WorldWideScience

Sample records for opto-acoustic cell permeation

  1. Opto-acoustic microscopy reveals adhesion mechanics of single cells

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Zc, as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZc reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, Km, that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, Sr/St. We show that Km can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while Sr/St is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  2. Opto-acoustic microscopy reveals adhesion mechanics of single cells.

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Z c , as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZ c reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, K m , that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, S r /S t . We show that K m can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while S r /S t is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  3. Acousto-optic modulation and opto-acoustic gating in piezo-optomechanical circuits

    Science.gov (United States)

    Balram, Krishna C.; Davanço, Marcelo I.; Ilic, B. Robert; Kyhm, Ji-Hoon; Song, Jin Dong; Srinivasan, Kartik

    2017-01-01

    Acoustic wave devices provide a promising chip-scale platform for efficiently coupling radio frequency (RF) and optical fields. Here, we use an integrated piezo-optomechanical circuit platform that exploits both the piezoelectric and photoelastic coupling mechanisms to link 2.4 GHz RF waves to 194 THz (1550 nm) optical waves, through coupling to propagating and localized 2.4 GHz acoustic waves. We demonstrate acousto-optic modulation, resonant in both the optical and mechanical domains, in which waveforms encoded on the RF carrier are mapped to the optical field. We also show opto-acoustic gating, in which the application of modulated optical pulses interferometrically gates the transmission of propagating acoustic pulses. The time-domain characteristics of this system under both pulsed RF and pulsed optical excitation are considered in the context of the different physical pathways involved in driving the acoustic waves, and modelled through the coupled mode equations of cavity optomechanics. PMID:28580373

  4. Opto-acoustic technique to evaluate adhesion strength of thin-film systems

    Directory of Open Access Journals (Sweden)

    S. Yoshida

    2012-06-01

    Full Text Available An opto-acoustic technique is proposed to evaluate the adhesion strength of thin film systems at the film-substrate interface. The thin-film system to be examined is configured as an end-mirror of a Michelson interferometer, and driven from the rear with an acoustic transducer at audible frequencies. The amplitude of the resultant oscillation of the film is quantified as the variation in the contrast of the interferometric fringe pattern observed with a digital camera at 30 frames/s. As a proof of concept, experiment has been conducted with the use of a pair of strongly and weakly adhered Au-coated Si-wafer specimens. The technique successfully differentiates the adhesion strength of the specimens.

  5. Enhancement and suppression of opto-acoustic parametric interactions using optical feedback

    International Nuclear Information System (INIS)

    Zhang Zhongyang; Zhao Chunnong; Ju, L.; Blair, D. G.

    2010-01-01

    A three mode opto-acoustic parametric amplifier (OAPA) is created when two orthogonal optical modes in a high finesse optical cavity are coupled via an acoustic mode of the cavity mirror. Such interactions are predicted to occur in advanced long baseline gravitational wave detectors. They can have high positive gain, which leads to strong parametric instability. Here we show that an optical feedback scheme can enhance or suppress the parametric gain of an OAPA, allowing exploration of three-mode parametric interactions, especially in cavity systems that have insufficient optical power to achieve spontaneous instability. We derive analytical equations and show that optical feedback is capable of controlling predicted instabilities in advanced gravitational wave detectors within a time scale of 13∼10 s.

  6. An optimised instrument to measure thermal diffusivities of gases with opto-acoustic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Soldner, J.; Stephan, K. [Institute of Technical Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70550, Stuttgart (Germany)

    2004-11-01

    The paper describes the theory and application of opto-acoustics to determine thermal diffusivities of gases. An experimental device, already described in previous papers of the authors [Internat. J. Thermophys. 19 (1998) 1099; Proc. 2. European Thermal Science and 14. UIT National Heat Transfer Conf., 1996, pp. 1071-1078] permitted the detection of thermal diffusivities of gases at moderate pressures with an experimental uncertainty of about {+-}1.25%.Based on the experience gained with this device, a comprehensive error analysis is presented in this paper. It shows how the experimental uncertainties can be considerably reduced to about -0.45 to +0.35%. The parameters for optical cell design are dealt with, as well as the appropriate characteristics, such as frequencies of the modulated laser beam, and the microphone used in the experiment. (authors)

  7. Opto-Acoustic Method for the Characterization of Thin-Film Adhesion

    Directory of Open Access Journals (Sweden)

    Sanichiro Yoshida

    2016-05-01

    Full Text Available The elastic property of the film-substrate interface of thin-film systems is characterized with an opto-acoustic method. The thin-film specimens are oscillated with an acoustic transducer at audible frequencies, and the resultant harmonic response of the film surface is analyzed with optical interferometry. Polystyrene, Ti, Ti-Au and Ti-Pt films coated on the same silicon substrate are tested. For each film material, a pair of specimens is prepared; one is coated on a silicon substrate after the surface is treated with plasma bombardment, and the other is coated on an identical silicon substrate without a treatment. Experiments indicate that both the surface-treated and untreated specimens of all film materials have resonance in the audible frequency range tested. The elastic constant of the interface corresponding to the observed resonance is found to be orders of magnitude lower than that of the film or substrate material. Observations of these resonance-like behaviors and the associated stiffness of the interface are discussed.

  8. Opto-injection into single living cells by femtosecond near-infrared laser

    Science.gov (United States)

    Peng, Cheng

    This dissertation presents a novel technique to deliver membrane impermeable molecules into single living cells with the assistance of femtosecond (fs) near-infrared (NIR) laser pulses. This approach merges ultrafast laser technology with key biological, biomedical, and medical applications, such as gene transfection, gene therapy and drug delivery. This technique promises several major advantages, namely, very high transfection efficiency, high cell survival rate (≈100%) and fully preserved cell viabilities. It is also a promising method to deliver molecules into cells that are difficult or even completely resistant to established physical methods, such as microinjection by glass pipettes, electroporation, and biolistics. In this work, the system for fs NIR opto-injection was designed and built. Successful fs NIR opto-injection has been performed on several cell systems including single mammalian cells (bovine aortic endothelial cells), marine animal eggs (Spisula solidissima oocytes), and human cancer cells (fibrosarcoma HT1080) cultured in a tissue-like environment. The connections between laser parameters and cell responses were explored through further experiments and in-depth analyses, especially the relationship between dye uptake rate and incident laser intensity, and the relationship between pore size created on cell membranes and incident laser intensity. Dye uptake rate of the target cells was observed to depend on incident laser intensity. Pore size was found dependent on incident laser intensity. The conclusion was made that laser-induced breakdown and plasma-induced ablation in cell membrane are the physical principles that govern the process of fs NIR opto-injection.

  9. Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions

    International Nuclear Information System (INIS)

    Gong Jingyu; Du Jiulin; Liu Zhipeng

    2012-01-01

    The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution of each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.

  10. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.

    Science.gov (United States)

    Zhu, Hongying; Ozcan, Aydogan

    2015-01-01

    Blood analysis is one of the most important clinical tests for medical diagnosis. Flow cytometry and optical microscopy are widely used techniques to perform blood analysis and therefore cost-effective translation of these technologies to resource limited settings is critical for various global health as well as telemedicine applications. In this chapter, we review our recent progress on the integration of imaging flow cytometry and fluorescent microscopy on a cell phone using compact, light-weight and cost-effective opto-fluidic attachments integrated onto the camera module of a smartphone. In our cell-phone based opto-fluidic imaging cytometry design, fluorescently labeled cells are delivered into the imaging area using a disposable micro-fluidic chip that is positioned above the existing camera unit of the cell phone. Battery powered light-emitting diodes (LEDs) are butt-coupled to the sides of this micro-fluidic chip without any lenses, which effectively acts as a multimode slab waveguide, where the excitation light is guided to excite the fluorescent targets within the micro-fluidic chip. Since the excitation light propagates perpendicular to the detection path, an inexpensive plastic absorption filter is able to reject most of the scattered light and create a decent dark-field background for fluorescent imaging. With this excitation geometry, the cell-phone camera can record fluorescent movies of the particles/cells as they are flowing through the microchannel. The digital frames of these fluorescent movies are then rapidly processed to quantify the count and the density of the labeled particles/cells within the solution under test. With a similar opto-fluidic design, we have recently demonstrated imaging and automated counting of stationary blood cells (e.g., labeled white blood cells or unlabeled red blood cells) loaded within a disposable cell counting chamber. We tested the performance of this cell-phone based imaging cytometry and blood analysis platform

  11. Opto-acoustic measurement of the local light absorption coefficient in turbid media: 2. On the possibility of light absorption coefficient measurement in a turbid medium from the amplitude of the opto-acoustic signal

    International Nuclear Information System (INIS)

    Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A

    2009-01-01

    The second part of this work describes the experimental technique of measuring the local light absorption in turbid media. The technique is based on the measurement of the amplitude of an opto-acoustic (OA) signal excited in a turbid medium under the condition of one-sided access to the object under study. An OA transducer is developed to perform the proposed measurement procedure. Experiments are conducted for the turbid media with different optical properties (light absorption and reduced scattering coefficients) and for different diameters of the incident laser beam. It is found that the laser beam diameter can be chosen so that the dependences of the measured OA signal amplitude on the light absorption coefficient coincide upon varying the reduced scattering coefficient by more than twice. The obtained numerical and experimental results demonstrate that the OA method is applicable for measuring the local light absorption coefficient in turbid media, for example, in biological tissues. (measurement of parametrs of laser radiation)

  12. Design and tritium permeation analysis of China HCCB TBM port cell

    International Nuclear Information System (INIS)

    Jiangfeng, S.; Guoqiang, H.; Zhiyong, H.; Chang'an, C.; Deli, L.

    2015-01-01

    China is planning to develop a helium-cooled ceramic breeder (HCCB) test blanket module (TBM) on ITER to test key blanket technologies. In this paper, the design and tritium permeation analysis of China HCCB TBM port cell are introduced. A theoretical model has been developed to estimate tritium permeation rates and leak rates from the components and pipes which China has scheduled to house in the port cell. It is shown that on normal working conditions, the permeation and leak rate of the systems in the port cell will be no higher than 1.58 Ci/d without the use of tritium permeation barriers, and 0.10 Ci/d with the use of tritium permeation barriers. It also appears that tritium permeation barriers are necessary for high temperature components such as the reduction bed and the heater

  13. Design and tritium permeation analysis of China HCCB TBM port cell

    Energy Technology Data Exchange (ETDEWEB)

    Jiangfeng, S.; Guoqiang, H.; Zhiyong, H.; Chang' an, C.; Deli, L. [China Academy of Engineering Physics, Mianyang, Sichuan (China)

    2015-03-15

    China is planning to develop a helium-cooled ceramic breeder (HCCB) test blanket module (TBM) on ITER to test key blanket technologies. In this paper, the design and tritium permeation analysis of China HCCB TBM port cell are introduced. A theoretical model has been developed to estimate tritium permeation rates and leak rates from the components and pipes which China has scheduled to house in the port cell. It is shown that on normal working conditions, the permeation and leak rate of the systems in the port cell will be no higher than 1.58 Ci/d without the use of tritium permeation barriers, and 0.10 Ci/d with the use of tritium permeation barriers. It also appears that tritium permeation barriers are necessary for high temperature components such as the reduction bed and the heater.

  14. Determination of solvents permeating through chemical protective clothing with a microsensor array.

    Science.gov (United States)

    Park, J; Zellers, E T

    2000-08-01

    The performance of a novel prototype instrument in determining solvents and solvent mixtures permeating through samples of chemical protective clothing (CPC) materials was evaluated. The instrument contains a mini-preconcentrator and an array of three polymer-coated surface-acoustic-wave (SAW) microsensors whose collective response patterns are used to discriminate among multiple permeants. Permeation tests were performed with a 2.54 cm diameter test cell in an open-loop configuration on samples of common glove materials challenged with four individual solvents, three binary mixtures, and two ternary mixtures. Breakthrough times, defined as the times required for the permeation rate to reach a value of 1 microg cm(-2) min(-1), determined by the instrument were within 3 min of those determined in parallel by manual sampling and gas chromatographic analysis. Permeating solvents were recognized (identified) from their response patterns in 59 out of 64 measurements (92%) and their vapor concentrations were quantified to an accuracy of +/- 31% (typically +/- 10%). These results demonstrate the potential for such instrumentation to provide semi-automated field or bench-top screening of CPC permeation resistance.

  15. Fully automatic flow-based device for monitoring of drug permeation across a cell monolayer.

    Science.gov (United States)

    Zelená, Lucie; Marques, Sara S; Segundo, Marcela A; Miró, Manuel; Pávek, Petr; Sklenářová, Hana; Solich, Petr

    2016-01-01

    A novel flow-programming setup based on the sequential injection principle is herein proposed for on-line monitoring of temporal events in cell permeation studies. The permeation unit consists of a Franz cell with its basolateral compartment mixed under mechanical agitation and thermostated at 37 °C. The apical compartment is replaced by commercially available Transwell inserts with a precultivated cell monolayer. The transport of drug substances across epithelial cells genetically modified with the P-glycoprotein membrane transporter (MDCKII-MDR1) is monitored on-line using rhodamine 123 as a fluorescent marker. The permeation kinetics of the marker is obtained in a fully automated mode by sampling minute volumes of solution from the basolateral compartment in short intervals (10 min) up to 4 h. The effect of a P-glycoprotein transporter inhibitor, verapamil as a model drug, on the efficiency of the marker transport across the cell monolayer is thoroughly investigated. The analytical features of the proposed flow method for cell permeation studies in real time are critically compared against conventional batch-wise procedures and microfluidic devices.

  16. Experimental measurements of the permeation of hydrogen isotopes in lithium filled niobium cells

    International Nuclear Information System (INIS)

    Goodall, D.H.J.; McCracken, G.M.; Austin, G.E.

    1976-01-01

    Lithium filled niobium cells have been heated in vacua at temperatures in the range 300 to 900 0 C. By measuring the flow of deuterium into the cell it has been possible to make estimates of the rate of permeation of deuterium in the niobium wall. After initial fast diffusion into the capsule the rate of permeation becomes very much slower than that determined by diffusion in the bulk niobium indicating that a second, slower, rate process is involved. Measurements of the rate of deuterium permeation out of the cell have been made for a number of different cell geometries and a range of temperatures. The results indicate that the slow rate process, which is dominant at low concentrations, is the desorption step from the metal to the gas phase

  17. Opto-acoustic diagnostics of the thermal action of high-intensity focused ultrasound on biological tissues: the possibility of its applications and model experiments

    International Nuclear Information System (INIS)

    Khokhlova, Tanya D; Pelivanov, Ivan M; Solomatin, Vladimir S; Karabutov, Aleksander A; Sapozhnikov, Oleg A

    2006-01-01

    The possibility of using the opto-acoustic (OA) method for monitoring high-intensity ultrasonic therapy is studied. The optical properties of raw and boiled liver samples used as the undamaged model tissue and tissue destroyed by ultrasound, respectively, are measured. Experiments are performed with samples consisting of several alternating layers of raw and boiled liver of different thickness. The position and transverse size of the thermal lesion were determined from the temporal shape of the OA signals. The results of measurements are compared with the real size and position of the thermal lesion determined from the subsequent cuts of the sample. It is shown that the OA method permits the diagnostics of variations in biological tissues upon ultrasonic therapy. (special issue devoted to multiple radiation scattering in random media)

  18. Probing individal subcells of fully printed and coated polymer tandem solar cells using multichromatic opto-electronic characterization methods

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andersen, Thomas Rieks; Dam, Henrik Friis

    2015-01-01

    In this study, a method to opto-electronically probe the individual junctions and carrier transport across interfaces in fully printed and coated tandem polymer solar cells is described, enabling the identification of efficiency limiting printing/coating defects. The methods used are light beam...

  19. Opto-Box

    CERN Document Server

    Bertsche, David; The ATLAS collaboration; Welch, Steven; Smith, Dale Shane; Che, Siinn; Gan, K.K.; Boyd, George Russell Jr

    2015-01-01

    The opto-box is a custom mini-crate for housing optical modules, which process and transfer optoelectronic data. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35x10x8 cm^3. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits (ASICs), were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain.

  20. Development of Acyclovir-Loaded Albumin Nanoparticles and Improvement of Acyclovir Permeation Across Human Corneal Epithelial T Cells.

    Science.gov (United States)

    Suwannoi, Panita; Chomnawang, Mullika; Sarisuta, Narong; Reichl, Stephan; Müller-Goymann, Christel C

    2017-12-01

    The aim of the present study was to develop acyclovir (ACV) ocular drug delivery systems of bovine serum albumin (BSA) nanoparticles as well as to assess their in vitro transcorneal permeation across human corneal epithelial (HCE-T) cell multilayers. The ACV-loaded BSA nanoparticles were prepared by desolvation method along with physicochemical characterization, cytotoxicity, as well as in vitro transcorneal permeation studies across HCE-T cell multilayers. The nanoparticles appeared to be spherical in shape and nearly uniform in size of about 200 nm. The size of nanoparticles became smaller with decreasing BSA concentration, while the ratios of water to ethanol seemed not to affect the size. Increasing the amount of ethanol in desolvation process led to significant reduction of drug entrapment of nanoparticles with smaller size and more uniformity. The ACV-loaded BSA nanoparticles prepared were shown to have no cytotoxic effect on HCE-T cells used in permeation studies. The in vitro transcorneal permeation results revealed that ACV could permeate through the HCE-T cell multilayers significantly higher from BSA nanoparticles than from aqueous ACV solutions. The ACV-loaded BSA nanoparticles could be prepared by desolvation method without glutaraldehyde in the formulation. ACV could increasingly permeate through the multilayers of HCE-T cells from the ACV-loaded BSA nanoparticles. Therefore, the ACV-loaded BSA nanoparticles could be a highly potential ocular drug delivery system.

  1. Semiconductor opto-electronics

    CERN Document Server

    Moss, TS; Ellis, B

    1972-01-01

    Semiconductor Opto-Electronics focuses on opto-electronics, covering the basic physical phenomena and device behavior that arise from the interaction between electromagnetic radiation and electrons in a solid. The first nine chapters of this book are devoted to theoretical topics, discussing the interaction of electromagnetic waves with solids, dispersion theory and absorption processes, magneto-optical effects, and non-linear phenomena. Theories of photo-effects and photo-detectors are treated in detail, including the theories of radiation generation and the behavior of semiconductor lasers a

  2. Opto-Box

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00377159; The ATLAS collaboration

    2016-01-01

    The opto-box is a custom mini-crate for housing optical modules, which process and transfer optoelectronic data. Many novel solutions were developed for the custom design and manufacturing. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35x10x8 cm$^{3}$. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits (ASICs), were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain.

  3. Microfluidic device for acoustic cell lysis

    Science.gov (United States)

    Branch, Darren W.; Cooley, Erika Jane; Smith, Gennifer Tanabe; James, Conrad D.; McClain, Jaime L.

    2015-08-04

    A microfluidic acoustic-based cell lysing device that can be integrated with on-chip nucleic acid extraction. Using a bulk acoustic wave (BAW) transducer array, acoustic waves can be coupled into microfluidic cartridges resulting in the lysis of cells contained therein by localized acoustic pressure. Cellular materials can then be extracted from the lysed cells. For example, nucleic acids can be extracted from the lysate using silica-based sol-gel filled microchannels, nucleic acid binding magnetic beads, or Nafion-coated electrodes. Integration of cell lysis and nucleic acid extraction on-chip enables a small, portable system that allows for rapid analysis in the field.

  4. Microfabrication and Applications of Opto-Microfluidic Sensors

    Science.gov (United States)

    Zhang, Daiying; Men, Liqiu; Chen, Qiying

    2011-01-01

    A review of research activities on opto-microfluidic sensors carried out by the research groups in Canada is presented. After a brief introduction of this exciting research field, detailed discussion is focused on different techniques for the fabrication of opto-microfluidic sensors, and various applications of these devices for bioanalysis, chemical detection, and optical measurement. Our current research on femtosecond laser microfabrication of optofluidic devices is introduced and some experimental results are elaborated. The research on opto-microfluidics provides highly sensitive opto-microfluidic sensors for practical applications with significant advantages of portability, efficiency, sensitivity, versatility, and low cost. PMID:22163904

  5. Thermal diffusivity effect in opto-thermal skin measurements

    International Nuclear Information System (INIS)

    Xiao, P; Imhof, R E; Cui, Y; Ciortea, L I; Berg, E P

    2010-01-01

    We present our latest study on the thermal diffusivity effect in opto-thermal skin measurements. We discuss how thermal diffusivity affects the shape of opto-thermal signal, and how to measure thermal diffusivity in opto-thermal measurements of arbitrary sample surfaces. We also present a mathematical model for a thermally gradient material, and its corresponding opto-thermal signal. Finally, we show some of our latest experimental results of this thermal diffusivity effect study.

  6. Characterizing opto-electret based paper speakers by using a real-time projection Moiré metrology system

    Science.gov (United States)

    Chang, Ya-Ling; Hsu, Kuan-Yu; Lee, Chih-Kung

    2016-03-01

    Advancement of distributed piezo-electret sensors and actuators facilitates various smart systems development, which include paper speakers, opto-piezo/electret bio-chips, etc. The array-based loudspeaker system possess several advantages over conventional coil speakers, such as light-weightness, flexibility, low power consumption, directivity, etc. With the understanding that the performance of the large-area piezo-electret loudspeakers or even the microfluidic biochip transport behavior could be tailored by changing their dynamic behaviors, a full-field real-time high-resolution non-contact metrology system was developed. In this paper, influence of the resonance modes and the transient vibrations of an arraybased loudspeaker system on the acoustic effect were measured by using a real-time projection moiré metrology system and microphones. To make the paper speaker even more versatile, we combine the photosensitive material TiOPc into the original electret loudspeaker. The vibration of this newly developed opto-electret loudspeaker could be manipulated by illuminating different light-intensity patterns. Trying to facilitate the tailoring process of the opto-electret loudspeaker, projection moiré was adopted to measure its vibration. By recording the projected fringes which are modulated by the contours of the testing sample, the phase unwrapping algorithm can give us a continuous phase distribution which is proportional to the object height variations. With the aid of the projection moiré metrology system, the vibrations associated with each distinctive light pattern could be characterized. Therefore, we expect that the overall acoustic performance could be improved by finding the suitable illuminating patterns. In this manuscript, the system performance of the projection moiré and the optoelectret paper speakers were cross-examined and verified by the experimental results obtained.

  7. Comparative study of silver nanoparticle permeation using Side-Bi-Side and Franz diffusion cells

    Science.gov (United States)

    Trbojevich, Raul A.; Fernandez, Avelina; Watanabe, Fumiya; Mustafa, Thikra; Bryant, Matthew S.

    2016-03-01

    Better understanding the mechanisms of nanoparticle permeation through membranes and packaging polymers has important implications for the evaluation of drug transdermal uptake, in food safety and the environmental implications of nanotechnology. In this study, permeation of 21 nm diameter silver nanoparticles (AgNPs) was tested using Side-Bi-Side and Franz static diffusion cells through hydrophilic 0.1 and 0.05 µm pore diameter 125 µm thick synthetic cellulose membranes, and 16 and 120 µm thick low-density polyethylene (LDPE) films. Experiments performed with LDPE films discarded permeation of AgNPs or Ag ions over the investigated time-frame in both diffusion systems. But controlled release of AgNPs has been quantified using semipermeable hydrophilic membranes. The permeation followed a quasi-linear time-dependent model during the experimental time-frame, which represents surface reaction-limited permeation. Diffusive flux, diffusion coefficients, and membrane permeability were determined as a function of pore size and diffusion model. Concentration gradient and pore size were key to understand mass transfer phenomena in the diffusion systems.

  8. Comparative study of silver nanoparticle permeation using Side-Bi-Side and Franz diffusion cells

    International Nuclear Information System (INIS)

    Trbojevich, Raul A.; Fernandez, Avelina; Watanabe, Fumiya; Mustafa, Thikra; Bryant, Matthew S.

    2016-01-01

    Better understanding the mechanisms of nanoparticle permeation through membranes and packaging polymers has important implications for the evaluation of drug transdermal uptake, in food safety and the environmental implications of nanotechnology. In this study, permeation of 21 nm diameter silver nanoparticles (AgNPs) was tested using Side-Bi-Side and Franz static diffusion cells through hydrophilic 0.1 and 0.05 µm pore diameter 125 µm thick synthetic cellulose membranes, and 16 and 120 µm thick low-density polyethylene (LDPE) films. Experiments performed with LDPE films discarded permeation of AgNPs or Ag ions over the investigated time-frame in both diffusion systems. But controlled release of AgNPs has been quantified using semipermeable hydrophilic membranes. The permeation followed a quasi-linear time-dependent model during the experimental time-frame, which represents surface reaction-limited permeation. Diffusive flux, diffusion coefficients, and membrane permeability were determined as a function of pore size and diffusion model. Concentration gradient and pore size were key to understand mass transfer phenomena in the diffusion systems.Graphical Abstract

  9. Comparative study of silver nanoparticle permeation using Side-Bi-Side and Franz diffusion cells

    Energy Technology Data Exchange (ETDEWEB)

    Trbojevich, Raul A. [U.S. Food and Drug Administration, Division of Biochemical Toxicology, National Center for Toxicological Research (United States); Fernandez, Avelina, E-mail: velifdez@ific.uv.es [Consejo Superior de Investigaciones Científicas-Universitat de València, Parc Científic, Instituto de Física Corpuscular (Spain); Watanabe, Fumiya; Mustafa, Thikra [University Arkansas at Little Rock, Center for Integrative Nanotechnology Sciences (United States); Bryant, Matthew S. [U.S. Food and Drug Administration, Division of Biochemical Toxicology, National Center for Toxicological Research (United States)

    2016-03-15

    Better understanding the mechanisms of nanoparticle permeation through membranes and packaging polymers has important implications for the evaluation of drug transdermal uptake, in food safety and the environmental implications of nanotechnology. In this study, permeation of 21 nm diameter silver nanoparticles (AgNPs) was tested using Side-Bi-Side and Franz static diffusion cells through hydrophilic 0.1 and 0.05 µm pore diameter 125 µm thick synthetic cellulose membranes, and 16 and 120 µm thick low-density polyethylene (LDPE) films. Experiments performed with LDPE films discarded permeation of AgNPs or Ag ions over the investigated time-frame in both diffusion systems. But controlled release of AgNPs has been quantified using semipermeable hydrophilic membranes. The permeation followed a quasi-linear time-dependent model during the experimental time-frame, which represents surface reaction-limited permeation. Diffusive flux, diffusion coefficients, and membrane permeability were determined as a function of pore size and diffusion model. Concentration gradient and pore size were key to understand mass transfer phenomena in the diffusion systems.Graphical Abstract.

  10. Novel diffusion cell for in vitro transdermal permeation, compatible with automated dynamic sampling

    NARCIS (Netherlands)

    Bosman, I.J; Lawant, A.L; Avegaart, S.R.; Ensing, K; de Zeeuw, R.A

    The development of a new diffusion cell for in vitro transdermal permeation is described. The so-called Kelder cells were used in combination with the ASPEC system (Automatic Sample Preparation with Extraction Columns), which is designed for the automation of solid-phase extractions (SPE). Instead

  11. Combined Opto-Acoustical sensor modules for KM3NeT

    International Nuclear Information System (INIS)

    Enzenhöfer, A.

    2013-01-01

    KM3NeT is a future multi-cubic-kilometre water Cherenkov neutrino telescope currently entering a first construction phase. It will be located in the Mediterranean Sea and comprise about 600 vertical structures called detection units. Each of these detection units has a length of several hundred metres and is anchored to the sea bed on one side and held taut by a buoy on the other side. The detection units are thus subject to permanent movement due to sea currents. Modules holding photosensors and additional equipment are equally distributed along the detection units. The relative positions of the photosensors has to be known with an uncertainty below 20 cm in order to achieve the necessary precision for neutrino astronomy. These positions can be determined with an acoustic positioning system: dedicated acoustic emitters located at known positions and acoustic receivers along each detection unit. This article describes the approach to combine an acoustic receiver with the photosensors inside one detection module using a common power supply and data readout. The advantage of this approach lies in a reduction of underwater connectors and module configurations as well as in the compactification of the detection units integrating the auxiliary devices necessary for their successful operation.

  12. Opto-electro-modulated transient photovoltage and photocurrent system for investigation of charge transport and recombination in solar cells.

    Science.gov (United States)

    Shi, Jiangjian; Li, Dongmei; Luo, Yanhong; Wu, Huijue; Meng, Qingbo

    2016-12-01

    An opto-electro-modulated transient photovoltage/photocurrent system has been developed to probe microscopic charge processes of a solar cell in its adjustable operating conditions. The reliability of this system is carefully determined by electric circuit simulations and experimental measurements. Using this system, the charge transport, recombination and storage properties of a conventional multicrystalline silicon solar cell under different steady-state bias voltages, and light illumination intensities are investigated. This system has also been applied to study the influence of the hole transport material layer on charge extraction and the microscopic charge processes behind the widely considered photoelectric hysteresis in perovskite solar cells.

  13. Fully coupled opto-electronic modelling of organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, Nils A.; Haeusermann, Roger; Huber, Evelyne; Moos, Michael [ZHAW, Institute of Comp. Physics (Germany); Flatz, Thomas [Fluxim AG (Switzerland); Ruhstaller, Beat [ZHAW, Institute of Comp. Physics (Germany); Fluxim AG (Switzerland)

    2009-07-01

    Record solar power conversion efficiencies of up to 5.5 % for single junction organic solar cells (OSC) are encouraging but still inferior to values of inorganic solar cells. For further progress, a detailed analysis of the mechanisms that limit the external quantum efficiency is crucial. It is widely believed that the device physics of OSCs can be reduced to the processes, which take place at the donor/acceptor-interface. Neglecting transport, trapping and ejection of charge carriers at the electrodes raises the question of the universality of such a simplification. In this study we present a fully coupled opto-electronic simulator, which calculates the spatial and spectral photon flux density inside the OSC, the formation of the charge transfer state and its dissociation into free charge carriers. Our simulator solves the drift- diffusion equations for the generated charge carriers as well as their ejection at the electrodes. Our results are in good agreement with both steady-state and transient OSC characteristics. We address the influence of physical quantities such as the optical properties, film-thicknesses, the recombination rate and charge carrier mobilities on performance figures. For instance the short circuit current can be enhanced by 15% to 25% when using a silver instead of an aluminium cathode. Our simulations lead to rules of thumb, which help to optimise a given OSC structure.

  14. Collagen-based silver nanoparticles: Study on cell viability, skin permeation, and swelling inhibition

    International Nuclear Information System (INIS)

    Saura Cardoso, Vinicius; Carvalho Filgueiras, Marcelo de; Medeiros Dutra, Yago; Gomes Teles, Ramon Handerson; Rodrigues de Araújo, Alyne; Primo, Fernando Lucas; Mafud, Ana Carolina; Batista, Larissa Fernandes; Mascarenhas, Yvonne Primerano

    2017-01-01

    Collagen is considered the most abundant protein in the animal kingdom, comprising 30% of the total amount of proteins and 6% of the human body by weight. Studies that examine the interaction between silver nanoparticles and proteins have been highlighted in the literature in order to understand the stability of the nanoparticle system, the effects observed in biological systems, and the appearance of new chemical pharmaceutical products. The objective of this study was to analyze the behavior of silver nanoparticles stabilized with collagen (AgNPcol) and to check the skin permeation capacity and action in paw edema induced by carrageenan. AgNPcol synthesis was carried out using solutions of reducing agent sodium borohydride (NaBH 4 ), silver nitrate (AgNO 3 ) and collagen. Characterization was done by using dynamic light scattering (DLS) and X-ray diffraction (XRD) and AFM. Cellular viability testing was performed by using flow cytometry in human melanoma cancer (MV3) and murine fibroblast (L929) cells. The skin permeation study was conducted using a Franz diffusion cell, and the efficiency of AgNPcol against the formation of paw edema in mice was evaluated. The hydrodynamic diameter and zeta potential of AgNPcol were 140.7 ± 7.8 nm and 20.1 ± 0.7 mV, respectively. AgNPcol failed to induce early apoptosis, late apoptosis, and necrosis in L929 cells; however, it exhibited enhanced toxicity in cancer cells (MV3) compared to normal cells (L929). AgNPcol demonstrated increased toxicological effects in cancer MV3 cells, promoting skin permeation, and preventing paw edema. - Highlights: • Silver nanoparticles were synthesized with type I collagen (AgNPcol). • AgNPcol which was characterized by XRD and DLS. • AgNPcol exhibited enhanced toxicity in cancer cells. • The efficiency of the AgNPcol against the paw edema was evaluated.

  15. Collagen-based silver nanoparticles: Study on cell viability, skin permeation, and swelling inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Saura Cardoso, Vinicius, E-mail: vscfisio@ufpi.edu.br [Research Center in Biodiversity and Biotechnology, Biotec, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí (Brazil); Physiotherapy Department, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí (Brazil); Carvalho Filgueiras, Marcelo de; Medeiros Dutra, Yago; Gomes Teles, Ramon Handerson [Physiotherapy Department, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí (Brazil); Morphology and Muscle Physiology Laboratory, LAMFIM, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí (Brazil); Rodrigues de Araújo, Alyne [Research Center in Biodiversity and Biotechnology, Biotec, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí (Brazil); Primo, Fernando Lucas [Faculdade de Ciências Farmacêuticas, UNESP, Universidade Estadual Paulista, Campus de Araraquara, Departamento de Bioprocessos e Biotecnologia, 14800903 Araraquara, São Paulo (Brazil); Mafud, Ana Carolina; Batista, Larissa Fernandes; Mascarenhas, Yvonne Primerano [Institute of Physics of São Carlos, IFSC, University of São Paulo, USP, 13566590 São Carlos, SP (Brazil); and others

    2017-05-01

    Collagen is considered the most abundant protein in the animal kingdom, comprising 30% of the total amount of proteins and 6% of the human body by weight. Studies that examine the interaction between silver nanoparticles and proteins have been highlighted in the literature in order to understand the stability of the nanoparticle system, the effects observed in biological systems, and the appearance of new chemical pharmaceutical products. The objective of this study was to analyze the behavior of silver nanoparticles stabilized with collagen (AgNPcol) and to check the skin permeation capacity and action in paw edema induced by carrageenan. AgNPcol synthesis was carried out using solutions of reducing agent sodium borohydride (NaBH{sub 4}), silver nitrate (AgNO{sub 3}) and collagen. Characterization was done by using dynamic light scattering (DLS) and X-ray diffraction (XRD) and AFM. Cellular viability testing was performed by using flow cytometry in human melanoma cancer (MV3) and murine fibroblast (L929) cells. The skin permeation study was conducted using a Franz diffusion cell, and the efficiency of AgNPcol against the formation of paw edema in mice was evaluated. The hydrodynamic diameter and zeta potential of AgNPcol were 140.7 ± 7.8 nm and 20.1 ± 0.7 mV, respectively. AgNPcol failed to induce early apoptosis, late apoptosis, and necrosis in L929 cells; however, it exhibited enhanced toxicity in cancer cells (MV3) compared to normal cells (L929). AgNPcol demonstrated increased toxicological effects in cancer MV3 cells, promoting skin permeation, and preventing paw edema. - Highlights: • Silver nanoparticles were synthesized with type I collagen (AgNPcol). • AgNPcol which was characterized by XRD and DLS. • AgNPcol exhibited enhanced toxicity in cancer cells. • The efficiency of the AgNPcol against the paw edema was evaluated.

  16. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping.

    Science.gov (United States)

    Augustsson, Per; Karlsen, Jonas T; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel

    2016-05-16

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size.

  17. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping

    DEFF Research Database (Denmark)

    Augustsson, Per; Karlsen, Jonas Tobias; Su, Hao-Wei

    2016-01-01

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance...... of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide...... theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic...

  18. Oxygen permeation through Nafion 117 membrane and its impact on efficiency of polymer membrane ethanol fuel cell

    Science.gov (United States)

    Jablonski, Andrzej; Kulesza, Pawel J.; Lewera, Adam

    2011-05-01

    We investigate oxygen permeation through Nafion 117 membrane in a direct ethanol fuel cell and elucidate how it affects the fuel cell efficiency. An obvious symptom of oxygen permeation is the presence of significant amounts of acetaldehyde and acetic acid in the mixture leaving anode when no current was drawn from the fuel cell (i.e. under the open circuit conditions). This parasitic process severely lowers efficiency of the fuel cell because ethanol is found to be directly oxidized on the surface of catalyst by oxygen coming through membrane from cathode in the absence of electric current flowing in the external circuit. Three commonly used carbon-supported anode catalysts are investigated, Pt, Pt/Ru and Pt/Sn. Products of ethanol oxidation are determined qualitatively and quantitatively at open circuit as a function of temperature and pressure, and we aim at determining whether the oxygen permeation or the catalyst's activity limits the parasitic ethanol oxidation. Our results strongly imply the need to develop more selective membranes that would be less oxygen permeable.

