensification in patients with T2DM for the primary care physician

    Directory of Open Access Journals (Sweden)

    Unger J

    2011-06-01

    Full Text Available Jeff UngerCatalina Research Institute, Chino, CA, USAAbstract: Type 2 diabetes mellitus (T2DM is characterized by both insulin resistance and inadequate insulin secretion. All patients with the disease require treatment to achieve and maintain the target glycosylated hemoglobin (A1C level of 6.5%–7%. Pharmacological management of T2DM typically begins with the introduction of oral medications, and the majority of patients require exogenous insulin therapy at some point in time. Primary care physicians play an essential role in the management of T2DM since they often initiate insulin therapy and intensify regimens over time as needed. Although insulin therapy is prescribed on an individualized basis, treatment usually begins with basal insulin added to a background therapy of oral agents. Prandial insulin injections may be added if glycemic targets are not achieved. Treatments may be intensified over time using patient-friendly titration algorithms. The goal of insulin intensification within the primary care setting is to minimize patients' exposure to chronic hyperglycemia and weight gain, and reduce patients' risk of hypoglycemia, while achieving individualized fasting, postprandial, and A1C targets. Simplified treatment protocols and insulin delivery devices allow physicians to become efficient prescribers of insulin intensification within the primary care arena.Keywords: diabetes, basal, bolus, regimens, insulin analogs, structured glucose testing

  18. Systemic delivery of insulin via the nasal route using a new microemulsion system: In vitro and in vivo studies.

    Science.gov (United States)

    Sintov, Amnon C; Levy, Haim V; Botner, Shafir

    2010-12-01

    The main purpose of this study was to investigate the nasal absorption of insulin from a new microemulsion spray preparation in rabbits. The bioavailability of insulin lispro via the nasal route using a W/O microemulsion was found to reach 21.5% relative to subcutaneous administration, whereas the use of an inverse microemulsion as well as a plain solution yielded less than 1% bioavailability. The profile of plasma glucose levels obtained after nasal spray application of the microemulsion (1IU/kg lispro) was similar to the subcutaneous profile of 0.5IU/kg at the first 90min after application and resulted in a 30-40% drop in glucose levels. The microemulsion system was characterized by DLS, TEM, viscosity measurements, and by construction of pseudo-ternary phase diagram. The average droplet size of an insulin-unloaded and insulin-loaded microemulsions containing 20% aqueous phase (surfactants-to-oil ratio=87:13) was 2nm and 2.26nm in diameter, respectively. In addition, the effect of the microemulsion on FITC-labeled insulin permeation was examined across the porcine nasal mucosa in vitro. The permeability coefficient of FITC-insulin via the microemulsion was 0.210±0.048cm/h with a lag time of 10.9±6.5min, whereas the permeability coefficient from a plain solution was 0.082±0.043cm/h with a lag time of 36.3±10.1min. In view of the absorption differences of insulin between 20%, 50% water-containing microemulsions and an aqueous solution obtained in vitro and in vivo, it has been concluded that the acceleration in the intramucosal transport process is the result of encapsulating insulin within the nano-droplet clusters of a W/O microemulsion, while the microemulsion ingredients seems to have no direct role.

  19. Oral calcium pectinate-insulin nanoparticles: influences of alginate, sodium chloride and Tween 80 on their blood glucose lowering performance.

    Science.gov (United States)

    Wong, Tin W; Sumiran, Nurjaya

    2014-05-01

    Examine the formation of pectin-insulin nanoparticles and their blood glucose lowering properties. The calcium pectinate nanoparticles were prepared by ionotropic gelation method, with alginate, sodium chloride or Tween 80 as additive. Their in vitro physicochemical, drug release and in vivo blood glucose lowering characteristics were evaluated. Spherical calcium pectinate-insulin nanoparticles were characterized by size, zeta potential, insulin content and insulin association efficiency of 348.4 ± 12.9 nm, -17.9 ± 0.8 mV, 8.4 ± 1.0% and 63.8 ± 7.4%, respectively. They released less than 25% insulin following 24 h in simulated intestinal medium and exhibited delayed blood glucose lowering effect in rats. Incorporation of solubilizer sodium chloride or Tween 80 into nanoparticles did not enhance blood glucose lowering capacity owing to sodium chloride reduced matrix insulin content and Tween 80 interacted with water and had its blood glucose dilution effect negated. Combination of nanoparticles with alginate gel to allow prolonged intestinal residence and more insulin release did not enhance their blood glucose lowering capacity because of calcium alginate-cross-linked gel formation that could retard insulin release and migration into systemic circulation. Physicochemical responses of additives in vivo affected blood glucose regulation property of pectin-insulin nanoparticles. © 2013 Royal Pharmaceutical Society.

