WorldWideScience

Sample records for or-cef reactor

  1. The γ rays sensitivity measurement of CeF3 scintillator detector

    International Nuclear Information System (INIS)

    Hu Mengchun; Zhou Dianzhong; Li Rurong; Wang Zhentong; Yang Hongqiong; Zhang Jianhua; Hu Qingyuan; Peng Taiping

    2003-01-01

    The CeF 3 is an abio-scintillator developed in recent years, which are insensitive to neutron and sensitive to gamma rays and respond quickness. The relationship of CeF 3 scintillation detector gamma rays sensitivity with the change of crystal thickness was measured. The CeF 3 scintillation detector is composed by high liner current photomultiplier tube of CHφT3, CHφT5 and CeF 3 scintillator. The detector gamma rays sensitivity of purple photocell and common photocell with CeF 3 scintillator were measured too

  2. CeF3(Ba) radiation hard scintillator for electromagnetic calorimeters

    International Nuclear Information System (INIS)

    Aseev, A.A.; Devitsin, E.G.; Kozlov, V.A.; Hovepyan, Yu.I.; Potashov, S.Yu.; Sokolovsky, K.A.; Uvarova, T.V.; Vasilchenko, V.G.

    1992-01-01

    The influence of divalent fluoride dopants BaF 2 , CaF 2 , SrF 2 on radiation and luminescent properties of CeF 3 crystal is studied. A high radiation hardness (>10 8 rad) has been obtained for CeF 3 crystals doped with BaF 2 . (orig.)

  3. Study on time characteristics of fast time response inorganic scintillator CeF3

    International Nuclear Information System (INIS)

    Hu Mengchun; Zhou Dianzhong; Guo Cun; Ye Wenying

    2003-01-01

    The cerium fluoride (CeF 3 ) is a kind of new fast time response inorganic scintillator. The physical characteristics of CeF 3 are well suitable for detection of domestic pulse γ-rays. The time response of detector composed by phototube with CeF 3 are measured by use of the pulse radiation source with rise time about 0.8 ns, and FWHM time 1.5-2.2 ns. Experiment results show that the rise time is less than 2 ns, FWHM time is about 10 ns, fall time is about 60 ns, average decay time constant is 20-30 ns, respectively for CeF 3

  4. Ultraviolet-visible optical isolators based on CeF3 Faraday rotator

    International Nuclear Information System (INIS)

    Víllora, Encarnación G.; Shimamura, Kiyoshi; Plaza, Gustavo R.

    2015-01-01

    The first ultraviolet (UV) and visible optical isolators based on CeF 3 are demonstrated. CeF 3 possesses unique properties as Faraday rotator for the UV-visible wavelength region: a wide transparency range (wavelength of >300 nm) and an outstanding Verdet constant. In contrast, currently used terbium-gallium garnets and magneto-optical glasses possess a low transparency in the visible and a small Verdet constant in the UV, respectively. The optical isolator prototypes consist of a CeF 3 rod, a single ring magnet, and a couple of beam splitters. The ring magnets have been designed to guarantee a homogeneous magnetic field; for it, numerical simulations have been carried out. The two prototypes are very compact and operate in the UV at 355 and in the visible at 405 nm, respectively. The performance of these devices indicates the high potential of CeF 3 as a new UV-visible Faraday rotator, specially for shorter wavelengths where at present there are no optical isolators available

  5. Structural, spectroscopic and cytotoxicity studies of TbF3@CeF3 and TbF3@CeF3@SiO2 nanocrystals

    International Nuclear Information System (INIS)

    Grzyb, Tomasz; Runowski, Marcin; Dąbrowska, Krystyna; Giersig, Michael; Lis, Stefan

    2013-01-01

    Terbium fluoride nanocrystals, covered by a shell, composed of cerium fluoride were synthesized by a co-precipitation method. Their complex structure was formed spontaneously during the synthesis. The surface of these core/shell nanocrystals was additionally modified by silica. The properties of TbF 3 @CeF 3 and TbF 3 @CeF 3 @SiO 2 nanocrystals, formed in this way, were investigated. Spectroscopic studies showed that the differences between these two groups of products resulted from the presence of the SiO 2 shell. X-ray diffraction patterns confirmed the trigonal crystal structure of TbF 3 @CeF 3 nanocrystals. High resolution transmission electron microscopy in connection with energy-dispersive X-ray spectroscopy showed a complex structure of the formed nanocrystals. Crystallized as small discs, ‘the products’, with an average diameter around 10 nm, showed an increase in the concentration of Tb 3+ ions from surface to the core of nanocrystals. In addition to photo-physical analyses, cytotoxicity studies were performed on HSkMEC (Human Skin Microvascular Endothelial Cells) and B16F0 mouse melanoma cancer cells. The cytotoxicity of the nanomaterials was neutral for the investigated cells with no toxic or antiproliferative effect in the cell cultures, either for normal or for cancer cells. This fact makes the obtained nanocrystals good candidates for biological applications and further modifications of the SiO 2 shell.Graphical Abstract

  6. CEF is superior to CMF for tumours with TOP2A aberrations

    DEFF Research Database (Denmark)

    Gunnarsdóttir, Katrín A; Jensen, Maj-Britt; Zahrieh, David

    2010-01-01

    47:725-734, 2008) demonstrated that superiority of CEF over CMF is limited to patients with TOP2A aberrations, defined as patients whose tumours have TOP2A ratio below 0.8 or above 2.0. The Subpopulation Treatment Effect Pattern Plot (STEPP) technique was applied to these data to explore the pattern...... of treatment effect relative to TOP2A and to compare that pattern to the ranges previously used to define 'aberrations'. The pattern of treatment effect illustrated by the STEPP analysis confirmed that the superiority of CEF over CMF is indeed limited to patients whose tumours have high or low TOP2A ratios...

  7. 2013 CEF RUN - PHASE 1 DATA ANALYSIS AND MODEL VALIDATION

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.

    2014-05-08

    deviation of the average vapor space temperature during each steady state ranged from 2 to 6°C; however, those of the measured off-gas data were much larger due to the inherent cold cap instabilities in the slurry-fed melters. In order to predict the off-gas composition at the sampling location downstream of the film cooler, the measured feed composition was charge-reconciled and input into the DWPF melter off-gas flammability model, which was then run under the conditions for each of the six Phase 1 steady states. In doing so, it was necessary to perform an overall heat/mass balance calculation from the melter to the Off-Gas Condensate Tank (OGCT) in order to estimate the rate of air inleakage as well as the true gas temperature in the CEF vapor space (T{sub gas}) during each steady state by taking into account the effects of thermal radiation on the measured temperature (T{sub tw}). The results of Phase 1 data analysis and subsequent model runs showed that the predicted concentrations of H{sub 2} and CO by the DWPF model correctly trended and further bounded the respective measured data in the CEF off-gas by over predicting the TOC-to-H{sub 2} and TOC-to-CO conversion ratios by a factor of 2 to 5; an exception was the 7X over prediction of the latter at T{sub gas} = 371°C but the impact of CO on the off-gas flammability potential is only minor compared to that of H{sub 2}. More importantly, the seemingly-excessive over prediction of the TOC-to-H{sub 2} conversion by a factor of 4 or higher at T{sub gas} < ~350°C was attributed to the conservative antifoam decomposition scheme added recently to the model and therefore is considered a modeling issue and not a design issue. At T{sub gas} > ~350°C, the predicted TOC-to-H{sub 2} conversions were closer to but still higher than the measured data by a factor of 2, which may be regarded as adequate from the safety margin standpoint. The heat/mass balance calculations also showed that the correlation between T{sub tw} and T

  8. The constitutive activation of the CEF-4/9E3 chemokine gene depends on C/EBPbeta in v-src transformed chicken embryo fibroblasts

    DEFF Research Database (Denmark)

    Gagliardi, M; Maynard, S; Bojovic, B

    2001-01-01

    The CEF-4/9E3 chemokine gene is expressed constitutively in chicken embryo fibroblasts (CEF) transformed by the Rous sarcoma virus (RSV). This aberrant induction is controlled at the transcriptional and post-transcriptional levels. Transcriptional activation depends on multiple elements of the CEF....../EBPbeta binds to a second element located in proximity of the TRE. A mutation of this distal CAAT box impaired the activation of the CEF-4 promoter by pp60(v-src) indicating that this element is also part of the SRU. Using the RCASBP retroviral vector, we expressed a dominant negative mutant of C....../EBPbeta (designated Delta184-C/EBPbeta) in RSV-transformed CEF. Delta184-C/EBPbeta decreased the accumulation of the CEF-4 mRNA and activation of the CEF-4 promoter by pp60(v-src). The induction of the Cox-2 gene (CEF-147) was also reduced by Delta184-C/EBPbeta. The effect of the dominant negative mutant was observed...

  9. Histologia e ultraestrutura do rim e rim cefálico do pacu

    Directory of Open Access Journals (Sweden)

    Gerlane M. Costa

    2012-05-01

    Full Text Available O pacu, Piaractus mesopotamicus, é um teleósteo da Família Characidae, intensivamente cultivado no Brasil devido sua rusticidade, crescimento rápido e fácil adaptação. O conhecimento morfológico dos sistemas corpóreos, incluído órgãos linfóide, se faz necessário, para uma melhor produção no cultivo de peixes, fornecendo subsídios na manutenção dos estoques. O objetivo deste estudo foi descrever morfologicamente o rim e rim cefálico de Piaractus mesopotamicus, analisando os perfis celulares de cada órgão com o uso de microscopia de luz e microscopia eletrônica de transmissão. O resultado da análise macroscópica mostrou que a localização do rim e rim cefálico são as mesmas encontradas na maioria dos teleósteos. O rim apresentou uma forma em "H", onde a região média se expandia sobre a bexiga natatória. O rim cefálico se apresentou como uma dilatação na região cranial do rim, mostrando-se bem visível. Na microscopia eletrônica de transmissão também foram observadas similaridades ultraestruturais com outros teleósteos. Observando nossos resultados concluímos que histologicamente e ultraestruturalmente, os órgãos linfóides rim e rim cefálico de Piaractus mesopotamicus são similares aos de outros teleósteos.

  10. Folic acid-targeted magnetic Tb-doped CeF3 fluorescent nanoparticles as bimodal probes for cellular fluorescence and magnetic resonance imaging.

    Science.gov (United States)

    Ma, Zhi-Ya; Liu, Yu-Ping; Bai, Ling-Yu; An, Jie; Zhang, Lin; Xuan, Yang; Zhang, Xiao-Shuai; Zhao, Yuan-Di

    2015-10-07

    Magnetic fluorescent nanoparticles (NPs) have great potential applications for diagnostics, imaging and therapy. We developed a facile polyol method to synthesize multifunctional Fe3O4@CeF3:Tb@CeF3 NPs with small size (CA) to obtain carboxyl-functionalized NPs (Fe3O4@CeF3:Tb@CeF3-COOH). Folic acid (FA) as an affinity ligand was then covalently conjugated onto NPs to yield Fe3O4@CeF3:Tb@CeF3-FA NPs. They were then applied as multimodal imaging agents for simultaneous in vitro targeted fluorescence imaging and magnetic resonance imaging (MRI) of HeLa cells with overexpressed folate receptors (FR). The results indicated that these NPs had strong luminescence and enhanced T2-weighted MR contrast and would be promising candidates as multimodal probes for both fluorescence and MRI imaging.

  11. Extensive studies on CeF3 crystals, a good candidate for electromagnetic calorimetry at future accelerators

    International Nuclear Information System (INIS)

    Auffray, E.; Baccaro, S.; Beckers, T.; Benhammou, Y.; Belsky, A.N.; Borgia, B.; Boutet, D.; Chipaux, R.; Dafinei, I.; De Notaristefani, F.; Depasse, P.; Dujardin, C.; El Mamouni, H.; Faure, J.L.; Fay, J.; Goyot, M.; Gupta, S.K.; Gurtu, A.; Hillemanns, H.; Ille, B.; Kirn, T.; Lebeau, M.; Lebrun, P.; Lecoq, P.; Mares, J.A.; Martin, J.P.; Mikhailin, V.V.; Moine, B.; Nelissen, J.; Nikl, M.; Pedrini, C.; Raghavan, R.; Sahuc, P.; Schmitz, D.; Schneegans, M.; Schwenke, J.; Tavernier, S.; Topa, V.; Vasil'ev, A.N.; Vivargent, M.; Walder, J.P.

    1996-01-01

    In the framework of its search for new heavy, fast and radiation hard scintillators for calorimetry at future colliders, the Crystal Clear Collaboration performed a systematic investigation of the properties and of the scintillation and radiation damage mechanisms of CeF 3 monocrystals. Many samples of various dimensions up to 3 x 3 x 28 cm 3 were produced by industry and characterised in the laboratories by different methods such as: optical transmission, light yield and decay time measurements, excitation and emission spectra, gamma and neutron irradiations. The results of these measurements are discussed. The measured light yield is compared to the theoretical expectations. Tests in high energy electron beams on a crystal matrix were also performed. The suitability of CeF 3 for calorimetry at high rate machines is confirmed. Production and economical considerations are discussed. (orig.)

  12. CEF is superior to CMF for tumours with TOP2A aberrations: a Subpopulation Treatment Effect Pattern Plot (STEPP) analysis on Danish Breast Cancer Cooperative Group Study 89D

    DEFF Research Database (Denmark)

    Gunnarsdóttir, Katrín A; Jensen, Maj-Britt; Zahrieh, David

    2010-01-01

    47:725-734, 2008) demonstrated that superiority of CEF over CMF is limited to patients with TOP2A aberrations, defined as patients whose tumours have TOP2A ratio below 0.8 or above 2.0. The Subpopulation Treatment Effect Pattern Plot (STEPP) technique was applied to these data to explore the pattern...... of treatment effect relative to TOP2A and to compare that pattern to the ranges previously used to define 'aberrations'. The pattern of treatment effect illustrated by the STEPP analysis confirmed that the superiority of CEF over CMF is indeed limited to patients whose tumours have high or low TOP2A ratios...

  13. Improved outcome from substituting methotrexate with epirubicin: results from a randomised comparison of CMF versus CEF in patients with primary breast cancer

    DEFF Research Database (Denmark)

    Ejlertsen, Bent Laursen; Mouridsen, Henning T; Jensen, Maj-Britt

    2007-01-01

    We compared the efficacy of CEF (cyclophosphamide, epirubicin, and fluorouracil) against CMF (cyclophosphamide, methotrexate, and fluorouracil) in moderate or high risk breast cancer patients. We randomly assigned 1224 patients with completely resected unilateral breast cancer to receive nine...... breast cancer without subsequent increase in late toxicities...

  14. Oral proficiency teaching with WebCEF and Skype : Scenarios for online production and interaction tasks

    NARCIS (Netherlands)

    Jager, S.; Meima, Estelle; Oggel, Gerdientje

    2012-01-01

    This article reports our findings on using WebCEF as a CEFR familiarization and self-assessment tool for oral proficiency. Furthermore, we outline how we have implemented Skype as a tool for telecollaboration in our language programmes. The primary purpose of our study was to explore how students

  15. CEF-scheme of a semimetal Ce3Sn7

    International Nuclear Information System (INIS)

    Okuda, Yusuke; Yamamoto, Takeshi; Honda, Daisuke; Shishido, Hiroaki; Galatanu, Andrei; Haga, Yoshinori; Matsuda, Tatsuma D.; Takeuchi, Tetsuya; Kindo, Koichi; Sugiyama, Kiyohiro; Settai, Rikio; O-bar nuki, Yoshichika

    2005-01-01

    We measured the magnetic susceptibility and magnetization of an antiferromagnet Ce 3 Sn 7 with the orthorhombic crystal structure. The experimental data are found to be well explained on the basis of the crystalline electric field (CEF) 4f-scheme under the assumption that two Ce atoms in the 2(a) site possess a magnetic moment of 0.36μ B /Ce and one Ce atom in the 4(i) site possesses no magnetic moment as in a valence fluctuating compound CeSn 3 , which was previously proposed by Bonnet et al. Furthermore, we carried out the de Haas-van Alphen experiment. The detected Fermi surfaces are many in number but are extremely small in volume, indicating that Ce 3 Sn 7 is a semimetal

  16. Study on time properties of newly type inorganic scintillator cerium fluoride (CeF3)

    International Nuclear Information System (INIS)

    Hu Mengchun; Zhou Dianzhong; Guo Cun; Ye Wenying

    2003-01-01

    CeF 3 is a newly fast time response inorganic scintillator, the time characteristics of which, developed in recent country in nearly year were studied in our works. The time characteristics are rise time, FWHM time and fall time for fast pulse radiation source. As the same time, authors have calculated and used the formula of pulse method gain to the decay time constant of crystal shining, the decay time constant measured is the same to the results of foreign references

  17. Nuclear reactor built, being built, or planned

    International Nuclear Information System (INIS)

    1991-06-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1990. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE, from the US Nuclear Regulatory Commission, from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations, from US and foreign embassies, and from foreign governmental nuclear departments. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly

  18. DEVELOPING A CEF BASED CURRICULUM: A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Beril Sarayköylü

    2012-01-01

    Full Text Available The common purposes of the studies conducted in language program evaluations are to examine the match between what is desired for the programme versus the actual state of the programme, to make judgments about learners’ level of skills and knowledge, and to make suggestions for improvement. However, it is not currently common practice in Turkey either to develop language teaching programmes based on the Common European Framework as a reference, or to introduce improvements in these programmes based on an evaluation of their effectiveness. This study aims to describe the process of developing a new teaching programme, taking CEF into consideration, at the Preparatory Programme at the School of Foreign Languages, Izmir University of Economics, and also to evaluate the effectiveness of the programme. 236 Freshman students and 48 faculty members from 5 different faculties participated in the study. The results indicated a significant relationship between students’ proficiency scores and perception of their own competencies and a significant difference in perception of their own competence in terms of levels at the preparatory program. Although faculty members stated that Preparatory Program, in general, meets the needs of the students, students still have difficulty in practising some tasks requiring higher order thinking skills. The study suggests a series of learner training sessions to raise the awareness of the students, extending duration of the modules, reviewing the order of objectives in Intermediate and Upper-Intermediate, and working in cooperation with Faculties in order to increase awareness of mutual expectations.

  19. Historical Development of NATO Stanag 6001 Language Standards and Common European Framework (CEF) and the Comparison of Their Current Status

    Science.gov (United States)

    Solak, Ekrem

    2011-01-01

    The aim of the article is to shed light on the historical development of language studies in military and social context and to compare the current status of NATO Stanag (Standard Agreement) 6001 language scale with Common European Framework (CEF). Language studies in military context date back to World War II and the emergence of Army Specialized…

  20. A factor analytic study of the Italian National Institute of Health Quality of Life – Core Evaluation Form (ISSQoL-CEF

    Directory of Open Access Journals (Sweden)

    M Lauriola

    2010-03-01

    Full Text Available M Lauriola1, R Murri3, M Massella4, M Mirra4, S Donnini4, V Fragola4, J Ivanovic5, M Pavoni6, G Mancini2, R Bucciardini41Department of Social and Developmental Psychology, 2Department of Infectious and Tropical Diseases, University of Rome “La Sapienza”, Rome, Italy; 3Catholic University of “Sacro Cuore”, Rome, Italy; 4Istituto Superiore di Sanità, Rome, Italy; 5National Institute for Infectious Diseases Lazzaro Spallanzani, Rome, Italy; 6Ospedale Civile Santa Maria delle Croci, Ravenna, ItalyObjectives: The Italian National Institute of Health Quality of Life – Core Evaluation Form (ISSQoL-CEF is a specific questionnaire measuring health-related quality of life for human immunodeficiency virus-infected people in the era of highly active antiretroviral therapy. The main goal of this study was to examine the construct validity of this questionnaire by confirmation of its hypothesized dimensional structure.Methods: Baseline quality of life data from four clinical studies were collected and a confirmatory factor analysis of the ISSQoL-CEF items was carried out. Both first-order and secondorder factor models were tested: Model 1 with nine correlated first-order factors; Model 2 with three correlated second-order factors (Physical, Mental, and Social Health; Model 3 with two correlated second-order factors (Physical and Mental/Social Health; Model 4 with only one second-order factor (General Health.Results: A total of 261 patients were surveyed. Model 1 had a good fit to the data. Model 2 had an acceptable fit to the data and it was the best of all hierarchical models. However, Model 2 fitted the data worse than Model 1.Conclusions: The findings of in this study, consistent with the results of previous study, pointed out the construct validity of the ISSQoL-CEF.Keywords: confirmatory factor analysis, HRQoL, patient-reported outcomes

  1. Nuclear reactors built, being built, or planned, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.

    1992-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  2. Nuclear reactors built, being built, or planned, 1991

    International Nuclear Information System (INIS)

    Simpson, B.

    1992-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5)

  3. Nuclear reactors built, being built, or planned, 1988

    International Nuclear Information System (INIS)

    1989-08-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1988. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington Headquarters and field offices of DOE, from the US Nuclear Regulatory Commission, from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations, from US and foreign embassies, and from foreign governmental nuclear departments. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables. Section 2 includes nuclear reactors that are operating, being built, or planned. Section 3 includes reactors that have been shut down permanently or dismantled

  4. Nuclear reactors built, being built, or planned: 1987

    International Nuclear Information System (INIS)

    1988-06-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1987. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually for Washington headquarters and field offices of DOE; from the US Nuclear regulatory Commission; from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The major change in this revision involves the data related to shutdown and dismantled facilities. Because this information serves substantially different purposes, it has been accumulated in a separate section, ''Reactors and Facilities Shutdown or Dismantled.'' Cancelled reactors or reactors whose progress has been terminated at some stage before operation are included in this section

  5. Nuclear reactors built, being built, or planned 1993

    International Nuclear Information System (INIS)

    1993-08-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1993. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: civilian, production, military, export, and critical assembly

  6. Nuclear reactors built, being built, or planned, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1994. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; tables of data for reactors operating, being built, or planned; and tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company -- working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  7. Nuclear reactors built, being built, or planned: 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report contains unclassified information about facilities built, being built, or planned in the US for domestic use or export as of December 31, 1995. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company--working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  8. Nuclear reactors built, being built, or planned, 1994

    International Nuclear Information System (INIS)

    1995-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1994. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; tables of data for reactors operating, being built, or planned; and tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company -- working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5)

  9. Nuclear reactors built, being built, or planned: 1995

    International Nuclear Information System (INIS)

    1996-08-01

    This report contains unclassified information about facilities built, being built, or planned in the US for domestic use or export as of December 31, 1995. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company--working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5)

  10. Technical specifications for the Oak Ridge Critical Experiments Facility

    International Nuclear Information System (INIS)

    Stinnett, R.M.

    1986-01-01

    These Technical Specifications for the Oak Ridge Critical Experiments Facility (CEF) delineate limiting conditions of operation for the facility. The CEF is used primarily for testing the High Flux Isotope Reactor (HFIR) fuel assemblies. Specifically, the Criticality Testing Unit, Liquid (CTUL), located in the CEF, is used for the HFIR fuel assembly test. The test is performed to satisfy the surveillance requirements of the HFIR Technical Specifications. The test is used to determine the water-submerged shutdown margin for each fuel assembly. 11 refs

  11. Nuclear reactors built, being built, or planned 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This publication contains unclassified information about facilities, built, being built, or planned in the United States for domestic use or export as of December 31, 1996. The Office of Scientific and Technical Information, U.S. Department of Energy, gathers this information annually from Washington headquarters, and field offices of DOE; from the U.S. Nuclear Regulatory Commission (NRC); from the U. S. reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from U.S. and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled.

  12. Nuclear reactors built, being built, or planned: 1996

    International Nuclear Information System (INIS)

    1997-08-01

    This publication contains unclassified information about facilities, built, being built, or planned in the United States for domestic use or export as of December 31, 1996. The Office of Scientific and Technical Information, U.S. Department of Energy, gathers this information annually from Washington headquarters, and field offices of DOE; from the U.S. Nuclear Regulatory Commission (NRC); from the U. S. reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from U.S. and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled

  13. Low power modular power generating reactors or Small Modular Reactors (SMR)

    International Nuclear Information System (INIS)

    Chenais, Jacques

    2016-01-01

    Electronuclear reactors were small reactors at the beginning, and then tend to be always bigger and more powerful, but since some recent times, several countries specialized in reactor design and fabrication (USA, Russia, China, and South Korea) have been developing Small Modular Reactors (SMR) of less than 300 MW. As France has already produced feasibility studies and is about to launch a SMR development programme, the author comments some specific aspects of this new architecture of reactors, characterises the targeted markets, gives an overview of the various more or less advanced existing concepts: a floating barge in Russia, the SMART 100 MW project in South Korea, several concepts in the USA (the mPower 125 MW, the NuScale 45 MW, the Westinghouse 225 MW, and the HI-SMUR 160 MW projects), the ACP 100 MW in China, the CAREM 27 MW in Argentina. French projects developed by the CEA, EDF, Areva and DCNS are then presented

  14. Nuclear reactors built, being built, or planned: 1989

    International Nuclear Information System (INIS)

    1990-06-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1989. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE, from the US Nuclear Regulatory Commission, from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations, from US and foreign embassies, and from foreign governmental nuclear departments. Information is presented in five parts, each of which is categorized by primary function or purpose: civilian, production, military, export, and critical assembly facilities

  15. Nuclear reactors built, being built, or planned 1992

    International Nuclear Information System (INIS)

    1993-07-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1992. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. Information is presented on five parts: Civilian, Production, Military, Export and Critical Assembly

  16. Asociación entre el patrón postural cefálico y la inteligibilidad articulatoria del habla

    Directory of Open Access Journals (Sweden)

    Carlos Rojas Zepeda

    Full Text Available RESUMEN Objetivo: el propósito de este estudio fue establecer un factor asociativo que relacione la morfología del sistema cráneo - cervical con el nivel de inteligibilidad articulatoria del habla en sujetos jóvenes. Métodos: estudio transversal, consideró una muestra de 42 jóvenes universitarios de un universo de 140, ambos sexos, sin antecedentes mórbidos y con un rango de edad entre 18 y 21 años. Se evalúo: a inteligibilidad articulatoria mediante el coeficiente de variación periódica diadococinética, b parámetros posturales estáticos tradicionales mediante método fotogramétrico y c patrón postural cefálico mediante radiografía cefalométrica lateral. Resultados: se encontraron 36 sujetos con inteligibilidad adecuada y 6 alterada, donde la variable rotación cráneo cervical antero-posterior presentó diferencias estadísticamente significativas (p= 0,009 entre el grupo con inteligibilidad normal respecto al grupo con inteligibilidad alterada. El análisis de regresión lineal evidenció que sujetos que presentan rotación posterior de cabeza sobre cuello presentan mayor variabilidad en la emisión silábica del rendimiento diadocinético del habla (Sq r lineal = 0,128. Conclusión: se establece que la postura cefálica con presencia de rotación posterior de la cabeza sobre el cuello se asocia a la pérdida de inteligibilidad del habla en la muestra estudiada.

  17. Lead- or Lead-bismuth-cooled fast reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Courouau, J.L.; Dufour, P.; Guidez, J.; Latge, C.; Martinelli, L.; Renault, C.; Rimpault, G.

    2014-01-01

    Lead-cooled fast reactors are one of the 6 concepts retained for the 4. generation of nuclear reactors. So far no lead-cooled reactors have existed in the world except lead-bismuth-cooled reactors in soviet submarines. Some problems linked to the use of the lead-bismuth eutectic appeared but were satisfactorily solved by a more rigorous monitoring of the chemistry of the lead-bismuth coolant. Lead presents various advantages as a coolant: no reactivity with water and the air,a high boiling temperature and low contamination when irradiated. The main asset of the lead-bismuth alloy is the drop of the fusion temperature from 327 C degrees to 125 C degrees. The main drawback of using lead (or lead-bismuth) is its high corrosiveness with metals like iron, chromium and nickel. The high corrosiveness of the coolant implies low flow velocities which means a bigger core and consequently a bigger reactor containment. Different research programs in the world (in Europe, Russia and the USA) are reviewed in the article but it appears that the development of this type of reactor requires technological breakthroughs concerning materials and the resistance to corrosion. Furthermore the concept of lead-cooled reactors seems to be associated to a range of low output power because of the compromise between the size of the reactor and its resistance to earthquakes. (A.C.)

  18. Duplicidad parcial cefálicafacial (diprosopia) en bovinos: estudio clínico patológico de un caso

    OpenAIRE

    Vale Echeto, Oswaldo E.; Alvarado Morillo, Manuel S.; Vale Oviedo, Oswaldo R.; Arraga de Alvarado, Cruz María; Camacho Bracho, Jesús E.; Fernández Orozco, Edgar

    2009-01-01

    Se reporta un caso de malformación rara, con duplicidad incompleta cefálicafacial (Diprosopia) en un Bovino, hembra de 10 días de edad, la becerra fue producto de la segunda gestación de una vaca mestiza cebú, procedente de una explotación lechera con sistema extensivo de producción y monta natural. No pudo ser amamantada y se mantuvo con alimentación artificial. El animal nació con duplicidad incompleta cafálica facial, observándose dos maxilares inferiores con doble cavidad oral y nasal, do...

  19. Transparent infrared-emitting CeF3:Yb-Er polymer nanocomposites for optical applications.

    Science.gov (United States)

    Tan, Mei Chee; Patil, Swanand D; Riman, Richard E

    2010-07-01

    Bright infrared-emitting nanocomposites of unmodified CeF(3):Yb-Er with polymethyl-methacrylate (PMMA) and polystyrene (PS), which offer a vast range of potential applications, which include optical amplifiers, waveguides, laser materials, and implantable medical devices, were developed. For the optical application of these nanocomposites, it is critical to obtain highly transparent composites to minimize absorption and scattering losses. Preparation of transparent composites typically requires powder processing approaches that include sophisticated particle size control, deagglomeration, and dispersion stabilization methods leading to an increase in process complexity and processing steps. This work seeks to prepare transparent composites with high solids loading (>5 vol%) by matching the refractive index of the inorganic particle with low cost polymers like PMMA and PS, so as to circumvent the use of any complex processing techniques or particle surface modification. PS nanocomposites were found to exhibit better transparency than the PMMA nanocomposites, especially at high solids loading (>/=10 vol%). It was found that the optical transparency of PMMA nanocomposites was more significantly affected by the increase in solids loading and inorganic particle size because of the larger refractive index mismatch of the PMMA nanocomposites compared to that of PS nanocomposites. Rayleigh scattering theory was used to provide a theoretical estimate of the scattering losses in these ceramic-polymer nanocomposites.

  20. Nuclear reactors built, being built, or planned: 1986

    International Nuclear Information System (INIS)

    Carter, E.P.

    1987-03-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1986, which are capable of sustaining a nuclear chain reaction. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commisssion; from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; and from US embassies of foreign countries. Information is presented in five parts, each of which is categorized by primary function or purpose: civilian, production, military, export, and critical assembly facilities

  1. Versión cefálica externa External cephalic version

    Directory of Open Access Journals (Sweden)

    John Jairo Zuleta Tobón

    1994-01-01

    Full Text Available Se revisa el tema controvertido de la versión cefálica externa que pretende corregir la presentación podálica y atender el parto por vía vaginal; se resumen los requisitos para la maniobra y sus aspectos técnicos así como los motivos para suspender el Intento de versión y para terminar el embarazo; se recalcan las contraindicaciones y las complicaciones. Se concluye que es necesario diseñar protocolos de Investigación para lograr más claridad respecto a este procedimiento en nuestro medio.

    A review is presented on the controversial subject of external cephalic version; this procedure has the purpose of attaining a vaginal delivery after correcting a breech presentation. Requirements and technical aspects are summarized; the reasons for discontinuing the attempt and for terminating pregnancy after It are included as well. Contraindications and complications are emphasized. It is concluded that research on the subject is required In order to gain clarity on the advisability of this version In the Colombian milieu.

  2. Wernicke's encephalopathy after cephalic pancreaticoduodenectomy Encefalopatía de Wernicke tras duodenopancreatectomía cefálica

    Directory of Open Access Journals (Sweden)

    Francisco Gabriel Onieva-González

    2011-11-01

    Full Text Available Wernicke's encephalopathy is an acute neurological disorder resulting from thiamine deficiency. We report a case in a young patient who underwent a cephalic duodenopancreatectomy with a bleeding duodenal ulcer refractory to endoscopic and surgical treatment, requiring total parenteral nutrition, without thiamine supplementation.La encefalopatía de Wernicke (EW es un trastorno neurológico agudo resultado del déficit de tiamina. Presentamos la aparición de dicho cuadro en un enfermo joven que es sometido a una duodenopancreatectomía cefálica ante una úlcera duodenal sangrante refractaria a tratamiento endoscópico y quirúrgico previo, precisando de una nutrición parenteral total, sin suplementos de tiamina.

  3. The Energy Budget of Steady State Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David M. Kramer

    2012-11-27

    Progress is reported in addressing these questions: Why do hcef mutants have increased CEF1? Is increased CEF1 caused by elevated expression or altered regulation of CEF1 components? Which metabolic pools can be regulators of CEF1? Do metabolites influence CEF1 directly or indirectly? Which CEF1 pathways are activated in high CEF1 mutants? Is PQR a proton pump? Is elevated CEF1 activated by state transitions?

  4. On some derived compounds of fluorides of Cerium III or IV: defined compounds and non stoichiometric phases

    International Nuclear Information System (INIS)

    Besse, Jean-Pierre

    1968-01-01

    This research study addresses the study of rare earth fluorides. It reports the preparation and study of new fluoro-cerates (IV) in order to complete the set of already known compounds (ammonium fluoro-cerate, and alkaline earth compounds), the study of binary CeF 3 binary systems, monovalent and divalent fluorides, and CeF 3 -NF 2 -N'F ternary systems, and the study of non stoichiometric phases in CeF 3 oxides, sulphides and selenides [fr

  5. Dispersion of CEF levels in Nd{sub 2}CuO{sub 4} and Pr{sub 0.86}Ce{sub 0.14}CuO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Henggeler, W.; Furrer, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Chattopadyay, T.; Roessli, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France)

    1997-09-01

    We performed inelastic scattering experiments to determine the dispersion of the {Gamma}{sub 6}{sup (1)}-{Gamma}{sub 6}{sup (2)}-Nd crystal field excitation in Nd{sub 2}CuO{sub 4} and of the {Gamma}{sub 4}-{Gamma}{sub 5} Pr CEF excitation in Pr{sub 1.86}Ce{sub 0.14}CuO{sub 4}. Our results can be described within the random phase approximation model. (author) 4 figs.

  6. Improvements in or relating to nuclear reactors

    International Nuclear Information System (INIS)

    Timofeev, A.V.; Batjukov, V.I.; Fadeev, A.I.; Shapkin, A.F.; Shikhiyan, T.G.; Ordynsky, G.V.; Drachev, V.P.; Pogodin, E.N.

    1980-01-01

    A refuelling installation for nuclear reactor complexes is described for recharging the reactor vessels of such complexes with new fuel assemblies and for removing spent fuel assemblies from the reactor vessel. (U.K.)

  7. Minimizing or eliminating refueling of nuclear reactor

    Science.gov (United States)

    Doncals, Richard A.; Paik, Nam-Chin; Andre, Sandra V.; Porter, Charles A.; Rathbun, Roy W.; Schwallie, Ambrose L.; Petras, Diane S.

    1989-01-01

    Demand for refueling of a liquid metal fast nuclear reactor having a life of 30 years is eliminated or reduced to intervals of at least 10 years by operating the reactor at a low linear-power density, typically 2.5 kw/ft of fuel rod, rather than 7.5 or 15 kw/ft, which is the prior art practice. So that power of the same magnitude as for prior art reactors is produced, the volume of the core is increased. In addition, the height of the core and it diameter are dimensioned so that the ratio of the height to the diameter approximates 1 to the extent practicable considering the requirement of control and that the pressure drop in the coolant shall not be excessive. The surface area of a cylinder of given volume is a minimum if the ratio of the height to the diameter is 1. By minimizing the surface area, the leakage of neutrons is reduced. By reducing the linear-power density, increasing core volume, reducing fissile enrichment and optimizing core geometry, internal-core breeding of fissionable fuel is substantially enhanced. As a result, core operational life, limited by control worth requirements and fuel burnup capability, is extended up to 30 years of continuous power operation.

  8. Nuclear reactors built, being built, or planned in the United States

    International Nuclear Information System (INIS)

    Goulden, A.M.

    1983-08-01

    This semiannual compilation provides current information about facilities for domestic use or export which are capable of sustaining a nuclear chain reaction. Civilian, production, and military reactors are listed, as are reactors for export and critical assembly facilities. Information given includes location, owner, principal nuclear contractor, type, power rating, docket number, and start-up and shutdown dates. Nuclear Reactors Built, Being Built, or Planned is also available on standing order (PB83-903000) through a deposit account with the National Technical Information Service, Springfield, VA 22161

  9. Transportation of failed or damaged foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Messick, C.E.; Mustin, T.P.; Massey, C.D.

    1998-01-01

    Since resuming the Foreign Research Reactor Spent Nuclear Fuel (FRR SNF) Acceptance Program in 1996, the Program has had to deal with difficult issues associated with the transportation of failed or damaged spent fuel. In several instances, problems with failed or damaged fuel have prevented the acceptance of the fuel at considerable cost to both the Department of Energy (DOE) and research reactor operators. In response to the problems faced by the Acceptance Program, DOE has undertaken significant steps to better define the spent fuel acceptance criteria. DOE has worked closely with the U.S. Nuclear Regulatory Commission to address failed or damaged research reactor spent fuel and to identify cask certificate issues which must be resolved by cask owners and foreign regulatory authorities. The specific issues associated with the transport of Materials Testing Reactor (MTR)-type FRR SNF will be discussed. The information presented will include U.S. Nuclear Regulatory Commission regulatory issues, cask certificate issues, technical constraints, and lessons learned. Specific information will also be provided on the latest efforts to revise DOE's Appendix B, Transport Package (Cask) Acceptance Criteria. The information presented in this paper will be important to foreign research reactor operators, shippers, and cask vendors, so that appropriate amendments to the Certificate of Compliance for spent fuel casks can be submitted in a timely manner to facilitate the safe and scheduled transport of FRR SNF

  10. É importante restringir a movimentação cefálica após a manobra de Epley? Is it important to restrict head movement after Epley maneuver?

    Directory of Open Access Journals (Sweden)

    Fernando Freitas Ganança

    2005-12-01

    Full Text Available O uso de restrição de movimentação cefálica após a manobra de Epley ainda é controverso. OBJETIVO: Verificar a importância da restrição de movimentação cefálica na evolução clínica de pacientes com vertigem posicional paroxística benigna por ductolitíase de canal semicircular posterior, quando submetidos a uma única manobra de Epley. FORMA DE ESTUDO: clínico prospectivo. MATERIAL E MÉTODO: Cinqüenta e oito pacientes com ductolitíase do canal semicircular posterior foram divididos aleatoriamente em dois grupos após a aplicação de uma manobra de Epley. Os pacientes do grupo 1 foram orientados quanto às restrições da movimentação cefálica e os pacientes do grupo 2 não foram orientados. Após uma semana, os dois grupos foram avaliados quanto à presença do nistagmo de posicionamento e à evolução clínica da vertigem. RESULTADOS: O nistagmo de posicionamento não esteve presente em 82,1% dos pacientes do grupo 1 e em 73,3% dos pacientes do grupo 2 após uma semana da manobra de Epley (p=0,421. Houve melhora clínica subjetiva em 96,0% dos pacientes do grupo 1 e em 94,0% dos pacientes do grupo 2 (p=0,781. CONCLUSÃO: O uso das restrições de movimentação cefálica não interferiu na evolução clínica dos pacientes com vertigem posicional paroxística benigna por ductolitíase de canal semicircular posterior, submetidos à única manobra de Epley.The effectiveness of postmaneuver postural restrictions is controversial in patients with benign paroxysmal positional vertigo. AIM: To verify the role of postural restrictions in patients with benign paroxysmal positional vertigo of posterior canal, submitted to a single Epley maneuver. STUDY DESIGN: clinical prospective. MATERIAL AND METHOD: Fifty eight patients with benign paroxysmal positional vertigo of posterior canal were randomly divided in two groups following the application of a unique Epley maneuver. The patients from group 1 were informed to restrict their

  11. Response of Chloroplast NAD(PH Dehydrogenase-Mediated Cyclic Electron Flow to a Shortage or Lack in Ferredoxin-Quinone Oxidoreductase-Dependent Pathway in Rice Following Short-Term Heat Stress

    Directory of Open Access Journals (Sweden)

    Jemaa eEssemine

    2016-03-01

    Full Text Available Cyclic electron flow around PSI can protect photosynthetic electron carriers under conditions of stromal over-reduction. The goal of the research reported in this paper was to investigate the responses of both PSI and PSII to a short-term heat stress in two rice lines with different capacities of cyclic electron transfer, i.e. Q4149 with a high capacity (hcef and C4023 with a low capacity (lcef. The absorbance change at 820 nm (ΔA820 was used here to assess the charge separation in the photosystem I (PSI reaction center (P700. The results obtained show that short-term heat stress abolishes the FQR-dependent CEF in rice and accelerates the initial rate of P700+ re-reduction. The P700+ amplitude was slightly increased at a moderate heat-stress (35°C because of a partial restriction of FQR but it was decreased following high heat-stress (42°C. Assessment of PSI and PSII activities shows that PSI is more susceptible to heat stress than photosystem II (PSII. Under high temperature, FQR-dependent CEF was completely removed and NDH-dependent CEF was up-regulated and strengthened to a higher extent in C4023 than in Q4149. Specifically, under normal growth temperature, hcef (Q4149 was characterized by higher FQR- and NDH-dependent CEF rates than lcef (C4023. Following thermal stress, the activation of NDH-pathway was 130% and 10% for C4023 and Q4149, respectively. Thus, the NDH-dependent CEF may constitute the second layer of plant protection and defence against heat stress after the main route, i.e. FQR-dependent CEF, reaches its capacity. We discuss the possibility that under high heat stress, the NDH pathway serves as a safety valve to dissipate excess energy by cyclic photophosphorylation and overcome the stroma over-reduction following inhibition of CO2 assimilation and any shortage or lack in the FQR pathway. The potential role of the NDH-dependent pathway during the evolution of C4 photosynthesis is briefly discussed.

  12. Decision-making process to shut down, refurbish/modify, or decommission research reactors

    International Nuclear Information System (INIS)

    Stover, R.L.; Murphie, W.E.

    1992-01-01

    Most US research reactors were built more than 20 years ago and some more than 40 years ago. Many have undergone refurbishments and modifications to update their safety systems and experimental capabilities. But changing safety bases, social concerns, and budget constraints have required research reactor operators to continually make decisions to shut down or refurbish/modify their facilities. These decisions involve potential replacement of reactor equipment that has reached its lifetime limits. Changes in philosophy and operation of the reactors are also factors to be considered. In this paper, each of the four factors involved in the decision-making process are discussed in detail. Then, several examples from DOE research reactors in the United States are discussed. Finally, some general conclusions are given to aid in the decision-making process

  13. Correspondencias múltiples entre índices morfológicos cefálicos y postcefálicos en aborígenes del Gran Chaco Sudamericano

    Directory of Open Access Journals (Sweden)

    Colantonio, Sonia Edith

    2002-01-01

    Full Text Available Los comportamientos correlativos de los índices cefálicos y postcefálicos en los análisis de relaciones intergrupales no han sido suficientemente explorados hasta hoy. La escasez de datos de ambos segmentos corporales ha limitado este tipo de estudios. A la vez, otras estimaciones de la "forma" mediante ajustes del "tamaño" han sido propuestas, dándose por sentada su superioridad al uso de los índices. En este ensayo se analizan la correspondencia entre formas y la eficiencia discriminante de los índices, aprovechando los datos de la colección Vellard que comprende 1734 aborígenes provenientes de 12 grupos étnicos del Gran Chaco Sudamericano. Se empleó para ello el Análisis de Homogeneidad (HOMALS, mediante el cual se calcularon los vectores propios y los "pesos" tanto de las variables (índices cuanto de los grupos en las dimensiones principales de la variación, representando gráficamente su ubicación en el sistema coordenado de las mismas. Los resultados muestran similares relaciones entre las formas de la cabeza en hombres y en mujeres, pero en éstas hay una neta independencia entre las categorías de la porción neural y las de la facial. La mayor diferenciación morfológica de los chaquenses se registra en esas regiones cefálicas, mientras que a nivel del segmento postcefálico las etnias son más semejantes. Las relaciones morfológicas interétnicas son diferentes según el sexo considerado. En el interior de cada sexo, la topología obtenida es idéntica ya se tome en cuenta solamente la cabeza o ésta conjuntamente con el cuerpo.

  14. Development or Deployment of 'Grid-Appropriate' Reactors for the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Ingersoll, D. T.

    2008-01-01

    The world energy demand is expected to nearly double by 2030, largely driven by rapidly increasing demand in the developing parts of the world. Many of the countries that will experience the greatest growth in energy demand have little or no current nuclear power experience and have significant constraints on the size and type of power plant that can be accommodated. Although a few reactor vendors are beginning to address this market need, most traditional vendors continue to offer only very large nuclear power plants with capacities exceeding 1500 MWe per unit. The Global Nuclear Energy Partnership (GNEP), which was initiated in the United States and now includes a partnership of 20 countries, seeks to facilitate the large-scale global growth in nuclear power. Within the GNEP program, the 'grid-appropriate' reactors (GAR) campaign has been initiated to coordinate and facilitate the development, demonstration, and deployment of reactor designs that are better suited for those countries that need or prefer smaller power plant capacities. The GNEP/GAR program addresses the full spectrum of issues for the deployment of new reactor designs to new nuclear power countries, including: reactor technology and engineering, licensing and regulatory impacts, and infrastructure needs (physical, workforce, and institutional). Initially, the program is focused on meeting the current global demand for small or medium-sized reactors using demonstrated technologies. The program will also address the development of new reactor technologies that will further enhance the safety, security, and proliferation resistance of future designs. International collaborations are being established to: (1) develop suitable requirements and criteria for GAR designs, (2) conduct R and D for longer-term reactor technologies and innovative designs, and (3) assisting new nuclear power countries in assessing their infrastructure needs. The status of these activities will be presented and future program

  15. New or improved computational methods and advanced reactor design

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Takeda, Toshikazu; Ushio, Tadashi

    1997-01-01

    Nuclear computational method has been studied continuously up to date, as a fundamental technology supporting the nuclear development. At present, research on computational method according to new theory and the calculating method thought to be difficult to practise are also continued actively to find new development due to splendid improvement of features of computer. In Japan, many light water type reactors are now in operations, new computational methods are induced for nuclear design, and a lot of efforts are concentrated for intending to more improvement of economics and safety. In this paper, some new research results on the nuclear computational methods and their application to nuclear design of the reactor were described for introducing recent trend of the nuclear design of the reactor. 1) Advancement of the computational method, 2) Reactor core design and management of the light water reactor, and 3) Nuclear design of the fast reactor. (G.K.)

  16. Serviceability of rod ceramic fuel pins on motoring conditions of FTP or NEMF reactor

    International Nuclear Information System (INIS)

    Deryavko, I.I.

    2004-01-01

    The operation conditions of rod ceramic fuel pins in the running hydrogen-cooled technological canals of FTP or NEMF reactor on the motoring conditions are considered. The available postreactor researches of the fuel pins are presented and the additional postreactor researches of fuel pins, tested on this mode in IVG.1 and IRGIT reactors, are carried out. The fuel pins serviceability on motoring conditions of FTP or NEF reactor operation is concluded. (author)

  17. Microscopic nature of inhomogeneous line broadening: Analysis of the excitation-line-narrowing spectra of Cf4+ in CeF4

    International Nuclear Information System (INIS)

    Liu, G.K.; Huang, J.; Beitz, J.V.

    1993-01-01

    Optical transitions between 5f states of tetravalent californium ion doped (1 metal-atom %) into CeF 4 exhibit unusually large inhomogeneous broadening. The nature of the inhomogeneous broadening in this system has been studied by using fluorescence line narrowing and excitation line narrowing (ELN). It is shown that the energy distributions of different electronic states of Cf 4+ in this system are correlated. In the ELN experiments, reduced excitation linewidth was obtained when selectively monitoring fluorescence emission. A linear relation was observed between the excitation energies of crystal-field states of the 5 G 4' manifold and the fluorescence wavelength monitored across the inhomogeneous profile of a 5 G 6' -- 7 F 6' transition. Analysis of these results by means of a microscopic theory proposed by Laird and Skinner [J. Chem. Phys. 90, 3880 (1989)] has provided insights into the structural properties of this disordered system

  18. Prevalência de lesões cutâneas actínicas em pacientes com carcinoma basocelular do segmento cefálico: um estudo caso-controle Prevalence of actinic skin lesions in patients with basal cell carcinoma of the head: a case-control study

    Directory of Open Access Journals (Sweden)

    Valquíria Pessoa Chinem

    2012-04-01

    Full Text Available OBJETIVO: Avaliar a preval��ncia de lesões cutâneas actínicas em portadores de carcinoma basocelular do segmento cefálico. MÉTODOS: Foi conduzido estudo tipo caso-controle. Os casos, constituídos por pacientes com carcinoma basocelular sólido, primário, menor que dois centímetros, no segmento cefálico; e controles, por pacientes com outras dermatoses. Foram analisadas variáveis constitucionais, comportamentais e lesões actínicas. RESULTADOS: Avaliaram-se 120 casos e 360 controles. Mílio facial (OR = 2,3, leucodermia puntacta de membros superiores (OR = 2,9 e cutis romboidalis nuchae (OR = 1,8 associaram-se à neoplasia independentemente das demais variáveis, sugerindo um fenótipo de risco. Houve ainda associação com fenótipos claros, genética familiar e exposição solar cumulativa. Queimadura solar, tabagismo e alcoolismo não foram identificados como fatores de risco. O uso de fotoprotetores não evidenciou proteção; porém, o grupo controle era composto por pacientes dermatológicos, aos quais são indicados fotoprotetores regularmente. CONCLUSÃO: Lesões actínicas foram mais prevalentes em portadores de carcinoma basocelular sólido do segmento cefálico que em controles, especialmente mílio, cutis romboidalis nuchae e leucodermia puntacta, independentemente dos demais fatores de risco conhecidos.OBJECTIVE: To evaluate the prevalence of actinic skin lesions in patients with basal cell carcinoma of the head. METHODS: A case-control study was carried out. Cases were patients with primary, solid basal cell carcinoma of the head, less than two centimeters in diameter; and as controls, patients with other dermatoses. Constitutional and behavioral variables were analyzed, as well as actinic lesions. RESULTS: One hundred twenty cases and 360 controls were evaluated. Facial milia (OR = 2.3, leukoderma punctata of the upper limbs (OR = 2.9, and cutis rhomboidalis nuchae (OR = 1.8 were associated with neoplasms regardless

  19. Transportation of failed or damaged foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Messick, Charles E.; Mustin, Tracy P.; Massey, Charles D.