  19. Water permeation through anion exchange membranes

    Science.gov (United States)

    Luo, Xiaoyan; Wright, Andrew; Weissbach, Thomas; Holdcroft, Steven

    2018-01-01

    An understanding of water permeation through solid polymer electrolyte (SPE) membranes is crucial to offset the unbalanced water activity within SPE fuel cells. We examine water permeation through an emerging class of anion exchange membranes, hexamethyl-p-terphenyl poly (dimethylbenzimidazolium) (HMT-PMBI), and compare it against series of membrane thickness for a commercial anion exchange membrane (AEM), Fumapem® FAA-3, and a series of proton exchange membranes, Nafion®. The HMT-PMBI membrane is found to possess higher water permeabilities than Fumapem® FAA-3 and comparable permeability than Nafion (H+). By measuring water permeation through membranes of different thicknesses, we are able to decouple, for the first time, internal and interfacial water permeation resistances through anion exchange membranes. Permeation resistances on liquid/membrane interface is found to be negligible compared to that for vapor/membrane for both series of AEMs. Correspondingly, the resistance of liquid water permeation is found to be one order of magnitude smaller compared to that of vapor water permeation. HMT-PMBI possesses larger effective internal water permeation coefficient than both Fumapem® FAA-3 and Nafion® membranes (60 and 18% larger, respectively). In contrast, the effective interfacial permeation coefficient of HMT-PMBI is found to be similar to Fumapem® (±5%) but smaller than Nafion®(H+) (by 14%).

  20. Wavelength-encoded OCDMA system using opto-VLSI processors.

    Science.gov (United States)

    Aljada, Muhsen; Alameh, Kamal

    2007-07-01

    We propose and experimentally demonstrate a 2.5 Gbits/sper user wavelength-encoded optical code-division multiple-access encoder-decoder structure based on opto-VLSI processing. Each encoder and decoder is constructed using a single 1D opto-very-large-scale-integrated (VLSI) processor in conjunction with a fiber Bragg grating (FBG) array of different Bragg wavelengths. The FBG array spectrally and temporally slices the broadband input pulse into several components and the opto-VLSI processor generates codewords using digital phase holograms. System performance is measured in terms of the autocorrelation and cross-correlation functions as well as the eye diagram.

  1. Wavelength-encoded OCDMA system using opto-VLSI processors

    Science.gov (United States)

    Aljada, Muhsen; Alameh, Kamal

    2007-07-01

    We propose and experimentally demonstrate a 2.5 Gbits/sper user wavelength-encoded optical code-division multiple-access encoder-decoder structure based on opto-VLSI processing. Each encoder and decoder is constructed using a single 1D opto-very-large-scale-integrated (VLSI) processor in conjunction with a fiber Bragg grating (FBG) array of different Bragg wavelengths. The FBG array spectrally and temporally slices the broadband input pulse into several components and the opto-VLSI processor generates codewords using digital phase holograms. System performance is measured in terms of the autocorrelation and cross-correlation functions as well as the eye diagram.

  2. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).

    Science.gov (United States)

    Shi, Jinjie; Ahmed, Daniel; Mao, Xiaole; Lin, Sz-Chin Steven; Lawit, Aitan; Huang, Tony Jun

    2009-10-21

    Here we present an active patterning technique named "acoustic tweezers" that utilizes standing surface acoustic wave (SSAW) to manipulate and pattern cells and microparticles. This technique is capable of patterning cells and microparticles regardless of shape, size, charge or polarity. Its power intensity, approximately 5x10(5) times lower than that of optical tweezers, compares favorably with those of other active patterning methods. Flow cytometry studies have revealed it to be non-invasive. The aforementioned advantages, along with this technique's simple design and ability to be miniaturized, render the "acoustic tweezers" technique a promising tool for various applications in biology, chemistry, engineering, and materials science.

  3. Three-dimensional manipulation of single cells using surface acoustic waves.

    Science.gov (United States)

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-02-09

    The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving "acoustic tweezers" in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner.

  4. Surface acoustic wave actuated cell sorting (SAWACS).

    Science.gov (United States)

    Franke, T; Braunmüller, S; Schmid, L; Wixforth, A; Weitz, D A

    2010-03-21

    We describe a novel microfluidic cell sorter which operates in continuous flow at high sorting rates. The device is based on a surface acoustic wave cell-sorting scheme and combines many advantages of fluorescence activated cell sorting (FACS) and fluorescence activated droplet sorting (FADS) in microfluidic channels. It is fully integrated on a PDMS device, and allows fast electronic control of cell diversion. We direct cells by acoustic streaming excited by a surface acoustic wave which deflects the fluid independently of the contrast in material properties of deflected objects and the continuous phase; thus the device underlying principle works without additional enhancement of the sorting by prior labelling of the cells with responsive markers such as magnetic or polarizable beads. Single cells are sorted directly from bulk media at rates as fast as several kHz without prior encapsulation into liquid droplet compartments as in traditional FACS. We have successfully directed HaCaT cells (human keratinocytes), fibroblasts from mice and MV3 melanoma cells. The low shear forces of this sorting method ensure that cells survive after sorting.

  5. Opto-thermoelectric nanotweezers

    Science.gov (United States)

    Lin, Linhan; Wang, Mingsong; Peng, Xiaolei; Lissek, Emanuel N.; Mao, Zhangming; Scarabelli, Leonardo; Adkins, Emily; Coskun, Sahin; Unalan, Husnu Emrah; Korgel, Brian A.; Liz-Marzán, Luis M.; Florin, Ernst-Ludwig; Zheng, Yuebing

    2018-04-01

    Optical manipulation of plasmonic nanoparticles provides opportunities for fundamental and technical innovation in nanophotonics. Optical heating arising from the photon-to-phonon conversion is considered as an intrinsic loss in metal nanoparticles, which limits their applications. We show here that this drawback can be turned into an advantage, by developing an extremely low-power optical tweezing technique, termed opto-thermoelectric nanotweezers. By optically heating a thermoplasmonic substrate, a light-directed thermoelectric field can be generated due to spatial separation of dissolved ions within the heating laser spot, which allows us to manipulate metal nanoparticles of a wide range of materials, sizes and shapes with single-particle resolution. In combination with dark-field optical imaging, nanoparticles can be selectively trapped and their spectroscopic response can be resolved in situ. With its simple optics, versatile low-power operation, applicability to diverse nanoparticles and tunable working wavelength, opto-thermoelectric nanotweezers will become a powerful tool in colloid science and nanotechnology.

  6. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, Dean A., E-mail: dabuche@sandia.gov [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Karnesky, Richard A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Fang, Zhigang Zak; Ren, Chai [University of Utah, Department of Metallurgical Engineering, Salt Lake City, UT 84112 (United States); Oya, Yasuhisa [Shizuoka University, Graduate School of Science, Shizuoka (Japan); Otsuka, Teppei [Kyushu University, Department of Advanced Energy Engineering Science, Fukuoka (Japan); Yamauchi, Yuji [Hokkaido University, Third Division of Quantum Science and Engineering, Faculty of Engineering, Sapporo (Japan); Whaley, Josh A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States)

    2016-11-01

    Highlights: • We have designed and performed initial studies on a high temperature gas-driven permeation cell capable of operating at temperatures up to 1150 °C and at pressures between 0.1–1 atm. • Permeation measurements on ITER grade tungsten compare well with past studies by Frauenfelder and Zahkarov in the temperature range from 500 to 1000 °C. • First permeation measurements on Ti dispersoid-strengthened ultra-fine grained tungsten show higher permeation at 500 °C, but very similar permeation with ITER tungsten at 1000 °C. Diffusion along grain boundaries may be playing a role for this type of material. - Abstract: To address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungsten being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D{sub 2} pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation

  7. Thin-film transducers for the detection and imaging of Brillouin oscillations in transmission on cultured cells

    International Nuclear Information System (INIS)

    Pérez-Cota, F; Smith, R J; Clark, M; Moradi, E; Webb, K

    2016-01-01

    Mechanical imaging and characterisation of biological cells has been a subject of interest for the last twenty years. Ultrasonic imaging based on the scanning acoustic microscope (SAM) and mechanical probing have been extensively reported. Large acoustic attenuation at high frequencies and the use of conventional piezo-electric transducers limit the operational frequency of a SAM. This limitation results in lower resolution compared to an optical microscope. Direct mechanical probing in the form of applied stress by contacting probes causes stress to cells and exhibits poor depth resolution. More recently, laser ultrasound has been reported to detect ultrasound in the GHz range via Brillouin oscillations on biological cells. This technique offers a promising new high resolution acoustic cell imaging technique. In this work, we propose, design and apply a thin-film based opto-acoustic transducer for the detection in transmission of Brillouin oscillations on cells. The transducer is used to generate acoustic waves, protect the cells from laser radiation and enhance signal-to-noise ratio (SNR). Experimental traces are presented in water films as well as images of the Brillouin frequency of phantom and fixed 3T3 fibroblast cells. (paper)

  8. Opto-VLSI-based reconfigurable free-space optical interconnects architecture

    DEFF Research Database (Denmark)

    Aljada, Muhsen; Alameh, Kamal; Chung, Il-Sug

    2007-01-01

    is the Opto-VLSI processor which can be driven by digital phase steering and multicasting holograms that reconfigure the optical interconnects between the input and output ports. The optical interconnects architecture is experimentally demonstrated at 2.5 Gbps using high-speed 1×3 VCSEL array and 1......×3 photoreceiver array in conjunction with two 1×4096 pixel Opto-VLSI processors. The minimisation of the crosstalk between the output ports is achieved by appropriately aligning the VCSEL and PD elements with respect to the Opto-VLSI processors and driving the latter with optimal steering phase holograms....

  9. Design and simulation of a microfluidic device for acoustic cell separation.

    Science.gov (United States)

    Shamloo, Amir; Boodaghi, Miad

    2018-03-01

    Experimental acoustic cell separation methods have been widely used to perform separation for different types of blood cells. However, numerical simulation of acoustic cell separation has not gained enough attention and needs further investigation since by using numerical methods, it is possible to optimize different parameters involved in the design of an acoustic device and calculate particle trajectories in a simple and low cost manner before spending time and effort for fabricating these devices. In this study, we present a comprehensive finite element-based simulation of acoustic separation of platelets, red blood cells and white blood cells, using standing surface acoustic waves (SSAWs). A microfluidic channel with three inlets, including the middle inlet for sheath flow and two symmetrical tilted angle inlets for the cells were used to drive the cells through the channel. Two interdigital transducers were also considered in this device and by implementing an alternating voltage to the transducers, an acoustic field was created which can exert the acoustic radiation force to the cells. Since this force is dependent to the size of the cells, the cells are pushed towards the midline of the channel with different path lines. Particle trajectories for different cells were obtained and compared with a theoretical equation. Two types of separations were observed as a result of varying the amplitude of the acoustic field. In the first mode of separation, white blood cells were sorted out through the middle outlet and in the second mode of separation, platelets were sorted out through the side outlets. Depending on the clinical needs and by using the studied microfluidic device, each of these modes can be applied to separate the desired cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Conjugation of a cell-penetrating peptide to parathyroid hormone affects its structure, potency, and transepithelial permeation

    DEFF Research Database (Denmark)

    Kristensen, Mie; de Groot, Anne Marit; Berthelsen, Jens

    2015-01-01

    hormone, i.e. PTH(1-34), and to evaluate the effect with regards to secondary structure, potency in Saos-2 cells, immunogenicity, safety as well as the transepithelial permeation across monolayers by using the Caco-2 cell culture model. Further, co-administration of CPP and PTH(1-34) as an alternative...

  11. Acoustic manipulation of bacteria cells suspensions

    Science.gov (United States)

    GutiéRrez-Ramos, Salomé; Hoyos, Mauricio; Aider, Jean Luc; Ruiz, Carlos; Acoustofluidics Team Team; Soft; Bio Group Collaboration

    An acoustic contacless manipulation gives advantages in the exploration of the complex dynamics enviroment that active matter exhibits. Our works reports the control confinement and dispersion of Escherichia coliRP437-pZA3R-YFP suspensions (M9Glu-Ca) via acoustic levitation.The manipulation of the bacteria bath in a parallel plate resonator is achieved using the acoustic radiation force and the secondary radiation force. The primary radiation force generates levitation of the bacteria cells at the nodal plane of the ultrasonic standing wave generated inside the resonator. On the other side, secondary forces leads to the consolidation of stable aggregates. All the experiments were performed in the acoustic trap described, where we excite the emission plate with a continuous sinusoidal signal at a frequency in the order of MHz and a quartz slide as the reflector plate. In a typical experiment we observed that, before the input of the signal, the bacteria cells exhibit their typical run and tumble behavior and after the sound is turned on all of them displace towards the nodal plane, and instantaneously the aggregation begins in this region. CNRS French National Space Studies, CONACYT Mexico.

  12. Advances in Opto Electronics

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Advances in Opto Electronics. Optoelectronics is where electronics was 15 years back. All Optical Amplifiers and Semiconductor Amplifiers. Fastest Semiconductor (InP) switch is at 170GHz- where is terrabit ? MEMS based switches that route traffic at wavelength level ...

  13. Permeation of aromatic solvent mixtures through nitrile protective gloves.

    Science.gov (United States)

    Chao, Keh-Ping; Hsu, Ya-Ping; Chen, Su-Yi

    2008-05-30

    The permeation of binary and ternary mixtures of benzene, toluene, ethyl benzene and p-xylene through nitrile gloves were investigated using the ASTM F739 test cell. The more slowly permeating component of a mixture was accelerated to have a shorter breakthrough time than its pure form. The larger differences in solubility parameter between a solvent mixture and glove resulted in a lower permeation rate. Solubility parameter theory provides a potential approach to interpret the changes of permeation properties for BTEX mixtures through nitrile gloves. Using a one-dimensional diffusion model based on Fick's law, the permeation concentrations of ASTM F739 experiments were appropriately simulated by the estimated diffusion coefficient and solubility. This study will be a fundamental work for the risk assessment of the potential dermal exposure of workers wearing protective gloves.

  14. OWLS as platform technology in OPTOS satellite

    Science.gov (United States)

    Rivas Abalo, J.; Martínez Oter, J.; Arruego Rodríguez, I.; Martín-Ortega Rico, A.; de Mingo Martín, J. R.; Jiménez Martín, J. J.; Martín Vodopivec, B.; Rodríguez Bustabad, S.; Guerrero Padrón, H.

    2017-12-01

    The aim of this work is to show the Optical Wireless Link to intraSpacecraft Communications (OWLS) technology as a platform technology for space missions, and more specifically its use within the On-Board Communication system of OPTOS satellite. OWLS technology was proposed by Instituto Nacional de Técnica Aeroespacial (INTA) at the end of the 1990s and developed along 10 years through a number of ground demonstrations, technological developments and in-orbit experiments. Its main benefits are: mass reduction, flexibility, and simplification of the Assembly, Integration and Tests phases. The final step was to go from an experimental technology to a platform one. This step was carried out in the OPTOS satellite, which makes use of optical wireless links in a distributed network based on an OLWS implementation of the CAN bus. OPTOS is the first fully wireless satellite. It is based on the triple configuration (3U) of the popular Cubesat standard, and was completely built at INTA. It was conceived to procure a fast development, low cost, and yet reliable platform to the Spanish scientific community, acting as a test bed for space born science and technology. OPTOS presents a distributed OBDH architecture in which all satellite's subsystems and payloads incorporate a small Distributed On-Board Computer (OBC) Terminal (DOT). All DOTs (7 in total) communicate between them by means of the OWLS-CAN that enables full data sharing capabilities. This collaboration allows them to perform all tasks that would normally be carried out by a centralized On-Board Computer.

  15. Permeation barrier properties of thin oxide films on flexible polymer substrates

    International Nuclear Information System (INIS)

    Fahlteich, John; Fahland, Matthias; Schoenberger, Waldemar; Schiller, Nicolas

    2009-01-01

    Solar cells and organic electronic devices require an encapsulation to ensure sufficient lifetime. Key parameters of the encapsulation are permeation barrier, UV stability, temperature stability, optical transmission spectra and mechanical stability. The requirements depend very much on the specific application. Many work groups suggest multilayer stacks to meet the permeation requirements. In this paper the permeation barrier properties of the different constituents of such a multilayer stack are characterized. Different layer materials are compared regarding their water vapour and oxygen permeability as well as the influence of process parameters is examined. Finally temperature dependent permeation measurements are used to characterize the permeation mechanisms in the different constituents of the multilayer barrier

  16. Integrated immunoassay using tuneable surface acoustic waves and lensfree detection.

    Science.gov (United States)

    Bourquin, Yannyk; Reboud, Julien; Wilson, Rab; Zhang, Yi; Cooper, Jonathan M

    2011-08-21

    The diagnosis of infectious diseases in the Developing World is technologically challenging requiring complex biological assays with a high analytical performance, at minimal cost. By using an opto-acoustic immunoassay technology, integrating components commonly used in mobile phone technologies, including surface acoustic wave (SAW) transducers to provide pressure driven flow and a CMOS camera to enable lensfree detection technique, we demonstrate the potential to produce such an assay. To achieve this, antibody functionalised microparticles were manipulated on a low-cost disposable cartridge using the surface acoustic waves and were then detected optically. Our results show that the biomarker, interferon-γ, used for the diagnosis of diseases such as latent tuberculosis, can be detected at pM concentrations, within a few minutes (giving high sensitivity at a minimal cost). This journal is © The Royal Society of Chemistry 2011

  17. Permeation of Comite through protective gloves.

    Science.gov (United States)

    Zainal, Hanaa; Que Hee, Shane S

    2006-09-01

    The goal of the study was to assess how protective disposable (Safeskin) and chemical protective (Sol-Vex) nitrile gloves were against Comite emulsifiable concentrate formulation containing propargite (PROP) as active pesticidal ingredient, because there were no explicit recommendations for the gloves that should be worn for hand protection. The glove material was exposed in ASTM-type I-PTC-600 permeation cells at 30.0+/-0.5 degrees C, and gas chromatography-mass spectrometry used for PROP analysis. Aqueous solutions of Comite at 40.4 mg/mL permeated both Safeskin and Sol-Vex nitrile by 8h. Safeskin showed a mean PROP mass permeated of 176+/-27 microg after 8h compared with a mean mass permeated for Sol-Vex of 3.17+/-4.08 microg. Thus, Sol-Vex was about 56 times more protective than Safeskin for an 8-h exposure. However, the kinetics of the permeation revealed that Safeskin can be worn for at least 200 min before disposal. When undiluted Comite challenged both types of nitrile, much faster permeation was observed. Safeskin gloves showed two steady state periods. The first had lag times (t(l)) values of about 1h, although normalized breakthrough times (t(b)) were gloves exposed continuously to undiluted Comite permeated above the normalized breakthrough threshold beyond 2.7h. A risk assessment revealed that the PROP skin permeation rate of 7.1 ng cm(-2)h(-1) was much slower than the first steady state Safeskin glove P(s) of 62,000 ng cm(-2)h(-1). Infrared analysis showed that the glove surfaces were not degraded by the Comite challenge. The chemically protective Sol-Vex gloves protected adequately against undiluted formulation for about 2.7h, whereas they provided protection for nearly 8h when the formulation was diluted with water to the highest concentration for field application. In contrast, the disposable Safeskin gloves did not protect at all for the undiluted formulation, but did for 200 min when the formulation was diluted with water to the highest

  18. Effect of residual stresses on hydrogen permeation in iron

    International Nuclear Information System (INIS)

    Mouanga, M.; Bercot, P.; Takadoum, J.

    2010-01-01

    The effect of residual stresses on electrochemical permeation in iron membrane was investigated. Four thermal and mechanical treatments were chosen to obtain different surface states in relation to the residual stresses. Residual stresses were determined by X-ray diffraction (XRD) using the Macherauch and Mueller method. The results were completed by the microhardness measurements. For all iron membranes, compressive residual stresses were obtained. Electrochemical permeation experiments using a Devanathan and Stachurski cell were employed to determine the hydrogen permeation behaviour of the various iron membranes. The latter was charged with hydrogen by galvanostatic cathodic polarization in 0.1 M NaOH at 25 deg. C. The experimental results revealed that hydrogen permeation rate increases with increasing residual stresses introduced in iron membranes.

  19. Permeation measurement of gestodene for some biodegradable materials using Franz diffusion cells.

    Science.gov (United States)

    Liu, Danhua; Zhang, Chong; Zhang, Xiaowei; Zhen, Zhu; Wang, Ping; Li, Jianxin; Yi, Dongxu; Jin, Ying; Yang, Dan

    2015-09-01

    Biodegradable poly(d,l-lactide) (PDLLA), Poly(trimethylene carbonate) (PTMC), polycaprolactone (PCL), poly(caprolactone-co-d,l-lactide) (PCDLLA) and poly(trimethylene carbonate-co-caprolactone) (PTCL) are recently used for clinical drug delivery system such as subcutaneous contraceptive implant capsule due to their biodegradable properties that they could possess long-term stable performance in vivo without removal, however their permeation rate is unknown. In the work, biodegradable material membranes were prepared by solvent evaporation using chloroform, and commercial silicone rubber membrane served as a control. Gestodene was used as a model drug. Gestodene has high biologic progestational activity which allows for high contraceptive reliability at very low-dose levels. The permeation rate of gestodene for several biodegradable materials was evaluated. In vitro diffusion studies were done using Franz diffusion cells with a diffusion area of 1.33 cm(2). Phosphate buffer solution (PBS, pH 7.4), 10% methanol solution and distilled water were taken in donor and receiver chambers at temperature of 37 °C respectively. The in vitro experiments were conducted over a period of 24 h during which samples were collected at regular intervals. The withdrawn samples were appropriately diluted and measured on UV-vis spectrophotometer at 247 nm. Conclusion data from our study showed that permeation rate of PCDLLA with CL ratio more than 70% could be more excellent than commercial silicone rubber membrane. They may be suitable as a candidate carrier for gestodene subcutaneous contraceptive implants in contraceptive fields.

  20. The effects of acoustic vibration on fibroblast cell migration.

    Science.gov (United States)

    Mohammed, Taybia; Murphy, Mark F; Lilley, Francis; Burton, David R; Bezombes, Frederic

    2016-12-01

    Cells are known to interact and respond to external mechanical cues and recent work has shown that application of mechanical stimulation, delivered via acoustic vibration, can be used to control complex cell behaviours. Fibroblast cells are known to respond to physical cues generated in the extracellular matrix and it is thought that such cues are important regulators of the wound healing process. Many conditions are associated with poor wound healing, so there is need for treatments/interventions, which can help accelerate the wound healing process. The primary aim of this research was to investigate the effects of mechanical stimulation upon the migratory and morphological properties of two different fibroblast cells namely; human lung fibroblast cells (LL24) and subcutaneous areolar/adipose mouse fibroblast cells (L929). Using a speaker-based system, the effects of mechanical stimulation (0-1600Hz for 5min) on the mean cell migration distance (μm) and actin organisation was investigated. The results show that 100Hz acoustic vibration enhanced cell migration for both cell lines whereas acoustic vibration above 100Hz was found to decrease cell migration in a frequency dependent manner. Mechanical stimulation was also found to promote changes to the morphology of both cell lines, particularly the formation of lamellipodia and filopodia. Overall lamellipodia was the most prominent actin structure displayed by the lung cell (LL24), whereas filopodia was the most prominent actin feature displayed by the fibroblast derived from subcutaneous areolar/adipose tissue. Mechanical stimulation at all the frequencies used here was found not to affect cell viability. These results suggest that low-frequency acoustic vibration may be used as a tool to manipulate the mechanosensitivity of cells to promote cell migration. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Intact penetratin metabolite permeates across Caco-2 monolayers

    DEFF Research Database (Denmark)

    Birch, Ditlev; Christensen, Malene Vinther; Stærk, Dan

    . Previous studies have demonstrated that cell-penetrating peptides (CPPs) may be used as carriers in order to improve the bioavailability of a therapeutic cargo like insulin after oral administration. Penetratin, a commonly used CPP, has been shown to increase the uptake of insulin across Caco-2 cell......-2 cells cultured on permeable filter inserts and in cell lysates, respectively. The epithelial permeation of penetratin and the formed metabolites was assessed by using Caco-2 monolayers cultured on permeable filter inserts. Results Preliminary data revealed that at least one specific metabolite...... is formed upon both intracellular and extracellular degradation of penetratin (figure 1A). Following incubation with epithelium for 4 hours, the metabolite permeated the Caco-2 monolayer and the concentration increased approximately 10-fold when compared to a sample collected following 15 minutes...

  2. Non-invasive optoacoustic probing of the density and stiffness of single biological cells

    Science.gov (United States)

    Dehoux, T.; Audoin, B.

    2012-12-01

    Recently, the coherent generation of GHz acoustic waves using ultrashort laser pulses has demonstrated the ability to probe the sound velocity in vegetal cells and in cell-mimicking soft micro-objects with micrometer resolution, opening tremendous potentialities for single-cell biology. However, manipulating biological media in physiological conditions is often a technical challenge when using a laser-based setup. In this article, we present a new opto-acoustic bio-transducer composed of a thin metal film sputtered on a transparent heat sink that allows reducing importantly the laser-induced cellular stresses, and offers a wide variety of optical configurations. In particular, by exploiting the acoustic reflection coefficient at the sample-transducer interface and the photoacoustic interaction inside the transparent sample, the density and compressibility of the sample can be probed simultaneously. Using an ad hoc signal analysis based on Hilbert and wavelet transforms, these quantities are measured accurately for a reference fluid. Similar analysis performed in a single vegetal cell also suggests high sensitivity to the state of the transducer-cell interface, and notably to the presence of the plasma membrane that encloses the cell vacuole.

  3. Practical opto-electronics an illustrated guide for the laboratory

    CERN Document Server

    Protopopov, Vladimir

    2014-01-01

    This book explains how to create opto-electronic systems in a most efficient way, avoiding typical mistakes. It covers light detection techniques, imaging, interferometry, spectroscopy, modulation-demodulation, heterodyning, beam steering, and many other topics common to laboratory applications. The focus is made on self-explanatory figures rather than on words. The book guides the reader through the entire process of creating problem-specific opto-electronic systems, starting from optical source, through beam transportation optical arrangement, to photodetector and data acquisition system. The relevant basics of beam propagation and computer-based raytracing routines are also explained, and sample codes are listed. the book teaches important know-how and practical tricks that are never disclosed in scientific publications.  The book can become the reader's personal adviser in the world of opto-electronics and navigator in the ocean of the market of optical components and systems. Succinct, well-illustrate...

  4. Opto-mechanical assembly procurement for the National Ignition Facility

    International Nuclear Information System (INIS)

    House, W.; Simon, T.

    1999-01-01

    A large number of the small optics procurements for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) will be in the form of completely assembled, tested, and cleaned subsystems. These subsystems will be integrated into the NIF at LLNL. To accomplish this task, the procurement packages will include, optical and mechanical drawings, acceptance test and cleanliness requirements. In January 1999, the first such integrated opto-mechanical assembly was received and evaluated at LLNL. With the successful completion of this important trial procurement, we were able to establish the viability of purchasing clean, ready to install, opto-mechanical assemblies from vendors within the optics industry. 32 vendors were chosen from our supplier database for quote, then five were chosen to purchase from. These five vendors represented a cross section of the optics industry. From a ''value'' catalog supplier (that did the whole job internally) to a partnership between three specialty companies, these vendors demonstrated they have the ingenuity and capability to deliver cost competitive, NIF-ready, opto- mechanical assemblies. This paper describes the vendor selection for this procurement, technical requirements including packaging, fabrication, coating, and cleanliness specifications, then testing and verification. It also gives real test results gathered from inspections performed at LLNL that show how our vendors scored on the various requirements. Keywords: Opto-Mechanical, assembly, NIF, packaging, shipping, specifications, procurement, MIL-STD-1246C, surface cleanliness

  5. Proton damage in linear and digital opto-couplers; Effets des protons sur des optocoupleurs lineaires et numeriques

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, A.; Rax, B.G. [California Institute of Technology, Jet Propulsion Laboratory, Pasadena (United States)

    1999-07-01

    This paper discusses proton degradation of linear and digital opto-couplers. One obvious way to harden opto-coupler technologies is to select LEDs (light emitting diodes) that are more resistant to displacement damage. A direct comparison is made of degradation of a commercial linear opto-coupler from one manufactured with a modified version of the same device with a different LED technology. Other factors, including degradation of optical photoresponse and transistor gain are also discussed, along with basic comparisons of digital and analog opto-couplers. The experimental work has been made with 50 MeV protons. 3 underlying factors contribute to opto-coupler degradation. The most important factor is LED degradation, it is possible to select opto-coupler with double-heterojunction LEDs that are inherently more resistant to displacement damage. The second factor is gain degradation that is particularly important for opto-couplers with sensitive LEDs because the light output decreases so much at low radiation levels. The third factor, optical photoresponse is the largest contribution to CTR (current transfer ratio) degradation for opto-couplers with improved LED hardness. Photoresponse degradation depends on wavelength because the absorption coefficient is wavelength dependent. (A.C.)

  6. ASTM F739 method for testing the permeation resistance of protective clothing materials: critical analysis with proposed changes in procedure and test-cell design.

    Science.gov (United States)

    Anna, D H; Zellers, E T; Sulewski, R

    1998-08-01

    ASTM (American Society for Testing and Materials) Method F739-96 specifies a test-cell design and procedures for measuring the permeation resistance of chemical protective clothing. Among the specifications are open-loop collection stream flow rates of 0.050 to 0.150 L/min for a gaseous medium. At elevated temperatures the test must be maintained within 1 degree C of the set point. This article presents a critical analysis of the effect of the collection stream flow rate on the measured permeation rate and on the temperature uniformity within the test cell. Permeation tests were conducted on four polymeric glove materials with 44 solvents at 25 degrees C. Flow rates > 0.5 L/min were necessary to obtain accurate steady-state permeation rate (SSPR) values in 25 percent of the tests. At the lower flow rates the true SSPR typically was underestimated by a factor of two or less, but errors of up to 33-fold were observed. No clear relationship could be established between the need for a higher collection stream flow rate and either the vapor pressure or the permeation rate of the solvent, but test results suggest that poor mixing within the collection chamber was a contributing factor. Temperature gradients between the challenge and collection chambers and between the bottom and the top of the collection chamber increased with the water-bath temperature and the collection stream flow rate. Use of a test cell modified to permit deeper submersion reduced the gradients to < or = 0.5 degrees C. It is recommended that all SSPR measurements include verification of the adequacy of the collection stream flow rate. For testing at nonambient temperatures, the modified test cell described here could be used to ensure temperature uniformity throughout the cell.

  7. The single-shot opto-digitizer

    International Nuclear Information System (INIS)

    Nail, M.; Gibert, Ph.

    2000-01-01

    Laser-plasma experiments need to measure signals provided either by X-ray, photonic or neutronic detector. The measurement should have 50 GHz bandwidth and up to several hundred of Giga-Hertz for sub picosecond plasmas. For this purpose, a 35 GHz single shot opto-digitizer (10 ps risetime) has been studied and built. The device is made up of a 50 ohms microstrip propagation line, periodically lined by 100 sampled gates. The propagation line is long enough to measure a 400 ps duration. The sampling rate is 250 Gsa/s (every 4 ps). The sampled gates are made with fast recombining photo-material and turn on by a subpicosecond laser pulse which is synchronized exactly with the analysed phenomena. Every gate is recording to a storing capacitor. After the recording, every capacitor charge is needed to built the signal that was displayed on the propagation line. The dynamic range of measurement is 47 for the entire device. The device can measure positive or negative signals from 1.5 to 70 Volts. To increase the bandwidth, two another kinds of opto-digitizer were studied: one is a buried stripline with 56 GHz band width, the other a 70 GHz coplanar transmission line. For the purpose of subpicosecond plasmas, a 30 coplanar waveguide opto-digitizer was studied. Characteristics are as followed: window of measurement 40 ps, sampling rate 1 ps, bandwidth 230 GHz. Finally, a bundle of optical fibers was used to propagate the laser beam on semiconductor gates. If the gates are lighted at the same time, i.e. if the optical fibers have the same length, we get a simultaneous addressing. By using different lengths of optical fibers, we can do a sequential addressing. So, the sampling rate becomes a combination of the distance between two adjacent sampled channels, and the difference in length of optical fibers. (author)

  8. Permeation through graphene ripples

    Science.gov (United States)

    Liang, Tao; He, Guangyu; Wu, Xu; Ren, Jindong; Guo, Hongxuan; Kong, Yuhan; Iwai, Hideo; Fujita, Daisuke; Gao, Hongjun; Guo, Haiming; Liu, Yingchun; Xu, Mingsheng

    2017-06-01

    Real graphene sheets show limited anti-permeation performance deviating from the ideally flat honeycomb carbon lattice that is impermeable to gases. Ripples in graphene are prevalent and they could significantly influence carrier transport. However, little attention has been paid to the role of ripples in the permeation properties of graphene. Here, we report that gases can permeate through graphene ripples at room temperature. The feasibility of gas permeation through graphene ripples is determined by detecting the initial oxidation sites of Cu surface covered with isolated graphene domain. Nudged elastic band (NEB) calculations demonstrate that the oxygen atom permeation occurs via the formation of C-O-C bond, in which process the energy barrier through the rippled graphene lattice is much smaller than that through a flat graphene lattice, rendering permeation through ripples more favorable. Combining with the recent advances in atoms intercalation between graphene and metal substrate for transfer-free and electrically insulated graphene, this discovery provides new perspectives regarding graphene’s limited anti-permeation performance and evokes for rational design of graphene-based encapsulation for barrier and selective gas separation applications through ripple engineering.

  9. Opto-acoustic measurement of the local light absorption coefficient in turbid media: 1. Monte-Carlo simulation of laser fluence distribution at the beam axis beneath the surface of a turbid medium

    International Nuclear Information System (INIS)

    Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A

    2009-01-01

    A new method for measuring the local light absorption coefficient in turbid media, for example, biological tissues, is proposed. The method is based on the fact that the amplitude of the excited opto-acoustic (OA) signal is proportional to the absorbed laser power density (the product of the light absorption coefficient and the laser fluence) at the medium interface. In the first part of the paper, the influence of the laser beam diameter, the light absorption and reduced scattering coefficients on the maximal amplitude of the laser fluence at the laser beam axis in the near-surface layer of the turbid medium is studied by using the Monte-Carlo simulation. The conditions are predicted under which the amplitude of the OA signal detected in a transparent medium in contact with the scattering medium should remain proportional to the light absorption coefficient of the medium under study, when the scattering coefficient in it changes more than twice. The results of the numerical simulation are used for the theoretical substantiation of the OA method being proposed. (measurement of parametrs of laser radiation)

  10. Opto-galvanic effect on degenerate magnetic states of sputtered atoms in a glow discharge

    International Nuclear Information System (INIS)

    Zhechev, D; Steflekova, V

    2014-01-01

    The opto-galvanic response of some degenerate states of sputtered atoms to linearly- and circularly polarize light is studied. On the same optical transition both time-resolved- and amplitude opto-galvanic signals are found depending on the polarizations of light absorbed. The latter induces galvanic responses differing in opto-galvanic efficiency, time-evolution and sensitivity to discharge current and laser power. The differences are ascribed to the rate constants of the decay processes, characterizing aligned and oriented atoms

  11. Cavity opto-electromechanical system combining strong electrical actuation with ultrasensitive transduction

    OpenAIRE

    McRae, Terry G.; Lee, Kwan H.; Harris, Glen I.; Knittel, Joachim; Bowen, Warwick P.

    2010-01-01

    A cavity opto-electromechanical system is reported which combines the ultrasensitive transduction of cavity optomechanical systems with the electrical actuation of nanoelectromechanical systems. Ultrasensitive mechanical transduction is achieved via opto-mechanical coupling. Electrical gradient forces as large as 0.40 $\\mu$N are realized, facilitating strong actuation with ultralow dissipation. A scanning probe microscope is implemented, capable of characterizing the mechanical modes. The int...