  20. Expression and Purification of C-Peptide Containing Insulin Using Pichia pastoris Expression System

    Directory of Open Access Journals (Sweden)

    Mohammed N. Baeshen

    2016-01-01

    Full Text Available Increase in the incidence of Insulin Dependent Diabetes Mellitus (IDDM among people from developed and developing countries has created a large global market for insulin. Moreover, exploration of new methods for insulin delivery including oral or inhalation route which require very high doses would further increase the demand of cost-effective recombinant insulin. Various bacterial and yeast strains have been optimized to overproduce important biopharmaceuticals. One of the approaches we have taken is the production of recombinant human insulin along with C-peptide in yeast Pichia pastoris. We procured a cDNA clone of insulin from Origene Inc., USA. Insulin cDNA was PCR amplified and cloned into yeast vector pPICZ-α. Cloned insulin cDNA was confirmed by restriction analysis and DNA sequencing. pPICZ-α-insulin clone was transformed into Pichia pastoris SuperMan5 strain. Several Zeocin resistant clones were obtained and integration of insulin cDNA in Pichia genome was confirmed by PCR using insulin specific primers. Expression of insulin in Pichia clones was confirmed by ELISA, SDS-PAGE, and Western blot analysis. In vivo efficacy studies in streptozotocin induced diabetic mice confirmed the activity of recombinant insulin. In conclusion, a biologically active human proinsulin along with C-peptide was expressed at high level using Pichia pastoris expression system.

  1. Oral delivery of BCG Moreau Rio de Janeiro gives equivalent protection against tuberculosis but with reduced pathology compared to parenteral BCG Danish vaccination.

    Science.gov (United States)

    Clark, Simon O; Kelly, Dominic L F; Badell, Edgar; Castello-Branco, Luiz Roberto; Aldwell, Frank; Winter, Nathalie; Lewis, David J M; Marsh, Philip D

    2010-10-08

    There is a need for an improved vaccine to better control human tuberculosis (TB), as the only currently available TB vaccine, bacillus Calmette-Guerin (BCG) delivered parenterally, offers variable levels of efficacy. Therefore, recombinant strains expressing additional antigens are being developed alongside alternative routes to parenteral delivery. There is strong evidence that BCG Moreau (RdJ) is a safe and effective vaccine in humans when given by the oral route. This study compared the efficacy of a single oral dose of wild type BCG Moreau Rio de Janeiro (RdJ), or a recombinant RdJ strain expressing Ag85B-ESAT6 fusion protein, formulated with and without lipid to enhance oral delivery, with subcutaneous BCG Danish 1331 and saline control groups in a guinea pig aerosol infection model of pulmonary tuberculosis. Protection was measured as survival at 30 weeks post-challenge and reduced bacterial load and histopathology in lungs and spleen. Results showed that a single oral dose of BCG Moreau (RdJ) or recombinant BCG Moreau (RdJ)-Ag85B-ESAT6, formulated with or without lipid, gave protection equivalent to subcutaneously delivered BCG Danish in the 30 weeks post-challenge survival study. The orally delivered vaccines gave reduced pathology scores in the lungs (three of the four formulations) and spleens (all four formulations) compared to subcutaneously delivered BCG Danish. The oral wild type BCG Moreau (RdJ) in lipid and the unformulated oral wild type BCG Moreau (RdJ) vaccine also gave statistically lower bacterial loads in the lungs and spleens, respectively, compared to subcutaneously delivered BCG Danish. This study provides further evidence to show that lipid formulation does not impair vaccine efficacy and may enhance the delivery and stability of oral vaccines intended for use in countries with poor health infrastructure. Oral delivery also avoids needles (and associated cross-infection risks) and immunisation without the need for specially trained

  2. Novel mucus-penetrating liposomes as a potential oral drug delivery system: preparation, in vitro characterization, and enhanced cellular uptake