    1999-01-01

    Since initiating the Foreign Research Reactor Spent Nuclear Fuel (FRR SNF) Acceptance Program in 1996, the Program has had to deal with difficult issues associated with the transportation of failed or damaged spent fuel. In several instances, problems with failed or damaged fuel have prevented the acceptance of the fuel at considerable cost to both the Department of Energy and research reactor operators. In response to the problems faced by the Acceptance Program, DOE has undertaken significant steps to better define the spent fuel acceptance criteria. DOE has worked closely with the U.S. Nuclear Regulatory Commission to address failed or damaged research reactor spent fuel causing a degradation of the fuel assembly exposing fuel meat and to identify cask certificate issues which must be resolved by cask owners and foreign regulatory authorities. The specific issues and implementation challenges associated with the transport of MTR type FRR SNF will be discussed. The information presented will include U.S. Nuclear Regulatory Commission regulatory issues, cask certificate issues, technical constraints, implementation status, and lessons learned. Specific information will also be provided on the latest efforts to revise DOE's Appendix B, Transport Package (Cask) Acceptance Criteria. The information presented in this paper will be of interest to foreign research reactor operators, shippers, and cask vendors in evaluating the condition of their fuel to ensure it can be transported in accordance with appropriate cask certificate requirements. (author)

  20. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2015. Scientific Opinion on Flavouring Group Evaluation 213, Revision 2 (FGE.213Rev2): Consideration of genotoxic potential for α,β-unsaturated alicyclic ketones and precursors from chemical subgroup 2

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Nørby, Karin Kristiane

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF Panel) of the European Food Safety Authority (EFSA) was requested to evaluate the genotoxic potential of 26 flavouring substances from subgroup 2.7 of FGE.19 in Flavouring Group Evaluation (FGE) 213. In the first v...

  1. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each of the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.

  2. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2016 Scientific Opinion on Flavouring Group Evaluation 75, Revision 1 (FGE.75Rev1): Consideration of tetrahydrofuran derivatives evaluated by JECFA (63rd meeting) structurally related to tetrahydrofuran

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Nørby, Karin Kristiane

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) of the EFSA was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further evaluation is neces......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) of the EFSA was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further evaluation...... for anhydrolinalool oxide (5) [FL-no: 13.097]. The substances were evaluated through a stepwise approach that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity. The JECFA concluded all the 11...... with the JECFA conclusion ‘No safety concern at estimated level of intake as flavouring substances’ based on the maximised survey-derived daily intake (MSDI) approach. The specifications for the materials of commerce have also been considered and for all 11 substances, the information is adequate....

  3. Operating manual for the critical experiments facility

    International Nuclear Information System (INIS)

    1986-01-01

    The operation of the Critical Experiments Facility (CEF) requires careful attention to procedures in order that all safety precautions are observed. Since an accident could release large amounts of radioactivity, careful operation and strict enforcement of procedures are necessary. To provide for safe operation, detailed procedures have been written for all phases of the operation of this facility. The CEF operating procedures are not to be construed to constitute a part ofthe Technical Specifications. In the event of any discrepancy between the information given herein and the Technical Specifications, limits set forth in the Technical Specifications apply. All normal and most emergency operation conditions are covered by procedures presented in this manual. These procedures are designed to be followed by the operating personnel. Strict adherence to these procedures is expected for the following reasons. (1) To provide a standard, safe method of performing all operations, the procedures were written by reactor engineers experienced in supervising the operation of reactors and were reviewed by an organization with over 30 years of reactor operating experience. (2) To have an up-to-date description of operating techniques available at all times for reference and review, it is necessary that the procedures be written

  4. Operating manual for the critical experiments facility

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The operation of the Critical Experiments Facility (CEF) requires careful attention to procedures in order that all safety precautions are observed. Since an accident could release large amounts of radioactivity, careful operation and strict enforcement of procedures are necessary. To provide for safe operation, detailed procedures have been written for all phases of the operation of this facility. The CEF operating procedures are not to be construed to constitute a part ofthe Technical Specifications. In the event of any discrepancy between the information given herein and the Technical Specifications, limits set forth in the Technical Specifications apply. All normal and most emergency operation conditions are covered by procedures presented in this manual. These procedures are designed to be followed by the operating personnel. Strict adherence to these procedures is expected for the following reasons. (1) To provide a standard, safe method of performing all operations, the procedures were written by reactor engineers experienced in supervising the operation of reactors and were reviewed by an organization with over 30 years of reactor operating experience. (2) To have an up-to-date description of operating techniques available at all times for reference and review, it is necessary that the procedures be written.

  5. CANDU - a versatile reactor for plutonium disposition or actinide burning

    International Nuclear Information System (INIS)

    Chan, P.S.W.; Gagnon, M.J.N.; Boczar, P.G.; Ellis, R.J.; Verrall, R.A.

    1997-10-01

    High neutron economy, on-line refuelling, and a simple fuel-bundle design result in a high degree of versatility in the use of the CANDU reactor for the disposition of weapons-derived plutonium and for the annihilation of long-lived radioactive actinides, such as plutonium, neptunium, and americium isotopes, created in civilian nuclear power reactors. Inherent safety features are incorporated into the design of the bundles carrying the plutonium and actinide fuels. This approach enables existing CANDU reactors to operate with various plutonium-based fuel cycles without requiring major changes to the current reactor design. (author)

  6. Assigning the Cerium Oxidation State for CH2CeF2 and OCeF2 Based on Multireference Wave Function Analysis.

    Science.gov (United States)

    Mooßen, Oliver; Dolg, Michael

    2016-06-09

    The geometric and electronic structure of the recently experimentally studied molecules ZCeF2 (Z = CH2, O) was investigated by density functional theory (DFT) and wave function-based ab initio methods. Special attention was paid to the Ce-Z metal-ligand bonding, especially to the nature of the interaction between the Ce 4f and the Z 2p orbitals and the possible multiconfigurational character arising from it, as well as to the assignment of an oxidation state of Ce reflecting the electronic structure. Complete active space self-consistent field (CASSCF) calculations were performed, followed by orbital rotations in the active orbital space. The methylene compound CH2CeF2 has an open-shell singlet ground state, which is characterized by a two-configurational wave function in the basis of the strongly mixed natural CASSCF orbitals. The system can also be described in a very compact way by the dominant Ce 4f(1) C 2p(1) configuration, if nearly pure Ce 4f and C 2p orbitals are used. In the basis of these localized orbitals, the molecule is almost monoconfigurational and should be best described as a Ce(III) system. The singlet ground state of the oxygen OCeF2 complex is of closed-shell character when a monoconfigurational wave function with very strongly mixed Ce 4f and O 2p CASSCF natural orbitals is used for the description. The transformation to orbitals localized on the cerium and oxygen atoms leads to a multiconfigurational wave function and reveals characteristics of a mixed valent Ce(IV)/Ce(III) compound. Additionally, the interactions of the localized active orbitals were analyzed by evaluating the expectation values of the charge fluctuation operator and the local spin operator. The Ce 4f and C 2p orbital interaction of the CH2CeF2 compound is weakly covalent and resembles the interaction of the H 1s orbitals in a stretched hydrogen dimer. In contrast, the interaction of the localized active orbitals for OCeF2 shows ionic character. Calculated vibrational Ce

  7. Assessment of Startup Fuel Options for a Test or Demonstration Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, Jon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hayes, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Walters, L. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This document explores startup fuel options for a proposed test/demonstration fast reactor. The fuel options considered are the metallic fuels U-Zr and U-Pu-Zr and the ceramic fuels UO2 and UO2-PuO2 (MOX). Attributes of the candidate fuel choices considered were feedstock availability, fabrication feasibility, rough order of magnitude cost and schedule, and the existing irradiation performance database. The reactor-grade plutonium bearing fuels (U-Pu-Zr and MOX) were eliminated from consideration as the initial startup fuels because the availability and isotopics of domestic plutonium feedstock is uncertain. There are international sources of reactor grade plutonium feedstock but isotopics and availability are also uncertain. Weapons grade plutonium is the only possible source of Pu feedstock in sufficient quantities needed to fuel a startup core. Currently, the available U.S. source of (excess) weapons-grade plutonium is designated for irradiation in commercial light water reactors (LWR) to a level that would preclude diversion. Weapons-grade plutonium also contains a significant concentration of gallium. Gallium presents a potential issue for both the fabrication of MOX fuel as well as possible performance issues for metallic fuel. Also, the construction of a fuel fabrication line for plutonium fuels, with or without a line to remove gallium, is expected to be considerably more expensive than for uranium fuels. In the case of U-Pu-Zr, a relatively small number of fuel pins have been irradiated to high burnup, and in no case has a full assembly been irradiated to high burnup without disassembly and re-constitution. For MOX fuel, the irradiation database from the Fast Flux Test Facility (FFTF) is extensive. If a significant source of either weapons-grade or reactor-grade Pu became available (i.e., from an international source), a startup core based on Pu could be reconsidered.

  8. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...

  9. Inventory of nuclear power plants and research reactors temporary or definitively stopped in industrialized countries

    International Nuclear Information System (INIS)

    Clauzon, J.; Vaubert, B.

    1984-12-01

    This paper presents data and information on the end of the life of nuclear reactors. One deals more particularly with installations of industrialized countries. This report gives the motivations which have involved the definitive shut down of nuclear power plants and of research reactors in the concerned countries. A schedule of definitive reactor shutdowns is presented. Then, one deals with nuclear power plants of which the construction has been stopped. The reasons of these situations are also given. The temporary difficulties met during the construction or the starting of nuclear power plants these last years are mentioned. Most times, there are economical or political considerations, or safety reasons. Finally, the nuclear power plants stopped for more than two years are mentioned [fr

  10. Neutronic design for a 100MWth Small modular natural circulation lead or lead-alloy cooled fast reactors core

    International Nuclear Information System (INIS)

    Chen, C.; Chen, H.; Zhang, H.; Chen, Z.; Zeng, Q.

    2015-01-01

    Lead or lead-alloy cooled fast reactor with good fuel proliferation and nuclear waste transmutation capability, as well as high security and economy, is a great potential for the development of fourth-generation nuclear energy systems. Small natural circulation reactor is an important technical route lead cooled fast reactors industrial applications, which has been chosen as one of the three reference technical for solution lead or lead-alloy cooled fast reactors by GIF lead-cooled fast reactor steering committee. The School of Nuclear Science and Technology of USTC proposed a small 100MW th natural circulation lead cooled fast reactor concept called SNCLFR-100 based realistic technology. This article describes the SNCLFR-100 reactor of the overall technical program, core physics calculation and analysis. The results show that: SNCLFR-100 with good neutronic and safety performance and relevant design parameters meet the security requirements with feasibility. (author)

  11. Research reactors

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  12. Estimating bounds on the macroeconomic effects of the Clean Energy Future policy scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Sanstad, A. H.; DeCanio, S. J.; Boyd, G. A.

    2000-04-04

    The Clean Energy Future (CEF) is a partial equilibrium study in that it focuses specifically on markets for energy services. It is also important, however, to consider potential effects of the CEF policies on overall economic performance. The purpose of this paper is: (1) to provide a framework for interpreting the macroeconomic (or second-order) effects that might occur under the types of scenarios analyzed in the CEF, and (2) to obtain a range of estimates of these effects associated with the Moderate and Advanced scenarios as described in the CEF study. In this paper the authors consider results from both types of model in the context of the CEF study. The primary framework and calculations focus on the second meaning given above of the term macroeconomic and the associated CGE models, because these are appropriate for analysis on the time scales of the CEF, through 2010 or 2020. Because the Keynesian-style macroeconomic models are designed and suited for short-term forecasting, they also discuss the application of one such model to the analysis of the shorter-horizon effects of certain policies to reduce carbon emissions.

  13. Nuclear reactor can detonate like an atomic bomb: yes or no

    International Nuclear Information System (INIS)

    Martin, D.

    1974-01-01

    The fission process in a nuclear weapon and in power reactor are compared. The operation of a power reactor is described and the various protective systems and shielding devices are mentioned. It is shown that it is not possible for a nuclear explosion to occur in a power reactor

  14. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  15. The extension of the SWS period or CANDU reactors with particular reference to Douglas Point

    International Nuclear Information System (INIS)

    Bennett, C.R.

    1985-01-01

    The foregoing approach to the determination of the fate of a concrete containment building is worth much consideration. The expenditure of $10 8 or its escalated equivalent is too much to pay for the probable saving of fraction of a statistical life. The unquestioning adoption of the dogma of reactor dismantlement displays a complete misunderstanding of the numerics of ''risk'', even the place of reactor dismantling in the spectrum of nuclear risk. The position of the risk of reactor dismantling is more than an order of magnitude lower than the former of these. The most altruistic criterion for any engineering activity is the achievement of the greatest expected net benefit (or the least expected net detriment) when all the consequences of the activity are taken into account. As has been shown this criterion leads to the conclusion that, at least in CANDU reactors and particularly Douglas Point, there is apparently no reason why the S.W.S. period should not be extended indefinitely

  16. Reactor core in FBR type reactor

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Kawashima, Katsuyuki; Kurihara, Kunitoshi.

    1989-01-01

    In a reactor core in FBR type reactors, a portion of homogenous fuels constituting the homogenous reactor core is replaced with multi-region fuels in which the enrichment degree of fissile materials is lower nearer to the axial center. This enables to condition the composition such that a reactor core having neutron flux distribution either of a homogenous reactor core or a heterogenous reactor core has substantially identical reactivity. Accordingly, in the transfer from the homogenous reactor core to the axially heterogenous reactor core, the average reactivity in the reactor core is substantially equal in each of the cycles. Further, by replacing a portion of the homogenous fuels with a multi-region fuels, thereby increasing the heat generation near the axial center, it is possiable to reduce the linear power output in the regions above and below thereof and, in addition, to improve the thermal margin in the reactor core. (T.M.)

  17. Ceftriaxone, a beta-lactam antibiotic, reduces ethanol consumption in alcohol-preferring rats.

    Science.gov (United States)

    Sari, Youssef; Sakai, Makiko; Weedman, Jason M; Rebec, George V; Bell, Richard L

    2011-01-01

    Changes in glutamatergic transmission affect many aspects of neuroplasticity associated with ethanol and drug addiction. For instance, ethanol- and drug-seeking behavior is promoted by increased glutamate transmission in key regions of the motive circuit. We hypothesized that because glutamate transporter 1 (GLT1) is responsible for the removal of most extracellular glutamate, up-regulation or activation of GLT1 would attenuate ethanol consumption. Alcohol-preferring (P) rats were given 24 h/day concurrent access to 15 and 30% ethanol, water and food for 7 weeks. During Week 6, P rats received either 25, 50, 100 or 200 mg/kg ceftriaxone (CEF, i.p.), a β-lactam antibiotic known to elevate GLT1 expression, or a saline vehicle for five consecutive days. Water intake, ethanol consumption and body weight were measured daily for 15 days starting on Day 1 of injections. We also tested the effects of CEF (100 and 200 mg/kg, i.p.) on daily sucrose (10%) consumption as a control for motivated behavioral drinking. Statistical analyses revealed a significant reduction in daily ethanol, but not sucrose, consumption following CEF treatment. During the post treatment period, there was a recovery of ethanol intake across days. Dose-dependent increases in water intake were manifest concurrent with the CEF-induced decreases in ethanol intake. Nevertheless, CEF did not affect body weight. An examination of a subset of the CEF-treated ethanol-drinking rats, on the third day post CEF treatment, revealed increases in GTL1 expression levels within the prefrontal cortex and nucleus accumbens. These results indicate that CEF effectively reduces ethanol intake, possibly through activation of GLT1, and may be a potential therapeutic drug for alcohol addiction treatment.

  18. Reactor core for FBR type reactor

    International Nuclear Information System (INIS)

    Fujita, Tomoko; Watanabe, Hisao; Kasai, Shigeo; Yokoyama, Tsugio; Matsumoto, Hiroshi.

    1996-01-01

    In a gas-sealed assembly for a FBR type reactor, two or more kinds of assemblies having different eigen frequency and a structure for suppressing oscillation of liquid surface are disposed in a reactor core. Coolant introduction channels for introducing coolants from inside and outside are disposed in the inside of structural members of an upper shielding member to form a shielding member-cooling structure in the reactor core. A structure for promoting heat conduction between a sealed gas in the assembly and coolants at the inner side or the outside of the assembly is disposed in the reactor core. A material which generates heat by neutron irradiation is disposed in the assembly to heat the sealed gases positively by radiation heat from the heat generation member also upon occurrence of power elevation-type event to cause temperature expansion. Namely, the coolants flown out from or into the gas sealed-assemblies cause differential fluctuation on the liquid surface, and the change of the capacity of a gas region is also different on every gas-sealed assemblies thereby enabling to suppress fluctuation of the reactor power. Pressure loss is increased by a baffle plate or the like to lower the liquid surface of the sodium coolants or decrease the elevating speed thereof thereby suppressing fluctuation of the reactor power. (N.H.)

  19. Evaluation of the integrity of reactor vessels designed to ASME Code, Sections I and/or VIII

    International Nuclear Information System (INIS)

    Hoge, K.G.

    1976-01-01

    A documented review of nuclear reactor pressure vessels designed to ASME Code, Sections I and/or VIII is made. The review is primarily concerned with the design specifications and quality assurance programs utilized for the reactor vessel construction and the status of power plant material surveillance programs, pressure-temperature operating limits, and inservice inspection programs. The following ten reactor vessels for light-water power reactors are covered in the report: Indian Point Unit No. 1, Dresden Unit No. 1, Yankee Rowe, Humboldt Bay Unit No. 3, Big Rock Point, San Onofre Unit No. 1, Connecticut Yankee, Oyster Creek, Nine Mile Point Unit No. 1, and La Crosse

  20. Nuclear reactor types

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    The characteristics of different reactor types designed to exploit controlled fission reactions are explained. Reactors vary from low power research devices to high power devices especially designed to produce heat, either for direct use or to produce steam to drive turbines to generate electricity or propel ships. A general outline of basic reactors (thermal and fast) is given and then the different designs considered. The first are gas cooled, including the Magnox reactors (a list of UK Magnox stations and reactor performance is given), advanced gas cooled reactors (a list of UK AGRs is given) and the high temperature reactor. Light water cooled reactors (pressurized water [PWR] and boiling water [BWR] reactors) are considered next. Heavy water reactors are explained and listed. The pressurized heavy water reactors (including CANDU type reactors), boiling light water, steam generating heavy water reactors and gas cooled heavy water reactors all come into this category. Fast reactors (liquid metal fast breeder reactors and gas cooled fast reactors) and then water-cooled graphite-moderated reactors (RBMK) (the type at Chernobyl-4) are discussed. (U.K.)

  1. What the difference to use LEU and HEU fuel elements separately or together in a research reactor

    International Nuclear Information System (INIS)

    Kaya, S.; Uestuen, G.

    2005-01-01

    Concerning of nuclear material safety, most of the research reactors are advised to shift from HEU (high enriched-%93 U-235) to LEU (low enriched-%20 U-235) fuel elements. When LEU and HEU fuel elements are to be used together in a research reactor, some design and safety problems are encountered. According to use of the reactor, some research reactors such as MTR type may not show any considerable difference for HEU or LEU fuel elements, but the efficiency of radioisotope production generated by thermal neutron interaction may decrease about twenty-thirty percent when LEU fuel elements are used. Here, fine mesh-sized 3D neutronic analysis of TR-2 research reactor is presented to indicate the arising problem when LEU end HEU fuel elements are used together in a research reactor. Partial thermohydraulic analysis of the reactor is also given to show the betterness of the LEU fuel element design. However, there might be some points that should be noticed for safer operation of plate type fuelled research reactors. (author)

  2. Specific features of reactor or cyclotron {alpha}-particles irradiated beryllium microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Khomutov, A M [A.A.Bochvar All-Russia Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Gromov, B F; Karabanov, V N [and others

    1998-01-01

    Studies were carried out into microstructure changes accompanying helium swelling of Be reactor neutron irradiated at 450degC or {alpha}-particles implanted in cyclotron to reach the same volume accumulation of He (6-8 ncm{sup 3} He/cm{sup 3} Be). The microstructures of reactor irradiated and implanted samples were compared after vacuum anneal at 600-800degC up to 50h. The irradiated samples revealed the etchability along the grain boundaries in zones formed by adequately large equilibrium helium pores. The width of the zones increased with the annealing time and after 50h reached 30{mu}. Depleted areas 2-3{mu} dia were observed in some regions of near grain boundary zones. The roles of grain boundaries and manufacturing pores as vacancies` sources and helium sinks are considered. (author)

  3. Preliminary study or RSG-GAS reactor fuel element integrity

    International Nuclear Information System (INIS)

    Soejoedi, A.; Tarigan, A.; Sujalmo; Prayoga, S.; Suhadi

    1996-01-01

    After 8 years of operation, RSG-GAS was able to reach 15 cycles of reactor operation with 116 irradiated fuels, whereas 49 fuels were produced by NUKEM; and the other 67 were produced by PEBN-BATAN. At the 15 T h cycles, it have been used 40 standard fuels and 8 control fuels (Forty standard fuels and eight control fuels have been used in the 15 t h core cycles). Several activities have been performed in the reactor, to investigate the fuel integrity, among of them are: .fuel visual test with under water camera, which the results were recorder in the video cassette, primary water quality test during, reactor operation, fuel failure detector system examination and compared the PIE results in the Radiometallurgy Installation (RMI). The results showed that the fuel integrity, before and after irradiation, have still good performance and the fission products have not been released yet

  4. Reactor core of FBR type reactor

    International Nuclear Information System (INIS)

    Hayashi, Hideyuki; Ichimiya, Masakazu.

    1994-01-01

    A reactor core is a homogeneous reactor core divided into two regions of an inner reactor core region at the center and an outer reactor core region surrounding the outside of the inner reactor core region. In this case, the inner reactor core region has a lower plutonium enrichment degree and less amount of neutron leakage in the radial direction, and the outer reactor core region has higher plutonium enrichment degree and greater amount of neutron leakage in the radial direction. Moderator materials containing hydrogen are added only to the inner reactor core fuels in the inner reactor core region. Pins loaded with the fuels with addition of the moderator materials are inserted at a ratio of from 3 to 10% of the total number of the fuel pins. The moderator materials containing hydrogen comprise zirconium hydride, titanium hydride, or calcium hydride. With such a constitution, fluctuation of the power distribution in the radial direction along with burning is suppressed. In addition, an absolute value of the Doppler coefficient can be increased, and a temperature coefficient of coolants can be reduced. (I.N.)

  5. Improvements in or relating to nuclear reactors

    International Nuclear Information System (INIS)

    Savin, N.I.; Khramov, D.A.; Filippov, V.J.; Bugrov, V.V.

    1979-01-01

    A nuclear reactor is described, comprising a core accommodating a plurality of fuel assemblies and a refuelling device for replacing spent fuel assemblies. The design of the fuel assembly and of the refuelling device, and the method of carrying out the refuelling operation, are specified. (U.K.)

  6. Comparative pharmacokinetics of ceftiofur hydrochloride and ceftiofur sodium after administration to water buffalo (Bubalus bubalis).

    Science.gov (United States)

    Nie, Haiying; Feng, Xin; Peng, Jianbo; Liang, Liu; Lu, Chunyan; Tiwari, Roshan V; Tang, Shusheng; He, Jiakang

    2016-06-01

    OBJECTIVE To evaluate pharmacokinetics and bioavailability after administration of ceftiofur hydrochloride and ceftiofur sodium to water buffalo (Bubalus bubalis). ANIMALS 5 healthy adult water buffalo (3 males and 2 nonlactating females). PROCEDURES All animals received a dose (2.2 mg/kg) of 3 ceftiofur products (2 commercially available suspensions of ceftiofur hydrochloride [CEF1 and CEF2, IM] and ceftiofur sodium [CEF3, IV]). Blood samples were collected for up to 196 hours. Concentrations of ceftiofur in plasma were determined by use of high-performance liquid chromatography, and pharmacokinetic parameters were calculated on the basis of noncompartmental methods. RESULTS Most of the pharmacokinetic parameters, except for bioavailability and the area under the concentration-time curve extrapolated to infinity, were significantly different between the 2 products administered IM. Mean ± SD bioavailability of CEF1 and CEF2 was 89.57 ± 32.84% and 86.28 ± 11.49%, respectively, which indicated good absorption of both products. In addition, there was a longer drug residence time for CEF1 than for CEF2. Data analysis for CEF1 revealed a flip-flop phenomenon. CONCLUSIONS AND CLINICAL RELEVANCE In this study, there was good absorption of CEF1, and CEF1 had a longer drug residence time in vivo than did CEF2. On the basis of pharmacokinetic parameters and the in vitro antimicrobial susceptibility, a dosage regimen of 2.2 mg/kg administered at 48- and 36-hour intervals for CEF1 and CEF2, respectively, could be an appropriate choice for the treatment of buffalo with infectious diseases.

  7. Structure of pipeline or duct for thermonuclear reactor

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Kobayashi, Takeshi; Fujioka, Junzo; Nishio, Satoshi; Okawa, Yoshinao; Sato, Keisuke.

    1992-01-01

    An electrically insulating material comprising a gradient function material is bonded metallurgically to a pipeline or a duct to be disposed to a magnetic field-confining type thermonuclear reactor. The gradient material has an ingredient approximate to ceramics on the side of an electrically insulative ceramic portion and an ingredient approximate to a metal on the other side. The intermediate portion between them, has a continuous gradient ingredient. Further, in the gradient portion of the electrically insulative portion, a heat expansion coefficient is also varied continuously or stepwise in addition to the electrical insulative property. Accordingly, even when a temperature distribution is caused during operation and welding upon production, thermal stresses applied to the pipelines is moderated. Further, since the electrically insulative ceramics are interposed with no support by an electric conductor, sufficient electrical insulation can be ensured. (T.M.)

  8. Generic Procedures for Response to a Nuclear or Radiological Emergency at Triga Research Reactors. Attachment 1 (2011)

    International Nuclear Information System (INIS)

    2011-01-01

    The publication provides guidance for response to emergencies at TRIGA research reactors in Threat Category II and III. It contains information on the unique behaviour of TRIGA fuel during accident conditions; it describes design characteristics of TRIGA research reactors and provides specific symptom-based emergency classification for this type of research reactor. This publication covers the determination of the appropriate emergency class and protective actions for a nuclear or radiological emergency at TRIGA research reactors. It does not cover nuclear security at TRIGA research reactors. The term 'threat category' is used in this publication as described in Ref. [6] and for the purposes of emergency preparedness and response only; this usage does not imply that any threat, in the sense of an intention and capability to cause harm, has been made in relation to facilities, activities or sources. The threat category is determined by an analysis of potential nuclear and radiological emergencies and the associated radiation hazard that could arise as a consequence of those emergencies. STRUCTURE. The attachment consists of an introduction which defines the background, objective, scope and structure, two sections covering technical aspects and appendices. Section 2 describes the characteristics of TRIGA fuel in normal and accident conditions. Section 3 contains TRIGA research reactor specific emergency classification tables for Threat Category II and III. These tables should be used instead of the corresponding emergency classification tables presented in Ref. [1] while developing the emergency response arrangements at TRIGA research reactors. The appendices present some historical overview and typical general data for TRIGA research reactor projects and the list of TRIGA installations around the world. The terms used in this document are defined in the IAEA Safety Glossary and the IAEA Code of Conduct on the Safety of Research Reactors.

  9. Neutronic design for a 100MW{sub th} Small modular natural circulation lead or lead-alloy cooled fast reactors core

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.; Chen, H.; Zhang, H.; Chen, Z.; Zeng, Q., E-mail: shchshch@ustc.edu.cn, E-mail: hlchen1@ustc.edu.cn, E-mail: kulah@mail.ustc.edu.cn, E-mail: zchen214@mail.ustc.edu.cn, E-mail: zengqin@ustc.edu.cn [Univ. of Science and Technology of China, School of Nuclear Science and Technology, Hefei, Anhui (China)

    2015-07-01

    Lead or lead-alloy cooled fast reactor with good fuel proliferation and nuclear waste transmutation capability, as well as high security and economy, is a great potential for the development of fourth-generation nuclear energy systems. Small natural circulation reactor is an important technical route lead cooled fast reactors industrial applications, which has been chosen as one of the three reference technical for solution lead or lead-alloy cooled fast reactors by GIF lead-cooled fast reactor steering committee. The School of Nuclear Science and Technology of USTC proposed a small 100MW{sub th} natural circulation lead cooled fast reactor concept called SNCLFR-100 based realistic technology. This article describes the SNCLFR-100 reactor of the overall technical program, core physics calculation and analysis. The results show that: SNCLFR-100 with good neutronic and safety performance and relevant design parameters meet the security requirements with feasibility. (author)

  10. Topics to be covered in safety analysis reports for nuclear power plants with pressurized water reactors or boiling water reactors in the F.R.G

    International Nuclear Information System (INIS)

    Kohler, H.A.G.

    1977-01-01

    This manual aims at defining the standards to be used in Safety Analysis Reports for Nuclear Power Plants with Pressurized Water Reactors or Boiling Water Reactors in the Federal Republic of Germany. The topics to be covered are: Information about the site (geographic situation, settlement, industrial and military facilities, transport and communications, meteorological conditions, geological, hydrological and seismic conditions, radiological background), description of the power plant (building structures, safety vessel, reactor core, cooling system, ventilation systems, steam power plant, electrical facilities, systems for measurement and control), indication of operation (commissioning, operation, safety measures, radiation monitoring, organization), incident analysis (reactivity incidents, loss-of-coolant incidents, external impacts). (HP) [de

  11. The CAREM reactor and present currents in reactor design

    International Nuclear Information System (INIS)

    Ordonez, J.P.

    1990-01-01

    INVAP has been working on the CAREM project since 1983. It concerns a very low power reactor for electrical energy generation. The design of the reactor and the basic criteria used were described in 1984. Since then, a series of designs have been presented for reactors which are similar to CAREM regarding the solutions presented to reduce the chance of major nuclear accidents. These designs have been grouped under different names: Advanced Reactors, Second Generation Reactors, Inherently Safe Reactors, or even, Revolutionary Reactors. Every reactor fabrication firm has, at least, one project which can be placed in this category. Presently, there are two main currents of Reactor Design; Evolutionary and Revolutionary. The present work discusses characteristics of these two types of reactors, some revolutionary designs and common criteria to both types. After, these criteria are compared with CAREM reactor design. (Author) [es

  12. Nuclear reactors built, being built, or planned in the United States as of June 30, 1982

    International Nuclear Information System (INIS)

    Goulden, A.M.

    1982-11-01

    This semiannual compilation provides current information about facilities for domestic use or export which are capable of sustaining a nuclear chain reaction. Civilian, production, and military reactors are listed, as are reactors for export and critical assembly facilities. Information given includes location, owner, principal nuclear contractor, type, power rating, docket number, and start-up and shutdown dates

  13. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  14. Nuclear reactor

    International Nuclear Information System (INIS)

    Hattori, Sadao; Sato, Morihiko.

    1994-01-01

    Liquid metals such as liquid metal sodium are filled in a reactor container as primary coolants. A plurality of reactor core containers are disposed in a row in the circumferential direction along with the inner circumferential wall of the reactor container. One or a plurality of intermediate coolers are disposed at the inside of an annular row of the reactor core containers. A reactor core constituted with fuel rods and control rods (module reactor core) is contained at the inside of each of the reactor core containers. Each of the intermediate coolers comprises a cylindrical intermediate cooling vessels. The intermediate cooling vessel comprises an intermediate heat exchanger for heat exchange of primary coolants and secondary coolants and recycling pumps for compulsorily recycling primary coolants at the inside thereof. Since a plurality of reactor core containers are thus assembled, a great reactor power can be attained. Further, the module reactor core contained in one reactor core vessel may be small sized, to facilitate the control for the reactor core operation. (I.N.)

  15. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  16. Reactor noise analysis of experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Ohtani, Hideji; Yamamoto, Hisashi

    1980-01-01

    As a part of dynamics tests in experimental fast reactor ''JOYO'', reactor noise tests were carried out. The reactor noise analysis techniques are effective for study of plant characteristics by determining fluctuations of process signals (neutron signal, reactor inlet temperature signals, etc.), which are able to be measured without disturbances for reactor operations. The aims of reactor noise tests were to confirm that no unstable phenomenon exists in ''JOYO'' and to gain initial data of the plant for reference of the future data. Data for the reactor noise tests treated in this paper were obtained at 50 MW power level. Fluctuations of process signals were amplified and recorded on analogue tapes. The analysis was performed using noise code (NOISA) of digital computer, with which statistical values of ASPD (auto power spectral density), CPSD (cross power spectral density), and CF (coherence function) were calculated. The primary points of the results are as follows. 1. RMS value of neutron signal at 50 MW power level is about 0.03 MW. This neutron fluctuation is not disturbing reactor operations. 2. The fluctuations of A loop reactor inlet temperatures (T sub(AI)) are larger than the fluctuations of B loop reactor inlet temperature (T sub(BI)). For this reason, the major driving force of neutron fluctuations seems to be the fluctuations of T sub(AI). 3. Core and blanket subassemblies can be divided into two halves (A and B region), with respect to the spacial motion of temperature in the reactor core. A or B region means the region in which sodium temperature fluctuations in subassembly are significantly affected by T sub(AI) or T sub(BI), respectively. This phenomenon seems to be due to the lack of mixing of A and B loop sodium in lower plenum of reactor vessel. (author)

  17. Improvements in centrifugal nuclear disintegration or 'streaked nuclei' reactors

    International Nuclear Information System (INIS)

    Pedrick, A.P.

    1976-01-01

    Reference is made to the so-called 'Centrifugal Nucleon Disintegrator Reactor' (CND) in which it is proposed to release the binding energy between nucleons of high atomic number by applying a violent spin to the nuclei. The reactor described comprises means for producing atomic nuclei that have been stripped of their electrons by heating to form a high temperature plasma. The reactor comprises an outer cylinder having a polished bore, an inner cylinder coaxial with the outer cylinder, the inner cylinder having a number of holes. A number of light beams are directed non-radially on to the bore and undergo reflections therefrom so as to create around the inner cylinder a coaxial cylindrical wall of unidirectionally moving light photons. Means are provided for introducing the nuclei into the inner cylinder, passing then out through the holes therein, and urging them against the photon wall. The direction of the light beams is slightly non-horizontal so that their reflections from the bore trace out a very closely coiled helix, extending the photon wall up the length of the inner cylinder through which the plasmatic nuclei are admitted. (U.K.)

  18. Nuclear reactors

    International Nuclear Information System (INIS)

    Prescott, R.F.

    1976-01-01

    A nuclear reactor containment vessel faced internally with a metal liner is provided with thermal insulation for the liner, comprising one or more layers of compressible material such as ceramic fiber, such as would be conventional in an advanced gas-cooled reactor and also a superposed layer of ceramic bricks or tiles in combination with retention means therefor, the retention means (comprising studs projecting from the liner, and bolts or nuts in threaded engagement with the studs) being themselves insulated from the vessel interior so that the coolant temperatures achieved in a High-Temperature Reactor or a Fast Reactor can be tolerated with the vessel. The layer(s) of compressible material is held under a degree of compression either by the ceramic bricks or tiles themselves or by cover plates held on the studs, in which case the bricks or tiles are preferably bedded on a yielding layer (for example of carbon fibers) rather than directly on the cover plates

  19. Solutions for Foaming Problems in Biogas Reactors Using Natural Oils or Fatty Acids as Defoamers

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; Angelidaki, Irini

    2015-01-01

    Foaming is one of the most common and important problems in biogas plants, leading to severe operational, economical, and environmental drawbacks. Because addition of easily degradable co-substrates for boosting the biogas production can suddenly raise the foaming problem, the full-scale biogas...... results from our previous extensive research along with some unpublished data on defoaming by rapeseed oil and oleic acid in manure-based biogas reactors. It was found that both compounds exhibited remarkable defoaming efficiency ranging from 30 to 57% in biogas reactors suffering from foaming problems...... promoted by the addition of protein, lipid, or carbohydrate co-substrates. However, in most cases, the defoaming efficiency of rapeseed oil was greater than that of oleic acid, and therefore, rapeseed oil is recommended to be used in biogas reactors to solve foaming problems....

  20. Comparison between TRU burning reactors and commercial fast reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Sanda, Toshio; Ogawa, Takashi

    2001-03-01

    Research and development for stabilizing or shortening the radioactive wastes including in spent nuclear fuel are widely conducted in view point of reducing the environmental impact. Especially it is effective way to irradiate and transmute long-lived TRU by fast reactors. Two types of loading way were previously proposed. The former is loading relatively small amount of TRU in all commercial fast reactors and the latter is loading large amount of TRU in a few TRU burning reactors. This study has been intended to contribute to the feasibility studies on commercialized fast reactor cycle system. The transmutation and nuclear characteristics of TRU burning reactors were evaluated and compared with those of conventional transmutation system using commercial type fast reactor based upon the investigation of technical information about TRU burning reactors. Major results are summarized as follows. (1) Investigation of technical information about TRU burning reactors. Based on published reports and papers, technical information about TRU burning reactor concepts transmutation system using convectional commercial type fast reactors were investigated. Transmutation and nuclear characteristics or R and D issue were investigated based on these results. Homogeneously loading of about 5 wt% MAs on core fuels in the conventional commercial type fast reactor may not cause significant impact on the nuclear core characteristics. Transmutation of MAs being produced in about five fast reactors generating the same output is feasible. The helium cooled MA burning fast reactor core concept propose by JAERI attains criticality using particle type nitride fuels which contain more than 60 wt% MA. This reactor could transmute MAs being produced in more than ten 1000 MWe-LWRs. Ultra-long life core concepts attaining more than 30 years operation without refueling by utilizing MA's nuclear characteristics as burnable absorber and fertile nuclides were proposed. Those were pointed out that

  1. Computerized reactor monitor and control for nuclear reactors

    International Nuclear Information System (INIS)

    Buerger, L.

    1982-01-01

    The analysis of a computerized process control system developed by Transelektro-KFKI-Videoton (Hangary) for a twenty-year-old research reactor in Budapest and or a new one in Tajura (Libya) is given. The paper describes the computer hardware (R-10) and the implemented software (PROCESS-24K) as well as their applications at nuclear reactors. The computer program provides for man-machine communication, data acquisition and processing, trend and alarm analysis, the control of the reactor power, reactor physical calculations and additional operational functions. The reliability and the possible further development of the computerized systems which are suitable for application at reactors of different design are also discussed. (Sz.J.)

  2. Reactor as furnace and reactor as lamp

    International Nuclear Information System (INIS)

    Goldanskii, V.I.

    1992-01-01

    There are presented general characteristics of the following ways of transforming of nuclear energy released in reactors into chemical : ordinary way (i.e. trough the heat, mechanical energy and electricity); chemonuclear synthesis ; use of high-temperature fuel elements (reactor as furnace); use of the mixed nγ-radiation of reactors; use of the radiation loops; radiation - photochemical synthesis (reactor as lamp). Advantage and disadvantages of all above variants are compared. The yield of the primary product of fixation of nitrogen (nitric oxide NO) in reactor with the high-temperature (above ca. 1900degC) fuel elements (reactor-furnace) can exceed W ∼ 200 kg per gram of burned uranium. For the latter variant (reactor-lamp) the yield of chemical products can reach W ∼ 60 kg. per gram of uranium. Such values of W are close to or even strongly exceed the yields of chemical products for other abovementioned variants and - what is particularly important - are not connected to the necessity of archscrupulous removal of radioactive contamination of products. (author)

  3. Improvement in or relating to methods and apparatus for refuelling nuclear reactors

    International Nuclear Information System (INIS)

    Shumyakin, E.P.; Sabir-de-Ribas, K.I.; Druzhinsky, I.A.; Kondratiev, P.V.; Andreichikov, B.I.; Slepov, L.M.; Borisjuk, E.V.; Smirnov, A.M.

    1977-01-01

    This invention relates to improvements in the methods and in the apparatus used for refuelling liquid metal cooled fast reactors and in particular to systems for cooling the fuel assemblies as they are removed from the reactor. (UK)

  4. Guide to power reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-07-15

    The IAEA's major first scientific publication is the Directory of Power Reactors now in operation or under construction in various parts of the world. The purpose of the directory is to present important details of various power projects in such a way as to provide a source of easy reference for anyone interested in the development of the peaceful uses of atomic energy, either at the technical or management level. Six pages have been devoted to each reactor the first of which contains general information, reactor physics data and information about the core. The second and third contain sketches of the fuel element or of the fuel element assembly, and of the horizontal and vertical sections of the reactor. On the fourth page information is grouped under the following heads: fuel element, core heat transfer, control, reactor vessel and over-all dimensions, and fluid flow. The fifth page shows a simplified flow diagram, while the sixth provides information on reflector and shielding, containment and turbo generator. Some information has also been given, when available, on cost estimates and operating staff requirements. Remarks and a bibliography constitute the last part of the description of each reactor. Reactor projects included in this directory are pressurized light water cooled power reactors. Boiling light water cooled power reactors, heavy water cooled power reactors, gas cooled power reactors, organic cooled power reactors liquid metal cooled power reactors and liquid metal cooled power reactors

  5. Research reactors

    International Nuclear Information System (INIS)

    Merchie, Francois

    2015-10-01

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  6. Tank type reactor

    International Nuclear Information System (INIS)

    Otsuka, Fumio.

    1989-01-01

    The present invention concerns a tank type reactor capable of securing reactor core integrity by preventing incorporation of gases to an intermediate heat exchanger, thgereby improving the reliability. In a conventional tank type reactor, since vortex flows are easily caused near the inlet of an intermediate heat exchanger, there is a fear that cover gases are involved into the coolant main streams to induce fetal accidents. In the present invention, a reactor core is suspended by way of a suspending body to the inside of a reactor vessel and an intermediate heat exchanger and a pump are disposed between the suspending body and the reactor vessel, in which a vortex current preventive plate is attached at the outside near the coolant inlet on the primary circuit of the intermediate heat exchanger. In this way vortex or turbulence near the inlet of the intermediate heata exchanger or near the surface of coolants can be prevented. Accordingly, the cover gases are no more involved, to insure the reactor core integrity and obtain a tank type nuclear reactor of high reliability. (I.S.)

  7. Research reactor standards and their impact on the TRIGA reactor community

    International Nuclear Information System (INIS)

    Richards, W.J.

    1980-01-01

    The American Nuclear Society has established a standards committee devoted to writing standards for research reactors. This committee was formed in 1971 and has since that time written over 15 standards that cover all aspects of research reactor operation. The committee has representation from virtually every group concerned with research reactors and their operation. This organization includes University reactors, National laboratory reactors, Nuclear Regulatory commission, Department of Energy and private nuclear companies and insurers. Since its beginning the committee has developed standards in the following areas: Standard for the development of technical specifications for research reactors; Quality control for plate-type uranium-aluminium fuel elements; Records and reports for research reactors; Selection and training of personnel for research reactors; Review of experiments for research reactors; Research reactor site evaluation; Quality assurance program requirements for research reactors; Decommissioning of research reactors; Radiological control at research reactor facilities; Design objectives for and monitoring of systems controlling research reactor effluents; Physical security for research reactor facilities; Criteria for the reactor safety systems of research reactors; Emergency planning for research reactors; Fire protection program requirements for research reactors; Standard for administrative controls for research reactors. Besides writing the above standards, the committee is very active in using communications with the nuclear regulatory commission on proposed rules or positions which will affect the research reactor community

  8. Reactor safety device

    International Nuclear Information System (INIS)

    Okada, Yasumasa.

    1987-01-01

    Purpose: To scram control rods by processing signals from a plurality of temperature detectors and generating abnormal temperature warning upon occurrence of abnormal temperature in a nuclear reactor. Constitution: A temperature sensor comprising a plurality of reactors each having a magnetic body as the magnetic core having a curie point different from each other and corresponding to the abnormal temperature against which reactor core fuels have to be protected is disposed in an identical instrumentation well near the reactor core fuel outlet/inlet of a reactor. A temperature detection device actuated upon detection of an abnormal temperature by the abrupt reduction of the reactance of each of the reactors is disposed. An OR circuit and an AND circuit for conducting OR and AND operations for each of the abnormal temperature detection signals from the temperature detection device are disposed. The output from the OR circuit is used as the abnormal temperature warning signal, while the output from the AND circuit is utilized as a signal for actuating the scram operation of control rod drive mechanisms. Accordingly, it is possible to improve the reliability of the reactor scram system, particularly, improve the reliability under a high temperature atmosphere. (Kamimura, M.)

  9. Reactor Simulations for Safeguards with the MCNP Utility for Reactor Evolution Code

    International Nuclear Information System (INIS)

    Shiba, T.; Fallot, M.

    2015-01-01

    To tackle nuclear material proliferation, we conducted several proliferation scenarios using the MURE (MCNP Utility for Reactor Evolution) code. The MURE code, developed by CNRS laboratories, is a precision, open-source code written in C++ that automates the preparation and computation of successive MCNP (Monte Carlo N-Particle) calculations and solves the Bateman equations in between, for burnup or thermal-hydraulics purposes. In addition, MURE has been completed recently with a module for the CHaracterization of Radioactive Sources, called CHARS, which computes the emitted gamma, beta and alpha rays associated to any fuel composition. Reactor simulations could allow knowing how plutonium or other material generation evolves inside reactors in terms of time and amount. The MURE code is appropriate for this purpose and can also provide knowledge on associated particle emissions. Using MURE, we have both developed a cell simulation of a typical CANDU reactor and a detailed model of light water PWR core, which could be used to analyze the composition of fuel assemblies as a function of time or burnup. MURE is also able to provide, thanks to its extension MURE-CHARTS, the emitted gamma rays from fuel assemblies unloaded from the core at any burnup. Diversion cases of Generation IV reactors have been also developed; a design of Very High Temperature Reactor (a Pebble Bed Reactor (PBR), loaded with UOx, PuOx and ThUOx fuels), and a Na-cooled Fast Breeder Reactor (FBR) (with depleted Uranium or Minor Actinides in the blanket). The loading of Protected Plutonium Production (P3) in the FBR was simulated. The simulations of various reactor designs taking into account reactor physics constraints may bring valuable information to inspectors. At this symposium, we propose to show the results of these reactor simulations as examples of the potentiality of reactor simulations for safeguards. (author)

  10. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    Science.gov (United States)

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  11. Cerium fluoride nanoparticles protect cells against oxidative stress

    International Nuclear Information System (INIS)

    Shcherbakov, Alexander B.; Zholobak, Nadezhda M.; Baranchikov, Alexander E.; Ryabova, Anastasia V.; Ivanov, Vladimir K.

    2015-01-01

    A novel facile method of non-doped and fluorescent terbium-doped cerium fluoride stable aqueous sols synthesis is proposed. Intense green luminescence of CeF 3 :Tb nanoparticles can be used to visualize these nanoparticles' accumulation in cells using confocal laser scanning microscopy. Cerium fluoride nanoparticles are shown for the first time to protect both organic molecules and living cells from the oxidative action of hydrogen peroxide. Both non-doped and terbium-doped CeF 3 nanoparticles are shown to provide noteworthy protection to cells against the vesicular stomatitis virus. - Highlights: • Facile method of CeF 3 and CeF 3 :Tb stable aqueous sols synthesis is proposed. • Naked CeF 3 nanoparticles are shown to be non-toxic and to protect cells from the action of H 2 O 2 . • CeF 3 and CeF 3 :Tb nanoparticles are shown to protect living cells against the vesicular stomatitis virus

  12. In vitro fermentation characteristics of novel fibers, coconut endosperm fiber and chicory pulp, using canine fecal inoculum.

    Science.gov (United States)

    de Godoy, M R C; Mitsuhashi, Y; Bauer, L L; Fahey, G C; Buff, P R; Swanson, K S

    2015-01-01

    The objective of this experiment was to determine the effects of in vitro fermentation of coconut endosperm fiber (CEF), chicory pulp (CHP), and selective blends of these substrates on SCFA production and changes in microbiota using canine fecal inocula. A total of 6 individual substrates, including short-chain fructooligosaccharide (scFOS; a well-established prebiotic source), pectin (PEC; used as a positive control), pelletized cellulose (PC; used as a negative control), beet pulp (BP; considered the gold standard fiber source in pet foods), CEF, and CHP, and 3 CEF:CHP blends (75:25% CEF:CHP [B1], 50:50% CEF:CHP [B2], and 25:75% CEF:CHP [B3]) were tested. Triplicate samples of each substrate were fermented for 0, 8, and 16 h after inoculation. A significant substrate × time interaction (P fiber substrates. Future research should investigate the effects of CEF, CHP, and their blends on gastrointestinal health and fecal quality in dogs.

  13. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  14. PLM and the single reactor utility - or how a single reactor utility can face the PLM issues

    International Nuclear Information System (INIS)

    Ross, M.H.

    1994-01-01

    Although Gentilly-2 reactor was planned to last for 30 years, its life could be significantly shorter if nothing were done, whereas retubing and refurbishment after, say, 25 years should result in an extension of service life to 45-50 years. In the long run, dimensional changes rather than hydriding may prove to be the pressure tubes' life limiting factor. Hydro Quebec, New Brunswick Power and AECL have an agreement to cooperate in developing a life management program for CANDU-6 reactors. The author expresses the opinion that cost-benefit criteria should be introduced in regulatory decision making. 6 refs., 9 figs

  15. Tokamak reactor for treating fertile material or waste nuclear by-products

    Science.gov (United States)

    Kotschenreuther, Michael T.; Mahajan, Swadesh M.; Valanju, Prashant M.

    2012-10-02

    Disclosed is a tokamak reactor. The reactor includes a first toroidal chamber, current carrying conductors, at least one divertor plate within the first toroidal chamber and a second chamber adjacent to the first toroidal chamber surrounded by a section that insulates the reactor from neutrons. The current carrying conductors are configured to confine a core plasma within enclosed walls of the first toroidal chamber such that the core plasma has an elongation of 1.5 to 4 and produce within the first toroidal chamber at least one stagnation point at a perpendicular distance from an equatorial plane through the core plasma that is greater than the plasma minor radius. The at least one divertor plate and current carrying conductors are configured relative to one another such that the current carrying conductors expand the open magnetic field lines at the divertor plate.

  16. Slurry reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuerten, H; Zehner, P [BASF A.G., Ludwigshafen am Rhein (Germany, F.R.)

    1979-08-01

    Slurry reactors are designed on the basis of empirical data and model investigations. It is as yet not possible to calculate the flow behavior of such reactors. The swarm of gas bubbles and cluster formations of solid particles and their interaction in industrial reactors are not known. These effects control to a large extent the gas hold-up, the gas-liquid interface and, similarly as in bubble columns, the back-mixing of liquids and solids. These hydrodynamic problems are illustrated in slurry reactors which constructionally may be bubble columns, stirred tanks or jet loop reactors. The expected effects are predicted by means of tests with model systems modified to represent the conditions in industrial hydrogenation reactors. In his book 'Mass Transfer in Heterogeneous Catalysis' (1970) Satterfield complained of the lack of knowledge about the design of slurry reactors and hence of the impossible task of the engineer who has to design a plant according to accepted rules. There have been no fundamental changes since then. This paper presents the problems facing the engineer in designing slurry reactors, and shows new development trends.

  17. The chemical monitoring and control during temporary turbine trip or reactor scram of nuclear power plant

    International Nuclear Information System (INIS)

    Liu Heng

    2012-01-01

    During normal operation, a malfunction of equipment or improper operation sometimes results in a turbine trip or reactor scram or even cold shutdown. Because present chemical control strategy and programs aimed at the situation of normal operation and planed refueling outage, no integrate emergency program of radiochemical and chemical control had been developed to focus on this urgent and unexpected situation. After many years of practice and experience feedback, chemists have created an emergency collaborative program of radiochemical and chemical control which aims at these unexpected situations such as unplanned unit down power, turbine trip, or reactor scram. The program defines different radiochemical and chemical control measures and steps during different status to monitor primary loop dose rate variation, fuel assembly integrity and water chemical excursion to prevent components from corrosion. (author)

  18. ANCON, Space-Independent Reactor Kinetics with Linear or Nonlinear Thermal Feedback

    International Nuclear Information System (INIS)

    Vigil, John C.; Dugan, E.T.