  12. OptoDyCE: Automated system for high-throughput all-optical dynamic cardiac electrophysiology

    Science.gov (United States)

    Klimas, Aleksandra; Yu, Jinzhu; Ambrosi, Christina M.; Williams, John C.; Bien, Harold; Entcheva, Emilia

    2016-02-01

    In the last two decades, market were due to cardiac toxicity, where unintended interactions with ion channels disrupt the heart's normal electrical function. Consequently, all new drugs must undergo preclinical testing for cardiac liability, adding to an already expensive and lengthy process. Recognition that proarrhythmic effects often result from drug action on multiple ion channels demonstrates a need for integrative and comprehensive measurements. Additionally, patient-specific therapies relying on emerging technologies employing stem-cell derived cardiomyocytes (e.g. induced pluripotent stem-cell-derived cardiomyocytes, iPSC-CMs) require better screening methods to become practical. However, a high-throughput, cost-effective approach for cellular cardiac electrophysiology has not been feasible. Optical techniques for manipulation and recording provide a contactless means of dynamic, high-throughput testing of cells and tissues. Here, we consider the requirements for all-optical electrophysiology for drug testing, and we implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We demonstrate the high-throughput capabilities using multicellular samples in 96-well format by combining optogenetic actuation with simultaneous fast high-resolution optical sensing of voltage or intracellular calcium. The system can also be implemented using iPSC-CMs and other cell-types by delivery of optogenetic drivers, or through the modular use of dedicated light-sensitive somatic cells in conjunction with non-modified cells. OptoDyCE provides a truly modular and dynamic screening system, capable of fully-automated acquisition of high-content information integral for improved discovery and development of new drugs and biologics, as well as providing a means of better understanding of electrical disturbances in the heart.

  13. Development of Novel Formulations to Enhance in Vivo Transdermal Permeation of Tocopherol

    Directory of Open Access Journals (Sweden)

    Nada Aly H.

    2014-09-01

    Full Text Available Tocopherol represents a big challenge for transdermal permeation owing to its extreme hydrophobicity and large molecular mass. The aim of the present study was to develop alpha-tocopherol (T topical formulations and evaluate their ex vivo and in vivo permeation. Franz diffusion cells were used for ex vivo permeation, and neonatal rats were used for in vivo permeation. Seven gel formulations and 21 liquid formulations were investigated for physical stability, viscosity and permeation of T. Analysis of T was performed by a validated HPLC method using a UV detector. The ex vivo permeation from gel and emulsion formulations was very poor (0.001-0.015 %. Highest permeation was observed from monophasic liquid formulations containing dimethyl sulfoxide (DMSO, tocopheryl polyethylene glycols (TPGs, propylene glycol, ethanol and 9.5 % T. The in vivo results demonstrated higher retention in the epidermis compared to subcutaneous tissues, 1377 and 1.13 μg g-1, respectively. Increasing T concentration from 4.8 to 9.5 % did not increase the amount permeated or % of T retained. It was concluded that simple solutions of T in the presence of DMSO and TPGs were more promising systems for effective transdermal permeation compared to gel, emulsion or oleaginous systems.

  14. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.

    Science.gov (United States)

    Ding, Xiaoyun; Lin, Sz-Chin Steven; Kiraly, Brian; Yue, Hongjun; Li, Sixing; Chiang, I-Kao; Shi, Jinjie; Benkovic, Stephen J; Huang, Tony Jun

    2012-07-10

    Techniques that can dexterously manipulate single particles, cells, and organisms are invaluable for many applications in biology, chemistry, engineering, and physics. Here, we demonstrate standing surface acoustic wave based "acoustic tweezers" that can trap and manipulate single microparticles, cells, and entire organisms (i.e., Caenorhabditis elegans) in a single-layer microfluidic chip. Our acoustic tweezers utilize the wide resonance band of chirped interdigital transducers to achieve real-time control of a standing surface acoustic wave field, which enables flexible manipulation of most known microparticles. The power density required by our acoustic device is significantly lower than its optical counterparts (10,000,000 times less than optical tweezers and 100 times less than optoelectronic tweezers), which renders the technique more biocompatible and amenable to miniaturization. Cell-viability tests were conducted to verify the tweezers' compatibility with biological objects. With its advantages in biocompatibility, miniaturization, and versatility, the acoustic tweezers presented here will become a powerful tool for many disciplines of science and engineering.

  15. In-pile tritium permeation experiment

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Miller, L.G.; Watts, K.D.; Kershner, C.J.; Rogers, M.L.

    1982-01-01

    The experiments in progress are examining various aspects of the permeation of hydrogen isotopes through fusion materials. Of particular importance will be the measurement of permeation due to ion implantation in the presence of a neutron radiation field. Theoretical and early experimental results for these experiments have suggested that sufficient tritium will permeate fusion reactor interior structures that development of a permeation barrier will be needed. (orig.)

  16. In-pile tritium permeation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Miller, L.G.; Watts, K.D. (Idaho National Engineering Lab., Idaho Falls (USA)); Kershner, C.J.; Rogers, M.L. (Monsanto Research Corp., Miamisburg, OH (USA). Mound Facility)

    The experiments in progress are examining various aspects of the permeation of hydrogen isotopes through fusion materials. Of particular importance will be the measurement of permeation due to ion implantation in the presence of a neutron radiation field. Theoretical and early experimental results for these experiments have suggested that sufficient tritium will permeate fusion reactor interior structures that development of a permeation barrier will be needed.

  17. Cell agglomeration in the wells of a 24-well plate using acoustic streaming.

    Science.gov (United States)

    Kurashina, Yuta; Takemura, Kenjiro; Friend, James

    2017-02-28

    Cell agglomeration is essential both to the success of drug testing and to the development of tissue engineering. Here, a MHz-order acoustic wave is used to generate acoustic streaming in the wells of a 24-well plate to drive particle and cell agglomeration. Acoustic streaming is known to manipulate particles in microfluidic devices, and even provide concentration in sessile droplets, but concentration of particles or cells in individual wells has never been shown, principally due to the drag present along the periphery of the fluid in such a well. The agglomeration time for a range of particle sizes suggests that shear-induced migration plays an important role in the agglomeration process. Particles with a diameter of 45 μm agglomerated into a suspended pellet under exposure to 2.134 MHz acoustic waves at 1.5 W in 30 s. Additionally, BT-474 cells also agglomerated as adherent masses at the center bottom of the wells of tissue-culture treated 24-well plates. By switching to low cell binding 24-well plates, the BT-474 cells formed suspended agglomerations that appeared to be spheroids, fully fifteen times larger than any cell agglomerates without the acoustic streaming. In either case, the viability and proliferation of the cells were maintained despite acoustic irradiation and streaming. Intermittent excitation was effective in avoiding temperature excursions, consuming only 75 mW per well on average, presenting a convenient means to form fully three-dimensional cellular masses potentially useful for tissue, cancer, and drug research.

  18. LIBRETTO-3: modelling tritium extraction/permeation and evaluation of permeation barriers under irradiation

    International Nuclear Information System (INIS)

    Sedano, L.A.; Fuetterer, M.A.; Viola, R.; Dies, X.

    1996-01-01

    Permeation barriers are required in order to limit the size and cost of the detritiation plants for future fusion reactor blankets of the water-cooled Pb-17Li type. The LIBRETTO irradiations were performed to evaluate the efficiency of permeation barriers under high flux reactor (HFR) conditions. Tritium extraction and permeation characteristics from Pb-17Li under variable temperatures 553-723 K, H 2 doping (0-1 vol%) and purge gas flow rates 20-100 scc/min were tested in LIBRETTO-3. An external TiC coating, an internal (TiC+Al 2 O 3 ), both produced by chemical vapour deposition (CVD), and an internal Al 2 O 3 produced by pack cementation (PC) on AISI 316L steel were tested as permeation barriers. The release mechanisms, experimental uncertainties and method for permeation barriers qualification are presented. As a result permeation reduction factors (PRF) at 0.1 dpa of 17 and 34 were obtained for the CVD-Al 2 O 3 at 498 K and for the PC-Al 2 O 3 at 508 K, respectively. These values were confirmed by a residence time analysis and are higher than in a preliminary analysis. (orig.)

  19. Deuterium permeation through Flibe facing materials

    International Nuclear Information System (INIS)

    Fukada, S.; Anderl, R.A.; Smolik, G.R.

    2004-01-01

    Experiment of deuterium permeation through Ni facing with purified Flibe is being carried out under the Japan-US joint research project (JUPITER-II). The experiment has been proceeding in the following phases; (i) fabrication and assembly of a dual-probe permeation apparatus, (ii) a single-probe Ni/D 2 , permeation experiment without Flibe, (iii) a dual-probe Ar/Ni/D 2 permeation experiment without Flibe, (iv) Flibe chemical purification by HF/H 2 gas bubbling, (v) physical purification by Flibe transport through a porous Ni filter, (vi) Ar/Ni/Flibe/Ni/D 2 permeation experiment using the dual Ni probe, and (vii) Ar/Ni/Flibe/Ni/HT permeation experiment. The present paper describe results until the Ar/Ni/Flibe/Ni/D 2 permeation experiment in detail. (author)

  20. Basic opto-electronics on silicon for sensor applications

    NARCIS (Netherlands)

    Joppe, J.L.; Bekman, H.H.P.Th.; de Krijger, A.J.T.; Albers, H.; Chalmers, J.; Chalmers, J.D.; Holleman, J.; Ikkink, T.J.; Ikkink, T.; van Kranenburg, H.; Zhou, M.-J.; Zhou, Ming-Jiang; Lambeck, Paul

    1994-01-01

    A general platform for integrated opto-electronic sensor systems on silicon is proposed. The system is based on a hybridly integrated semiconductor laser, ZnO optical waveguides and monolithic photodiodes and electronic circuiry.

  1. Changes on iron electrode surface during hydrogen permeation in borate buffer solution

    International Nuclear Information System (INIS)

    Modiano, S.; Carreno, J.A.V.; Fugivara, C.S.; Torresi, R.M.; Vivier, V.; Benedetti, A.V.; Mattos, O.R.

    2008-01-01

    Hydrogen interaction with oxide films grown on iron electrodes at open circuit potential (E oc ) and in the passive region (+0.30 V ECS ) was studied by chronopotentiometry, chronoamperometry and electrochemical impedance spectroscopy techniques. The results were obtained in deaerated 0.3 mol L -1 H 3 BO 3 + 0.075 mol L -1 Na 2 B 4 O 7 (BB, pH 8.4) solution before, during and after hydrogen permeation. The iron oxide film modification was also investigated by means of in situ X-ray absorption near-edge spectroscopy (XANES) and scanning electrochemical microscopy (SECM) before and during hydrogen permeation. The main conclusion was that the passive film is reduced during the hydrogen diffusion. The hydrogen permeation stabilizes the iron surface at a potential close to the thermodynamic water stability line where hydrogen evolution can occur. The stationary condition required for the determination of the permeation parameters cannot be easily attained on iron surface during hydrogen permeation. Moreover, additional attention must be paid when obtaining the transport parameters using the classical permeation cell

  2. Evaluation of drug permeation under fed state conditions using mucus-covered Caco-2 cell epithelium

    DEFF Research Database (Denmark)

    Birch, Ditlev; Diedrichsen, Ragna G; Christophersen, Philip C

    2018-01-01

    The absence of a surface-lining mucus layer is a major pitfall for the Caco-2 epithelial model. However, this can be alleviated by applying biosimilar mucus (BM) to the apical surface of the cell monolayer, thereby constructing a mucosa mimicking in vivo conditions. This study aims to elucidate...... the influence of BM as a barrier towards exogenic compounds such as permeation enhancers, and components of fed state simulated intestinal fluid (FeSSIF). Caco-2 cell monolayers surface-lined with BM were exposed to several compounds with distinct physicochemical properties, and the cell viability...... and permeability of the cell monolayer was compared to that of cell monolayers without BM and well-established mucus-secreting epithelial models (HT29 monolayers and HT29/Caco-2 co-culture monolayers). Exposure of BM-covered cells to constituents from FeSSIF revealed that it comprised a strong, hydrophilic barrier...

  3. Distributed temperature and distributed acoustic sensing for remote and harsh environments

    Science.gov (United States)

    Mondanos, Michael; Parker, Tom; Milne, Craig H.; Yeo, Jackson; Coleman, Thomas; Farhadiroushan, Mahmoud

    2015-05-01

    Advances in opto-electronics and associated signal processing have enabled the development of Distributed Acoustic and Temperature Sensors. Unlike systems relying on discrete optical sensors a distributed system does not rely upon manufactured sensors but utilises passive custom optical fibre cables resistant to harsh environments, including high temperature applications (600°C). The principle of distributed sensing is well known from the distributed temperature sensor (DTS) which uses the interaction of the source light with thermal vibrations (Raman scattering) to determine the temperature at all points along the fibre. Distributed Acoustic Sensing (DAS) uses a novel digital optical detection technique to precisely capture the true full acoustic field (amplitude, frequency and phase) over a wide dynamic range at every point simultaneously. A number of signal processing techniques have been developed to process a large array of acoustic signals to quantify the coherent temporal and spatial characteristics of the acoustic waves. Predominantly these systems have been developed for the oil and gas industry to assist reservoir engineers in optimising the well lifetime. Nowadays these systems find a wide variety of applications as integrity monitoring tools in process vessels, storage tanks and piping systems offering the operator tools to schedule maintenance programs and maximize service life.

  4. On Diffusion and Permeation

    KAUST Repository

    Peppin, Stephen S. L.

    2009-01-01

    concentrations they form a nearly rigid porous glass through which the fluid permeates. The theoretically determined pressure drop is nonlinear in the diffusion regime and linear in the permeation regime, in quantitative agreement with experimental measurements

  5. A visual acoustic high-pressure cell for the study of critical behavior of nonsimple mixtures

    Science.gov (United States)

    Aguiar-Ricardo, A.; Temtem, M.; Casimiro, T.; Ribeiro, N.

    2004-10-01

    A visual acoustic high-pressure cell was constructed for the determination of critical data of multicomponent mixtures. The cell was specially designed to include two piezoelectric transducers and two sapphire windows that make this cell well suited to investigate the critical behavior of mixtures, simultaneously using the acoustic technique and the direct visual inspection of the critical opalescence. Critical data obtained on the binary mixtures of CO2+CHF3 were used for comparison with values given in literature using the traditional methods. The acoustic results are in agreement with those obtained by the conventional methods, within the combined experimental errors. Comparison of visual and acoustic data enabled the evaluation of the applicability of the acoustic technique to study the critical behavior of multicomponent mixtures.

  6. Tritium permeation through iron

    International Nuclear Information System (INIS)

    Hagi, Hideki; Hayashi, Yasunori

    1989-01-01

    An experimental method for measuring diffusion coefficients and permeation rates of tritium in metals around room temperature has been established, and their values in iron have been obtained by using the method. Permeation rates of tritium and hydrogen through iron were measured by the electrochemical method in which a tritiated aqueous solution was used as a cathodic electrolyte. Tritium and hydrogen were introduced from one side of a membrane specimen by cathodic polarization, while at the other side of the specimen the permeating tritium and hydrogen were extracted by potentiostatical ionization. The amount of permeated hydrogen was obtained by integrating the anodic current, and that of tritium was determined by measuring the radioactivity of the electrolyte sampled from the extraction side. Diffusion coefficients of tritium (D T ) and hydrogen (D H ) were determined from the time lag of tritium and hydrogen permeation. D T =9x10 -10 m 2 /s and D H =4x10 -9 m 2 /s at 286 K for annealed iron specimens. These values of D T and D H were compared with the previous data of the diffusion coefficients of hydrogen and deuterium, and the isotope effect in diffusion was discussed. (orig.)

  7. Permeation of iodide from iodine-enriched yeast through porcine intestine.

    Science.gov (United States)

    Ryszka, Florian; Dolińska, Barbara; Zieliński, Michał; Chyra, Dagmara; Dobrzański, Zbigniew

    2013-01-01

    Iodine deficiency is a common phenomenon, threatening the whole global human population. Recommended daily intake of iodine is 150 μg for adults and 250 μg for pregnant and breastfeeding women. About 50% of human population can be at risk of moderate iodine deficiency. Due to this fact, increased iodine supplementation is recommended, through intake of iodized mineral water and salt iodization. The aim of this study was to investigate permeation and absorption of iodide from iodine bioplex (experimental group) in comparison with potassium iodide (controls). Permeation and absorption processes were investigated in vitro using a porcine intestine. The experimental model was based on a standard Franz diffusion cell (FD-Cell). The iodine bioplex was produced using Saccharomyces cerevisiae yeast and whey powder: iodine content - 388 μg/g, total protein - 28.5%, total fat - 0.9%., glutamic acid - 41.2%, asparaginic acid - 29.4%, lysine - 24.8%; purchased from: F.Z.N.P. Biochefa, Sosnowiec, Poland. Potassium iodide was used as controls, at 388 μg iodine concentration, which was the same as in iodine-enriched yeast bioplex. A statistically significant increase in iodide permeation was observed for iodine-enriched yeast bioplex in comparison with controls - potassium iodide. After 5h the total amount of permeated iodide from iodine-enriched yeast bioplex was 85%, which is ~ 2-fold higher than controls - 37%. Iodide absorption was by contrast statistically significantly higher in controls - 7.3%, in comparison with 4.5% in experimental group with iodine-enriched yeast bioplex. Presented results show that iodide permeation process dominates over absorption in case of iodine-enriched yeast bioplex.

  8. Tritium permeation in fusion reactors: INTOR

    International Nuclear Information System (INIS)

    Baskes, M.I.; Bauer, W.; Kerst, R.A.; Swansiger, W.A.; Wilson, K.L.

    1981-12-01

    Tritium permeation through the first wall of advanced fusion reactors is examined. A fraction of the D-T which bombards the first wall as charge exchange neutral particles will permeate through the first wall and enter the coolant. Calculations of the steady state permeation rate for the US INTOR Tokamak design result in values of less than or equal to 0.002 grams of tritium per day under the most favorable conditions. For unfavorable surface conditions the rate is greater than or equal to 0.1 g/day. The magnitude of these permeation rates is critically dependent on the temperatures and surface conditions of the wall. The introduction of permeation barriers at the wall-coolant interface can significantly reduce permeation rates and hence may be desirable for reactor applications

  9. Permeation behavior of deuterium implanted into beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hirofumi; Hayashi, Takumi; O' hira, Shigeru; Nishi, Masataka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-09-01

    Study on Implantation Driven Permeation (IDP) behavior of deuterium through pure beryllium was investigated as a part of the research to predict the tritium permeation through the first wall components ITER (International Thermonuclear Experimental Reactor). The permeation experiments were carried out with two beryllium specimens, one was an unannealed specimen and the other was that annealed at 1173 K. The permeation flux was measured as a function of specimen temperature and incident ion flux. Surface analysis of specimen was also carried out after the permeation experiment. Permeation was observed only with the annealed specimen and no significant permeation was observed with unannealed specimen under the present experimental condition (maximum temperature: 685 K, detection limit: 1x10{sup 13} D atoms/m{sup 2}s). It could be attributed that the intrinsic lattice defects, which act as diffusion preventing site, decreased with the specimen annealing. Based on the result of steady and transient permeation behavior and surface analysis, it was estimated that the deuterium permeation implanted into annealed beryllium was controlled by surface recombination due to the oxide layer on the surface of the permeated side. (author)

  10. Flibe-D2 Permeation Experiment and Analysis

    International Nuclear Information System (INIS)

    Fukada, S.; Anderl, R.A.; Pawelko, R.J.; Smolik, G.R.; Schuetz, S.T.; O'Brien, J.E.; Nishimura, H.; Hatano, Y.; Terai, T.; Petti, D.A.; Sze, D.-K.; Tanaka, S.

    2003-01-01

    Experiment of D 2 permeation through Ni facing with purified Flibe is being carried out under the Japan-US joint research project (JUPITER-II). The experiment is proceeding in the following phases; (i) fabrication and assembly of a dual-probe permeation apparatus, (ii) a single-probe Ni/D 2 permeation experiment without Flibe, (iii) a dual-probe Ni/D 2 permeation experiment without Flibe, (iv) Flibe chemical purification by HF/H 2 gas bubbling, (v) physical purification by Flibe transport through a porous Ni filter, (vi) Ni/Flibe/D 2 permeation experiment, and (vii) Ni/Flibe/HT permeation experiment. The present paper describes results of the single and dual Ni/D 2 permeation experiments in detail

  11. Catalytic reforming of methane to syngas in an oxygen-permeative membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Urano, Takeshi; Kubo, Keiko; Saito, Tomoyuki; Hitomi, Atsushi, E-mail: turano@jp.tdk.com [Materials and Process Development Center, TDK Corporation 570-2, Matsugashita, Minamihatori, Narita, Chiba 286-8588 (Japan)

    2011-05-15

    For fuel cell applications, partial oxidative reforming of methane to syngas, hydrogen and carbon monoxide, was performed via a dense oxygen-permeative ceramic membrane composed by both ionic and electronic conductive materials. The modification of Ni-based catalyst by noble metals was investigated to increase oxygen permeation flux and decrease carbon deposition during reforming reaction. The role of each component in catalyst was also discussed.

  12. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming.

    Science.gov (United States)

    Collins, David J; Khoo, Bee Luan; Ma, Zhichao; Winkler, Andreas; Weser, Robert; Schmidt, Hagen; Han, Jongyoon; Ai, Ye

    2017-05-16

    Acoustic streaming has emerged as a promising technique for refined microscale manipulation, where strong rotational flow can give rise to particle and cell capture. In contrast to hydrodynamically generated vortices, acoustic streaming is rapidly tunable, highly scalable and requires no external pressure source. Though streaming is typically ignored or minimized in most acoustofluidic systems that utilize other acoustofluidic effects, we maximize the effect of acoustic streaming in a continuous flow using a high-frequency (381 MHz), narrow-beam focused surface acoustic wave. This results in rapid fluid streaming, with velocities orders of magnitude greater than that of the lateral flow, to generate fluid vortices that extend the entire width of a 400 μm wide microfluidic channel. We characterize the forces relevant for vortex formation in a combined streaming/lateral flow system, and use these acoustic streaming vortices to selectively capture 2 μm from a mixed suspension with 1 μm particles and human breast adenocarcinoma cells (MDA-231) from red blood cells.

  13. SC lipid model membranes designed for studying impact of ceramide species on drug diffusion and permeation--part II: diffusion and permeation of model drugs.

    Science.gov (United States)

    Ochalek, M; Podhaisky, H; Ruettinger, H-H; Wohlrab, J; Neubert, R H H

    2012-10-01

    The barrier function of two quaternary stratum corneum (SC) lipid model membranes, which were previously characterized with regard to the lipid organization, was investigated based on diffusion studies of model drugs with varying lipophilicities. Diffusion experiments of a hydrophilic drug, urea, and more lipophilic drugs than urea (i.e. caffeine, diclofenac sodium) were conducted using Franz-type diffusion cells. The amount of permeated drug was analyzed using either HPLC or CE technique. The subjects of interest in the present study were the investigation of the influence of physicochemical properties of model drugs on their diffusion and permeation through SC lipid model membranes, as well as the study of the impact of the constituents of these artificial systems (particularly ceramide species) on their barrier properties. The diffusion through both SC lipid model membranes and the human SC of the most hydrophilic model drug, urea, was faster than the permeation of the more lipophilic drugs. The slowest rate of permeation through SC lipid systems occurred in the case of caffeine. The composition of SC lipid model membranes has a significant impact on their barrier function. Model drugs diffused and permeated faster through Membrane II (presence of Cer [EOS]). In terms of the barrier properties, Membrane II is much more similar to the human SC than Membrane I. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Human skin in vitro permeation of bentazon and isoproturon formulations with or without protective clothing suit.

    Science.gov (United States)

    Berthet, Aurélie; Hopf, Nancy B; Miles, Alexandra; Spring, Philipp; Charrière, Nicole; Garrigou, Alain; Baldi, Isabelle; Vernez, David

    2014-01-01

    Skin exposures to chemicals may lead, through percutaneous permeation, to a significant increase in systemic circulation. Skin is the primary route of entry during some occupational activities, especially in agriculture. To reduce skin exposures, the use of personal protective equipment (PPE) is recommended. PPE efficiency is characterized as the time until products permeate through material (lag time, Tlag). Both skin and PPE permeations are assessed using similar in vitro methods; the diffusion cell system. Flow-through diffusion cells were used in this study to assess the permeation of two herbicides, bentazon and isoproturon, as well as four related commercial formulations (Basagran(®), Basamais(®), Arelon(®) and Matara(®)). Permeation was measured through fresh excised human skin, protective clothing suits (suits) (Microchem(®) 3000, AgriSafe Pro(®), Proshield(®) and Microgard(®) 2000 Plus Green), and a combination of skin and suits. Both herbicides, tested by itself or as an active ingredient in formulations, permeated readily through human skin and tested suits (Tlag < 2 h). High permeation coefficients were obtained regardless of formulations or tested membranes, except for Microchem(®) 3000. Short Tlag, were observed even when skin was covered with suits, except for Microchem(®) 3000. Kp values tended to decrease when suits covered the skin (except when Arelon(®) was applied to skin covered with AgriSafe Pro and Microgard(®) 2000), suggesting that Tlag alone is insufficient in characterizing suits. To better estimate human skin permeations, in vitro experiments should not only use human skin but also consider the intended use of the suit, i.e., the active ingredient concentrations and type of formulations, which significantly affect skin permeation.

  15. A novel lipid nanoemulsion system for improved permeation of granisetron.

    Science.gov (United States)

    Doh, Hea-Jeong; Jung, Yunjin; Balakrishnan, Prabagar; Cho, Hyun-Jong; Kim, Dae-Duk

    2013-01-01

    A new lipid nanoemulsion (LNE) system containing granisetron (GRN) was developed and its in vitro permeation-enhancing effect was evaluated using Caco-2 cell monolayers. Particle size, polydispersity index (PI) and stability of the prepared GRN-loaded LNE systems were also characterized. The mean diameters of prepared LNEs were around 50 nm with PI<0.2. Developed LNEs were stable at 4°C in the dark place over a period of 12 weeks. In vitro drug dissolution and cytotoxicity studies of GRN-loaded LNEs were performed. GRN-loaded LNEs exhibited significantly higher drug dissolution than GRN suspension at pH 6.8 for 2h (P<0.05). In vitro permeation study in Caco-2 cell monolayers showed that the LNEs significantly enhanced the drug permeation compared to GRN powder. The in vivo toxicity study in the rat jejunum revealed that the prepared GRN-loaded LNE was as safe as the commercial formulation (Kytril). These results suggest that LNE could be used as a potential oral liquid formulation of GRN for anti-emetic treatment on the post-operative and chemotherapeutic patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. d-Tagatose production by permeabilized and immobilized Lactobacillus plantarum using whey permeate.

    Science.gov (United States)

    Jayamuthunagai, J; Srisowmeya, G; Chakravarthy, M; Gautam, P

    2017-07-01

    The aim of the work is to produce d-Tagatose by direct addition of alginate immobilized Lactobacillus plantarum cells to lactose hydrolysed whey permeate. The cells were untreated and immobilized (UIC), permeabilized and immobilized (PIC) and the relative activities were compared with purified l-arabinose isomerase (l-AI) for d-galactose isomerization. Successive lactose hydrolysis by β-galactosidase from Escherichia coli and d-galactose isomerization using l-AI from Lactobacillus plantarum was performed to investigate the in vivo production of d-tagatose in whey permeate. In whey permeate, maximum conversion of 38% and 33% (w/w) d-galactose isomerization by PIC and UIC has been obtained. 162mg/g and 141mg/g of d-tagatose production was recorded in a 48h reaction time at 50°C, pH 7.0 with 5mM Mn 2+ ion concentration in the initial substrate mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Enhancement of opto-galvanic signals in the hollow cathode dark space: application to single colour 3-photon ionization of uranium

    International Nuclear Information System (INIS)

    Pradhan, S.; Manohar, K.G.; Marathe, A.; Rawat, V.S.; Sridhar, G.; Singh, S.; Jagatap, B.N.; Gantayet, L.M.

    1999-01-01

    Opto-galvanic effect in a hollow cathode lamp offers a very convenient method of spectroscopy of many elements of interest including refractory elements like uranium. The dependence of opto-galvanic signals on various discharge parameters like buffer gas pressure, buffer gas type, discharge current, diameter of the hollow cavity of the cathode etc. have been studied. Various mechanisms for the generation of opto-galvanic signals based on electron impact ionization and super elastic collisions have been proposed. It appears that both these processes do contribute to the opto-galvanic signals simultaneously, under specific discharge conditions

  18. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy.

    Science.gov (United States)

    Hindle, Francis; Yang, Chun; Mouret, Gael; Cuisset, Arnaud; Bocquet, Robin; Lampin, Jean-François; Blary, Karine; Peytavit, Emilien; Akalin, Tahsin; Ducournau, Guillaume

    2009-01-01

    A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements.

  19. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy

    Science.gov (United States)

    Hindle, Francis; Yang, Chun; Mouret, Gael; Cuisset, Arnaud; Bocquet, Robin; Lampin, Jean-François; Blary, Karine; Peytavit, Emilien; Akalin, Tahsin; Ducournau, Guillaume

    2009-01-01

    A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements. PMID:22291552

  20. Selective Permeation and Organic Extraction of Recombinant Green Fluorescent Protein (gfpuv from Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ishii Marina

    2002-04-01

    Full Text Available Abstract Background Transformed cells of Escherichia coli DH5-α with pGFPuv, induced by IPTG (isopropyl-β-d-thiogalactopyranoside, express the green fluorescent protein (gfpuv during growth phases. E. coli subjected to the combination of selective permeation by freezing/thawing/sonication cycles followed by the three-phase partitioning extraction (TPP method were compared to the direct application of TPP to the same culture of E. coli on releasing gfpuv from the over-expressing cells. Material and Methods Cultures (37°C/100 rpm/ 24 h; μ = 0.99 h-1 - 1.10 h-1 of transformed (pGFP Escherichia coli DH5-α, expressing the green fluorescent protein (gfpuv, absorbance at 394 nm and emission at 509 nm were sonicated in successive intervals of sonication (25 vibrations/pulse to determine the maximum amount of gfpuv released from the cells. For selective permeation, the transformed previously frozen (-75°C cells were subjected to three freeze/thaw (-20°C/ 0.83°C/min cycles interlaid by sonication (3 pulses/ 6 seconds/ 25 vibrations. The intracellular permeate with gfpuv in extraction buffer (TE solution (25 mM Tris-HCl, pH 8.0, 1 mM β-mercaptoethanol β-ME, 0.1 mM PMSF was subjected to the three-phase partitioning (TPP method with t-butanol and 1.6 M ammonium sulfate. Sonication efficiency was verified on the application to the cells previously treated by the TPP method. The intra-cell releases were mixed and eluted through methyl HIC column with a buffer solution (10 mM Tris-HCl, 10 mM EDTA, pH 8.0. Results The sonication maximum released amount obtained from the cells was 327.67 μg gfpuv/mL (20.73 μg gfpuv/mg total proteins – BSA, after 9 min of treatment. Through the selective permeation by three repeated freezing/thawing/sonication cycles applied to the cells, a close content of 241.19 μg gfpuv/mL (29.74 μg gfpuv/mg BSA was obtained. The specific mass range of gfpuv released from the same cultures, by the three-phase partitioning (TPP

  1. Acoustic Liners for Turbine Engines

    Science.gov (United States)

    Jones, Michael G (Inventor); Grady, Joseph E (Inventor); Kiser, James D. (Inventor); Miller, Christopher (Inventor); Heidmann, James D. (Inventor)

    2016-01-01

    An improved acoustic liner for turbine engines is disclosed. The acoustic liner may include a straight cell section including a plurality of cells with straight chambers. The acoustic liner may also include a bent cell section including one or more cells that are bent to extend chamber length without increasing the overall height of the acoustic liner by the entire chamber length. In some cases, holes are placed between cell chambers in addition to bending the cells, or instead of bending the cells.

  2. Rotational manipulation of single cells and organisms using acoustic waves.

    Science.gov (United States)

    Ahmed, Daniel; Ozcelik, Adem; Bojanala, Nagagireesh; Nama, Nitesh; Upadhyay, Awani; Chen, Yuchao; Hanna-Rose, Wendy; Huang, Tony Jun

    2016-03-23

    The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation.

  3. On Diffusion and Permeation

    KAUST Repository

    Peppin, Stephen S. L.

    2009-01-01

    Diffusion and permeation are discussed within the context of irreversible thermodynamics. A new expression for the generalized Stokes-Einstein equation is obtained which links the permeability to the diffusivity of a two-component solution and contains the poroelastic Biot-Willis coefficient. The theory is illustrated by predicting the concentration and pressure profiles during the filtration of a protein solution. At low concentrations the proteins diffuse independently while at higher concentrations they form a nearly rigid porous glass through which the fluid permeates. The theoretically determined pressure drop is nonlinear in the diffusion regime and linear in the permeation regime, in quantitative agreement with experimental measurements. © 2009 Walter de Gruyter, Berlin, New York.

  4. Intracavity OptoGalvanic Spectroscopy not suitable for ambient level radiocarbon detection.

    Science.gov (United States)

    Paul, Dipayan; Meijer, Harro A J

    2015-09-01

    IntraCavity OptoGalvanic Spectroscopy as a radiocarbon detection technique was first reported by the Murnick group at Rutgers University, Newark, NJ, in 2008. This technique for radiocarbon detection was presented with tremendous potentials for applications in various fields of research. Significantly cheaper, this technique was portrayed as a possible complementary technique to the more expensive and complex accelerator mass spectrometry. Several groups around the world started developing this technique for various radiocarbon related applications. The IntraCavity OptoGalvanic Spectroscopy setup at the University of Groningen was constructed in 2012 in close collaboration with the Murnick group for exploring possible applications in the fields of radiocarbon dating and atmospheric monitoring. In this paper we describe a systematic evaluation of the IntraCavity OptoGalvanic Spectroscopy setup at Groningen for radiocarbon detection. Since the IntraCavity OptoGalvanic Spectroscopy setup was strictly planned for dating and atmospheric monitoring purposes, all the initial experiments were performed with CO2 samples containing contemporary levels and highly depleted levels of radiocarbon. Because of recurring failures in differentiating the two CO2 samples, with the radiocarbon concentration 3 orders of magnitude apart, CO2 samples containing elevated levels of radiocarbon were prepared in-house and experimented with. All results obtained thus far at Groningen are in sharp contrast to the results published by the Murnick group and rather support the results put forward by the Salehpour group at Uppsala University. From our extensive test work, we must conclude that the method is unsuited for ambient level radiocarbon measurements, and even highly enriched CO2 samples yield insignificant signal.

  5. Photochromic systems as models for opto-electrical switches

    Czech Academy of Sciences Publication Activity Database

    Lutsyk, P.; Sworakowski, J.; Janus, K.; Nešpůrek, Stanislav; Kochalska, Anna

    2010-01-01

    Roč. 522, - (2010), s. 511-528 ISSN 1542-1406 R&D Projects: GA AV ČR KAN401770651 Institutional research plan: CEZ:AV0Z40500505 Keywords : charge carrier transport * molecular material * opto-electrical switch Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.543, year: 2010

  6. In vitro permeation of platinum and rhodium through Caucasian skin.

    Science.gov (United States)

    Franken, A; Eloff, F C; Du Plessis, J; Badenhorst, C J; Jordaan, A; Du Plessis, J L

    2014-12-01

    During platinum group metals (PGMs) refining the possibility exists for dermal exposure to PGM salts. The dermal route has been questioned as an alternative route of exposure that could contribute to employee sensitisation, even though literature has been focused on respiratory exposure. This study aimed to investigate the in vitro permeation of platinum and rhodium through intact Caucasian skin. A donor solution of 0.3mg/ml of metal, K2PtCl4 and RhCl3 respectively, was applied to the vertical Franz diffusion cells with full thickness abdominal skin. The receptor solution was removed at various intervals during the 24h experiment, and analysed with high resolution ICP-MS. Skin was digested and analysed by ICP-OES. Results indicated cumulative permeation with prolonged exposure, with a significantly higher mass of platinum permeating after 24h when compared to rhodium. The mass of platinum retained inside the skin and the flux of platinum across the skin was significantly higher than that of rhodium. Permeated and skin retained platinum and rhodium may therefore contribute to sensitisation and indicates a health risk associated with dermal exposure in the workplace. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Hydrogen permeation through metallic foils

    International Nuclear Information System (INIS)

    Bernardi, M.I.B.; Rodrigues, J.A.

    1987-01-01

    The process of electrolytic permeation of hydrogen through metallic foils is studied. A double electrolytic cell, in glass, in which the two compartments of reaction are separated by a metallic foil to be studied, was built. As direct result, the hydrogen diffusion coefficient in the metal is obtained. The hydrogen diffusion coefficients in the palladium and, in austenitic stainless steels 304 and 304 L, used in the Angra-1 reactor, were obtained. Samples of stainless steels with and without welding, were used. (Author) [pt

  8. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy

    Directory of Open Access Journals (Sweden)

    Guillaume Ducournau

    2009-11-01

    Full Text Available A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements.

  9. Fast analytical model of MZI micro-opto-mechanical pressure sensor

    Science.gov (United States)

    Rochus, V.; Jansen, R.; Goyvaerts, J.; Neutens, P.; O’Callaghan, J.; Rottenberg, X.