    Directory of Open Access Journals (Sweden)

    Li X

    2011-12-01

    Full Text Available Xiuying Li1, Dan Chen1, Chaoyi Le2, Chunliu Zhu1, Yong Gan1, Lars Hovgaard3, Mingshi Yang41Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; 2University of Toronto Mississauga Campus, Ontario, Canada; 3Oral Formulation Development, Novo Nordisk A/S, Maalov; 4Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Copenhagen, DenmarkBackground: The aim of this study was to investigate the intestinal mucus-penetrating properties and intestinal cellular uptake of two types of liposomes modified by Pluronic F127 (PF127.Methods: The two types of liposomes, ie, PF127-inlaid liposomes and PF127-adsorbed liposomes, were prepared by a thin-film hydration method followed by extrusion, in which coumarin 6 was loaded as a fluorescence marker. A modified Franz diffusion cell mounted with the intestinal mucus of rats was used to study the diffusion characteristics of the two types of PF127 liposomes. Cell uptake studies were conducted in Caco-2 cells and analyzed using confocal laser scanning microcopy as well as flow cytometry.Results: The diffusion efficiency of the two types of PF127-modified liposomes through intestinal rat mucus was 5–7-fold higher than that of unmodified liposomes. Compared with unmodified liposomes, PF127-inlaid liposomes showed significantly higher cellular uptake of courmarin 6. PF127-adsorbed liposomes showed a lower cellular uptake. Moreover, and interestingly, the two types of PF127-modified liposomes showed different cellular uptake mechanisms in Caco-2 cells.Conclusion: PF127-inlaid liposomes with improved intestinal mucus-penetrating ability and enhanced cellular uptake might be a potential carrier candidate for oral drug delivery.Keywords: Pluronic F127, mucus-penetrating, particles, liposomes, oral drug delivery

  3. Enteric polymer based on pH-responsive aliphatic polycarbonate functionalized with vitamin E to facilitate oral delivery of tacrolimus.

    Science.gov (United States)

    Wang, Menglin; Sun, Jin; Zhai, Yinglei; Lian, He; Luo, Cong; Li, Lin; Du, Yuqian; Zhang, Dong; Ding, Wenya; Qiu, Shuhong; Liu, Yuhai; Kou, Longfa; Han, Xiangfei; Xiang, Rongwu; Wang, Yongjun; He, Zhonggui

    2015-04-13

    To improve the bioavailability of orally administered drugs, we synthesized a pH-sensitive polymer (poly(ethylene glycol)-poly(2-methyl-2-carboxyl-propylene carbonate)-vitamin E, mPEG-PCC-VE) attempting to integrate the advantages of enteric coating and P-glycoprotein (P-gp) inhibition. The aliphatic polycarbonate chain was functionalized with carboxyl groups and vitamin E via postpolymerization modification. Optimized by comparison and central composite design, mPEG113-PCC32-VE4 exhibited low critical micelle concentration of 1.7 × 10(-6) mg/mL and high drug loading ability for tacrolimus (21.2% ± 2.7%, w/w). The pH-responsive profile was demonstrated by pH-dependent swelling and in vitro drug release. Less than 4.0% tacrolimus was released under simulated gastric fluid after 2.5 h, whereas an immediate release was observed under simulated intestinal fluid. The mPEG113-PCC32-VE4 micelles significantly increased the absorption of P-gp substrate tacrolimus in the whole intestine. The oral bioavailability of tacrolimus micelles was 6-fold higher than that of tacrolimus solution in rats. This enteric polymer therefore has the potential to become a useful nanoscale carrier for oral delivery of drugs.

  4. Nano-polyplex based on oleoyl-carboxymethy-chitosan (OCMCS) and hyaluronic acid for oral gene vaccine delivery.

    Science.gov (United States)

    Liu, Ya; Wang, Fang-Qin; Shah, Zeana; Cheng, Xiao-Jie; Kong, Ming; Feng, Chao; Chen, Xi-Guang