    1988-01-01

    1 - Description of problem or function: ANCON solves the point-reactor kinetic equations including thermal feedback. Lump-type heat balance equations are used to represent the thermodynamics, and the heat capacity of each lump can vary with temperature. Thermal feedback can be either a linear or a non-linear function of lump temperature, and the impressed reactivity can be either a polynomial or sinusoidal function. 2 - Method of solution: In ANCON the system of coupled first-order differential equations is solved by a method based on continuous analytic continuation (references 2 and 3). The basic procedure consists of expanding all the dependent variables except reactivity in Taylor series, with a truncation error criterion, over successive intervals on the time axis. Variations of the basic procedure are used to increase the efficiency of the method in special situations. Automatic switching from the basic procedure to one of its variations (and vice-versa) may occur during the course of a transient. The method yields an analytic criterion for the magnitude of the time-step at any point in the transient. 3 - Restrictions on the complexity of the problem: The program is currently restricted to a maximum of six delayed neutron groups and a maximum of 56 lumps. Larger problems can be accommodated on a 65 K computer by increasing the dimensions of a few subscripted variables. Also, the code is currently restricted to a constant external transport delays, only the open-loop response of a reactor can be computed with ANCON

  19. Nuclear reactor

    International Nuclear Information System (INIS)

    Garabedian, G.

    1988-01-01

    A liquid reactor is described comprising: (a) a reactor vessel having a core; (b) one or more satellite tanks; (c) pump means in the satellite tank; (d) heat exchanger means in the satellite tank; (e) an upper liquid metal conduit extending between the reactor vessel and the satellite tank; (f) a lower liquid metal duct extending between the reactor vessel and satellite tanks the upper liquid metal conduit and the lower liquid metal duct being arranged to permit free circulation of liquid metal between the reactor vessel core and the satellite tank by convective flow of liquid metal; (g) a separate sealed common containment vessel around the reactor vessel, conduits and satellite tanks; (h) the satellite tank having space for a volume of liquid metal that is sufficient to dampen temperature transients resulting from abnormal operating conditions

  20. Research reactor support

    International Nuclear Information System (INIS)

    2005-01-01

    Research reactors (RRs) have been used in a wide range of applications including nuclear power development, basic physics research, education and training, medical isotope production, geology, industry and other fields. However, many research reactors are fuelled with High Enriched Uranium (HEU), are underutilized and aging, and have significant quantities of spent fuel. HEU inventories (fresh and spent) pose security risks Unavailability of a high-density-reprocessable fuel hinders conversion and limits back-end options and represents a survival dilemma for many RRs. Improvement of interim spent fuel storage is required at some RRs. Many RRs are under-utilized and/or inadequately funded and need to find users for their services, or permanently shut down and eventually decommission. Reluctance to decommission affect both cost and safety (loss of experienced staff ) and many shut down but not decommissioned RR with fresh and/or spent fuel at the sites invoke serious concern. The IAEA's research reactor support helps to ensure that research reactors can be operated efficiently with fuels and targets of lower proliferation and security concern and that operators have appropriate technology and options to manage RR fuel cycle issues, especially on long term interim storage of spent research reactor fuel. Availability of a high-density-reprocessable fuel would expand and improve back end options. The International Atomic Energy Agency provides assistance to Member States to convert research reactors from High Enriched Uranium fuel and targets (for medical isotope production) to qualified Low Enriched Uranium fuel and targets while maintaining reactor performance levels. The assistance includes provision of handbooks and training in the performance of core conversion studies, advice for the procurement of LEU fuel, and expert services for LEU fuel acceptance. The IAEA further provides technical and administrative support for countries considering repatriation of its

  1. Strategic planning for research reactors. Guidance for reactor managers

    International Nuclear Information System (INIS)

    2001-04-01

    The purpose of this publication is to provide guidance on how to develop a strategic plan for a research reactor. The IAEA is convinced of the need for research reactors to have strategic plans and is issuing a series of publications to help owners and operators in this regard. One of these covers the applications of research reactors. That report brings together all of the current uses of research reactors and enables a reactor owner or operator to evaluate which applications might be possible with a particular facility. An analysis of research reactor capabilities is an early phase in the strategic planning process. The current document provides the rationale for a strategic plan, outlines the methodology of developing such a plan and then gives a model that may be followed. While there are many purposes for research reactor strategic plans, this report emphasizes the use of strategic planning in order to increase utilization. A number of examples are given in order to clearly illustrate this function

  2. Compilation of reactor physics data of the year 1984, AVR reactor

    International Nuclear Information System (INIS)

    Werner, H.; Bergerfurth, A.; Thomas, F.; Geskes, B.

    1985-12-01

    The 'AVR reactor physics data' is a documentation published once a year, the data presented being obtained by a simulation of reactor operation using the AVR-80 numerical model. This model is constantly updated and improved in response to new results and developments in the field of reactor theory and thermohydraulics, and in response to theoretical or practical modifications of reactor operation or in the computer system. The large variety of measured data available in the AVR reactor simulation system also makes it an ideal testing system for verification of the computing programs presented in the compilation. A survey of the history of operations in 1984 and a short explanation of the computerized simulation methods are followed by tables and graphs that serve as a source of topical data for readers interested in the physics of high-temperature pebble-bed reactors. (orig./HP) [de

  3. Compilation of reactor physics data of the year 1983, AVR reactor

    International Nuclear Information System (INIS)

    Werner, H.; Bergerfurth, A.; Thomas, F.; Geskes, B.

    1985-06-01

    The 'AVR reactor physics data' is a documentation published once a year, the data presented being obtained by a simulation of reactor operation using the AVR-80 numerical model. This model is constantly updated and improved in response to new results and developments in the field of reactor theory and thermohydraulics, and in response to theoretical or practical modifications of reactor operation or in the computer system. The large variety of measured data available in the AVR reactor simulation system also makes it an ideal testing system for verification of the computing programs presented in the compilation. A survey of the history of operations in 1983 and a short explanation of the computerized simulation methods are followed by tables and graphs that serve as a source of topical data for readers interested in the physics of high-temperature pebble-bed reactors. (orig./HP) [de

  4. Reactor emergency preparedness: lifesaving or as low as reasonable achievable

    International Nuclear Information System (INIS)

    Hull, A.P.

    1981-01-01

    An emergency is defined as an unforseen combination of circumstances or the resultant state that calls for immediate action. Although not explicitly indicated, the implication is that the action is intended to protect life, limb and or property from extreme peril. For the most part, the kind and extent of the emergency planning required under current regulations of the USNRC do not appear to be so much related to emergencies (within the above definition) as they do toward the reduction of the off-site radiation doses from uncontrolled releases during reactor accident conditions to as low as reasonably achievable levels. Not only do the latter appear to be of questionable cost-effectiveness, but in their extent and complexity beyond normal disaster planning they may in fact be counter productive to optimum public safety

  5. Reactor emergency preparedness: lifesaving or as low as reasonable achievable

    Energy Technology Data Exchange (ETDEWEB)

    Hull, A.P.

    1981-01-01

    An emergency is defined as an unforseen combination of circumstances or the resultant state that calls for immediate action. Although not explicitly indicated, the implication is that the action is intended to protect life, limb and or property from extreme peril. For the most part, the kind and extent of the emergency planning required under current regulations of the USNRC do not appear to be so much related to emergencies (within the above definition) as they do toward the reduction of the off-site radiation doses from uncontrolled releases during reactor accident conditions to as low as reasonably achievable levels. Not only do the latter appear to be of questionable cost-effectiveness, but in their extent and complexity beyond normal disaster planning they may in fact be counter productive to optimum public safety.

  6. PERIGEE computer codes for reactor simulation in 3 dimensions, using 1 or 2 neutron velocity groups

    International Nuclear Information System (INIS)

    Olson, A.P.

    1964-02-01

    PERIGEE is a code written in SNAP for the G-20 computer. It solves the one- or two-group neutron diffusion equations by finite-difference methods on a three-dimensional, uniform mesh having a common spacing in the two directions normal to the fuel channels. The positions of mesh points along a fuel channel, relative to points in adjacent channels, may correspond to either NPD or CANDU fuel bundle positions. The extrapolated flux boundary may be specified in sufficient detail to represent a tapered or stepped circumferential reflector, a variable axial length and, for a reactor with axis horizontal, a variable moderator level and a variable plane bottom surface equivalent to the CANDU dump structure. The neutron flux may be normalized to give a specified power output from the hottest fuel bundle or hottest channel, or to give a total thermal power limited by the turbine and generator. Reactor operation may be simulated in finite time steps, taking into account any fuel shifts, any changes in moderator level and the change in nuclear properties of the fuel with increasing irradiation. The appropriate properties are obtained by interpolation from tables supplied for as many as 8 types of fuel bundle. The mean fuel exit burnup can be calculated at equilibrium for a reactor in which the exit burnups for two zones may be adjusted to give radial power flattening and the fuelling schedules may be designed to give axial power flattening in one or both zones. (author)

  7. Nuclear reactor

    International Nuclear Information System (INIS)

    Tilliette, Z.

    1975-01-01

    A description is given of a nuclear reactor and especially a high-temperature reactor in which provision is made within a pressure vessel for a main cavity containing the reactor core and a series of vertical cylindrical pods arranged in spaced relation around the main cavity and each adapted to communicate with the cavity through two collector ducts or headers for the primary fluid which flows downwards through the reactor core. Each pod contains two superposed steam-generator and circulator sets disposed in substantially symmetrical relation on each side of the hot primary-fluid header which conveys the primary fluid from the reactor cavity to the pod, the circulators of both sets being mounted respectively at the bottom and top ends of the pod

  8. Improvements in or relating to nuclear fusion reactors

    International Nuclear Information System (INIS)

    Farfaletti-Casali, F.; Peter, F.-G.; Gritzmann, P.G.

    1977-01-01

    An improved modular structure for a hollow toroidal blanket assembly for a thermonuclear reactor is described that is claimed to overcome some of the disadvantages of earlier designs. These disadvantages are discussed. The assembly, for surrounding the plasma cavity of a toroidal reactor, comprises at least two types of annular modules having different cross-sections and internal diameters, and located alternately around the toroidal chamber. Each module is subdivided in the circumferential direction into sub-modules having a uniform cross-section, the small diameter modules tapering towards the outer circumferential side whereas the larger diameter modules taper towards the inner circumferential side. The tapered portions of the modules abut along a circular path surrounding the toroidal cavity, the central axis of which path is displaced radially towards the centre of the toroid. The surfaces of the abutting portions of the smaller diameter modules may be slightly concave, whereas the corresponding portions of the larger diameter modules may be slightly convex. The modules may be provided with cooling means, such as liquid He. At least one type of module may be subdivided into four quadrant sub-modules. (U.K.)

  9. Material test reactor fuel research at the BR2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, Steven Van; Koonen, Edgar; Berghe, Sven van den [Institute for Nuclear Materials Science, SCK-CEN, Boeretang, Mol (Belgium)

    2012-03-15

    The construction of new, high performance material test reactor or the conversion of such reactors' core from high enriched uranium (HEU) to low enriched uranium (LEU) based fuel requires several fuel qualification steps. For the conversion of high performance reactors, high density dispersion or monolithic fuel types are being developed. The Uranium-Molybdenum fuel system has been selected as reference system for the qualification of LEU fuels. For reactors with lower performance characteristics, or as medium enriched fuel for high performance reactors, uranium silicide dispersion fuel is applied. However, on the longer term, the U-Mo based fuel types may offer a more efficient fuel alternative and-or an easier back-end solution with respect to the silicide based fuels. At the BR2 reactor of the Belgian nuclear research center, SCK-CEN in Mol, several types of fuel testing opportunities are present to contribute to such qualification process. A generic validation test for a selected fuel system is the irradiation of flat plates with representative dimensions for a fuel element. By flexible positioning and core loading, bounding irradiation conditions for fuel elements can be performed in a standard device in the BR2. For fuel element designs with curved plates, the element fabrication method compatibility of the fuel type can be addressed by incorporating a set of prototype fuel plates in a mixed driver fuel element of the BR2 reactor. These generic types of tests are performed directly in the primary coolant flow conditions of the BR2 reactor. The experiment control and interpretation is supported by detailed neutronic and thermal-hydraulic modeling of the experiments. Finally, the BR2 reactor offers the flexibility for irradiation of full size prototype fuel elements, as 200mm diameter irradiation channels are available. These channels allow the accommodation of various types of prototype fuel elements, eventually using a dedicated cooling loop to provide the

  10. Reactor core structure

    International Nuclear Information System (INIS)

    Higashinakagawa, Emiko; Sato, Kanemitsu.

    1992-01-01

    Taking notice on the fact that Fe based alloys and Ni based alloys are corrosion resistant in a special atmosphere of a nuclear reactor, Fe or Ni based alloys are applied to reactor core structural components such as fuel cladding tubes, fuel channels, spacers, etc. On the other hand, the neutron absorption cross section of zirconium is 0.18 barn while that of iron is 2.52 barn and that of nickel is 4.6 barn, which amounts to 14 to 25 times compared with that of zirconium. Accordingly, if the reactor core structural components are constituted by the Fe or Ni based alloys, neutron economy is lowered. Since it is desirable that neutrons contribute to uranium fission with least absorption to the reactor core structural components, the reactor core structural components are constituted with the Fe or Ni based alloys of good corrosion resistance only at a portion in contact with reactor water, that is, at a surface portion, while the main body is constituted with zircalloy in the present invention. Accordingly, corrosion resistnace can be kept while keeping small neutron absorption cross section. (T.M.)

  11. 2012 review of French research reactors

    International Nuclear Information System (INIS)

    Estrade, Jerome

    2013-01-01

    Proposed by the French Reactor Operators' Club (CER), the meeting and discussion forum for operators of French research reactors, this report first gives a brief presentation of these reactors and of their scope of application, and a summary of highlights in 2012 for each of them. Then, it proposes more detailed presentations and reviews of characteristics, activities, highlights, objectives and results for the different types of reactors: neutron beam reactors (Orphee, High flux reactor-Laue-Langevin Institute or HFR-ILL), technological irradiation reactors (Osiris and Phenix), training reactors (Isis and Azur), reactors for safety research purposes (Cabri and Phebus), reactors for neutronic studies (Caliban, Prospero, Eole, Minerve and Masurca), and new research reactors (the RES facility and the Jules Horowitz reactor or JHR)

  12. Safeguarding research reactors

    International Nuclear Information System (INIS)

    Powers, J.A.

    1983-03-01

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  13. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  14. Reactor container

    International Nuclear Information System (INIS)

    Fukazawa, Masanori.

    1991-01-01

    A system for controlling combustible gases, it has been constituted at present such that the combustible gases are controlled by exhausting them to the wet well of a reactor container. In this system, however, there has been a problem, in a reactor container having plenums in addition to the wet well and the dry well, that the combustible gases in such plenums can not be controlled. In view of the above, in the present invention, suction ports or exhaust ports of the combustible gas control system are disposed to the wet well, the dry well and the plenums to control the combustible gases in the reactor container. Since this can control the combustible gases in the entire reactor container, the integrity of the reactor container can be ensured. (T.M.)

  15. United Kingdom and USSR reactor types

    International Nuclear Information System (INIS)

    Lewins, Jeffery

    1988-01-01

    The features of the RBMK reactor operated at Chernobyl are compared with reactor types pertinent to the UK. The UK reactors covered are in three classes: the commercial reactors now built and operated or in commission (Magnox and Advanced Gas-cooled Reactor (AGR)); the prototype Steam Generating Heavy Water Reactor (SGHWR) and Prototype Fast Reactor (PFR) that have comparable performance to commercial reactors; and the proposed Pressurised Water Reactor (PWR) or Sizewell 'B' design which, it will be recollected, is different in detail from PWRs built elsewhere. We do not include research and test reactors nor the Royal Navy PWRs. The appendices explain resonances, Doppler and Xenon effects, the reactor physics of Chernobyl and positive void coefficients all of which are relevant to the comparisons. (author)

  16. Nuclear reactors: built, being built, or planned in the United States as of Dec 31, 1979

    International Nuclear Information System (INIS)

    1980-07-01

    Information is tabulated in nuclear reactor and critical assembly facilities in operation, shut down, under construction, or planned. The data include name, owner, location, type, power, and startup date

  17. Nuclear reactors built, being built, or planned in the United States as of June 30, 1980

    International Nuclear Information System (INIS)

    Goulden, A.M.

    1980-12-01

    Information is tabulated on nuclear reactor and critical assembly facilities in operation, shut down, under construction, or planned. The data included name, owner, location, type, power, and startup date

  18. The analysis for inventory of experimental reactor high temperature gas reactor type

    International Nuclear Information System (INIS)

    Sri Kuntjoro; Pande Made Udiyani

    2016-01-01

    Relating to the plan of the National Nuclear Energy Agency (BATAN) to operate an experimental reactor of High Temperature Gas Reactors type (RGTT), it is necessary to reactor safety analysis, especially with regard to environmental issues. Analysis of the distribution of radionuclides from the reactor into the environment in normal or abnormal operating conditions starting with the estimated reactor inventory based on the type, power, and operation of the reactor. The purpose of research is to analyze inventory terrace for Experimental Power Reactor design (RDE) high temperature gas reactor type power 10 MWt, 20 MWt and 30 MWt. Analyses were performed using ORIGEN2 computer code with high temperatures cross-section library. Calculation begins with making modifications to some parameter of cross-section library based on the core average temperature of 570 °C and continued with calculations of reactor inventory due to RDE 10 MWt reactor power. The main parameters of the reactor 10 MWt RDE used in the calculation of the main parameters of the reactor similar to the HTR-10 reactor. After the reactor inventory 10 MWt RDE obtained, a comparison with the results of previous researchers. Based upon the suitability of the results, it make the design for the reactor RDE 20MWEt and 30 MWt to obtain the main parameters of the reactor in the form of the amount of fuel in the pebble bed reactor core, height and diameter of the terrace. Based on the main parameter or reactor obtained perform of calculation to get reactor inventory for RDE 20 MWT and 30 MWT with the same methods as the method of the RDE 10 MWt calculation. The results obtained are the largest inventory of reactor RDE 10 MWt, 20 MWt and 30 MWt sequentially are to Kr group are about 1,00E+15 Bq, 1,20E+16 Bq, 1,70E+16 Bq, for group I are 6,50E+16 Bq, 1,20E+17 Bq, 1,60E+17 Bq and for groups Cs are 2,20E+16 Bq, 2,40E+16 Bq, 2,60E+16 Bq. Reactor inventory will then be used to calculate the reactor source term and it

  19. PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Masood, Z.

    2016-01-01

    The PUSPATI TRIGA Reactor is the only research reactor in Malaysia. This 1 MW TRIGA Mk II reactor first reached criticality on 28 June 1982 and is located at the Malaysian Nuclear Agency premise in Bangi, Malaysia. This reactor has been mainly utilised for research, training and education and isotope production. Over the years several systems have been refurbished or modernised to overcome ageing and obsolescence problems. Major achievements and milestones will also be elaborated in this paper. (author)

  20. Methanogenesis in Thermophilic Biogas Reactors

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1995-01-01

    Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process as ....... Experiments using biogas reactors fed with cow manure showed that the same biogas yield found at 550 C could be obtained at 610 C after a long adaptation period. However, propionate degradation was inhibited by increasing the temperature.......Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process...... as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in a thermophilic pilot-plant biogas reactor fed with a mixture of cow and pig manure reflected the stability of the reactor. The numbers of methanogens counted by the most...

  1. Investigating the capability of ToF-SIMS to determine the oxidation state of Ce

    Science.gov (United States)

    Seed Ahmed, H. A. A.; Swart, H. C.; Kroon, R. E.

    2018-04-01

    The capability of time of flight secondary ion mass spectrometry (ToF-SIMS) to determine the oxidation state of Ce ions doped in a phosphor was investigated. Two samples of SiO2:Ce (4 mol%) with known Ce3+/Ce4+ relative concentrations were subjected to ToF-SIMS measurements. The spectra were very similar and no significant differences in the relative peak intensities were observed that would readily allow one to distinguish Ce3+ from Ce4+. Although ToF-SIMS was therefore not useful to distinguish the charge state of Ce ions doped in this phosphor material, the idea in principle was also tested on two other samples, namely CeF3 and CeF4 These contain Ce as part of the host (i.e. much higher concentration) and are fluorides, which is significant because ToF-SIMS has previously been reported to be able to distinguish Eu2+ from Eu3+ in Eu doped Sr5(PO4)3F phosphor. The spectrum of CeF4 contained a small peak related to Ce4+ which was not observed in the CeF3 spectrum, yet the peak related to the Ce3+ ions was found to be much more intense in the spectrum of CeF4 than CeF3, showing that the ToF-SIMS signals cannot be directly interpreted as retaining the charge state of the ions in the original material. Nevertheless, the significant differences in the Ce-related peaks in the ToF-SIMS spectra from CeF3 and CeF4 show that the charge state of Ce may be distinguished. This study shows that while in principle ToF-SIMS may be used to distinguish the charge state of Ce ions, this depends on the sample and it would not be easy to interpret the spectra without a standard or reference.

  2. BWR type reactor

    International Nuclear Information System (INIS)

    Watanabe, Shoichi

    1983-01-01

    Purpose : To flatten the radial power distribution in the reactor core thereby improve the thermal performance of the reactor core by making the moderator-fuel ratio of fuel assemblies different depending on their position in the reactor core. Constitution : The volume of fuels disposed in the peripheral area of the reactor core is decreased by the increase of the volume of moderators in fuel assemblies disposed in the peripheral area of the reactor core to thereby make the moderator-fuel volume greater in the peripheral area than that in the central area. The moderator-fuel ratio adjustment is attained by making the number of water rods greater, decreasing the diameter of fuel pellets or decreasing the number of fuel pins in fuel assemblies disposed at the peripheral area of the reactor core as compared with fuel assemblies disposed at the central area of the reactor core. In this way, the infinite multiplication factors of fuels can be increased to thereby improve the reactor core performance. (Aizawa, K.)

  3. FBR type reactor

    International Nuclear Information System (INIS)

    Hayase, Tamotsu.

    1991-01-01

    The present invention concerns an FBR type reactor in which transuranium elements are eliminated by nuclear conversion. There are loaded reactor core fuels being charged with mixed oxides of plutonium and uranium, and blanket fuels mainly comprising depleted uranium. Further, liquid sodium is used as coolants. As transuranium elements, isotope elements of neptunium, americium and curium contained in wastes taken out from light water reactors or the composition thereof are used. The reactor core comprises a region with a greater mixing ratio and a region with a less mixing ratio of the transuranium elements. The mixing ratio of the transuranium elements is made greater for the fuels in the reactor core region at the boundary with the blanket of great neutron leakage. With such a constitution, since the positive reactivity value at the reactor core central portion is small in the Na void reactivity distribution in the reactor core, the positive reactivity is small upon Na boiling in the reactor core central region upon occurrence of imaginable accident, to attain reactor safety. (I.N.)

  4. The fast breeder reactor

    International Nuclear Information System (INIS)

    Davis, D.A.; Baker, M.A.W.; Hall, R.S.

    1990-01-01

    Following submission of written evidence, the Energy Committee members asked questions of three witnesses from the Central Electricity Generating Board and Nuclear Electric (which will be the government owned company running nuclear power stations after privatisation). Both questions and answers are reported verbatim. The points raised include where the responsibility for the future fast reactor programme should lie, with government only or with private enterprise or both and the viability of fast breeder reactors in the future. The case for the fast reactor was stated as essentially strategic not economic. This raised the issue of nuclear cost which has both a construction and a decommissioning element. There was considerable discussion as to the cost of building a European Fast reactor and the cost of the electricity it would generate compared with PWR type reactors. The likely demand for fast reactors will not arrive for 20-30 years and the need to build a fast reactor now is questioned. (UK)

  5. Indirect Voltammetric Sensing Platforms For Fluoride Detection on Boron-Doped Diamond Electrode Mediated via [FeF6]3− and [CeF6]2− Complexes Formation

    International Nuclear Information System (INIS)

    Culková, Eva; Tomčík, Peter; Švorc, Ľubomír; Cinková, Kristína; Chomisteková, Zuzana; Durdiak, Jaroslav; Rievaj, Miroslav; Bustin, Dušan

    2014-01-01

    Very simple and sensitive electroanalytical technique based on synergistic combination of reaction electrochemistry (specificity) and bare boron-doped diamond electrode (sensitivity) for the detection of fluorides in drinking water was developed as variant based on dynamic electrochemistry to ISE analysis. It is based on the formation of electroinactive fluoride complexes with Fe(III) and Ce(IV) ions decreasing such diffusion current of free metal on boron-doped diamond electrode. Due to low background signal of boron-doped diamond electrode reasonably low detection limits of the order of 10 −6 mol L −1 for linear sweep voltammetric method using formation of [FeF 6 ] 3− and 10 −7 mol L −1 in a square-wave variant of this technique have been achieved. This is approximately 1–2 orders lower than in the case of platinum comb-shaped interdigitated microelectrode array. Linear sweep voltammetric method based on [CeF 6 ] 2− complex formation has lower sensitivity and may be suitable for samples with higher content of fluoride and not to analysis of drinking water

  6. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; Einarsdottir, E. S.

    2015-01-01

    in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic...... deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance...

  7. Size, Shape, and Arrangement of Cellulose Microfibril in Higher Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Ding, S. Y.

    2013-01-01

    Plant cell walls from maize (Zea mays L.) are imaged using atomic force microscopy (AFM) at the sub-nanometer resolution. We found that the size and shape of fundamental cellulose elementary fibril (CEF) is essentially identical in different cell wall types, i.e., primary wall (PW), parenchyma secondary wall (pSW), and sclerenchyma secondary wall (sSW), which is consistent with previously proposed 36-chain model (Ding et al., 2006, J. Agric. Food Chem.). The arrangement of individual CEFs in these wall types exhibits two orientations. In PW, CEFs are horizontally associated through their hydrophilic faces, and the planar faces are exposed, forming ribbon-like macrofibrils. In pSW and sSW, CEFs are vertically oriented, forming layers, in which hemicelluloses are interacted with the hydrophobic faces of the CEF and serve as spacers between CEFs. Lignification occurs between CEF-hemicelluloses layers in secondary walls. Furthermore, we demonstrated quantitative analysis of plant cell wall accessibility to and digestibility by different cellulase systems at real-time using chemical imaging (e.g., stimulated Raman scattering) and fluorescence microscopy of labeled cellulases (Ding et al., 2012, Science, in press).

  8. Preclinical Development and In Vivo Efficacy of Ceftiofur-PLGA Microparticles

    Science.gov (United States)

    Vilos, Cristian; Velasquez, Luis A.; Rodas, Paula I.; Zepeda, Katherine; Bong, Soung-Jae; Herrera, Natalia; Cantin, Mario; Simon, Felipe; Constandil, Luis

    2015-01-01

    Drug delivery systems based on polymeric microparticles represent an interesting field of development for the treatment of several infectious diseases for humans and animals. In this work, we developed PLGA microparticles loaded with ceftiofur (PLGA-cef), a third- generation cephalosporin that is used exclusively used in animals. PLGA-cef was prepared by the double emulsion w/o/w method, and exhibited a diameter in the range of 1.5–2.2 μm, and a negative ζ potential in the range of -35 to -55 mV. The loading yield of PLGA-cef was ~7% and encapsulation efficiency was approximately 40%. The pharmacokinetic study demonstrated a sustained release profile of ceftiofur for 20 days. PLGA-cef administrated in a single dose was more effective than ceftiofur non-encapsulated in rats challenged with S. Typhimurium. The in vivo toxicological evaluation showed that PLGA-cef did not affect the blood biochemical, hematological and hemostasis parameters. Overall, the PLGA-cef showed slow in vivo release profile, high antibacterial efficacy, and low toxicity. The results obtained supports the safe application of PLGA-cef as sustained release platform in the veterinary industry. PMID:25915043

  9. Experience in using a research reactor for the training of power reactor operators

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Arsenaut, L.J.

    1972-01-01

    A research reactor facility such as the one at the Omaha Veterans Administration Hospital would have much to offer in the way of training reactor operators. Although most of the candidates for the course had either received previous training in the Westinghouse Reactor Operator Training Program, had operated nuclear submarine reactors or had operated power reactors, they were not offered the opportunity to perform the extensive manipulations of a reactor that a small research facility will allow. In addition the AEC recommends 10 research reactor startups per student as a prerequisite for a cold operator?s license and these can easily be obtained during the training period

  10. Reactor feedwater system

    International Nuclear Information System (INIS)

    Hikabe, Katsumi.

    1978-01-01

    Purpose: In order to prevent thermal stresses of a core of PWR type reactor, described has been a method for feeding heated recirculating water to the core in the case of the reactor start-up or shut-down. Constitution: A recirculating water is degassed, cleaned up and heated in the steam condensers, and then feeds the water to the reactor, characterized in that heaters are provided in the bypasses of the turbine, so that heated water is constantly supplied to the reactor. (Nakamura, S.)

  11. New reactor concepts

    International Nuclear Information System (INIS)

    Meskens, G.; Govaerts, P.; Baugnet, J.-M.; Delbrassine, A.

    1998-11-01

    The document gives a summary of new nuclear reactor concepts from a technological point of view. Belgium supports the development of the European Pressurized-Water Reactor, which is an evolutionary concept based on the European experience in Pressurized-Water Reactors. A reorientation of the Belgian choice for this evolutionary concept may be required in case that a decision is taken to burn plutonium, when the need for flexible nuclear power plants arises or when new reactor concepts can demonstrate proved benefits in terms of safety and cost

  12. Management of tibial fractures using a circular external fixator in two calves.

    Science.gov (United States)

    Aithal, Hari Prasad; Kinjavdekar, Prakash; Amarpal; Pawde, Abhijit Motiram; Singh, Gaj Raj; Setia, Harish Chandra

    2010-07-01

    To report the repair of tibial diaphyseal fractures in 2 calves using a circular external skeletal fixator (CEF). Clinical report. Crossbred calves (n=2; age: 6 months; weight: 55 and 60 kg). Mid-diaphyseal tibial fractures were repaired by the use of a 4-ring CEF (made of aluminum rings with 2 mm K-wires) alone in 1 calf and in combination with hemicerclage wiring in 1 calf. Both calves had good weight bearing with moderate lameness postoperatively. Fracture healing occurred by day 60 in 1 calf and by day 30 in calf 2. The CEF was well maintained and tolerated by both calves through fracture healing. Joint mobility and limb usage improved gradually after CEF removal. CEF provided a stable fixation of tibial fractures and healing within 60 days and functional recovery within 90 days. CEF can be safely and successfully used for the management of selected tibial fractures in calves.

  13. Research reactors; Les piles de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Kowarski, L. [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires]|[Organisation europeenne pour la Recherche Nucleaire, Geneve (Switzerland)

    1955-07-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  14. Research reactors; Les piles de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Kowarski, L [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires; [Organisation europeenne pour la Recherche Nucleaire, Geneve (Switzerland)

    1955-07-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  15. Reactor feedwater device

    International Nuclear Information System (INIS)

    Igarashi, Noboru.

    1986-01-01

    Purpose: To suppress soluble radioactive corrosion products in a feedwater device. Method: In a light water cooled nuclear reactor, an iron injection system is connected to feedwater pipeways and the iron concentration in the feedwater or reactor coolant is adjusted between twice and ten times of the nickel concentration. When the nickel/iron ratio in the reactor coolant or feedwater goes nearer to 1/2, iron ions are injected together with iron particles to the reactor coolant to suppress the leaching of stainless steels, decrease the nickel in water and increase the iron concentration. As a result, it is possible to suppress the intrusion of nickel as one of parent nuclide of radioactive nuclides. Further, since the iron particles intruded into the reactor constitute nuclei for capturing the radioactive nuclides to reduce the soluble radioactive corrosion products, the radioactive nuclides deposited uniformly to the inside of the pipeways in each of the coolant circuits can be reduced. (Kawakami, Y.)

  16. Reactor physics computations

    International Nuclear Information System (INIS)

    Shapiro, A.

    1977-01-01

    Those reactor-core calculations which provide the effective multiplication factor (or eigenvalue) and the stationary (or fundamental mode) neutron-flux distribution at selected times during the lifetime of the core are considered. The multiplication factor is required to establish the nuclear composition and configuration which satisfy criticality and control requirements. The steady-state flux distribution must be known to calculate reaction rates and power distributions which are needed for the thermal, mechanical and shielding design of the reactor, as well as for evaluating refueling requirements. The calculational methods and techniques used for evaluating the nuclear design information vary with the type of reactor and with the preferences and prejudices of the reactor-physics group responsible for the calculation. Additionally, new methods and techniques are continually being developed and made operational. This results in a rather large conglomeration of methods and computer codes which are available for reactor analysis. The author provides the basic calculational framework and discusses the more prominent techniques which have evolved. (Auth.)

  17. Cooling system of the core of a nuclear reactor while it is being stopped or normally operating

    International Nuclear Information System (INIS)

    Tilliette, Z.

    1986-01-01

    The present invention proposes a cooling system with intermediate gas flow which ensures the reactor core cooling when the primary pumps are stopped either directly by means of main heat-exchange circuits ensuring normally the reactor operation, or by means of separated loops, these ones being able so to operate in an autonomous way for they produce their own electricity needs and also an excedent which is added to the power plant production. The cooling circuit and the heat exchanger are described in detail [fr

  18. Mirror machine reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1976-01-01

    Recent mirror reactor conceptual design studies are described. Considered in detail is the design of ''standard'' Yin-Yang fusion power reactors with classical and enhanced confinement. It is shown that to be economically competitive with estimates for other future energy sources, mirror reactors require a considerable increase in Q, or major design simplifications, or preferably both. These improvements may require a departure from the ''standard'' configuration. Two attractive possibilities, both of which would use much of the same physics and technology as the ''standard'' mirror, are the field reversed mirror and the end-stoppered mirror

  19. Nuclear reactor PBMR and cogeneration; Reactor nuclear PBMR y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  20. Fast breeder reactors

    International Nuclear Information System (INIS)

    Waltar, A.E.; Reynolds, A.B.

    1981-01-01

    This book describes the major design features of fast breeder reactors and the methods used for their design and analysis. The foremost objective of this book is to fulfill the need for a textbook on Fast Breeder Reactor (FBR) technology at the graduate level or the advanced undergraduate level. It is assumed that the reader has an introductory understanding of reactor theory, heat transfer, and fluid mechanics. The book is expected to be used most widely for a one-semester general course on fast breeder reactors, with the extent of material covered to vary according to the interest of the instructor. The book could also be used effectively for a two-quarter or a two-semester course. In addition, the book could serve as a text for a course on fast reactor safety since many topics other than those appearing in the safety chapters relate to FBR safety. Methodology in fast reactor design and analysis, together with physical descriptions of systems, is emphasized in this text more than numerical results. Analytical and design results continue to change with the ongoing evolution of FBR design whereas many design methods have remained fundamentally unchanged for a considerable time

  1. Canine distemper virus utilizes different receptors to infect chicken embryo fibroblasts and vero cells.

    Science.gov (United States)

    Chen, Jun; Liang, Xiu; Chen, Pei-fu

    2011-04-01

    Inducing animal viruses to adapt to chicken embryos or chicken embryo fibroblasts (CEF) is a common method to develop attenuated live vaccines with full security. Canine distemper virus (CDV) also does this, but the mechanisms and particular receptors remain unclear. Virus overlay protein blot assays were carried out on CEF membrane proteins, which were extracted respectively with a Mem-PER™ kit, a radioimmunoprecipitation assay buffer or a modified co-immunoprecipitation method, and revealed a common 57 kDa positive band that differed from the 42-kDa positive band in Vero cells and also from those receptors reported in lymphocytes and 293 cells, indicating a receptor diversity of CDV and the possibility of the 57-kDa protein acting as a receptor that is involved in adaptive infection of CDV Kunming strain to CEF.

  2. Reactor theory and power reactors. 1. Calculational methods for reactors. 2. Reactor kinetics

    International Nuclear Information System (INIS)

    Henry, A.F.

    1980-01-01

    Various methods for calculation of neutron flux in power reactors are discussed. Some mathematical models used to describe transients in nuclear reactors and techniques for the reactor kinetics' relevant equations solution are also presented

  3. Defects in the Expression of Chloroplast Proteins Leads to H2O2 Accumulation and Activation of Cyclic Electron Flow around Photosystem I

    Energy Technology Data Exchange (ETDEWEB)

    Strand, Deserah D.; Livingston, Aaron K.; Satoh-Cruz, Mio; Koepke, Tyson; Enlow, Heather M.; Fisher, Nicholas; Froehlich, John E.; Cruz, Jeffrey A.; Minhas, Deepika; Hixson, Kim K.; Kohzuma, Kaori; Lipton, Mary; Dhingra, Amit; Kramer, David M.

    2017-01-13

    We describe a new member of the class of mutants in Arabidopsis exhibiting high rates of cyclic electron flow around photosystem I (CEF), a light-driven process that produces ATP but not NADPH. High cyclic electron flow 2 (hcef2) shows strongly increased CEF activity through the NADPH dehydrogenase complex (NDH), accompanied by increases in thylakoid proton motive force (pmf), activation of the photoprotective qE response, and the accumulation of H2O2 . Surprisingly, hcef2 was mapped to a nonsense mutation in the TADA1 (tRNA adenosine deaminase arginine) locus, coding for a plastid targeted tRNA editing enzyme required for efficient codon recognition. Comparison of protein content from representative thylakoid complexes, the cytochrome bf complex and the ATP synthase, suggests that inefficient translation of hcef2 leads to compromised complex assembly or stability leading to alterations in stoichiometries of major thylakoid complexes as well as their constituent subunits. Altered subunit stoichiometries for photosystem I, ratios and properties of cytochrome bf hemes, and the decay kinetics of the flash induced thylakoid electric field suggest that these defect lead to accumulation of H2O2 in hcef2, which we have previously shown leads to activation of NDHrelated CEF. We observed similar increases in CEF and H2O2 accumulation in other translation defective mutants, suggesting that loss of coordination in plastid protein levels lead to imbalances in the photosynthetic energy balance that leads to increased CEF. These results, together with a large body of previous observations, support a general model in which processes that imbalances in chloroplast energetics result in the production of H2O2 , which activates CEF, either as a redox signal or by inducing deficits in ATP levels.

  4. Reactor container

    International Nuclear Information System (INIS)

    Shibata, Satoru; Kawashima, Hiroaki

    1984-01-01

    Purpose: To optimize the temperature distribution of the reactor container so as to moderate the thermal stress distribution on the reactor wall of LMFBR type reactor. Constitution: A good heat conductor (made of Al or Cu) is appended on the outer side of the reactor container wall from below the liquid level to the lower face of a deck plate. Further, heat insulators are disposed to the outside of the good heat conductor. Furthermore, a gas-cooling duct is circumferentially disposed at the contact portion between the good heat conductor and the deck plate around the reactor container. This enables to flow the cold heat from the liquid metal rapidly through the good heat conductor to the cooling duct and allows to maintain the temperature distribution on the reactor wall substantially linear even with the abrupt temperature change in the liquid metal. Further, by appending the good heat conductor covered with inactive metals not only on the outer side but also on the inside of the reactor wall to introduce the heat near the liquid level to the upper portion and escape the same to the cooling layer below the roof slab, the effect can be improved further. (Ikeda, J.)

  5. The IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    According to the research reactor database of IAEA (RRDB), 250 reactors are operating worldwide, 248 have been shut down and 170 have been decommissioned. Among the 248 reactors that do not run, some will resume their activities, others will be dismantled and the rest do not face a clear future. The analysis of reported incidents shows that the ageing process is a major cause of failures, more than two thirds of operating reactors are over 30 years old. It also appears that the lack of adequate regulations or safety standards for research reactors is an important issue concerning reactor safety particularly when reactors are facing re-starting or upgrading or modifications. The IAEA has launched a 4-axis program: 1) to set basic safety regulations and standards for research reactors, 2) to provide IAEA members with an efficient help for the application of these safety regulations to their reactors, 3) to foster international exchange of information on research reactor safety, and 4) to provide IAEA members with a help concerning safety issues linked to malicious acts or sabotage on research reactors

  6. Virtual nuclear reactor for education of nuclear reactor physics

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Narabayashi, Takashi; Shimazu, Youichiro

    2008-01-01

    As one of projects that were programmed in the cultivation program for human resources in nuclear engineering sponsored by the Ministry of Economy, Trade and Industry, the development of a virtual reactor for education of nuclear reactor physics started in 2007. The purpose of the virtual nuclear reactor is to make nuclear reactor physics easily understood with aid of visualization. In the first year of this project, the neutron slowing down process was visualized. The data needed for visualization are provided by Monte Carlo calculations; The flights of the respective neutrons generated by nuclear fissions are traced through a reactor core until they disappear by neutron absorption or slow down to a thermal energy. With this visualization and an attached supplement textbook, it is expected that the learners can learn more clearly the physical implication of neutron slowing process that is mathematically described by the Boltzmann neutron transport equation. (author)

  7. Radionuclide buildup in BWR [boiling water reactor] reactor coolant recirculation piping

    International Nuclear Information System (INIS)

    Duce, S.W.; Marley, A.W.; Freeman, A.L.

    1989-12-01

    Since the spring of 1985, thermoluminescent dosimeter, dose rate, and gamma spectral data have been acquired on the contamination of boiling water reactor primary coolant recirculation systems as part of a Nuclear Regulatory Commission funded study. Data have been gathered for twelve facilities by taking direct measurements and/or obtaining plant and vendor data. The project titled, ''Effectiveness and Safety Aspects of Selected Decontamination Processes'' (October 1983) initially reviewed the application of chemical decontamination processes on primary coolant recirculation system piping. Recontamination of the system following pipe replacement or chemical decontamination was studied as a second thrust of this program. During the course of this study, recontamination measurements were made at eight different commercial boiling water reactors. At four of the reactors the primary coolant recirculation system piping was chemically decontaminated. At the other four the piping was replaced. Vendor data were obtained from two boiling water reactors that had replaced the primary coolant recirculation system piping. Contamination measurements were made at two newly operating boiling water reactors. This report discusses the results of these measurements as they apply to contamination and recontamination of boiling water reactor recirculation piping. 16 refs., 29 figs., 9 tabs

  8. Device for manufacturing methane or synthetic gas from materials containing carbon using a nuclear reactor

    International Nuclear Information System (INIS)

    Jaeger, W.

    1984-01-01

    This invention concerns a device for manufacturing methane or synthetic gas from materials containing carbon using a nuclear reactor, where part of the carbon is gasified with hydration and the remaining carbon is converted to synthetic gas by adding steam. This synthetic gas consists mainly of H 2 , CO, CO 2 and CH 4 and can be converted to methane in so-called methanising using a nickel catalyst. The hydrogen gasifier is situated in the first of two helium circuits of a high temperature reactor, and the splitting furnace is situated in the second helium circuit, where part of the methane produced is split into hydrogen at high temperature, which is used for the hydrating splitting of another part of the material containing carbon. (orig./RB) [de

  9. Molten salt reactors and the oil sands: odd couple or key to north american energy independence?

    Energy Technology Data Exchange (ETDEWEB)

    LeBlanc, D., E-mail: d_leblanc@rogers.com [Ottawa Valley Research Associates Ltd., Ottawa, Ontario (Canada); Quesada, M.; Popoff, C.; Way, D. [Penumbra Energy, Calgary, Alberta (Canada)

    2012-07-01

    The use of nuclear power to aid oil sands development has often been proposed largely due to the virtual elimination of natural gas use and thus a large reduction in GHG emissions. Nuclear power can replace natural gas for process steam production (SAGD) and electricity generation but also potentially for hydrogen production to upgrade bitumen for pipeline transit, synthetic crude production and even at the final refinery stage. Prior candidates included CANDU and gas cooled Pebble Bed Reactors. The case for CANDU use can be shown to be marginally economic with a proven technology but with an uncertainty of current construction costs and too large a unit size (~2400 MWth). PBRs offered modest theoretical cost savings, smaller unit size and the ability to offer higher temperatures needed for thermochemical hydrogen production from water. Interest in PBRs however has greatly waned with the cancellation of their major South African development program which highlighted the severe challenges of helium as a coolant and TRISO fuel manufacturing. More recently, Small Modular Reactors based on scaled down light water reactor technology have attracted interest but are unlikely to compete economically outside of niche applications. However, a 'new' reactor option, the Molten Salt Reactor, has been rapidly gaining momentum over the past decade. This 'new' technology was actually developed over 50 years ago as a thorium breeder reactor to compete with the sodium cooled fast breeder reactor (U-Pu cycle). During this time two molten salt test reactors were constructed. A modern version however would likely be a simpler converter design using Low Enriched Uranium but needing only a small fraction the uranium resources of LWRs or CANDUs. Besides resource sustainability, these unique designs offer large potential improvements in the areas of capital costs, safety and nuclear waste. This presentation will explain the unique attributes and advantages of these

  10. Method of operating a reactor

    International Nuclear Information System (INIS)

    Oosumi, Katsumi; Yamamoto, Michiyoshi.

    1980-01-01

    Purpose: To prevent stress corrosion cracking in the structural material of a reactor pressure vessel. Method: Prior to the starting of a reactor, the reactor pressure vessel is evacuated to carry out degassing of reactor water, and, at the same time, reactor water is heated. After reactor water is heated to a predetermined temperature, control rods are extracted to start nuclear heating. While the temperature of the reactor water is in a temperature range where elution of a metal which is a structural material of the reactor pressure vessel becomes vigorous and the sensitivity to the stress corrosion cracks increases, the reactor is operated at the maximum permissible temperature raising speed or maximum permissible cooling speed. (Aizawa, K.)

  11. Utilization of OR method toward realization of better fast breeder reactor cycle

    International Nuclear Information System (INIS)

    Shiotani, Hiroki

    2008-01-01

    Fast Reactor Cycle Technology Development (FaCT) Project was now started aiming at commercialization of new nuclear power plants system. In parallel with development of component technology and technology demonstration by test, development of comprehensive evaluation method of the FBR cycle system is under way and scenario study, discounted cash flow (DCF) method, analytic hierarchy process (AHP), real option, supply chain management (SCM) and others are used. Since commercialized FBR cycle would request long-term and large-scale development contributed by so many participants, modeling of nuclear system and knowledge management are beneficial even for development of evaluation method and further utilization of OR technology is highly expected. Comprehensive evaluation methods now utilized or developing were overlooked from the standpoint of OR, 'Science of Better'. (T. Tanaka)

  12. Nuclear Reactor Physics

    Science.gov (United States)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  13. Nuclear reactors built, being built, or planned in the United States as of December 31, 1980

    International Nuclear Information System (INIS)

    1981-04-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1980, which are capable of sustaining a nuclear chain reaction. Information is presented in five parts, each of which is categorized by primary function or purpose: civilian, military, production, export, and critical assembly facilities

  14. Nuclear reactors built, being built, or planned in the Unites States as of June 30, 1981

    International Nuclear Information System (INIS)

    Goulden, A.M.

    1983-01-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of June 30, 1981, which are capable of sustaining a nuclear chain reaction. Information is presented in five parts, each of which is categorized by primary function or pupose: civilian, military, production, export, and critical assembly facilities

  15. Heterogeneous gas core reactor

    International Nuclear Information System (INIS)

    Han, K.I.

    1977-01-01

    Preliminary investigations of a heterogeneous gas core reactor (HGCR) concept suggest that this potential power reactor offers distinct advantages over other existing or conceptual reactor power plants. One of the most favorable features of the HGCR is the flexibility of the power producing system which allows it to be efficiently designed to conform to a desired optimum condition without major conceptual changes. The arrangement of bundles of moderator/coolant channels in a fissionable gas or mixture of gases makes a truly heterogeneous nuclear reactor core. It is this full heterogeneity for a gas-fueled reactor core which accounts for the novelty of the heterogeneous gas core reactor concept and leads to noted significant advantages over previous gas core systems with respect to neutron and fuel economy, power density, and heat transfer characteristics. The purpose of this work is to provide an insight into the design, operating characteristics, and safety of a heterogeneous gas core reactor system. The studies consist mainly of neutronic, energetic and kinetic analyses of the power producing and conversion systems as a preliminary assessment of the heterogeneous gas core reactor concept and basic design. The results of the conducted research indicate a high potential for the heterogeneous gas core reactor system as an electrical power generating unit (either large or small), with an overall efficiency as high as 40 to 45%. The HGCR system is found to be stable and safe, under the conditions imposed upon the analyses conducted in this work, due to the inherent safety of ann expanding gaseous fuel and the intrinsic feedback effects of the gas and water coolant

  16. Fast reactors

    International Nuclear Information System (INIS)

    Vasile, A.

    2001-01-01

    Fast reactors have capacities to spare uranium natural resources by their breeding property and to propose solutions to the management of radioactive wastes by limiting the inventory of heavy nuclei. This article highlights the role that fast reactors could play for reducing the radiotoxicity of wastes. The conversion of 238 U into 239 Pu by neutron capture is more efficient in fast reactors than in light water reactors. In fast reactors multi-recycling of U + Pu leads to fissioning up to 95% of the initial fuel ( 238 U + 235 U). 2 strategies have been studied to burn actinides: - the multi-recycling of heavy nuclei is made inside the fuel element (homogeneous option); - the unique recycling is made in special irradiation targets placed inside the core or at its surroundings (heterogeneous option). Simulations have shown that, for the same amount of energy produced (400 TWhe), the mass of transuranium elements (Pu + Np + Am + Cm) sent to waste disposal is 60,9 Kg in the homogeneous option and 204.4 Kg in the heterogeneous option. Experimental programs are carried out in Phenix and BOR60 reactors in order to study the feasibility of such strategies. (A.C.)

  17. Reactor system

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Narabayashi, Naoshi.

    1990-01-01

    The represent invention concerns a reactor system with improved water injection means to a pressure vessel of a BWR type reactor. A steam pump is connected to a heat removing system pipeline, a high pressure water injection system pipeline and a low pressure water injection system pipeline for injecting water into the pressure vessel. A pump actuation pipeline is disposed being branched from a main steam pump or a steam relieaf pipeline system, through which steams are supplied to actuate the steam pump and supply cooling water into the pressure vessel thereby cooling the reactor core. The steam pump converts the heat energy into the kinetic energy and elevates the pressure of water to a level higher than the pressure of the steams supplied by way of a pressure-elevating diffuser. Cooling water can be supplied to the pressure vessel by the pressure elevation. This can surely inject cooling water into the pressure vessel upon loss of coolant accident or in a case if reactor scram is necessary, without using an additional power source. (I.N.)

  18. Calculation of low-energy reactor neutrino spectra reactor for reactor neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Riyana, Eka Sapta; Suda, Shoya; Ishibashi, Kenji; Matsuura, Hideaki [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Kyushu (Japan); Katakura, Junichi [Dept. of Nuclear System Safety Engineering, Nagaoka University of Technology, Nagaoka (Japan)

    2016-06-15

    Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% {sup 235}U contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. {sup 241}Pu) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate. Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

  19. BWR type reactors

    International Nuclear Information System (INIS)

    Hayashi, Katsuhisa; Watanabe, Shigeru.