    2018-06-01

    This paper presents a fast analytical procedure in order to design a micro-opto-mechanical pressure sensor (MOMPS) taking into account the mechanical nonlinearity and the optical losses. A realistic model of the photonic MZI is proposed, strongly coupled to a nonlinear mechanical model of the membrane. Based on the membrane dimensions, the residual stress, the position of the waveguide, the optical wavelength and the phase variation due to the opto-mechanical coupling, we derive an analytical model which allows us to predict the response of the total system. The effect of the nonlinearity and the losses on the total performance are carefully studied and measurements on fabricated devices are used to validate the model. Finally, a design procedure is proposed in order to realize fast design of this new type of pressure sensor.

  10. Fermentation of lactose to ethanol in cheese whey permeate and concentrated permeate by engineered Escherichia coli.

    Science.gov (United States)

    Pasotti, Lorenzo; Zucca, Susanna; Casanova, Michela; Micoli, Giuseppina; Cusella De Angelis, Maria Gabriella; Magni, Paolo

    2017-06-02

    Whey permeate is a lactose-rich effluent remaining after protein extraction from milk-resulting cheese whey, an abundant dairy waste. The lactose to ethanol fermentation can complete whey valorization chain by decreasing dairy waste polluting potential, due to its nutritional load, and producing a biofuel from renewable source at the same time. Wild type and engineered microorganisms have been proposed as fermentation biocatalysts. However, they present different drawbacks (e.g., nutritional supplements requirement, high transcriptional demand of recombinant genes, precise oxygen level, and substrate inhibition) which limit the industrial attractiveness of such conversion process. In this work, we aim to engineer a new bacterial biocatalyst, specific for dairy waste fermentation. We metabolically engineered eight Escherichia coli strains via a new expression plasmid with the pyruvate-to-ethanol conversion genes, and we carried out the selection of the best strain among the candidates, in terms of growth in permeate, lactose consumption and ethanol formation. We finally showed that the selected engineered microbe (W strain) is able to efficiently ferment permeate and concentrated permeate, without nutritional supplements, in pH-controlled bioreactor. In the conditions tested in this work, the selected biocatalyst could complete the fermentation of permeate and concentrated permeate in about 50 and 85 h on average, producing up to 17 and 40 g/l of ethanol, respectively. To our knowledge, this is the first report showing efficient ethanol production from the lactose contained in whey permeate with engineered E. coli. The selected strain is amenable to further metabolic optimization and represents an advance towards efficient biofuel production from industrial waste stream.

  11. In vitro permeation of platinum through African and Caucasian skin.

    Science.gov (United States)

    Franken, A; Eloff, F C; du Plessis, J; Badenhorst, C J; Du Plessis, J L

    2015-02-03

    The majority of the South African workforce are Africans, therefore potential racial differences should be considered in risk and exposure assessments in the workplace. Literature suggests African skin to be a superior barrier against permeation and irritants. Previous in vitro studies on metals only included skin from Caucasian donors, whereas this study compared the permeation of platinum through African and Caucasian skin. A donor solution of 0.3 mg/ml of potassium tetrachloroplatinate (K₂PtCl₄) dissolved in synthetic sweat was applied to the vertical Franz diffusion cells with full thickness abdominal skin. Skin from three female African and three female Caucasian donors were included (n=21). The receptor solution was removed at various intervals during the 24 h experiment, and analysed with high resolution inductively coupled plasma-mass spectrometry (ICP-MS). Skin was digested and analysed by inductively coupled plasma-optical emission spectrometry (ICP-OES). Significantly higher permeation of platinum through intact African skin (p=0.044), as well as a significantly higher mass of platinum retention in African skin in comparison with Caucasian skin (p=0.002) occurred. Significant inter-donor variation was found in both racial groups (pskin and further investigation is necessary to explain the higher permeation through African skin. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. In vitro-in vivo correlation in skin permeation.

    Science.gov (United States)

    Mohammed, D; Matts, P J; Hadgraft, J; Lane, M E

    2014-02-01

    In vitro skin permeation studies have been used extensively in the development and optimisation of delivery of actives in vivo. However, there are few reported correlations of such in vitro studies with in vivo data. The aim of this study was to investigate the skin permeation of a model active, niacinamide, both in vitro and in vivo. Conventional diffusion cell studies were conducted in human skin to determine niacinamide permeation from a range of vehicles which included dimethyl isosorbide (DMI), propylene glycol (PG), propylene glycol monolaurate (PGML), N-methyl 2-pyrrolidone (NMP), Miglyol 812N® (MG), and mineral oil (MO). Single, binary or ternary systems were examined. The same vehicles were subsequently examined to investigate niacinamide delivery in vivo. For this proof-of-concept study one donor was used for the in vitro studies and one volunteer for the in vivo investigations to minimise biovariability. Analysis of in vitro samples was conducted using HPLC and in vivo uptake of niacinamide was evaluated using Confocal Raman spectroscopy (CRS). The amount of niacinamide permeated through skin in vitro was linearly proportional to the intensity of the niacinamide signal determined in the stratum corneum in vivo. A good correlation was observed between the signal intensities of selected vehicles and niacinamide signal intensity. The findings provide further support for the use of CRS to monitor drug delivery into and across the skin. In addition, the results highlight the critical role of the vehicle and its disposition in skin for effective dermal delivery.

  13. Compensating Unknown Time-Varying Delay in Opto-Electronic Platform Tracking Servo System

    Directory of Open Access Journals (Sweden)

    Ruihong Xie

    2017-05-01

    Full Text Available This paper investigates the problem of compensating miss-distance delay in opto-electronic platform tracking servo system. According to the characteristic of LOS (light-of-sight motion, we setup the Markovian process model and compensate this unknown time-varying delay by feed-forward forecasting controller based on robust H∞ control. Finally, simulation based on double closed-loop PI (Proportion Integration control system indicates that the proposed method is effective for compensating unknown time-varying delay. Tracking experiments on the opto-electronic platform indicate that RMS (root-mean-square error is 1.253 mrad when tracking 10° 0.2 Hz signal.

  14. Influence of nitrogen ion implantation on hydrogen permeation in an extra mild steel

    International Nuclear Information System (INIS)

    Brass, A.M.; Chene, J.; Pivin, J.C.

    1989-01-01

    This paper presents the first results on the effect of nitrogen implantation on hydrogen permeation in steels. Nitrogen can modify superficially the steel's chemistry and/or microstructure depending on the fluence and thereby affect the processes of hydrogen diffusion and trapping. The implantations were performed on low carbon steel specimens with different nominal doses (1% to 10% and 33% nitrogen in a superficial layer of approximately 100 to 120 nm). The corresponding microstructures were characterized and permeation tests were conducted at room temperature in a double electrolytic cell. The nitrogen implanted layers on iron affects the electrochemical behaviour of the surface and the permeation in the material. This effect depends on the nitrogen concentration in the layer and on the corresponding microstructure. A continuous Fe 2 N layer acts as an efficient barrier to hydrogen entry and permeation when the layer is located on the entry face of the permeation membrane. This effect is stronger when the implanted layer is on the downstream face of the membrane. The low permeability values are mainly attributed to a lower hydrogen solubility in the implanted layer, whereas hydrogen trapping on defects and nitride precipitates delay hydrogen penetration. (author)

  15. Evaluation of whey, milk, and delactosed permeates as salt substitutes.

    Science.gov (United States)

    Smith, S T; Metzger, L; Drake, M A

    2016-11-01

    Whey and milk permeates are by-products of high-protein dairy powder manufacture. Previous work has shown that these permeates contribute to salty taste without contributing significantly to sodium content. The objective of this study was to explore the sensory characteristics and compositional analysis of permeates from different milk and whey streams and a low-sodium product application made from them. Skim milk, Cheddar, cottage, and Mozzarella cheese whey permeates were manufactured in triplicate, and delactosed whey permeate was obtained in triplicate. Composition (protein, fat, solids, minerals) was conducted on permeates. Organic acid composition was determined using HPLC. Volatile compounds were extracted from permeates by solid phase microextraction with gas chromatography-mass spectrometry. A trained sensory panel documented sensory attributes of permeates and cream of broccoli soups with and without salt or permeates followed by consumer acceptance testing (n=105) on the soups. Cottage cheese whey permeate contained a higher lactic acid content than other permeates, which has been shown to contribute to a higher salty taste. Cottage cheese whey permeate also contained potato or brothy and caramel flavors and sour and salty tastes, whereas delactosed whey permeate had high intensities of cardboard and beefy or brothy flavors and salty taste. Milk, Cheddar, and Mozzarella cheese whey permeates were characterized by sweet taste and cooked milky flavor. Permeates with higher cardboard flavor had higher levels of aldehydes. All permeates contributed to salty taste and to salty taste perception in soups; although the control soup with added salt was perceived as saltier and was preferred by consumers over permeate soups. Soup with permeate from cottage cheese was the least liked of all soups, likely due to its sour taste. All other permeate soups scored at parity for liking. These results demonstrate the potential for milk, whey, and delactosed permeates from

  16. Counter-diffusion and -permeation of deuterium and hydrogen through metals

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Kaname; Tanabe,; Tetsuo, [Nagoya Univ. (Japan)

    1998-03-01

    The first experiments for counter-diffusion and -permeation of deuterium and hydrogen through palladium were performed. Deuterium permeation rates against D{sub 2} pressure were measured under the condition where hydrogen permeated to opposite direction by supplying H{sub 2} gas at the permeated side of D{sub 2}. It was found that not a small amount of deuterium was clearly permeated even if the deuterium pressure was much smaller than the hydrogen pressure. Deuterium permeation rate was gradually reduced by increasing the counter H permeation. The deuterium permeation rate under the counter H permeation is well represented by a simple model in which the ratio of the deuterium permeation rates with and without the counter H permeation was proportional to the fractional concentration of deuterium in the bulk. As increasing the hydrogen counter flow, however, the deuterium permeation rate deviates from the model. This means that adsorption (absorption) of D{sub 2} from gas phase is inhibited and surface recombination of deuterium is blocked by hydrogen. (author)

  17. Raman acoustic levitation spectroscopy of red blood cells and Plasmodium falciparum trophozoites.

    Science.gov (United States)

    Puskar, Ljiljana; Tuckermann, Rudolf; Frosch, Torsten; Popp, Jürgen; Ly, Vanalysa; McNaughton, Don; Wood, Bayden R

    2007-09-01

    Methods to probe the molecular structure of living cells are of paramount importance in understanding drug interactions and environmental influences in these complex dynamical systems. The coupling of an acoustic levitation device with a micro-Raman spectrometer provides a direct molecular probe of cellular chemistry in a containerless environment minimizing signal attenuation and eliminating the affects of adhesion to walls and interfaces. We show that the Raman acoustic levitation spectroscopic (RALS) approach can be used to monitor the heme dynamics of a levitated 5 microL suspension of red blood cells and to detect hemozoin in malaria infected cells. The spectra obtained have an excellent signal-to-noise ratio and demonstrate for the first time the utility of the technique as a diagnostic and monitoring tool for minute sample volumes of living animal cells.

  18. Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules

    Science.gov (United States)

    Lawrence, Marlon G.; Altenburg, Michael K.; Sanford, Ryan; Willett, Julian D.; Bleasdale, Benjamin; Ballou, Byron; Wilder, Jennifer; Li, Feng; Miner, Jeffrey H.; Berg, Ulla B.; Smithies, Oliver

    2017-01-01

    How the kidney prevents urinary excretion of plasma proteins continues to be debated. Here, using unfixed whole-mount mouse kidneys, we show that fluorescent-tagged proteins and neutral dextrans permeate into the glomerular basement membrane (GBM), in general agreement with Ogston's 1958 equation describing how permeation into gels is related to molecular size. Electron-microscopic analyses of kidneys fixed seconds to hours after injecting gold-tagged albumin, negatively charged gold nanoparticles, and stable oligoclusters of gold nanoparticles show that permeation into the lamina densa of the GBM is size-sensitive. Nanoparticles comparable in size with IgG dimers do not permeate into it. IgG monomer-sized particles permeate to some extent. Albumin-sized particles permeate extensively into the lamina densa. Particles traversing the lamina densa tend to accumulate upstream of the podocyte glycocalyx that spans the slit, but none are observed upstream of the slit diaphragm. At low concentrations, ovalbumin-sized nanoparticles reach the primary filtrate, are captured by proximal tubule cells, and are endocytosed. At higher concentrations, tubular capture is saturated, and they reach the urine. In mouse models of Pierson’s or Alport’s proteinuric syndromes resulting from defects in GBM structural proteins (laminin β2 or collagen α3 IV), the GBM is irregularly swollen, the lamina densa is absent, and permeation is increased. Our observations indicate that size-dependent permeation into the lamina densa of the GBM and the podocyte glycocalyx, together with saturable tubular capture, determines which macromolecules reach the urine without the need to invoke direct size selection by the slit diaphragm. PMID:28246329

  19. In-site coatings to reduce H and Tr permeation

    International Nuclear Information System (INIS)

    Stoever, D.; Buchkremer, H.P.; Hecker, R.; Jonas, H.; Schaefer, J.; Zink, U.; Forsyth, N.; Thiele, W.

    1982-01-01

    The main goal of this project is the development of protective coatings to reduce or prevent Tr and H permeation through the heat exchanger walls of HTR components. The tasks of the project are: Measurement of the permeation inhibition efficiency of oxidic coatings on the high-temperature- resistant heat exchanger walls; establishing the parameters influencing permeation by variation of the process gas and steam parameters, temperature and mechanical stress; characterisation of coatings and correlation of coating characteristics with permeation measurements; investigation of permeation and corrosion mechanisms; quantitative description of H and Tr permeation by means of mathematical/physical models. (orig./IHOE) [de

  20. Nano-opto-electro-mechanical systems

    Science.gov (United States)

    Midolo, Leonardo; Schliesser, Albert; Fiore, Andrea

    2018-01-01

    A new class of hybrid systems that couple optical, electrical and mechanical degrees of freedom in nanoscale devices is under development in laboratories worldwide. These nano-opto-electro-mechanical systems (NOEMS) offer unprecedented opportunities to control the flow of light in nanophotonic structures, at high speed and low power consumption. Drawing on conceptual and technological advances from the field of optomechanics, they also bear the potential for highly efficient, low-noise transducers between microwave and optical signals, in both the classical and the quantum domains. This Perspective discusses the fundamental physical limits of NOEMS, reviews the recent progress in their implementation and suggests potential avenues for further developments in this field.

  1. Implantation driven permeation behavior of deuterium through pure tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hirofumi E-mail: nakamura@tpl.tokai.jaeri.go.jp; Hayashi, Takumi; Nishi, Masataka; Arita, Makoto; Okuno, Kenji

    2001-09-01

    Implantation driven permeation behavior of deuterium through pure tungsten has been investigated to estimate the amount of tritium permeation through its barrier in a thermo-nuclear fusion device. The permeation experiments were performed on pure tungsten foil of 25 {mu}m thickness under conditions of incident flux of 1.9x10{sup 18}-1.1x10{sup 19} D{sup +}/m{sup 2}s, incident ion energy of 200-2000 eV, and specimen temperature of 512-660 K. As a result of this steady-state permeation experiment, the rate-determining process of deuterium permeation was found to be controlled by diffusion at both implanted and permeated sides. On the other hand, transient permeation was strongly affected by trap effect in the specimen. Simulation analysis using TMAP code on transient permeation behavior indicates the existence of a trap site with a trap energy of nearly 1eV and with a trap density of over several ten's ppm in tungsten.

  2. Implantation driven permeation behavior of deuterium through pure tungsten

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Hayashi, Takumi; Nishi, Masataka; Arita, Makoto; Okuno, Kenji

    2001-01-01

    Implantation driven permeation behavior of deuterium through pure tungsten has been investigated to estimate the amount of tritium permeation through its barrier in a thermo-nuclear fusion device. The permeation experiments were performed on pure tungsten foil of 25 μm thickness under conditions of incident flux of 1.9x10 18 -1.1x10 19 D + /m 2 s, incident ion energy of 200-2000 eV, and specimen temperature of 512-660 K. As a result of this steady-state permeation experiment, the rate-determining process of deuterium permeation was found to be controlled by diffusion at both implanted and permeated sides. On the other hand, transient permeation was strongly affected by trap effect in the specimen. Simulation analysis using TMAP code on transient permeation behavior indicates the existence of a trap site with a trap energy of nearly 1eV and with a trap density of over several ten's ppm in tungsten

  3. Atlas pixel opto-board production and analysis and optolink simulation studies

    International Nuclear Information System (INIS)

    Nderitu, Simon Kirichu

    2007-01-01

    At CERN, a Large collider will collide protons at high energies. There are four experiments being built to study the particle properties from the collision. The ATLAS experiment is the largest. It has many sub detectors among which is the Pixel detector which is the innermost part. The Pixel detector has eighty million channels that have to be read out. An optical link is utilized for the read out. It has optical to electronic interfaces both on the detector and off the detector at the counting room. The component on the detector in called the opto-board. This work discusses the production testing of the opto-boards to be installed on the detector. A total of 300 opto-boards including spares have been produced. The production was done in three laboratories among which is the laboratory at the University of Wuppertal which had the responsibility of Post production testing of all the one third of the total opto-boards. The results are discussed in this work. The analysis of the results from the total production process has been done in the scope of this work as well. In addition to the production, a study by simulation of the communication links optical signal has been done. This has enabled an assessment of the sufficiency of the optical signal against the transmission attenuation and irradiation degradation. A System Test set up has been put up at Wuppertal to enhance general studies for better understanding of the Pixel read out system. Among other studies is the study of the timing parameters behavior of the System which has been done in this work and enhanced by a simulation. These parameters are namely the mark to space ratio and the fine delay and their relatedness during the optolink tuning. A bit error rate test based on the System has also been done which enabled assessment of the transmission quality utilizing the tools inbuilt in the System Test. These results have been presented in this work. (orig.)

  4. Permeation of hydrogen through metal membranes

    International Nuclear Information System (INIS)

    Wienhold, P.; Rota, E.; Waelbroeck, F.; Winter, J.; Banno, Tatsuya.

    1986-08-01

    Experiments show that the permeant flux of hydrogen through a metal membrane at low driving pressures ( r is introduced into the model as a new material constant and the rate equations are given. After the description of the wall pump effect, a variety of different limiting cases are discussed for a symmetrical permeation membrane. This is modified to the asymmetric case and to the influence of particle implantation. The permeation number W turns out to be a dimensionless quantity which characterizes the permeation range and predicts the permeant flux in steady state. (orig.)

  5. Cavity Opto-Mechanics using an Optically Levitated Nanosphere

    Science.gov (United States)

    2010-01-19

    center-of-mass motion of a levitated nanosphere. entanglement ∣ optical levitation ∣ quantum information One of the most intriguing questions associated...developed. Outlook An optically levitated opto-mechanical system can have remark- ably long coherence times, which potentially enables quantum phenomena...47) or facilitate novel quantum hybrid architectures (6). Note added: We have become aware of a recent, similar proposal to optically levitate and

  6. Permeation Tests on Polypropylene Fiber Materials

    Science.gov (United States)

    2018-03-16

    Permeation Tests on Polypropylene Fiber Materials Brandy J. White Martin H. Moore Brian J. Melde Laboratory for the Study of Molecular Interfacial...ABSTRACT Permeation Tests on Polypropylene Fiber Materials Brandy J. White, Martin H. Moore, Brian J. Melde Center for Bio/Molecular Science

  7. Ionic Selectivity and Permeation Properties of Human PIEZO1 Channels.

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Gnanasambandam

    Full Text Available Members of the eukaryotic PIEZO family (the human orthologs are noted hPIEZO1 and hPIEZO2 form cation-selective mechanically-gated channels. We characterized the selectivity of human PIEZO1 (hPIEZO1 for alkali ions: K+, Na+, Cs+ and Li+; organic cations: TMA and TEA, and divalents: Ba2+, Ca2+, Mg2+ and Mn2+. All monovalent ions permeated the channel. At a membrane potential of -100 mV, Cs+, Na+ and K+ had chord conductances in the range of 35-55 pS with the exception of Li+, which had a significantly lower conductance of ~ 23 pS. The divalents decreased the single-channel permeability of K+, presumably because the divalents permeated slowly and occupied the open channel for a significant fraction of the time. In cell-attached mode, 90 mM extracellular divalents had a conductance for inward currents carried by the divalents of: 25 pS for Ba2+ and 15 pS for Ca2+ at -80 mV and 10 pS for Mg2+ at -50 mV. The organic cations, TMA and TEA, permeated slowly and attenuated K+ currents much like the divalents. As expected, the channel K+ conductance increased with K+ concentration saturating at ~ 45 pS and the KD of K+ for the channel was 32 mM. Pure divalent ion currents were of lower amplitude than those with alkali ions and the channel opening rate was lower in the presence of divalents than in the presence of monovalents. Exposing cells to the actin disrupting reagent cytochalasin D increased the frequency of openings in cell-attached patches probably by reducing mechanoprotection.

  8. The single-shot opto-digitizer; L'optoechantillonneur monocoup

    Energy Technology Data Exchange (ETDEWEB)

    Nail, M.; Gibert, Ph. [CEA/DAM-Ile de France, Dept. de Conception et Realisation des Experimentations (DCRE), 91 - Bruyeres-le-Chatel (France); CEA/DAM-Ile de France, Dept. Laser Puissance, DLP, 91 - Bruyeres-Le-Chatel (France)

    2000-07-01

    Laser-plasma experiments need to measure signals provided either by X-ray, photonic or neutronic detector. The measurement should have 50 GHz bandwidth and up to several hundred of Giga-Hertz for sub picosecond plasmas. For this purpose, a 35 GHz single shot opto-digitizer (10 ps risetime) has been studied and built. The device is made up of a 50 ohms microstrip propagation line, periodically lined by 100 sampled gates. The propagation line is long enough to measure a 400 ps duration. The sampling rate is 250 Gsa/s (every 4 ps). The sampled gates are made with fast recombining photo-material and turn on by a subpicosecond laser pulse which is synchronized exactly with the analysed phenomena. Every gate is recording to a storing capacitor. After the recording, every capacitor charge is needed to built the signal that was displayed on the propagation line. The dynamic range of measurement is 47 for the entire device. The device can measure positive or negative signals from 1.5 to 70 Volts. To increase the bandwidth, two another kinds of opto-digitizer were studied: one is a buried stripline with 56 GHz band width, the other a 70 GHz coplanar transmission line. For the purpose of subpicosecond plasmas, a 30 coplanar waveguide opto-digitizer was studied. Characteristics are as followed: window of measurement 40 ps, sampling rate 1 ps, bandwidth 230 GHz. Finally, a bundle of optical fibers was used to propagate the laser beam on semiconductor gates. If the gates are lighted at the same time, i.e. if the optical fibers have the same length, we get a simultaneous addressing. By using different lengths of optical fibers, we can do a sequential addressing. So, the sampling rate becomes a combination of the distance between two adjacent sampled channels, and the difference in length of optical fibers. (author)

  9. In situ measurement of tritium permeation through stainless steel

    Science.gov (United States)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  10. Graphene oxide-sensitized molecularly imprinted opto-polymers for charge-transfer fluorescent sensing of cyanoguanidine.

    Science.gov (United States)

    Liu, Huilin; Zhou, Kaiwen; Chen, Xiaomo; Wang, Jing; Wang, Shuo; Sun, Baoguo

    2017-11-15

    The hierarchical structuring of materials offers exciting opportunities to construct functional sensors. Multiple processes were combined to create complex materials for the selective detection of cyanoguanidine (CYA) using graphene oxide-sensitized molecularly imprinted opto-polymers (MIOP). Molecular imprinting was used to construct molecular-scale analyte-selective cavities, graphene oxide was introduced to provide a platform for the polymerization, and increase the stability and binding kinetic properties, and 3-methacryloxy propyl trimethoxy silane-modified quantum dots were combined with a functional monomer to increase the fluorescence quantum yield. Polymer cross-linking and fluorescence intensity were optimized for molecular recognition and opto-sensing detection. Selective and sensitive, fluorescence sensing of CYA was possible at concentrations as low as to 1.6μM. It could be applied to the rapid and cost-effective monitoring of CYA in infant formula. The approach is generic and applicable to many molecules and conventional opto-sensors, based on molecularly imprinted polymer formulations, individually or in multiplexed arrays. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. In situ measurement of tritium permeation through stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Walter G., E-mail: walter.luscher@pnnl.gov [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); Senor, David J., E-mail: david.senor@pnnl.gov [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); Clayton, Kevin K., E-mail: kevin.clayton@inl.gov [Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States); Longhurst, Glen R., E-mail: glenlonghurst@suu.edu [Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States)

    2013-06-15

    Highlights: ► In situ tritium permeation measurements collected over broad pressure range. ► Test conditions relevant to 316 SS in commercial light water reactors. ► Comparisons between in- and ex-reactor measurements provided. ► Correlation between tritium permeation, temperature, and pressure developed. -- Abstract: The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a {sup 4}He carrier gas mixed with a specified quantity of tritium (T{sub 2}) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He–Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of {sup 3}He to T, was also evaluated by introducing a {sup 4}He carrier gas mixed with {sup 3}He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from {sup 3}He transmutation contributed to tritium permeation.

  12. Effects of Vehicles and Enhancers on the Skin Permeation of Phytoestrogenic Diarylheptanoids from Curcuma comosa.

    Science.gov (United States)

    Tuntiyasawasdikul, Sarunya; Limpongsa, Ekapol; Jaipakdee, Napaphak; Sripanidkulchai, Bungorn

    2017-04-01

    Curcuma comosa (C. comosa) is widely used in traditional medicine as a dietary supplement for health promotion in postmenopausal women in Thailand. It contains several diarylheptanoids, which are considered to be a novel class of phytoestrogens. However, the diarylheptanoids isolated from the plant rhizome are shown to have low oral bioavailability and faster elimination characteristics. The aim of this study was to investigate the permeation behavior of the active compounds of diarylheptanoids. The effects of binary vehicle systems and permeation enhancers on diarylheptanoids permeation and accumulation within the skin were studied using side-by-side diffusion cells through the porcine ear skin. Among the tested binary vehicle systems, the ethanol/water vehicle appeared to be the most effective system for diarylheptanoids permeation with the highest flux and shortest lag time. The presence of transcutol in the vehicle system significantly increased diarylheptanoid's permeation and accumulation within the skin in a concentration-dependent manner. Although the presence of terpenes in formulation decreased the flux of diarylheptanoids, it raised the amount of diarylheptanoids retained within the skin substantially. Based on the feasibility of diarylheptanoid permeation, C. comosa extract should be further developed into an effective transdermal product for health benefits and hormone replacement therapy.

  13. Skin permeation of D-limonene-based nanoemulsions as a transdermal carrier prepared by ultrasonic emulsification.

    Science.gov (United States)

    Lu, Wen-Chien; Chiang, Been-Huang; Huang, Da-Wei; Li, Po-Hsien

    2014-03-01

    Nanoemulsions can be used for transporting pharmaceutical phytochemicals in skin-care products because of their stability and rapid permeation properties. However, droplet size may be a critical factor aiding permeation through skin and transdermal delivery efficiency. We prepared D-limonene nanoemulsions with various droplet sizes by ultrasonic emulsification using mixed surfactants of sorbitane trioleate and polyoxyethylene (20) oleyl ether under different hydrophilic-lipophilic balance (HLB) values. Droplet size decreased with increasing HLB value. With HLB 12, the droplet size was 23 nm, and the encapsulated ratio peaked at 92.3%. Transmission electron microscopy revealed spherical droplets and the gray parts were D-limonene precipitation incorporated in spherical droplets of the emulsion system. Franz diffusion cell was used to evaluate the permeation of D-limonene nanoemulsion through rat abdominal skin; the permeation rate depended on droplet size. The emulsion with the lowest droplet size (54 nm) achieved the maximum permeation rate. The concentration of D-limonene in the skin was 40.11 μL/cm(2) at the end of 360 min. Histopathology revealed no distinct voids or empty spaces in the epidermal region of permeated rat skin, so the D-limonene nanoemulsion may be a safe carrier for transdermal drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Genetic Algorithm for Opto-thermal Skin Hydration Depth Profiling Measurements

    Science.gov (United States)

    Cui, Y.; Xiao, Perry; Imhof, R. E.

    2013-09-01

    Stratum corneum is the outermost skin layer, and the water content in stratum corneum plays a key role in skin cosmetic properties as well as skin barrier functions. However, to measure the water content, especially the water concentration depth profile, within stratum corneum is very difficult. Opto-thermal emission radiometry, or OTTER, is a promising technique that can be used for such measurements. In this paper, a study on stratum corneum hydration depth profiling by using a genetic algorithm (GA) is presented. The pros and cons of a GA compared against other inverse algorithms such as neural networks, maximum entropy, conjugate gradient, and singular value decomposition will be discussed first. Then, it will be shown how to use existing knowledge to optimize a GA for analyzing the opto-thermal signals. Finally, these latest GA results on hydration depth profiling of stratum corneum under different conditions, as well as on the penetration profiles of externally applied solvents, will be shown.

  15. Tritium permeation barriers for fusion technology

    International Nuclear Information System (INIS)

    Perujo, A.; Forcey, K.

    1994-01-01

    An important issue concerning the safety, feasibility and fueling (i.e., tritium breeding ratio and recovery from the breeding blanket) of a fusion reactor is the possible tritium leakages through the structural materials and in particular through those operating at high temperatures. The control of tritium permeation could be a critical factor in determining the viability of a future fusion power reactor. The formation of tritium permeation barriers to prevent the loss of tritium to the coolant by diffusion though the structural material seems to be the most practical method to minimize such losses. Many authors have discussed the formation of permeation barriers to reduce the leakage of hydrogen isotopes through proposed first wall and structural materials. In general, there are two routes for the formation of such a barrier, namely: the growth of oxide layers (e.g., Cr 2 O 3 , Al 2 O 3 , etc.) or the application of surface coatings. Non-metals are the most promising materials from the point of view of the formation of permeation barriers. Oxides such as Al 2 O 3 or Cr 2 O 3 or carbides such as SiC or TiC have been proposed. Amongst the metals only tungsten or gold are sufficiently less permeable than steel to warrant investigation as candidate materials for permeation barriers. It is of course possible to grow oxide layers on steel directly by heating in the atmosphere or under a variety of conditions (first route above). The direct oxidizing is normally done in an environment of open-quotes wet hydrogenclose quotes to promote the growth of chromia on, for example, nickel steels or ternary oxides on 316L to prevent corrosion. The application of surface layers (second route above), offers a greater range of materials for the formation of permeation barriers. In addition to reducing permeation, such layers should be adhesive, resistant to attack by corrosive breeder materials and should not crack during thermal cycling

  16. Study of the cathodic depolarization theory with hydrogen permeation and the bacteria Desulfovibrio desulfuricans

    International Nuclear Information System (INIS)

    Romero, M. F. de; Duque, Z.; Rinco, O. T. de; Perez, O.; Araujo, I.

    2003-01-01

    A Desulfovibrio desulfuricans ssp. desulfuricans (SRB) was used to study the permeation of hydrogen, using a Devanatan and Stachurski cell and a palladium sheet. The aim was to evaluate cathodic depolarization as a Sulfate-Reducing Bacteria action mechanisms in Microbiologically Induced Corrosion. The permeation tests were run with and without cathodic polarization, using a sterile deaerated culture medium inoculated with 10% SRB concentrated at 10''8 cell/ml. the results indicate bacterial growth in the order of 10''9-10''10 cel/ml after 18 h both in the polarized and non-polarized, tests, indicating that SRB developed regardless of the surface polarized as a source of H''0, generating H 2 S as a product of the anaerobic respiration. It was also determined that, without cathodic polarization, the conditions are not enough to reduce the H* generated by the H 2 S dissociation (pd is not susceptible to corrosion at this condition). On the other hand, cathodic polarization increased the permeation current, which was associated with the maximum enzymatic activity phase of the bacteria. (Author) 8 refs

  17. Acoustic cavity transducers for the manipulation of cells and biomolecules

    Science.gov (United States)

    Tovar, Armando; Patel, Maulik; Lee, Abraham P.

    2010-02-01

    A novel fluidic actuator that is simple to fabricate, integrate, and operate is demonstrated for use within microfluidic systems. The actuator is designed around the use of trapped air bubbles in lateral cavities and the resultant acoustic streaming generated from an outside acoustic energy source. The orientation of the lateral cavities to the main microchannel is used to control the bulk fluid motion within the device. The first order flow generated by the oscillating bubble is used to develop a pumping platform that is capable of driving fluid within a chip. This pump is integrated into a recirculation immunoassay device for enhanced biomolecule binding through fluid flow for convection limited transport. The recirculation system showed an increase in binding site concentration when compared with traditional passive and flow-through methods. The acoustic cavity transducer has also been demonstrated for application in particle switching. Bursts of acoustic energy are used to generate a second order streaming pattern near the cavity interface to drive particles away or towards the cavity. The use of this switching mechanism is being extended to the application of sorting cells and other particles within a microfluidic system.

  18. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels.

    Science.gov (United States)

    Daru, Virginie; Reyt, Ida; Bailliet, Hélène; Weisman, Catherine; Baltean-Carlès, Diana

    2017-01-01

    Rayleigh streaming is a steady flow generated by the interaction between an acoustic wave and a solid wall, generally assumed to be second order in a Mach number expansion. Acoustic streaming is well known in the case of a stationary plane wave at low amplitude: it has a half-wavelength spatial periodicity and the maximum axial streaming velocity is a quadratic function of the acoustic velocity amplitude at antinode. For higher acoustic levels, additional streaming cells have been observed. Results of laser Doppler velocimetry measurements are here compared to direct numerical simulations. The evolution of axial and radial velocity components for both acoustic and streaming velocities is studied from low to high acoustic amplitudes. Two streaming flow regimes are pointed out, the axial streaming dependency on acoustics going from quadratic to linear. The evolution of streaming flow is different for outer cells and for inner cells. Also, the hypothesis of radial streaming velocity being of second order in a Mach number expansion, is not valid at high amplitudes. The change of regime occurs when the radial streaming velocity amplitude becomes larger than the radial acoustic velocity amplitude, high levels being therefore characterized by nonlinear interaction of the different velocity components.

  19. Effect of pressure sensitive adhesive and vehicles on permeation of terbinafine across porcine hoof membrane.

    Science.gov (United States)

    Ahn, Tai Sang; Lee, Jung-Phil; Kim, Juhyun; Oh, Seaung Youl; Chun, Myung-Kwan; Choi, Hoo-Kyun

    2013-11-01

    The purpose of this study was to investigate characteristics of transungual drug delivery and the feasibility of developing a drug-in-adhesive formulation of terbinafine. The permeation of terbinafine from a PSA matrix across porcine hoof membrane was determined using a plate containing poloxamer gel. The permeation rate of terbinafine across hairless mouse skin was evaluated using a flow-through diffusion cell system. The permeation of terbinafine across the hoof membranes was the highest from the silicone adhesive matrix, followed by PIB, and most of the acrylic adhesives, SIS, and SBS. The rank order of permeation rate across mice skin was different from the rank order across porcine hooves. The amount of terbinafine permeated across the porcine hoof membranes poorly correlated with the amount of terbinafine remaining inside the hooves after 20 days, however, the ratio between rate of terbinafine partitioning into the hoof membrane and its rate of diffusion across the membrane was relatively constant within the same type of PSA. For influence of various vehicles in enhancing permeation of terbinafine across the hoof membrane, all vehicles except Labrasol(®) showed tendency to improve permeation rate. However, the enhancement ratio of a given vehicle differed from one adhesive to another with a moderate correlation between them. The infrared spectrum of the hoof treated with NMP, PPG 400 or PEG 200 indicated that the conformation of keratin changed from a non-helical to a helical structure.

  20. Resistance of gloves and protective clothing materials to permeation of cytostatic solutions.

    Science.gov (United States)

    Krzemińska, Sylwia; Pośniak, Małgorzata; Szewczyńska, Małgorzata

    2018-01-15

    The objective of the work was to determine the resistance of selected protective clothing and glove materials to permeation of cytostatics such as docetaxel, fluorouracil, and doxorubicin. The following glove materials were used: natural rubber latex (code A), acrylonitrile-butadiene rubber (code B) and chloroprene rubber (code C). In addition, we tested a layered material composed of a non-woven polyester (PES), a polypropylene (PP) film, and a non-woven PP used for protective coats (code D). The cytostatics were analyzed by liquid chromatography with diode array detection. The tested samples were placed in a purpose-built permeation cell modified to be different from that specified in the standard EN 6529:2001. The tested materials were characterized by good resistance to solutions containing 2 out of the 3 selected cytostatics: doxorubicin and 5-fluorouracil, as indicated by a breakthrough time of over 480 min. Equally high resistance to permeation of the third cytostatic (docetaxel) was exhibited by natural rubber latex, acrylonitrile-butadiene rubber, and chloroprene rubber. However, docetaxel permeated much more readily through the clothing layered material, compromising its barrier properties. It was found that the presence of additional components in cytostatic preparations accelerated permeation through material samples, thus deteriorating their barrier properties. Int J Occup Med Environ Health 2018;31(3):341-350. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  1. Hydrogen permeation properties of plasma-sprayed tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Pawelko, R.J.; Hankins, M.R.; Longhurst, G.R.; Neiser, R.A.