    2016-09-01

    Here we described nano-polyplexes (NPs) made of oleoyl-carboxymethy-chitosan (OCMCS)/hyaluronic acid (HA) as novel potential carriers for oral gene vaccines delivery. Aerolysin gene (aerA) of Aeromonas hydrophila as microbial antigen was efficiently loaded to form OCMCS-HA/aerA (OHA) NPs. OHA NPs performed the optimal parameters, i.e. smallest (154.5±9.4nm), positive charged (+7.9±0.5mV) and monodispersed system with the N/P ratio of 5 and OCMCS/HA weight ratio of 4. Upon the introduction of HA, OHA NPs was beneficial for the DNA release in intestinal environments in comparison to OA NPs. The mean fluorescence intensity detected in Caco-2 cells incubated with OHA NPs was about 2.5-fold higher than that of OA NPs; however, it decreased significantly in the presence of excess free HA. The OHA NPs and OA NPs decreased the transepithelial electric resistance (TEER) of Caco-2 monolayers obviously and induced increasing the apparent permeability coefficient (Papp) of DNA by 5.45-6.09 folds compared with free DNA. Significantly higher (P<0.05) antigen-specific antibodies were detected in serum after orally immunized with OHA NPs than that immunized with OA NPs and DNA alone in carps. These results enable the OHA NPs might resolve challenges arising from gastrointestinal damage to gene antigens, and offer an approach applicable for oral vaccination.

  5. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations

    DEFF Research Database (Denmark)

    Pearson, Ewan R; Flechtner, Isabelle; Njølstad, Pål R

    2006-01-01

    insulin secretion only in the presence of sulfonylureas. CONCLUSIONS: Sulfonylurea therapy is safe in the short term for patients with diabetes caused by KCNJ11 mutations and is probably more effective than insulin therapy. This pharmacogenetic response to sulfonylureas may result from the closing...

  6. Amine functionalized cubic mesoporous silica nanoparticles as an oral delivery system for curcumin bioavailability enhancement

    Science.gov (United States)

    Budi Hartono, Sandy; Hadisoewignyo, Lannie; Yang, Yanan; Meka, Anand Kumar; Antaresti; Yu, Chengzhong

    2016-12-01

    In the present work, a simple method was used to develop composite curcumin-amine functionalized mesoporous silica nanoparticles (MSN). The nanoparticles were used to improve the bioavailability of curcumin in mice through oral administration. We investigated the effect of particle size on the release profile, solubility and oral bioavailability of curcumin in mice, including amine functionalized mesoporous silica micron-sized-particles (MSM) and MSN (100-200 nm). Curcumin loaded within amine functionalized MSN (MSN-A-Cur) had a better release profile and a higher solubility compared to amine MSM (MSM-A-Cur). The bioavailability of MSN-A-Cur and MSM-A-Cur was considerably higher than that of ‘free curcumin’. These results indicate promising features of amine functionalized MSN as a carrier to deliver low solubility drugs with improved bioavailability via the oral route.

  7. TPGS-chitosome as an effective oral delivery system for improving the bioavailability of Coenzyme Q10.

    Science.gov (United States)

    Shao, Yating; Yang, Liang; Han, Hyo-Kyung

    2015-01-01

    This study aimed to design the chitosan coated TPGS liposome to enhance the bioavailability of Coenzyme Q10 (CoQ10). Optimization of formulation variables for the preparation of the liposome was performed and then three liposomal formulations (TPGS-liposome, TPGS-chitosome, chitosome) were prepared with narrow size distribution and high encapsulation efficiency. All of three liposomal formulations were stable at pH 1.2 and 7.0 for 24h without any significant drug leakage. Furthermore, chitosan-coated liposomes showed the strong mucoadhesive properties. All the tested liposomal formulations significantly enhanced the cellular uptake of CoQ10 as compared to the untreated drug. Particularly, TPGS-chitosome appeared to be most effective in improving the cellular uptake of CoQ10 in Caco-2 cells (about 30-folds greater than the untreated powder formulation). In oral pharmacokinetic studies, TPGS-chitosome enhanced the systemic exposure of CoQ10 by 3.4 folds as compared to the untreated powder and also displayed the extended drug release profile for up to 24h in rats. Compared to the untreated powder CoQ10, TPGS-chitosome significantly improved the antioxidant effect of CoQ10 and reduced the intracellular ROS level. In conclusion, TPGS-chitosome significantly enhanced the oral bioavailability of CoQ10 and prolonged drug release profile in rats, suggesting that TPGS-chitosome could be an effective oral delivery platform to improve the oral bioavailability of poorly absorbable drugs.