    1983-01-01

    Purpose: To simplify the structure of control rod driving systems, as well as improve the safety and maintainability thereof. Constitution: Control-rod-guide tubes are disposed vertically above the reactor core and control-rod drives are disposed further thereabove, by which the control rods are moved upwardly and downwardly from above the reactor core through the guide tubes. Further, a partitioning cylinder is provided between the inner cirumferential wall at the upper portion of a pressure vessel and the control-rod-guide tubes and a gas-liquid separator is disposed to the space between the partitioning cylinder and the pressure vessel wall, to which steams generated in the reactor core are introduced. In such a structure of the reactor, since all of the control rods are inserted or extracted by the control rod drive system from above the reactor core, if the control rod drives or the likes should fail and accidentally drop the control rods, they exert in the direction of suppressing the nuclear reaction, whereby the safety can be improved. (Sekiya, K.)

  20. Specific schedule conditions for the formation of personnel of A or B category working in nuclear facilities. Option nuclear reactor

    CERN Document Server

    Int. At. Energy Agency, Wien

    2002-01-01

    This document describes the specific dispositions relative to the nuclear reactor domain, for the formation to the conventional and radiation risks prevention of personnel of A or B category working in nuclear facilities. The application domain, the applicable documents, the liability, the specificity of the nuclear reactor and of the retraining, the Passerelle formation, are presented. (A.L.B.)

  1. LWR type reactor

    International Nuclear Information System (INIS)

    Kato, Kiyoshi.

    1993-01-01

    A water injection tank in an emergency reactor core cooling system is disposed at a position above a reactor pressure vessel. A liquid phase portion of the water injection tank and an inlet plenum portion in the reactor pressure vessel are connected by a water injection pipe. A gas phase portion of the water injection tank and an upper portion in the reactor pressure vessel are connected by a gas ventilation pipe. Hydraulic operation valves are disposed in the midway of the water injection pipe and the gas ventilation pipe respectively. A pressure conduit is disposed for connecting a discharge port of a main recycling pump and the hydraulic operation valve. In a case where primary coolants are not sent to the main recycling pump by lowering of a liquid level due to loss of coolants or in a case where the main recycling pump is stopped by electric power stoppage or occurrence of troubles, the discharge pressure of the main recycling pump is lowered. Then, the hydraulic operation valve is opened to release the flow channel, then, boric acid water in the water injection tank is sent into the reactor by a falling head, to lead the reactor to a scram state. (I.N.)

  2. Reactor feedwater system

    International Nuclear Information System (INIS)

    Kagaya, Hiroyuki; Tominaga, Kenji.

    1993-01-01

    In a simplified water type reactor using a gravitationally dropping emergency core cooling system (ECCS), the present invention effectively prevents remaining high temperature water in feedwater pipelines from flowing into the reactor upon occurrence of abnormal events. That is, (1) upon LOCA, if a feedwater pipeline injection valve is closed, boiling under reduced pressure of the remaining high temperature water occurs in the feedwater pipelines, generated steams prevent the remaining high temperature water from flowing into the reactor. Accordingly, the reactor is depressurized rapidly. (2) The feedwater pipeline injection valve is closed and a bypassing valve is opened. Steams generated by boiling under reduced pressure of the remaining high temperature water in the feedwater pipelines are released to a condensator or a suppression pool passing through bypass pipelines. As a result, the remaining high temperature water is prevented from flowing into the reactor. Accordingly, the reactor is rapidly depressurized and cooled. It is possible to accelerate the depressurization of the reactor by the method described above. Further, load on the depressurization valve disposed to a main steam pipe can be reduced. (I.S.)

  3. Reactor core and initially loaded reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Koyama, Jun-ichi; Aoyama, Motoo.

    1989-01-01

    In BWR type reactors, improvement for the reactor shutdown margin is an important characteristic condition togehter with power distribution flattening . However, in the reactor core at high burnup degree, the reactor shutdown margin is different depending on the radial position of the reactor core. That is , the reactor shutdown margin is smaller in the outer peripheral region than in the central region of the reactor core. In view of the above, the reactor core is divided radially into a central region and as outer region. The amount of fissionable material of first fuel assemblies newly loaded in the outer region is made less than the amount of the fissionable material of second fuel assemblies newly loaded in the central region, to thereby improve the reactor shutdown margin in the outer region. Further, the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower portion of the first fuel assemblies is made smaller than the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower region of the second fuel assemblies, to thereby obtain a sufficient thermal margin in the central region. (K.M.)

  4. Flica: a code for the thermodynamic study of a reactor or a test loop

    International Nuclear Information System (INIS)

    Fajeau, M.

    1969-01-01

    This code handles the thermal problems of water loops or reactor cores under the following conditions: High or low pressure, steady state or transient behavior, one or two phases - Three-dimensional thermodynamic study of the flow in cylindrical geometry - Unidimensional study of heat transfer in heating elements - Neutronic studies can be coupled and a schematic representation of the safety rod behavior is given. The number of cells described in a flow cross-section is presently less than 20. This code is the logical following of FLID and CACTUS of which it constitutes a synthesis. (author) [fr

  5. A multi-purpose reactor

    International Nuclear Information System (INIS)

    Changwen Ma

    2000-01-01

    An integrated natural circulation self pressurized reactor can be used for sea water desalination, electrogeneration, ship propulsion and district or process heating. The reactor can be used for ship propulsion because it has following advantages: it is a integrated reactor. Whole primary loop is included in a size limited pressure vessel. For a 200 MW reactor the diameter of the pressure vessel is about 5 m. It is convenient to arranged on a ship. Hydraulic driving facility of control rods is used on the reactor. It notably decreases the height of the reactor. For ship propulsion, smaller diameter and smaller height are important. Besides these, the operation reliability of the reactor is high enough, because there is no rotational machine (for example, circulating pump) in safety systems. Reactor systems are simple. There are no emergency water injection system and boron concentration regulating system. These features for ship propulsion reactor are valuable. Design of the reactor is based on existing demonstration district heating reactor design. The mechanic design principles are the same. But boiling is introduced in the reactor core. Several variants to use the reactor as a movable seawater desalination plant are presented in the paper. When the sea water desalination plant is working to produce fresh water, the reactor can supply electricity at the same time to the local electricity network. Some analyses for comprehensive application of the reactor have been done. Main features and parameters of the small (Thermopower 200 MW) reactor are given in the paper. (author)

  6. Fuel assembly for FBR type reactor and reactor core thereof

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru.

    1998-01-01

    The present invention provides a fuel assembly to be loaded to a reactor core of a large sized FBR type reactor, in which a coolant density coefficient can be reduced without causing power peaking in the peripheral region of neutron moderators loaded in the reactor core. Namely, the fuel assembly for the FBR type reactor comprises a plurality of fission product-loaded fuel rods and a plurality of fertile material-loaded fuel rods and one or more rods loading neutron moderators. In this case, the plurality of fertile material-loaded fuel rods are disposed to the peripheral region of the neutron moderator-loaded rods. The plurality of fission product-loaded fuel rods are disposed surrounding the peripheral region of the plurality of fertile material-loaded fuel rods. The neutron moderator comprises zirconium hydride, yttrium hydride and calcium hydride. The fission products are mixed oxide fuels. The fertile material comprises depleted uranium or natural uranium. (I.S.)

  7. Licensing of nuclear reactor operators

    International Nuclear Information System (INIS)

    1979-09-01

    Recommendations are presented for the licensing of nuclear reactor operators in units licensed according to the legislation in effect. They apply to all physical persons designated by the Operating Organization of the nuclear reactor or reactors to execute any of the following functional activities: a) to manipulate the controls of a definite reactor b) to direct the authorized activities of the reactor operators licesed according to the present recommendations. (F.E.) [pt

  8. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    International Nuclear Information System (INIS)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed

  9. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  10. Study of core flow distribution for small modular natural circulation lead or lead-alloy cooled fast reactors

    International Nuclear Information System (INIS)

    Chen, Zhao; Zhao, Pengcheng; Zhou, Guangming; Chen, Hongli

    2014-01-01

    Highlights: • A core flow distribution calculation code for natural circulation LFRs was developed. • The comparison study between the channel method and the CFD method was conducted. • The core flow distribution analysis and optimization design for a 10MW natural circulation LFR was conducted. - Abstract: Small modular natural circulation lead or lead-alloy cooled fast reactor (LFR) is a potential candidate for LFR development. It has many attractive advantages such as reduced capital costs and inherent safety. The core flow distribution calculation is an important issue for nuclear reactor design, which will provide important input parameters to thermal-hydraulic analysis and safety analysis. The core flow distribution calculation of a natural circulation LFR is different from that of a forced circulation reactor. In a forced circulation reactor, the core flow distribution can be controlled and adjusted by the pump power and the flow distributor, while in a natural circulation reactor, the core flow distribution is automatically adjusted according to the relationship between the local power and the local resistance feature. In this paper, a non-uniform heated parallel channel flow distribution calculation code was developed and the comparison study between the channel method and the CFD method was carried out to assess the exactness of the developed code. The core flow distribution analysis and optimization design for a 10MW natural circulation LFR was conducted using the developed code. A core flow distribution optimization design scheme for a 10MW natural circulation LFR was proposed according to the optimization analysis results

  11. Siting of research reactors

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of this document is to develop criteria for siting and the site-related design basis for research reactors. The concepts presented in this document are intended as recommendations for new reactors and are not suggested for backfitting purposes for facilities already in existence. In siting research reactors serious consideration is given to minimizing the effects of the site on the reactor and the reactor on the site and the potential impact of the reactor on the environment. In this document guidance is first provided on the evaluation of the radiological impact of the installation under normal reactor operation and accident conditions. A classification of research reactors in groups is then proposed, together with a different approach for each group, to take into account the relevant safety problems associated with facilities of different characteristics. Guidance is also provided for both extreme natural events and for man-induced external events which could affect the safe operation of the reactor. Extreme natural events include earthquakes, flooding for river or coastal sites and extreme meteorological phenomena. The feasibility of emergency planning is finally considered for each group of reactors

  12. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  13. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1993-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1992 (April 1, 1992-March 31, 1993). The major Department's programs promoted in the year are the assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  14. Reactor engineering department annual report

    International Nuclear Information System (INIS)

    1990-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1989 (April 1, 1989 - March 31, 1990). One of major Department's programs is the assessment of the high conversion light water reactor and the design activities of advanced reactor system. Development of a high energy proton linear accelerator for the nuclear engineering including is also TRU incineration promoted. Other major tasks of the Department are various basic researches on nuclear data and group constants, theoretical methods and code development, on reactor physics experiments and analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  15. Reactor scram device for FBR type reactor

    International Nuclear Information System (INIS)

    Kumasaka, Katsuyuki; Arashida, Genji; Itooka, Satoshi.

    1991-01-01

    In a control rod attaching structure in a reactor scram device of an FBR type reactor, an anti-rising mechanism proposed so far against external upward force upon occurrence of earthquakes relies on the engagement of a mechanical structure but temperature condition is not taken into consideration. Then, in the present invention, a material having curie temperature characteristics and which exhibits ferromagnetism only under low temperature condition and a magnet device are disposed to one of a movable control rod and a portion secured to the reactor. Alternatively, a bimetal member or a shape memory alloy which actuates to fix to the mating member only under low temperature condition is secured. The fixing device is adapted to operate so as to secure the control rods when the low temperature state is caused depending on the temperature condition. With such a constitution, when the control rods are separated from a driving device, they are prevented from rising even if they undergo external upward force due to earthquakes and so on, which can improve the reactor safety. (N.H.)

  16. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  17. RA Reactor applications, Annex A

    International Nuclear Information System (INIS)

    Cupac, S.; Vukadin, Z.

    2000-01-01

    Full text: In 2000 Ra reactor was not operated. New instrumentation is not complete, without it, it is not possible to think about reactor start-up. Since 1985, when reactor operation was forbidden, there are 480 fuel elements left in 48 fuel channels in the reactor core. Heavy water was removed from the reactor core because of the repair of the heavy water pumps in 1986. The old instrumentation was removed. Eleven years after being left to its own destiny, it would be difficult to imagine that anybody would think of reactor restart without examining the state of reactor vessel and other vital reactor components. Maintaining the reactor under existing conditions without final decision about restart or permanent shutdown is destructive for this nuclear facility. The existing state that pertains for more than 10 years would have only one result, destruction of the RA reactor [sr

  18. RA Reactor applications, Annex A

    International Nuclear Information System (INIS)

    Cupac, S.; Vukadin, Z.

    1998-01-01

    Full text: In 1998 Ra reactor was not operated. New instrumentation is not complete, without it, it is not possible to think about reactor start-up. Since 1985, when reactor operation was forbidden, there are 480 fuel elements left in 48 fuel channels in the reactor core. Heavy water was removed from the reactor core because of the repair of the heavy water pumps in 1986. The old instrumentation was removed. Eleven years after being left to its own destiny, it would be difficult to imagine that anybody would think of reactor restart without examining the state of reactor vessel and other vital reactor components. Maintaining the reactor under existing conditions without final decision about restart or permanent shutdown is destructive for this nuclear facility. The existing state that pertains for more than 10 years would have only one result, destruction of the RA reactor [sr

  19. RA Reactor applications, Annex A

    International Nuclear Information System (INIS)

    Cupac, S.; Vukadin, Z.

    1996-01-01

    Full text: In 2000 Ra reactor was not operated. New instrumentation is not complete, without it, it is not possible to think about reactor start-up. Since 1985, when reactor operation was forbidden, there are 480 fuel elements left in 48 fuel channels in the reactor core. Heavy water was removed from the reactor core because of the repair of the heavy water pumps in 1986. The old instrumentation was removed. Eleven years after being left to its own destiny, it would be difficult to imagine that anybody would think of reactor restart without examining the state of reactor vessel and other vital reactor components. Maintaining the reactor under existing conditions without final decision about restart or permanent shutdown is destructive for this nuclear facility. The existing state that pertains for more than 10 years would have only one result, destruction of the RA reactor [sr

  20. Removal of triazine herbicides from aqueous systems by a biofilm reactor continuously or intermittently operated.

    Science.gov (United States)

    Sánchez-Sánchez, R; Ahuatzi-Chacón, D; Galíndez-Mayer, J; Ruiz-Ordaz, N; Salmerón-Alcocer, A

    2013-10-15

    The impact of pesticide movement via overland flow or tile drainage water on the quality of receiving water bodies has been a serious concern in the last decades; thus, for remediation of water contaminated with herbicides, bioreaction systems designed to retain biomass have been proposed. In this context, the aim of this study was to evaluate the atrazine and terbutryn biodegradation capacity of a microbial consortium, immobilized in a biofilm reactor (PBR), packed with fragments of porous volcanic stone. The microbial consortium, constituted by four predominant bacterial strains, was used to degrade a commercial formulation of atrazine and terbutryn in the biofilm reactor, intermittently or continuously operated at volumetric loading rates ranging from 44 to 306 mg L(-1) d(-1). The complete removal of both herbicides was achieved in both systems; however, higher volumetric removal rates were obtained in the continuous system. It was demonstrated that the adjuvants of the commercial formulation of the herbicide significantly enhanced the removal of atrazine and terbutryn. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Nuclear reactor

    International Nuclear Information System (INIS)

    Rau, P.

    1980-01-01

    The reactor core of nuclear reactors usually is composed of individual elongated fuel elements that may be vertically arranged and through which coolant flows in axial direction, preferably from bottom to top. With their lower end the fuel elements gear in an opening of a lower support grid forming part of the core structure. According to the invention a locking is provided there, part of which is a control element that is movable along the fuel element axis. The corresponding locking element is engaged behind a lateral projection in the opening of the support grid. The invention is particularly suitable for breeder or converter reactors. (orig.) [de

  2. HOMOGENEOUS NUCLEAR POWER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  3. Gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at simplying gas-cooled nuclear reactors. For the cooling gas, the reactor is provided with a main circulation system comprising one or several energy conversion main groups such as gas turbines, and an auxiliary circulation system comprising at least one steam-generating boiler heated by the gas after its passage through the reactor core and adapted to feed a steam turbine with motive steam. The invention can be applied to reactors the main groups of which are direct-cycle gas turbines [fr

  4. Improvements in or relating to gripping means for handling nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Batjukov, V.I.; Vjugov, O.N.; Fadeev, A.I.; Shkhian, T.G.

    1980-01-01

    A gripping means for handling fuel assemblies, the heads of which are internally recessed to receive gripping jaws, forms part of a reactor refuelling machine and is telescopically accommodated within a manipulator tube of the machine. A through hole is provided to allow cooling medium to be passed through the fuel assemblies to remove afterheat when the gripping means is used to transfer assemblies from a reactor core to spent fuel storage sockets. (author)

  5. Reactor core for LMFBR type reactors

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Azekura, Kazuo; Kurihara, Kunitoshi; Bando, Masaru; Watari, Yoshio.

    1987-01-01

    Purpose: To reduce the power distribution fluctuations and obtain flat and stable power distribution throughout the operation period in an LMFBR type reactor. Constitution: In the inner reactor core region and the outer reactor core region surrounding the same, the thickness of the inner region is made smaller than the axial height of the reactor core region and the radial width thereof is made smaller than that of the reactor core region and the volume thereof is made to 30 - 50 % for the reactor core region. Further, the amount of the fuel material per unit volume in the inner region is made to 70 - 90 % of that in the outer region. The difference in the neutron infinite multiplication factor between the inner region and the outer region is substantially constant irrespective of the burnup degree and the power distribution fluctuation can be reduced to about 2/3, by which the effect of thermal striping to the reactor core upper mechanisms can be moderated. Further, the maximum linear power during operation can be reduced by 3 %, by which the thermal margin in the reactor core is increased and the reactor core fuels can be saved by 3 %. (Kamimura, M.)

  6. The timing of reactor dismantling

    International Nuclear Information System (INIS)

    Roberts, P.

    2000-01-01

    Work has been progressing across the world for the decommissioning of nuclear reactors. The initial work focused on the early, complete dismantling but this was associated with small size reactors and was done for experimental or demonstration purposes. The situation now is that an increasing number of full size power reactors are being shutdown and decision are being made as to the decommissioning strategy to be applied, e.g. with respect to the appropriate timing of reactor dismantling. There are two basic approaches to the timing of reactor dismantling, which are to either proceed with dismantling on an early time scale or to delay it for a period of years. There are a number of examples worldwide of both approaches being taken but one common feature of the approach taken by most countries is that decisions are made on a case by case basis, taking account of relevant factors, and as a result the strategy can vary from reactor to reactor and from country to country. Decisions on timing take account of the following main factors: safety, radioactive decay, financial factors, radioactive waste, reactor type, technology, repository availability, site re-use, regulatory standards, plant knowledge/records, other issues

  7. Test reactors in the world

    International Nuclear Information System (INIS)

    Corella, M.R.; Gomez Alonso, M.

    1983-01-01

    INFCE work on research reactor core conversion from HEU to LEU, attracted a raising interest on this type of nuclear reactors. In this context, the present work shows a compilation of worldwide research and test nuclear reactors, now in operation, under construction, or planned, as well as decommissioned reactors (tables A to F). Brief descriptions of these reactors are included in tables G to L. In table M a summary view of reactors with power level between 10 and 30 MWt is shown. Attention is focused on that power range, as it has been considered in very preliminar studies for a new research reactor. Almost all data have been obtained from current available bibliography. (author)

  8. Research reactors: design, safety requirements and applications

    International Nuclear Information System (INIS)

    Hassan, Abobaker Mohammed Rahmtalla

    2014-09-01

    There are two types of reactors: research reactors or power reactors. The difference between the research reactor and energy reactor is that the research reactor has working temperature and fuel less than the power reactor. The research reactors cooling uses light or heavy water and also research reactors need reflector of graphite or beryllium to reduce the loss of neutrons from the reactor core. Research reactors are used for research training as well as testing of materials and the production of radioisotopes for medical uses and for industrial application. The difference is also that the research reactor smaller in terms of capacity than that of power plant. Research reactors produce radioactive isotopes are not used for energy production, the power plant generates electrical energy. In the world there are more than 284 reactor research in 56 countries, operates as source of neutron for scientific research. Among the incidents related to nuclear reactors leak radiation partial reactor which took place in three mile island nuclear near pennsylvania in 1979, due to result of the loss of control of the fission reaction, which led to the explosion emitting hug amounts of radiation. However, there was control of radiation inside the building, and so no occurred then, another accident that lead to radiation leakage similar in nuclear power plant Chernobyl in Russia in 1986, has led to deaths of 4000 people and exposing hundreds of thousands to radiation, and can continue to be effect of harmful radiation to affect future generations. (author)

  9. Repairing liner of the reactor; Reparacion del liner del reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-07-15

    Due to the corrosion problems of the aluminum coating of the reactor pool, a periodic inspections program by ultrasound to evaluate the advance grade and the corrosion speed was settled down. This inspections have shown the necessity to repair some areas, in those that the slimming is significant, of not making it can arrive to the water escape of the reactor pool. The objective of the repair is to place patches of plates of 1/4 inch aluminum thickness in the areas of the reactor 'liner', in those that it has been detected by ultrasound a smaller thickness or similar to 3 mm. To carry out this the fuels are move (of the core and those that are decaying) to a temporary storage, the structure of the core is confined in a tank that this placed inside the pool of the reactor, a shield is placed in the thermal column and it is completely extracted the water for to leave uncover the 'liner' of the reactor. (Author)

  10. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2016. Scientific opinion on Flavouring Group Evaluation 400 (FGE.400): 3-(1- ((3,5-dimethylisoxazol-4-yl)methyl)-1H-pyrazol-4-yl)-1-(3-hydroxybenzyl)imidazolidine-2,4-dione

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Nørby, Karin Kristiane

    modifier in specific categories of food. There is no safety concern with respect to genotoxicity. A 90-day dietary administration study in rats showed no adverse effects for doses up to 100 mg/kg body weight (bw) per day, providing an adequate margin of safety. Developmental toxicity was not observed...... for various foods in different food categories.......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) of EFSA was requested to deliver a scientific opinion on the implications for human health of the flavouring substance 3-(1-((3,5-dimethylisoxazol-4-yl)methyl)-1H-pyrazol-4-yl)-1-(3-hydroxybenzyl)imidazolidine-2...

  11. Proposals for in-service inspection and monitoring of selected components located within or part of the primary containment of sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Bolt, P.R.

    1976-01-01

    Design and operational experience of CEGB gas cooled reactors and certain overseas reactor plant is reviewed in relation to in-service inspection and monitoring capabilities. Design guidelines and preliminary proposals are given for in-service inspection and monitoring of selected components located within or part of the primary containment of sodium cooled fast reactors. Specific comments are made on the items of further design and development work believed to be necessary

  12. Reactor incident status 1981 annual report

    International Nuclear Information System (INIS)

    Kiser, S.H.

    1982-01-01

    Reactor Incident followup action is summarized through periodic status reports. This annual report summarizes action taken or anticipated for Reactor Incidents through December 1981. Incidents for which action has been completed, have been deleted from the report. Quarterly addende will update the report by tabulating incidents for each three month period through the coming year. The report consists of a part for the P, K, and C Reactors. Each reactor part is divided into three sections: Further Technical Analysis or Followup Needed; Funding and/or Implementation Needed; and No Further Technical Analysis Anticipated

  13. Research reactors and materials testing

    International Nuclear Information System (INIS)

    Vidal, H.

    1986-01-01

    Research reactors can be classified in three main groups according to the moderator which is used. Their technical characteristics are given and the three most recent research and materials testing reactors are described: OSIRIS, ORPHEE and the high-flux reactor of Grenoble. The utilization of research reactors is reviewed in four fields of activity: training, fundamental or applied research and production (eg. radioisotopes) [fr

  14. Reactor operation method

    International Nuclear Information System (INIS)

    Osumi, Katsumi; Miki, Minoru.

    1979-01-01

    Purpose: To prevent stress corrosion cracks by decreasing the dissolved oxygen and hydrogen peroxide concentrations in the coolants within a reactor container upon transient operation such as at the start-up or shutdown of bwr type reactors. Method: After a condensate has been evacuated, deaeration operation is conducted while opening a main steam drain line, as well as a main steam separation valve and a by-pass valve in a turbine by-pass line connecting the main steam line and the condenser without by way of a turbine, and the reactor is started-up by the extraction of control rods after the concentration of dissolved oxygen in the cooling water within a pressure vessel has been decreased below a predetermined value. Nuclear heating is started after the reactor water has been increased to about 150 0 C by pump heating after the end of the deaeration operation for preventing the concentration of hydrogen peroxide and oxygen in the reactor water from temporarily increasing immediately after the start-up. The corrosive atmosphere in the reactor vessel can thus be moderated. (Horiuchi, T.)

  15. Reactor Safety Commission Code of Practice for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    1990-01-01

    The Reactor Safety Commission of the Federal German Republic has summarized in the form of Official Guidelines the safety requirements which, in the Commission's view, have to be met in the design, construction and operation of a nuclear power station equipped with a pressurized water reactor. The Third Edition of the RSK Guidelines for pressurized water reactors dated 14.10.81. is a revised and expanded version of the Second Edition dated 24.1.79. The Reactor Safety Commission will with effect from October 1981 use these Guidelines in consultations on the siting of and safety concept for the installation approval of future pressurized water reactors and will assess these nuclear power stations during their erection in the light of these Guidelines. They have not however been immediately conceived for the adaptation of existing nuclear power stations, whether under construction or in operation. The scope of application of these Guidelines to such nuclear power stations will have to be examined for each individual case. The main aim of the Guidelines is to simplify the consultation process within the reactor Safety Commission and to provide early advice on the safety requirements considered necessary by the Commission. (author)

  16. Weapons-grade plutonium dispositioning. Volume 3: A new reactor concept without uranium or thorium for burning weapons-grade plutonium

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Schnitzler, B.G.; Fletcher, C.D.

    1993-06-01

    The National Academy of Sciences (NAS) requested that the Idaho National Engineering Laboratory (INEL) examine concepts that focus only on the destruction of 50,000 kg of weapons-grade plutonium. A concept has been developed by the INEL for a low-temperature, low-pressure, low-power density, low-coolant-flow-rate light water reactor that destroys plutonium quickly without using uranium or thorium. This concept is very safe and could be designed, constructed, and operated in a reasonable time frame. This concept does not produce electricity. Not considering other missions frees the design from the paradigms and constraints used by proponents of other dispositioning concepts. The plutonium destruction design goal is most easily achievable with a large, moderate power reactor that operates at a significantly lower thermal power density than is appropriate for reactors with multiple design goals. This volume presents the assumptions and requirements, a reactor concept overview, and a list of recommendations. The appendices contain detailed discussions on plutonium dispositioning, self-protection, fuel types, neutronics, thermal hydraulics, off-site radiation releases, and economics

  17. Reactor control device

    International Nuclear Information System (INIS)

    Kameda, Akiyuki.

    1979-01-01

    Purpose: To enable three types of controls, that is, level control, scram control and excess reactivity control required for a reactor by a same mechanism by feeding neutron absorber liquid and pressure control gas to several blind pipes provided in the reactor core. Constitution: A plurality of blind pipes are disposed spaced apart in a reactor core and connected by way of injection pipes to a neutron absorber liquid tank. A pressure regulator is connected to the blind pipes, to which pressure control gas is supplied. The neutron absorber liquid used herein consists of sodium, potassium or their alloy, or mercury as a basic substance incorporated with one or more selected from boron, tantalum, rhenium, europium or their compounds. The level control, scram control and excess reactivity control can be attained by moderating the pressure changes in the pressure control gas or by regulating the fluctuation in the liquid level. (Horiughi, T.)

  18. Nuclear Power Reactors in the World. 2013 Ed

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Power Reactors in the World is an annual publication that presents the most recent data pertaining to nuclear power reactors in IAEA Member States. This thirty-third edition of Reference Data Series No. 2 provides a detailed comparison of various statistics through 31 December 2012. The tables and figures contain the following information: - General statistics on nuclear reactors in IAEA Member States; - Technical data on specific reactors that are either planned, under construction or operational, or that have been shut down or decommissioned; - Performance data on reactors operating in IAEA Member States, as reported to the IAEA. The data compiled in this publication is a product of the IAEA's Power Reactor Information System (PRIS). The PRIS database is a comprehensive source of data on all nuclear power reactors in the world. It includes specification and performance history data on operational reactors as well as on reactors under construction or in the decommissioning process. The IAEA collects data through designated national correspondents in Member States

  19. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    International Nuclear Information System (INIS)

    Lasche, G.P.

    1988-01-01

    A method for recovering energy in an inertial confinement fusion reactor having a reactor chamber and a sphere forming means positioned above an opening in the reactor chamber is described, comprising: embedding a fusion target fuel capsule having a predetermined yield in the center of a hollow solid lithium tube and subsequently embedding the hollow solid lithium tube in a liquid lithium medium; using the sphere forming means for forming the liquid lithium into a spherical shaped liquid lithium mass having a diameter smaller than the length of the hollow solid lithium tube with the hollow solid lithium tube being positioned along a diameter of the spherical shaped mass, providing the spherical shaped liquid lithium mass with the fusion fuel target capsule and hollow solid lithium tube therein as a freestanding liquid lithium shaped spherical shaped mass without any external means for maintaining the spherical shape by dropping the liquid lithium spherical shaped mass from the sphere forming means into the reactor chamber; producing a magnetic field in the reactor chamber; imploding the target capsule in the reactor chamber to produce fusion energy; absorbing fusion energy in the liquid lithium spherical shaped mass to convert substantially all the fusion energy to shock induced kinetic energy of the liquid lithium spherical shaped mass which expands the liquid lithium spherical shaped mass; and compressing the magnetic field by expansion of the liquid lithium spherical shaped mass and recovering useful energy

  20. Mimic of OSU research reactor

    International Nuclear Information System (INIS)

    Lu, Hong; Miller, D.W.

    1991-01-01

    The Ohio State University research reactor (OSURR) is undergoing improvements in its research and educational capabilities. A computer-based digital data acquisition system, including a reactor system mimic, will be installed as part of these improvements. The system will monitor the reactor system parameters available to the reactor operator either in digital parameters available to the reactor operator either in digital or analog form. The system includes two computers. All the signals are sent to computer 1, which processes the data and sends the data through a serial port to computer 2 with a video graphics array VGA monitor, which is utilized to display the mimic system of the reactor

  1. The Dragon reactor experiment

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The concept on which the Dragon Reactor Experiment was based was evolved at the Atomic Energy Research Establishment at Harwell in 1956, and in February of that year a High Temperature Gas- cooled Reactor Project Group was set up to study the feasibility of a helium-cooled reactor with a graphite or beryllium moderator, and with the emphasis on the thorium fuel cycle [af

  2. Nuclear reactor construction with bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1987-01-01

    This patent describes an improved liquid metal nuclear reactor construction comprising: (a) a nuclear reactor core having a bottom platform support structure; (b) a reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core; (c) a containment structure surrounding the reactor vessel and having a sidewall spaced outwardly from the reactor vessel side wall and having a base mat spaced below the reactor vessel bottom end wall; (d) a central small diameter post anchored to the containment structure base mat and extending upwardly to the reactor vessel to axially fix the bottom end wall of the reactor vessel and provide a center column support for the lower end of the reactor core; (e) annular support structure disposed in the reactor vessel on the bottom end wall and extending about the lower end of the core; (f) structural support means disposed between the containment structure base mat and bottom end of the reactor vessel wall and cooperating for supporting the reactor vessel at its bottom end wall on the containment structure base mat to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event; (g) a bed of insulating material disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall; freely expand radially from the central post as it heats up while providing continuous support thereof; (h) a deck supported upon the wall of the containment vessel above the top open end of the reactor vessel; and (i) extendible and retractable coupling means extending between the deck and the top open end of the reactor vessel and flexibly and sealably interconnecting the reactor vessel at its top end to the deck

  3. Molten-salt converter reactors

    International Nuclear Information System (INIS)

    Perry, A.M.

    1975-01-01

    Molten-salt reactors appear to have substantial promise as advanced converters. Conversion ratios of 0.85 to 0.9 should be attainable with favourable fuel cycle costs, with 235 U valued at $12/g. An increase in 235 U value by a factor of two or three ($10 to $30/lb. U 3 O 8 , $75/SWU) would be expected to increase the optimum conversion ratio, but this has not been analyzed in detail. The processing necessary to recover uranium from the fuel salt has been partially demonstrated in the MSRE. The equipment for doing this would be located at the reactor, and there would be no reliance on an established recycle industry. Processing costs are expected to be quite low, and fuel cycle optimization depends primarily on inventory and burnup or replacement costs for the fuel and for the carrier salt. Significant development problems remain to be resolved for molten-salt reactors, notably the control of tritium and the elimination of intergranular cracking of Hastelloy-N in contact with tellurium. However, these problems appear to be amenable to solution. It is appropriate to consider separating the development schedule for molten-salt reactors from that for the processing technology required for breeding. The Molten-Salt Converter Reactor should be a useful reactor in its own right and would be an advance towards the achievement of true breeding in thermal reactors. (author)

  4. Training of research reactor personnel

    International Nuclear Information System (INIS)

    Cherruau, F.

    1980-01-01

    Research reactor personnel operate the reactor and carry out the experiments. These two types of work entail different activities, and therefore different skills and competence, the number of relevant staff being basically a function of the size, complexity and versatility of the reactor. Training problems are often reactor-specific, but the present paper considers them from three different viewpoints: the training or retraining of new staff or of personnel already employed at an existing facility, and training of personnel responsible for the start-up and operation of a new reactor, according to whether local infrastructure and experience already exist or whether they have to be built up from scratch. On-the-spot experience seems to be an essential basis for sound training, but requires teaching abilities and aids often difficult to bring together, and the availability of instructors that does not always fit in smoothly with current operational and experimental tasks. (author)

  5. Static compensators using thyristor control with saturated or low-reactance linear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Thanawala, H L; Kelham, W O; Crawshaw, A W

    1982-01-01

    Alternative key components of variable static equipment for reactive power compensation and voltage control in a.c. transmission systems are saturated reactors (SR) and thyristor-controlled reactors (TCR). This paper reports some recent developments aimed at improving the performance and economy of both types of scheme. Advantages of using low-percentage reactance values in a TCR scheme are considered, and methods of dealing with the increased harmonic distortions and of employing transformer leakage reactance. The paper discusses the possibility of combining the advantages of 'external' thyristor control with the 'inherent' action of the harmonic-compensated SR, and the performance of a practical TCSR is presented.

  6. ASN’s actions in GEN IV reactors and Sodium Fast Reactors (SFR)

    International Nuclear Information System (INIS)

    Belot, Clotilde

    2013-01-01

    The ASN is involved in 3 actions concerning GEN IV: • Overview of nuclear reactor GEN IV systems; • Specific analysis about transmutation; • Prototype reactor ASTRID (SFR). Furthermore theses actions are in the beginning (no conclusions or results available)

  7. Bioconversion reactor

    Science.gov (United States)

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  8. Cyclic electron flow provides acclimatory plasticity for the photosynthetic machinery under various environmental conditions and developmental stages

    Directory of Open Access Journals (Sweden)

    Marjaana eSuorsa

    2015-09-01

    Full Text Available Photosynthetic electron flow operates in two modes, linear and cyclic. In cyclic electron flow (CEF, electrons are recycled around photosystem I. As a result, a transthylakoid proton gradient (ΔpH is generated, leading to the production of ATP without concomitant production of NADPH, thus increasing the ATP/NADPH ratio within the chloroplast. At least two routes for CEF exist: a PGR5-PGRL1–and a chloroplast NDH-like complex mediated pathway. This review focuses on recent findings concerning the characteristics of both CEF routes in higher plants, with special emphasis paid on the crucial role of CEF in under challenging environmental conditions and developmental stages.

  9. Reactor-core-reactivity control device

    International Nuclear Information System (INIS)

    Miura, Teruo; Sakuranaga, Tomonobu.

    1983-01-01

    Purpose: To improve the reactor safety upon failures of control rod drives by adapting a control rod not to drop out accidentally from the reactor core but be inserted into the reactor core. Constitution: The control rod is entered or extracted as usual from the bottom of the pressure vessel. A space is provided above the reactor core within the pressure vessel, in which the moving scope of the control rod is set between the space above the reactor core and the reactor core. That is, the control rod is situated above the reactor core upon extraction thereof and, if an accident occurs to the control rod drive mechanisms to detach the control rod and the driving rod, the control rod falls gravitationally into the reactor core to improve the reactor safety. In addition, since the speed limiter is no more required to the control rod, the driving force can be decreased to reduce the size of the rod drive mechanisms. (Ikeda, J.)

  10. Reactor physics aspects of burning actinides in a nuclear reactor

    International Nuclear Information System (INIS)

    Hage, W.; Schmidt, E.

    1978-01-01

    A short review of the different recycling strategies of actinides other than fuel treated in the literature, is given along with nuclear data requirements for actinide build-up and transmutation studies. The effects of recycling actinides in a nuclear reactor on the flux distribution, the infinite neutron multiplication factor, the reactivity control system, the reactivity coefficients and the delayed neutron fraction are discussed considering a notional LWR or LMFBR as an Actinide Trasmutaton Reactor. Some operational problems of Actinide Transmutation reactors are mentioned, which are caused by the α-decay heat and the neutron sources of Actinide Target Elements

  11. Environmental aspects of fusion reactors

    International Nuclear Information System (INIS)

    Coffman, F.E.; Williams, J.M.

    1975-01-01

    With the continued depletion of fossil and uranium resources in the coming decades, the U. S. will be forced to look more toward renewable energy resources (e.g., wind, tidal, geothermal, and solar power) and toward such longer-term and nondepletable energy resources as fissile fast breeder reactors and fusion power. Several reference reactor designs have been completed for full-scale fusion power reactors that indicate that the environmental impacts from construction, operation, and eventual decommissioning of fusion reactors will be quite small. The principal environmental impact from fusion reactor operation will be from thermal discharges. Some of the safety and environmental characteristics that make fusion reactors appear attractive include an effectively infinite fuel supply at low cost, inherent incapability for a ''nuclear explosion'' or a ''nuclear runaway,'' the absence of fission products, the flexibility of selecting low neutron-cross-section structural materials so that emergency core cooling for a loss-of-coolant or other accident will not be necesary, and the absence of special nuclear materials such as 235 U or 239 Pu, so that diversion of nuclear weapons materials will not be possible and nuclear blackmail will not be a serious concern

  12. Nuclear reactor

    International Nuclear Information System (INIS)

    Miyashita, Akio.

    1981-01-01

    Purpose: To facilitate and accelerate a leakage test of valves of a main steam pipe by adding a leakage test partition valve thereto. Constitution: A leakage testing partition valve is provided between a pressure vessel for a nuclear reactor and the most upstream side valve of a plurality of valves to be tested for leakage, a testing branch pipe is communicated with the downstream side of the partition valve, and the testing water for preventing leakage is introduced thereto through the branch pipe. Since main steam pipe can be simply isolated by closing the partition valve in the leakage test, the leakage test can be conducted without raising or lowering the water level in the pressure vessel, and since interference with other work in the reactor can be eliminated, the leakage test can be readily conducted parallel with other work in the reactor in a short time. Clean water can be used without using reactor water as the test water. (Yoshihara, H.)

  13. Fast breeder reactor

    International Nuclear Information System (INIS)

    Ito, Shin-ichi; Maki, Koichi.

    1975-01-01

    Object: To conserve loaded fuel, aquire controllable surplus reaction degree, increase the breeding index, flatten output and improve sealing of neutrons by inserting a decelerating substance in a blanket section. Structure: A decelerating substance such as beryllium or beryllium oxide is inserted in a blanket section between an outer reactor core and reflector. With this arrangement, neutrons are decelerated to increase the low energy components, which are partly subjected to reflection by the outer reactor core to thereby reduce leakage of neutrons from the reactor core. (Kamimura, M.)

  14. Device for thermonuclear reactor

    International Nuclear Information System (INIS)

    Yanagisawa, Yutaro; Kawarazaki, Yuki; Sugiyama, Yu.

    1996-01-01

    A member comprising hydrogen occluding materials is introduced to a reactor incorporated with U-235 as fuels in order to moderate and breed fast neutrons and to control the reactor. Since the amount of light hydrogen or heavy hydrogen is substantially the same as that of metal, etc. of hydrogen occluding material, a moderating efficiency substantially equal with that of a moderator comprising H 2 O can be obtained. In addition, since the member acting as a moderator has an effect of multiplying neutrons, use of only natural uranium 0.72% as nuclear fuels causes chain reaction to provide a function as a nuclear reactor. Further, the hydrogen occluding material can be used also as a control rod for controlling the reactor. The hydrogen occluding material may be Ti, Zr, Pd, proton conductor, Ag, Pt, Rh or oxides thereof or alloys thereof. The member comprising hydrogen occluding materials is preferably coated with a material not permeating hydrogen. (N.H.)

  15. Specific schedule conditions for the formation of personnel of A or B category working in nuclear facilities. Option nuclear reactor-borne

    CERN Document Server

    Int. At. Energy Agency, Wien

    2002-01-01

    This document describes the specific dispositions relative to the nuclear reactor-borne domain, for the formation to the conventional and radiation risks prevention of personnel of A or B category working in nuclear facilities. The application domain, the applicable documents, the liability, the specificity of the nuclear reactor-borne and of the retraining, the Passerelle formation, are presented. (A.L.B.)

  16. Defects in the Expression of Chloroplast Proteins Leads to H2O2 Accumulation and Activation of Cyclic Electron Flow around Photosystem I.

    Science.gov (United States)

    Strand, Deserah D; Livingston, Aaron K; Satoh-Cruz, Mio; Koepke, Tyson; Enlow, Heather M; Fisher, Nicholas; Froehlich, John E; Cruz, Jeffrey A; Minhas, Deepika; Hixson, Kim K; Kohzuma, Kaori; Lipton, Mary; Dhingra, Amit; Kramer, David M

    2016-01-01

    We describe a new member of the class of mutants in Arabidopsis exhibiting high rates of cyclic electron flow around photosystem I (CEF), a light-driven process that produces ATP but not NADPH. High cyclic electron flow 2 ( hcef2 ) shows strongly increased CEF activity through the NADPH dehydrogenase complex (NDH), accompanied by increases in thylakoid proton motive force ( pmf ), activation of the photoprotective q E response, and the accumulation of H 2 O 2 . Surprisingly, hcef2 was mapped to a non-sense mutation in the TADA1 (tRNA adenosine deaminase arginine) locus, coding for a plastid targeted tRNA editing enzyme required for efficient codon recognition. Comparison of protein content from representative thylakoid complexes, the cytochrome bf complex, and the ATP synthase, suggests that inefficient translation of hcef2 leads to compromised complex assembly or stability leading to alterations in stoichiometries of major thylakoid complexes as well as their constituent subunits. Altered subunit stoichiometries for photosystem I, ratios and properties of cytochrome bf hemes, and the decay kinetics of the flash-induced thylakoid electric field suggest that these defect lead to accumulation of H 2 O 2 in hcef2 , which we have previously shown leads to activation of NDH-related CEF. We observed similar increases in CEF, as well as increases in H 2 O 2 accumulation, in other translation defective mutants. This suggests that loss of coordination in plastid protein levels lead to imbalances in photosynthetic energy balance that leads to an increase in CEF. These results taken together with a large body of previous observations, support a general model in which processes that lead to imbalances in chloroplast energetics result in the production of H 2 O 2 , which in turn activates CEF. This activation could be from either H 2 O 2 acting as a redox signal, or by a secondary effect from H 2 O 2 inducing a deficit in ATP.

  17. Gray mode control or a device with added manoeuvrability: a new fine control system for pressurized water reactors

    International Nuclear Information System (INIS)

    Guilmin, J.

    1983-01-01

    The present fine control system for pressurized water reactors (the so-called ''A'' mode) cannot meet the requirements of a variable output in all respects. For this reason specialists are now developing a new fine control system, called gray mode control which is better suited to rapid load variations. The basic principles for control of pressurized water reactors are summarized and, then gray mode control or the device with added manoeuvrability is described. The series of tests carried out in 1981 and 1982 on stage 3 of the Tricastin power station are analyzed and the satisfactory results obtained are presented [fr

  18. Nuclear reactor for release of nuclear energy, without a chain reaction using the simultaneous implosion of three, or more, atomic nuclei

    International Nuclear Information System (INIS)

    Pedrick, A.P.

    1976-01-01

    A modified form of what is known as a 'streaking nuclear reactor' is described. In this type of reactor it is proposed to obtain release of nuclear energy from atomic nuclei by stripping such nuclei of their electron clouds or shells, to form a high temperature plasma, and breaking nucleons off the surface of the nuclei. In the apparatus described it is proposed to break up nuclei by causing three or more nuclei to collide with each other at very high velocity. Streams of nuclei, stripped of their electron clouds are directed into a reactor vessel to a focal point or implosion center along three or more ducts, equi-angularly spaced around the implosion center in the same plane, the arrangement being such as to permit mutual simultaneous collision of three or more of the nuclei. The importance of achieving a release of nuclear energy in this manner is that it may be able to use any chemical element that can be converted to a plasma, but it is most likely to be successful with elements of high atomic number, such as Pb or Bi. (U.K.)

  19. Generation IV reactors: international projects

    International Nuclear Information System (INIS)

    Carre, F.; Fiorini, G.L.; Kupitz, J.; Depisch, F.; Hittner, D.

    2003-01-01

    Generation IV international forum (GIF) was initiated in 2000 by DOE (American department of energy) in order to promote nuclear energy in a long term view (2030). GIF has selected 6 concepts of reactors: 1) VHTR (very high temperature reactor system, 2) GHR (gas-cooled fast reactor system), 3) SFR (sodium-cooled fast reactor system, 4) SCWR (super-critical water-cooled reactor system), 5) LFR (lead-cooled fast reactor system), and 6) MFR (molten-salt reactor system). All these 6 reactor systems have been selected on criteria based on: - a better contribution to sustainable development (through their aptitude to produce hydrogen or other clean fuels, or to have a high energy conversion ratio...) - economic profitability, - safety and reliability, and - proliferation resistance. The 6 concepts of reactors are examined in the first article, the second article presents an overview of the results of the international project on innovative nuclear reactors and fuel cycles (INPRO) within IAEA. The project finished its first phase, called phase-IA. It has produced an outlook into the future role of nuclear energy and defined the need for innovation. The third article is dedicated to 2 international cooperations: MICANET and HTR-TN. The purpose of MICANET is to propose to the European Commission a research and development strategy in order to develop the assets of nuclear energy for the future. Future reactors are expected to be more multiple-purposes, more adaptable, safer than today, all these developments require funded and coordinated research programs. The aim of HTR-TN cooperation is to promote high temperature reactor systems, to develop them in a long term perspective and to define their limits in terms of burn-up and operating temperature. (A.C.)

  20. Review of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Connelly, J.W.; Storr, G.J.

    1989-01-01

    Two types of severe reactor accidents - loss of coolant or coolant flow and transient overpower (TOP) accidents - are described and compared. Accidents in research reactors are discussed. The 1961 SL1 accident in the US is used as an illustration as it incorporates the three features usually combined in a severe accident - a design flaw or flaws in the system, a circumvention of safety circuits or procedures, and gross operator error. The SL1 reactor, the reactivity accident and the following fuel-coolant interaction and steam explosion are reviewed. 3 figs

  1. Materials for passively safe reactors

    International Nuclear Information System (INIS)

    Simnad, T.

    1993-01-01

    Future nuclear power capacity will be based on reactor designs that include passive safety features if recent progress in advanced nuclear power developments is realized. There is a high potential for nuclear systems that are smaller and easier to operate than the current generation of reactors, especially when passive or intrinsic characteristics are applied to provide inherent stability of the chain reaction and to minimize the burden on equipment and operating personnel. Taylor, has listed the following common generic technical features as the most important goals for the principal reactor development systems: passive stability, simplification, ruggedness, case of operation, and modularity. Economic competitiveness also depends on standardization and assurance of licensing. The performance of passively safe reactors will be greatly influenced by the successful development of advanced fuels and materials that will provide lower fuel-cycle costs. A dozen new designs of advanced power reactors have been described recently, covering a wide spectrum of reactor types, including pressurized water reactors, boiling water reactors, heavy-water reactors, modular high-temperature gas-cooled reactors (MHTGRs), and fast breeder reactors. These new designs address the need for passive safety features as well as the requirement of economic competitiveness

  2. REACTOR FUEL ELEMENTS TESTING CONTAINER

    Science.gov (United States)

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  3. Grouping in partitioning of HLW for burning and/or transmutation with nuclear reactors

    International Nuclear Information System (INIS)

    Kitamoto, Asashi; Mulyanto.

    1995-01-01

    A basic concept on partitioning and transmutation treatment by neutron reaction was developed in order to improve the waste management and the disposal scenario of high level waste (HLW). The grouping in partitioning was important factor and closely linked with the characteristics of B/T (burning and/or transmutation) treatment. The selecting and grouping concept in partitioning of HLW was proposed herein, such as Group MA1 (Np, Am, and unrecovered U and Pu), Group MA2 (Cm, Cf etc.), Group A (Tc and I), Group B (Cs and Sr) and Group R (the partitioned remain of HLW), judging from the three criteria for B/T treatment proposed in this study, which is related to (1) the value of hazard index for long-term tendency based on ALI, (2) the relative dose factor related to the mobility or retardation in ground water penetrated through geologic layer, and (3) burning and/or transmutation characteristics for recycle B/T treatment and the decay acceleration ratio by neutron reaction. Group MA1 and Group A could be burned effectively by thermal B/T reactor. Group MA2 could be burned effectively by fast B/T reactor. Transmutation of Group B by neutron reaction is difficult, therefore the development of radiation application of Group B (Cs and Sr) in industrial scale may be an interesting option in the future. Group R, i.e. the partitioned remains of HLW, and also a part of Group B should be immobilized and solidified by the glass matrix. HI ALI , the hazard index based on ALI, due to radiotoxicity of Group R can be lower than HI ALI due to standard mill tailing (smt) or uranium ore after about 300 years. (author)

  4. Process for testing noise emission from containers or pipelines made of steel, particularly for nuclear reactor plants

    International Nuclear Information System (INIS)

    Votava, E.; Stipsits, G.; Sommer, R.

    1982-01-01

    In a process for noise emission testing of steel containers or pipelines, particularly for testing primary circuit components of nuclear reactor plants, measuring sensors and/or associated electronic amplifiers are used, which are tuned for receiving the frequency band of the sound emission spectrum above a limiting frequency f G , but are limited or non-resonant for frequency bands less than f G . (orig./HP) [de

  5. Molten salt reactor concept

    International Nuclear Information System (INIS)

    Sood, D.D.

    1980-01-01

    Molten salt reactor is an advanced breeder concept which is suited for the utilization of thorium for nuclear power production. This reactor is based on the use of solutions of uranium or plutonium fluorides in LiF-BeF 2 -ThF 4 as fuel. Unlike the conventional reactors, no external coolant is used in the reactor core and the fuel salt itself is circulated through heat exchangers to transfer the fission produced heat to a secondary salt (NaF-NaBF 4 ) for steam generation. A part of the fuel stream is continuously processed to isolate 233 Pa, so that it can decay to fissile 233 U without getting converted to 234 Pa, and for the removal of neutron absorbing fission products. This on-line processing scheme makes this reactor concept to achieve a breeding ratio of 1.07 which is the highest for any thermal breeder reactor. Experimental studies at the Bhabha Atomic Research Centre, Bombay, have established the use of plutonium as fuel for this reactor. This molten salt reactor concept is described and the work conducted at the Bhabha Atomic Research Centre is summarised. (auth.)

  6. Reactor water quality degradation suppressing method upon reactor start up

    International Nuclear Information System (INIS)

    Maeda, Katsuharu.