    1994-01-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D + 3 ion beam with fluxes of similar 6.5x10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  2. Hydrogen permeation properties of plasma-sprayed tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Pawelko, R.J. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Hankins, M.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Longhurst, G.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Neiser, R.A. (Sandia National Laboratories, Albuquerque, NM 87185 (United States))

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D[sup +][sub 3] ion beam with fluxes of similar 6.5x10[sup 19] D/m[sup 2] s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  3. Chronological age affects the permeation of fentanyl through human skin in vitro

    DEFF Research Database (Denmark)

    Holmgaard, R; Benfeldt, E; Sorensen, J A

    2013-01-01

    AIM: To study the influence of chronological age on fentanyl permeation through human skin in vitro using static diffusion cells. Elderly individuals are known to be more sensitive to opioids and obtain higher plasma concentrations following dermal application of fentanyl compared to younger...... individuals. The influence of age - as an isolated pharmacokinetic term - on the absorption of fentanyl has not been previously studied. METHOD: Human skin from 30 female donors was mounted in static diffusion cells, and samples were collected during 48 h. Donors were divided into three age groups: ... and old age groups: 5,922 and 4,050 ng, respectively). Furthermore, the lag time and absorption rate were different between the three groups, with a significantly higher rate in the young participants versus the oldest participants. CONCLUSION: We demonstrate that fentanyl permeates the skin of young...

  4. Tritium permeation characterization of Al{sub 2}O{sub 3}/FeAl coatings as tritium permeation barriers on 321 type stainless steel containers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Feilong; Xiang, Xin; Lu, Guangda; Zhang, Guikai, E-mail: zhangguikai@caep.cn; Tang, Tao; Shi, Yan; Wang, Xiaolin

    2016-09-15

    Accurate tritium transport properties of prospective tritium permeation barriers (TPBs) are essential to tritium systems in fusion reactors. By passing a temperature and rate-controlled sweeping gas over specimen surfaces to carry the permeated tritium to an ion chamber, the gas-driven permeation of tritium has been performed on 321 type stainless steel containers with Al{sub 2}O{sub 3}/FeAl barriers, to determine the T-permeation resistant performance and mechanism of the barrier. The tritium permeability of the Al{sub 2}O{sub 3}/FeAl coated container was reduced by 3 orders of magnitude at 500–700 °C by contrast with that of the bare one, which meets the requirement of the tritium permeation reduction factor (PRF) of TPBs for tritium operating components in the CN-HCCB TBM. The Al{sub 2}O{sub 3}/FeAl barrier resists the tritium permeation by the diffusion in the bulk substrate at a limited number of defect sites with an effective area and thickness, suggesting that the TPB quality is a very important factor for efficient T-permeation resistance. - Highlights: • T-permeation has been measured on bare and coated type 321 SS containers. • Al{sub 2}O{sub 3}/FeAl coating give a reduction of T-permeability of 3 orders of magnitude. • Mechanism of Al{sub 2}O{sub 3}/FeAl barrier resisting T-permeation has obtained. • Quality of TPB is a very important factor for efficient T-permeating reduction.

  5. Permeation of Ionic Liquids through the skin

    Directory of Open Access Journals (Sweden)

    Ana Júlio

    2017-12-01

    Full Text Available Alternative forms of drug delivery such as delivery through the skin, have been developed to explore other routes. However, the incorporation of poorly soluble or partially insoluble drugs into these delivery systems represents a major problem. Ionic liquids (ILs may be incorporated in aqueous, oily or hydroalcoholic solutions and thus, may be used as excipients in drug delivery systems to increase/improve the topical and transdermal drug delivery. However, it is fundamental to consider the cytotoxicity of these salts and it is also crucial to evaluate if these compounds permeate through the skin. Herein, three imidazole-based ILs: [C2mim][Br], [C4mim][Br] and [C6mim][Br], were synthesized and each IL was incorporated within caffeine saturated solutions. Permeation studies of the active (caffeine in these solutions were performed to evaluate the amount of IL that permeated through the porcine ear skin in the presence of the active. To achieve this, gravimetric studies of the receptor compartment were performed. Results showed that the more lipophilic IL [C6mim][Br] presented the highest permeation through the skin. The permeation is dependent upon the size of the alkyl chain of the IL, and as more than 60% of the ILs permeate is it vital to consider the cytotoxicity of these salts when considering their incorporation in topical systems.

  6. Controlled rotation and translation of spherical particles or living cells by surface acoustic waves.

    Science.gov (United States)

    Bernard, Ianis; Doinikov, Alexander A; Marmottant, Philippe; Rabaud, David; Poulain, Cédric; Thibault, Pierre

    2017-07-11

    We show experimental evidence of the acoustically-assisted micromanipulation of small objects like solid particles or blood cells, combining rotation and translation, using high frequency surface acoustic waves. This was obtained from the leakage in a microfluidic channel of two standing waves arranged perpendicularly in a LiNbO 3 piezoelectric substrate working at 36.3 MHz. By controlling the phase lag between the emitters, we could, in addition to translation, generate a swirling motion of the emitting surface which, in turn, led to the rapid rotation of spherical polystyrene Janus beads suspended in the channel and of human red and white blood cells up to several rounds per second. We show that these revolution velocities are compatible with a torque caused by the acoustic streaming that develops at the particles surface, like that first described by [F. Busse et al., J. Acoust. Soc. Am., 1981, 69(6), 1634-1638]. This device, based on standard interdigitated transducers (IDTs) adjusted to emit at equal frequencies, opens a way to a large range of applications since it allows the simultaneous control of the translation and rotation of hard objects, as well as the investigation of the response of cells to shear stress.

  7. Intracavity OptoGalvanic Spectroscopy Not Suitable for Ambient Level Radiocarbon Detection

    NARCIS (Netherlands)

    Paul, Dipayan; Meijer, Harro

    2015-01-01

    IntraCavity OptoGalvanic Spectroscopy as a radiocarbon detection technique was first reported by the Murnick group at Rutgers University, Newark, NJ, in 2008. This technique for radiocarbon detection was presented with tremendous potentials for applications in various fields of research.

  8. Development of opto-mechanical tools and procedures for the new generation of RICH-detectors at CERN

    CERN Document Server

    Laub, M; Ullaland, O

    2001-01-01

    This thesis is focused on development of opto-mechanical tools and procedures, which would contribute to the achievement of the best possible performance of new Ring Imaging Cherenkov (RICH) detectors. On the base of requirements, given by the physics objective of the LHCb detector, and an analysis of the detector opto-mechanical system, specifications of individual opto-mechanical components were determined. Spherical mirrors, planar mirrors and mirror adjustable mounts were the components of interest. Next, their parameters to be characterised were defined. Possible measurement methods were studied and relevant set ups based on suitable methods were developed. Meanwhile, available modern metrology technologies, like laser operated instruments or digital image processing, were applied with an attempt to innovate them and to increase their achievable performance limits. When applicable, the set ups were automated in order to make the measurements fast and reliable. An optical laboratory, devoted to the charac...

  9. Transcriptome and membrane fatty acid analyses reveal different strategies for responding to permeating and non-permeating solutes in the bacterium Sphingomonas wittichii

    Directory of Open Access Journals (Sweden)

    Johnson David R

    2011-11-01

    Full Text Available Abstract Background Sphingomonas wittichii strain RW1 can completely oxidize dibenzo-p-dioxins and dibenzofurans, which are persistent contaminants of soils and sediments. For successful application in soil bioremediation systems, strain RW1 must cope with fluctuations in water availability, or water potential. Thus far, however, little is known about the adaptive strategies used by Sphingomonas bacteria to respond to changes in water potential. To improve our understanding, strain RW1 was perturbed with either the cell-permeating solute sodium chloride or the non-permeating solute polyethylene glycol with a molecular weight of 8000 (PEG8000. These solutes are assumed to simulate the solute and matric components of the total water potential, respectively. The responses to these perturbations were then assessed and compared using a combination of growth assays, transcriptome profiling, and membrane fatty acid analyses. Results Under conditions producing a similar decrease in water potential but without effect on growth rate, there was only a limited shared response to perturbation with sodium chloride or PEG8000. This shared response included the increased expression of genes involved with trehalose and exopolysaccharide biosynthesis and the reduced expression of genes involved with flagella biosynthesis. Mostly, the responses to perturbation with sodium chloride or PEG8000 were very different. Only sodium chloride triggered the increased expression of two ECF-type RNA polymerase sigma factors and the differential expression of many genes involved with outer membrane and amino acid metabolism. In contrast, only PEG8000 triggered the increased expression of a heat shock-type RNA polymerase sigma factor along with many genes involved with protein turnover and repair. Membrane fatty acid analyses further corroborated these differences. The degree of saturation of membrane fatty acids increased after perturbation with sodium chloride but had the

  10. Hydrogen permeation resistant layers for liquid metal reactors

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1980-03-01

    Reviewing the literature in the tritium diffusion field one can readily see a wide divergence in results for both the response of permeation rate to pressure, and the effect of oxide layers on total permeation rates. The basic mechanism of protective oxide layers is discussed. Two coatings which are less hydrogen permeable than the best naturally occurring oxide are described. The work described is part of an HEDL-ANL cooperative research program on Tritium Permeation in Liquid Metal Cooled Reactors. This includes permeation work on hydrogen, deuterium, and tritium with the hydrogen-deuterium research leading to the developments presented

  11. Bias-Exchange Metadynamics Simulation of Membrane Permeation of 20 Amino Acids.

    Science.gov (United States)

    Cao, Zanxia; Bian, Yunqiang; Hu, Guodong; Zhao, Liling; Kong, Zhenzhen; Yang, Yuedong; Wang, Jihua; Zhou, Yaoqi

    2018-03-16

    Thermodynamics of the permeation of amino acids from water to lipid bilayers is an important first step for understanding the mechanism of cell-permeating peptides and the thermodynamics of membrane protein structure and stability. In this work, we employed bias-exchange metadynamics simulations to simulate the membrane permeation of all 20 amino acids from water to the center of a dipalmitoylphosphatidylcholine (DPPC) membrane (consists of 256 lipids) by using both directional and torsion angles for conformational sampling. The overall accuracy for the free energy profiles obtained is supported by significant correlation coefficients (correlation coefficient at 0.5-0.6) between our results and previous experimental or computational studies. The free energy profiles indicated that (1) polar amino acids have larger free energy barriers than nonpolar amino acids; (2) negatively charged amino acids are the most difficult to enter into the membrane; and (3) conformational transitions for many amino acids during membrane crossing is the key for reduced free energy barriers. These results represent the first set of simulated free energy profiles of membrane crossing for all 20 amino acids.

  12. Bias-Exchange Metadynamics Simulation of Membrane Permeation of 20 Amino Acids

    Directory of Open Access Journals (Sweden)

    Zanxia Cao

    2018-03-01

    Full Text Available Thermodynamics of the permeation of amino acids from water to lipid bilayers is an important first step for understanding the mechanism of cell-permeating peptides and the thermodynamics of membrane protein structure and stability. In this work, we employed bias-exchange metadynamics simulations to simulate the membrane permeation of all 20 amino acids from water to the center of a dipalmitoylphosphatidylcholine (DPPC membrane (consists of 256 lipids by using both directional and torsion angles for conformational sampling. The overall accuracy for the free energy profiles obtained is supported by significant correlation coefficients (correlation coefficient at 0.5–0.6 between our results and previous experimental or computational studies. The free energy profiles indicated that (1 polar amino acids have larger free energy barriers than nonpolar amino acids; (2 negatively charged amino acids are the most difficult to enter into the membrane; and (3 conformational transitions for many amino acids during membrane crossing is the key for reduced free energy barriers. These results represent the first set of simulated free energy profiles of membrane crossing for all 20 amino acids.

  13. Water diffusion in fluoropolymer-based fuel-cell electrolyte membranes investigated by radioactivated-tracer permeation technique

    International Nuclear Information System (INIS)

    Sawada, S.; Yamaki, T.; Asano, M.; Maekawa, Y.; Suzuki, A.; Terai, T.

    2011-01-01

    The self-diffusion coefficient of water, D, in proton exchange membranes (PEMs) based on crosslinkedpolytetrafluoroethylene (cPTFE) films was measured by a radioactivated-tracer permeation technique using tritium labeled water (HTO). The D value was found to increase with the water volume fraction of the PEM, φ, probably because the water-filled regions were more effectively interconnected with each other at high φ, allowing water permeation to be faster through a PEM. Interestingly, the grafted PEMs showed the lower D compared to that of Nafion in spite of their high φ. This would be caused by tortuous structures of transport pathways and a strong coulombic interaction between water and the negatively-charged sulfonate (SO 3 - ) groups. Heavyoxygen water (H 2 18 O) was also used in the similar permeation experiment to obtain the D. Since the HTO diffusion actually occurred not only by translational motion of water but also by intermolecular hydrogen-atom hopping, comparing the D of HTO with that of H 2 18 O was likely to give the information about the state of water in the PEMs. (orig.)

  14. Tritium permeation losses in HYLIFE-II heat exchanger tubes

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Dolan, T.J.

    1990-01-01

    Tritium permeation through the intermediate heat exchanger of the HYLIFE-II inertial fusion design concept is evaluated for routine operating conditions. The permeation process is modelled using the Lewis analogy combined with surface recombination. It is demonstrated that at very low driving potentials, permeation becomes proportional to the first power of the driving potential. The model predicts that under anticipated conditions the primary cooling loop will pass about 6% of the tritium entering it to the intermediate coolant. Possible approached to reducing tritium permeation are explored. Permeation is limited by turbulent diffusion transport through the molten salt. Hence, surface barriers with impendance factors typical of present technology can do very little to reduce permeation. Low Flibe viscosity is desirable. An efficient tritium removal system operating on the Flibe before it gets to the intermediate heat exchanger is required. Needs for further research are highlighted. 9 refs., 2 figs., 1 tab

  15. Testing of Disposable Protective Garments Against Isocyanate Permeation From Spray Polyurethane Foam Insulation.

    Science.gov (United States)

    Mellette, Michael P; Bello, Dhimiter; Xue, Yalong; Yost, Michael; Bello, Anila; Woskie, Susan

    2018-05-12

    Diisocyanates (isocyanates), including methylene diphenyl diisocyanate (MDI), are the primary reactive components of spray polyurethane foam (SPF) insulation. They are potent immune sensitizers and a leading cause of occupational asthma. Skin exposure to isocyanates may lead to both irritant and allergic contact dermatitis and possibly contribute to systemic sensitization. More than sufficient evidence exists to justify the use of protective garments to minimize skin contact with aerosolized and raw isocyanate containing materials during SPF applications. Studies evaluating the permeation of protective garments following exposure to SPF insulation do not currently exist. To conduct permeation testing under controlled conditions to assess the effectiveness of common protective gloves and coveralls during SPF applications using realistic SPF product formulations. Five common disposable garment materials [disposable latex gloves (0.07 mm thickness), nitrile gloves (0.07 mm), vinyl gloves (0.07 mm), polypropylene coveralls (0.13 mm) and Tyvek coveralls (0.13 mm)] were selected for testing. These materials were cut into small pieces and assembled into a permeation test cell system and coated with a two-part slow-rise spray polyurethane foam insulation. Glass fiber filters (GFF) pretreated with 1-(9-anthracenylmethyl)piperazine) (MAP) were used underneath the garment to collect permeating isocyanates. GFF filters were collected at predetermined test intervals between 0.75 and 20.00 min and subsequently analyzed using liquid chromatography-tandem mass spectrometry. For each garment material, we assessed (i) the cumulative concentration of total isocyanate, including phenyl isocyanate and three MDI isomers, that effectively permeated the material over the test time; (ii) estimated breakthrough detection time, average permeation rate, and standardized breakthrough time; from which (iii) recommendations were developed for the use of similar protective garments following

  16. An unheated permeation device for calibrating atmospheric VOC measurements

    Directory of Open Access Journals (Sweden)

    J. Brito

    2011-10-01

    Full Text Available The development of an unpowered permeation device for continuous calibration of in-situ instruments measuring atmospheric volatile organic compounds (VOCs is described. Being lightweight and compact, and containing only negligible amounts of chemicals, the device is especially suited for field use such as on board aircraft. Its speciality is to maintain the permeation process in thermal equilibrium, so that the instantaneous permeation rate can be ascribed to a simple temperature measurement. This equilibrium state is maintained by a combination of three features: (i a thin PTFE membrane as permeation medium which guarantees short stabilization times, (ii a water bath as heat buffer, and (iii a vacuum-panel based insulation, in which features (ii and (iii minimize temperature drifts to ~30 mK h−1 per Kelvin temperature difference to the environment. The respective uncertainty of the permeation rate due to thermal non-equilibrium is kept below 1%. An extensive theory part details the major permeation processes of gases through porous polymers, being Fick's diffusion, Knudsen flow, and viscous flow. Both the measured stabilization time and the measured temperature dependence of the permeation rate independently indicate that the permeation can be described by a viscous flow model, where diffusion of the gas molecules in large pores (having a diameter of >0.05 μm dominates.

  17. Measuring processes with opto-electronic semiconductor components

    International Nuclear Information System (INIS)

    1985-01-01

    This is a report on the state of commercially available semiconductor emitters and detectors for the visible, near, middle and remote infrared range. A survey is given on the distance, speed, flow and length measuring techniques using opto-electronic components. Automatic focussing, the use of light barriers, non-contact temperature measurements, spectroscopic gas, liquid and environmental measurement techniques and gas analysis in medical techniques show further applications of the new components. The modern concept of guided radiation in optical fibres and their use in system technology is briefly explained. (DG) [de

  18. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria

    International Nuclear Information System (INIS)

    Scorciapino, Mariano Andrea; Acosta-Gutierrez, Silvia; Benkerrou, Dehbia; D’Agostino, Tommaso; Malloci, Giuliano; Samanta, Susruta; Bodrenko, Igor; Ceccarelli, Matteo

    2017-01-01

    The increasing level of antibiotic resistance in Gram-negative bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a global challenge for modern medicine. The main reason that Gram-negative bacteria are particularly challenging is the presence of an outer cell-protecting membrane, which is not present in Gram-positive species. Such an asymmetric bilayer is a highly effective barrier for polar molecules. Several protein systems are expressed in the outer membrane to control the internal concentration of both nutrients and noxious species, in particular: (i) water-filled channels that modulate the permeation of polar molecules and ions according to concentration gradients, and (ii) efflux pumps to actively expel toxic compounds. Thus, besides expressing specific enzymes for drugs degradation, Gram-negative bacteria can also resist by modulating the influx and efflux of antibiotics, keeping the internal concentration low. However, there are no direct and robust experimental methods capable of measuring the permeability of small molecules, thus severely limiting our knowledge of the molecular mechanisms that ultimately control the permeation of antibiotics through the outer membrane. This is the innovation gap to be filled for Gram-negative bacteria. This review is focused on the permeation of small molecules through porins, considered the main path for the entry of polar antibiotics into Gram-negative bacteria. A fundamental understanding of how these proteins are able to filter small molecules is a prerequisite to design/optimize antibacterials with improved permeation. The level of sophistication of modern molecular modeling algorithms and the advances in new computer hardware has made the simulation of such complex processes possible at the molecular level. In this work we aim to share our experience and perspectives in the context of a multidisciplinary extended collaboration within the IMI

  19. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria

    Science.gov (United States)

    Scorciapino, Mariano Andrea; Acosta-Gutierrez, Silvia; Benkerrou, Dehbia; D'Agostino, Tommaso; Malloci, Giuliano; Samanta, Susruta; Bodrenko, Igor; Ceccarelli, Matteo

    2017-03-01

    The increasing level of antibiotic resistance in Gram-negative bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a global challenge for modern medicine. The main reason that Gram-negative bacteria are particularly challenging is the presence of an outer cell-protecting membrane, which is not present in Gram-positive species. Such an asymmetric bilayer is a highly effective barrier for polar molecules. Several protein systems are expressed in the outer membrane to control the internal concentration of both nutrients and noxious species, in particular: (i) water-filled channels that modulate the permeation of polar molecules and ions according to concentration gradients, and (ii) efflux pumps to actively expel toxic compounds. Thus, besides expressing specific enzymes for drugs degradation, Gram-negative bacteria can also resist by modulating the influx and efflux of antibiotics, keeping the internal concentration low. However, there are no direct and robust experimental methods capable of measuring the permeability of small molecules, thus severely limiting our knowledge of the molecular mechanisms that ultimately control the permeation of antibiotics through the outer membrane. This is the innovation gap to be filled for Gram-negative bacteria. This review is focused on the permeation of small molecules through porins, considered the main path for the entry of polar antibiotics into Gram-negative bacteria. A fundamental understanding of how these proteins are able to filter small molecules is a prerequisite to design/optimize antibacterials with improved permeation. The level of sophistication of modern molecular modeling algorithms and the advances in new computer hardware has made the simulation of such complex processes possible at the molecular level. In this work we aim to share our experience and perspectives in the context of a multidisciplinary extended collaboration within the IMI

  20. Diclofenac Salts, VIII. Effect of the Counterions on the Permeation through Porcine Membrane from Aqueous Saturated Solutions

    Science.gov (United States)

    Fini, Adamo; Bassini, Glenda; Monastero, Annamaria; Cavallari, Cristina

    2012-01-01

    The following bases: monoethylamine (EtA), diethylamine (DEtA), triethylamine (TEtA), monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), pyrrolidine (Py), piperidine (Pp), morpholine (M), piperazine (Pz) and their N-2-hydroxyethyl (HE) analogs were employed to prepare 14 diclofenac salts. The salts were re-crystallized from water in order to obtain forms that are stable in the presence of water. Vertical Franz-type cells with a diffusional surface area of 9.62 cm2 were used to study the permeation of these diclofenac salts from their saturated solutions through an internal pig ear membrane. The receptor compartments of the cells contained 100 mL of phosphate buffer (pH 7.4); a saturated solution (5 mL) of each salt was placed in the donor compartment, thermostated at 37 °C. Aliquots were withdrawn at predetermined time intervals over 8 h and then immediately analyzed by HPLC. Fluxes were determined by plotting the permeated amount, normalized for the membrane surface area versus time. Permeation coefficients were obtained dividing the flux values J by the concentration of the releasing phase—that is, water solubility of each salt. Experimental results show that fluxes could be measured when diclofenac salts with aliphatic amines are released from a saturated aqueous solution. Different chemical species (acid, anion, ion pairs) contribute to permeation of the anti-inflammatory agent even though ion-pairs could be hypothesized to operate to a greater extent. Permeation coefficients were found higher when the counterion contains a ring; while hydroxy groups alone do not appear to play an important role, the ring could sustain permeation, disrupting the organized domains of the membrane. PMID:24300300

  1. Comparing in vivo biodistribution with radiolabeling and Franz cell permeation assay to validate the efficacy of both methodologies in the evaluation of nanoemulsions: a safety approach

    International Nuclear Information System (INIS)

    Cerqueira-Coutinho, C S; De Campo, V E B; Mansur, C R E; Rossi, A L; Veiga, V F; Holandino, C; Freitas, Z M F; Ricci-Junior, E; Santos, E P; Santos-Oliveira, R

    2016-01-01

    The Franz cells permeation assay has been performed for over 25 years. However, the advent of nanotechnology created a whole new world, especially with regard to topical products. In this new global scenario an increasing number of nanostructure-based delivery systems (NDSs) have emerged and a global warning relating to the safety of these NDSs is arising. This work studied the efficacy of the Franz cells assay, comparing it with the radiolabeling biodistribution test. For this purpose a formulation of sunscreen based on an NDS was developed and characterized. The results demonstrated both that the NDS did not present in vitro cytotoxicity and that the radiolabeling biodistribution test is more precise for the evaluation of NDS cosmetics than the Franz cells assay, since it detected the permeation of the NDS at a picogram order. Due to this fact, and considering all the concerns related to NDSs and nanoparticles in general, more precise methods must be used in order to guarantee the safe use of these new classes of products. (paper)

  2. Effect of Permeation Enhancers on the Release Behavior and ...

    African Journals Online (AJOL)

    Purpose: The aim of this research work was to formulate, characterize and evaluate the in vitro permeation behavior of tramadol lotion containing propylene glycol (PG) and polyethylene glycol (PEG) as permeation enhancers. Methods: The permeation experiments were conducted in vitro using full thickness rabbit skin in ...

  3. Opto-Acoustic Telephone Study.

    Science.gov (United States)

    1983-01-01

    hook acknowledge, line busy monitoring, misdialing, receiver in permanent off hook position and touch tone or dial recognition . The wide bandwidth of... Speech Communication Over a Fiber Lightguide", Bell Sys. Tech. J. 58, 1735-41, September 1979. 40. Lord Rayleigh, "The Photophone", Nature XXIII, pp...date May 24, 1JIM. To .i11 ihou, it usay concern: rate otisslerrit tion,anud were lousd ensough to lieit ksov% it that w’e, ALEXA ’.Mn: UatA𔃻 be easily

  4. Modeling and experiments on tritium permeation in fusion reactor blankets

    Science.gov (United States)

    Holland, D. F.; Longhurst, G. R.

    The determination of tritium loss from helium-cooled fusion breeding blankets are discussed. The issues are: (1) applicability of present models to permeation at low tritium pressures; (2) effectiveness of oxide layers in reducing permeation; (3) effectiveness of hydrogen addition as a means to lower tritium permeation; and (4) effectiveness of conversion to tritiated water and subsequent trapping to reduce permeation. Theoretical models applicable to these issues are discussed, and results of experiments in two areas are presented; permeation of mixtures of hydrogen isotopes and conversion to tritiated water.

  5. Modeling and experiments on tritium permeation in fusion reactor blankets

    International Nuclear Information System (INIS)

    Holland, D.F.; Longhurst, G.R.

    1985-01-01

    Issues are discussed that are critical in determining tritium loss from helium-cooled fusion breeding blankets. These issues are: (a) applicability of present models to permeation at low tritium pressures, (b) effectiveness of oxide layers in reducing permeation, (c) effectiveness of hydrogen addition as a means to lower tritium permeation, and (d) effectiveness of conversion to tritiated water and subsequent trapping as a means to reduce permeation. The paper discusses theoretical models applicable to these issues, and presents results of experiments in two areas: permeation of mixtures of hydrogen isotopes and conversion to tritiated water

  6. Measurement of skin permeation/penetration of nanoparticles for their safety evaluation.

    Science.gov (United States)

    Kimura, Eriko; Kawano, Yuichiro; Todo, Hiroaki; Ikarashi, Yoshiaki; Sugibayashi, Kenji

    2012-01-01

    The aim of the present study was to quantitatively evaluate the skin permeation/penetration of nanomaterials and to consider their penetration pathway through skin. Firstly, penetration/permeation of a model fluorescent nanoparticle, Fluoresbrite®, was determined through intact rat skin and several damaged skins. Fluoresbrite® permeated through only needle-punctured skin. The permeation profiles of soluble high molecular compounds, fluorescein isothiocyanate-dextrans (FITC-dextrans, FDs), with different molecular weights were also measured for comparison. The effects of molecular sizes and different skin pretreatments on the skin barrier were determined on the skin penetration/permeation of Fluoresbrite® and FDs. Fluoresbrite® was not permeated the intact skin, but FDs were permeated the skin. The skin distribution of titanium dioxide and zinc oxide nanoparticles was also observed after topical application of commercial cosmetics. Nanoparticles in sunscreen cosmetics were easily distributed into the groove and hair follicles after their topical application, but seldom migrated from the groove or follicles to viable epidermis and dermis. The obtained results suggested that nanoparticles did not permeate intact skin, but permeated pore-created skin. No or little permeation was observed for these nanomaterials through the stratum corneum.

  7. Final report for Allied-Signal Aerospace Company, Kansas City Division on protective glove permeation analysis

    International Nuclear Information System (INIS)

    Swearengen, P.M.; Johnson, J.S.; Priante, S.J.

    1990-01-01

    We conducted 25 separate glove fabric permeation studies during this project. The permeations were carried out in the small (1 inch) glass ASTM cell. One other permeation study was carded out with a large (two inch) modified ASTM cell for comparison with the small cell results. We also compared the LLNL procedure from both large and small cells with the standard ASTM test procedure which uses a liquid solution on the breakthrough side of the fabric (the liquid is then sampled on a periodic basis). In all comparisons we observed a close-correlation in breakthrough times between the two procedures and the two cell sizes. In the course of this study, we tested ten different glove materials. These included neoprene (original ASTM round-robin sheet stock, 16 mil thickness), Edmont Sol-Vex (nitrile), Pioneer nitrile, Pioneer Pylox (polyvinyl chloride), North Viton (trademark for fluoroelastomers), North SilverShield (Norfoil, trademark for a flexible metallized laminate), Safety 4 4H (patented plastic laminate), and QRP PolyTuff (polyurethane) 20G-2000 (5 mil), 23G-2300 (1.5 mil), and 25G-2500 (1.5 mil). Three of the glove materials, Viton and Silver Shield (North), and 4H (Safety 4), did not allow any permeation measurable by our system to either 1,2-dichloroethane or 3% diphenylmercury (in 1,2-dichloroethane) for a period greater than six hours. A fourth material, QRP Poly Tuff 2OG-2000, did not allow any measurable penetration of Asilamine (an aromatic diamine) for a time pedod of greater than 4 hours. Breakthrough times and curves were obtained for all other tested materials. Eleven different chemicals were used to challenge the glove materials. These included acetone, Asilamine, 1,2-dichloroethane, dichloromethane, isopropyl alcohol, a mixture of 3% diphenylmercury in 1,2-dichloroethane (w/w), phenol, and lso Verre Stripper, 4,4'-methylenedianil (MDA), 1,3-phenylenediamine (MPDA), and Shell Epon (R) curing agent Z

  8. The use of opto-digital microscope for analysis Of the PFA-based ...

    African Journals Online (AJOL)

    discontinuities in a form of grooves from 0.5 to 1.5 mm deep, shaped deliberately using abrasive water-jet technology. The measurements of these characteristic elements were made using an advanced opto-digital microscope DSX500 by ...

  9. High permeation rates in liposome systems explain rapid glyphosate biodegradation associated with strong isotope fractionation.

    Science.gov (United States)

    Ehrl, Benno; Mogusu, Emmanuel O; Kim, Kyoungtea; Hofstetter, Heike; Pedersen, Joel A; Elsner, Martin

    2018-05-23

    Bacterial uptake of charged organic pollutants such as the widely used herbicide glyphosate is typically attributed to active transporters, whereas passive membrane permeation as an uptake pathway is usually neglected. For 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes, pH-dependent membrane permeation coefficients (Papp) of glyphosate, determined by nuclear magnetic resonance (NMR) spectroscopy, varied from Papp(pH 7.0) = 3.7 (+/-0.3) × 10-7 m∙s-1 to Papp(pH 4.1) = 4.2 (+/-0.1) × 10-6 m∙s-1. This surprisingly rapid membrane permeation depended on glyphosate speciation and was, at physiological pH, in the range of polar, non-charged molecules suggesting that passive membrane permeation is a potential uptake pathway during glyphosate biodegradation. To test this hypothesis, a Gram-negative glyphosate degrader, Ochrobactrum sp. FrEM, was isolated from glyphosate-treated soil and glyphosate permeation rates inferred from the liposome model were compared to bacterial degradation rates. Estimated maximum permeation rates were, indeed, two orders of magnitudes higher than glyphosate degradation rates. Moreover, biodegradation of millimolar glyphosate concentrations gave rise to pronounced carbon isotope fractionation with an apparent kinetic isotope effect of AKIEcarbon= 1.014 ± 0.003. This value is consistent with unmasked enzymatic isotope fractionation demonstrating that glyphosate biodegradation was little mass transfer-limited and glyphosate exchange across the cell membrane was rapid relative to enzymatic turnover.

  10. Permeation of deuterium implanted into vanadium alloys

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Struttmann, D.A.

    1986-05-01

    Permeation of deuterium through the vanadium alloy, V-15Cr-5Ti, was investigated using 3-keV, D 3 + ion beams from a small accelerator. The experiments consisted of measurements of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5-mm thick specimens heated to tempertures from 623 to 823 0 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). Analyses of these measurements indicate that for the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This corresponds to approximately 1000 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates D = 1.4 x 10 -8 exp(-.11 eV/kT) (m 2 /s)

  11. Transdermal delivery of diclofenac using water-in-oil microemulsion: formulation and mechanistic approach of drug skin permeation.

    Science.gov (United States)

    Thakkar, Priyanka J; Madan, Parshotam; Lin, Senshang

    2014-05-01

    The objective of the present investigation was to enhance skin permeation of diclofenac using water-in-oil microemulsion and to elucidate its skin permeation mechanism. The w/o microemulsion formulations were selected based on constructed pseudoternary phase diagrams depending on water solubilization capacity and thermodynamic stability. These formulations were also subjected to physical characterization based on droplet size, viscosity, pH and conductivity. Permeation of diclofenac across rat skin using side-by-side permeation cells from selected w/o microemulsion formulations were evaluated and compared with control formulations. The selected w/o microemulsion formulations were thermodynamically stable, and incorporation of diclofenac sodium into microemulsion did not affect the phase behavior of system. All microemulsion formulations had very low viscosity (11-17 cps) and droplet size range of 30-160 nm. Microemulsion formulations exhibited statistically significant increase in diclofenac permeation compared to oily solution, aqueous solution and oil-Smix solution. Higher skin permeation of diclofenac was observed with low Smix concentration and smaller droplet size. Increase in diclofenac loading in aqueous phase decreased the partition of diclofenac. Diclofenac from the oil phase of microemulsion could directly partition into skin, while diclofenac from the aqueous droplets was carried through skin by carrier effect.

  12. Design of 10Gbps optical encoder/decoder structure for FE-OCDMA system using SOA and opto-VLSI processors.

    Science.gov (United States)

    Aljada, Muhsen; Hwang, Seow; Alameh, Kamal

    2008-01-21

    In this paper we propose and experimentally demonstrate a reconfigurable 10Gbps frequency-encoded (1D) encoder/decoder structure for optical code division multiple access (OCDMA). The encoder is constructed using a single semiconductor optical amplifier (SOA) and 1D reflective Opto-VLSI processor. The SOA generates broadband amplified spontaneous emission that is dynamically sliced using digital phase holograms loaded onto the Opto-VLSI processor to generate 1D codewords. The selected wavelengths are injected back into the same SOA for amplifications. The decoder is constructed using single Opto-VLSI processor only. The encoded signal can successfully be retrieved at the decoder side only when the digital phase holograms of the encoder and the decoder are matched. The system performance is measured in terms of the auto-correlation and cross-correlation functions as well as the eye diagram.

  13. Hydrogen permeation properties of plasma-sprayed tungsten*1

    Science.gov (United States)

    Anderl, R. A.; Pawelko, R. J.; Hankins, M. R.; Longhurst, G. R.; Neiser, R. A.

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D 3+ ion beam with fluxes of ˜6.5 × 10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity.

  14. The Assembly of Cell-Encapsulating Microscale Hydrogels Using Acoustic Waves

    Science.gov (United States)

    Xu, Feng; Finley, Thomas Dylan; Turkaydin, Muge; Sung, Yuree; Gurkan, Umut Atakan; Yavuz, Ahmet Sinan; Guldiken, Rasim; Demirci, Utkan

    2011-01-01

    Microscale hydrogels find widespread applications in medicine and biology, e.g., as building blocks for tissue engineering and regenerative medicine. In these applications, these microgels are assembled to fabricate large complex 3D constructs. The success of this approach requires non-destructive and high throughput assembly of the microgels. Although various assembly methods have been developed based on modifying interfaces, and using microfluidics, so far, none of the available assembly technologies have shown the ability to assembly microgels using non-invasive fields rapidly within seconds in an efficient way. Acoustics has been widely used in biomedical area to manipulatedroplets, cells and biomolecules. In this study, we developed a simple, non-invasiveacoustic assembler for cell-encapsulating microgels with maintained cell viability (>93%). We assessed the assembler for both microbeads (with diameter of 50 µm and 100 µm) and microgels of different sizes and shapes (e.g., cubes, lock-and-key shapes, tetris, saw) in microdroplets (with volume of 10 µL, 20 µL, 40 µL, 80 µL). The microgels were assembled in second sin a non-invasive manner. These results indicate that the developed acoustic approach could become an enabling biotechnology tool for tissue engineering, regenerative medicine, pharmacology studies and high throughput screening applications. PMID:21820734

  15. Opto-thermal moisture content and moisture depth profile measurements in organic materials

    NARCIS (Netherlands)

    Xiao, P.; Guo, X.; Cui, Y.Y.; Imhof, R.; Bicanic, D.D.