  8. Solidified self-nanoemulsifying formulation for oral delivery of combinatorial therapeutic regimen

    DEFF Research Database (Denmark)

    Jain, Amit K; Thanki, Kaushik; Jain, Sanyog

    2014-01-01

    PURPOSE: The present work focuses on the in vivo evaluation of tamoxifen and quercetin combination loaded into solid self-nanoemulsifying drug delivery system (s-Tmx-QT-SNEDDS). METHODS: Lyophilization was employed to prepare s-Tmx-QT-SNEDDS using Aerosil 200 as carrier. The developed formulation...

  9. Colon-targeted oral drug delivery systems: design trends and approaches.

    Science.gov (United States)

    Amidon, Seth; Brown, Jack E; Dave, Vivek S

    2015-08-01

    Colon-specific drug delivery systems (CDDS) are desirable for the treatment of a range of local diseases such as ulcerative colitis, Crohn's disease, irritable bowel syndrome, chronic pancreatitis, and colonic cancer. In addition, the colon can be a potential site for the systemic absorption of several drugs to treat non-colonic conditions. Drugs such as proteins and peptides that are known to degrade in the extreme gastric pH, if delivered to the colon intact, can be systemically absorbed by colonic mucosa. In order to achieve effective therapeutic outcomes, it is imperative that the designed delivery system specifically targets the drugs into the colon. Several formulation approaches have been explored in the development colon-targeted drug delivery systems. These approaches involve the use of formulation components that interact with one or more aspects of gastrointestinal (GI) physiology, such as the difference in the pH along the GI tract, the presence of colonic microflora, and enzymes, to achieve colon targeting. This article highlights the factors influencing colon-specific drug delivery and colonic bioavailability, and the limitations associated with CDDS. Further, the review provides a systematic discussion of various conventional, as well as relatively newer formulation approaches/technologies currently being utilized for the development of CDDS.

  10. Lactic acid bacteria as antigen delivery vehicles for oral immunization purposes

    NARCIS (Netherlands)

    Pouwels, P.H.; Leer, R.J.; Shaw, M.; Heijne Den Bak-Glashouwer, M.J.; Tielen, F.D.; Smit, E.; Martinez, B.; Jore, J.; Conway, P.L.

    1998-01-01

    In vaccination programmes in which large numbers of subjects are involved, the oral route of administration is more convenient as compared to the more frequently used parenteral route. This is particularly relevant when vaccines are to be applied in less industrialized countries. Lactic acid bacteri

  11. Custom fractional factorial designs to develop atorvastatin self-nanoemulsifying and nanosuspension delivery systems – enhancement of oral bioavailability

    Directory of Open Access Journals (Sweden)

    Hashem FM

    2015-06-01

    Full Text Available Fahima M Hashem,1 Majid M Al-Sawahli,2 Mohamed Nasr,1 Osama AA Ahmed3,4 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, Egypt; 2Holding Company for Biological Products and Vaccines (VACSERA, Giza, Egypt; 3Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 4Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt Abstract: Poor water solubility of a drug is a major challenge in drug delivery research and a main cause for limited bioavailability and pharmacokinetic parameters. This work aims to utilize custom fractional factorial design to assess the development of self-nanoemulsifying drug delivery systems (SNEDDS and solid nanosuspensions (NS in order to enhance the oral delivery of atorvastatin (ATR. According to the design, 14 experimental runs of ATR SNEDDS were formulated utilizing the highly ATR solubilizing SNEDDS components: oleic acid, Tween 80, and propylene glycol. In addition, 12 runs of NS were formulated by the antisolvent precipitation–ultrasonication method. Optimized formulations of SNEDDS and solid NS, deduced from the design, were characterized. Optimized SNEDDS formula exhibited mean globule size of 73.5 nm, zeta potential magnitude of -24.1 mV, and 13.5 µs/cm of electrical conductivity. Optimized solid NS formula exhibited mean particle size of 260.3 nm, 7.4 mV of zeta potential, and 93.2% of yield percentage. Transmission electron microscopy showed SNEDDS droplets formula as discrete spheres. The solid NS morphology showed flaky nanoparticles with irregular shapes using scanning electron microscopy. The release behavior of the optimized SNEDDS formula showed 56.78% of cumulative ATR release after 10 minutes. Solid NS formula showed lower rate of release in the first 30 minutes. Bioavailability estimation in Wistar albino rats revealed an augmentation