    1993-01-01

    Preceding to reactor start-up, vacuum degree in a condenser is increased, and after the vacuum degree has been increased sufficiently, a desalting tower is inserted. Then, water feed to the reactor is started and the reactor is operated so that water is supplied gradually. Thus, dissolved oxygen in the feedwater and condensates is kept low and an entire organic carbon leaching rate from resins in the condensate desalting tower is reduced. Further, since feedwater is gradually supplied after the start-up, the entire organic carbon brought into the reactor is decomposed by heat and radiation and efficiently removed by a reactor coolant cleanup system. As a result, corrosion of stainless steel or the like is suppressed, as well as integrity of fuels can be maintained. Further, degradation of water quality can be suppressed effectively not by additionally putting the condensate desalting towers to in-service in accordance with the increase of the feedwater flow rate accompanying the power up but by previously putting the condensate desalting towers to in-service. (N.H.)

  7. Repairing liner of the reactor; Reparacion del liner del reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-07-15

    Due to the corrosion problems of the aluminum coating of the reactor pool, a periodic inspections program by ultrasound to evaluate the advance grade and the corrosion speed was settled down. This inspections have shown the necessity to repair some areas, in those that the slimming is significant, of not making it can arrive to the water escape of the reactor pool. The objective of the repair is to place patches of plates of 1/4 inch aluminum thickness in the areas of the reactor 'liner', in those that it has been detected by ultrasound a smaller thickness or similar to 3 mm. To carry out this the fuels are move (of the core and those that are decaying) to a temporary storage, the structure of the core is confined in a tank that this placed inside the pool of the reactor, a shield is placed in the thermal column and it is completely extracted the water for to leave uncover the 'liner' of the reactor. (Author)

  8. Mirror reactor studies

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1977-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80%. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59% and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high re-circulating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)]. By contrast, the fusion-fission reactor design is not penalized by re-circulating power and uses relatively near-term fusion technology being developed for the fusion power program. New results are presented on the Th- 233 U and the U- 239 Pu fuel cycles. The purpose of this hybrid is fuel production, with projected costs at $55/g of Pu or $127/g of 233 U. Blanket and cooling system designs, including an emergency cooling system, by General Atomic Company, lead us to the opinion that the reactor can meet expected safety standards for licensing. The smallest mirror reactor having only a shield between the plasma and the coil is the 4.2-m long fusion engineering research facility (FERF) designed for material irradiation. The smallest mirror reactor having both a blanket and shield is the 7.5-m long experimental power reactor (EPR), which has both a fusion and a fusion-fission version. (author)

  9. Nuclear reactor

    International Nuclear Information System (INIS)

    Schulze, I.; Gutscher, E.

    1980-01-01

    The core contains a critical mass of UN or U 2 N 3 in the form of a noncritical solution with melted Sn being kept below a N atmosphere. The lining of the reactor core consists of graphite. If fission progresses part of the melted metal solution is removed and cleaned from fission products. The reactor temperatures lie in the range of 300 to 2000 0 C. (Examples and tables). (RW) [de

  10. Nuclear Power Reactors in the World. 2014 Ed

    International Nuclear Information System (INIS)

    2014-01-01

    Nuclear Power Reactors in the World is an annual publication that presents the most recent data pertaining to nuclear power reactors in IAEA Member States. This thirty-fourth edition of Reference Data Series No. 2 provides a detailed comparison of various statistics up to and including 31 December 2013. The tables and figures contain the following information: — General statistics on nuclear reactors in IAEA Member States; — Technical data on specific reactors that are either planned, under construction or operational, or that have been shut down or decommissioned; — Performance data on reactors operating in IAEA Member States, as reported to the IAEA. The data compiled in this publication is a product of the IAEA’s Power Reactor Information System (PRIS). The PRIS database is a comprehensive source of data on all nuclear power reactors in the world. It includes specification and performance history data on operational reactors as well as on reactors under construction or in the decommissioning process. The IAEA collects this data through designated national correspondents in Member States

  11. Nuclear Power Reactors in the World. 2016 Ed

    International Nuclear Information System (INIS)

    2016-01-01

    Nuclear Power Reactors in the World is an annual publication that presents the most recent data pertaining to reactor units in IAEA Member States. This thirty-sixth edition of Reference Data Series No. 2 provides a detailed comparison of various statistics up to and including 31 December 2015. The tables and figures contain the following information: — General statistics on nuclear reactors in IAEA Member States; — Technical data on specific reactors that are either planned, under construction or operational, or that have been shut down or decommissioned; — Performance data on reactors operating in IAEA Member States, as reported to the IAEA. The data compiled in this publication is a product of the IAEA’s Power Reactor Information System (PRIS). The PRIS database is a comprehensive source of data on all nuclear power reactors in the world. It includes specification and performance history data on operational reactors as well as on reactors under construction or in the decommissioning process. Data is collected by the IAEA via designated national correspondents in Member States

  12. Selection of catalysts and reactors for hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. [Imaf Group, Ottawa, ON (Canada)

    1998-07-13

    The performance of hydroprocessing units can be influenced by the selection of the catalysts and the type of reactor to suit a particular feed. The catalysts and reactors selected for light feeds differ markedly from those selected for heavy feeds. Fixed-bed reactors have been traditionally used for light feeds. High asphaltene and high metal content feeds are successfully processed using moving-bed and/or ebullated bed reactors. Multi-reactor systems consisting of moving-bed and/or ebullated bed reactors in series with fixed-bed reactors can be used to process difficult feeds. For heavy feeds, the physical properties (e.g. porosity), shape and size of the catalyst particles become crucial parameters. Pretreatment of catalysts by presulfiding improves the performance of the units.

  13. Dynamic simulation platform to verify the performance of the reactor regulating system for a research reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    Digital instrumentation and controls system technique is being introduced in new constructed research reactor or life extension of older research reactor. Digital systems are easy to change and optimize but the validated process for them is required. Also, to reduce project risk or cost, we have to make it sure that configuration and control functions is right before the commissioning phase on research reactor. For this purpose, simulators have been widely used in developing control systems in automotive and aerospace industries. In these literatures, however, very few of these can be found regarding test on the control system of research reactor with simulator. Therefore, this paper proposes a simulation platform to verify the performance of RRS (Reactor Regulating System) for research reactor. This simulation platform consists of the reactor simulation model and the interface module. This simulation platform is applied to I and C upgrade project of TRIGA reactor, and many problems of RRS configuration were found and solved. And it proved that the dynamic performance testing based on simulator enables significant time saving and improves economics and quality for RRS in the system test phase. (authors)

  14. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two dramatic demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the Integral Fast Reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics and also makes possible a simplified closed fuel cycle and waste process improvements

  15. Generation IV reactors: reactor concepts

    International Nuclear Information System (INIS)

    Cardonnier, J.L.; Dumaz, P.; Antoni, O.; Arnoux, P.; Bergeron, A.; Renault, C.; Rimpault, G.; Delpech, M.; Garnier, J.C.; Anzieu, P.; Francois, G.; Lecomte, M.

    2003-01-01

    Liquid metal reactor concept looks promising because of its hard neutron spectrum. Sodium reactors benefit a large feedback experience in Japan and in France. Lead reactors have serious assets concerning safety but they require a great effort in technological research to overcome the corrosion issue and they lack a leader country to develop this innovative technology. In molten salt reactor concept, salt is both the nuclear fuel and the coolant fluid. The high exit temperature of the primary salt (700 Celsius degrees) allows a high energy efficiency (44%). Furthermore molten salts have interesting specificities concerning the transmutation of actinides: they are almost insensitive to irradiation damage, some salts can dissolve large quantities of actinides and they are compatible with most reprocessing processes based on pyro-chemistry. Supercritical water reactor concept is based on operating temperature and pressure conditions that infers water to be beyond its critical point. In this range water gets some useful characteristics: - boiling crisis is no more possible because liquid and vapour phase can not coexist, - a high heat transfer coefficient due to the low thermal conductivity of supercritical water, and - a high global energy efficiency due to the high temperature of water. Gas-cooled fast reactors combining hard neutron spectrum and closed fuel cycle open the way to a high valorization of natural uranium while minimizing ultimate radioactive wastes and proliferation risks. Very high temperature gas-cooled reactor concept is developed in the prospect of producing hydrogen from no-fossil fuels in large scale. This use implies a reactor producing helium over 1000 Celsius degrees. (A.C.)

  16. Reactor safety in Eastern Europe

    International Nuclear Information System (INIS)

    1995-02-01

    The papers presented to the GRS colloquium refer to the cooperative activities for reactor accident analysis and modification of the GRS computer codes for their application to reactors of the Russian design types of WWER or RBMK. Another topic is the safety of RBMK reactors in particular, and the current status of investigations and studies addressing the containment of unit 4 of the Chernobyl reactor station. All papers are indexed separately in report GRS--117. (HP)

  17. Effects of amoxicillin, ceftiofur, doxycycline, tiamulin and tulathromycin on pig humoral immune responses induced by erysipelas vaccination.

    Science.gov (United States)

    Pomorska-Mól, M; Kwit, K; Wierzchosławski, K; Dors, A; Pejsak, Z

    2016-05-28

    It addition to their antimicrobial properties, antibiotics can influence the host immune system (modulation of cytokine secretion, antibody production and T-cell proliferation). In the present study, the authors studied the effects of therapeutic doses of amoxicillin (AMX), ceftiofur (CEF), doxycycline (DOXY), tiamulin (TIAM) and tulathromycin (TUL) on the postvaccinal immune response after pigs had been vaccinated against erysipelas. Because humoral immunity is considered as the most important in the protection against swine erysipelas, the present study focused on the interactions between antibiotics and postvaccinal humoral immunity. One hundred and five, eight-week-old pigs of both sexes were used. Specific antibodies to the Erysipelothrix rhusiopathiae antigen were determined using a commercial ELISA test. In pigs treated with DOXY or CEF or TIAM, a significant reduction in the number of positive pigs was observed four and six weeks after the second dose of vaccine, compared with the remaining vaccinated groups. In pigs treated with CEF, the ELISA score was significantly lower than in non-treated vaccinated pigs. While in vaccinated pigs treated with AMX or TUL, the ELISA score was significantly higher than in pigs treated with the remaining antibiotics and than in non-treated vaccinated controls. The results of the present study indicate that vaccination of pigs against erysipelas in the presence of antibiotics may result in a decrease (CEF, DOXY, TIAM) or enhancement (AMX, TUL) in the production of specific antibodies. British Veterinary Association.

  18. SRAC: JAERI thermal reactor standard code system for reactor design and analysis

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro; Takano, Hideki; Horikami, Kunihiko; Ishiguro, Yukio; Kaneko, Kunio; Hara, Toshiharu.

    1983-01-01

    The SRAC (Standard Reactor Analysis Code) is a code system for nuclear reactor analysis and design. It is composed of neutron cross section libraries and auxiliary processing codes, neutron spectrum routines, a variety of transport, 1-, 2- and 3-D diffusion routines, dynamic parameters and cell burn-up routines. By making the best use of the individual code function in the SRAC system, the user can select either the exact method for an accurate estimate of reactor characteristics or the economical method aiming at a shorter computer time, depending on the purpose of study. The user can select cell or core calculation; fixed source or eigenvalue problem; transport (collision probability or Sn) theory or diffusion theory. Moreover, smearing and collapsing of macroscopic cross sections are separately done by the user's selection. And a special attention is paid for double heterogeneity. Various techniques are employed to access the data storage and to optimize the internal data transfer. Benchmark calculations using the SRAC system have been made extensively for the Keff values of various types of critical assemblies (light water, heavy water and graphite moderated systems, and fast reactor systems). The calculated results show good prediction for the experimental Keff values. (author)

  19. Opposing roles of C/EBPbeta and AP-1 in the control of fibroblast proliferation and growth arrest-specific gene expression

    DEFF Research Database (Denmark)

    Gagliardi, Mark; Maynard, Scott; Miyake, Tetsuaki

    2003-01-01

    in the levels of AP-1 proteins. Therefore, C/EBPbeta is a negative regulator of AP-1 expression and activity in CEF. The expression of cyclin D1 and cell proliferation were stimulated by the dominant negative mutant of C/EBPbeta but not in the presence of TAM67, a dominant negative mutant of c-Jun and AP-1. CEF......Chicken embryo fibroblasts (CEF) express several growth arrest-specific (GAS) gene products in G0. In contact-inhibited cells, the expression of the most abundant of these proteins, the p20K lipocalin, is activated at the transcriptional level by C/EBPbeta. In this report, we describe the role of C....../EBPbeta in CEF proliferation. We show that the expression of a dominant negative mutant of C/EBPbeta (designated Delta184-C/EBPbeta) completely inhibited p20K expression at confluence and stimulated the proliferation of CEF without inducing transformation. Mouse embryo fibroblasts nullizygous for C/EBPbeta had...

  20. Artificial intelligence applications to nuclear reactor diagnostics

    International Nuclear Information System (INIS)

    Lee, J.C.; Hassberger, J.A.; Wehe, D.K.

    1987-01-01

    The authors research into applications of artificial intelligence to nuclear reactor diagnostics involves three main areas. In the first area, the authors combine reactor simulation models and expert systems to diagnose the state of the plant. The second area examines ways in which the rule or knowledge base of an intelligent controller can be generated systematically from either fault trees or acquired plant data. Third, efforts are described to develop the capabilities to validate these techniques in a realistic reactor setting. The techniques are applicable to all reactor types, including fast reactors

  1. Reactor water clean-up device

    International Nuclear Information System (INIS)

    Tanaka, Koji; Egashira, Yasuo; Shimada, Fumie; Igarashi, Noboru.

    1983-01-01

    Purpose: To save a low temperature reactor water clean-up system indispensable so far and significantly simplify the system by carrying out the reactor water clean-up solely in a high temperature reactor water clean-up system. Constitution: The reactor water clean-up device comprises a high temperature clean-up pump and a high temperature adsorption device for inorganic adsorbents. The high temperature adsorption device is filled with amphoteric ion adsorbing inorganic adsorbents, or amphoteric ion adsorbing inorganic adsorbents and anionic adsorbing inorganic adsorbents. The reactor water clean-up device introduces reactor water by the high temperature clean-up pump through a recycling system to the high temperature adsorption device for inorganic adsorbents. Since cations such as cobalt ions and anions such as chlorine ions in the reactor water are simultaneously removed in the device, a low temperature reactor water clean-up system which has been indispensable so far can be saved to realize the significant simplification for the entire system. (Seki, T.)

  2. United States Domestic Research Reactor Infrastructure - TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    Morrell, Douglas

    2008-01-01

    The purpose of the United State Domestic Research Reactor Infrastructure Program is to provide fresh nuclear reactor fuel to United States universities at no, or low, cost to the university. The title of the fuel remains with the United States government and when universities are finished with the fuel, the fuel is returned to the United States government. The program is funded by the United States Department of Energy - Nuclear Energy division, managed by Department of Energy - Idaho Field Office, and contracted to the Idaho National Laboratory's Management and Operations Contractor - Battelle Energy Alliance. Program has been at Idaho since 1977 and INL subcontracts with 26 United States domestic reactor facilities (13 TRIGA facilities, 9 plate fuel facilities, 2 AGN facilities, 1 Pulstar fuel facility, 1 Critical facility). University has not shipped fuel since 1968 and as such, we have no present procedures for shipping spent fuel. In addition: floor loading rate is unknown, many interferences must be removed to allow direct access to the reactor tank, floor space in the reactor cell is very limited, pavement ends inside our fence; some of the surface is not finished. The whole approach is narrow, curving and downhill. A truck large enough to transport the cask cannot pull into the lot and then back out (nearly impossible / refused by drivers); a large capacity (100 ton), long boom crane would have to be used due to loading dock obstructions. Access to the entrance door is on a sidewalk. The campus uses it as a road for construction equipment, deliveries and security response. Large trees are on both sides of sidewalk. Spent fuel shipments have never been done, no procedures approved or in place, no approved casks, no accident or safety analysis for spent fuel loading. Any cask assembly used in this facility will have to be removed from one crane, moved on the floor and then attached to another crane to get from the staging area to the reactor room. Reactor

  3. Safety of nuclear power reactors

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1982-01-01

    Safety is the major public issue to be resolved or accommodated if nuclear power is to have a future. Probabilistic Risk Analysis (PRA) of accidental releases of low-level radiation, the spread and activity of radiation in populated areas, and the impacts on public health from exposure evolved from the earlier Rasmussen Reactor Safety Study. Applications of the PRA technique have identified design peculiarities in specific reactors, thus increasing reactor safety and establishing a quide for evaluating reactor regulations. The Nuclear Regulatory Commission and reactor vendors must share with utilities the responsibility for reactor safety in the US and for providing reasonable assurance to the public. This entails persuasive public education and information that with safety a top priority, changes now being made in light water reactor hardware and operations will be adequate. 17 references, 2 figures, 2 tables

  4. Tank type LMFBR type reactors

    International Nuclear Information System (INIS)

    Shimizu, Hiroshi

    1985-01-01

    Purpose: To detect the abnormality in the suspended body or reactor core supporting structures thereby improve the safety and reliability of tank type LMFBR reactors. Constitution: Upon inspection during reactor operation period, the top end of the gripper sensing rod of a fuel exchanger is abutted against a supporting bed and the position of the reactor core supporting structures from the roof slab is measured by a stroke measuring device. Then, the sensing rod is pulled upwardly to abut against the arm portion and the position is measured by the stroke measuring device. The measuring procedures are carried out for all of the sensing rods and the measured values are compared with a previously determined value at the initial stage of the reactor operation. As a result, it is possible to detect excess distortions and abnormal deformation in the suspended body or reactor core supporting structures. Furthermore, integrity of the suspended body against thermal stresses can be secured by always measuring the coolant liquid level by the level measuring sensor. (Kamimura, M.)

  5. Inherently safe reactors

    International Nuclear Information System (INIS)

    Maartensson, Anders

    1992-01-01

    A rethinking of nuclear reactor safety has created proposals for new designs based on inherent and passive safety principles. Diverging interpretations of these concepts can be found. This article reviews the key features of proposed advanced power reactors. An evaluation is made of the degree of inherent safety for four different designs: the AP-600, the PIUS, the MHTGR and the PRISM. The inherent hazards of today's most common reactor principles are used as reference for the evaluation. It is concluded that claims for the new designs being inherently, naturally or passively safe are not substantiated by experience. (author)

  6. Tritium resources available for fusion reactors

    Science.gov (United States)

    Kovari, M.; Coleman, M.; Cristescu, I.; Smith, R.

    2018-02-01

    The tritium required for ITER will be supplied from the CANDU production in Ontario, but while Ontario may be able to supply 8 kg for a DEMO fusion reactor in the mid-2050s, it will not be able to provide 10 kg at any realistic starting time. The tritium required to start DEMO will depend on advances in plasma fuelling efficiency, burnup fraction, and tritium processing technology. It is in theory possible to start up a fusion reactor with little or no tritium, but at an estimated cost of 2 billion per kilogram of tritium saved, it is not economically sensible. Some heavy water reactor tritium production scenarios with varying degrees of optimism are presented, with the assumption that only Canada, the Republic of Korea, and Romania make tritium available to the fusion community. Results for the tritium available for DEMO in 2055 range from zero to 30 kg. CANDU and similar heavy water reactors could in theory generate additional tritium in a number of ways: (a) adjuster rods containing lithium could be used, giving 0.13 kg per year per reactor; (b) a fuel bundle with a burnable absorber has been designed for CANDU reactors, which might be adapted for tritium production; (c) tritium production could be increased by 0.05 kg per year per reactor by doping the moderator with lithium-6. If a fusion reactor is started up around 2055, governments in Canada, Argentina, China, India, South Korea and Romania will have the opportunity in the years leading up to that to take appropriate steps: (a) build, refurbish or upgrade tritium extraction facilities; (b) extend the lives of heavy water reactors, or build new ones; (c) reduce tritium sales; (d) boost tritium production in the remaining heavy water reactors. All of the alternative production methods considered have serious economic and regulatory drawbacks, and the risk of diversion of tritium or lithium-6 would also be a major concern. There are likely to be serious problems with supplying tritium for future

  7. Reactor water level control device

    International Nuclear Information System (INIS)

    Utagawa, Kazuyuki.

    1993-01-01

    A device of the present invention can effectively control fluctuation of a reactor water level upon power change by reactor core flow rate control operation. That is, (1) a feedback control section calculates a feedwater flow rate control amount based on a deviation between a set value of a reactor water level and a reactor water level signal. (2) a feed forward control section forecasts steam flow rate change based on a reactor core flow rate signal or a signal determining the reactor core flow rate, to calculate a feedwater flow rate control amount which off sets the steam flow rate change. Then, the sum of the output signal from the process (1) and the output signal from the process (2) is determined as a final feedwater flow rate control signal. With such procedures, it is possible to forecast the steam flow rate change accompanying the reactor core flow rate control operation, thereby enabling to conduct preceding feedwater flow rate control operation which off sets the reactor water level fluctuation based on the steam flow rate change. Further, a reactor water level deviated from the forecast can be controlled by feedback control. Accordingly, reactor water level fluctuation upon power exchange due to the reactor core flow rate control operation can rapidly be suppressed. (I.S.)

  8. Status on potential of advanced fission reactors

    International Nuclear Information System (INIS)

    L-Zaleski, C.P.

    1978-01-01

    In this short lecture, only two types of reactors will be discussed: the liquid metal fast breeder reactors (LMFBR) and the high temperature reactors (HTR). This does not mean that other very interesting concepts do not exist, but there are or proven light water reactors and heavy water reactors or has not reached the state of industrial development like molten-salt or gas breeder reactors. In discussing any types of industrial development, it seems to me useful, first to indicate the reasons or motivations for this development. Then I will give a short historical review and analysis of what has been done up to now. For HTR's a very brief status report will be presented. For LMFBR's, I will give indications of experience gained with demonstration plants and more specifically with Phenix, before listing the most important technical problems which still need more work to be fully solved. Finally, I will briefly discuss the economic status and perspectives of LMFBR's and will mention the public acceptance problem

  9. ITER [International Thermonuclear Experimental Reactor] reactor building design study

    International Nuclear Information System (INIS)

    Thomson, S.L.; Blevins, J.D.; Delisle, M.W.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is at the midpoint of a two-year conceptual design. The ITER reactor building is a reinforced concrete structure that houses the tokamak and associated equipment and systems and forms a barrier between the tokamak and the external environment. It provides radiation shielding and controls the release of radioactive materials to the environment during both routine operations and accidents. The building protects the tokamak from external events, such as earthquakes or aircraft strikes. The reactor building requirements have been developed from the component designs and the preliminary safety analysis. The equipment requirements, tritium confinement, and biological shielding have been studied. The building design in progress requires continuous iteraction with the component and system designs and with the safety analysis. 8 figs

  10. Calculation and Analysis of B/T (Burning and/or Transmutation Rate of Minor Actinides and Plutonium Performed by Fast B/T Reactor

    Directory of Open Access Journals (Sweden)

    Marsodi

    2006-01-01

    Full Text Available Calculation and analysis of B/T (Burning and/or Transmutation rate of MA (minor actinides and Pu (Plutonium has been performed in fast B/T reactor. The study was based on the assumption that the spectrum shift of neutron flux to higher side of neutron energy had a potential significance for designing the fast B/T reactor and a remarkable effect for increasing the B/T rate of MA and/or Pu. The spectrum shifts of neutron have been performed by change MOX to metallic fuel. Blending fraction of MA and or Pu in B/T fuel and the volume ratio of fuel to coolant in the reactor core were also considered. Here, the performance of fast B/T reactor was evaluated theoretically based on the calculation results of the neutronics and burn-up analysis. In this study, the B/T rate of MA and/or Pu increased by increasing the blending fraction of MA and or Pu and by changing the F/C ratio. According to the results, the total B/T rate, i.e. [B/T rate]MA + [B/T rate]Pu, could be kept nearly constant under the critical condition, if the sum of the MA and Pu inventory in the core is nearly constant. The effect of loading structure was examined for inner or outer loading of concentric geometry and for homogeneous loading. Homogeneous loading of B/T fuel was the good structure for obtaining the higher B/T rate, rather than inner or outer loading

  11. REACTOR GROUT THERMAL PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

    2011-01-28

    Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

  12. Small reactor operating mode

    International Nuclear Information System (INIS)

    Snell, V.G.

    1997-01-01

    There is a potential need for small reactors in the future for applications such as district heating, electricity production at remote sites, and desalination. Nuclear power can provide these at low cost and with insignificant pollution. The economies required by the small scale application, and/or the remote location, require a review of the size and location of the operating staff. Current concepts range all the way from reactors which are fully automatic, and need no local attention for days or weeks, to those with reduced local staff. In general the less dependent a reactor is on local human intervention, the greater its dependence on intrinsic safety features such as passive decay heat removal, low-stored energy and limited reactivity speed and depth in the control systems. A case study of the design and licensing of the SLOWPOKE Energy System heating reactor is presented. (author)

  13. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant)

  14. Reactor science and technology: operation and control of reactors

    International Nuclear Information System (INIS)

    Qiu Junlong

    1994-01-01

    This article is a collection of short reports on reactor operation and research in China in 1991. The operation of and research activities linked with the Heavy Water Research Reactor, Swimming Pool Reactor and Miniature Neutron Source Reactor are briefly surveyed. A number of papers then follow on the developing strategies in Chinese fast breeder reactor technology including the conceptual design of an experimental fast reactor (FFR), theoretical studies of FFR thermo-hydraulics and a design for an immersed sodium flowmeter. Reactor physics studies cover a range of topics including several related to work on zero power reactors. The section on reactor safety analysis is concerned largely with the assessment of established, and the presentation of new, computer codes for use in PWR safety calculations. Experimental and theoretical studies of fuels and reactor materials for FBRs, PWRs, BWRs and fusion reactors are described. A final miscellaneous section covers Mo-Tc isotope production in the swimming pool reactor, convective heat transfer in tubes and diffusion of tritium through plastic/aluminium composite films and Li 2 SiO 3 . (UK)

  15. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  16. Kinetics of Pressurized Water Reactors with Hot or Cold Moderators

    Energy Technology Data Exchange (ETDEWEB)

    Norinder, O

    1960-11-15

    The set of neutron kinetic equations developed in this report permits the use of long integration steps during stepwise integration. Thermal relations which describe the transfer of heat from fuel to coolant are derived. The influence upon the kinetic behavior of the reactor of a number of parameters is studied. A comparison of the kinetic properties of the hot and cold moderators is given.

  17. Reactor facility

    International Nuclear Information System (INIS)

    Suzuki, Hiroaki; Murase, Michio; Yokomizo, Osamu.

    1997-01-01

    The present invention provides a BWR type reactor facility capable of suppressing the amount of steams generated by the mutual effect of a failed reactor core and coolants upon occurrence of an imaginal accident, and not requiring spacial countermeasures for enhancing the pressure resistance of the container vessel. Namely, a means for supplying cooling water at a temperature not lower by 30degC than the saturated temperature corresponding to the inner pressure of the containing vessel upon occurrence of an accident is disposed to a lower dry well below the pressure vessel. As a result, upon occurrence of such an accident that the reactor core should be melted and flown downward of the pressure vessel, when cooling water at a temperature not lower than the saturated temperature, for example, cooling water at 100degC or higher is supplied to the lower dry well, abrupt generation of steams by the mutual effect of the failed reactor core and cooling water is scarcely caused compared with a case of supplying cooling water at a temperature lower than the saturation temperature by 30degC or more. Accordingly, the amount of steams to be generated can be suppressed, and special countermeasure is no more necessary for enhancing the pressure resistance of the container vessel is no more necessary. (I.S.)

  18. Reactors at sea

    International Nuclear Information System (INIS)

    Hines, Colin

    1988-01-01

    The Greenpeace Nuclear Free Seas Campaign is outlined. The campaign aims to bring the environmental hazards from nuclear submarines and naval ships carrying nuclear weapons to public attention. Worldwide there are 544 nuclear reactor ships or submarines each with the potential to meltdown with serious environmental consequences. One meltdown is known to have occurred. Five reactors have been abandoned on the sea bed. Nuclear powered submarines are based at Rosyth, Faslane, Holy Loch, Plymouth and Portsmouth and routinely come into and out of those harbours. There have also been accidents involving nuclear weapons on board submarines, aircraft carriers or destroyers which carry nuclear depth bombs and free fall bombs. The Royal Navy's accident emergency plans for nuclear naval bases are inadequate. There is a threat to the environment when the reactors are decommissioned. There are no clear plans as to how to deal with the decommissioning of the submarines or ships although the fuel rods have been removed from the first British nuclear submarine, Dreadnought. (U.K.)

  19. Photocatalytic reactors for treating water pollution with solar illumination. I: a simplified analysis for batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sagawe, G.; Bahnemann, D. [Inst. fuer Technische Chemie, Univ. Hannover, Hannover (Germany); Brandi, R.J.; Cassano, A.E. [INTEC (Univ. Nacional del Litoral and CONICET), Santa Fe (Argentina)

    2003-07-01

    Usual applications of photocatalytic reactors for treating wastewater exhibit the difficulty of handling fluids having varying composition and/or concentrations; thus, a detailed kinetic representation may not be possible. When the catalyst activation is obtained employing solar illumination an additional complexity always coexists: solar fluxes are permanently changing with time. For comparing different reacting systems under similar operating conditions and to provide approximate estimations for scaling up purposes, simplified models may be useful. For these approximations the model parameters should be restricted as much as possible to initial physical and boundary conditions such as: initial concentrations (expressed as such or as TOC measurements), flow rate or reactor volume, irradiated reactor area, incident radiation fluxes and a fairly simple experimental observation such as the photonic efficiency. A combination of a new concept: the ''actual observed photonic efficiency'' with ideal reactor models and empirical kinetic rate expressions can be used to provide rather simple working equations that can be efficiently used to describe the performance of practical reactors. In this paper, the method has been developed for the case of a photocatalytic batch reactor (PBR). (orig.)

  20. FBR type reactor

    International Nuclear Information System (INIS)

    Yamaoka, Mitsuaki

    1988-01-01

    Purpose: To enable to increase the burning period by enabling to decrease the reduction of burning reactivity and unifying the irradiation amount of fast neutrons. Constitution: A cylindrical reactor core made of fissile material-enriched fuel is constituted so as to form a plurality of layer-like enriched regions in which the enrichment degree of the fissile material is increased from the center to the radial and axial directions. Then, the ratio between the average enrichment degree for all of the enrichment regions other than the region at the reactor core center with the lowest enrichment degree and the enrichment degree of the enriched region formed at the center of the reactor core is made greater by 5 % or 20 % than the ratio at the initial burning stage where the power distribution of the reactor core is most flattened. (Kawakami, Y.)

  1. Roles of plasma neutron source reactor in development of fusion reactor engineering: Comparison with fission reactor engineering

    International Nuclear Information System (INIS)

    Hirayama, Shoichi; Kawabe, Takaya

    1995-01-01

    The history of development of fusion power reactor has come to a turning point, where the main research target is now shifting from the plasma heating and confinement physics toward the burning plasma physics and reactor engineering. Although the development of fusion reactor system is the first time for human beings, engineers have experience of development of fission power reactor. The common feature between them is that both are plants used for the generation of nuclear reactions for the production of energy, nucleon, and radiation on an industrial scale. By studying the history of the development of the fission reactor, one can find the existence of experimental neutron reactors including irradiation facilities for fission reactor materials. These research neutron reactors played very important roles in the development of fission power reactors. When one considers the strategy of development of fusion power reactors from the points of fusion reactor engineering, one finds that the fusion neutron source corresponds to the neutron reactor in fission reactor development. In this paper, the authors discuss the roles of the plasma-based neutron source reactors in the development of fusion reactor engineering, by comparing it with the neutron reactors in the history of fission power development, and make proposals for the strategy of the fusion reactor development. 21 refs., 6 figs

  2. Transmutation of actinides in power reactors.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  3. Heat extraction from HTGR reactor

    International Nuclear Information System (INIS)

    Balajka, J.; Princova, H.

    1986-01-01

    The analysis of an HTGR reactor energy balance showed that steam reforming of natural gas or methane is the most suitable process of utilizing the high-temperature heat. Basic mathematical relations are derived allowing to perform a general energy balance of the link between steam reforming and reactor heat output. The results of the calculation show that the efficiency of the entire reactor system increases with increasing proportion of heat output for steam reforming as against heat output for the steam generator. This proportion, however, is limited with the output helium temperature from steam reforming. It is thus always necessary to use part of the reactor heat output for the steam cycle involving electric power generation or low-potential heat generation. (Z.M.)

  4. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the integral fast reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics also makes possible a simplified close fuel cycle and waste process improvements. The paper describes the IFR concept, the inherent safety, tests, and status of IFR development today

  5. The aqueous homogeneous suspension reactor project

    International Nuclear Information System (INIS)

    1976-01-01

    During 1975, reactor power has been increased to the design power of 1000 KW, whereas power fluctuations show a decrease with increased mean power. Operation experience with the reactor and associated instrumentation during 1975 is described. The results of the experiments done for fuel irradiations and investigations in the KSTR fuel, mainly to determine the amount of erosion products on the fuel, are described. Concerning the safety of operation of the KSTR reactor, several actions had to be taken mainly to replace or repair components or instrumentation of the reactor. Radiological safety and radioactivity discharges during 1975 are reported

  6. Reactor physics aspects of CANDU reactors

    International Nuclear Information System (INIS)

    Critoph, E.

    1980-01-01

    These four lectures are being given at the Winter Course on Nuclear Physics at Trieste during 1978 February. They constitute part of the third week's lectures in Part II: Reactor Theory and Power Reactors. A physical description of CANDU reactors is given, followed by an overview of CANDU characteristics and some of the design options. Basic lattice physics is discussed in terms of zero energy lattice experiments, irradiation effects and analytical methods. Start-up and commissioning experiments in CANDU reactors are reviewed, and some of the more interesting aspects of operation discussed - fuel management, flux mapping and control of the power distribution. Finally, some of the characteristics of advanced fuel cycles that have been proposed for CANDU reactors are summarized. (author)

  7. Treatment of spent fuels from research reactors and reactor development programs in Germany

    International Nuclear Information System (INIS)

    Closs, K.D.

    1999-01-01

    Quite a great number of different types of spent fuel from research reactors and development programs exists in Germany. The general policy is to send back to the USA as long as possible fuel from MTRs and TRIGAs of USA origin. An option is reprocessing in Great Britain or France. This option is pursued as long as reprocessing and reuse of the recovered material is economically justifiable. For those fuels which cannot be returned to the USA or which will not be reprocessed, a domestic back-up solution of spent fuel management has been developed in Germany, compatible with the management of spent fuel from power reactors. It consists in dry storage in special casks and, later on, direct disposal. Preliminary results from experimental R and D investigations with research reactor fuel and experience from LWR fuel lead to the conclusion that the direct disposal option even for research reactor fuel or exotic fuel does not impose major technical difficulties for the German waste management and disposal concept. (author)

  8. Induction of cyclic electron flow around photosystem I during heat stress in grape leaves.

    Science.gov (United States)

    Sun, Yongjiang; Geng, Qingwei; Du, Yuanpeng; Yang, Xinghong; Zhai, Heng

    2017-03-01

    Photosystem II (PSII) in plants is susceptible to high temperatures. The cyclic electron flow (CEF) around PSI is thought to protect both PSII and PSI from photodamage. However, the underlying physiological mechanisms of the photosynthetic electron transport process and the role of CEF in grape at high temperatures remain unclear. To investigate this issue, we examined the responses of PSII energy distribution, the P700 redox state and CEF to high temperatures in grape leaves. After exposing 'Cabernet Sauvignon' leaves to various temperatures (25, 30, 35, 40 and 45°C) in the light (600μmol photons m -2 s -1 ) for 4h, the maximum quantum yield of PSII (Fv/Fm) significantly decreased at high temperatures (40 and 45°C), while the maximum photo-oxidizable P700 (Pm) was not affected. As the temperature increased, higher initial rates of increase in post-illumination Chl fluorescence were detected, which were accompanied by an increase in high energy state quenching (qE). The chloroplast NAD(P)H dehydrogenase-dependent CEF (NDH-dependent CEF) activities were different among grape cultivators. 'Gold Finger' with greater susceptibility to photoinhibition, exhibited lower NDH-dependent CEF activities under acute heat stress than a more heat tolerant 'Cabernet Sauvignon'. These results suggest that overclosure of PSII reaction centers at high temperature resulted in the photoinhibition of PSII, while the stimulation of CEF in grape played an important role in the photoprotection of PSII and PSI at high temperatures through contributing to the generation of a proton gradient. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Morphological evolution of copper nanoparticles: Microemulsion reactor system versus batch reactor system

    Science.gov (United States)

    Xia, Ming; Tang, Zengmin; Kim, Woo-Sik; Yu, Taekyung; Park, Bum Jun

    2017-07-01

    In the synthesis of nanoparticles, the reaction rate is important to determine the morphology of nanoparticles. We investigated morphology evolution of Cu nanoparticles in this two different reactors, microemulsion reactor and batch reactor. In comparison with the batch reactor system, the enhanced mass and heat transfers in the emulsion system likely led to the relatively short nucleation time and the highly homogeneous environment in the reaction mixture, resulting in suppressing one or two dimensional growth of the nanoparticles. We believe that this work can offer a good model system to quantitatively understand the crystal growth mechanism that depends strongly on the local monomer concentration, the efficiency of heat transfer, and the relative contribution of the counter ions (Br- and Cl-) as capping agents.

  10. Some considerations for assurance of reactor safety from experiences in research reactors

    International Nuclear Information System (INIS)

    Okamoto, Sunao; Nishihara, Hideaki; Shibata, Toshikazu

    1981-01-01

    For the purpose of assuring reactor safety and strengthening research in the related fields, a multi-disciplinary group was formed among university researchers, including social scientists, with a special allocation of the Grant-in-Aid from the Ministry of Education, Science and Culture. An excerpt from the first year's report (1979 -- 1980) is edited here, which contains an interpretation of Murphy's reliability engineering law, a scope of reactor diagnostic studies to be pursued at universities, and safety measures already implemented or suggested to be implemented in university research reactors. (author)

  11. Reactor containment and reactor safety in the United States

    International Nuclear Information System (INIS)

    Kouts, H.

    1986-01-01

    The reactor safety systems of two reactors are studied aiming at the reactor containment integrity. The first is a BWR type reactor and is called Peachbottom 2, and the second is a PWR type reactor, and is called surry. (E.G.) [pt

  12. Safety considerations for research reactors in extended shutdown

    International Nuclear Information System (INIS)

    2004-01-01

    According to the IAEA Research Reactor Database, in the last 20 years, 367 research reactors have been shut down. Of these, 109 have undergone decommissioning and the rest are in extended shutdown with no clear definition about their future. Still other research reactors are infrequently operated with no meaningful utilization programme. These two situations present concerns related to safety such as loss of corporate memory, personnel qualification, maintenance of components and systems and preparation and maintenance of documentation. There are many reasons to shut down a reactor; these may include: - the need to carry out modifications in the reactor systems; - the need for refurbishment to extend the lifetime of the reactor; - the need to repair reactor structures, systems, or components; - the need to remedy technical problems; - regulatory or public concerns; - local conflicts or wars; - political convenience; - the lack of resources. While any one of these reasons may lead to shutdown of a reactor, each will present unique problems to the reactor management. The large variations from one research reactor to the next also will contribute to the uniqueness of the problems. Any option that the reactor management adopts will affect the future of the facility. Options may include dealing with the cause of the shutdown and returning to normal operation, extending the shutdown period waiting a future decision, or decommissioning. Such options are carefully and properly analysed to ensure that the solution selected is the best in terms of reactor type and size, period of shutdown and legal, economic and social considerations. This publication provides information in support of the IAEA safety standards for research reactors

  13. Measurement of reactor parameters of the 'Nora' reactor by noise analysis method - power spectral density

    International Nuclear Information System (INIS)

    Jovanovic, S.; Stormark, E.

    1966-01-01

    Measurements of reactor parameters the Nora reactor by Power Spectral Density (PSD) method are described. In case of critical reactor this method was applied for direct measurement of β/l ratio, β is the effective yield of delayed neutrons and l is the neutron lifetime. In case of subcritical reactor values of α+β-ρ/l were measured, ρ is the negative reactivity. Out coming PSD was measured by a filter or by ISAC. PSD was registered by ISAC as well as the auto-correlation function [sr

  14. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  15. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  16. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  17. Thermophysical instruments for non-destructive examination of tightness and internal gas pressure or irradiated power reactor fuel rods

    International Nuclear Information System (INIS)

    Pastoushin, V.V.; Novikov, A.Yu.; Bibilashvili, Yu.K.

    1998-01-01

    The developed thermophysical method and technical instruments for non-destructive leak-tightness and gas pressure inspection inside irradiated power reactor fuel rods and FAs under poolside and hot cell conditions are described. The method of gas pressure measuring based on the examination of parameters of thermal convection that aroused in gas volume of rod plenum by special technical instruments. The developed method and technique allows accurate value determination of not only one of the main critical rod parameters, namely total internal gas pressure, that forms rod mean life in the reactor core, but also the partial pressure of every main constituent of gaseous mixture inside irradiated fuel rod, that provides the feasibility of authentic and reliable leak-tightness detection. The described techniques were experimentally checked during the examination of all types power reactor fuel rods existing in Russia (WWER, BN, RBMK) and could form the basis for new technique development for non-destructive examination of PWR (and other) type rods and FAs having gas plenum filled with spring or another elements of design. (author)

  18. Reactor building

    International Nuclear Information System (INIS)

    Ebata, Sakae.

    1990-01-01

    At least one valve rack is disposed in a reactor building, on which pipeways to a main closure valve, valves and bypasses of turbines are placed and contained. The valve rack is fixed to the main body of the building or to a base mat. Since the reactor building is designed as class A earthquake-proofness and for maintaining the S 1 function, the valve rack can be fixed to the building main body or to the base mat. With such a constitution, the portions for maintaining the S 1 function are concentrated to the reactor building. As a result, the dispersion of structures of earthquake-proof portion corresponding to the reference earthquake vibration S 1 can be prevented. Accordingly, the conditions for the earthquake-proof design of the turbine building and the turbine/electric generator supporting rack are defined as only the class B earthquake-proof design conditions. In view of the above, the amount of building materials can be saved and the time for construction can be shortened. (I.S.)

  19. Nuclear reactor

    International Nuclear Information System (INIS)

    Jungmann, A.

    1975-01-01

    Between a PWR's reactor pressure vessel made of steel and the biological shield made of concrete there is a gap. This gap is filled up with a heat insulation facting the reactor pressure vessel, for example with insulating concrete segments jacketed with sheet steel and with an additional layer. This layer serves for smooth absorption of compressive forces originating in radial direction from the reactor pressure vessel. It consists of cylinder-segment shaped bricks made of on situ concrete, for instance. The bricks have cooling agent ports in one or several rows which run parallel to the wall of the pressure vessel and in alignment with superposed bricks. Between the layer of bricks and the biological shield or rather the heat insulation, there are joints which are filled, however, with injected mortar. That guarantees a smooth series of connected components resistant tom compression. Besides, a slip foil can be set between the heat insulation and the joining joint filled with mortar for the reduction of the friction at thermal expansions. (TK) [de

  20. Trench reactor: an overview

    International Nuclear Information System (INIS)

    Spinrad, B.I.; Rohach, A.F.; Razzaque, M.M.; Sankoorikal, J.T.; Schmidt, R.S.; Lofshult, J.; Ramin, T.; Sokmen, N.; Lin, L.C.

    1988-01-01

    Recent fast, sodium-cooled reactor designs reflect new conditions. In nuclear energy these conditions are (a) emphasis on maintainability and operability, (b) design for more transparent safety, and (c) a surplus of uranium and enrichment availability that eases concerns about light water reactor fueling costs. In utility practice the demand is for less capital exposure, short construction time, smaller new unit sizes, and low capital cost. The PRISM, SAFR, and integral fast reactor (IFR) concepts are responses to these conditions. Fast reactors will not soon be deployed commercially, so more radical designs can be considered. The trench reactor is the product of such thinking. Its concepts are intended as contributions to the literature, which may be picked up by one of the existing programs or used in a new experimental project. The trench reactor is a thin-slab, pool-type reactor operated at very low power density and- for sodium-modest temperature. The thin slab is repeated in the sodium tank and the reactor core. The low power density permits a longer than conventional core height and a large-diameter fuel pin. Control is by borated steel slabs that can be lowered between the core and lateral sodium reflector. Shutdown is by semaphore slabs that can be swung into place just outside the control slabs. The paper presents major characteristics of the trench reactor that have been changed since the last report

  1. FBR type reactors

    International Nuclear Information System (INIS)

    Nakamura, Tsugio.

    1986-01-01

    Purpose: To ensure the thermal integrity of a reactor vessel in FBR type reactors by preventing sodium vapors or the likes from intruding into a shielding chamber and avoiding spontaneous convection thereof. Constitution: There are provided a shielding plug for shielding the upper opening of a reactor container, an annular thermal member disposed to the circumferential side in the container, a shielding member for shielding upper end of the shielding chamber and a plurality of convection preventive plates suspended from the thermal member into the shielding chamber, and the shielding chamber is communicated by way of the relatively low temperature portion of the container with a gas communication pipe. That is, by closing the upper end of the shielding chamber with the shielding member, coolant vapors, etc. can be prevented from intruding into the shielding chamber. Further, the convection preventive plates prevent the occurrence of spontaneous convection in the shielding chamber. Further, the gas communication pipe absorbs the expansion and contraction of gases in the shielding chamber to effectively prevent the deformation or the like for each of the structural materials. In this way, the thermal integrity of the reactor container can surely be maintained. (Horiuchi, T.)

  2. Pool-type reactor

    International Nuclear Information System (INIS)

    Hopkins, S.R.

    1977-01-01

    This invention relates to a pool nuclear reactor fitted with a perfected system to raise the buckets into a vertical position at the bottom of a channel. This reactor has an inclined channel to guide a bucket containing a fuel assembly to introduce it into the reactor jacket or extract it therefrom and a damper at the bottom of the channel to stop the drop of the bucket. An upright vertically movable rod has a horizontally articulated arm with a hook. This can pivot to touch a radial lug on the bucket and pivot the bucket around its base in a vertical position, when the rod moves up [fr

  3. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  4. Optimization of SFR Reactor design with recycling or minor actinides

    International Nuclear Information System (INIS)

    Martin-Fuertes, F.; Vazquez, M.; Alvarez, F.

    2012-01-01

    In this paper we show results of the design features and ESFR optimized in three configurations: the reference, load the minority actinides homogeneous throughout the reactor and the high content of AM on a radial mantle. Was calculated reactivity evolution in five cycles burned (2050 days) to recharge One approach. To do this, we have employed EVOLCODE2 a development tool of CIEMAT own coupling MCNPX and ORIGEN.

  5. Fast reactors: the industrial perspective

    International Nuclear Information System (INIS)

    Vaughan, R.D.

    1986-01-01

    Industrial participation in the development of the fast reactor is reviewed, from the construction of PFR at Dounreay to the initial steps towards collaboration in Europe. The optimum design of the fast reactor has changed considerably from the days when it was needed urgently to forestall a shortage of uranium to today when uranium is abundant and cheap. The evolution of the reactor design over this period is described. Collaboration in Europe is shown to be the only answer to high development costs and the search for a reactor which will compete with thermal reactors in today's environment. The partner countries in this collaboration are all motivated differently, and this is leading to some delays in concluding the necessary agreements. The objective on the industrial front is now to participate in the two or three demonstration fast reactors that will be built in Europe during the remainder of the century leading, it is hoped, to a competitive reactor design by the year 2000. (author)

  6. Reactor safety in Eastern Europe. Proceedings

    International Nuclear Information System (INIS)

    1995-02-01

    The papers presented to the GRS colloquium refer to the cooperative activities for reactor accident analysis and modification of the GRS computer codes for their application to reactors of the Russian design types of WWER or RBMK. Another topic is the safety of RBMK reactors in particular, and the current status of investigations and studies addressing the containment of unit 4 of the Chernobyl reactor station. (HP) [de

  7. Neutronics of a mixed-flow gas-core reactor

    International Nuclear Information System (INIS)

    Soran, P.D.; Hansen, G.E.

    1977-11-01

    The study was made to investigate the neutronic feasibility of a mixed-flow gas-core reactor. Three reactor concepts were studied: four- and seven-cell radial reactors and a seven-cell scallop reactor. The reactors were fueled with UF 6 (either U-233 or U-235) and various parameters were varied. A four-cell reactor is not practical nor is the U-235 fueled seven-cell radial reactor; however, the 7-cell U-233 radial and scallop reactors can satisfy all design criteria. The mixed flow gas core reactor is a very attractive reactor concept and warrants further investigation

  8. Testing of research reactor fuel in the high flux reactor (Petten)

    International Nuclear Information System (INIS)

    Guidez, J.; Markgraf, J.W.; Sordon, G.; Wijtsma, F.J.; Thijssen, P.J.M.; Hendriks, J.A.

    1999-01-01

    The two types of fuel most frequently used by the main research reactors are metallic: highly enriched uranium (>90%) and silicide low enriched uranium ( 3 . However, a need exists for research on new reactor fuel. This would permit some plants to convert without losses in flux or in cycle length and would allow new reactor projects to achieve higher possibilities especially in fluxes. In these cases research is made either on silicide with higher density, or on other types of fuel (UMo, etc.). In all cases when new fuel is proposed, there is a need, for safety reasons, to test it, especially regarding the mechanical evolution due to burn-up (swelling, etc.). Initially, such tests are often made with separate plates, but lately, using entire elements. Destructive examinations are often necessary. For this type of test, the High Flux Reactor, located in Petten (The Netherlands) has many specific advantages: a large core, providing a variety of interesting positions with high fluence rate; a downward coolant flow simplifies the engineering of the device; there exists easy access with all handling possibilities to the hot-cells; the high number of operating days (>280 days/year), together with the high flux, gives a possibility to reach quickly the high burn-up needs; an experienced engineering department capable of translating specific requirements to tailor-made experimental devices; a well equipped hot-cell laboratory on site to perform all necessary measurements (swelling, γ-scanning, profilometry) and all destructive examinations. In conclusion, the HFR reactor readily permits experimental research on specific fuels used for research reactors with all the necessary facilities on the Petten site. (author)

  9. Fast Thorium Molten Salt Reactors Started with Plutonium

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A.; Mathieu, L.

    2006-01-01

    One of the pending questions concerning Molten Salt Reactors based on the 232 Th/ 233 U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since 233 U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing 233 U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce 233 U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/ 233 U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into 233 U. A particular reactor configuration is used, called 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactor's characteristics turn out to be equivalent to Molten Salt Reactors operated with 233 U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with 233 U, the deployment capabilities of these reactors fully satisfy the condition of sustainability. (authors)

  10. Nuclear reactor monitoring device

    International Nuclear Information System (INIS)

    Mihashi, Ishi; Honma, Hitoshi.

    1993-01-01

    The monitoring device of the present invention comprises a reactor core/reactor system data measuring and controlling device, a radioactivity concentration calculation device for activated coolants for calculating a radioactivity concentration of activated coolants in a main steam and reactor water by using an appropriate physical model, a radioactivity concentration correlation and comparison device for activated coolants for comparing correlationship with a radiation dose and an abnormality alarm device. Since radioactivity of activated primary coolants is monitored at each of positions in the reactor system and occurrence of leakage and the amount thereof from a primary circuit to a secondary circuit is monitored if the reactor has secondary circuit, integrity of the reactor system can be ensured and an abnormality can be detected rapidly. Further, radioactivity concentration of activated primary circuit coolants, represented by 16 N or 15 C, is always monitored at each of positions of PWR primary circuits. When a heat transfer pipe is ruptured in a steam generator, leakage of primary circuit coolants is detected rapidly, as well as the amount of the leakage can be informed. (N.H.)