    2004-01-01

    Opto-thermal transient emission radiometry(OTTER) is a infrared remote sensing technique, which has been successfully used in in vivo skin moisture content and skin moisture depth profiling measurements.In present paper, we extend this moisture content measurement capability to analyze the moisture

  16. Surface Acoustic Waves Grant Superior Spatial Control of Cells Embedded in Hydrogel Fibers.

    Science.gov (United States)

    Lata, James P; Guo, Feng; Guo, Jinshan; Huang, Po-Hsun; Yang, Jian; Huang, Tony Jun

    2016-10-01

    By exploiting surface acoustic waves and a coupling layer technique, cells are patterned within a photosensitive hydrogel fiber to mimic physiological cell arrangement in tissues. The aligned cell-polymer matrix is polymerized with short exposure to UV light and the fiber is extracted. These patterned cell fibers are manipulated into simple and complex architectures, demonstrating feasibility for tissue-engineering applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hydrogen permeation preventive structural materials

    International Nuclear Information System (INIS)

    Fukushima, Kimichika; Nakahigashi, Shigeo; Imura, Masashi; Terasawa, Michitaka; Ebisawa, Katsuyuki.

    1986-01-01

    Purpose: To provide highly practical wall materials for use in thermonuclear reactors capable of effectively preventing the permeation of hydrogen isotopes such as tritium thereby preventing the contamination of coolants. Constitution: Helium gas is injected into or at the surface of base materials comprising stainless steel plates to form a helium gas region. Alternatively, boron, nitrogen or the compound thereof having a greater helium forming nuclear reaction cross section than that of the base materials is mixed or injected into the base material to form the helium gas region through (n,α) reaction under neutron irradiation. Since the helium gas region constitutes a diffusion barrier for the tritium as the hydrogen isotope, the permeation amount of tritium is significantly suppressed. Helium gas bubbles or lattice defects are formed in the helium gas region under the neutron irradiation, by which the hydrogen isotope capturing effect can also be effected. In this way, permeation of the hydrogen isotope, contamination of the coolants, etc. can be prevented to provide great practical effectives. (Kawakami, Y.)

  18. Reemission and permeation of deuterium implanted into metals

    International Nuclear Information System (INIS)

    Tanabe, T.; Furuyama, Y.; Imoto, S.

    1984-01-01

    Focusing on the marked depression of deuterium permeation rate during the deuteron bombardment, implantation experiments coupled with gaseous permeation experiments are performed on pure Ni and Ni with evaporated MnO. It is concluded that the reemission of implanted deuterium is initially depressed, but it soon becomes enhanced with increase of fluence leading to a rapid decrease of permeation rate at the intermediate temperatures 600-1000 K, which is attributed to the formation of short diffusion paths from the projected range to the front surface. (orig.)

  19. Investigating the sonophoresis effect on the permeation of diclofenac sodium using 3D skin equivalent.

    Science.gov (United States)

    Aldwaikat, Mai; Alarjah, Mohammed

    2015-01-01

    Ultrasound temporally increases skin permeability by altering stratum corneum SC function (sonophoresis). The objective of this study was to evaluate the effect of variable ultrasound conditions on the permeation of diclofenac sodium DS with range of physicochemical properties through EpiDerm™. Permeation studies were carried out in vitro using Franz diffusion cell. HPLC method was used for the determination of the concentration of diclofenac sodium in receiving compartment. Parameters like ultrasound frequency, application time, amplitude, and mode of sonication and distance of ultrasound horn from skin were investigated, and the conditions where the maximum enhancement rate obtained were determined. Application of ultrasound enhanced permeation of diclofenac sodium across EpiDerm™ by fivefolds. The most effective enhancing parameters were power sonication of 20kHz frequency, 20% amplitude at continuous mode for 5min. Copyright © 2014. Published by Elsevier B.V.

  20. Effect of phonophoresis on skin permeation of commercial anti-inflammatory gels: sodium diclofenac and ketoprofen.

    Science.gov (United States)

    Souza, Jaqueline; Meira, Alianise; Volpato, Nadia Maria; Mayorga, Paulo; Gottfried, Carmem

    2013-09-01

    This study evaluated the use of ultrasound in combination with the commercial anti-inflammatory drugs ketoprofen and sodium diclofenac, according to the parameters used in physiotherapy. Ketoprofen and sodium diclofenac were used in the Franz diffusion cell model adapted to an ultrasound transducer in three conditions: no ultrasound, one application of ultrasound and two applications of ultrasound. High-performance liquid chromatography was used to quantify the total amount of drug permeating skin per unit area, as well as flux and latency. The results showed that for ketoprofen, the amount of drug permeating skin and flux increased with two ultrasound applications. Permeation of sodium diclofenac decreased in the presence of ultrasound. Ultrasound parameters and drug properties must be considered in the use of phonophoresis. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Permeation studies of novel terbinafine formulations containing hydrophobins through human nails in vitro.

    Science.gov (United States)

    Vejnovic, Ivana; Huonder, Cornelia; Betz, Gabriele

    2010-09-15

    Existing treatments of onychomycosis are not satisfactory. Oral therapies have many side effects and topical formulations are not able to penetrate into the human nail plate and deliver therapeutical concentrations of active agent in situ. The purpose of the present study was to determine the amount of terbinafine, which permeates through the human nail plate, from liquid formulations containing enhancers, namely hydrophobins A-C in the concentration of 0.1% (w/v). The used reference solution contained 10% (w/v) of terbinafine in 60% (v/v) ethanol/water without enhancer. Permeability studies have been performed on cadaver nails using Franz diffusion cells modified to mount nail plates and filled with 60% (v/v) ethanol/water in the acceptor chamber. Terbinafine was quantitatively determined by HPLC. The amount of terbinafine remaining in the nail was extracted by 96% ethanol from pulverized nail material after permeation experiment and presented as percentage of the dry nail weight before the milling test. Permeability coefficient (PC) of terbinafine from reference solution was determined to be 1.52E-10 cm/s. Addition of hydrophobins improved PC in the range of 3E-10 to 2E-9 cm/s. Remaining terbinafine reservoir in the nail from reference solution was 0.83% (n=2). An increase of remaining terbinafine reservoir in the nail was observed in two out of three tested formulations containing hydrophobins compared to the reference. In all cases, known minimum inhibitory concentration of terbinafine for dermatophytes (0.003 microg/ml) has been exceeded in the acceptor chamber of the diffusion cells. All tested proteins (hydrophobins) facilitated terbinafine permeation after 10 days of permeation experiment, however one of them achieved an outstanding enhancement factor of 13.05 compared to the reference. Therefore, hydrophobins can be included in the list of potential enhancers for treatment of onychomycosis. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Development of a Contact Permeation Test Fixture and Method

    Science.gov (United States)

    2013-04-01

    Permeation and Analytical Solutions Team Quality System documentation and the guidance found in the ISO 17025 standard. All permeation and...annular ring (left) and no pressure (right). 2.2.4 Quality Controls Analytical permeation testing was conducted in accordance with ISO 17025 quality...internal standard. This mixture was vortexed for 20–30 s then centrifuged at 15,000 rpm for 5 min in a Micromax microcentrifuge (Thermo IEC ; Needham

  3. Opto-box: Optical modules and mini-crate for ATLAS pixel and IBL detectors

    Directory of Open Access Journals (Sweden)

    Bertsche David

    2016-01-01

    Full Text Available The opto-box is a custom mini-crate for housing optical modules which process and transfer optoelectronic data. Many novel solutions were developed for the custom design and manufacturing. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35×10x8 cm3. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits, were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain. This conference proceeding is in support of the poster presented at the International Conference on New Frontiers in Physics (ICNFP 2015 [1].

  4. In vitro permeation of palladium powders through intact and damaged human skin.

    Science.gov (United States)

    Crosera, Matteo; Mauro, Marcella; Bovenzi, Massimo; Adami, Gianpiero; Baracchini, Elena; Maina, Giovanni; Larese Filon, Francesca

    2018-05-01

    The use of palladium (Pd) has grown in the last decades, commonly used in automotive catalytic converters, jewellery and dental restorations sectors. Both general and working population can be exposed to this metal, which may act as skin sensitizer. This study investigated in vitro palladium powders permeation through excised intact and damaged human skin using the Franz diffusion cell method and the effect of rapid skin decontamination using sodium laureth-sulphate. 1 mL of a 10 min sonicated suspension made of 2.5 g of Pd powder in 50 mL synthetic sweat at pH 4.5 and room temperature was applied to the outer surface of the skin membranes for 24 h. Pd permeation, assessed by ICP-MS, was higher when damaged skin was used (p = 0.03). Final flux permeation values and lag times were 0.02 ± 0.01 μg cm -2  h -1 and 6.00 ± 3.95 h for intact, and 0.10 ± 0.02 μg cm -2  h -1 and 2.05 ± 1.49 h for damaged skin samples, respectively. Damaged skin protocol enhances Pd skin penetration inside dermal layer (p = 0.04), thus making the metal available for systemic uptake. Pd penetration (p = 0.02) and permeation (p = 0.012) through intact skin decreased significantly when a cleaning procedure was applied. This study demonstrates that after skin exposure to Pd powders a small permeation of the metal happen both through intact and damaged skin and that an early decontamination with a common cleanser can significantly decrease the final amount of metal available forsystemic uptake. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Opto-ultrasound imaging in vivo in deep tissue

    International Nuclear Information System (INIS)

    Si, Ke; YanXu; Zheng, Yao; Zhu, Xinpei; Gong, Wei

    2016-01-01

    It is of keen importance of deep tissue imaging with high resolution in vivo. Here we present an opto-ultrasound imaging method which utilizes an ultrasound to confine the laser pulse in a very tiny spot as a guide star. The results show that the imaging depth is 2mm with a resolution of 10um. Meanwhile, the excitation power we used is less than 2mW, which indicates that our methods can be applied in vivo without optical toxicity and optical bleaching due to the excitation power. (paper)

  6. Measurement of Skin Permeation/Penetration of Nanoparticles for Their Safety Evaluation

    OpenAIRE

    木村, 恵理子; 河野, 雄一郎; 藤堂, 浩明; 五十嵐, 良明; 杉林, 堅次

    2012-01-01

    The aim of the present study was to quantitatively evaluate the skin permeation/penetration of nanomaterials and to consider their penetration pathway through skin. Firstly, penetration/permeation of a model fluorescent nanoparticle, Fluoresbrite?, was determined through intact rat skin and several damaged skins. Fluoresbrite? permeated through only needle-punctured skin. The permeation profiles of soluble high molecular compounds, fluorescein isothiocyanate-dextrans (FITC-dextrans, FDs), wit...

  7. Opto-mechanical subsystem with temperature compensation through isothemal design

    Science.gov (United States)

    Goodwin, F. E. (Inventor)

    1977-01-01

    An opto-mechanical subsystem for supporting a laser structure which minimizes changes in the alignment of the laser optics in response to temperature variations is described. Both optical and mechanical structural components of the system are formed of the same material, preferably beryllium, which is selected for high mechanical strength and good thermal conducting qualities. All mechanical and optical components are mounted and assembled to provide thorough thermal coupling throughout the subsystem to prevent the development of temperature gradients.

  8. Adaptive integral backstepping sliding mode control for opto-electronic tracking system based on modified LuGre friction model

    Science.gov (United States)

    Yue, Fengfa; Li, Xingfei; Chen, Cheng; Tan, Wenbin

    2017-12-01

    In order to improve the control accuracy and stability of opto-electronic tracking system fixed on reef or airport under friction and external disturbance conditions, adaptive integral backstepping sliding mode control approach with friction compensation is developed to achieve accurate and stable tracking for fast moving target. The nonlinear observer and slide mode controller based on modified LuGre model with friction compensation can effectively reduce the influence of nonlinear friction and disturbance of this servo system. The stability of the closed-loop system is guaranteed by Lyapunov theory. The steady-state error of the system is eliminated by integral action. The adaptive integral backstepping sliding mode controller and its performance are validated by a nonlinear modified LuGre dynamic model of the opto-electronic tracking system in simulation and practical experiments. The experiment results demonstrate that the proposed controller can effectively realise the accuracy and stability control of opto-electronic tracking system.

  9. Present opto-mechanical design status of NFIRAOS

    Science.gov (United States)

    Byrnes, Peter W. G.; Atwood, Jenny; Boucher, Marc-André; Fitzsimmons, Joeleff; Hill, Alexis; Herriot, Glen; Spanò, Paolo; Szeto, Kei; Wevers, Ivan

    2014-07-01

    This paper describes the current opto-mechanical design of NFIRAOS (Narrow Field InfraRed Adaptive Optics System) for the Thirty Meter Telescope (TMT). The preliminary design update review for NFIRAOS was successfully held in December 2011, and incremental design progress has since occurred on several fronts. The majority of NFIRAOS is housed within an insulated and cooled enclosure, and operates at -30 C to reduce background emissivity. The cold optomechanics are attached to a space-frame structure, kinematically supported by bipods that penetrate the insulated enclosure. The bipods are attached to an exo-structure at ambient temperature, which also supports up to three client science instruments and a science calibration unit.

  10. Mineralogical and chemical-physical effects of hydrocarbon permeation in composite liners and cut-off walls. Final report; Mineralogische und chemisch-physikalische Auswirkungen der Permeation von Kohlenwasserstoffen in Kombinationsdichtungen und -dichtwaenden. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kalbe, U; Berger, W; Mueller, W; Brune, M; Eckardt, J; Tatzky-Gerth, R; Ache, W; Goebbels, J [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Breu, J; Kerzdoerfer, H [Regensburg Univ. (Germany). Inst. fuer Anorganische Chemie

    2000-05-31

    Composite liner systems (HDPE geomembrane and compacted mineral liner) are used in Germany in landfills and for the lining of contaminated sites according to the technical regulations. It is expected that these lining systems provide a highly efficient and reliable technical barrier for the long-term groundwater protection. To support these expectations and assess the performance of the liner system even under extreme conditions, various composite liner systems were exposed to a mixture of 9 liquid hydrocarbons and their permeation behaviour was studied in permeation cells over 12 years. The cells were now dismantled and changes in the liner materials were carefully measured and controlled. The following issues were pursued in the research project: - effect of long-term hydrocarbon permeation and immersion on the properties of the geomembrane, - determination of the vertical distribution of organic contaminants in the mineral liner, - changes in the mineralogical, micromorphological and soil mechanical properties of the mineral liner brought about by the contaminant mixture, - investigation of the influence of microbial activity on the mineral layer, - modelling of the pollutant transport in the composite liner system. Neither geomembrane nor most of the tested mineral liners exhibited significant changes. Hydrocarbon permeation was proved to have been substantially suppressed by the composite liner. (orig.) [German] Zur Sicherung von Deponien und Altlasten mit dem Ziel eines langfristig wirksamen Grundwasserschutzes werden seit Mitte der 80er Jahre Kombinationsdichtungen (Verbund aus Kunststoffdichtungsbahn und mineralischer Dichtschichten) eingesetzt. Um deren Langzeitbestaendigkeit auch unter extremen Bedingungen bewerten zu koennen, wurden Permeationsmesszellen, welche die Verhaeltnisse in der Deponie nachstellen und ueber einen Zeitraum von 12 Jahren mit einem Mehrkomponentengemisch konzentrierter organischer Verbindungen beaufschlagt worden waren, zerlegt und

  11. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    Science.gov (United States)

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  12. A Novel Cell-Based Hybrid Acoustic Wave Biosensor with Impedimetric Sensing Capabilities

    Science.gov (United States)

    Liu, Fei; Li, Fang; Nordin, Anis Nurashikin; Voiculescu, Ioana

    2013-01-01

    A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS). The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM) resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate with two gold electrodes on opposite sides. For integration of the QCM with the ECIS technique a semicircular counter electrode was fabricated near the upper electrode on the same side of the quartz crystal. Bovine aortic endothelial live cells (BAECs) were successfully cultured on this hybrid biosensor. Finite element modeling of the bulk acoustic wave resonator using COMSOL simulations was performed. Simultaneous gravimetric and impedimetric measurements performed over a period of time on the same cell culture were conducted to validate the device's sensitivity. The time necessary for the BAEC cells to attach and form a compact monolayer on the biosensor was 35∼45 minutes for 1.5 × 104 cells/cm2 BAECs; 60 minutes for 2.0 × 104 cells/cm2 BAECs; 70 minutes for 3.0 × 104 cells/cm2 BAECs; and 100 minutes for 5.0 × 104 cells/cm2 BAECs. It was demonstrated that this time is the same for both gravimetric and impedimetric measurements. This hybrid biosensor will be employed in the future for water toxicity detection. PMID:23459387

  13. A Novel Cell-Based Hybrid Acoustic Wave Biosensor with Impedimetric Sensing Capabilities

    Directory of Open Access Journals (Sweden)

    Ioana Voiculescu

    2013-03-01

    Full Text Available A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS. The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate with two gold electrodes on opposite sides. For integration of the QCM with the ECIS technique a semicircular counter electrode was fabricated near the upper electrode on the same side of the quartz crystal. Bovine aortic endothelial live cells (BAECs were successfully cultured on this hybrid biosensor. Finite element modeling of the bulk acoustic wave resonator using COMSOL simulations was performed. Simultaneous gravimetric and impedimetric measurements performed over a period of time on the same cell culture were conducted to validate the device’s sensitivity. The time necessary for the BAEC cells to attach and form a compact monolayer on the biosensor was 35~45 minutes for 1.5 × 104 cells/cm2 BAECs; 60 minutes for 2.0 × 104 cells/cm2 BAECs; 70 minutes for 3.0 × 104 cells/cm2 BAECs; and 100 minutes for 5.0 × 104 cells/cm2 BAECs. It was demonstrated that this time is the same for both gravimetric and impedimetric measurements. This hybrid biosensor will be employed in the future for water toxicity detection.

  14. Separation of aromatics by vapor permeation through solvent swollen membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ito, A.; Adachi, K.; Feng, Y. [Niigata University, Niigata (Japan)

    1995-12-20

    A vapor permeation process for aromatics separation from a hydrocarbon mixture was studied by means of the simultaneous permeation of dimethylsulfoxide vapor as an agent for membrane swelling and preferential permeation of aromatics. The separation performance of the process was demonstrated by a polyvinylalcohol membrane for mixed vapors of benzene/cyclohexane, xylene/octane and a model gasoline. The aromatic vapors preferentially permeated from these mixed vapor feeds. The separation factor was over 10. The separation mechanism of the process mainly depends on the relative salability of the vapors between aromatics and other hydrocarbons in dimethylsulfoxide. 14 refs., 9 figs., 1 tab.

  15. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.

    Science.gov (United States)

    Reyt, Ida; Daru, Virginie; Bailliet, Hélène; Moreau, Solène; Valière, Jean-Christophe; Baltean-Carlès, Diana; Weisman, Catherine

    2013-09-01

    Rayleigh streaming in a cylindrical acoustic standing waveguide is studied both experimentally and numerically for nonlinear Reynolds numbers from 1 to 30 [Re(NL)=(U0/c0)(2)(R/δν)(2), with U0 the acoustic velocity amplitude at the velocity antinode, c0 the speed of sound, R the tube radius, and δν the acoustic boundary layer thickness]. Streaming velocity is measured by means of laser Doppler velocimetry in a cylindrical resonator filled with air at atmospheric pressure at high intensity sound levels. The compressible Navier-Stokes equations are solved numerically with high resolution finite difference schemes. The resonator is excited by shaking it along the axis at imposed frequency. Results of measurements and of numerical calculation are compared with results given in the literature and with each other. As expected, the axial streaming velocity measured and calculated agrees reasonably well with the slow streaming theory for small ReNL but deviates significantly from such predictions for fast streaming (ReNL>1). Both experimental and numerical results show that when ReNL is increased, the center of the outer streaming cells are pushed toward the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes.

  16. Permeation barrier for lightweight liquid hydrogen tanks

    Energy Technology Data Exchange (ETDEWEB)

    Schultheiss, D.

    2007-04-16

    For the future usage of hydrogen as an automotive fuel, its on-board storage is crucial. One approach is the storage of liquid hydrogen (LH2, 20 K) in double-walled, vacuum insulated tanks. The introduction of carbon fiber reinforced plastics (CFRP) as structural material enables a high potential of reducing the weight in comparison to the state-of-the-art stainless steel tanks. The generally high permeability of hydrogen through plastics, however, can lead to long-term degradation of the insulating vacuum. The derived objective of this dissertation was to find and apply an adequate permeation barrier (liner) on CFRP. The investigated liners were either foils adhered on CFRP specimens or coatings deposited on CFRP specimens. The coatings were produced by means of thermal spraying, metal plating or physical vapor deposition (PVD). The materials of the liners included Al, Au, Cu, Ni and Sn as well as stainless steel and diamond-like carbon. The produced liners were tested for their permeation behavior, thermal shock resistance and adherence to the CFRP substrate. Additionally, SEM micrographs were used to characterize and qualify the liners. The foils, although being a good permeation barrier, adhered weakly to the substrate. Furthermore, leak-free joining of foil segments is a challenge still to be solved. The metal plating liners exhibited the best properties. For instance, no permeation could be detected through a 50 {mu}m thick Cu coating within the accuracy of the measuring apparatus. This corresponds to a reduction of the permeation gas flow by more than factor 7400 compared to uncoated CFRP. In addition, the metal platings revealed a high adherence and thermal shock resistance. The coatings produced by means of thermal spraying and PVD did not show a sufficient permeation barrier effect. After having investigated the specimens, a 170 liter CFRP tank was fully coated with 50 {mu}m Cu by means of metal plating. (orig.)

  17. Simplified tritium permeation model

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1993-01-01

    In this model I seek to provide a simplified approach to solving permeation problems addressed by TMAP4. I will assume that there are m one-dimensional segments with thickness L i , i = 1, 2, hor-ellipsis, m, joined in series with an implantation flux, J i , implanting at the single depth, δ, in the first segment. From material properties and heat transfer considerations, I calculate temperatures at each face of each segment, and from those temperatures I find local diffusivities and solubilities. I assume recombination coefficients K r1 and K r2 are known at the upstream and downstream faces, respectively, but the model will generate Baskes recombination coefficient values on demand. Here I first develop the steady-state concentration equations and then show how trapping considerations can lead to good estimates of permeation transient times

  18. Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles

    Science.gov (United States)

    Elnaggar, Yosra SR; El-Massik, Magda A; Abdallah, Ossama Y

    2011-01-01

    Although sildenafil citrate (SC) is used extensively for erectile dysfunction, oral delivery of SC encounters many obstacles. Furthermore, the physicochemical characteristics of this amphoteric drug are challenging for delivery system formulation and transdermal permeation. This article concerns the assessment of the potential of nanomedicine for improving SC delivery and transdermal permeation. SC-loaded nanostructured lipid carriers (NLCs) and solid lipid nanoparticles (SLNs) were fabricated using a modified high-shear homogenization technique. Nanoparticle optimization steps included particle size analysis, entrapment efficiency (EE) determination, freeze-drying and reconstitution, differential scanning calorimetry, in vitro release, stability study and high-performance liquid chromatography analysis. Transdermal permeation of the nanocarriers compared with SC suspension across human skin was assessed using a modified Franz diffusion cell assembly. Results revealed that SLNs and NLCs could be optimized in the nanometric range (180 and 100 nm, respectively) with excellent EE (96.7% and 97.5%, respectively). Nanoparticles have significantly enhanced in vitro release and transdermal permeation of SC compared with its suspensions. Furthermore, transdermal permeation of SC exhibited higher initial release from both SLN and NLC formulations followed by controlled release, with promising implications for faster onset and longer drug duration. Nanomedicines prepared exhibited excellent physical stability for the study period. Solid nanoparticles optimized in this study successfully improved SC characteristics, paving the way for an efficient topical Viagra® product. PMID:22238508

  19. Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.

    Science.gov (United States)

    Mao, Feng; Ong, Say Kee; Gaunt, James A

    2015-09-01

    Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes.

  20. Permeation of limonene through disposable nitrile gloves using a dextrous robot hand.

    Science.gov (United States)

    Banaee, Sean; S Que Hee, Shane

    2017-03-28

    The purpose of this study was to investigate the permeation of the low-volatile solvent limonene through different disposable, unlined, unsupported, nitrile exam whole gloves (blue, purple, sterling, and lavender, from Kimberly-Clark). This study utilized a moving and static dextrous robot hand as part of a novel dynamic permeation system that allowed sampling at specific times. Quantitation of limonene in samples was based on capillary gas chromatography-mass spectrometry and the internal standard method (4-bromophenol). The average post-permeation thicknesses (before reconditioning) for all gloves for both the moving and static hand were more than 10% of the pre-permeation ones (P≤0.05), although this was not so on reconditioning. The standardized breakthrough times and steady-state permeation periods were similar for the blue, purple, and sterling gloves. Both methods had similar sensitivity. The lavender glove showed a higher permeation rate (0.490±0.031 μg/cm 2 /min) for the moving robotic hand compared to the non-moving hand (P≤0.05), this being ascribed to a thickness threshold. Permeation parameters for the static and dynamic robot hand models indicate that both methods have similar sensitivity in detecting the analyte during permeation and the blue, purple, and sterling gloves behave similarly during the permeation process whether moving or non-moving.

  1. Permeation of limonene through disposable nitrile gloves using a dextrous robot hand

    Science.gov (United States)

    Banaee, Sean; S Que Hee, Shane

    2017-01-01

    Objectives: The purpose of this study was to investigate the permeation of the low-volatile solvent limonene through different disposable, unlined, unsupported, nitrile exam whole gloves (blue, purple, sterling, and lavender, from Kimberly-Clark). Methods: This study utilized a moving and static dextrous robot hand as part of a novel dynamic permeation system that allowed sampling at specific times. Quantitation of limonene in samples was based on capillary gas chromatography-mass spectrometry and the internal standard method (4-bromophenol). Results: The average post-permeation thicknesses (before reconditioning) for all gloves for both the moving and static hand were more than 10% of the pre-permeation ones (P≤0.05), although this was not so on reconditioning. The standardized breakthrough times and steady-state permeation periods were similar for the blue, purple, and sterling gloves. Both methods had similar sensitivity. The lavender glove showed a higher permeation rate (0.490±0.031 μg/cm2/min) for the moving robotic hand compared to the non-moving hand (P≤0.05), this being ascribed to a thickness threshold. Conclusions: Permeation parameters for the static and dynamic robot hand models indicate that both methods have similar sensitivity in detecting the analyte during permeation and the blue, purple, and sterling gloves behave similarly during the permeation process whether moving or non-moving. PMID:28111415

  2. Deuterium permeation and diffusion in high-purity beryllium

    International Nuclear Information System (INIS)

    Abramov, E.; Riehm, M.P.; Thompson, D.A.; Smeltzer, W.W.

    1990-01-01

    The permeation rate of deuterium through high-purity beryllium membranes was measured using the gas-driven permeation technique. The time-dependent and the steady-state deuterium flux data were analyzed and the effective diffusivities of the samples were determined. Using multilayer permeation theory the effects of surface oxide were eliminated and the diffusion coefficients of the bulk beryllium determined. The diffusion parameters obtained for the extra-grade beryllium samples (99.8%) are D 0 =6.7x10 -9 m 2 /s and E D =28.4 kJ/mol. For the high-grade beryllium samples (99%) the parameters are D 0 =8.0x10 -9 m 2 /s and E D =35.1 kJ/mol. (orig.)

  3. Recent results on implantation and permeation into fusion reactor materials

    Science.gov (United States)

    Anderl, R. A.; Holland, D. F.; Longhurst, G. R.; Struttman, D. A.

    This paper reports on implantation-driven permeation experiments that have been made for primary candidate alloy (PCA) and the ferritic steel HT-9 using deuterium ion beams from an accelerator. The results include measurements of the implantation flux and fluence dependence of the deuterium reemission and permeation for specimens heated to approximately 430(0)C. Simultaneous measurements of the ions sputtered from the specimen front surface with a secondary ion mass spectrometer provided some characterization of the surface condition throughout an experiment. For both materials, the permeation rate was lowered by the implantation process. However, the steady state permeation rate for HT-9 was found to be at least a factor of 5 greater than that for PCA.

  4. Performance and calibration of the CHORUS scintillating fiber tracker and opto-electronics readout system

    International Nuclear Information System (INIS)

    Annis, P.; Aoki, S.; Brunner, J.; De Jong, M.; Fabre, J.P.; Ferreira, R.; Flegel, W.; Frekers, D.; Gregoire, G.; Herin, J.; Kobayashi, M.; Konijn, J.; Lemaitre, V.; Macina, D.; Meijer Drees, R.; Meinhard, H.; Michel, L.; Mommaert, C.; Nakamura, K.; Nakamura, M.; Nakano, T.; Niwa, K.; Niu, E.; Panman, J.; Riccardi, F.; Rondeshagen, D.; Sato, O.; Stefanini, G.; Vander Donckt, M.; Vilain, P.; Wilquet, G.; Winter, K.; Wong, H.T.

    1995-01-01

    An essential component of the CERN WA95/CHORUS experiment is a scintillating fiber tracker system for precise track reconstruction of particles. The tracker design, its opto-electronics readout and calibration system are discussed. Performances of the detector are presented. (orig.)

  5. Oxygen- and hydrogen-permeation measurements on-mixed conducting SrFeCo{sub 0.5}O{sub y} ceramic membrane material

    Energy Technology Data Exchange (ETDEWEB)

    Serra, E.; Casagrande, E.; La Barbera, A. [ENEA UTS MAT, CR Casaccia, 00060 S.M. di Galeria, Roma (Italy); Alvisi, M. [ENEA UTS MAT, CR Brindisi, 72100 Brindisi (Italy); Bezzi, G.; Mingazzini, C. [ENEA UTS MAT, CR Faenza, 48018 Faenza (Italy)

    2008-02-15

    The SrFeCo{sub 0.5}O{sub y} system combines high electronic/ionic conductivity with appreciable oxygen permeability at elevated temperatures. This system has potential use in high-temperature electrochemical applications such as solid oxide fuel cells, batteries, sensors, and oxygen separation membranes. Dense ceramic membranes of SrFeCo{sub 0.5}O{sub y} are prepared by pressing a ceramic powder prepared by using a sol-gel combustion technique. Oxygen and hydrogen permeation at high temperature on this material are studied. Measurements are conducted using a time-dependent permeation method at the temperature in the range of 1073-1273 K with oxygen- and hydrogen-driving pressures in the range (3 x 10{sup 2})-(1 x 10{sup 5}) Pa (300-1000 mbar). The maximum oxygen-permeated flux at 1273 K is 6.5 x 10{sup -3} mol m{sup -2} s{sup -1}. The activation energies for the O{sub 2}-permeation fluxes and diffusivities are 240 and 194 kJ/mol, respectively. Due to the high fragility, the high temperature for the measurements and the high oxygen permeation through such material, a special membrane holder, and compression sealing system have been designed and realized for the permeation apparatus. (author)

  6. Towards a unified model of passive drug permeation I: origins of the unstirred water layer with applications to ionic permeation.

    Science.gov (United States)

    Ghosh, Avijit; Scott, Dennis O; Maurer, Tristan S

    2014-02-14

    In this work, we provide a unified theoretical framework describing how drug molecules can permeate across membranes in neutral and ionized forms for unstirred in vitro systems. The analysis provides a self-consistent basis for the origin of the unstirred water layer (UWL) within the Nernst-Planck framework in the fully unstirred limit and further provides an accounting mechanism based simply on the bulk aqueous solvent diffusion constant of the drug molecule. Our framework makes no new assumptions about the underlying physics of molecular permeation. We hold simply that Nernst-Planck is a reasonable approximation at low concentrations and all physical systems must conserve mass. The applicability of the derived framework has been examined both with respect to the effect of stirring and externally applied voltages to measured permeability. The analysis contains data for 9 compounds extracted from the literature representing a range of permeabilities and aqueous diffusion coefficients. Applicability with respect to ionized permeation is examined using literature data for the permanently charged cation, crystal violet, providing a basis for the underlying mechanism for ionized drug permeation for this molecule as being due to mobile counter-current flow. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Effect of emulsification on the skin permeation and UV protection of catechin.

    Science.gov (United States)

    Yoshino, Sachie; Mitoma, Tomoaki; Tsuruta, Keiko; Todo, Hiroaki; Sugibayashi, Kenji

    2014-06-01

    An anti-aging effect may be obtained by skin application of tea catechins (Camellia sinensis) since they have high ultraviolet (UV)-protection activity. In this study, the skin permeation of catechin (C), epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECg) and epigallocatechin gallate (EGCg) was determined and compared, and the effect of emulsification on the skin permeation of C was measured. The UV-protective effect of C was also determined. The in vitro skin permeability of each catechin derivative was determined using side-by-side diffusion of cells. The UV-protective effect of C was determined by applying different concentrations of C to the solution or emulsion on a three-dimensional cultured human skin model or normal human epidermal keratinocytes with UV-irradiation. ECg and EGCg with gallate groups showed lower skin permeability than C, EC and EGC without gallate groups, suggesting that the skin permeability of catechin derivatives may be dependent on the existence of a gallate group. Interestingly, the skin permeation of C was increased by an o/w emulsification. In addition, the C emulsion showed a significantly higher UV-protective effect by C than that with its aqueous solution. These results suggest that the o/w emulsion of catechin derivatives is probably useful as a cosmetic formulation with anti-aging efficacy.

  8. Sub-micron opto-chemical probes for studying living neurons

    Science.gov (United States)

    Hossein-Zadeh, M.; Delgado, J.; Schweizer, F.; Lieberman, R.

    2017-02-01

    We have fabricated sub-micron opto-chemical probes for pH, oxygen and calcium monitoring and demonstrated their application in intracellular and extracellular monitoring of neurons (cortical neuronal cultures and acute hippocampal slices). Using these probes, we have measured extracellular pH in the stratum radiatum of the CA1 region of mouse hippocampus upon stimulation of presynaptic Schaffer collateral axons. Synaptic transmission was monitored using standard electrophysiological techniques. We find that the local pH transiently changes in response to synaptic stimulation. In addition, the geometry of the functionalized region on the probe combined with high sensitivity imaging enables simultaneous monitoring of spatially adjacent but distinct compartments. As proof of concept we impaled cultured neurons with the probe measured calcium and pH inside as well as directly outside of neurons as we changed the pH and calcium concentration in the physiological solution in the perfusion chamber. As such these probes can be used to study the impact of the environment on both cellular and extra-cellular space. Additionally as the chemical properties of the surrounding medium can be controlled and monitored with high precision, these probes enable differential measurement of the target parameter referenced to a stable bath. This approach eliminates the uncertainties associated with non-chemical fluctuations in the fluorescent emission and result in a self-calibrated opto-chemical probe. We have also demonstrated multifunctional probes that are capable of measuring up to three parameters in the extracellular space in brain slices.

  9. Dynamic Blue Light-Inducible T7 RNA Polymerases (Opto-T7RNAPs) for Precise Spatiotemporal Gene Expression Control.

    Science.gov (United States)

    Baumschlager, Armin; Aoki, Stephanie K; Khammash, Mustafa

    2017-11-17

    Light has emerged as a control input for biological systems due to its precise spatiotemporal resolution. The limited toolset for light control in bacteria motivated us to develop a light-inducible transcription system that is independent from cellular regulation through the use of an orthogonal RNA polymerase. Here, we present our engineered blue light-responsive T7 RNA polymerases (Opto-T7RNAPs) that show properties such as low leakiness of gene expression in the dark state, high expression strength when induced with blue light, and an inducible range of more than 300-fold. Following optimization of the system to reduce expression variability, we created a variant that returns to the inactive dark state within minutes once the blue light is turned off. This allows for precise dynamic control of gene expression, which is a key aspect for most applications using optogenetic regulation. The regulators, which only require blue light from ordinary light-emitting diodes for induction, were developed and tested in the bacterium Escherichia coli, which is a crucial cell factory for biotechnology due to its fast and inexpensive cultivation and well understood physiology and genetics. Opto-T7RNAP, with minor alterations, should be extendable to other bacterial species as well as eukaryotes such as mammalian cells and yeast in which the T7 RNA polymerase and the light-inducible Vivid regulator have been shown to be functional. We anticipate that our approach will expand the applicability of using light as an inducer for gene expression independent from cellular regulation and allow for a more reliable dynamic control of synthetic and natural gene networks.