  12. Solid lipid particles for oral delivery of peptide and protein drugs I - Elucidating the release mechanism of lysozyme during lipolysis

    DEFF Research Database (Denmark)

    Christophersen, Philip Carsten B; Zhang, L.; Yang, M

    2013-01-01

    The mechanism of protein release from solid lipid particles was investigated by a new lipolysis model in a biorelevant medium containing both bile salts and phospholipids. Lysozyme, a model protein, was formulated into solid lipid particles using four different types of lipids, two triglycerides...... with different chain-length of fatty acyl groups i.e. trimyristin (TG14) and tristearin (TG18), and two lipid blends dominated by diglycerides and monoglycerides, respectively. The release of lysozyme from the solid lipid particles and the lipid hydrolysis process were assessed in the lipolysis model, while...... the drug release mechanism from solid lipid particles and can potentially be used in rational selection of lipid excipients for oral delivery of peptide/protein drugs....

  13. Tumor-targeted intracellular delivery of anticancer drugs through the mannose-6-phosphate/insulin-like growth factor II receptor

    NARCIS (Netherlands)

    Prakash, Jai; Beljaars, Leonie; Harapanahalli, Akshay K.; Zeinstra-Smith, Mieke; de Jager-Krikken, Alie; Hessing, Martin; Steen, Herman; Poelstra, Klaas

    2010-01-01

    Tumor-targeting of anticancer drugs is an interesting approach for the treatment of cancer since chemotherapies possess several adverse effects. In the present study, we propose a novel strategy to deliver anticancer drugs to the tumor cells through the mannose-6-phosphate/insulin-like growth factor

  14. Design and evaluation of an oral multiparticulate system for dual delivery of amoxicillin and Lactobacillus acidophilus.

    Science.gov (United States)

    Govender, Mershen; Choonara, Yahya E; van Vuuren, Sandy; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-09-01

    A delayed-release dual delivery system for amoxicillin and the probiotic Lactobacillus acidophilus was developed and evaluated. Statistical optimization of a cross-linked denatured ovalbumin protective matrix was first synthesized using a Box-Behnken experimental design prior to encapsulation with glyceryl monostereate. The encapsulated ovalbumin matrix was thereafter incorporated with amoxicillin in a gastro-resistant capsule. In vitro characterization and stability analysis of the ovalbumin and encapsulated components were also performed Results: Protection of L. acidophilus probiotic against the bactericidal effects of amoxicillin within the dual formulation was determined. The dual formulation in this study proved effective and provides insight into current microbiome research to identify, classify and use functional healthy bacteria to develop novel probiotic delivery technologies.

  15. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals

    OpenAIRE

    Rajabalaya, Rajan; Musa,Muhammad Nuh; Kifli, Nurolaini; Sheba R. David

    2017-01-01

    Rajan Rajabalaya, Muhammad Nuh Musa, Nurolaini Kifli, Sheba R David PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei Darussalam Abstract: Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophi...

  16. Development and Characterization of Non-Ionic Surfactant Vesicles (Niosomes) for Oral delivery of Lornoxicam

    OpenAIRE

    K B Bini; D. Akhilesh; P.Prabhakara; Kamath J.V

    2012-01-01

    Niosomes are non-ionic surfactant vesicles obtained on hydration of synthetic nonionic surfactants, with or without incorporation of cholesterol or other lipids. They are vesicular systems similar to liposomes that can be used as carriers of amphiphilic and lipophilic drugs. Niosomes are promising vehicle for drug delivery and being non-ionic, it is less toxic and improves the therapeutic index of drug by restricting its action to target cells. They are lamellar structures that are microscopi...

  17. Development of asymmetric membrane capsules of metformin hydrochloride for oral osmotic controlled drug delivery

    Directory of Open Access Journals (Sweden)

    Venkatesh Teja Banala

    2014-01-01

    Full Text Available Asymmetric membrane capsules are one of the novel osmotic delivery devices which offer the delivery of a wide range of drugs in a controlled manner. In the present work, we developed a semi-automatic process by fabricating a hydraulic assisted mechanical robotic arm for the manufacturing of asymmetric membrane capsules and the process was valid