  11. Reactors set for mini market

    International Nuclear Information System (INIS)

    Knox, Richard.

    1988-01-01

    Commercial nuclear power generation on a large-scale has an uncertain future. However, it is hoped that a small nuclear reactor could form the basis for providing heating, cooling or electricity in large buildings. Based on the Slowpoke research reactor, the Slowpoke energy system concept is simple. The concept and the way in which the small-scale reactor would work are discussed. The system consists of a stainless steel tank surrounded by reinforced concrete and let into the ground. The tank is full of light water which is heated to about 90 deg C by a central core of 2.4 percent enriched uranium fuel. The resulting natural circulation causes the water to pass through a heat exchanger. The water from the heat exchanger can be used for building or district heating, to operate air-conditioners or to generate small quantities of electricity. It is hoped to automate the operation of the reactor so that continuous supervision by a team of engineers would be unnecessary. A single operator on call in the building would be able to take control actions if the reactor's safety system failed. (UK)

  12. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  13. Design of an Actinide-Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low-Cost Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Weaver, Kevan Dean; Davis, Cliff Bybee; MIT folks

    2000-07-01

    The purpose of this Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) University Research Consortium (URC) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, material compatibility, plant engineering, and coolant activation. In the area of core neutronic design, the reactivity vs. burnup and discharge isotopics of both non-fertile and fertile fuels were evaluated. An innovative core for pure actinide burning that uses streaming, fertile-free fuel assemblies was studied in depth. This particular core exhibits excellent reactivity performance upon coolant voiding, even for voids that occur in the core center, and has a transuranic (TRU) destruction rate that is comparable to the proposed accelerator transmutation of waste (ATW) facility. These studies suggest that a core can be designed to achieve a long life while maintaining safety and minimizing waste. In the area of material compatibility studies, an experimental apparatus for the investigation of the flow-assisted dissolution and precipitation (corrosion) of potential fuel cladding and structural materials has been designed and built at the INEEL. The INEEL forced-convection corrosion cell consists of a small heated vessel with a shroud and gas flow system. The corrosion cell is being used to test steel that is commercially available in the United States to temperatures above 650°C. Progress in plant engineering was made for two reactor concepts, one utilizing an indirect cycle with heat exchangers and the other utilizing a direct-contact steam cycle. The evaluation of the

  14. Thorium utilisation in thermal reactors

    International Nuclear Information System (INIS)

    Balakrishnan, K.

    1997-01-01

    It is now more or less accepted that the best way to use thorium is in thermal reactors. This is due to the fact that U233 is a good material in the thermal spectrum. Studies of different thorium cycles in various reactor concepts had been carried out in the early days of nuclear power. After three decades of neglect, the world is once again looking at thorium with some interest. We in India have been studying thorium cycles in most of the existing thermal reactor concepts, with greater emphasis on heavy water reactors. In this paper, we report some of the work done in India on different thorium cycles in the Indian pressurized heavy water reactor (PHWR), and also give a description of the design of the advanced heavy water reactor (AHWR). (author). 1 ref., 2 tabs., 5 figs

  15. Who needs a small reactor?

    International Nuclear Information System (INIS)

    Wood, Janet.

    1991-01-01

    The opportunities and problems facing small reactors were debated at the Delhi seminar. It was established that these were markets where small reactors, producing heat as well as electricity, might be of use. Small combined heat and power reactors would be more useful in district heating than would large reactors, as their optimum heat production is in line with current district heating schemes. Most process heat requirements are below 900 o C and so may be provided by small nuclear plants. Several areas in electricity supply where small and medium sized reactors could find a market were also identified. Despite good reasons for favouring nuclear plants in these markets, such as no production of carbon dioxide, no need to use expensive oil or other scarce fossil fuels and flexibility, these are, however, disincentives to potential buyers. While serial production would decrease plant costs, the lead plants would bear heavy financial risks. Currently too many options in plant design make it difficult to present the advantages of small reactor technology. Siting reactors near centres of population would be problematical. The disposal of spent fuel and radioactive wastes would create problems in developing or non-nuclear countries. Over and above all these problems, however, was that of public acceptance. Some ways of overcoming these disincentives were discussed. (author)

  16. Thermal properties of reactors and some instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Hearfield, F.

    1979-03-01

    A discussion covers the thermal properties of adiabatic reactors and the failure of the reaction rate to increase with increasing temperature due to depletion of reagents, transition to mass transfer control, or reduction of adsorption at catalytic surfaces; non-adiabatic reactors and factors upsetting the balance between heat generation and removal and possibly causing a runaway reaction, including loss of agitation loop circulation, and cooling or heating media; multiple steady states, i.e. multiple balances between heat generation and removal, for a continuous stirred tank reactor and the conditions necessary for stability of a steady state; and the temperature distribution in a tubular reactor, including mechanisms for feedback of heat from downstream to upstream in the reactor, e.g. heat conduction and radiation from hot catalyst, or an added heat exchanger. Three case histories are presented in which reactants accumulated in the reactors and cooling was decreased, permitting the occurrence of violent runaway reactions.

  17. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  18. Improved nuclear reactor construction with bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding liquid metal coolant and housing the core within the pool. A generally cylindrical concrete containment structure surrounds the reactor vessel and a central support pedestal is anchored to the containment structure base mat and supports the bottom wall of the reactor vessel and the reactor core. The periphery of the reactor vessel bore is supported by an annular structure which allows thermal expansion but not seismic motion of the vessel, and a bed of thermally insulating material uniformly supports the vessel base whilst allowing expansion thereof. A guard ring prevents lateral seismic motion of the upper end of the reactor vessel. The periphery of the core is supported by an annular structure supported by the vessel base and keyed to the vessel wall so as to be able to expand but not undergo seismic motion. A deck is supported on the containment structure above the reactor vessel open top by annular bellows, the deck carrying the reactor control rods such that heating of the reactor vessel results in upward expansion against the control rods. (author)

  19. Development of Reactor Console Simulator for PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Nufarhana Ayuni Joha; Mohd Sabri Minhat

    2012-01-01

    The Reactor Console Simulator will be an interactive tool for operator training and teaching of PUSPATI TRIGA Reactor. Behaviour and characteristic for reactor console and reactor itself can be evaluated and understand. This Simulator will be used as complement for actual present reactor console. Implementation of man-machine interface is using computer screens, keyboard and mouse. Multiple screens are used to match the physical of present reactor console. LabVIEW software are using for user interface and mathematical calculation. Polynomial equation based on control rods calibration data as well as operation parameters record was used to calculate the estimated reactor console parameters. (author)

  20. Inherent safety characteristics of innovative reactors

    International Nuclear Information System (INIS)

    Heil, J.A.

    1995-11-01

    The added safety value of innovative or third generation reactor designs has been evaluated in order to determine the most suitable candidate for Dutch government funded research and development support. To this end, four innovative reactor concepts, viz. PIUS (Process Inherent Ultimate Safety), PRISM (Power Reactor Innovative Small), HTR-M (High Temperature Reactor Module) and MHTGR (Modular High Temperature Gas-cooled Reactor), have been studied and their passive and inherent safety characteristics have been outlined. Also the outlook for further technological and industrial development has been considered. The results of the study confirm the perspective of the innovative reactors for reduced dependence on active safety provisions and for a further reduced vulnerability to technical failures and human errors. The accident responses to generic accident initiators, viz. reactivity and cooling accidents, and also to reactor specific accidents show that neither active safety systems nor short term operator actions are required for maintaining the reactor core in a controlled and coolable condition. Whether this gives rise to a higher total safety of the innovative reactor designs, compared to evolutionary or advanced reactors, cannot be concluded. Supplementary experimental and analytical analyses of reactor specific accidents are required to be able to assess the safety of these innovative designs in a more quantitative manner. It is believed that the safety case of innovative reactors, which are less dependent on active safety systems, can be communicated with the general public in a more transparent way. Considering the perspective for further technological and industrial development it is not expected that any of the considered innovative reactor concepts will become commercially available within the next one to two decades. However, they could be made available earlier if they would receive sufficient financial backing. Considering the added safety perspectives

  1. BR2 Reactor: Introduction

    International Nuclear Information System (INIS)

    Moons, F.

    2007-01-01

    The irradiations in the BR2 reactor are in collaboration with or at the request of third parties such as the European Commission, the IAEA, research centres and utilities, reactor vendors or fuel manufacturers. The reactor also contributes significantly to the production of radioisotopes for medical and industrial applications, to neutron silicon doping for the semiconductor industry and to scientific irradiations for universities. Along the ongoing programmes on fuel and materials development, several new irradiation devices are in use or in design. Amongst others a loop providing enhanced cooling for novel materials testing reactor fuel, a device for high temperature gas cooled fuel as well as a rig for the irradiation of metallurgical samples in a Pb-Bi environment. A full scale 3-D heterogeneous model of BR2 is available. The model describes the real hyperbolic arrangement of the reactor and includes the detailed 3-D space dependent distribution of the isotopic fuel depletion in the fuel elements. The model is validated on the reactivity measurements of several tens of BR2 operation cycles. The accurate calculations of the axial and radial distributions of the poisoning of the beryllium matrix by 3 He, 6 Li and 3T are verified on the measured reactivity losses used to predict the reactivity behavior for the coming decades. The model calculates the main functionals in reactor physics like: conventional thermal and equivalent fission neutron fluxes, number of displacements per atom, fission rate, thermal power characteristics as heat flux and linear power density, neutron/gamma heating, determination of the fission energy deposited in fuel plates/rods, neutron multiplication factor and fuel burn-up. For each reactor irradiation project, a detailed geometry model of the experimental device and of its neighborhood is developed. Neutron fluxes are predicted within approximately 10 percent in comparison with the dosimetry measurements. Fission rate, heat flux and

  2. Dose rate in the reactor room and environment during maintenance in fusion reactors

    International Nuclear Information System (INIS)

    Maki, Koichi; Satoh, Satoshi; Takatsu, Hideyuki; Seki, Yasushi

    1995-01-01

    According to the International Thermonuclear Experimental Reactor (ITER) conceptual design activity, after reactor shutdown, damaged segments are pulled up from the reactor and hung from the reactor room ceiling by a remote handling device. The dose rate in the reactor room and the environment is estimated for this situation, and the following results are obtained. First, the dose rate in the room is > 10 8 μSv/h. Since this dose rate is 10 7 times greater than the biological radiation shielding design limit of 25 μSv/h, workers cannot enter the room. Second, lenses and optical fiber composed of glass that is radiation resistant up to 10 6 Gy would be damaged after <100 h near the segment, and devices using semiconductors could not work after several hours or so in the aforementioned dose-rate conditions. Third, during suspension of one blanket segment from the ceiling, the dose rate in the site boundary can be reduced by one order by a 23-cm-thicker reactor building roof. To reduce dose rate in public exposure to a value that is less than one-tenth of the public exposure radiation shielding design limit of 100 μSv/yr, the distance of the site boundary from the reactor must be greater than 200 m for a reactor building with a 160-cm-thick concrete roof. 9 refs., 6 figs., 2 tabs

  3. Analytical chemistry requirements for advanced reactors

    International Nuclear Information System (INIS)

    Jayashree, S.; Velmurugan, S.

    2015-01-01

    The nuclear power industry has been developing and improving reactor technology for more than five decades. Newer advanced reactors now being built have simpler designs which reduce capital cost. The greatest departure from most designs now in operation is that many incorporate passive or inherent safety features which require no active controls or operational intervention to avoid accidents in the event of malfunction, and may rely on gravity, natural convection or resistance to high temperatures. India is developing the Advanced Heavy Water Reactor (AHWR) in its plan to utilise thorium in nuclear power program

  4. Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) are compared

    International Nuclear Information System (INIS)

    Greneche, D.

    2014-01-01

    This article compares the 2 types of light water reactors that are used to produce electricity: the Pressurized Water Reactor (PWR) and the Boiling Water Reactor (BWR). Historically the BWR concept was developed after the PWR concept. Today 80% of light water reactors operating in the world are of PWR-type. This comparison is comprehensive and detailed. First the main technical features are reviewed and compared: reactor architecture, core and fuel design, reactivity control, reactor vessel, cooling systems and reactor containment. Secondly, various aspects concerning reactor operations like reactor control, fuel management, maintenance, inspections, radiation protection, waste generation and reactor reliability are presented and compared for both reactors. As for the issue of safety, it is highlighted that the accidental situations are too different for the 2 reactors to be compared. The main features of reactor safety are explained for both reactors

  5. Physics and kinetics of TRIGA reactor

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2007-01-01

    This training module is written as an introduction to reactor physics for reactor operators. It assumes the reader has a basic, fundamental knowledge of physics, materials and mathematics. The objective is to provide enough reactor theory knowledge to safely operate a typical research reactor. At this level, it does not necessarily provide enough information to evaluate the safety aspects of experiment or non-standard operation reviews. The material provides a survey of basic reactor physics and kinetics of TRIGA type reactors. Subjects such as the multiplication factor, reactivity, temperature coefficients, poisoning, delayed neutrons and criticality are discussed in such a manner that even someone not familiar with reactor physics and kinetics can easily follow. A minimum of equations are used and several tables and graphs illustrate the text. (author)

  6. Nuclear reactor trip system

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    Each parameter of the processes of a nuclear reactor and components operatively associated with it is monitored by a set of four like sensors. A trip system normally operates on a ''two out four'' configuration; i.e., to trip the reactor it is necessary that at least two sensors of a set sense an off-normal parameter. This assumes that all sensors are in normal operating condition. However, when a sensor is in test or is subject to maintenance or is defective or disabled, the ''two out of four''configuration would be reduced to a ''one out of three'' configuration because the affected sensor is taken out of service. This would expose the system to the possibility that a single sensor failure, which may be spurious, will cause a trip of the reactor. To prevent this, it is necessary that the affected sensor be bypassed. If only one sensor is bypassed, the system operates on a ''two out of three'' configuration. With two sensors bypassed, the sensing of an off-normal parameter by a third sensor trips the reactor. The by-pass circuit also disables the circuit coupling the by-passed sensor to the trip circuit. (author)

  7. Reactor power control device

    International Nuclear Information System (INIS)

    Imaruoka, Hiromitsu.

    1994-01-01

    A high pressure water injection recycling system comprising injection pipelines of a high pressure water injection system and a flow rate control means in communication with a pool of a pressure control chamber is disposed to a feedwater system of a BWR type reactor. In addition, the flow rate control means is controlled by a power control device comprising a scram impossible transient event judging section, a required injection flow rate calculation section for high pressure water injection system and a control signal calculation section. Feed water flow rate to be supplied to the reactor is controlled upon occurrence of a scram impossible transient event of the reactor. The scram impossible transient event is judged based on reactor output signals and scram operation demand signals and injection flow rate is calculated based on a predetermined reactor water level, and condensate storage tank water or pressure control chamber pool water is injected to the reactor. With such procedures, water level can be ensured and power can be suppressed. Further, condensate storage tank water of low enthalpy is introduced to the pressure suppression chamber pool to directly control elevation of water temperature and ensure integrity of the pressure vessel and the reactor container. (N.H.)

  8. Reactor feedwater control device

    International Nuclear Information System (INIS)

    Koshi, Yuji.

    1993-01-01

    In the device of the present invention, an excess response is not caused in a reactor feed water system even when voids are fluctuated by using an actual water level signal as a reactor water level signal. That is, a standard water level signal and a reactor water level signal are inputted to a comparator. An adder adds water level difference signal outputted from the comparator and mismatch flow rate signal prepared by multiplying the difference between a main steam flow rate signal and a feed water flow rate signal by a mismatch gain. A feed water controller integrates the added signal and outputs flow rate demand signal. A feed water system receives the flow rate demand signal as input. A water level calculation means is disposed to such a device for calculating an actual water level based on the change of coolant possessing amount of the reactor, and the output thereof is defined as a reactor water level signal. With such procedures, excessive elevation of water level of the reactor can be prevented even upon occurrence of void fluctuation phenomenon or the like in the reactor such as upon sole scram operation. Accordingly, plant shut down caused thereby can be avoided safely. (I.S.)

  9. The End of the Line: Can Ferredoxin and Ferredoxin NADP(H) Oxidoreductase Determine the Fate of Photosynthetic Electrons?

    Science.gov (United States)

    Goss, Tatjana; Hanke, Guy

    2014-01-01

    At the end of the linear photosynthetic electron transfer (PET) chain, the small soluble protein ferredoxin (Fd) transfers electrons to Fd:NADP(H) oxidoreductase (FNR), which can then reduce NADP+ to support C assimilation. In addition to this linear electron flow (LEF), Fd is also thought to mediate electron flow back to the membrane complexes by different cyclic electron flow (CEF) pathways: either antimycin A sensitive, NAD(P)H complex dependent, or through FNR located at the cytochrome b6f complex. Both Fd and FNR are present in higher plant genomes as multiple gene copies, and it is now known that specific Fd iso-proteins can promote CEF. In addition, FNR iso-proteins vary in their ability to dynamically interact with thylakoid membrane complexes, and it has been suggested that this may also play a role in CEF. We will highlight work on the different Fd-isoproteins and FNR-membrane association found in the bundle sheath (BSC) and mesophyll (MC) cell chloroplasts of the C4 plant maize. These two cell types perform predominantly CEF and LEF, and the properties and activities of Fd and FNR in the BSC and MC are therefore specialized for CEF and LEF respectively. A diversity of Fd isoproteins and dynamic FNR location has also been recorded in C3 plants, algae and cyanobacteria. This indicates that the principles learned from the extreme electron transport situations in the BSC and MC of maize might be usefully applied to understanding the dynamic transition between these states in other systems. PMID:24678667

  10. Physical security at research reactors

    International Nuclear Information System (INIS)

    Clark, R.A.

    1977-01-01

    Of the 84 non-power research facilities licensed under 10 CFR Part 50, 73 are active (two test reactors, 68 research reactors and three critical facilities) and are required by 10 CFR Part 73.40 to provide physical protection against theft of SNM and against industrial sabotage. Each licensee has developed a security plan required by 10 CFR Part 50.34(c) to demonstrate the means of compliance with the applicable requirements of 10 CFR Part 73. In 1974, the Commission provided interim guidance for the organization and content of security plans for (a) test reactors, (b) medium power research and training reactors, and (c) low power research and training reactors. Eleven TRIGA reactors, with power levels greater than 250 kW and all other research and training reactors with power levels greater than 100 kW and less than or equal to 5,000 kW are designated as medium power research and training reactors. Thirteen TRIGA reactors with authorized power levels less than 250 kW are considered to be low power research and training reactors. Additional guidance for complying with the requirements of 73.50 and 73.60, if applicable, is provided in the Commission's Regulatory Guides. The Commission's Office of Inspection and Enforcement inspects each licensed facility to assure that an approved security plan is properly implemented with appropriate procedures and physical protection systems

  11. Control of reactor coolant flow path during reactor decay heat removal

    International Nuclear Information System (INIS)

    Hunsbedt, A.N.

    1988-01-01

    This patent describes a sodium cooled reactor of the type having a reactor hot pool, a slightly lower pressure reactor cold pool and a reactor vessel liner defining a reactor vessel liner flow gap separating the hot pool and the cold pool along the reactor vessel sidewalls and wherein the normal sodium circuit in the reactor includes main sodium reactor coolant pumps having a suction on the lower pressure sodium cold pool and an outlet to a reactor core; the reactor core for heating the sodium and discharging the sodium to the reactor hot pool; a heat exchanger for receiving sodium from the hot pool, and removing heat from the sodium and discharging the sodium to the lower pressure cold pool; the improvement across the reactor vessel liner comprising: a jet pump having a venturi installed across the reactor vessel liner, the jet pump having a lower inlet from the reactor vessel cold pool across the reactor vessel liner and an upper outlet to the reactor vessel hot pool

  12. Thermohydraulics of reactors

    International Nuclear Information System (INIS)

    Delhaye, J.M.

    2008-01-01

    This scientific and technical handbook about PWR reactors thermohydraulics is the result of many years of teaching in the framework of the CEA-INSTN's atomic engineering training courses, in engineering schools and during continuing training activities. Its main goal is to present in a rigorous and pedagogical way the basic knowledge necessary for the understanding and modeling of single phase and two-phase thermohydraulic phenomena encountered during the design and operation of nuclear reactors. In particular, heat transfers in two-phase flows are presented in a detailed way. Most chapters include some nuclear engineering examples of application of the studied concepts, and some exercises aiming at mastering these concepts. Each example or exercise is accompanied by its detailed solution. Content: - thermohydraulic characteristics of reactors; - design and thermal dimensioning of reactors; - thermal engineering of the fuel element; - two-phase flow configurations in ducts; - recalls about single-phase flow equations; - basic equations for two-phase flows; - modeling of two-phase flows inside ducts; - pressure drops in ducts; - boiling and vapor condensation heat transfers; - two-phase flow instabilities in ducts; - two-phase flow blocking; thermohydraulics of naval propulsion reactors

  13. Elements on reactor control

    International Nuclear Information System (INIS)

    Bruna, G.B.

    1998-01-01

    In order to achieve the two-fold goal of maximizing the energy obtained from reactor fuel and ensuring the large flexibility of plant operation in respect to safety regulations and keeping the reactor integrity the control of PWRs is generally based on real time monitoring and analysing of independent neutronic parameters: thermal power release, axial power distribution in the core and temperatures of the primary loop. Two control chains more or less coupled according to the control chosen mode are in charge of the control of these parameters. With the brief history of control in French power reactors the advanced X control mode adopted by Framatome for N4 plants is described in detail. A summary of N4 reactor control and protection system is included

  14. Advanced spheromak fusion reactor

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1996-01-01

    The spheromak has no toroidal magnetic field coils or other structure along its geometric axis, and is thus more attractive than the leading magnetic fusion reactor concept, the tokamak. As a consequence of this and other attributes, the spheromak reactor may be compact and produce a power density sufficiently high to warrant consideration of a liquid 'blanket' that breeds tritium, converts neutron kinetic energy to heat, and protects the reactor vessel from severe neutron damage. However, the physics is more complex, so that considerable research is required to learn how to achieve the reactor potential. Critical physics problems and possible ways of solving them are described. The opportunities and issues associated with a possible liquid wall are considered to direct future research

  15. The research reactors their contribution to the reactors physics

    International Nuclear Information System (INIS)

    Barral, J.C.; Zaetta, A.; Johner, J.; Mathoniere, G.

    2000-01-01

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  16. Sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hokkyo, N; Inoue, K; Maeda, H

    1968-11-21

    In a sodium cooled fast neutron reactor, an ultrasonic generator is installed at a fuel assembly hold-down mechanism positioned above a blanket or fission gas reservoir located above the core. During operation of the reactor an ultrsonic wave of frequency 10/sup 3/ - 10/sup 4/ Hz is constantly transmitted to the core to resonantly inject the primary bubble with ultrasonic energy to thereby facilitate its growth. Hence, small bubbles grow gradually to prevent the sudden boiling of sodium if an accident occurs in the cooling system during operation of the reactor.

  17. Emergency cooling apparatus for reactor

    International Nuclear Information System (INIS)

    Sakaguchi, S.

    1975-01-01

    A nuclear reactor is described which has the core surrounded by coolant and an inert cover gas all sealed within a container, an emergency cooling apparatus employing a detector that will detect cover gas or coolant, particularly liquid sodium, leaking from the container of the reactor, to release a heat exchange material that is inert to the coolant, which heat exchange material is cooled during operation of the reactor. The heat exchange material may be liquid niitrogen or a combination of spheres and liquid nitrogen, for example, and is introduced so as to contact the coolant that has leaked from the container quickly so as to rapidly cool the coolant to prevent or extinguish combustion. (Official Gazette)

  18. A study on ex-vessel steam explosion for a flooded reactor cavity of reactor scale - 15216

    International Nuclear Information System (INIS)

    Song, S.; Yoon, E.; Kim, Y.; Cho, Y.

    2015-01-01

    A steam explosion can occur when a molten corium is mixed with a coolant, more volatile liquid. In severe accidents, corium can come into contact with coolant either when it flows to the bottom of the reactor vessel and encounters the reactor coolant, or when it breaches the reactor vessel and flows into the reactor containment. A steam explosion could then threaten the containment structures, such as the reactor vessel or the concrete walls/penetrations of the containment building. This study is to understand the shortcomings of the existing analysis code (TEXAS-V) and to estimate the steam explosion loads on reactor scale and assess the effect of variables, then we compared results and physical phenomena. Sensitivity study of major parameters for initial condition is performed. Variables related to melt corium such as corium temperature, falling velocity and diameter of melt are more important to the ex-vessel steam explosion load and the steam explosion loads are proportional to these variables related to melt corium. Coolant temperature on reactor cavity has a specific area to increase the steam explosion loads. These results will be used to evaluate the steam explosion loads using ROAAM (Risk Oriented Accident Analysis Methodology) and to develop the evaluation methodology of ex-vessel steam explosion. (authors)

  19. Prestressed safety enclosure (PSE) with metallic cushion for new or existing reactor pressure vessels

    International Nuclear Information System (INIS)

    Wedellsborg, B.W.

    1991-01-01

    The special technology required to build the conventional types of thickwalled forged nuclear reactor pressure vessels is mastered only by a few large world-class manufactures. In order eventually to make it possible for other less established manufacturers, for example, those in newly industrialized nations, to construct nuclear RPVS or containers with large diameter for high pressures and which can tolerate large thermal gradients, an improved novel concept of a prestressed cast-iron container with multilayer shells and interlayer metallic cushions is being developed and is described in this paper. (author)

  20. Astrid (fast breeder nuclear reactor)

    International Nuclear Information System (INIS)

    2014-01-01

    This document presents ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), a French project of sodium-cooled fast breeder reactor, fourth generation reactor which should be fuelled by uranium 238 rather than uranium 235, and should therefore need less extracted natural uranium to produce electricity. The operation principle of fast breeder reactors is described. They notably directly consume plutonium, allow an easier radioactive waste management as they transform long life radioactive elements into shorter life elements by transmutation. The regeneration process is briefly described, and the various operation modes are evoked (iso-generator, sub-generator, and breeder). Some peculiarities of sodium-cooled reactors are outlined. The Astrid operation principle is described, its main design innovations outlined. Various challenges are discussed regarding safety of supply and waste processing, and the safety of future reactors. Major actors are indicated: CEA, Areva, EDF, SEIV Alcen, Toshiba, Rolls Royce, and Comex. Some key data are indicated: expected lifetime, expected availability rate, cost. The projected site is Marcoule and fast breeder reactors operated or under construction in the world are indicated. The document also proposes an overview of the background and evolution of reactors of 4. generation

  1. Markets for reactor-produced non-fission radioisotopes

    International Nuclear Information System (INIS)

    Bennett, R.G.

    1995-01-01

    Current market segments for reactor produced radioisotopes are developed and reported from a review of current literature. Specific radioisotopes studied in is report are the primarily selected from those with major medical or industrial markets, or those expected to have strongly emerging markets. Relative market sizes are indicated. Special emphasis is given to those radioisotopes that are best matched to production in high flux reactors such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. A general bibliography of medical and industrial radioisotope applications, trends, and historical notes is included

  2. Selective bowel decontamination results in gram-positive translocation.

    Science.gov (United States)

    Jackson, R J; Smith, S D; Rowe, M I

    1990-05-01

    Colonization by enteric gram-negative bacteria with subsequent translocation is believed to be a major mechanism for infection in the critically ill patient. Selective bowel decontamination (SBD) has been used to control gram-negative infections by eliminating these potentially pathogenic bacteria while preserving anaerobic and other less pathogenic organisms. Infection with gram-positive organisms and anaerobes in two multivisceral transplant patients during SBD led us to investigate the effect of SBD on gut colonization and translocation. Twenty-four rats received enteral polymixin E, tobramycin, amphotericin B, and parenteral cefotaxime for 7 days (PTA + CEF); 23 received parenteral cefotaxime alone (CEF), 19 received the enteral antibiotics alone (PTA), 21 controls received no antibiotics. Cecal homogenates, mesenteric lymph node (MLN), liver, and spleen were cultured. Only 8% of the PTA + CEF group had gram-negative bacteria in cecal culture vs 52% CEF, 84% PTA, and 100% in controls. Log Enterococcal colony counts were higher in the PTA + CEF group (8.0 + 0.9) vs controls (5.4 + 0.4) P less than 0.01. Translocation of Enterococcus to the MLN was significantly increased in the PTA + CEF group (67%) vs controls (0%) P less than 0.01. SBD effectively eliminates gram-negative organisms from the gut in the rat model. Overgrowth and translocation of Enterococcus suggests that infection with gram-positive organisms may be a limitation of SBD.

  3. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    Science.gov (United States)

    Stephenson, Kale J.; Was, Gary S.

    2015-01-01

    The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni-Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed after proton and reactor irradiation, providing additional evidence that proton irradiation is a useful tool for accelerated testing of irradiation effects in austenitic stainless steel.

  4. Nuclear reactor core assembly

    International Nuclear Information System (INIS)

    Baxi, C.B.

    1978-01-01

    The object of the present invention is to provide a fast reactor core assembly design for use with a fluid coolant such as liquid sodium or carbon monoxide incorporating a method of increasing the percentage of coolant flow though the blanket elements relative to the total coolant flow through the blanket and fuel elements during shutdown conditions without using moving parts. It is claimed that deterioration due to reactor radiation or temperature conditions is avoided and ready modification or replacement is possible. (U.K.)

  5. Reactor engineering and engineered reactor safety in France

    International Nuclear Information System (INIS)

    1987-01-01

    The proceedings give the full text of the lectures held by acknowledged French experts at the KTG Seminar in Mainz on March 10, 1987, all dealing with the leading topic of the current status of reactor engineering and development in France. Although the basic engineering principles and construction lines as well as the safety philosophy are the same in France as in West Germany, there have been distinctive developments over many years in the two countries that by now are not well known even among experts in this field, and hence cannot be properly assessed. Non-availability of relevant surveys or other type of literature in the German language reviewing the French developments is another factor that hitherto was a handicap to mutual exchange of information. The seminar was intended to close this gap. The proceedings should be read by all those in West Germany who wish to be informed about the developments in reactor engineering and reactor safety in France. (orig./DG) [de

  6. The secure heating reactor

    International Nuclear Information System (INIS)

    Pind, C.

    1987-01-01

    The SECURE heating reactor was designed by ASEA-ATOM as a realistic alternative for district heating in urban areas and for supplying heat to process industries. SECURE has unique safety characteristics, that are based on fundamental laws of physics. The safety does not depend on active components or operator intervention for shutdown and cooling of the reactor. The inherent safety characteristics of the plant cannot be affected by operator errors. Due to its very low environment impact, it can be sited close to heat consumers. The SECURE heating reactor has been shown to be competitive in comparison with other alternatives for heating Helsinki and Seoul. The SECURE heating reactor forms a basis for the power-producing SECURE-P reactor known as PIUS (Process Inherent Ultimate Safety), which is based on the same inherent safety principles. The thermohydraulic function and transient response have been demonstrated in a large electrically heated loop at the ASEA-ATOM laboratories

  7. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Ronen, Y.; Elias, E.

    1994-01-01

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  8. Ceramics as nuclear reactor fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    1975-01-01

    Ceramics are widely accepted as nuclear reactor fuel materials, for both metal clad ceramic and all-ceramic fuel designs. Metal clad UO 2 is used commercially in large tonnages in five different power reactor designs. UO 2 pellets are made by familiar ceramic techniques but in a reactor they undergo complex thermal and chemical changes which must be thoroughly understood. Metal clad uranium-plutonium dioxide is used in present day fast breeder reactors, but may eventually be replaced by uranium-plutonium carbide or nitride. All-ceramic fuels, which are necessary for reactors operating above about 750 0 C, must incorporate one or more fission product retentive ceramic coatings. BeO-coated BeO matrix dispersion fuels and silicate glaze coated UO 2 -SiO 2 have been studied for specialised applications, but the only commercial high temperature fuel is based on graphite in which small fuel particles, each coated with vapour deposited carbon and silicon carbide, are dispersed. Ceramists have much to contribute to many aspects of fuel science and technology. (author)

  9. Gas cooled reactors

    International Nuclear Information System (INIS)

    Kojima, Masayuki.

    1985-01-01

    Purpose: To enable direct cooling of reactor cores thereby improving the cooling efficiency upon accidents. Constitution: A plurality sets of heat exchange pipe groups are disposed around the reactor core, which are connected by way of communication pipes with a feedwater recycling device comprising gas/liquid separation device, recycling pump, feedwater pump and emergency water tank. Upon occurrence of loss of primary coolants accidents, the heat exchange pipe groups directly absorb the heat from the reactor core through radiation and convection. Although the water in the heat exchange pipe groups are boiled to evaporate if the forcive circulation is interrupted by the loss of electric power source, water in the emergency tank is supplied due to the head to the heat exchange pipe groups to continue the cooling. Furthermore, since the heat exchange pipe groups surround the entire circumference of the reactor core, cooling is carried out uniformly without resulting deformation or stresses due to the thermal imbalance. (Sekiya, K.)

  10. BWR type reactors

    International Nuclear Information System (INIS)

    Nakajima, Yoshitaka

    1983-01-01

    Purpose: To decrease the control rod exchanging frequency by increasing the working life of control rods for ordinary operation with large neutron irradiation dose, to thereby decrease the exposure dose for operators performing exchanging work, as well as decrease the amount of radioactive wastes resulted upon exchange of the control rods. Constitution: Hafnium solid metal is employed as the neutron absorber of control rods for usual operation inserted into and withdrawn from fuel assemblies for the reactor power control over the entire cycle of the ordinary reactor operation and boron carbide powder is employed as the neutron absorber for emergency control rods to be inserted between the fuel assemblies only upon reactor scram or shutdown, whereby the working life of the control rods for ordinary reactor operation with greater neutron irradiation dose can be improved. Accordingly, the control rod exchanging frequency can be reduced to decrease the exposure dose to the operator for conducting the exchanging work. (Yoshihara, H.)

  11. Reactor shutdown device

    International Nuclear Information System (INIS)

    Inoue, Toyokazu.

    1982-01-01

    Purpose: To obtain a highly reliable reactor shutdown device capable of checking its function irrespective of the state whether shutdown or operation in a gas-cooled type reactor. Constitution: A hopper is disposed above a guide tube inserted into the reactor core and particulate neutron absorbers are contained in the hopper. An opening for falling particles is disposed to the bottom of the hopper in opposition to the upper end of the guide pipe and the opening is closed by a plug suspended by way of a weld line so as to be capable of dropping. A power source for supplying electrical current to the weld line is disposed. Accordingly, if the current is supplied to the weld line, the line is cut by welding to fall the plug so that the neutron-absorbing particles fall from the opening into the guide pipe to shutdown the reactor, whereby high reliability is obtained for the operation. (Seki, T.)

  12. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    International Nuclear Information System (INIS)

    Bonin, H.W.; Hilborn, J.W.; Carlin, G.E.; Gagnon, R.; Busatta, P.

    2014-01-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as 99 Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as 99 Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO 2 SO 4 ) with 994.2 g of 235 U (enrichment at 20%) providing an excess reactivity at operating temperature (40 o C) of 3.8 mk for a molality determined as 1.46 mol kg -1 for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 o C. Peak temperature and power were determined as 83 o C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the temperature and void coefficients are

  13. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada); Hilborn, J.W. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Carlin, G.E. [Ontario Power Generation, Toronto, Ontario (Canada); Gagnon, R.; Busatta, P. [Canadian Forces (Canada)

    2014-07-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as {sup 99}Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as {sup 99}Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO{sub 2}SO{sub 4}) with 994.2 g of {sup 235}U (enrichment at 20%) providing an excess reactivity at operating temperature (40 {sup o}C) of 3.8 mk for a molality determined as 1.46 mol kg{sup -1} for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 {sup o}C. Peak temperature and power were determined as 83 {sup o}C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the

  14. Nuclear reactor PBMR and cogeneration

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Alonso V, G.

    2013-10-01

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  15. Decommissioning of a small reactor (BR3 reactor, Belgium)

    International Nuclear Information System (INIS)

    Dadoumont, J.; Massaut, V.; Klein, M.; Demeulemeester, Y.

    2002-01-01

    Since 1989, SCK-CEN has been dismantling its PWR reactor BR3 (Belgian Reactor No. 3). After gaining a great deal of experience in remote dismantling of highly radioactive components during the actual dismantling of the two sets of internals, the BR3 team completed the cutting of its reactor pressure vessel (RPV). During the feasibility phase of the RPV dismantling, a decision was made to cut it under water in the refuelling pool of the plant, after having removed it from its cavity. The RPV was cut into segments using a milling cutter and a bandsaw machine. These mechanical techniques have shown their ability for this kind of operations. Prior to the segmentation, the thermal insulation situated around the RPV was remotely removed and disposed of. The paper will describe all these operations. The BR3 decommissioning activities also include the dismantling of contaminated loops and equipment. After a careful sorting of the pieces, optimized management routes are selected in order to minimize the final amount of radioactive waste to be disposed of. Some development of different methods of decontamination were carried out: abrasive blasting (or sand blasting), chemical decontamination (Oxidizing-Reducing process using Cerium). The main goal of the decontamination program is to recycle most of the metallic materials either in the nuclear world or in the industrial world by reaching the respective recycling or clearance level. Overall the decommissioning of the BR3 reactor has shown the feasibility of performing such a project in a safe and economical way. Moreover, BR3 has developed methodologies and decontamination processes to economically reduce the amount of radwaste produced. (author)

  16. Fusion reactor control study. Volume 3. Tandem mirror reactors. Final report

    International Nuclear Information System (INIS)

    Chang, F.R.; DeCanio, F.; Fisher, J.L.; Madden, P.A.

    1982-03-01

    A study of the control requirements of the Tandem Mirror Reactor concept is reported. The study describes the development of a control simulator that is based upon a spatially averaged physics code of the reactor concept. The simulator portrays the evolution of the plasma through the complete reactor operating cycle; it includes models of the control and measurement system, thus allowing the exploration of various strategies for reactor control. Startup, shutdown, and control during the quasi-steady-state power producing phase were explored. Configurations are described which use a variety of control effectors including modulation of the refueling rate, beam current, and electron cyclotron resonance heating. Multivariable design techniques were used to design the control laws and compensators for the feedback controllers and presume the practical measurement of only a subset of the plasma and machine variables. Performance of the various controllers is explored using the nonlinear control simulator. Derivative control strategies using new or developed sensors and effectors appropriate to a power reactor environment are postulated, based upon the results of the control configurations tested. Research and development requirements for these controls are delineated

  17. Reactor power automatically controlling method and device for BWR type reactor

    International Nuclear Information System (INIS)

    Murata, Akira; Miyamoto, Yoshiyuki; Tanigawa, Naoshi.

    1997-01-01

    For an automatic control for a reactor power, when a deviation exceeds a predetermined value, the aimed value is kept at a predetermined value, and when the deviation is decreased to less than the predetermined value, the aimed value is increased from the predetermined value again. Alternatively, when a reactor power variation coefficient is decreased to less than a predetermine value, an aimed value is maintained at a predetermined value, and when the variation coefficient exceeds the predetermined value, the aimed value is increased. When the reactor power variation coefficient exceeds a first determined value, an aimed value is increased to a predetermined variation coefficient, and when the variation coefficient is decreased to less than the first determined value and also when the deviation between the aimed value and an actual reactor power exceeds a second determined value, the aimed value is maintained at a constant value. When the deviation is increased or when the reactor power variation coefficient is decreased, since the aimed value is maintained at predetermined value without increasing the aimed value, the deviation is not increased excessively thereby enabling to avoid excessive overshoot. (N.H.)

  18. Reactor water spontaneous circulation structure in reactor pressure vessel

    International Nuclear Information System (INIS)

    Takahashi, Kazumi

    1998-01-01

    The gap between the inner wall of a reactor pressure vessel of a BWR type reactor and a reactor core shroud forms a down comer in which reactor water flows downwardly. A feedwater jacket to which feedwater at low temperature is supplied is disposed at the outer circumference of the pressure vessel just below a gas/water separator. The reactor water at the outer circumferential portion just below the air/water separator is cooled by the feedwater jacket, and the feedwater after cooling is supplied to the feedwater entrance disposed below the feedwater jacket by way of a feedwater introduction line to supply the feedwater to the lower portion of the down comer. This can cool the reactor water in the down comer to increase the reactor water density in the down comer thereby forming strong downward flows and promote the recycling of the reactor water as a whole. With such procedures, the reactor water can be recycled stably only by the difference of the specific gravity of the reactor water without using an internal pump. In addition, the increase of the height of the pressure vessel can be suppressed. (I.N.)

  19. IRSN research programs concerning reactor safety

    International Nuclear Information System (INIS)

    Bardelay, J.

    2005-01-01

    This paper is made up of 3 parts. The first part briefly presents the missions of IRSN (French research institute on nuclear safety), the second part reviews the research works currently led by IRSN in the following fields : -) the assessment of safety computer codes, -) thermohydraulics, -) reactor ageing, -) reactivity accidents, -) loss of coolant, -) reactor pool dewatering, -) core meltdown, -) vapor explosion, and -) fission product release. In the third part, IRSN is shown to give a major importance to experimental programs led on research or test reactors for collecting valid data because of the complexity of the physical processes that are involved. IRSN plans to develop a research program concerning the safety of high or very high temperature reactors. (A.C.)

  20. Crystal electric field splitting of R{sup 3+}-ions in pure and Co- and Cu-doped RNi{sub 2}B{sub 2}C (R=Ho, Er, Tm)

    Energy Technology Data Exchange (ETDEWEB)

    Gasser, U.; Allenspach, P.; Henggeler, W.; Zolliker, M.; Furrer, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    From the crystal-electric-field (CEF) splitting of the R{sup 3+}-ions, the CEF parameters of RNi{sub 2}B{sub 2}C (R=Ho, Er, Tm) were deduced. In order to get information about the influence of the variation of the density of states (DOS) at the Fermi level (E{sub F}), CEF spectroscopy measurements with Co- and Cu-doped ErNi{sub 2}B{sub 2}C-samples were performed. (author) 1 fig., 1 tab., 1 ref.

  1. Liquid chromatography–tandem mass spectrometry for the simultaneous quantitation of ceftriaxone, metronidazole and hydroxymetronidazole in plasma from seriously ill, severely malnourished children [version 2; referees: 1 approved, 3 approved with reservations

    Directory of Open Access Journals (Sweden)

    Martin Ongas

    2018-01-01

    Full Text Available We have developed and validated a novel, sensitive, selective and reproducible reversed-phase high-performance liquid chromatography method coupled with electrospray ionization mass spectrometry (HPLC–ESI-MS/MS for the simultaneous quantitation of ceftriaxone (CEF, metronidazole (MET and hydroxymetronidazole (MET-OH from only 50 µL of human plasma, and unbound CEF from 25 µL plasma ultra-filtrate to evaluate the effect of protein binding. Cefuroxime axetil (CEFU was used as an internal standard (IS. The analytes were extracted by a protein precipitation procedure with acetonitrile and separated on a reversed-phase Polaris 5 C18-Analytical column using a mobile phase composed of acetonitrile containing 0.1% (v/v formic acid and 10 mM aqueous ammonium formate pH 2.5, delivered at a flow-rate of 300 µL/min. Multiple reaction monitoring was performed in the positive ion mode using the transitions m/z555.1→m/z396.0 (CEF, m/z172.2→m/z 128.2 (MET, m/z188.0→m/z125.9 (MET-OH and m/z528.1→m/z 364.0 (CEFU to quantify the drugs. Calibration curves in spiked plasma and ultra-filtrate were linear (r2 ≥ 0.9948 from 0.4–300 µg/mL for CEF, 0.05–50 µg/mL for MET and 0.02 – 30 µg/mL for MET-OH. The intra- and inter- assay precisions were less than 9% and the mean extraction recoveries were 94.0% (CEF, 98.2% (MET, 99.6% (MET-OH and 104.6% (CEF in ultra-filtrate; the recoveries for the IS were 93.8% (in plasma and 97.6% (in ultra-filtrate. The validated method was successfully applied to a pharmacokinetic study of CEF, MET and MET-OH in hospitalized children with complicated severe acute malnutrition following an oral administration of MET and intravenous administration of CEF over the course of 72 hours.

  2. Physical activity during the school day in public primary schools in Mexico City La actividad física durante la jornada escolar en escuelas primarias públicas en la Ciudad de México

    Directory of Open Access Journals (Sweden)

    Nancy Jennings-Aburto

    2009-04-01

    Full Text Available OBJECTIVE: To quantify the physical activity (PA of students and describe the school environment surrounding PA. MATERIAL AND METHODS: Between November 2005 and March 2006, in Mexico City, we conducted quantitative and qualitative observations to describe the PA and the school context. RESULTS: Recess and physical education class (PE were the only opportunities to participate in PA. PE occurred one time per week with a duration of 39.8±10.6 minutes which is less than national and international recommendations. Students participated in moderate-to-vigorous PA 29.2±17.8% of PE. The dynamics of PE did not promote the inclusion of all students or PA. During recess there was overcrowding of the school patio and no equipment for PA or organization of PA. DISCUSSION: The PA of students in public schools in Mexico City can be improved by increasing the quantity and quality of PE and increasing opportunities for activity during recess.OBJETIVO: Cuantificar la actividad física (AF en niños escolares y describir el entorno escolar relacionado con la AF. MATERIAL Y MÉTODOS: Entre noviembre de 2005 y marzo de 2006 en la Ciudad de México, se realizó observación directa cuantitativa y cualitativa para describir el nivel de AF y el contexto escolar durante recreo y clases de educación física (CEF. RESULTADOS: El recreo y las CEF fueron los únicos espacios en los que se realizó AF. Las CEF se impartieron una vez a la semana y duraron 39.8±10.6 minutos, lo que está por debajo de las recomendaciones internacionales. Se participó en actividades moderadas-vigorosas 29.2±17.8% de las CEF. La dinámica de las CEF no favoreció la AF. Durante el recreo se observó saturación del patio y no se realizaron actividades organizadas ni se utilizaron materiales para promover la AF. DISCUSIÓN: Se recomienda incrementar la calidad y la cantidad de las CEF y el tiempo dedicado a jugar durante el recreo.

  3. Emergency cooling system for nuclear reactors

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    Upon the occasion of loss of coolant in a nuclear reactor as when a coolant supply or return line breaks, or both lines break, borated liquid coolant from an emergency source is supplied in an amount to absorb heat being generated in the reactor even after the control rods have been inserted. The liquid coolant flows from pressurized storage vessels outside the reactor to an internal manifold from which it is distributed to unused control rod guide thimbles in the reactor fuel assemblies. Since the guide thimbles are mounted at predetermined positions relative to heat generating fuel elements in the fuel assemblies, holes bored at selected locations in the guide thimble walls, sprays the coolant against the reactor fuel elements which continue to dissipate heat but at a reduced level. The cooling water evaporates upon contacting the fuel rods thereby removing the maximum amount of heat (970 BTU per pound of water) and after heat absorption will leave the reactor in the form of steam through the break which is the cause of the accident to help assure immediate core cooldown

  4. OECD Halden reactor project

    International Nuclear Information System (INIS)

    1979-01-01

    This is the nineteenth annual Report on the OECD Halden Reactor Project, describing activities at the Project during 1978, the last year of the 1976-1978 Halden Agreement. Work continued in two main fields: test fuel irradiation and fuel research, and computer-based process supervision and control. Project research on water reactor fuel focusses on various aspects of fuel behavior under normal, and off-normal transient conditions. In 1978, participating organisations continued to submit test fuel for irradiation in the Halden boiling heavy-water reactor, in instrumented test assemblies designed and manufactured by the Project. Work included analysis of the impact of fuel design and reactor operating conditions on fuel cladding behavior. Fuel performance modelling included characterization of thermal and mechanical behavior at high burn-up, of fuel failure modes, and improvement of data qualification procedures to reduce and quantify error bands on in-reactor measurements. Instrument development yielded new or improved designs for measuring rod temperature, internal pressure, axial neutron flux shape determination, and for detecting cladding defects. Work on computer-based methods of reactor supervision and control included continued development of a system for predictive core surveillance, and of special mathematical methods for core power distribution control

  5. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  6. Advanced Safeguards Approaches for New Fast Reactors

    International Nuclear Information System (INIS)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-01-01

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to 'breed' nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and 'burn' actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is 'fertile' or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing 'TRU'-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II 'EBR-II' at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line--a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors

  7. FBR type reactor

    International Nuclear Information System (INIS)

    Kimura, Kimitaka; Fukuie, Ken; Iijima, Tooru; Shimpo, Masakazu.

    1994-01-01

    In an FBR type reactor for exchanging fuels by pulling up reactor core upper mechanisms, a connection mechanism is disposed for connecting the top of the reactor core and the lower end of the reactor core upper mechanisms. In addition, a cylindrical body is disposed surrounding the reactor core upper mechanisms, and a support member is disposed to the cylindrical body for supporting an intermediate portion of the reactor core upper mechanisms. Then, the lower end of the reactor core upper mechanisms is connected to the top of the reactor core. Same displacements are caused to both of them upon occurrence of earthquakes and, as a result, it is possible to eliminate mutual horizontal displacement between a control rod guide hole of the reactor core upper mechanisms and a control rod insertion hole of the reactor core. In addition, since the intermediate portion of the reactor core upper mechanisms is supported by the support member disposed to the cylindrical body surrounding the reactor core upper mechanisms, deformation caused to the lower end of the reactor core upper mechanisms is reduced, so that the mutual horizontal displacement with respect to the control rod insertion hole of the reactor core can be reduced. As a result, performance of control rod insertion upon occurrence of the earthquakes is improved, so that reactor shutdown is conducted more reliably to improve reactor safety. (N.H.)

  8. RB Research nuclear reactor RB reactor, Annual report for 2000

    International Nuclear Information System (INIS)

    Milosevic, M.

    2000-12-01

    Report on RB reactor operation during 2000 contains 3 parts. Part one contains a brief description of reactor operation and reactor components, relevant dosimetry data and radiation protection issues, personnel and financial data. Part two is devoted to maintenance of the reactor components, namely, fuel, heavy water, reactor vessel, heavy water circulation system, absorption rods and heavy water level-meters, maintenance of electronic, mechanical, electrical and auxiliary equipment. Part three contains data concerned with reactor operation and utilization with a comprehensive list of publications resulting from experiments done at the RB reactor. It contains data about reactor operation during previous 14 years, i.e. from 1986 - 2000

  9. Reactor container

    International Nuclear Information System (INIS)

    Kato, Masami; Nishio, Masahide.

    1987-01-01

    Purpose: To prevent the rupture of the dry well even when the melted reactor core drops into a reactor pedestal cavity. Constitution: In a reactor container in which a dry well disposed above the reactor pedestal cavity for containing the reactor pressure vessel and a torus type suppression chamber for containing pressure suppression water are connected with each other, the pedestal cavity and the suppression chamber are disposed such that the flow level of the pedestal cavity is lower than the level of the pressure suppression water. Further, a pressure suppression water introduction pipeway for introducing the pressure suppression water into the reactor pedestal cavity is disposed by way of an ON-OFF valve. In case if the melted reactor core should fall into the pedestal cavity, the ON-OFF valve for the pressure suppression water introduction pipeway is opened to introduce the pressure suppression water in the suppression chamber into the pedestal cavity to cool the melted reactor core. (Ikeda, J.)