  10. Electrochemical measurement of tritium and hydrogen permeation through iron membranes

    International Nuclear Information System (INIS)

    Hagi, Hideki; Hayashi, Yasunori

    1987-01-01

    Permeation rates of tritium and hydrogen through iron were measured by the electro-chemical method in which an aqueous solution containing 3.7 x 10 12 Bq/m 3 tritium was used as a cathodic electrolyte. Tritium and hydrogen were introduced from one side of a specimen by cathodic polarization with a constant current density, while at the other side of the specimen the permeated tritium and hydrogen were extracted by potentiostatical ionization. Nearly all of the potentiostatic current on the extraction side is produced by the ionization of hydrogen, because the concentration of tritium in the cathodic electrolyte is very small. The amount of permeated hydrogen was obtained by integrating the potentiostatic current, and that of permeated tritium was determined by measuring the radioactivity of the electrolyte sampled from the anodic side. The separation factor for permeation obtained under steady state conditions (the ratio of permeation rates of hydrogen to tritium divided by the ratio of the concentration of hydrogen to tritium in the cathodic electrolyte) is 12 at 288 K. This value is independent of cathodic current density. Diffusion coefficients of tritium (D T ) and hydrogen (D H ) in iron were determined from the tritium and hydrogen permeation by using time lag technique. For annealed iron at 286 K, D T = 9 x 10 -10 m 2 /s and D H = 4 x 10 -9 m 2 /s, and for 9 % cold-worked iron at 284 K, D T = 3 x 10 -10 m 2 /s and D H = 4 x 10 -10 m 2 /s. (author)

  11. Compensation effect in H 2 permeation kinetics of PdAg membranes

    KAUST Repository

    Zeng, Gaofeng

    2012-08-30

    Knowledge about the (inter)dependence of permeation kinetic parameters on the stoichiometry of H 2-selective alloys is still rudimentary, although uncovering the underlying systematic correlations will greatly facilitate current efforts into the design of novel high-performance H 2 separation membranes. Permeation measurements with carefully engineered, 2-7 μm thick supported Pd 100-xAg x membranes reveal that the activation energy and pre-exponential factor of H 2 permeation laws vary systematically with alloy composition, and both kinetic parameters are strongly correlated for x ≤ 50. We show that this permeation kinetic compensation effect corresponds well with similar correlations in the hydrogen solution thermodynamics and diffusion kinetics of PdAg alloys that govern H 2 permeation rates. This effect enables the consistent description of permeation characteristics over wide temperature and alloy stoichiometry ranges, whereas hydrogen solution thermodynamics may play a role, too, as a yet unrecognized source of kinetic compensation in, for example, H 2-involving reactions over metal catalysts or hydrogenation/ dehydrogenation of hydrogen storage materials. © 2012 American Chemical Society.

  12. Hydrogen gas driven permeation through tungsten deposition layer formed by hydrogen plasma sputtering

    International Nuclear Information System (INIS)

    Uehara, Keiichiro; Katayama, Kazunari; Date, Hiroyuki; Fukada, Satoshi

    2015-01-01

    Highlights: • H permeation tests for W layer formed by H plasma sputtering are performed. • H permeation flux through W layer is larger than that through W bulk. • H diffusivity in W layer is smaller than that in W bulk. • The equilibrium H concentration in W layer is larger than that in W bulk. - Abstract: It is important to evaluate the influence of deposition layers formed on plasma facing wall on tritium permeation and tritium retention in the vessel of a fusion reactor from a viewpoint of safety. In this work, tungsten deposition layers having different thickness and porosity were formed on circular nickel plates by hydrogen RF plasma sputtering. Hydrogen permeation experiment was carried out at the temperature range from 250 °C to 500 °C and at hydrogen pressure range from 1013 Pa to 101,300 Pa. The hydrogen permeation flux through the nickel plate with tungsten deposition layer was significantly smaller than that through a bare nickel plate. This indicates that a rate-controlling step in hydrogen permeation was not permeation through the nickel plate but permeation though the deposition layer. The pressure dependence on the permeation flux differed by temperature. Hydrogen permeation flux through tungsten deposition layer is larger than that through tungsten bulk. From analysis of the permeation curves, it was indicated that hydrogen diffusivity in tungsten deposition layer is smaller than that in tungsten bulk and the equilibrium hydrogen concentration in tungsten deposition layer is enormously larger than that in tungsten bulk at same hydrogen pressure.

  13. Deuterium permeation and diffusion in high purity beryllium

    International Nuclear Information System (INIS)

    Abramov, E.

    1990-05-01

    The permeation rate of deuterium through high-purity beryllium membranes was measured using the gas-driven permeation technique. The time-dependent and the steady-state deuterium flux data were analyzed and the effective diffusivities of the samples were determined. A multilayer permeation theory was used in order to eliminate the surface oxide effects and the diffusion coefficients of the bulk beryllium were determined. The diffusion parameters obtained for the extra-grade beryllium samples (99.8%) are D 0 = 6.7 x 10 -9 [m 2 /s] and E D = 28.4 [KJ/mol]; and for the high-grade beryllium samples (99%) the parameters are D 0 = 8.0 x 10 -9 [m 2 /s] and E D = 35.1 [KJ/mol

  14. Hydrogen ion-driven permeation in carbonaceous films

    International Nuclear Information System (INIS)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.

    1989-01-01

    This paper presents the results of investigations into the permeation properties of amorphous carbonaceous, a-C:H, films produced by plasmachemical deposition techniques. Carbonaceous films on iron substrates with thickness ranging from 60 nm to 110 nm were subjected to high fluence implantations with mass analyzed D 3 + ions with energies ranging from 600 eV to 3000 eV and fluxes ranging from 5x10 14 D/cm 2 s to 5x10 15 D/cm 2 s, respectively. Deuterium re-emission upstream, deuterium permeation downstream and secondary ions sputtered from the implantation surface were measured as a function of implantation fluence for specimens at 420 K. The present studies indicate that the a-C:H film permeability is directly related to the time, hence the fluence, required to achieve isotopic replacement and saturation of the deuterium ion beam atoms stopped in the implant region. Once the deuterium saturation level is achieved in the layer, a significant fraction of the implanting ions can result in permeation. For the present experiment, this permeation factor was much higher than that for uncoated iron specimens subjected to similar beam conditions. Carbon sputter yields of 0.008-0.01 C/D were determined in this work for 1000-eV to 400-eV deuterium ions incident on a-C:H films. (orig.)

  15. Hydrogen ion-driven permeation in carbonaceous films

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.

    1989-04-01

    This paper presents the results of investigations into the permeation properties of amorphous carbonaceous, a-C:H, films produced by plasmachemical deposition techniques. Carbonaceous films on iron substrates with thickness ranging from 60 nm to 110 nm were subjected to high fluence implantations with mass analyzed D/sub 3//sup +/ ions with energies ranging from 600 eV to 3000 eV and fluxes ranging from 5x10/sup 14/ D/cm/sup 2/ s to 5x10/sup 15/ D/cm/sup 2/ s, respectively. Deuterium re-emission upstream, deuterium permeation downstream and secondary ions sputtered from the implantation surface were measured as a function of implantation fluence for specimens at 420 K. The present studies indicate that the a-C:H film permeability is directly related to the time, hence the fluence, required to achieve isotopic replacement and saturation of the deuterium ion beam atoms stopped in the implant region. Once the deuterium saturation level is achieved in the layer, a significant fraction of the implanting ions can result in permeation. For the present experiment, this permeation factor was much higher than that for uncoated iron specimens subjected to similar beam conditions. Carbon sputter yields of 0.008-0.01 C/D were determined in this work for 1000-eV to 400-eV deuterium ions incident on a-C:H films. (orig.).

  16. Hydrogen ion-driven permeation in carbonaceous films

    Science.gov (United States)

    Anderl, R. A.; Holland, D. F.; Longhurst, G. R.

    1989-04-01

    This paper presents the results of investigations into the permeation properties of amorphous carbonaceous, a-C: H, films produced by plasmachemical deposition techniques. Carbonaceous films on iron substrates with thickness ranging from 60 nm to 110 nm were subjected to high fluence implantations with mass analyzed D +3 ions with energies ranging from 600 eV to 3000 eV and fluxes ranging from 5 × 10 14D/ cm2 s to 5 × 10 15D/ cm2 s, respectively. Deuterium re-emission upstream, deuterium permeation downstream and secondary ions sputtered from the implantation surface were measured as a function of implantation fluence for specimens at 420 K. The present studies indicate that the a-C : H film permeability is directly related to the time, hence the fluence, required to achieve isotopic replacement and saturation of the deuterium ion beam atoms stopped in the implant region. Once the deuterium saturation level is achieved in the layer, a significant fraction of the implanting ions can result in permeation. For the present experiment, this permeation factor was much higher than that for uncoated iron specimens subjected to similar beam conditions. Carbon sputter yields of 0.008-0.01 C/D were determined in this work for 1000-eV to 400-eV deuterium ions incident on a-C : H films.

  17. Phonon number measurements using single photon opto-mechanics

    International Nuclear Information System (INIS)

    Basiri-Esfahani, S; Akram, U; Milburn, G J

    2012-01-01

    We describe a system composed of two coupled optical cavity modes with a coupling modulated by a bulk mechanical resonator. In addition, one of the cavity modes is irreversibly coupled to a single photon source. Our scheme is an opto-mechanical realization of the Jaynes–Cummings model where the qubit is a dual rail optical qubit while the bosonic degree of freedom is a matter degree of freedom realized as the bulk mechanical excitation. We show the possibility of engineering phonon number states of the mechanical oscillator in such a system by computing the conditional state of the mechanics after successive photon counting measurements. (paper)

  18. Permeation of hair dye ingredients, p-phenylenediamine and aminophenol isomers, through protective gloves.

    Science.gov (United States)

    Lee, Hsiao-Shu; Lin, Yu-Wen

    2009-04-01

    Skin irritation and contact allergies are skin disorders common to hairdressers. The predominant oxidative hair dye components, such as p-phenylenediamine (PPD) and aminophenol isomers, can cause contact dermatitis. Use of protective gloves can prevent dermal contact with skin irritants. This study investigates the permeation behaviors of p-aminophenol (PAP), m-aminophenol (MAP), o-aminophenol (OAP) and PPD in single and mixed challenge solutions with disposable natural rubber latex (NRL) gloves, disposable polyvinylchloride (PVC) gloves and neoprene (NP) gloves. The challenge solutions were 4% PPD (w/v), 3% OAP (w/v), 2% PAP (w/v) and 2% MAP (w/v) in ethanol or 12% hydrogen peroxide solutions. The cocktail solutions of the four chemicals were also tested. An American Society for Testing and Materials type permeation cell, ethanol liquid collection and gas chromatography-flame ionization detection of samples taken from the collection medium every 10 min facilitated determination of breakthrough times (BTs), cumulative permeated masses and steady-state permeation rates (SSPRs). Experiments were 4 h long for the NRL and PVC gloves and 8 h for NP gloves. No chemicals tested broke through the NP gloves when exposed for 8 h. In the ethanol solution, PPD and OAP started breaking through the PVC gloves at 40 min. The SSPRs of PVC gloves were higher than those for NRL gloves in all challenge conditions for both single chemicals and mixtures. No tested chemicals in hydrogen peroxide solutions permeated the gloves during the 4-h tests. The chemical composition of the challenge solution was a main effecter of BTs and SSPRs for the NRL glove. For disposable PVC gloves, the main factors of BTs were molecular size [molar volume (MV)] and polarity (logK(ow)), and the primary factors of SSPRs were concentration, MV and logK(ow). In conclusion, disposable NRL gloves and disposable PVC gloves should not be used repeatedly for handling the hair dye products. Hydrogen peroxide did not

  19. Penetration of radionuclides across the skin. Rat age dependent promethium permeation through skin in vitro

    International Nuclear Information System (INIS)

    Kassai, Z.; Kassai, A.; Bauerova, K.; Koprda, V.; Harangozo, M.; Bendova, P.; Bujnova, A.

    2003-01-01

    The composition and the permeation properties of the skin are dependent on age. In the animal models for permation studies, age affects the mechanical as well as the permeation properties significantly. The time dependence of permeation of 147 Pm 3+ from aqueous solution was established by the animal skin model and the age dependence of promethium permeation through the skin was examined. The aim was to find the optimum rat skin age model for radionuclide permeation studies and to assess the relative importance of the main permeation pathways: transepidermal and transfollicular permeation. The skin from 5-day-old rats (5DR) was found to represent the optimum animal model to study transepidermal permeation of ions. The skin from 9-day-old rats (9DR) was selected to study transfollicular permeation of ions. Comparison of the permeated amounts of promethium through the skin without hairs (3 DR to 6 DR) and with hairs (7DR to 12DR) showed that the additional permation mode via follicles significantly contributed to the permeation rate and extent. (author)

  20. S-protected thiolated chitosan for oral delivery of hydrophilic macromolecules: evaluation of permeation enhancing and efflux pump inhibitory properties.

    Science.gov (United States)

    Dünnhaupt, Sarah; Barthelmes, Jan; Rahmat, Deni; Leithner, Katharina; Thurner, Clemens C; Friedl, Heike; Bernkop-Schnürch, Andreas

    2012-05-07

    The objective of this study was the investigation of permeation enhancing and P-glycoprotein (P-gp) inhibition effects of a novel thiolated chitosan, the so-named S-protected thiolated chitosan. Mediated by a carbodiimide, increasing amounts of thioglycolic acid (TGA) were covalently bound to chitosan (CS) in the first step of modification. In the second step, these thiol groups of thiolated chitosan were protected by disulfide bond formation with the thiolated aromatic residue 6-mercaptonicotinamide (6-MNA). Mucoadhesive properties of all conjugates were evaluated in vitro on porcine intestinal mucosa based on tensile strength investigations. Permeation enhancing effects were evaluated ex vivo using rat intestinal mucosa and in vitro via Caco-2 cells using the hydrophilic macromolecule FD(4) as the model drug. Caco-2 cells were further used to show P-gp inhibition effects by using Rho-123 as P-gp substrate. Apparent permeability coefficients (P(app)) were calculated and compared to values obtained from each buffer control. Three different thiolated chitosans were generated in the first step of modification, which displayed increasing amounts of covalently attached free thiol groups on the polymer backbone. In the second modification step, more than 50% of these free thiol groups were covalently linked with 6-MNA. Within 3 h of permeation studies on excised rat intestine, P(app) values of all S-protected chitosans were at least 1.3-fold higher compared to those of corresponding thiomers and more than twice as high as that of unmodified chitosan. Additional permeation studies on Caco-2 cells confirmed these results. Because of the chemical modification and higher amount of reactive thiol groups, all S-protected thiolated chitosans exhibit at least 1.4-fold pronounced P-gp inhibition effects in contrast to their corresponding thiomers. These features approve S-protected thiolated chitosan as a promising excipient for various drug delivery systems providing improved

  1. Cationic Au Nanoparticle Binding with Plasma Membrane-like Lipid Bilayers: Potential Mechanism for Spontaneous Permeation to Cells Revealed by Atomistic Simulations

    DEFF Research Database (Denmark)

    Heikkila, E.; Martinez-Seara, H.; Gurtovenko, A. A.

    2014-01-01

    Despite being chemically inert as a bulk material, nanoscale gold can pose harmful side effects to living organisms. In particular, cationic Au nanoparticles (AuNP+) of 2 nm diameter or less permeate readily through plasma membranes and induce cell death. We report atomistic simulations of cationic...... to be governed by cooperative effects where AuNP+, counterions, water, and the two membrane leaflets all contribute. On the extracellular side, we find that the nanoparticle has to cross a free energy barrier of about 5 k(B)T prior forming a stable contact with the membrane. This results in a rearrangement...

  2. Guided wave opto-acoustic device

    Science.gov (United States)

    Jarecki, Jr., Robert L.; Rakich, Peter Thomas; Camacho, Ryan; Shin, Heedeuk; Cox, Jonathan Albert; Qiu, Wenjun; Wang, Zheng

    2016-02-23

    The various technologies presented herein relate to various hybrid phononic-photonic waveguide structures that can exhibit nonlinear behavior associated with traveling-wave forward stimulated Brillouin scattering (forward-SBS). The various structures can simultaneously guide photons and phonons in a suspended membrane. By utilizing a suspended membrane, a substrate pathway can be eliminated for loss of phonons that suppresses SBS in conventional silicon-on-insulator (SOI) waveguides. Consequently, forward-SBS nonlinear susceptibilities are achievable at about 3000 times greater than achievable with a conventional waveguide system. Owing to the strong phonon-photon coupling achievable with the various embodiments, potential application for the various embodiments presented herein cover a range of radiofrequency (RF) and photonic signal processing applications. Further, the various embodiments presented herein are applicable to applications operating over a wide bandwidth, e.g. 100 MHz to 50 GHz or more.

  3. Current Design of the Flange Type Hydrogen Permeation Sensor in Liquid Breeder

    International Nuclear Information System (INIS)

    Lee, E. H.; Jin, H. G.; Yoon, J. S.; Kim, S. K.; Lee, D. W.; Lee, H. G.

    2015-01-01

    In 2004, A. Ciampichetti et al. proposed a hollow capsule shape permeation sensor and they theoretically and experimentally evaluated the performance of the sensor made of Nb membrane at test condition of 500 .deg. C. However, the evaluation result showed the measured hydrogen permeation flux in the sensor much lower than the predicted one and they concluded that, the result is due to the formation of an oxide layer on the sensor membrane surface. Three years later, A. Ciampichetti et al. observed that a hollow capsule shape permeation sensor has too long response time to measure hydrogen concentration in liquid breeder. However, they suggested optimizing the sensor geometry with the reduction of the ratio 'total sensor volume/permeation surface' to overcome the low hydrogen permeating flux. For development of the liquid breeding technologies in nuclear fusion, the permeation sensor to measure tritium concentration in liquid metal breeder has been developed. Lee et al. proposed a flange type permeation sensor to dramatically reduce the ratio sensor 'inside volume/permeation surface' and to remove membrane welding during sensor manufacture process. However, the flange type sensor has problem with sealing. In present study, the modified flange sensor design with a metallic C-ring spring gasket is introduced. The modified sensor will be verified and evaluated under high temperature conditions by end of 2015

  4. Current Design of the Flange Type Hydrogen Permeation Sensor in Liquid Breeder

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. H.; Jin, H. G.; Yoon, J. S.; Kim, S. K.; Lee, D. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, H. G. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In 2004, A. Ciampichetti et al. proposed a hollow capsule shape permeation sensor and they theoretically and experimentally evaluated the performance of the sensor made of Nb membrane at test condition of 500 .deg. C. However, the evaluation result showed the measured hydrogen permeation flux in the sensor much lower than the predicted one and they concluded that, the result is due to the formation of an oxide layer on the sensor membrane surface. Three years later, A. Ciampichetti et al. observed that a hollow capsule shape permeation sensor has too long response time to measure hydrogen concentration in liquid breeder. However, they suggested optimizing the sensor geometry with the reduction of the ratio 'total sensor volume/permeation surface' to overcome the low hydrogen permeating flux. For development of the liquid breeding technologies in nuclear fusion, the permeation sensor to measure tritium concentration in liquid metal breeder has been developed. Lee et al. proposed a flange type permeation sensor to dramatically reduce the ratio sensor 'inside volume/permeation surface' and to remove membrane welding during sensor manufacture process. However, the flange type sensor has problem with sealing. In present study, the modified flange sensor design with a metallic C-ring spring gasket is introduced. The modified sensor will be verified and evaluated under high temperature conditions by end of 2015.

  5. An Alignment Method for the Integration of Underwater 3D Data Captured by a Stereovision System and an Acoustic Camera

    Directory of Open Access Journals (Sweden)

    Antonio Lagudi

    2016-04-01

    Full Text Available The integration of underwater 3D data captured by acoustic and optical systems is a promising technique in various applications such as mapping or vehicle navigation. It allows for compensating the drawbacks of the low resolution of acoustic sensors and the limitations of optical sensors in bad visibility conditions. Aligning these data is a challenging problem, as it is hard to make a point-to-point correspondence. This paper presents a multi-sensor registration for the automatic integration of 3D data acquired from a stereovision system and a 3D acoustic camera in close-range acquisition. An appropriate rig has been used in the laboratory tests to determine the relative position between the two sensor frames. The experimental results show that our alignment approach, based on the acquisition of a rig in several poses, can be adopted to estimate the rigid transformation between the two heterogeneous sensors. A first estimation of the unknown geometric transformation is obtained by a registration of the two 3D point clouds, but it ends up to be strongly affected by noise and data dispersion. A robust and optimal estimation is obtained by a statistical processing of the transformations computed for each pose. The effectiveness of the method has been demonstrated in this first experimentation of the proposed 3D opto-acoustic camera.

  6. Evaluation of γ-cyclodextrin effect on permeation of lipophilic drugs: application of cellophane/fused octanol membrane.

    Science.gov (United States)

    Muankaew, Chutimon; Jansook, Phatsawee; Loftsson, Thorsteinn

    2017-06-01

    According to the Biopharmaceutics Classification System, oral bioavailability of drugs is determined by their aqueous solubility and the ability of the dissolved drug molecules to permeate lipophilic biological membranes. Similarly topical bioavailability of ophthalmic drugs is determined by their solubility in the aqueous tear fluid and their ability to permeate the lipophilic cornea. Enabling pharmaceutical excipients such as cyclodextrins can have profound effect on the drug bioavailability. However, to fully appreciate such enabling excipients, the relationship between their effects and the physicochemical properties of the permeating drug needs to be known. In this study, the permeation enhancing effect of γ-cyclodextrin (γCD) on saturated drug solutions containing hydrocortisone (HC), irbesartan (IBS), or telmisartan (TEL) was evaluated using cellophane and fused cellulose-octanol membranes in a conventional Franz diffusion cell system. The flux (J), the flux ratio (J R ) and the apparent permeability coefficients (P app ) demonstrate that γCD increases drug permeability. However, its efficacy depends on the drug properties. Addition of γCD increased P app of HC (unionized) and IBS (partially ionized) through the dual membrane but decreased the P app of TEL (fully ionized) that displays low complexation efficacy. The dual cellophane-octanol membrane system was simple to use and gave reproducible results.

  7. Comparison on implantation-driven permeation characteristics of fusion reactor structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A.; Struttmann, D.A. (Idaho National Engineering Lab., Idaho Falls)

    Implantation-driven permeation experiments have been conducted on samples of the ferritic steel HT-9, the austenitic Primary Candidate Alloy (PCA) and the vanadium alloy V-15Cr-5Ti using D{sub 3}{sup +} ions under conditions that simulate charge-exchange neutral loading on a fusion reactor first wall. The steels all exhibited an initially intense permeation spike followed by an exponential decrease to low steady-state values. That spike was not evident in the V-15Cr-5Ti experiments. Steady-state permeation was highest in the vanadium alloy and lowest in the austenitic steel. Though permeation rates in the HT-9 were lower than those in V-15Cr-5Ti, permeation transients were much faster in HT-9 than in other materials tested. Sputtering of the steel surface resulted in enhanced reemission, whereas in the vanadium tests, recombination and diffusivity both appeared to diminish as the deuterium concentration rose. We conclude that for conditions comparable to those of these experiments, tritium retention and permeation loss in first wall structures made of steels will be less than in structures made of V-15Cr-5Ti.

  8. Development of an opto-fluidic micro-system dedicated to chemical analysis in a nuclear environment

    Energy Technology Data Exchange (ETDEWEB)

    Geoffray, F.; Canto, F.; Couston, L. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Processes Department, SERA/LAMM, F-30207 Bagnols-sur-Ceze (France); Allenet, T.; Bucci, D.; Broquin, J.E. [IMEP-LaHC, Universite de Grenoble Alpes, UMR 5130 CNRS, Minatec-Grenoble-INP, CS 50257, 38016 Grenoble (France); Jardinier, E. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Processes Department, SERA/LAMM, F-30207 Bagnols-sur-Ceze (France); IMEP-LaHC, Universite de Grenoble Alpes, UMR 5130 CNRS, Minatec-Grenoble-INP, CS 50257, 38016 Grenoble (France)

    2016-07-01

    Micromachining techniques enable the fabrication of innovative lab-on-a-chip. Following the trend in chemical and biological analysis, the use of microsystems also appears compelling in the nuclear industry. The volume reduction of radioactive solutions is especially attractive in order to reduce the workers radiation exposition in the context of off-line analysis in spent nuclear fuel reprocessing plants. We hence present the development of an opto-fluidic sensor combining micro-fluidic channels for fluid transportation and integrated optics for detection. With the aim of achieving automated microanalysis with reduced response time the sensor is made compatible with a commercial micro-fluidic holder. Therefore the chip is connected to computer controlled pumps and electro-valves thanks to capillary tubing. In this paper we emphasis on the fluid handling capacities of the opto-fluidic sensor. (authors)

  9. The formation of tritium permeation barriers by CVD

    International Nuclear Information System (INIS)

    Forcey, K.S.; Perujo, A.; Reiter, F.; Lolli-Ceroni, P.L.

    1993-01-01

    The effectiveness as permeation barriers of the following CVD coatings have been investigated: TiC (1 to 2 μm in thickness); a bi-layer of TiN on TiC (3 μm total thickness) and CVD Al 2 O 3 on a TiN/TiC bi-layer. The substrate materials were TZM (a Mo alloy) and 316L stainless steel in the form of discs of diameter 48 mm and thickness 0.1 or 1 mm. Permeation measurements were performed in the temperature range 515-742 K using deuterium at pressures in the range 1-50 kPa. CVD layers were shown to form reasonably effective permeation barriers. At a temperature of 673 K TiC is around 6000 times less permeable to deuterium than 316L stainless steel. (orig.)

  10. Ion-driven deuterium permeation through tungsten at high temperatures

    Science.gov (United States)

    Gasparyan, Yu. M.; Golubeva, A. V.; Mayer, M.; Pisarev, A. A.; Roth, J.

    2009-06-01

    The ion-driven permeation (IDP) through 50 μm thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D + ion beam with a flux of 10 17-10 18 D/m 2s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 ± 0.15) eV were found to limit the permeation lag time in our experimental conditions.

  11. Ion-driven deuterium permeation through tungsten at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Gasparyan, Yu.M., E-mail: yury.gasparyan@ipp.mpg.d [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmanstrasse 2, D-85748 Garching (Germany); Moscow Engineering and Physics Institute, Kashirskoe sh. 31, Moscow 115409 (Russian Federation); Golubeva, A.V. [RRC ' Kurchatov Institute' , Ac. Kurchatov sq., 1/1, Moscow RU-123182 (Russian Federation); Mayer, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmanstrasse 2, D-85748 Garching (Germany); Pisarev, A.A. [Moscow Engineering and Physics Institute, Kashirskoe sh. 31, Moscow 115409 (Russian Federation); Roth, J. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmanstrasse 2, D-85748 Garching (Germany)

    2009-06-15

    The ion-driven permeation (IDP) through 50 mum thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D{sup +} ion beam with a flux of 10{sup 17}-10{sup 18} D/m{sup 2}s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 +- 0.15) eV were found to limit the permeation lag time in our experimental conditions.

  12. Ion-driven deuterium permeation through tungsten at high temperatures

    International Nuclear Information System (INIS)

    Gasparyan, Yu.M.; Golubeva, A.V.; Mayer, M.; Pisarev, A.A.; Roth, J.

    2009-01-01

    The ion-driven permeation (IDP) through 50 μm thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D + ion beam with a flux of 10 17 -10 18 D/m 2 s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 ± 0.15) eV were found to limit the permeation lag time in our experimental conditions.

  13. In-pile Tritium Permeation through F82H Steel with and without a Ceramic Coating of Cr2O3-SiO2 Including CrPO4

    International Nuclear Information System (INIS)

    Nakamichi, M.; Hayashi, K.; Kulsartov, T.V.; Afanasyev, S.E.; Shestakov, V.P.; Chikhray, Y.V.; Kenzhin, E.A.; Kolbaenkov, A.N.

    2006-01-01

    Development of coating on blanket structural materials with significant reduction capability of tritium permeation is highly required in order to realize a reasonable design of a tritium recovery and processing system of demonstration (DEMO) fusion reactors. An effective coating has been developed in Japan Atomic Energy Agency (JAEA) using a ceramic material of Cr 2 O 3 -SiO 2 including CrPO 4 . In previous out-of-pile deuterium permeation experiments at 600 o C [T.V. Kulsartov et al., Fusion Eng. Des. 81 (2006) 701], a significant permeation reduction factor (PFR) of about 300 was obtained for the coating on the inner-side surface of tubular diffusion cells made by ferritic steel (F82H). In the present study, in-pile experiments on tritium permeation were conducted for F82H steel with and without the same coating, using a testing reactor IGV-1M in Kazakhstan. The tritium source used was liquid lithium-lead eutectics, Pb17Li, which was poured into a space around a tubular diffusion cell (specimen) of F82H steel with or without the coating on the inner side the cell. The irradiation time was about 4 hours, which corresponds to a fast-neuron fluence of about 2x10 21 m -2 (E > 1.1 MeV). The permeation reduction factor (PRF) was obtained by comparison of kinetics curves of tritium permeation through the diffusion cell of F82H steel with and without the coating. The PRFs at 600 and 500 o C were 292 and 30, respectively. These values are close to corresponding PRF values of 307 and 45, which had been obtained at 600 and 500 o C, respectively, in the previous out-of-pile experiments [T.V. Kulsartov et al., Fusion Eng. Des. 81 (2006) 701]. (author)

  14. The opto-mechanical design for GMOX: a next-generation instrument concept for Gemini

    Science.gov (United States)

    Smee, Stephen A.; Barkhouser, Robert; Robberto, Massimo; Ninkov, Zoran; Gennaro, Mario; Heckman, Timothy M.

    2016-08-01

    We present the opto-mechanical design of GMOX, the Gemini Multi-Object eXtra-wide-band spectrograph, a potential next-generation (Gen-4 #3) facility-class instrument for Gemini. GMOX is a wide-band, multi-object, spectrograph with spectral coverage spanning 350 nm to 2.4 um with a nominal resolving power of R 5000. Through the use of Digital Micromirror Device (DMD) technology, GMOX will be able to acquire spectra from hundreds of sources simultaneously, offering unparalleled flexibility in target selection. Utilizing this technology, GMOX can rapidly adapt individual slits to either seeing-limited or diffraction-limited conditions. The optical design splits the bandpass into three arms, blue, red, and near infrared, with the near-infrared arm being split into three channels covering the Y+J band, H band, and K band. A slit viewing camera in each arm provides imaging capability for target acquisition and fast-feedback for adaptive optics control with either ALTAIR (Gemini North) or GeMS (Gemini South). Mounted at the Cassegrain focus, GMOX is a large (1.3 m x 2.8 m x 2.0 m) complex instrument, with six dichroics, three DMDs (one per arm), five science cameras, and three acquisition cameras. Roughly half of these optics, including one DMD, operate at cryogenic temperature. To maximize stiffness and simplify assembly and alignment, the opto-mechanics are divided into three main sub-assemblies, including a near-infrared cryostat, each having sub-benches to facilitate ease of alignment and testing of the optics. In this paper we present the conceptual opto-mechanical design of GMOX, with an emphasis on the mounting strategy for the optics and the thermal design details related to the near-infrared cryostat.

  15. In vitro skin permeation and decontamination of the organophosphorus pesticide paraoxon under various physical conditions--evidence for a wash-in effect.

    Science.gov (United States)

    Misik, Jan; Pavlikova, Ruzena; Josse, Denis; Cabal, Jiri; Kuca, Kamil

    2012-09-01

    Misuse of various chemicals, such as chemical warfare agents, industrial chemicals or pesticides during warfare or terrorists attacks requires adequate protection. Thus, development and evaluation of novel decontamination dispositives and techniques are needed. In this study, in vitro permeation and decontamination of a potentially hazardous compound paraoxon, an active metabolite of organophosphorus pesticide parathion, was investigated. Skin permeation and decontamination experiments were carried out in modified Franz diffusion cells. Pig skin was used as a human skin model. Commercially produced detergent-based washing solutions FloraFree(™) and ArgosTM were used as decontamination means. The experiments were done under "warm", "cold", "dry" and "wet" skin conditions in order to determine an effect of various physical conditions on skin permeation of paraoxon and on a subsequent decontamination process. There was no significant difference in skin permeation of paraoxon under warm, cold and dry conditions, whereas wet conditions provided significantly higher permeation rates. In the selected conditions, decontamination treatments performed 1 h after a skin exposure did not decrease the agent volume that permeated through the skin. An exception were wet skin conditions with non-significant decontamination efficacy 18 and 28% for the FloraFree(™) and Argos(™) treatment, respectively. In contrast, the skin permeation of paraoxon under warm, cold and dry conditions increased up to 60-290% following decontamination compared to non-decontaminated controls. This has previously been described as a skin wash-in effect.

  16. Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation.

    Science.gov (United States)

    Simon, Alice; Amaro, Maria Inês; Healy, Anne Marie; Cabral, Lucio Mendes; de Sousa, Valeria Pereira

    2016-10-15

    In the present study, in vitro permeation experiments in a Franz diffusion cell were performed using different synthetic polymeric membranes and pig ear skin to evaluate a rivastigmine (RV) transdermal drug delivery system. In vitro-in vivo correlations (IVIVC) were examined to determine the best model membrane. In vitro permeation studies across different synthetic membranes and skin were performed for the Exelon(®) Patch (which contains RV), and the results were compared. Deconvolution of bioavailability data using the Wagner-Nelson method enabled the fraction of RV absorbed to be determined and a point-to-point IVIVC to be established. The synthetic membrane, Strat-M™, showed a RV permeation profile similar to that obtained with pig ear skin (R(2)=0.920). Studies with Strat-M™ resulted in a good and linear IVIVC (R(2)=0.991) when compared with other synthetic membranes that showed R(2) values less than 0.90. The R(2) for pig ear skin was 0.982. Strat-M™ membrane was the only synthetic membrane that adequately simulated skin barrier performance and therefore it can be considered to be a suitable alternative to human or animal skin in evaluating transdermal drug transport, potentially reducing the number of studies requiring human or animal samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Purification Simulation With Vapor Permeation and Distillation-Adsorption In Bioethanol Plant

    Directory of Open Access Journals (Sweden)

    Misri Gozan

    2017-04-01

    Full Text Available High purity of Bioethanol is required in biofuel mixing with gasoline (EXX. In bioethanol production line, the azeotropic property of ethanol-water becomes the barrier for purification process. This study examined two bioethanol separation processes by support of simulation tools, Superpro Designer 9.0 software. Ethanol purity and a low costeconomical process were the major considerations. Purification method of vapor permeation membrane technology was compared with distillation-adsorption method. Data from previous lab experiments and some literatures were used. The results showed that distillation-adsorption method is more economical compared to vapor permeation technology. Payback period of the simulation is 3.9 years and 4.3 years to distillation adsorption and vapor permeation respectively with each IRR value is 20.23% and 17.89%. Initial investment value of vapor permeation is 9.6% higher than distillation method. Significant difference observed in operating costs, since more units involved in vapor permeation require more labors to operate.

  18. Recent developments in skin mimic systems to predict transdermal permeation.

    Science.gov (United States)

    Waters, Laura J

    2015-01-01

    In recent years there has been a drive to create experimental techniques that can facilitate the accurate and precise prediction of transdermal permeation without the use of in vivo studies. This review considers why permeation data is essential, provides a brief summary as to how skin acts as a natural barrier to permeation and discusses why in vivo studies are undesirable. This is followed by an in-depth discussion on the extensive range of alternative methods that have been developed in recent years. All of the major 'skin mimic systems' are considered including: in vitro models using synthetic membranes, mathematical models including quantitative structure-permeability relationships (QSPRs), human skin equivalents and chromatographic based methods. All of these model based systems are ideally trying to achieve the same end-point, namely a reliable in vitro-in vivo correlation, i.e. matching non-in vivo obtained data with that from human clinical trials. It is only by achieving this aim, that any new method of obtaining permeation data can be acknowledged as a potential replacement for animal studies, for the determination of transdermal permeation. In this review, the relevance and potential applicability of the various models systems will also be discussed.

  19. SAMPA: A free software tool for skin and membrane permeation data analysis.

    Science.gov (United States)

    Bezrouk, Aleš; Fiala, Zdeněk; Kotingová, Lenka; Krulichová, Iva Selke; Kopečná, Monika; Vávrová, Kateřina

    2017-10-01

    Skin and membrane permeation experiments comprise an important step in the development of a transdermal or topical formulation or toxicological risk assessment. The standard method for analyzing these data relies on the linear part of a permeation profile. However, it is difficult to objectively determine when the profile becomes linear, or the experiment duration may be insufficient to reach a maximum or steady state. Here, we present a software tool for Skin And Membrane Permeation data Analysis, SAMPA, that is easy to use and overcomes several of these difficulties. The SAMPA method and software have been validated on in vitro and in vivo permeation data on human, pig and rat skin and model stratum corneum lipid membranes using compounds that range from highly lipophilic polycyclic aromatic hydrocarbons to highly hydrophilic antiviral drug, with and without two permeation enhancers. The SAMPA performance was compared with the standard method using a linear part of the permeation profile and a complex mathematical model. SAMPA is a user-friendly, open-source software tool for analyzing the data obtained from skin and membrane permeation experiments. It runs on a Microsoft Windows platform and is freely available as a Supporting file to this article. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Tritium inventory and permeation in the ITER breeding blanket

    International Nuclear Information System (INIS)

    Violante, V.; Tosti, S.; Sibilia, C.; Felli, F.; Casadio, S.; Alvani, C.