  10. U.S. Domestic Reactor Conversion Programs

    International Nuclear Information System (INIS)

    Woolstenhulme, Eric

    2008-01-01

    The Conversion Projects Include: the revision of the facilities safety basis documents and supporting analysis, the fabrication of new LEU fuel, the change-out of the reactor core, and the removal of the used HEU fuel (by INL University Fuels Program or DOE-NE). The major entities involved are: the U.S. Nuclear Regulatory Commission, the University reactor department, the fuel and hardware fabricators, the Spent fuel receipt facilities, the Spent fuel shipping services, and the U.S. Department of Energy and their subcontractors. Three major Reactor Conversion Program milestones have been accomplished since 2006: the conversion of the TRIGA reactor at Texas A and M University Nuclear Science Center, the conversion of the University of Florida Training Reactor, and the conversion of the Purdue University Reactor. Four Reactor Conversion Program milestones yet to be accomplished in 2008 and 2009: the Washington State University Nuclear Radiation Center reactor, the Oregon State University TRIGA Reactor, the University of Wisconsin Nuclear Reactor, and the Neutron Radiography Reactor Facility. NNSA is committed to doing things cheaper, better, smarter, safer through a 'Lessons Learned' process. The conversion team assessed each major activity grouping: Project Initiation, Conversion Proposal Development, Fuel Fabrication and Hardware, Core Conversion, and Spent Nuclear Fuel Removal. Issues were identified and recommendations were given

  11. Cation-exchanger fabric prepared by electron beam - induced graft copolymerization of binary monomer mixture

    International Nuclear Information System (INIS)

    Bondar, Yu.V.; Kim, H.J.; Lim, Y.J.; Perelygin, V.P.

    2004-01-01

    Applying the electron-beam preirradiation method in air the sorption-active polypropylene fiber, containing sulfonic acid (R-SO 3 H) groups, was prepared by simultaneous graft copolymerization of sodium styrenesulfonate with acrylic acid in water solution. The effect of reaction conditions on the grafting yield and reaction mechanism was examined. It was found that the received CEF contains groups of strong acid (R-SO 3 H) and weak acid (R-COOH) in almost equal proportion. The ion-exchange properties of the CEF towards Cu(II) and Co(II) ions were investigated depending on the form of the CEF and a pH of the solution. It was shown that the utilization of the CEF in Na- form allows to make the best use of its ion-exchange capacity. (author)

  12. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  13. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  14. Nuclear reactor kinetics and control

    International Nuclear Information System (INIS)

    Lewins, J.

    1978-01-01

    A consistent, integrated account of modern developments in the study of nuclear reactor kinetics and the problem of their efficient and safe control. It aims to prepare the student for advanced study and research or practical work in the field. Special features include treatments of noise theory, reliability theory and safety related studies. It covers all aspects of the operation and control of nuclear reactors, power and research and is complete in providing physical data methods of calculation and solution including questions of equipment reliability. The work uses illustrations of the main types of reactors in use in the UK, USA and Europe. Each chapter contains problems and worked examples suitable for course work and study. The subject is covered in chapters, entitled: introductory review; neutron and precursor equations; elementary solutions at low power; linear reactor process dynamics with feedback; power reactor control systems; fluctuations and reactor noise; safety and reliability; nonlinear systems (safety and control); analogue computing. (author)

  15. Backfitting of research reactors

    International Nuclear Information System (INIS)

    Delrue, R.; Noesen, T.

    1985-01-01

    The backfitting of research reactors covers a variety of activities. 1. Instrumentation and control: Control systems have developed rapidly and many reactor operators wish to replace obsolete equipment by new systems. 2. Pool liners: Some pools are lined internally with ceramic tiles. These may become pervious with time necessitating replacement, e.g. by a new stainless steel liner. 3. Heat removal system: Deficiencies can occur in one or more of the cooling system components. Upgrading may require modifications of the system such as addition of primary loops, introduction of deactivation tanks, pump replacement. Recent experience in such work has shown that renewal, backfitting and upgrading of an existing reactor is economically attractive since the related costs and delivery times are substantially lower than those required to install a new research reactor

  16. UCLA program in reactor studies: The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on ''modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D- 3 He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs

  17. Guide to the periodic inspection of nuclear reactor steel pressure vessels

    International Nuclear Information System (INIS)

    1969-01-01

    This Guide is intended to provide general information and guidance to reactor owners or operators, inspection authorities, certifying authorities or regulatory bodies who are responsible for establishing inspection procedures for specific reactors or reactor types, and for the preparation of national codes or standards. The recommendations of the Guide apply primarily to water-cooled steel reactor vessels which are at a sufficiently early stage of design so that recommendations to provide accessibility for inspection can be incorporated into the early stages of design and inspection planning. However, much of the contents of the Guide are also applicable in part to vessels for other reactor types, such as gas-cooled, pressure-tube, or liquid-metal-cooled reactors, and also to some existing water-cooled reactors and reactors which are in advanced stage of design or construction. 46 refs, figs, 1 tab

  18. WWER-440 type reactor core

    International Nuclear Information System (INIS)

    Mizov, J.; Svec, P.; Rajci, T.

    1987-01-01

    Assemblies with patly spent fuel of enrichment within 5 and 36 MWd/kg U or lower than the maximum enrichment of freshly charged fuel are placed in at least one of the peripheral positions of each hexagonal sector of the WWER-440 reactor type core. This increases fuel availability and reduces the integral neutron dose to the reactor vessel. The duration is extended of the reactor campaign and/or the mean fuel enrichment necessary for the required duration of the period between refuellings is reduced. Thus, fuel costs are reduced by 1 up to 3%. The results obtained in the experiment are tabulated. (J.B.). 1 fig., 3 tabs

  19. What can recycling in thermal reactors accomplish?

    International Nuclear Information System (INIS)

    Piet, Steven J.; Matthern, Gretchen E.; Jacobson, Jacob J.

    2007-01-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives. (authors)

  20. What can Recycling in Thermal Reactors Accomplish?

    International Nuclear Information System (INIS)

    Steven Piet; Gretchen E. Matthern; Jacob J. Jacobson

    2007-01-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives

  1. MULTI - A multigroup or multipoint P{sub 3} programme for calculating thermal neutron spectra in a reactor cell

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M V [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1968-06-15

    Programme MULTI calculates the space energy distribution of thermal neutrons in a multizone, cylindrical, infinitely long reactor lattice by using the multigroup or multipoint P{sub 3} approximation. This report presents a short description of the algorithm and the programme and gives the instructions for its exploitation. (author)

  2. The reactor Cabri

    International Nuclear Information System (INIS)

    Ailloud, J.; Millot, J.P.

    1964-01-01

    It has become necessary to construct in France a reactor which would permit the investigation of the conditions of functioning of future installations, the choice, the testing and the development of safety devices to be adopted. A water reactor of a type corresponding to the latest CEA constructions in the field of laboratory or university reactors was decided upon: it appeared important to be able to evaluate the risks entailed and to study the possibilities of increasing the power, always demanded by the users; on the other hand, it is particularly interesting to clarify the phenomena of power oscillation and the risks of burn out. The work programme for CABRI will be associated with the work carried out on the American Sperts of the same type, during its construction, very useful contacts were made with the American specialists who designed the se reactors. A brief description of the reactor is given in the communication as well as the work programme for the first years with respect to the objectives up to now envisaged. Rough description of the reactor. CABRI is an open core swimming-pool reactor without any lateral protection, housed in a reinforced building with controlled leakage, in the Centre d'Etudes Nucleaires de Cadarache. It lies alone in the middle of an area whose radius is 300 meters long. Control and measurements equipment stand out on the edge of that zone. It consumes MTR fuel elements. The control-safety rods are propelled by compressed air. The maximum flow rate of cooling circuit is 1500 m 3 /h. Transient measurements are recorded in a RW330 unit. Aims and work programme. CABRI is meant for: - studies on the safety of water reactors - for the definition of the safety margins under working conditions: research of maximum power at which a swimming-pool reactor may operate with respect to a cooling accident, of local boiling effect on the nuclear behaviour of the reactor, performances of the control and safety instruments under exceptional

  3. Improved locations of reactivity devices in future CANDU reactors fuelled with natural uranium or enriched fuels

    International Nuclear Information System (INIS)

    Boczar, P.G.; Van Dyk, M.T.

    1987-02-01

    A new configuration of reactivity devices is proposed for future CANDU reactors which improves the core characteristics with enriched fuels, while still allowing the use of natural uranium fuel. Physics calculations for this new configuration are presented for four fuel types: natural uranium, mixed plutonium - uranium oxide (MOX) having a burnup of 21 MWd/kg, and slightly enriched uranium (SEU) having burnups of either 21 or 31 MWd/kg

  4. Nuclear reactor vessel inspection apparatus

    International Nuclear Information System (INIS)

    Blackstone, E.G.; Lofy, R.A.; Williams, L.P.

    1979-01-01

    Apparatus for the in situ inspection of a nuclear reactor vessel to detect the location and character of flaws in the walls of the vessel, in the welds joining the various sections of the vessel, in the welds joining attachments such as nozzles, elbows and the like to the reactor vessel and in such attachments wherein an inspection head carrying one or more ultrasonic transducers follows predetermined paths in scanning the various reactor sections, welds and attachments

  5. An overview of future sustainable nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (Cyprus)

    2013-07-01

    In this paper an overview of the current and future nuclear power reactor technologies is carried out. In particular, the nuclear technology is described and the classification of the current and future nuclear reactors according to their generation is provided. The analysis has shown that generation II reactors currently in operation all around the world lack significantly in safety precautions and are prone to loss of coolant accident (LOCA). In contrast, generation III reactors, which are an evolution of generation II reactors, incorporate passive or inherent safety features that require no active controls or operational intervention to avoid accidents in the event of malfunction, and may rely on gravity, natural convection or resistance to high temperatures. Today, partly due to the high capital cost of large power reactors generating electricity and partly due to the consideration of public perception, there is a shift towards the development of smaller units. These may be built independently or as modules in a larger complex, with capacity added incrementally as required. Small reactors most importantly benefit from reduced capital costs, simpler units and the ability to produce power away from main grid systems. These factors combined with the ability of a nuclear power plant to use process heat for co-generation, make the small reactors an attractive option. Generally, modern small reactors for power generation are expected to have greater simplicity of design, economy of mass production and reduced installation costs. Many are also designed for a high level of passive or inherent safety in the event of malfunction. Generation III+ designs are generally extensions of the generation III concept, which include advanced passive safety features. These designs can maintain the safe state without the use of any active control components. Generation IV reactors, which are future designs that are currently under research and development, will tend to have closed

  6. Present status of research reactor and future prospects

    International Nuclear Information System (INIS)

    Nakajima, Ken

    2013-01-01

    Research reactors have been playing an important role in the research and development of the various fields, such as physics, chemistry, biology, engineering, agriculture, medicine, etc. as well as human resource development. However, the most of them are older than 40 years, and the ageing management is an important issue. In Japan, only two research reactors are operational after the Great East Japan Earthquake in 2011. JAEA's reactors suffered from the quake and they are under inspections. Kyoto University Research Reactor, one of the operational reactors, has been widely used for research and human resource development, and the additional safety measures against the station blackout were installed. Besides the affect of the quake, the disposal or treatment of spent fuel becomes an inevitable problem for research reactors. The way of spent fuel disposal or treatment should be determined with the nation-wide and/or international coalition. (author)

  7. Subcriticality monitoring method for reactor

    International Nuclear Information System (INIS)

    Ueda, Makoto.

    1991-01-01

    The present invention accurately monitors the reactor subcriticality and ensures the critical safety, irrespective of the presence or absence of artificial neutron sources. That is, when the subcriticality is monitored upon reactivity changing operation which causes reactivity change to the reactor during shutdown, neutron monitors are disposed at a plurality of monitoring positions. Then, neutron counting ratio before and after conducting the reactivity changing operation is determined. The subcriticality of the reactor is monitored by the ratio and the state of scattering of the ratio of neutron counting rate between each of the neutron monitors. With such procedures, signals of the neutron monitors are used, the characteristic that the change of the signals depend on the change of the neutron multiplication of the reactor core can be utilized whether artificial neutron sources (external neutron sources) are disposed or not. Accordingly, the subcriticality can be monitored more reliably. (I.S.)

  8. Reactor core performance calculating device

    International Nuclear Information System (INIS)

    Tominaga, Kenji; Bando, Masaru; Sano, Hiroki; Maruyama, Hiromi.

    1995-01-01

    The device of the present invention can calculate a power distribution efficiently at high speed by a plurality of calculation means while taking an amount of the reactor state into consideration. Namely, an input device takes data from a measuring device for the amount of the reactor core state such as a large number of neutron detectors disposed in the reactor core for monitoring the reactor state during operation. An input data distribution device comprises a state recognition section and a data distribution section. The state recognition section recognizes the kind and amount of the inputted data and information of the calculation means. The data distribution section analyzes the characteristic of the inputted data, divides them into a several groups, allocates them to each of the calculation means for the purpose of calculating the reactor core performance efficiently at high speed based on the information from the state recognition section. A plurality of the calculation means calculate power distribution of each of regions based on the allocated inputted data, to determine the power distribution of the entire reactor core. As a result, the reactor core can be evaluated at high accuracy and at high speed irrespective of the whole reactor core or partial region. (I.S.)

  9. Nuclear reactors. Introduction

    International Nuclear Information System (INIS)

    Boiron, P.

    1997-01-01

    This paper is an introduction to the 'nuclear reactors' volume of the Engineers Techniques collection. It gives a general presentation of the different articles of the volume which deal with: the physical basis (neutron physics and ionizing radiations-matter interactions, neutron moderation and diffusion), the basic concepts and functioning of nuclear reactors (possible fuel-moderator-coolant-structure combinations, research and materials testing reactors, reactors theory and neutron characteristics, neutron calculations for reactor cores, thermo-hydraulics, fluid-structure interactions and thermomechanical behaviour of fuels in PWRs and fast breeder reactors, thermal and mechanical effects on reactors structure), the industrial reactors (light water, pressurized water, boiling water, graphite moderated, fast breeder, high temperature and heavy water reactors), and the technology of PWRs (conceiving and building rules, nuclear parks and safety, reactor components and site selection). (J.S.)

  10. Structure of thermonuclear reactor wall

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro.

    1991-01-01

    In a thermonuclear reactor wall, there has been a worry that the brazing material is melted by high temperature heat and particle load, to peel off the joined portion and the protecting material is destroyed by temperature elevation, to expose the heat sink material. Then, in the reactor core structures of a thermonuclear reactor, such as a divertor plate comprising a protecting material made of carbon material and the heat sink material joined by brazing, a plate material made of a so-called refractory metal having a high atomic number such as tungsten, molybdenum or the alloy thereof is embedded or attached to an accurate position of the protecting material. This can prevent the brazing portion from destruction by escaping electrons generated upon occurrence of abnormality in the thermonuclear reactor, and peeling or destroy of the protecting material and the heat sink material. Sufficient characteristics of plasmas can always be maintained by disposing a material having a small atomic number, for example, carbon material, to the position facing to the plasmas. (N.H.)

  11. Power supply with nuclear reactor

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    Each parameter of the processes of a nuclear reactor and components operatively associated therewith is monitored by a set of four like sensors. A trip system normally operates on a 'two out of four' configuration; i.e., to trip the reactor it is necessary that at least two sensors of a set sense an off-normal parameter. This assumes that all sensors are in normal operating condition. However, when a sensor is in test or is subject to maintenance or is defective or disabled, the 'two out of four' configuration would be reduced to a 'one out of three' configuration because the affected sensor is taken out of service. This would expose the system to the possibility that a single sensor failure, which may be spurious, will cause a trip of the reactor. To prevent this, it is necessary that the affected sensor be bypassed. If only one sensor is bypassed, the system operates on a 'two out of three' configuration. With two sensors bypassed, the sensing of an off-normal parameter by a third sensor trips the reactor

  12. Lateral restraint assembly in a nuclear reactor

    International Nuclear Information System (INIS)

    Brown, S.J.; Gorholt, W.

    1977-01-01

    A lateral restraint assembly is described for a reactor of, for example, the high temperature gas-cooled type which commonly includes a reactor core of relatively complex construction supported within a shell or vessel providing a shielded cavity for containing the reactor core. (U.K.)

  13. Nuclear reactor, reactor core thereof, and device for constituting the reactor

    International Nuclear Information System (INIS)

    Takiyama, Masashi.

    1994-01-01

    A reactor core is constituted by charging coolants (light water) in a reactor pressure vessel and distributing fuel assemblies, reflecting material sealing pipes, moderator (heavy water and helium gas) sealing pipes, and gas sealing pipes therein. A fuel guide tube is surrounded by a cap and the gap therebetween is made hollow and filled with coolant steams. The cap is supported by a baffle plate. The moderator sealing pipe is disposed in a flow channel of coolants in adjacent with the cap. The position of the moderator sealing tube in the reactor core is controlled by water stream from a hydraulic pump with a guide tube extending below the baffle plate being as a guide. Then, the position of the moderator sealing tube is varied to conduct power control, burnup degree compensation, and reactor shut down. With such procedures, moderator cooling facility is no more necessary to simplify the structure. Further, heat generated from the moderator is transferred to the coolants thereby improving heat efficiency of the reactor. (I.N.)

  14. Reactor simulator development. Workshop material

    International Nuclear Information System (INIS)

    2001-01-01

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in reactor operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. This publication consists of course material for workshops on development of such reactor simulators. Participants in the workshops are provided with instruction and practice in the development of reactor simulation computer codes using a model development system that assembles integrated codes from a selection of pre-programmed and tested sub-components. This provides insight and understanding into the construction and assumptions of the codes that model the design and operational characteristics of various power reactor systems. The main objective is to demonstrate simple nuclear reactor dynamics with hands-on simulation experience. Using one of the modular development systems, CASSIM tm , a simple point kinetic reactor model is developed, followed by a model that simulates the Xenon/Iodine concentration on changes in reactor power. Lastly, an absorber and adjuster control rod, and a liquid zone model are developed to control reactivity. The built model is used to demonstrate reactor behavior in sub-critical, critical and supercritical states, and to observe the impact of malfunctions of various reactivity control mechanisms on reactor dynamics. Using a PHWR simulator, participants practice typical procedures for a reactor startup and approach to criticality. This workshop material consists of an introduction to systems used for developing reactor simulators, an overview of the dynamic simulation

  15. Research reactor modernization and refurbishment

    International Nuclear Information System (INIS)

    2009-08-01

    Many recent, high profile research reactor unplanned shutdowns can be directly linked to different challenges which have evolved over time. The concept of ageing management is certainly nothing new to nuclear facilities, however, these events are highlighting the direct impact unplanned shutdowns at research reactors have on various stakeholders who depend on research reactor goods and services. Provided the demand for these goods and services remains strong, large capital projects are anticipated to continue in order to sustain future operation of many research reactors. It is within this context that the IAEA organized a Technical Workshop to launch a broader Agency activity on research reactor modernization and refurbishment (M and R). The workshop was hosted by the operating organization of the HOR Research Reactor in Delft, the Netherlands, in October 2006. Forty participants from twenty-three countries participated in the meeting: with representation from Africa, Asia Pacific, Eastern Europe, North America, South America and Western Europe. The specific objectives of this workshop were to present facility reports on completed, existing and planned M and R projects, including the project objectives, scope and main characteristics; and to specifically report on: - the project impact (planned or actual) on the primary and key supporting motivation for the M and R project; - the project impact (planned or actual) on the design basis, safety, and/or regulatory-related reports; - the project impact (planned or actual) on facility utilization; - significant lessons learned during or following the completion of M and R work. Contributions from this workshop were reviewed by experts during a consultancy meeting held in Vienna in December 2007. The experts selected final contributions for inclusion in this report. Requests were also distributed to some authors for additional detail as well as new authors for known projects not submitted during the initial 2006 workshop

  16. Nuclear reactor with a suspended vessel

    International Nuclear Information System (INIS)

    Lemercier, Guy.

    1977-01-01

    This invention relates to a nuclear reactor with a suspended vessel and applies in particular when this is a fast reactor, the core or active part of the reactor being inside the vessel and immersed under a suitable volume of flowing liquid metal to cool it by extracting the calories released by the nuclear fission in the fuel assemblies forming this core [fr

  17. Optimal reactor strategy for commercializing fast breeder reactors

    International Nuclear Information System (INIS)

    Yamaji, Kenji; Nagano, Koji

    1988-01-01

    In this paper, a fuel cycle optimization model developed for analyzing the condition of selecting fast breeder reactors in the optimal reactor strategy is described. By dividing the period of planning, 1966-2055, into nine ten-year periods, the model was formulated as a compact linear programming model. With the model, the best mix of reactor types as well as the optimal timing of reprocessing spent fuel from LWRs to minimize the total cost were found. The results of the analysis are summarized as follows. Fast breeder reactors could be introduced in the optimal strategy when they can economically compete with LWRs with 30 year storage of spent fuel. In order that fast breeder reactors monopolize the new reactor market after the achievement of their technical availability, their capital cost should be less than 0.9 times as much as that of LWRs. When a certain amount of reprocessing commitment is assumed, the condition of employing fast breeder reactors in the optimal strategy is mitigated. In the optimal strategy, reprocessing is done just to meet plutonium demand, and the storage of spent fuel is selected to adjust the mismatch of plutonium production and utilization. The price hike of uranium ore facilitates the commercial adoption of fast breeder reactors. (Kako, I.)

  18. Hydrodynamics of multi-phase packed bed micro-reactors

    NARCIS (Netherlands)

    Márquez Luzardo, N.M.

    2010-01-01

    Why to use packed bed micro-reactors for catalyst testing? Miniaturized packed bed reactors have a large surface-to-volume ratio at the reactor and particle level that favors the heat- and mass-transfer processes at all scales (intra-particle, inter-phase and inter-particle or reactor level). If the

  19. Fuel transporting device in nuclear reactor

    International Nuclear Information System (INIS)

    Inoue, Tatsumi.

    1975-01-01

    Object: To obtain a support structure of an excellent quakeproof property for a fuel transporting device provided for the transportation of fuel between a reactor building and an auxiliary building in a pressure tube reactor or the like. Structure: The structure comprises an oblique transfer chute loosely penetrating the reactor building, reactor container and auxiliary building, a transfer chute support outer cylinder surrounding the transfer chute and having one end coupled to the transfer chute and other end coupled to the container, flexible seal members respectively provided on the reactor building side and on the auxiliary building side and surrounding the transfer chute and a slidable support supported on the side of the auxiliary building such that it can be in frictional contact with the outer periphery of the transfer chute. With this construction, the relative displacements of various parts caused by an earthquake or the like can be absorbed by the support outer cylinder, flexible seals and slidable support. (Ikeda, J.)

  20. Inherently safe light water reactors

    International Nuclear Information System (INIS)

    Ise, Takeharu

    1987-01-01

    Today's large nuclear power reactors of world-wise use have been designed based on the philosophy. It seems that recent less electricity demand rates, higher capital cost and the TMI accident let us acknowledge relative small and simplified nuclear plants with safer features, and that Chernobyl accident in 1983 underlines the needs of intrinsic and passive safety characteristics. In such background, several inherently safe reactor concepts have been presented abroad and domestically. First describing 'Can inherently safe reactors be designed,' then I introduce representative reactor concepts of inherently safe LWRs advocated abroad so far. All of these innovative reactors employ intrinsic and passive features in their design, as follows: (1) PIUS, an acronym for Process Inherent Ultimate Safety, or an integral PWR with passive heat sink and passive shutdown mechanism, advocated by ASEA-ATOM of Sweden. (2) MAP(Minimum Attention Plant), or a self-pressurized, natural circulation integral PWR, promoted by CE Inc. of the U.S. (3) TPS(TRIGA Power System), or a compact PWR with passive heat sink and inherent fuel characteristics of large prompt temperature coefficient, prompted by GA Technologies Inc. of the U.S. (4) PIUS-BWR, or an inherently safe BWR employing passively actuated fluid valves, in competition with PIUS, prompted by ORNL of the U.S. Then, I will describe the domestic trends in Japan and the innovative inherently safe LWRs presented domestically so far. (author)

  1. Reactor enclosure. BRC meeting presentation

    International Nuclear Information System (INIS)

    Fisch, J.W.

    1975-01-01

    The latest status of key components of the Reactor Enclosure System of the Clinch River Breeder Reactor Plant is described. Areas where there have been notable design changes or significant design detail maturity in the six months since the last BRC presentation are highlighted. (auth)

  2. Reactor core of light water-cooled reactor

    International Nuclear Information System (INIS)

    Miwa, Jun-ichi; Aoyama, Motoo; Mochida, Takaaki.

    1996-01-01

    In a reactor core of a light water cooled reactor, the center of the fuel rods or moderating rods situated at the outermost circumference among control rods or moderating rods are connected to divide a lattice region into an inner fuel region and an outer moderator region. In this case, the area ratio of the moderating region to the fuel region is determined to greater than 0.81 for every cross section of the fuel region. The moderating region at the outer side is increased relative to the fuel rod region at the inner side while keeping the lattice pitch of the fuel assembly constant, thereby suppressing the increase of an absolute value of a void reactivity coefficient which tends to be caused when using MOX fuels as a fuel material, by utilizing neutron moderation due to a large quantity of coolants at the outer side of the fuel region. The void reactivity coefficient can be made substantially equal with that of uranium fuel assembly without greatly reducing a plutonium loading amount or without greatly increasing linear power density. (N.H.)

  3. Advanced Safeguards Approaches for New Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  4. Industrial structure at research reactor suppliers

    International Nuclear Information System (INIS)

    Roegler, H.-J.; Bogusch, E.; Friebe, T.

    2001-01-01

    Due to the recent joining of the forces of Framatome S. A. from France and the Nuclear Division of Siemens AG Power Generation (KWU) from Germany to a Joint Venture named Framatome Advanced Nuclear Power S.A.S., the issue of the necessary and of the optimal industrial structure for nuclear projects as a research reactor is, was discussed internally often and intensively. That discussion took place also in the other technical fields such as Services for NPPs but also in the field of interest here, i. e. Research Reactors. In summarizing the statements of this presentation one can about state that: Research Reactors are easier to build than NPPs, but not standardised; Research Reactors need a wide spectrum of skills and experiences; to design and build Research Reactors needs an experienced team especially in terms of management and interfaces; Research Reactors need background from built reference plants more than from operating plants; Research Reactors need knowledge of suitable experienced subsuppliers. Two more essential conclusions as industry involved in constructing and upgrading research reactors are: Research Reactors by far are more than a suitable core that generates a high neutron flux; every institution that designs and builds a Research Reactor lacks quality or causes safety problems, damages the reputation of the entire community

  5. Control of reactor coolant flow path during reactor decay heat removal

    Science.gov (United States)

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  6. Linguistic Formalism for Semi-Autonomous Reactor Operation

    International Nuclear Information System (INIS)

    Joo, Sungmoon; Seo, Sang Mun; Suh, Yong-Suk; Park, Cheol

    2017-01-01

    The ultimate goal of our work is to develop a novel, integrated system for semi-autonomous reactor operation by introducing an interfacing language shared by human reactor operators and artificially intelligent service agents (e.g., robots). We envision that human operators and artificially intelligent service agents operate the reactor cooperatively in the future. For example, an artificially intelligent service agent carries out a human reactor operator's command or reports the result of a task commanded by the human reactor operator. This work presents preliminary work towards a unified linguistic formalism for cooperative, semiautonomous reactor operation. Application of the proposed formalism to reactor operator communication domain shows that the formalism effectively captures the syntax and semantics of the domain-specific language defined by the communication protocol.

  7. Reactor fuel charging equipment

    International Nuclear Information System (INIS)

    Wade, Elman.

    1977-01-01

    In many types of reactor fuel charging equipment, tongs or a grab, attached to a trolley, housed in a guide duct, can be used for withdrawing from the core a selected spent fuel assembly or to place a new fuel assembly in the core. In these facilities, the trolley may have wheels that roll on rails in the guide duct. This ensures the correct alignment of the grab, the trolley and fuel assembly when this fuel assembly is being moved. By raising or lowering such a fuel assembly, the trolley can be immerged in the coolant bath of the reactor, whereas at other times it can be at a certain level above the upper surface of the coolant bath. The main object of the invention is to create a fuel handling apparatus for a sodium cooled reactor with bearings lubricated by the sodium coolant and in which the contamination of these bearings is prevented [fr

  8. Chernobyl reactor transient simulation study

    International Nuclear Information System (INIS)

    Gaber, F.A.; El Messiry, A.M.

    1988-01-01

    This paper deals with the Chernobyl nuclear power station transient simulation study. The Chernobyl (RBMK) reactor is a graphite moderated pressure tube type reactor. It is cooled by circulating light water that boils in the upper parts of vertical pressure tubes to produce steam. At equilibrium fuel irradiation, the RBMK reactor has a positive void reactivity coefficient. However, the fuel temperature coefficient is negative and the net effect of a power change depends upon the power level. Under normal operating conditions the net effect (power coefficient) is negative at full power and becomes positive under certain transient conditions. A series of dynamic performance transient analysis for RBMK reactor, pressurized water reactor (PWR) and fast breeder reactor (FBR) have been performed using digital simulator codes, the purpose of this transient study is to show that an accident of Chernobyl's severity does not occur in PWR or FBR nuclear power reactors. This appears from the study of the inherent, stability of RBMK, PWR and FBR under certain transient conditions. This inherent stability is related to the effect of the feed back reactivity. The power distribution stability in the graphite RBMK reactor is difficult to maintain throughout its entire life, so the reactor has an inherent instability. PWR has larger negative temperature coefficient of reactivity, therefore, the PWR by itself has a large amount of natural stability, so PWR is inherently safe. FBR has positive sodium expansion coefficient, therefore it has insufficient stability it has been concluded that PWR has safe operation than FBR and RBMK reactors

  9. Guidelines for the Review of Research Reactor Safety: Revised Edition. Reference Document for IAEA Integrated Safety Assessment of Research Reactors (INSARR)

    International Nuclear Information System (INIS)

    2013-01-01

    The Integrated Safety Assessment of Research Reactors (INSARR) is an IAEA safety review service available to Member States with the objective of supporting them in ensuring and enhancing the safety of their research reactors. This service consists of performing a comprehensive peer review and an assessment of the safety of the respective research reactor. The reviews are based on IAEA safety standards and on the provisions of the Code of Conduct on the Safety of Research Reactors. The INSARR can benefit both the operating organizations and the regulatory bodies of the requesting Member States, and can include new research reactors under design or operating research reactors, including those which are under a Project and Supply Agreement with the IAEA. The first IAEA safety evaluation of a research reactor operated by a Member State was completed in October 1959 and involved the Swiss 20 MW DIORIT research reactor. Since then, and in accordance with its programme on research reactor safety, the IAEA has conducted safety review missions in its Member States to enhance the safety of their research reactor facilities through the application of the Code of Conduct on the Safety of Research Reactors and the relevant IAEA safety standards. About 320 missions in 51 Member States were undertaken between 1972 and 2012. The INSARR missions and other limited scope safety review missions are conducted following the guidelines presented in this publication, which is a revision of Guidelines for the Review of Research Reactor Safety (IAEA Services Series No. 1), published in December 1997. This publication details those IAEA safety standards and guidance publications relevant to the safety of research reactors that have been revised or published since 1997. The purpose of this publication is to give guidance on the preparation, implementation, reporting and follow-up of safety review missions. It is also intended to be of assistance to operators and regulators in conducting

  10. Reactor BR2. Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2001-01-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given

  11. Ageing of research reactors

    International Nuclear Information System (INIS)

    Ciocanescu, M.

    2001-01-01

    Historically, many of the research institutions were centred on a research reactor facility as main technological asset and major source of neutrons for research. Important achievements were made in time in these research institutions for development of nuclear materials technology and nuclear safety for nuclear energy. At present, ageing of nuclear research facilities among these research reactors and ageing of staff are considerable factors of reduction of competence in research centres. The safe way of mitigation of this trend deals with ageing management by so called, for power reactors, Plant Life Management and new investments in staff as investments in research, or in future resources of competence. A programmatic approach of ageing of research reactors in correlation with their actual and future utilisation, will be used as a basis for safety evaluation and future spending. (author)

  12. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2001-04-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given.

  13. Seismic research on graphite reactor core

    International Nuclear Information System (INIS)

    Lai Shigang; Sun Libin; Zhang Zhengming

    2013-01-01

    Background: Reactors with graphite core structure include production reactor, water-cooled graphite reactor, gas-cooled reactor, high-temperature gas-cooled reactor and so on. Multi-body graphite core structure has nonlinear response under seismic excitation, which is different from the response of general civil structure, metal connection structure or bolted structure. Purpose: In order to provide references for the designing and construction of HTR-PM. This paper reviews the history of reactor seismic research evaluation from certain countries, and summarizes the research methods and research results. Methods: By comparing the methods adopted in different gas-cooled reactor cores, inspiration for our own HTR seismic research was achieved. Results and Conclusions: In this paper, the research ideas of graphite core seismic during the process of designing, constructing and operating HTR-10 are expounded. Also the project progress of HTR-PM and the research on side reflection with the theory of similarity is introduced. (authors)

  14. Research Reactors Types and Utilization

    International Nuclear Information System (INIS)

    Abdelrazek, I.D.

    2008-01-01

    A nuclear reactor, in gross terms, is a device in which nuclear chain reactions are initiated, controlled, and sustained at a steady rate. The nuclei of fuel heavy atoms (mostly 235 U or 239 Pu), when struck by a slow neutron, may split into two or more smaller nuclei as fission products,releasing energy and neutrons in a process called nuclear fission. These newly-born fast neutrons then undergo several successive collisions with relatively low atomic mass material, the moderator, to become thermalized or slow. Normal water, heavy water, graphite and beryllium are typical moderators. These neutrons then trigger further fissions, and so on. When this nuclear chain reaction is controlled, the energy released can be used to heat water, produce steam and drive a turbine that generates electricity. The fission process, and hence the energy release, are controlled by the insertion (or extraction) of control rods through the reactor. These rods are strongly neutron absorbents, and thus only enough neutrons to sustain the chain reaction are left in the core. The energy released, mostly in the form of heat, should be continuously removed, to protect the core from damage. The most significant use of nuclear reactors is as an energy source for the generation of electrical power and for power in some military ships. This is usually accomplished by methods that involve using heat from the nuclear reaction to power steam turbines. Research reactors are used for radioisotope production and for beam experiments with free neutrons. Historically, the first use of nuclear reactors was the production of weapons grade plutonium for nuclear weapons. Currently all commercial nuclear reactors are based on nuclear fission. Fusion power is an experimental technology based on nuclear fusion instead of fission.

  15. Reactor water clean-up device

    International Nuclear Information System (INIS)

    Sawa, Toshio; Takahashi, Sankichi; Takashima, Yoshie.

    1983-01-01

    Purpose: To efficiently eliminate radioactive materials such as iron oxide and cobalt ions with less heat loss by the use of an electrode assembly applied with a direct current. Constitution: In a reactor water clean-up device adapted to pass reactor water through an electrode assembly comprising at least a pair of anode and cathode applied with a direct current to eliminate various types of ions contained in the reactor water by way of the electrolysis or charge neutralization at the anode, the cathode is constituted with a corrosion resistant grid-like or porous metal plate and a layer to the upper portion of the metal plate filled with a plurality of metal spheres of about 1 - 5 mm diameter, and the anode is made of insoluble porous or spirally wound metal material. (Seki, T.)

  16. PRISM reactor. An option for plutonium disposition?

    Energy Technology Data Exchange (ETDEWEB)

    Fehlinger, Sebastian; Friess, Friederike; Kuett, Moritz [IANUS, Technische Universitaet Darmstadt (Germany)

    2015-07-01

    The Power Reactor Innovative Small Module (PRISM) is sodium cooled fast reactor model. The energy output depends on the core configuration, however with an energy output of approximately 300 MWe, the PRISM reactor belongs to the class of small modular reactors. Beside using the reactor as a breeder reactor or for the transmutation of nuclear waste, it might also be used as a burner reactor for separated plutonium. This includes for example U.S.-American excess weapon-grade plutonium as well as separated reactor-grade plutonium. Recently, there has been an ongoing discussion in GB to use the PRISM reactor to dispose their excess civilian plutonium. Depending on the task, the core configuration varies slightly. We will present different layouts and the matching MCNP models, these models can then be used to conduct depletion calculations. From these results, analysis of the change in the plutonium isotopics in the spent fuel, the amount of fissioned plutonium, and the possible annual plutonium throughputs is possible.

  17. Reactor operations Brookhaven medical research reactor, Brookhaven high flux beam reactor informal monthly report

    International Nuclear Information System (INIS)

    Hauptman, H.M.; Petro, J.N.; Jacobi, O.

    1995-04-01

    This document is the April 1995 summary report on reactor operations at the Brookhaven Medical Research Reactor and the Brookhaven High Flux Beam Reactor. Ongoing experiments/irradiations in each are listed, and other significant operations functions are also noted. The HFBR surveillance testing schedule is also listed

  18. Space-time reactor kinetics for heterogeneous reactor structure

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1969-11-15

    An attempt is made to formulate time dependent diffusion equation based on Feinberg-Galanin theory in the from analogue to the classical reactor kinetic equation. Parameters of these equations could be calculated using the existing codes for static reactor calculation based on the heterogeneous reactor theory. The obtained kinetic equation could be analogues in form to the nodal kinetic equation. Space-time distribution of neutron flux in the reactor can be obtained by solving these equations using standard methods.

  19. Reactor physics innovations of the advanced CANDU reactor core: adaptable and efficient

    International Nuclear Information System (INIS)

    Chan, P.S.W.; Hopwood, J.M.; Bonechi, M.

    2003-01-01

    The Advanced CANDU Reactor (ACR) is designed to have a benign, operator-friendly core physics characteristic, including a slightly negative coolant-void reactivity and a moderately negative power coefficient. The discharge fuel burnup is about three times that of natural uranium fuel in current CANDU reactors. Key features of the reactor physics innovations in the ACR core include the use of H 2 O coolant, slightly enriched uranium (SEU) fuel, and D 2 O moderator in a reduced lattice pitch. These innovations result in substantial improvements in economics, as well as significant enhancements in reactor performance and waste reduction over the current reactor design. The ACR can be readily adapted to different power outputs by increasing or decreasing the number of fuel channels, while maintaining identical fuel and fuel-channel characteristics. The flexibility provided by on-power refuelling and simple fuel bundle design enables the ACR to easily adapt to the use of plutonium and thorium fuel cycles. No major modifications to the basic ACR design are required because the benign neutronic characteristics of the SEU fuel cycle are also inherent in these advanced fuel cycles. (author)

  20. Reactor control rod supporting structure

    International Nuclear Information System (INIS)

    Akimoto, Tokuzo; Miyata, Hiroshi.

    1984-01-01

    Purpose: To enable stable reactor core control even in extremely great vertical earthquakes, as well as under normal operation conditions in FBR type reactors. Constitution: Since a mechanism for converting the rotational movement of a control rod into vertical movement is placed at the upper portion of the reactor core at high temperature, the mechanism should cause fusion or like other danger after the elapse of a long period of time. In view of the above, the conversion mechanism is disposed to the lower portion of the reactor core at a lower temperature region. Further, the connection between the control rod and the control rod drive can be separated upon great vertical earthquakes. (Seki, T.)

  1. Molten salt reactors: reactor cores

    International Nuclear Information System (INIS)

    1983-01-01

    In this critical analysis of the MSBR I project are examined the problems concerning the reactor core. Advantages of breeding depend essentially upon solutions to technological problems like continuous reprocessing or graphite behavior under neutron irradiation. Graphite deformation, moderator unloading, control rods and core instrumentation require more studies. Neutronics of the core, influence of core geometry and salt composition, fuel evolution, and thermohydraulics are reviewed [fr

  2. Reactor Materials Program probability of indirectly--induced failure of L and P reactor process water piping

    International Nuclear Information System (INIS)

    Daugherty, W.L.

    1988-01-01

    The design basis accident for the Savannah River Production Reactors is the abrupt double-ended guillotine break (DEGB) of a large process water pipe. This accident is not considered credible in light of the low applied stresses and the inherent ductility of the piping material. The Reactor Materials Program was initiated to provide the technical basis for an alternate credible design basis accident. One aspect of this work is to determine the probability of the DEGB; to show that in addition to being incredible, it is also highly improbable. The probability of a DEGB is broken into two parts: failure by direct means, and indirectly-induced failure. Failure of the piping by direct means can only be postulated to occur if an undetected crack grows to the point of instability, causing a large pipe break. While this accident is not as severe as a DEGB, it provides a conservative upper bound on the probability of a direct DEGB of the piping. The second part of this evaluation calculates the probability of piping failure by indirect causes. Indirect failure of the piping can be triggered by an earthquake which causes other reactor components or the reactor building to fall on the piping or pull it from its supports. Since indirectly-induced failure of the piping will not always produce consequences as severe as a DEGB, this gives a conservative estimate of the probability of an indirectly- induced DEGB. This second part, indirectly-induced pipe failure, is the subject of this report. Failure by seismic loads in the piping itself will be covered in a separate report on failure by direct causes. This report provides a detailed evaluation of L reactor. A walkdown of P reactor and an analysis of the P reactor building provide the basis for extending the L reactor results to P reactor

  3. Transmutation of nuclear waste in nuclear reactors

    International Nuclear Information System (INIS)

    Abrahams, K.; Kloosterman, J.L.; Pilate, S.; Wehmann, U.K.

    1996-03-01

    The objective of this joint study of ECN, Belgonucleaire, and Siemens is to investigate possibilities for transmutation of nuclear waste in regular nuclear reactors or in special transmutation devices. Studies of possibilities included the limits and technological development steps which would be needed. Burning plutonium in fast reactors, gas-cooled high-temperature reactors and light water reactors (LWR) have been considered. For minor actinides the transmutation rate mainly depends on the content of the minor actinides in the reactor and to a much less degree on the fact whether one uses a homogeneous system (with the actinides mixed into the fuel) or a heterogeneous system. If one wishes to stabilise the amount of actinides from the present LWRs, about 20% of all nuclear power would have to be generated in special burner reactors. It turned out that reactor transmutation of fission products would require considerable recycling efforts and that the time needed for a substantial transmutation would be rather long for the presently available levels of the neutron flux. If one would like to design burner systems which can serve more light water reactors, a large effort would be needed and other burners (possibly driven by accelerators) should be considered. (orig.)

  4. Lower activation materials and magnetic fusion reactors

    International Nuclear Information System (INIS)

    Conn, R.W.; Bloom, E.E.; Davis, J.W.; Gold, R.E.; Little, R.; Schultz, K.R.; Smith, D.L.; Wiffen, F.W.

    1984-01-01

    Radioactivity in fusion reactors can be effectively controlled by materials selection. The detailed relationship between the use of a material for construction of a magnetic fusion reactor and the material's characteristics important to waste disposal, safety, and system maintainability has been studied. The quantitative levels of radioactivation are presented for many materials and alloys, including the role of impurities, and for various design alternatives. A major outcome has been the development of quantitative definitions to characterize materials based on their radioactivation properties. Another key result is a four-level classification scheme to categorize fusion reactors based on quantitative criteria for waste management, system maintenance, and safety. A recommended minimum goal for fusion reactor development is a reference reactor that (a) meets the requirements for Class C shallow land burial of waste materials, (b) permits limited hands-on maintenance outside the magnet's shield within 2 days of a shutdown, and (c) meets all requirements for engineered safety. The achievement of a fusion reactor with at least the characteristics of the reference reactor is a realistic goal. Therefore, in making design choices or in developing particular materials or alloys for fusion reactor applications, consideration must be given to both the activation characteristics of a material and its engineering practicality for a given application

  5. Method of operating heavy water moderated reactors

    International Nuclear Information System (INIS)

    Masuda, Hiroyuki.

    1980-01-01

    Purpose: To enable stabilized reactor control, and improve the working rate and the safety of the reactor by removing liquid poison in heavy water while maintaining the power level constant to thereby render the void coefficient of the coolants negative in the low power operation. Method: The operation device for a heavy water moderated reactor comprises a power detector for the reactor, a void coefficient calculator for coolants, control rods inserted into the reactor, a poison regulator for dissolving poisons into or removing them out of heavy water and a device for removing the poisons by the poison regulator device while maintaining the predetermined power level or inserting the control rods by the signals from the power detector and the void coefficient calculator in the high temperature stand-by conditions of the reactor. Then, the heavy water moderated reactor is operated so that liquid poisons in the heavy water are eliminated in the high temperature stand-by condition prior to the start for the power up while maintaining the power level constant and the plurality of control rods are inserted into the reactor core and the void coefficient of the coolants is rendered negative in the low power operation. (Seki, T.)

  6. Nuclear Reactors and Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  7. Process for surface treatment of zirconium-containing cladding materials for fuel element or other components for nuclear reactors

    International Nuclear Information System (INIS)

    Videm, K.G.; Lunde, L.R.; Kooyman, H.H.

    1975-01-01

    A process for the surface treatment of zirconium-base cladding materials for fuel elements or other components for nuclear reactors is described. The treatment includes pickling the cladding material in a fluoride-containing bath, and then applying a protective coating through oxidation to the pickled cladding material. The fluoride-containing contaminants which remain on the surface of the cladding material during pickling are removed or rendered harmless by anodic oxidation

  8. The nuclear reactor systems

    International Nuclear Information System (INIS)

    Bacher, P.

    2008-01-01

    This paper describes the various nuclear reactor systems, starting with the Generation II, then the present development of the Generation III and the stakes and challenges of the future Generation IV. Some have found appropriate to oppose reactor systems or generations one to another, especially by minimizing the enhancements of generation III compared to generation II or by expecting the earth from generation IV (meaning that generation III is already obsolete). In the first part of the document (chapter 2), some keys are given to the reader to develop its proper opinion. Chapter 3 describes more precisely the various reactor systems and generations. Chapter 4 discusses the large industrial manoeuvres around the generation III, and the last chapter gives some economical references, taking into account, for the various means of power generation, the impediments linked to climate protection

  9. Nuclear Reactor RA Safety Report, Vol. 4, Reactor

    International Nuclear Information System (INIS)

    1986-11-01

    RA research reactor is thermal heavy water moderated and cooled reactor. Metal uranium 2% enriched fuel elements were used at the beginning of its operation. Since 1976, 80% enriched uranium oxide dispersed in aluminium fuel elements were gradually introduced into the core and are the only ones presently used. Reactor core is cylindrical, having diameter 40 cm and 123 cm high. Reaktor core is made up of 82 fuel elements in aluminium channels, lattice is square, lattice pitch 13 cm. Reactor vessel is cylindrical made of 8 mm thick aluminium, inside diameter 140 cm and 5.5 m high surrounded with neutron reflector and biological shield. There is no containment, the reactor building is playing the shielding role. Three pumps enable circulation of heavy water in the primary cooling circuit. Degradation of heavy water is prevented by helium cover gas. Control rods with cadmium regulate the reactor operation. There are eleven absorption rods, seven are used for long term reactivity compensation, two for automatic power regulation and two for safety shutdown. Total anti reactivity of the rods amounts to 24%. RA reactor is equipped with a number of experimental channels, 45 vertical (9 in the core), 34 in the graphite reflector and two in the water biological shield; and six horizontal channels regularly distributed in the core. This volume include detailed description of systems and components of the RA reactor, reactor core parameters, thermal hydraulics of the core, fuel elements, fuel elements handling equipment, fuel management, and experimental devices [sr

  10. Reactor physical experimental program EROS in the frame of the molten salt applying reactor concepts development

    International Nuclear Information System (INIS)

    Hron, Miloslav; Kyncl, Jan; Mikisek, Miroslav

    2009-01-01

    After the relatively broad program of experimental activities, which have been involved in the complex R and D program for the Molten Salt Reactor (MSR) - SPHINX (SPent Hot fuel Incinerator by Neutron fluX) concept development in the Czech Republic, there has been a next stage (namely large-scale experimental verification of design inputs by use of MSR-type inserted zones into the existing light water moderated experimental reactor LR-0 called EROS project) started, which will be focused to the experimental verification of the rector physical or neutronic properties of other types of reactor concepts applying molten salts in the role of liquid fuel and/or coolant. This tendency is based on the recently accepted decision of the MSR SSC of GIF to consider for further period of its activity two baseline concepts- fast neutron molten salt reactor non-moderated (FMSR-NM) as a long-term alternative to solid fuelled fast neutron reactors and simultaneously, advanced high temperature reactor (AHTR) with pebble bed type solid fuel cooled by liquid salts. There will be a brief description of the prepared and performed experimental programs in these directions (as well as the preliminary results obtained so far) introduced in the paper. (author)

  11. The role of research reactor and its future

    International Nuclear Information System (INIS)

    Nakagome, Yoshihiro

    2005-01-01

    About a half century passed since the start of operation of research reactors. Many research reactors were stopped their operation or decommissioned. With the practical use of nuclear energy, the meaning of research reactor has been buried in oblivion in the developed countries. Furthermore, under the nuclear weapons nonproliferation policy, the use of high enriched uranium fuel in research reactors is obliged to change to the use of low enriched uranium fuel. In such severe situation, this paper refers to the role of the research reactor once more through the operation experience of university-owned research reactor KUR (Kyoto University Reactor, Japan) and describes that research reactor is indispensable for the preparation to the second coming nuclear age. (author)

  12. Candu reactors with thorium fuel cycles

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Fehrenbach, P.; Duffey, R.; Kuran, S.; Ivanco, M.; Dyck, G.R.; Chan, P.S.W.; Tyagi, A.K.; Mancuso, C.

    2006-01-01

    Over the last decade and a half AECL has established a strong record of delivering CANDU 6 nuclear power plants on time and at budget. Inherently flexible features of the CANDU type reactors, such as on-power fuelling, high neutron economy, fuel channel based heat transport system, simple fuel bundle configuration, two independent shut down systems, a cool moderator and a defence-in-depth based safety philosophy provides an evolutionary path to further improvements in design. The immediate milestone on this path is the Advanced CANDU ReactorTM** (ACRTM**), in the form of the ACR-1000TM**. This effort is being followed by the Super Critical Water Reactor (SCWR) design that will allow water-cooled reactors to attain high efficiencies by increasing the coolant temperature above 550 0 C. Adaptability of the CANDU design to different fuel cycles is another technology advantage that offers an additional avenue for design evolution. Thorium is one of the potential fuels for future reactors due to relative abundance, neutronics advantage as a fertile material in thermal reactors and proliferation resistance. The Thorium fuel cycle is also of interest to China, India, and Turkey due to local abundance that can ensure sustainable energy independence over the long term. AECL has performed an assessment of both CANDU 6 and ACR-1000 designs to identify systems, components, safety features and operational processes that may need to be modified to replace the NU or SEU fuel cycles with one based on Thorium. The paper reviews some of these requirements and the associated practical design solutions. These modifications can either be incorporated into the design prior to construction or, for currently operational reactors, during a refurbishment outage. In parallel with reactor modifications, various Thorium fuel cycles, either based on mixed bundles (homogeneous) or mixed channels (heterogeneous) have been assessed for technical and economic viability. Potential applications of a

  13. Studies of conceptual spheromak fusion reactors

    International Nuclear Information System (INIS)

    Katsurai, M.; Yamada, M.

    1982-01-01

    Preliminary design studies are carried out for a spheromak fusion reactor. Simplified circuit theory is applied to obtain the characteristic relations among various parameters of the spheromak configuration for an aspect ratio of A >or approx. 1.6. These relations are used to calculate the parameters for the conceptual designs of three types of fusion reactor: (1) the DT reactor with two-component-type operation, (2) the ignited DT reactor, and (3) the ignited catalysed-type DD reactor. With a total wall loading of approx. 4 MW.m -2 , it is found that edge magnetic fields of only approx. 4 T (DT) and approx. 9 T (Cat. DD) are required for ignited reactors of 1 m plasma (minor) radius with output powers in the gigawatt range. An assessment of various schemes of generation, compression and translation of spheromak plasmas is presented. (author)

  14. Feasible reactor power cutback logic development for an integral reactor

    International Nuclear Information System (INIS)

    Han, Soon-Kyoo; Lee, Chung-Chan; Choi, Suhn; Kang, Han-Ok

    2013-01-01

    Major features of integral reactors that have been developed around the world recently are simplified operating systems and passive safety systems. Even though highly simplified control system and very reliable components are utilized in the integral reactor, the possibility of major component malfunction cannot be ruled out. So, feasible reactor power cutback logic is required to cope with the malfunction of components without inducing reactor trip. Simplified reactor power cutback logic has been developed on the basis of the real component data and operational parameters of plant in this study. Due to the relatively high rod worth of the integral reactor the control rod assembly drop method which had been adapted for large nuclear power plants was not desirable for reactor power cutback of the integral reactor. Instead another method, the control rod assembly control logic of reactor regulating system controls the control rod assembly movements, was chosen as an alternative. Sensitivity analyses and feasibility evaluations were performed for the selected method by varying the control rod assembly driving speed. In the results, sensitivity study showed that the performance goal of reactor power cutback system could be achieved with the limited range of control rod assembly driving speed. (orig.)

  15. Strengthening IAEA Safeguards for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Bruce D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anzelon, George A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Budlong-Sylvester, Kory [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half a dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan (AIP). To

  16. Advanced converters and reactors

    International Nuclear Information System (INIS)

    Haefele, W.; Kessler, G.

    1984-01-01

    As Western Europe and most countries of the Asia-Pacific region (except Australia) have only small natural uranium resources, they must import nuclear fuel from the major uranium supplier countries. The introduction of advanced converter and breeder reactor technology allows a fuel utilization of a factor of 4 to 100 higher than with present low converters (LWRs) and will make uranium-importing countries less vulnerable to price jumps and supply stops in the uranium market. In addition, breeder-reactor technology will open up a potential that can cover world energy requirements for several thousand years. The enormous development costs of advanced converter and breeder technologies can probably be raised only by highly industrialized countries. Those highly industrialized countries that have little or no uranium resources (Western Europe, Japan) will probably be the first to introduce this advanced reactor technology on a commercial scale. A number of small countries and islands will need only small power reactors with inherent safety capabilities, especially in the beginning of their nuclear energy programs. For economic reasons, the fuel cycle services should come from large reprocessing centers of countries having sufficiently large nuclear power programs or from international fuel cycle centers. (author)

  17. Development of Core Design Model for Small-Sized Research Reactor and Establishment of Infrastructure for Reactor Export

    International Nuclear Information System (INIS)

    Kim, M. H.; Win, Naing; Lim, J. Y.

    2007-02-01

    Within 10 years a growing world-wide demand of new research reactor construction is expected because of obsolescence. In Korea, a new research reactor is also required in order to meet domestic demand of utilization. KAERI has been devoted to develop an export-oriented research reactors for these kinds of demand. A next generation research reactor should comply with general requirements for safety, economics, environment-friendliness and non-proliferation as well as high performance requirement of high flux level. A export-tailored reactor should be developed for the demand of developing counties or under-developed countries. A new design concept is to be developed for a long cycle length core which has excellent irradiation facility with high flux

  18. Fusion reactor wastes

    International Nuclear Information System (INIS)

    Young, J.R.

    1976-01-01

    The fusion reactor currently is being developed as a clean source of electricity with an essentially infinite source of fuel. These reactors are visualized as using a fusion reaction to generate large quantities of high temperature energy which can be used as process heat or for the generation of electricity. The energy would be created primarily as the kinetic energy of neutrons or other reaction products. Neutron energy could be converted to high-temperature heat by moderation and capture of the neutrons. The energy of other reaction products could be converted to high-temperature heat by capture, or directly to electricity by direct conversion electrostatic equipment. An analysis to determine the wastes released as a result of operation of fusion power plants is presented

  19. Some biological effects of high-voltage stationary electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, V.V.; Dobrov, N.N.; Drobyshev, V.I.; Koroleva, L.V.; Nikitin, M.D.; Petrukhin, S.V.; Semonova, L.A.; Fedorov, V.P.

    The experiments were carried out on 345 white mice using hematological and pathomorphological procedures. The constant electric field (CEF) was generated in a special laboratory device. The exposure to CEF of 50 and 100 kV/m for 20 s caused hematological and morphological changes typical of the anxiety stage of the adaptation syndrome. The exposure also produced morphological changes of reactive and destructive type in skeletal muscles and different segments of kinesthetic receptors. The level of the above changes appears to be directly related to the CEF strength. 6 references, 4 figures, 1 table.

  20. RA Reactor

    International Nuclear Information System (INIS)

    1978-02-01

    In addition to basic characteristics of the RA reactor, organizational scheme and financial incentives, this document covers describes the state of the reactor components after 18 years of operation, problems concerned with obtaining the licence for operation with 80% fuel, problems of spent fuel storage in the storage pool of the reactor building and the need for renewal of reactor equipment, first of all instrumentation [sr

  1. Persistent pain, sensory disturbances and functional impairment after adjuvant chemotherapy for breast cancer

    DEFF Research Database (Denmark)

    Andersen, Kenneth Geving; Jensen, Maj-Britt; Kehlet, Henrik

    2012-01-01

    (CEF) and cyclophosphamide and epirubicin + docetaxel (CE + T) in relation to PPBCT, sensory disturbances, peripheral sensory disturbances and functional impairment. Material and methods. A comparative nationwide cross-sectional questionnaire study on two cohorts treated with CEF respectively CE + T...

  2. Hybrid simulation of reactor kinetics in CANDU reactors using a modal approach

    International Nuclear Information System (INIS)

    Monaghan, B.M.; McDonnell, F.N.; Hinds, H.W.T.; m.

    1980-01-01

    A hybrid computer model for simulating the behaviour of large CANDU (Canada Deuterium Uranium) reactor cores is presented. The main dynamic variables are expressed in terms of weighted sums of a base set of spatial natural-mode functions with time-varying co-efficients. This technique, known as the modal or synthesis approach, permits good three-dimensional representation of reactor dynamics and is well suited to hybrid simulation. The hybrid model provides improved man-machine interaction and real-time capability. The model was used in two applications. The first studies the transient that follows a loss of primary coolant and reactor shutdown; the second is a simulation of the dynamics of xenon, a fission product which has a high absorption cross-section for neutrons and thus has an important effect on reactor behaviour. Comparison of the results of the hybrid computer simulation with those of an all-digital one is good, within 1% to 2%

  3. Preliminary design of a Binary Breeder Reactor; Diseno preliminar de un reactor esferico de quema/cria

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, E. Y.; Francois, J. L.; Lopez S, R. C., E-mail: eliasgarcerv@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac No. 8532, 62550 Jiutepec, Morelos (Mexico)

    2014-10-15

    A binary breeder reactor (BBR) is a reactor that by means of the transmutation and fission process can operates through the depleted uranium burning with a small quantity of fissile material. The advantages of a BBR with relation to other nuclear reactor types are numerous, taking into account their capacity to operate for a long time without requiring fuel reload or re-arrangement. In this work four different simulations are shown carried out with the MCNPX code with libraries Jeff-3.1 to 1200 K. The objective of this study is to compare two different models of BBR: a spherical reactor and a cylindrical one, using two fuel cycles for each one of them (U-Pu and Th-U) and different reflectors for the two different geometries. For all the models a super-criticality state was obtained at least 10.9 years without carrying out some fuel re-arrangement or reload. The plutonium-239 production was achieved in the models where natural uranium was used in the breeding area, while the production of uranium-233 was observed in the cases where thorium was used in the fertile area. Finally, a behavior of stationary wave reactor was observed inside the models of spherical reactor when contemplating the power uniform increment in the breeding area, while inside the cylindrical models was observed the behavior of a traveling wave reactor when registering the displacement of the burnt wave along the cylindrical model. (Author)

  4. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents.

    Science.gov (United States)

    Kougias, P G; Boe, K; Einarsdottir, E S; Angelidaki, I

    2015-08-01

    Foaming is one of the major operational problems in biogas plants, and dealing with foaming incidents is still based on empirical practices. Various types of antifoams are used arbitrarily to combat foaming in biogas plants, but without any scientific support this action can lead to serious deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic ends, is responsible for their foam promoting or foam counteracting behaviour. Thus, it was concluded that the fatty acids and oils could suppress foaming, while salt of fatty acids could generate foam. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  6. Steam up over reactor policy

    International Nuclear Information System (INIS)

    Kovan, D.

    1976-01-01

    Britain is once more assessing its nuclear power programme in the light of recent forecasts that there is unlikely to be any growth in the demand for electricity for many years to come. This means that the extra costs of launching a commercially unproven reactor, the Steam Generating Heavy Water Reactor (SGHWR), will be an even greater burden than previously expected, because they would be spread over fewer reactors. Sir John Hill's reported assessment concludes that the present strategy would be the most expensive way of developing Britain's nuclear power programme; and under the circumstances, may not be the best option. The SGHWR programme will certainly be more expensive than either relaunching a programme of advanced gas-cooled reactors (AGRs), or building American designed pressurised water reactors (PWRs). Recent developments of the AGR and PWR's and their advantages in the present position are outlined. (U.K.)

  7. Anticipated transients without scram for light water reactors: implications for liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Solomon, K.A.

    1979-07-01

    In the design of light water reactors (LWRs), protection against anticipated transients (e.g., loss of normal electric power and control rod withdrawal) is provided by a highly reliable scram, or shutdown system. If this system should become inoperable, however, the transient could lead to a core meltdown. The Nuclar Regulatory Commission (NRC) has proposed, in NUREG-0460 [1], new requirements (or acceptance criteria) for anticipated transients without scram (ATWS) events and the manner in which they could be considered in the design and safety evaluation of LWRs. This note assesses the potential impact of the proposed LWR-ATWS criteria on the liquid metal fast breeder reactor (LMFBR) safety program as represented by the Clinch River Breeder Reactor Plant

  8. Reactor container

    International Nuclear Information System (INIS)

    Naruse, Yoshihiro.

    1990-01-01

    The thickness of steel shell plates in a reactor container embedded in sand cussions is monitored to recognize the corrosion of the steel shell plates. That is, the reactor pressure vessel is contained in a reactor container shell and the sand cussions are disposed on the lower outside of the reactor container shell to elastically support the shell. A pit is disposed at a position opposing to the sand cussions for measuring the thickness of the reactor container shell plates. The pit is usually closed by a closing member. In the reactor container thus constituted, the closing member can be removed upon periodical inspection to measure the thickness of the shell plates. Accordingly, the corrosion of the steel shell plates can be recognized by the change of the plate thickness. (I.S.)

  9. Evaluation of quartz melt rate furnace with the nitric-glycolic flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-03

    The Savannah River National Laboratory (SRNL) was tasked to support validation of the Defense Waste Processing Facility (DWPF) melter offgas flammability model for the Nitric-Glycolic (NG) flowsheet. The work is supplemental to the Cold Cap Evaluation Furnace (CEF) testing conducted in 20141 and the Slurry-fed Melt Rate Furnace (SMRF) testing conducted in 20162 that supported Deliverable 4 of the DWPF & Saltstone Facility Engineering Technical Task Request (TTR).3 The Quartz Melt Rate Furnace (QMRF) was evaluated as a bench-scale scoping tool to potentially be used in lieu of or simply prior to the use of the larger-scale SMRF or CEF. The QMRF platform has been used previously to evaluate melt rate behavior and offgas compositions of DWPF glasses prepared from the Nitric-Formic (NF) flowsheet but not for the NG flowsheet and not with continuous feeding.4 The overall objective of the 2016-2017 testing was to evaluate the efficacy of the QMRF as a lab-scale platform for steady state, continuously fed melter testing with the NG flowsheet as an alternative to more expensive and complex testing with the SMRF or CEF platforms.

  10. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  11. Petri nets and fault diagnosis in nuclear reactors

    International Nuclear Information System (INIS)

    Jalel, N.A.; Nicholson, H.

    1990-11-01

    The possibility of applying Petri nets (Pns) as a modelling tool to represent any fault or accident that might occur in the Loss Of Fluid Test (LOFT) reactor, small scale pressurised water reactor, is discussed and analysed. Pns are developed to assist the nuclear reactor operator in identifying any fault or alarm that might arise in the power station. (author)

  12. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  13. Research reactors - an overview

    International Nuclear Information System (INIS)

    West, C.D.

    1997-01-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs

  14. Multiregion reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The study of reflected reactors can be done employing the multigroup diffusion method. The neutron conservation equations, inside the intervals, can be written by fluxes and group constants. A reflected reactor (one and two groups) for a slab geometry is studied, aplying the continuity of flux and current in the interface. At the end, the appropriated solutions for a infinite cylindrical reactor and for a spherical reactor are presented. (Author) [pt

  15. Fast-acting nuclear reactor control device

    International Nuclear Information System (INIS)

    Kotlyar, O.M.; West, P.B.

    1993-01-01

    A fast-acting nuclear reactor control device is described for controlling a safety control rod within the core of a nuclear reactor, the reactor controlled by a reactor control system, the device comprising: a safety control rod drive shaft and an electromagnetic clutch co-axial with the drive shaft operatively connected to the safety control rod for driving and positioning the safety control rod within or without the reactor core during reactor operation, the safety rod being oriented in a substantially vertical position to allow the rod to fall into the reactor core under the influence of gravity during shutdown of the reactor; the safety control rod drive shaft further operatively connected to a hydraulic pump such that operation of the drive shaft simultaneously drives and positions the safety control rod and operates the hydraulic pump such that a hydraulic fluid is forced into an accumulator, filling the accumulator with oil for the storage and supply of primary potential energy for safety control rod insertion such that the release of potential energy in the accumulator causes hydraulic fluid to flow through the hydraulic pump, converting the hydraulic pump to a hydraulic motor having speed and power capable of full length insertion and high speed driving of the safety control rod into the reactor core; a solenoid valve interposed between the hydraulic pump and the accumulator, said solenoid valve being a normally open valve, actuated to close when the safety control rod is out of the reactor during reactor operation; and further wherein said solenoid opens in response to a signal from the reactor control system calling for shutdown of the reactor and rapid insertion of the safety control rod into the reactor core, such that the opening of the solenoid releases the potential energy in the accumulator to place the safety control rod in a safe shutdown position

  16. Nuclear reactor shield including magnesium oxide

    International Nuclear Information System (INIS)

    Rouse, C.A.; Simnad, M.T.

    1981-01-01

    An improvement is described for nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux. The reactor shielding includes means providing structural support, neutron moderator material, neutron absorber material and other components, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron

  17. IAEA activities on research reactor safety

    International Nuclear Information System (INIS)

    Alcala-Ruiz, F.

    1995-01-01

    Since its inception in 1957, the International Atomic Energy Agency (IAEA) has included activities in its programme to address aspects of research reactors such as safety, utilization and fuel cycle considerations. These activities were based on statutory functions and responsibilities, and on the current situation of research reactors in operation around the world; they responded to IAEA Member States' general or specific demands. At present, the IAEA activities on research reactors cover the above aspects and respond to specific and current issues, amongst which safety-related are of major concern to Member States. The present IAEA Research Reactor Safety Programme (RRSP) is a response to the current situation of about 300 research reactors in operation in 59 countries around the world. (orig.)

  18. RSMASS: A simple model for estimating reactor and shield masses

    International Nuclear Information System (INIS)

    Marshall, A.C.; Aragon, J.; Gallup, D.

    1987-01-01

    A simple mathematical model (RSMASS) has been developed to provide rapid estimates of reactor and shield masses for space-based reactor power systems. Approximations are used rather than correlations or detailed calculations to estimate the reactor fuel mass and the masses of the moderator, structure, reflector, pressure vessel, miscellaneous components, and the reactor shield. The fuel mass is determined either by neutronics limits, thermal/hydraulic limits, or fuel damage limits, whichever yields the largest mass. RSMASS requires the reactor power and energy, 24 reactor parameters, and 20 shield parameters to be specified. This parametric approach should be applicable to a very broad range of reactor types. Reactor and shield masses calculated by RSMASS were found to be in good agreement with the masses obtained from detailed calculations

  19. Decommissioning of Salaspils nuclear reactor

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Malnachs, J.; Popelis, A.

    2002-01-01

    In May 1995, the Latvian Government decided to shut down the Research Reactor Salaspils (SRR) and to dispense with nuclear energy in future. The reactor has been out of operation since July 1998. A conceptual study for the decommissioning of SRR has been carried out by Noell-KRC-Energie- und Umwelttechnik GmbH from 1998-1999. he Latvian Government decided on 26 October 1999 to start the direct dismantling to 'green field' in 2001. The results of decommissioning and dismantling performed in 1999-2001 are presented and discussed. The main efforts were devoted to collecting and conditioning 'historical' radioactive waste from different storages outside and inside the reactor hall. All radioactive material more than 20 tons were conditioned in concrete containers for disposal in the radioactive waste depository 'Radons' in the Baldone site. Personal protective and radiation measurement equipment was upgraded significantly. All non-radioactive equipment and material outside the reactor buildings were free-released and dismantled for reuse or conventional disposal. Weakly contaminated material from the reactor hall was collected and removed for free-release measurements. The technology of dismantling of the reactor's systems, i.e. second cooling circuit, zero power reactors and equipment, is discussed in the paper. (author)

  20. Reactor building

    International Nuclear Information System (INIS)

    Maruyama, Toru; Murata, Ritsuko.

    1996-01-01

    In the present invention, a spent fuel storage pool of a BWR type reactor is formed at an upper portion and enlarged in the size to effectively utilize the space of the building. Namely, a reactor chamber enhouses reactor facilities including a reactor pressure vessel and a reactor container, and further, a spent fuel storage pool is formed thereabove. A second spent fuel storage pool is formed above the auxiliary reactor chamber at the periphery of the reactor chamber. The spent fuel storage pool and the second spent fuel storage pool are disposed in adjacent with each other. A wall between both of them is formed vertically movable. With such a constitution, the storage amount for spent fuels is increased thereby enabling to store the entire spent fuels generated during operation period of the plant. Further, since requirement of the storage for the spent fuels is increased stepwisely during periodical exchange operation, it can be used for other usage during the period when the enlarged portion is not used. (I.S.)

  1. SURGTANK, Steam Pressure, Saturation Temperature or Reactor Surge Tank

    International Nuclear Information System (INIS)

    Gorman, D.J.; Gupta, R.K.

    2001-01-01

    1 - Description of problem or function: SURGTANK generates the steam pressure, saturation temperature, and ambient temperature history for a nuclear reactor steam surge tank (pressurizer) in a state of thermodynamic equilibrium subjected to a liquid insurge described by a specified time history of liquid levels. It is capable also of providing the pressure and saturation temperature history, starting from thermodynamic equilibrium conditions, for the same tank subjected to an out-surge described by a time history of liquid levels. Both operations are available for light- or heavy- water nuclear reactor systems. The tank is assumed to have perfect thermal insulation on its outer wall surfaces. 2 - Method of solution: Surge tank geometry and initial liquid level and saturation pressure are provided as input for the out-surge problem, along with the prescribed time-sequence level history. SURGTANK assumes a reduced pressure for the end of the first change in liquid level and determines the associated change of entropy for the closed system. The assumed pressure is adjusted and the associated change in entropy recalculated until a pressure is attained for which no change occurs. This pressure is recorded and used as the beginning pressure for the next level increment. The system is then re-defined to exclude the small amount of liquid which has left the tank, and a solution for the pressure at the end of the second level increment is obtained. The procedure is terminated when the pressure at the end of the final increment has been determined. Surge tank geometry, thermal conductivity, specific heat, and density of tank walls, initial liquid level, and saturation pressure are provided as input for the insurge problem, along with the prescribed time-sequence level history. SURGTANK assumes a slightly in- creased pressure for the end of the first level, the inner tank sur- face is assumed to follow saturation temperature, linearly with time, throughout the interval, and

  2. Assessment of torsatrons as reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Painter, S.L.

    1992-12-01

    Stellarators have significant operational advantages over tokamaks as ignited steady-state reactors because stellarators have no dangerous disruptions and no need for continuous current drive or power recirculated to the plasma, both easing the first wall, blanket, and shield design; less severe constraints on the plasma parameters and profiles; and better access for maintenance. This study shows that a reactor based on the torsatron configuration (a stellarator variant) could also have up to double the mass utilization efficiency (MUE) and a significantly lower cost of electricity (COE) than a conventional tokamak reactor (ARIES-I) for a range of assumptions. Torsatron reactors can have much smaller coil systems than tokamak reactors because the coils are closer to the plasma and they have a smaller cross section (higher average current density because of the lower magnetic field). The reactor optimization approach and the costing and component models are those used in the current stage of the ARIES-I tokamak reactor study. Typical reactor parameters for a 1-GW(e) Compact Torsatron reactor example are major radius R 0 = 6.6-8.8 m, on-axis magnetic field B 0 = 4.8-7.5 T, B max (on coils) = 16 T, MUE 140-210 kW(e)/tonne, and COE (in constant 1990 dollars) = 67-79 mill/kW(e)h. The results are relatively sensitive to assumptions on the level of confinement improvement and the blanket thickness under the inboard half of the helical windings but relatively insensitive to other assumptions

  3. Particle Bed Reactor scaling relationships

    International Nuclear Information System (INIS)

    Slovik, G.; Araj, K.; Horn, F.L.; Ludewig, H.; Benenati, R.

    1987-01-01

    Scaling relationships for Particle Bed Reactors (PBRs) are discussed. The particular applications are short duration systems, i.e., for propulsion or burst power. Particle Bed Reactors can use a wide selection of different moderators and reflectors and be designed for such a wide range of power and bed power densities. Additional design considerations include the effect of varying the number of fuel elements, outlet Mach number in hot gas channel, etc. All of these variables and options result in a wide range of reactor weights and performance. Extremely light weight reactors (approximately 1 kg/MW) are possible with the appropriate choice of moderator/reflector and power density. Such systems are very attractive for propulsion systems where parasitic weight has to be minimized

  4. Overview of fusion reactor safety

    International Nuclear Information System (INIS)

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Use of deuterium-tritium burning fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control, (2) neutron activation of structural materials, fluid streams and reactor hall environment, (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions, (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices, and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power

  5. Safety in decommissioning of research reactors

    International Nuclear Information System (INIS)

    1986-01-01

    This Guide covers the technical and administrative considerations relevant to the nuclear aspects of safety in the decommissioning of reactors, as they apply to the reactor and the reactor site. While the treatment, transport and disposal of radioactive wastes arising from decommissioning are important considerations, these aspects are not specifically covered in this Guide. Likewise, other possible issues in decommissioning (e.g. land use and other environmental issues, industrial safety, financial assurance) which are not directly related to radiological safety are also not considered. Generally, decommissioning will be undertaken after planned final shutdown of the reactor. In some cases a reactor may have to be decommissioned following an unplanned or unexpected event of a series or damaging nature occurring during operation. In these cases special procedures for decommissioning may need to be developed, peculiar to the particular circumstances. This Guide could be used as a basis for the development of these procedures although specific consideration of the circumstances which create the need for them is beyond its scope

  6. Utilization of research reactors

    International Nuclear Information System (INIS)

    1962-01-01

    About 200 research reactors are now in operation in different parts of the world, and at least 70 such facilities, which are in advanced stages of planning and construction, should be critical within the next two or three years. In the process of this development a multitude of problems are being encountered in formulating and carrying out programs for the proper utilization of these facilities, especially in countries which have just begun or are starting their atomic energy work. An opportunity for scientific personnel from different Member States to discuss research reactor problems was given at an international symposium on the Programing and Utilization of Research Reactors organized by the Agency almost immediately after the General Conference session. Two hundred scientists from 35 countries, as well as from the European Nuclear Energy Agency and EURATOM, attended the meeting which was held in Vienna from 16 to 21 October 1961

  7. Reactor physics challenges in GEN-IV reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Michael K.; Hejzlar, Pavel [Massachusetts Institute of Technology, MA (United States)

    2005-02-15

    An overview of the reactor physics aspects of GENeration Four (GEN-IV) advanced reactors is presented, emphasizing how their special requirements for enhanced sustainability, safety and economics motivates consideration of features not thoroughly analyzed in the past. The resulting concept-specific requirements for better data and methods are surveyed, and some approaches and initiatives are suggested to meet the challenges faced by the international reactor physics community. No unresolvable impediments to successful development of any of the six major types of proposed reactors are identified, given appropriate and timely devotion of resources.

  8. Reactor physics challenges in GEN-IV reactor design

    International Nuclear Information System (INIS)

    Driscoll, Michael K.; Hejzlar, Pavel

    2005-01-01

    An overview of the reactor physics aspects of GENeration Four (GEN-IV) advanced reactors is presented, emphasizing how their special requirements for enhanced sustainability, safety and economics motivates consideration of features not thoroughly analyzed in the past. The resulting concept-specific requirements for better data and methods are surveyed, and some approaches and initiatives are suggested to meet the challenges faced by the international reactor physics community. No unresolvable impediments to successful development of any of the six major types of proposed reactors are identified, given appropriate and timely devotion of resources

  9. Status of and prospects for gas-cooled reactors

    International Nuclear Information System (INIS)

    1984-01-01

    The IAEA International Working Group on Gas-Cooled Reactors (IWGGCR) (see Annex I), which was established in 1978, recommended to the Agency that a report be prepared in order to provide an up-to-date summary of gas-cooled reactor technology. The present Technical Report is based mainly on submissions of Member Countries of the IWGGCR and consists of four main sections. Beside some general information about the gas-cooled reactor line, section 1 contains a description of the incentives for the development and deployment of gas-cooled reactors in various Agency Member States. These include both electricity generation and process steam and process heat production for various branches of industry. The historical development of gas-cooled reactors is reviewed in section 2. In this section information is provided on how, when and why gas-cooled reactors have been developed in various Agency Member States and, in addition, a detailed description of the different gas-cooled reactor lines is presented. Section 3 contains information about the technical status of gas-cooled reactors and their applications. Gas-cooled reactors that are under design or construction or in operation are listed and shortly described, together with an outlook for future reactor designs. In this section the various applications for gas-cooled reactors are described in detail. These include both electricity generation and process steam and process heat production. The last section (section 4) is entitled ''Special features of gas-cooled reactors'' and contains information about the technical performance, fuel utilization, safety characteristics and environmental impact, such as radiation exposure and heat rejection

  10. Status of national programmes on fast reactors

    International Nuclear Information System (INIS)

    1994-04-01

    Based on the International Working Group on Fast reactors (IWGFR) members' request, the IAEA organized a special meeting on Fast Reactor Development and the Role of the IAEA in May 1993. The purpose of the meeting was to review and discuss the status and recent development, to present major changes in fast reactor programmes and to recommend future activities on fast reactors. The IWGFR took note that in some Member States large prototypes have been built or are under construction. However, some countries, due to their current budget constraints, have reduced the level of funding for research and development programmes on fast reactors. The IWGFR noted that in this situation the international exchange of information and cooperation on the development of fast reactors is highly desirable and stressed the importance of the IAEA's programme on fast reactors. These proceedings contain important and useful information on national programmes and new developments in sodium cooled fast reactors in Member States. Refs, figs and tabs

  11. Reactor Vessel Surveillance Program for Advanced Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyeong-Hoon; Kim, Tae-Wan; Lee, Gyu-Mahn; Kim, Jong-Wook; Park, Keun-Bae; Kim, Keung-Koo

    2008-10-15

    This report provides the design requirements of an integral type reactor vessel surveillance program for an integral type reactor in accordance with the requirements of Korean MEST (Ministry of Education, Science and Technology Development) Notice 2008-18. This report covers the requirements for the design of surveillance capsule assemblies including their test specimens, test block materials, handling tools, and monitors of the surveillance capsule neutron fluence and temperature. In addition, this report provides design requirements for the program for irradiation surveillance of reactor vessel materials, a layout of specimens and monitors in the surveillance capsule, procedures of installation and retrieval of the surveillance capsule assemblies, and the layout of the surveillance capsule assemblies in the reactor.

  12. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  13. Comparative analysis of procoagulant and fibrinogenolytic activity of crude protease fractions of turmeric species.

    Science.gov (United States)

    Shivalingu, B R; Vivek, H K; Nafeesa, Zohara; Priya, B S; Swamy, S Nanjunda

    2015-08-22

    Turmeric rhizome is a traditional herbal medicine, which has been widely used as a remedy to stop bleeding on fresh cuts and for wound healing by the rural and tribal population of India. To validate scientific and therapeutic application of turmeric rhizomes to stop bleeding on fresh cuts and its role in wound healing process. The water extracts of thoroughly scrubbed and washed turmeric rhizomes viz., Curcuma aromatica Salisb., Curcuma longa L., Curcuma caesia Roxb., Curcuma amada Roxb. and Curcuma zedoria (Christm.) Roscoe. were subjected to salting out and dialysis. The dialyzed crude enzyme fractions (CEFs) were assessed for proteolytic activity using casein as substrate and were also confirmed by caseinolytic zymography. Its coagulant activity and fibrinogenolytic activity were assessed using human citrated plasma and fibrinogen, respectively. The type of protease(s) in CEFs was confirmed by inhibition studies using specific protease inhibitors. The CEFs of C. aromatica, C. longa and C. caesia showed 1.89, 1.21 and 1.07 folds higher proteolytic activity, respectively, compared to papain. In contrast to these, C. amada and C. zedoria exhibited moderate proteolytic activity. CEFs showed low proteolytic activities compared to trypsin. The proteolytic activities of CEFs were confirmed by caseinolytic zymography. The CEFs of C. aromatica, C. longa and C. caesia showed complete hydrolysis of Aα, Bβ and γ subunits of human fibrinogen, while C. amada and C. zedoria showed partial hydrolysis. The CEFs viz., C. aromatica, C. longa, C. caesia, C. amada and C. zedoria exhibited strong procoagulant activity by reducing the human plasma clotting time from 172s (Control) to 66s, 84s 88s, 78s and 90s, respectively. The proteolytic activity of C. aromatica, C. longa, C. caesia and C. amada was inhibited (>82%) by PMSF, suggesting the possible presence of a serine protease(s). However, C. zedoria showed significant inhibition (60%) against IAA and moderate inhibition (30

  14. Directions in advanced reactor technology

    International Nuclear Information System (INIS)

    Golay, M.W.

    1990-01-01

    Successful nuclear power plant concepts must simultaneously performance in terms of both safety and economics. To be attractive to both electric utility companies and the public, such plants must produce economical electric energy consistent with a level of safety which is acceptable to both the public and the plant owner. Programs for reactor development worldwide can be classified according to whether the reactor concept pursues improved safety or improved economic performance as the primary objective. When improved safety is the primary goal, safety enters the solution of the design problem as a constraint which restricts the set of allowed solutions. Conversely, when improved economic performance is the primary goal, it is allowed to be pursued only to an extent which is compatible with stringent safety requirements. The three major reactor coolants under consideration for future advanced reactor use are water, helium and sodium. Reactor development programs focuses upon safety and upon economics using each coolant are being pursued worldwide. These programs are discussed

  15. Repairing liner of the reactor

    International Nuclear Information System (INIS)

    Aguilar H, F.

    2001-07-01

    Due to the corrosion problems of the aluminum coating of the reactor pool, a periodic inspections program by ultrasound to evaluate the advance grade and the corrosion speed was settled down. This inspections have shown the necessity to repair some areas, in those that the slimming is significant, of not making it can arrive to the water escape of the reactor pool. The objective of the repair is to place patches of plates of 1/4 inch aluminum thickness in the areas of the reactor 'liner', in those that it has been detected by ultrasound a smaller thickness or similar to 3 mm. To carry out this the fuels are move (of the core and those that are decaying) to a temporary storage, the structure of the core is confined in a tank that this placed inside the pool of the reactor, a shield is placed in the thermal column and it is completely extracted the water for to leave uncover the 'liner' of the reactor. (Author)

  16. Fast breeder reactor research

    International Nuclear Information System (INIS)

    1975-01-01

    , Italy, in April or May 1977. Recognizing the importance of international co-ope ration within the framework of IWGFR for preparing surveys, proposals and recommendations concerning sodium cooled fast breeder reactors, the Working Group prepared a number of joint documents with the help of experts from the participating countries, discussed them at the Eighth Annual Meeting and made recommendations on the preparation of subsequent joint documents. (author)

  17. The nuclear reactor strategy between fast breeder reactors and advanced pressurized water reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1983-01-01

    A nuclear reactor strategy between fast breeder reactors (FBRs) and advanced pressurized water reactors (APWRs) is being studied. The principal idea of this strategy is that the discharged plutonium from light water reactors (LWRs) provides the inventories of the FBRs and the high-converter APWRs, whereby the LWRs are installed according to the derivative of a logistical S curve. Special emphasis is given to the dynamics of reaching an asymptotic symbiosis between FBRs and APWRs. The main conclusion is that if a symbiotic APWR-FBR family with an asymptotic total power level in the terawatt range is to exist in about half a century from now, we need a large number of FBRs already in an early phase

  18. Increased SRP reactor power

    International Nuclear Information System (INIS)

    MacAfee, I.M.

    1983-01-01

    Major changes in the current reactor hydraulic systems could be made to achieve a total of about 1500 MW increase of reactor power for P, K, and C reactors. The changes would be to install new, larger heat exchangers in the reactor buildings to increase heat transfer area about 24%, to increase H 2 O flow about 30% per reactor, to increase D 2 O flow 15 to 18% per reactor, and increase reactor blanket gas pressure from 5 psig to 10 psig. The increased reactor power is possible because of reduced inlet temperature of reactor coolant, increased heat removal capacity, and increased operating pressure (larger margin from boiling). The 23% reactor power increase, after adjustment for increased off-line time for reactor reloading, will provide a 15% increase of production from P, K, and C reactors. Restart of L Reactor would increase SRP production 33%

  19. Device for extracting steam or gas from the primary coolant line leading from a reactor pressure vessel to a straight through boiler or from the top primary boiler chamber of a water-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Schatz, K.

    1982-01-01

    In such a nuclear reactor, a steam or gas cushion can form when the primary system is refilled, which can cause blocking of the natural circulation or filling of the system in the area of the hot primary coolant pipe or in the top primary boiler chamber. In order to remove such a steam or gas cushion, a ventilation pipe starting from the bend of the primary coolant line is connected to the feed pipe for introducing water into the primary system. The feed pipe is designed on the principle of the vacuum pump in the area of the opening of the ventilation pipe. There is a sub-pressure in the ventilation pipe, which makes it possible to extract the steam or gas. After mixing in the area of the opening, the steam condenses or is distributed with the gas in the primary coolant. (orig.) [de

  20. How many reactor accidents will there be

    International Nuclear Information System (INIS)

    Islam, S.; Lindgren, K.

    1986-01-01

    A method for calculation of the probability of nuclear accidents is described. The method is based on the use of data from reactor operating experience, i.e. there have been two major accidents [Three Mile Island and Chernobyl] during 4,000 reactor-years (cumulative operating experience). The authors argue that this method is better than the present ''technical risk assessment'' method based on the likelihood of failure of a reactor component or safety system, used by designers of nuclear reactor. (U.K.)

  1. Neutrino scattering and the reactor antineutrino anomaly

    Science.gov (United States)

    Garcés, Estela; Cañas, Blanca; Miranda, Omar; Parada, Alexander

    2017-12-01

    Low energy threshold reactor experiments have the potential to give insight into the light sterile neutrino signal provided by the reactor antineutrino anomaly and the gallium anomaly. In this work we analyze short baseline reactor experiments that detect by elastic neutrino electron scattering in the context of a light sterile neutrino signal. We also analyze the sensitivity of experimental proposals of coherent elastic neutrino nucleus scattering (CENNS) detectors in order to exclude or confirm the sterile neutrino signal with reactor antineutrinos.

  2. Standards for reference reactor physics measurements

    International Nuclear Information System (INIS)

    Harris, D.R.; Cokinos, D.M.; Uotinen, V.

    1990-01-01

    Reactor physics analysis methods require experimental testing and confirmation over the range of practical reactor configurations and states. This range is somewhat limited by practical fuel types such as actinide oxides or carbides enclosed in metal cladding. On the other hand, this range continues to broaden because of the trend of using higher enrichment, if only slightly enriched, electric utility fuel. The need for experimental testing of the reactor physics analysis methods arises in part because of the continual broadening of the range of core designs, and in part because of the nature of the analysis methods. Reactor physics analyses are directed primarily at the determination of core reactivities and reaction rates, the former largely for reasons of reactor control, and the latter largely to ensure that material limitations are not violated. Errors in these analyses can be regarded as being from numerics, from the data base, and from human factors. For numerical, data base, and human factor reasons, then, it is prudent and customary to qualify reactor physical analysis methods against experiments. These experiments can be treated as being at low power or at high power, and each of these types is subject to an American National Standards Institute standard. The purpose of these standards is to aid in improving and maintaining adequate quality in reactor physics methods, and it is from this point of view that the standards are examined here

  3. The fast breeder reactor Rapsodie (1962)

    International Nuclear Information System (INIS)

    Vautrey, L.; Zaleski, C.P.

    1962-01-01

    In this report, the authors describe the Rapsodie project, the French fast breeder reactor, as it stands at construction actual start-up. The paper provides informations about: the principal neutronic and thermal characteristics, the reactor and its cooling circuits, the main handling devices of radioactive or contaminated assemblies, the principles and means governing reactor operation, the purposes and locations of miscellaneous buildings. Rapsodie is expected to be critical by 1964. (authors) [fr

  4. Probabilistic safety analysis for the Triga reactor Vienna

    International Nuclear Information System (INIS)

    Boeck, H.; Kirchsteiger, C.

    1988-07-01

    Triga-type reactors are the most widely used low power research reactors with power levels up to 3 MW. Although Triga reactors are considered inherently safe, due to their unique features such as prompt negative temperature coefficient and low power density, the reactor core still contains a respectable amount of activity which could lead under very adverse circumstances to radiation exposure both of staff members and of public. Such circumstances could be external events, accidents during fuel element manipulation or a loss of coolant water with exposure of the core. Therefore, it was decided to look more closely to various accident pathways and to calculate their probability, if possible. A major drawback is the lack of statistical material because no centralized registration of failures is carried out. Therefore, in many cases values from other research reactor types or even from power reactor statistics had to be used, thus increasing the uncertainty of the results. As most undesired event or TOP-event in this analysis a radiation exposure of staff members, the public or both together was selected and the probabilities of different pathways leading to this exposure was calculated. In the present case 'radiation exposure' are dose rates or activity concentration above the international accepted limits for occupational staff or public. 20 refs., 10 figs. (Author)

  5. Research nuclear reactor operation management

    International Nuclear Information System (INIS)

    Preda, M.; Carabulea, A.

    2008-01-01

    Some aspects of reactor operation management are highlighted. The main mission of the operational staff at a testing reactor is to operate it safely and efficiently, to ensure proper conditions for different research programs implying the use of the reactor. For reaching this aim, there were settled down operating plans for every objective, and procedure and working instructions for staff training were established, both for the start-up and for the safe operation of the reactor. Damages during operation or special situations which can arise, at stop, start-up, maintenance procedures were thoroughly considered. While the technical skill is considered to be the most important quality of the staff, the organising capacity is a must in the operation of any nuclear facility. Staff training aims at gaining both theoretical and practical experience based on standards about staff quality at each work level. 'Plow' sheet has to be carefully done, setting clear the decision responsibility for each person so that everyone's own technical level to be coupled to the problems which implies his responsibility. Possible events which may arise in operation, e.g., criticality, irradiation, contamination, and which do not arise in other fields, have to be carefully studied. One stresses that the management based on technical and scientific arguments have to cover through technical, economical and nuclear safety requirements a series of interlinked subprograms. Every such subprograms is subject to some peculiar demands by the help of which the entire activity field is coordinated. Hence for any subprogram there are established the objectives to be achieved, the applicable regulations, well-defined responsibilities, training of the personnel involved, the material and documentation basis required and activity planning. The following up of positive or negative responses generated by experiments and the information synthesis close the management scope. Important management aspects

  6. Irradiation Facilities at the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2005-01-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC) (formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world's data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens

  7. Guidelines for nuclear reactor equipments safety-analysis

    International Nuclear Information System (INIS)

    1978-01-01

    The safety analysis in approving the applications for nuclear reactor constructions (or alterations) is performed by the Committee on Examination of Reactor Safety in accordance with various guidelines prescribed by the Atomic Energy Commission. In addition, the above Committee set forth its own regulations for the safety analysis on common problems among various types of nuclear reactors. This book has collected and edited those guidelines and regulations. It has two parts: Part I includes the guidelines issued to date by the Atomic Energy Commission: and Part II - regulations of the Committee. Part I has collected 8 categories of guidelines which relate to following matters: nuclear reactor sites analysis guidelines and standards for their applications; standard exposure dose of plutonium; nuclear ship operation guidelines; safety design analysis guidelines for light-water type, electricity generating nuclear reactor equipments; safety evaluation guidelines for emergency reactor core cooling system of light-water type power reactors; guidelines for exposure dose target values around light-water type electricity generating nuclear reactor equipments, and guidelines for evaluation of above target values; and meteorological guidelines for the safety analysis of electricity generating nuclear reactor equipments. Part II includes regulations of the Committee concerning - the fuel assembly used in boiling-water type and in pressurized-water type reactors; techniques of reactor core heat designs, etc. in boiling-water reactors; and others

  8. Partially dissecting the steady-state electron fluxes in Photosystem I in wild-type and pgr5 and ndh mutants of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jiancun eKou

    2015-09-01

    Full Text Available Cyclic electron flux (CEF around Photosystem I (PS I is difficult to quantify. We obtained the linear electron flux (LEFO2 through both photosystems and the total electron flux through PS I (ETR1 in Arabidopsis in CO2-enriched air. DeltaFlux = ETR1 – LEFO2 is an upper estimate of CEF, which consists of two components, an antimycin A-sensitive, PGR5 (proton gradient regulation 5 protein-dependent component and an insensitive component facilitated by a chloroplastic nicotinamide adenine dinucleotide dehydrogenase-like complex (NDH. Using wild type as well as pgr5 and ndh mutants, we observed that (1 40% of the absorbed light was partitioned to PS I; (2 at high irradiance a substantial antimycin A-sensitive CEF occurred in the wild type and the ndh mutant; (3 at low irradiance a sizable antimycin A-sensitive CEF occurred in the wild type but not in the ndh mutant, suggesting an enhancing effect of NDH in low light; and (4 in the pgr5 mutant, and the wild type and ndh mutant treated with antimycin A, a residual DeltaFlux existed at high irradiance, attributable to charge recombination and/or pseudo-cyclic electron flow. Therefore, in low-light-acclimated plants exposed to high light, DeltaFlux has contributions from various paths of electron flow through PS I.

  9. Cermet fuel reactors

    International Nuclear Information System (INIS)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs

  10. Reactor control system. PWR

    International Nuclear Information System (INIS)

    2009-01-01

    At present, 23 units of PWR type reactors have been operated in Japan since the start of Mihama Unit 1 operation in 1970 and various improvements have been made to upgrade operability of power stations as well as reliability and safety of power plants. As the share of nuclear power increases, further improvements of operating performance such as load following capability will be requested for power stations with more reliable and safer operation. This article outlined the reactor control system of PWR type reactors and described the control performance of power plants realized with those systems. The PWR control system is characterized that the turbine power is automatic or manually controlled with request of the electric power system and then the nuclear power is followingly controlled with the change of core reactivity. The system mainly consists of reactor automatic control system (control rod control system), pressurizer pressure control system, pressurizer water level control system, steam generator water level control system and turbine bypass control system. (T. Tanaka)

  11. Micro processor based research reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Hyde, W.K.

    1987-01-01

    The system consists of a Control System Computer (CSC) incorporated into a Reactor Control Console (RCC) and a Data Acquisition and Control Unit (DAC) adjacent to the reactor. The CSC has a high resolution color graphics CRT monitor which provides real-time graphic simulation of the reactor and a number of bar graphs displaying strategic parameters of the reactor system. In addition, abnormal or dangerous conditions are displayed. The CSC is equipped with two printers eliminating manual logging of reactor data. The reactor display and pulse mode display may also be printed. Historical data is saved in the system's large capacity memory and may be replayed and/or printed. Because of the CSC's inherent high speed math capability, raw reactor data will be quickly converted and displayed in real-time. Data can be presented in meaningful engineering units. The DAC provides a high speed data acquisition and control capability adjacent to the reactor. It continuously collects data from the reactor system, concentrates the data into a database and transmits it to the CSC when requested. Data transmission is over one of two data trunks to the CSC. The secondary trunk is used if the primary trunk fails. The data trunks drastically reduce the wiring requirements between the reactor and the Control Console. During steady-state operation of the reactor, operator commands to adjust the rod positions is transmitted from the CSC to the DAC which re-issues the commands to the drive mechanisms. In the automatic mode, the DAC will control the position of the rods via a PID algorithm. The system is independently monitored by two or more safety computers. Their function is to monitor the power level, the rate of change of power and fuel temperature of the reactor and to independently shut the reactor down in the event of a potentially dangerous (scram) condition. (author)

  12. Tokamak reactor studies

    International Nuclear Information System (INIS)

    Baker, C.C.

    1981-01-01

    This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features

  13. Computerized reactor monitor and control for research reactors

    International Nuclear Information System (INIS)

    Buerger, L.; Vegh, E.

    1981-09-01

    The computerized process control system developed in the Central Research Institute for Physics, Budapest, Hungary, is described together with its special applications at research reactors. The nuclear power of the Hungarian research reactor is controlled by this computerized system, too, while in Lybia many interesting reactor-hpysical calculations are built into the computerized monitor system. (author)

  14. Hybrid reactors: Nuclear breeding or energy production?

    International Nuclear Information System (INIS)

    Piera, Mireia; Lafuente, Antonio; Abanades, Alberto; Martinez-Val, J.M.

    2010-01-01

    After reviewing the long-standing tradition on hybrid research, an assessment model is presented in order to characterize the hybrid performance under different objectives. In hybrids, neutron multiplication in the subcritical blanket plays a major role, not only for energy production and nuclear breeding, but also for tritium breeding, which is fundamental requirement in fusion-fission hybrids. All three objectives are better achieved with high values of the neutron multiplication factor (k-eff) with the obvious and fundamental limitation that it cannot reach criticality under any event, particularly, in the case of a loss of coolant accident. This limitation will be very important in the selection of the coolant. Some general considerations will be proposed, as guidelines for assessing the hybrid potential in a given scenario. Those guidelines point out that hybrids can be of great interest for the future of nuclear energy in a framework of Sustainable Development, because they can contribute to the efficient exploitation of nuclear fuels, with very high safety features. Additionally, a proposal is presented on a blanket specially suited for fusion-fission hybrids, although this reactor concept is still under review, and new work is needed for identifying the most suitable blanket composition, which can vary depending on the main objective of the hybrid.

  15. Modifications to the NRAD reactor (1977 to present)

    International Nuclear Information System (INIS)

    Weeks, A.A.; Pruett, D.P.; Heidel, C.C.

    1986-01-01

    The NRAD facility utilizes a 250-kW TRIGA reactor and is completely dedicated to neutron radiography and the development of radiography techniques. Criticality was first achieved at the NRAD reactor in October 1977. Since that time, a number of modifications have been implemented to improve operational efficiency and radiography production. The modifications to the NRAD reactor are categorized as either 'operational improvements', which have increased operational efficiency and reliability, or as 'production improvements', which have reduced the number of unscheduled shutdowns due to instrument malfunctions or mechanical failures. A brief synopsis of the significant reactor modifications in both categories is presented

  16. Coolant inlet device for nuclear reactors

    International Nuclear Information System (INIS)

    Ando, Hiroshi; Abe, Yasuhiro; Iwabuchi, Toshihiko; Yamamoto, Kenji.

    1969-01-01

    Herein disclosed is a coolant inlet device for liquid-metal cooled reactors which employs a coolant distributor serving also as a supporting means for the reactor core. The distributor is mounted within the reactor vessel so as to slide horizontally on supporting lugs, and is further slidably connected via a junction pipe to a coolant inlet conduit protruding through the floor of the vessel. The distributor is adapted to uniformly disperse the highly pressured coolant over the reactor core so as to reduce the stresses sustained by the reactor vessel as well as the supporting lugs. Moreover, the slidable nature of the distributor allows thermal shock and excessive coolant pressures to be prevented or alleviated, factors which posed major difficulties in conventional coolant inlet devices. (Owens, K. J.)

  17. Reactor. Mind picture of the future Jules-Horowitz Reactor (RHJ)

    International Nuclear Information System (INIS)

    Eustache, S.

    1999-01-01

    This paper gives information about the future research reactor, named Reactor Jules-Horowitz (RJH). This irradiation reactor will be placed at industrialists disposal, for research concerning the competitiveness and the safety french electro-nuclear park. Principles and innovations are detailed. This reactor will respect the ALARA principle (as low as reasonably achievable). (A.L.B.)

  18. Emergency cooling of presurized water reactor

    International Nuclear Information System (INIS)

    Sykora, D.

    1981-01-01

    The method described of emergency core cooling in the pressurized water reactor is characterized by the fact that water is transported to the disturbed primary circuit or direct to the reactor by the action of the energy and mass of the steam and/or liquid phase of the secondary circuit coolant, which during emergency core cooling becomes an emergency cooling medium. (B.S.)

  19. Apparatus for removing and/or positioning fuel assemblies of a nuclear reactor

    International Nuclear Information System (INIS)

    Vuckovich, M.; Burkett, J.P.; Sallustio, J.

    1983-01-01

    Apparatus for positioning fuel assemblies of a nuclear reactor includes a control for a crane comprising a strain gauge connected to the crane line which raises and lowers the load. The signal from the strain gauge is compared with setpoints; which if the strain gauge signal exceeds a high-level setpoint, indicating that the movement of a fuel assembly is obstructed, the line drive is disabled. The line drive is also disabled if the strain gauge signal is less than a low-level setpoint, indicating that a fuel being deposited contacts the bottom of its slot or an obstruction. To preclude lateral movement of the fuel assembly suspended from the crane line, the traverse drive of the crane is disabled once the strain-gauge signal exceeds the low-level setpoint. The traverse drive can only be enabled after the strain-gauge signal is less than a slack-line setpoint. (author)

  20. Apparatus for removing and/or positioning fuel assemblies of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vuckovich, M; Burkett, J P; Sallustio, J

    1981-11-30

    Apparatus for positioning fuel assemblies of a nuclear reactor includes a control for a crane comprising a strain gauge connected to the crane line which raises and lowers the load. The signal from the strain gauge is compared with setpoints; which if the strain gauge signal exceeds a high-level setpoint, indicating that the movement of a fuel assembly is obstructed, the line drive is disabled. The line drive is also disabled if the strain gauge signal is less than a low-level setpoint, indicating that a fuel being deposited contacts the bottom of its slot or an obstruction. To preclude lateral movement of the fuel assembly suspended from the crane line, the traverse drive of the crane is disabled once the strain-gauge signal exceeds the low-level setpoint. The traverse drive can only be enabled after the strain-gauge signal is less than a slack-line setpoint.