    2000-01-01

    A model has allowed us to perform the analysis of the tritium inventory and permeation in the international thermonuclear experimental reactor (ITER) breeding blanket under the hypothesis of steady state conditions. Li 2 ZrO 3 (reference) and Li 2 TiO 3 (alternative) have been studied as breeding materials. The total breeder inventory assessed is 7.64 g for the Li 2 ZrO 3 at reference temperature. The model has also been used for a parametric analysis of the tritium permeation. At reference temperature and purge helium velocity of 0.01 m/s, the HT partial pressure is ranging from 10 to 30 Pa in the breeder and 1.5x10 -3 Pa in the beryllium. At 0.1 m/s of purge helium velocity, the HT partial pressure is reduced of one order by magnitude in the breeder and becomes 5x10 -5 Pa in the beryllium. The tritium permeation into the coolant for the whole blanket is ranging from 100 to 250 mCi per day for purge helium velocity of 0.01 m/s. The analysis of the tritium inventory and permeation for the alternative Li 2 TiO 3 breeding material has been carried out too. The tritium inventory in the breeder is in the range from 6 to 375 g larger than in Li 2 ZrO 3 by about a factor 5; the tritium permeation into coolant is comparable to the Li 2 ZrO 3 one. This analysis provides indications on the influence of the operating parameters on the tritium control in the ITER breeding blanket; particularly the control of the tritium inventory by the temperature and the tritium permeation by the purge gas velocity

  1. Multi-functional quantum router using hybrid opto-electromechanics

    Science.gov (United States)

    Ma, Peng-Cheng; Yan, Lei-Lei; Chen, Gui-Bin; Li, Xiao-Wei; Liu, Shu-Jing; Zhan, You-Bang

    2018-03-01

    Quantum routers engineered with multiple frequency bands play a key role in quantum networks. We propose an experimentally accessible scheme for a multi-functional quantum router, using photon-phonon conversion in a hybrid opto-electromechanical system. Our proposed device functions as a bidirectional, tunable multi-channel quantum router, and demonstrates the possibility to route single optical photons bidirectionally and simultaneously to three different output ports, by adjusting the microwave power. Further, the device also behaves as an interswitching unit for microwave and optical photons, yielding probabilistic routing of microwave (optical) signals to optical (microwave) outports. With respect to potential application, we verify the insignificant influence from vacuum and thermal noises in the performance of the router under cryogenic conditions.

  2. Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry

    NARCIS (Netherlands)

    Gilardi, G.; Beccherelli, R.

    2013-01-01

    We propose and numerically investigate an integrated optics refractometric nano-opto-fluidic sensor based on whispering gallery modes in sapphire microspheres. A measurand fluid is injected in a micromachined reservoir defined in between the microsphere and an optical waveguide. The wavelength shift

  3. A 2D Finite Element Modelling of Tritium Permeation Through Cooling Plates for The HCLL DEMO Blanket Module

    International Nuclear Information System (INIS)

    Gabriel, F.; Escuriol, Y.; Dabbene, F.; Salavy, J.F.; Giancarli, L.; Gastaldi, O.

    2006-01-01

    As the Tritium self sufficiency is one of the major challenges for fusion reactor, breeding blankets represent one of the major technological breakthroughs required from passing from ITER to the next step reactor, usually called DEMO. One of the two blanket concepts developed in the EU is the Helium Cooled Lithium Lead (HCLL) blanket which uses the eutectic Pb-15.7Li metal liquid as both breeder and neutron multiplier. The structures, made of EUROFER, a low activation ferritic martensitic steel, are cooled by pressurized helium at 8 MPa and inlet/outlet temperature 300/500 o C. In this concept, the LiPb is fed from the top of the blanket and distributed in parallel vertical channels among pairs of cells (one cell for the radial movement towards the plasma, the other for the return). The liquid metal fills the in-box volume and is slowly re-circulated (few mm per seconds) to remove the produced tritium. In this paper, a local finite element modelling of the tritium permeation rate through the HCLL breeder unit cooling plates is presented. The tritium concentration in the helium circuit and remaining in the lithium lead circuit are evaluated by solving partial differential equations governing the tritium concentration balance, the thermal field and the lithium lead velocity field for a simplified 2D geometrical representation of the breeder unit. This allows estimating the sensitivity effect of coupling these different equations in order to deduce a relevant but simplified modelling for tritium permeation. This is to compare with tritium inventories studies, were the tritium permeation rate is estimated using simplified analytical modelling which generally leads to over estimate the tritium permeation rate to the coolant and so has strong influence on the coolant purification plant design. The finite element modelling performed shows that the Tritium permeation is considerable lower than the one obtained in previous estimations where nominal values of the governing

  4. Electronic Processes at Organic−Organic Interfaces: Insight from Modeling and Implications for Opto-electronic Devices †

    KAUST Repository

    Beljonne, David; Cornil, Jérôme; Muccioli, Luca; Zannoni, Claudio; Brédas, Jean-Luc; Castet, Frédéric

    2011-01-01

    We report on the recent progress achieved in modeling the electronic processes that take place at interfaces between π-conjugated materials in organic opto-electronic devices. First, we provide a critical overview of the current computational

  5. Enzymatic hydrolysis of lactose of whey permeate

    Directory of Open Access Journals (Sweden)

    Karina Nascimento de Almeida

    2015-09-01

    Full Text Available The whey permeate is the residual of the concentration process of the whey proteins by ultrafiltration method. It contains important nutrients such as lactose, minerals and some proteins and lipids. It is without an ending industrial waste that causes serious damage to the environment. For its full use the lactose must be hydrolyzed to enable its consumption by intolerant people. The enzymatic hydrolysis by lactase (β-galactosidase of Kluyveromyces lactis yeast is a safe method that does not compromise the integrity of other nutrients, enabling further use of the permeate as a raw material. This study aimed to perform tests of enzymatic hydrolysis of lactose in whey permeate formulations in a concentration of 0.2%, 0.7% and 1% at 30, 60 and 90 minutes with pH 6.3 medium and 37 °C. The reactions were monitored by high performance liquid chromatography which showed that the enzyme concentration of 0.7% at time 30 minutes formulations became safe for consumption by lactose intolerant people, according to minimum levels established by law.

  6. Electrochemical measurement of tritium and hydrogen permeation through iron membranes

    International Nuclear Information System (INIS)

    Hagi, Hideki; Hayashi, Yasunori

    1988-01-01

    Permeation rates of tritium and hydrogen through iron were measured by the electrochemical method in which an aqueous solution containing 3.7 x 10 12 Bq/m 3 tritium was used as a cathodic electrolyte. Tritium and hydrogen were introduced from one side of a specimen by cathodic polarization with a constant current density, while at the other side of the specimen the permeated tritium and hydrogen were extracted by potentiostatical ionization. Nearly all of the potentiostatic current of the extraction side stands for the ionization of hydrogen, because the concentration of tritium in the cathodic electrolyte is very small. The amount of permeated hydrogen was obtained by integrating the anodic current, and that of tritium was determined by measuring the radioactivity of the electrolyte sampled from the extraction side. The separation factor for permeation obtained under steady state conditions (the ratio of permeation rates of hydrogen to tritium divided by the ratio of the concentration of hydrogen to tritium in the charging electrolyte) is 12 at 288 K. This value is independent of cathodic current density. Diffusion coefficients of tritium (D T ) and hydrogen (D H ) in iron were determined from the time lag of tritium and hydrogen permeation. For annealed specimens at 286 K, D T = 9 x 10 -10 m 2 /s and D H = 4 x 10 -9 m 2 /s, and for 9% cold-worked specimens at 284 K, D T = 3 x 10 -10 m 2 /s and D H = 4 x 10 -10 m 2 /s. (author)

  7. Re-evaluation of SiC permeation coefficients at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yasushi, E-mail: yama3707@kansai-u.ac.jp [Faculty of Engineering Science, Kansai Univ., Yamate-cho, Suita, Osaka 564-8680 (Japan); Murakami, Yuichiro; Yamaguchi, Hirosato; Yamamoto, Takehiro; Yonetsu, Daigo [Faculty of Engineering Science, Kansai Univ., Yamate-cho, Suita, Osaka 564-8680 (Japan); Noborio, Kazuyuki [Hydrogen Isotope Research Center, Univ. of Toyama, Toyama, Toyama 930-8555 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto Univ., Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • The deuterium permeation coefficients of CVD-SiC at 600–950 °C were evaluated. • The wraparound flow was reduced to less than 1/100th of the permeation flow. • CVD-SiC materials are very effective as hydrogen isotope permeation barriers. - Abstract: Since 2007, our group has studied the deuterium permeation and diffusion coefficients for SiC materials at temperatures above 600 °C as a means of evaluating the tritium inventory and permeation in fusion blankets. During such measurements, control and evaluation of the wraparound flow through the sample holder are important, and so the heated sample holder is enclosed by a glass tube and kept under vacuum during experimental trials. However, detailed studies regarding the required degree of vacuum based on model calculations have shown that the wraparound flow is much larger than expected, and so can affect measurements at high temperatures. We therefore modified the measurement apparatus based on calculations involving reduced pressure in the glass tube, and are now confident that the measurement error is only several percent, even at 950 °C. In this paper, recent experimental results obtained with a chemical vapor deposition (CVD)-SiC sample over the temperature range of 600–950 °C are presented, showing that the permeation coefficient for CVD-SiC is more than three orders of magnitude smaller than that for stainless steel (SS316) at 600 °C, and that at 950 °C, the coefficient for CVD-SiC is almost equal to that for SUS316 at 550 °C.

  8. Ethanol from hydrolyzed whey permeate using Saccharomyces cerevisiae in a membrane recycle bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Mehaia, M A [King Saud Univ., Buriedah (Saudi Arabia). Dairy Technology Lab.; Cheryan, M [Illinois Univ., Urbana, IL (USA). Agricultural Bioprocess Lab.

    1990-02-13

    A diauxic fermentation was observed during batch fermentation of enzyme-hydrolyzed whey permeate to ethanol by Saccharomyces cerevisiae. Glucose was consumed before and much faster than galactose. In the continuous membrane recycle bioreactor (MRB), sugar utilization was a function of dilution rate and concentration of sugars. At a cell concentration of 160 kg/m{sup 3}, optimum productivity was 31 kg/(m{sup 3}.h) at ethanol concentration of 65 kg/m{sup 3}. Low levels of acetate (0.05-0.1 M) reduced cell growth during continuous fermentation, but also reduced galactose utilization. (orig.).

  9. Opto-electrical magnetic-field studies on solar silicon; Optoelektrische Magnetfelduntersuchungen an Solarsilizium

    Energy Technology Data Exchange (ETDEWEB)

    Buchwald, Rajko

    2010-05-21

    In the framework of this thesis opto-electrical studies on polycrystalline (pc) solar cells and solar materials have been performed. For this by magnetic-field topographical measurements the current distributions of the silicon samples were determined. For this the new, highly position-resolving magnetic-field measuring method CAIC has been developed and applied. The arrangement, the measurement principle, and the particularities of the method are explained. The results of the CAIC measurements have been compared with results of optical and electrical characterization methods, like the IR transmission-light microscopy, the LBIC, and the LIT method and evaluated. Special grain boundaries in the pc silicon samples with and without pn junction show photocurrent fluxes to the grain boundaries. On the base of the performed studies and the assumption of the existence of a grain-boundary decoration the current-flow model of an electrically active grain boundary is shown for a sample with pn junction as well as for a sample without pn junction. Furthermore macroscopical SiC and Si{sub 3}N{sub 4} precipitations in pc silicon were studied. By means of CAIC measurements hereby the position and the orientation of the conducting and near-surface precipitations could be determined. A current-flow model for macroscopic precipitations in silicon samples without pn junction is presented. Furthermore cell microcracks, failures in the contact structure and layout differences of the contact structure are uniquely detected by CAIC measurements on solar cells.

  10. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells

    DEFF Research Database (Denmark)

    Yang, Tie; Bragheri, Francesca; Nava, Giovanni

    2016-01-01

    We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental ap...

  11. Alteration of skin hydration and its barrier function by vehicle and permeation enhancers: a study using TGA, FTIR, TEWL and drug permeation as markers.

    Science.gov (United States)

    Shah, D K; Khandavilli, S; Panchagnula, R

    2008-09-01

    Vehicles and permeation enhancers (PEs) used in transdermal drug delivery (TDD) of a drug can affect skin hydration, integrity and permeation of the solute administered. This investigation was designed to study the effect of the most commonly used vehicles and PEs on rat skin hydration, barrier function and permeation of an amphiphilic drug, imipramine hydrochloride (IMH). An array of well-established techniques were used to confirm the findings of the study. Thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy were used to determine changes in skin hydration. Alteration of the stratum corneum (SC) structure was investigated using FTIR studies. To monitor the barrier function alteration, transepidermal water loss (TEWL) measurement and permeation studies were performed. Our findings indicate that with hydration, there was an increase in the bound water content of the skin, and pseudoequilibrium of hydration (a drastic decrease in hydration rate) was achieved at around 12 h. Hydration increased the ratio between amide-I and amide-II peaks in FTIR and reduced the C-H stretching peak area. Both propylene glycol (PG) and ethanol (EtOH) dehydrated skin, with the latter showing a predominant effect. Furthermore, it was confirmed that PG and EtOH decreased the bound water content due to alteration in the protein domains and extraction of SC lipids, respectively. The effect of hydration on the SC was found to be similar to that reported for temperature. Permeation studies revealed that the dehydration caused by vehicles decreased IMH flux, whereas the flux was enhanced by PEs. The role of partition was predominant for the permeation of IMH through dehydrated skin. A synergistic effect was observed for PG and menthol in the enhancement of IMH. Further findings provided strong evidence that PG affects protein domains and EtOH extracts lipids from the bilayer. Both PG and EtOH, with or without PEs, increased TEWL. Initial TEWL was well

  12. Uses and evaluation methods of potential hydrogen permeation barriers for nuclear reactor materials

    International Nuclear Information System (INIS)

    Noga, J.O.; Piercy, G.R.; Bowker, J.T.

    1985-07-01

    This report summarizes results on the use of coatings as hydrogen permeation barriers on nuclear reactor component materials. Two classes of base materials were considered, exothermic hydrogen absorbers and endothermic hydrogen absorbers. The results of the tests indicate that substantial reductions in the amount of hydrogen absorbed by a metal can be achieved through the use of hydrogen permeation barrier coatings. Gold was determined to provide an effective hydrogen permeation barrier on Zr-2-1/2 Nb pressure tube material. Tin was determined to be a suitable hydrogen permeation barrier when applied on AISI 410 stainless steel and iron. Both gas phase and electrochemical permeation techniques were used to determine hydrogen permeabilities through coatings and base materials

  13. Drug Release and Skin Permeation from Lipid Liquid Crystalline Phases

    Science.gov (United States)

    Costa-Balogh, F. O.; Sparr, E.; Sousa, J. J. S.; Pais, A. A. C. C.

    We have studied drug release and skin permeation from several different liquid crystalline lipid formulations that may be used to control the respective release rates. We have studied the release and permeation through human skin of a water-soluble and amphiphilic drug, propranolol hydrochloride, from several formulations prepared with monoolein and phytantriol as permeation enhancers and controlled release excipients. Diolein and cineol were added to selected formulations. We observed that viscosity decreases with drug load, wich is compatible with the occurrence of phase changes. Diolein stabilizes the bicontinuous cubic phases leading to an increase in viscosity and sustained release of the drug. The slowest release was found for the cubic phases with higher viscosity. Studies on skin permeation showed that these latter formulations also presented lower permeability than the less viscous monoolein lamellar phases. Formulations containing cineol originated higher permeability with higher enhancement ratios. Thus, the various formulations are adapted to different circumstances and delivery routes. While a slow release is usually desired for drug sustained delivery, the transdermal route may require a faster release. Lamellar phases, which are less viscous, are more adapted to transdermal applications. Thus, systems involving lamellar phases of monoolein and cineol are good candidates to be used as skin permeation enhancers for propranolol hydrochloride.

  14. Implications of recent implantation-driven permeation experiments for fusion reactor safety

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Struttmann, D.A.

    1986-01-01

    Metal structures exposed to the plasma in tritium-burning fusion reactors will be subject to implantation-driven permeation (IDP) of tritium. Permeation rates for IDP in fusion structural materials are usually high because the tritium atoms enter the material without having to go through the dissociation and solution steps required of tritium-bearing gas molecules. These surface processes, which may be rate limiting in PDP, actually enhance permeation in IDP by inhibiting the return of tritium to the plasma side of the structure. Experiments have been conducted at the Idaho National Engineering Laboratory (INEL) to investigate the nature of IDP by simulating conditions experienced by structures exposed to the plasma. These experiments have shown that surface conditions are important to tritium permeation in materials endothermic to hydrogen solution such as austenitic and ferritic steels. In reactive metals such as vanadium, surface processes appear to totally control the permeation. The purpose of this paper is to review the progress of those experiments and to discuss the implications that the results have regarding the tritium-related safety concerns of fusion reactors

  15. Modeling serotonin uptake in the lung shows endothelial transporters dominate over cleft permeation

    Science.gov (United States)

    Bassingthwaighte, James B.

    2013-01-01

    A four-region (capillary plasma, endothelium, interstitial fluid, cell) multipath model was configured to describe the kinetics of blood-tissue exchange for small solutes in the lung, accounting for regional flow heterogeneity, permeation of cell membranes and through interendothelial clefts, and intracellular reactions. Serotonin uptake data from the Multiple indicator dilution “bolus sweep” experiments of Rickaby and coworkers (Rickaby DA, Linehan JH, Bronikowski TA, Dawson CA. J Appl Physiol 51: 405–414, 1981; Rickaby DA, Dawson CA, and Linehan JH. J Appl Physiol 56: 1170–1177, 1984) and Malcorps et al. (Malcorps CM, Dawson CA, Linehan JH, Bronikowski TA, Rickaby DA, Herman AG, Will JA. J Appl Physiol 57: 720–730, 1984) were analyzed to distinguish facilitated transport into the endothelial cells (EC) and the inhibition of tracer transport by nontracer serotonin in the bolus of injectate from the free uninhibited permeation through the clefts into the interstitial fluid space. The permeability-surface area products (PS) for serotonin via the inter-EC clefts were ∼0.3 ml·g−1·min−1, low compared with the transporter-mediated maximum PS of 13 ml·g−1·min−1 (with Km = ∼0.3 μM and Vmax = ∼4 nmol·g−1·min−1). The estimates of serotonin PS values for EC transporters from their multiple data sets were similar and were influenced only modestly by accounting for the cleft permeability in parallel. The cleft PS estimates in these Ringer-perfused lungs are less than half of those for anesthetized dogs (Yipintsoi T. Circ Res 39: 523–531, 1976) with normal hematocrits, but are compatible with passive noncarrier-mediated transport observed later in the same laboratory (Dawson CA, Linehan JH, Rickaby DA, Bronikowski TA. Ann Biomed Eng 15: 217–227, 1987; Peeters FAM, Bronikowski TA, Dawson CA, Linehan JH, Bult H, Herman AG. J Appl Physiol 66: 2328–2337, 1989) The identification and quantitation of the cleft pathway conductance from these

  16. The influence of pH on the in vitro permeation of rhodium through human skin.

    Science.gov (United States)

    Jansen Van Rensburg, Sané; Franken, Anja; Du Plessis, Jeanetta; Du Plessis, Johannes Lodewykus

    2017-06-01

    Workers in precious metals refineries are at risk of exposure to salt compounds of the platinum group metals through inhalation, as well as through the skin. Rhodium salt permeation through the skin has previously been proven using rhodium trichloride (RhCl 3 ) dissolved in synthetic sweat at a pH of 6.5. However, the skin surface pH of refinery workers may be lower than 6.5. The aim of this study was to investigate the influence of pH 6.5 and 4.5 on the in vitro permeation of rhodium through intact Caucasian skin using Franz diffusion cells. A concentration of 0.3 mg mL -1 rhodium was used and analyses were performed using inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry. Results indicated a cumulative increase in permeation over 24 h. Rhodium permeation after 12 h was significantly greater at pH 4.5 (1.56 ± 0.24 ng cm -2 ) than at 6.5 (0.85 ± 0.13 ng cm -2 ; p = 0.02). At both pH levels, there was a highly significant difference ( p rhodium remaining in the skin (1428.68 ± 224.67 ng cm -2 at pH 4.5 and 1029.90 ± 115.96 ng cm -2 at pH 6.5) and the mass that diffused through (0.88 ± 0.17 ng cm -2 at pH 4.5 and 0.62 ± 0.10 ng cm -2 at pH 6.5). From these findings, it is evident that an acidic working environment or low skin surface pH may enhance permeation of rhodium salts, contributing to sensitization and adverse health effects.

  17. The Dornier 328 Acoustic Test Cell (ATC) for interior noise tests and selected test results

    Science.gov (United States)

    Hackstein, H. Josef; Borchers, Ingo U.; Renger, Klaus; Vogt, Konrad

    1992-01-01

    To perform acoustic studies for achieving low noise levels for the Dornier 328, an acoustic test cell (ATC) of the Dornier 328 has been built. The ATC consists of a fuselage section, a realistic fuselage suspension system, and three exterior noise simulation rings. A complex digital 60 channel computer/amplifier noise generation system as well as multichannel digital data acquisition and evaluation system have been used. The noise control tests started with vibration measurements for supporting acoustic data interpretation. In addition, experiments have been carried out on dynamic vibration absorbers, the most important passive noise reduction measure for low frequency propeller noise. The design and arrangement of the current ATC are presented. Furthermore, exterior noise simulation as well as data acquisition are explained. The most promising results show noise reduction due to synchrophasing and dynamic vibration absorbers.

  18. Effect of permeation enhancers on the penetration mechanism of transfersomal gel of ketoconazole

    Directory of Open Access Journals (Sweden)

    Reshmy Rajan

    2012-01-01

    Full Text Available The aim of the present research work was to investigate the potential of transfersome formulations for transdermal delivery of Ketoconazole (KTZ. KTZ is a broad-spectrum antifungal agent that is active against a wide variety of fungi and yeasts. It is readily but incompletely absorbed after oral dosing and is highly variable. The transfersomes were formulated by lipid film hydration technique using Rotary vacuum Evaporator. The prepared transfersomes were converted into suitable gel formulation and is evaluated for their gel characteristics like pH, viscosity, spreadability, extrudability, homogeneity, drug content, etc. Suitable essential oils acting as natural permeation enhancers were added to the transfersomal formulation of KTZ for their release studies. Studies proved that addition of suitable permeation enhancers to the transfersomal formulation improved the release and permeation of KTZ, which showed that the permeation enhancers modify the barrier to penetration present in skin without itself undergoing any change. From the various essential oils which are used as permeation enhancers, the formulation containing Eucalyptus oil showed better in vitro release and permeation as compared with other formulations containing different permeation enhancers.

  19. Practical experience of backwashing with SWRO permeate for UF fouling control

    KAUST Repository

    Li, Sheng; Heijman, Sebastiaan G J; Verberk, J. Q J C; Amy, Gary L.; Van Dijk, Johannis C.

    2013-01-01

    Effectiveness of seawater reverse osmosis (SWRO) permeate backwash on fouling control of seawater ultrafiltration was investigated at a pilot scale. A standard membrane module was used in this pilot to represent full-scale desalination plants. Results of the pilot show a good reproducibility. When the UF permeate was used for backwash, the frequency of chemically enhanced backwash (CEB) was around once per day. However, results of the pilot show that SWRO permeate backwashing could significantly reduce the CEB frequency. © 2013 Desalination Publications.

  20. A comparison of implantation-driven permeation characteristics of fusion reactor structural materials

    Science.gov (United States)

    Longhurst, G. R.; Anderl, R. A.; Struttmann, D. A.

    1986-11-01

    Implantation-driven permeation experiments have been conducted on samples of the ferritic steel HT-9, the austenitic Primary Candidate Alloy (PCA) and the vanadium alloy V-15Cr-5Ti using D 3+ ions under conditions that simulate charge-exchange neutral loading on a fusion reactor first wall. The steels all exhibited an initially intense permeation "spike" followed by an exponential decrease to low steady-state values. That spike was not evident in the V-15Cr-5Ti experiments. Steady-state permeation was highest in the vanadium alloy and lowest in the austenitic steel. Though permeation rates in the HT-9 were lower than those in V-15Cr-5Ti, permeation transients were much faster in HT-9 than in other materials tested. Sputtering of the steel surface resulted in enhanced reemission, whereas in the vanadium tests, recombination and diffusivity both appeared to diminish as the deuterium concentration rose. We conclude that for conditions comparable to those of these experiments, tritium retention and permeation loss in first wall structures made of steels will be less than in structures made of V-15Cr-5Ti.

  1. Hydrogen permeation inhibition by zinc-nickel alloy plating on steel XC68

    International Nuclear Information System (INIS)

    El Hajjami, A.; Gigandet, M.P.; De Petris-Wery, M.; Catonne, J.C.; Duprat, J.J.; Thiery, L.; Raulin, F.; Starck, B.; Remy, P.

    2008-01-01

    The inhibition of hydrogen permeation and barrier effect by zinc-nickel plating was investigated using the Devanathan-Stachurski permeation technique. The hydrogen permeation and hydrogen diffusion for the zinc-nickel (12-15%) plating on steel XC68 is compared with zinc and nickel. Hydrogen permeation and hydrogen diffusion were followed as functions of time at current density applied (cathodic side) and potential permanent (anodic side). The hydrogen permeation inhibition for zinc-nickel is intermediate to that of nickel and zinc. This inhibition was due to nickel-rich layer effects at the Zn-Ni alloy/substrate interface, is shown by GDOES. Zinc-nickel plating inhibited the hydrogen diffusion greater as compared to zinc. This diffusion resistance was due to the barrier effect caused by the nickel which is present at the interface and transformed the hydrogen atomic to Ni 2 H compound, as shown by GIXRD.

  2. Hydrogen permeation inhibition by zinc-nickel alloy plating on steel XC68

    Energy Technology Data Exchange (ETDEWEB)

    El Hajjami, A. [Institut UTINAM, UMR CNRS 6213, Sonochimie et Reactivite des Surfaces, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Coventya S.A.S., 51 rue Pierre, 92588 Clichy Cedex (France); Gigandet, M.P. [Institut UTINAM, UMR CNRS 6213, Sonochimie et Reactivite des Surfaces, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France)], E-mail: marie-pierre.gigandet@univ-fcomte.fr; De Petris-Wery, M. [Institut Universitaire de Technologie d' Orsay, Universite Paris XI, Plateau de Moulon, 91400 Orsay (France); Catonne, J.C. [Professeur Honoraire du Conservatoire national des arts et metiers (CNAM), Paris (France); Duprat, J.J.; Thiery, L.; Raulin, F. [Coventya S.A.S., 51 rue Pierre, 92588 Clichy Cedex (France); Starck, B.; Remy, P. [Lisi Automotive, 28 faubourg de Belfort, BP 19, 90101 Delle Cedex (France)

    2008-12-30

    The inhibition of hydrogen permeation and barrier effect by zinc-nickel plating was investigated using the Devanathan-Stachurski permeation technique. The hydrogen permeation and hydrogen diffusion for the zinc-nickel (12-15%) plating on steel XC68 is compared with zinc and nickel. Hydrogen permeation and hydrogen diffusion were followed as functions of time at current density applied (cathodic side) and potential permanent (anodic side). The hydrogen permeation inhibition for zinc-nickel is intermediate to that of nickel and zinc. This inhibition was due to nickel-rich layer effects at the Zn-Ni alloy/substrate interface, is shown by GDOES. Zinc-nickel plating inhibited the hydrogen diffusion greater as compared to zinc. This diffusion resistance was due to the barrier effect caused by the nickel which is present at the interface and transformed the hydrogen atomic to Ni{sub 2}H compound, as shown by GIXRD.

  3. Acoustic separation of oil droplets, colloidal particles and their mixtures in a microfluidic cell

    KAUST Repository

    Vakarelski, Ivan Uriev; Li, Erqiang; Abdel-Fattah, Amr I.; Thoroddsen, Sigurdur T

    2016-01-01

    Here we report direct macroscopic and microscopic observations of acoustic driven separation of dodecane oil droplets in water in the presence and absence of colloidal silica particles suspended in the water phase. The experiments were conducted in a simple rectangular channel glass microfluidic cell in which an ultrasound standing wave pattern was generated at 300 KHz frequency. The separation process of both oil droplets and colloidal particles inside the cell was recorded using a high-speed video camera equipped with a macro-objective lens for macroscopic observation or with a high-speed camera attached to an inverted optical microscope for a higher resolution microscopic observation. We characterize the clustering process in the case of emulsion droplets or solid colloidal particles and ultimately demonstrate the emulsion droplets separation from the solid particles in the mixtures based on their different acoustic contrast factors. Finally, we conduct proof of concept experiment to show that the same approach can be used in a continuous fluid flow process.

  4. Acoustic separation of oil droplets, colloidal particles and their mixtures in a microfluidic cell

    KAUST Repository

    Vakarelski, Ivan Uriev

    2016-06-15

    Here we report direct macroscopic and microscopic observations of acoustic driven separation of dodecane oil droplets in water in the presence and absence of colloidal silica particles suspended in the water phase. The experiments were conducted in a simple rectangular channel glass microfluidic cell in which an ultrasound standing wave pattern was generated at 300 KHz frequency. The separation process of both oil droplets and colloidal particles inside the cell was recorded using a high-speed video camera equipped with a macro-objective lens for macroscopic observation or with a high-speed camera attached to an inverted optical microscope for a higher resolution microscopic observation. We characterize the clustering process in the case of emulsion droplets or solid colloidal particles and ultimately demonstrate the emulsion droplets separation from the solid particles in the mixtures based on their different acoustic contrast factors. Finally, we conduct proof of concept experiment to show that the same approach can be used in a continuous fluid flow process.

  5. Permeated defect detecting test method and device in reactor

    International Nuclear Information System (INIS)

    Sakurai, Yoshishige.

    1996-01-01

    The present invention provides a method of and a device capable of performing a test for entire inner surfaces of the reactor upon periodical inspection of a BWR type reactor while sufficiently taking countermeasures for radiation rays into consideration. Namely, the present invention comprises following steps. (1) A provisional step for taking a shroud head of a reactor core shroud and incore structural components above and below the shroud out of the reactor, discharging reactor water and water tightly closing openings such as reactor wall perforation holes, (2) a pretreatment step for washing exposed inner surfaces of the reactor and peeling deteriorated materials, (3) a first drying step for drying portions washed and peeled in the step (2), (4) a permeation step for applying a permeation liquid of a defect detecting medium on the exposed inner surfaces of the reactor, (5) a permeation liquid removing step for removing the an excess permeation liquid in the step (4), (6) a second drying step for drying corresponding portions after performing the step (5), and (7) a flaw detecting step for optically observing the corresponding portions after performing the step (6) and detecting flaws. (I.S.)

  6. Permeation of Telone EC through protective gloves.

    Science.gov (United States)

    Zainal, Hanaa; Que Hee, Shane S

    2005-09-30

    Telone is a potent fumigant that is based on the chlorinated unsaturated hydrocarbon, 1,3-dichloropropene (1,3-DCP). It is often applied without dilution and so poses severe inhalation and air pollution threats. Urinary metabolites of 1,3-DCP have been detected after Telone skin exposure, so that preventing dermal exposure is also important. The objective of the study was to assess if nitrile and multi-layer ("laminated") gloves provide adequate protection against Telone EC formulation. To accomplish this, disposable (Safeskin) and chemically resistant (Sol-Vex) nitrile and laminated (Barrier mark and Silver Shield) glove materials were challenged by Telone EC with hexane liquid collection in an ASTM-type I-PTC-600 permeation cell. Analyses of cis- and trans-1,3-DCP in the collection fluid at specified times were performed on a moderately polar capillary column by gas chromatography-electron capture detection. Telone EC caused microholes in both nitrile materials, though the chemically protective material was degraded slower than the disposable nitrile. The laminated gloves offered limited protection. Silver Shield protected best because 1.5-2.3 mg 1,3-DCP permeated by 8 h relative to 2.5-7.6 mg for Barrier, implying about 2.5 times more protection for 8 h. Even for Silver Shield, the extent of protection was inadequate as illustrated by a risk assessment of the skin exposure situation. The normalized breakthrough times for both types of laminated gloves varied between 27 and 60 min. It is recommended that Viton gloves still be worn for protection.

  7. A study on reverse osmosis permeating treatment for yarn dyeing ...

    African Journals Online (AJOL)

    This paper presents a fuzzy linear regression model for estimation of reverse osmosis permeating parameters conditions. The proposed model can effectively take on non-crisp, fuzzy and crisp data. This study model used for estimation of reverse osmosis permeating parameters data from Tirupur examines the variables that ...

  8. Effect of Nutrient Formulations on Permeation of Proteins and Lipids ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of nutrient formulations on the permeation of proteins and lipids through porcine intestine in vitro. Method: In vitro permeation studies of proteins and lipids of two peptide-based formulations, composed of various compounds and sources of hydrolyzed protein was carried out, and compared ...

  9. Tunable microwave signal generation based on an Opto-DMD processor and a photonic crystal fiber

    International Nuclear Information System (INIS)

    Wang Tao; Sang Xin-Zhu; Yan Bin-Bin; Li Yan; Song Fei-Jun; Zhang Xia; Wang Kui-Ru; Yuan Jin-Hui; Yu Chong-Xiu; Ai Qi; Chen Xiao; Zhang Ying; Chen Gen-Xiang; Xiao Feng; Kamal Alameh

    2014-01-01

    Frequency-tunable microwave signal generation is proposed and experimentally demonstrated with a dual-wavelength single-longitudinal-mode (SLM) erbium-doped fiber ring laser based on a digital Opto-DMD processor and four-wave mixing (FWM) in a high-nonlinear photonic crystal fiber (PCF). The high-nonlinear PCF is employed for the generation of the FWM to obtain stable and uniform dual-wavelength oscillation. Two different short passive sub-ring cavities in the main ring cavity serve as mode filters to make SLM lasing. The two lasing wavelengths are electronically selected by loading different gratings on the Opto-DMD processor controlled with a computer. The wavelength spacing can be smartly adjusted from 0.165 nm to 1.08 nm within a tuning accuracy of 0.055 nm. Two microwave signals at 17.23 GHz and 27.47 GHz are achieved. The stability of the microwave signal is discussed. The system has the ability to generate a 137.36-GHz photonic millimeter signal at room temperature

  10. The relationship between past caries experience and tooth color determined by an opto-electronic method.

    Science.gov (United States)

    Kerosuo, E; Kolehmainen, L

    1982-01-01

    The susceptibility of a tooth to dental caries has been proposed to depend on tooth color. So far there has, however, been no reliable method for tooth color determination. The aims of this study were to evaluate the reliability of an opto-electronic method and to examine the relationship between tooth color and past caries experience. The color of upper right central incisors of 64 school-children was determined using an opto-electronic tri-stimulus color comparator. The intra- and interexaminer reliability of the method was evaluated in vitro and in vivo being 85% and 83%, respectively. To assess the past caries experience the DMFS-index was calculated. Oral hygiene and dietary habits were also assessed. No significant difference in DMFS scores was obtained between the 'white teeth' group and the 'yellow teeth' group. The conclusion is, that the practical importance of possible colorrelated differences in caries resistance is negligible due to the multifaceted nature of dental caries.

  11. Static liquid permeation cell method for determining the migration parameters of low molecular weight organic compounds in polyethylene terephthalate.

    Science.gov (United States)

    Song, Yoon S; Koontz, John L; Juskelis, Rima O; Zhao, Yang

    2013-01-01

    The migration of low molecular weight organic compounds through polyethylene terephthalate (PET) films was determined by using a custom permeation cell assembly. Fatty food simulant (Miglyol 812) was added to the receptor chamber, while the donor chamber was filled with 1% and 10% (v/v) migrant compounds spiked in simulant. The permeation cell was maintained at 40°C, 66°C, 100°C or 121°C for up to 25 days of polymer film exposure time. Migrants in Miglyol were directly quantified without a liquid-liquid extraction step by headspace-GC-MS analysis. Experimental diffusion coefficients (DP) of toluene, benzyl alcohol, ethyl butyrate and methyl salicylate through PET film were determined. Results from Limm's diffusion model showed that the predicted DP values for PET were all greater than the experimental values. DP values predicted by Piringer's diffusion model were also greater than those determined experimentally at 66°C, 100°C and 121°C. However, Piringer's model led to the underestimation of benzyl alcohol (Áp = 3.7) and methyl salicylate (Áp = 4.0) diffusion at 40°C with its revised "upper-bound" Áp value of 3.1 at temperatures below the glass transition temperature (Tg) of PET (<70°C). This implies that input parameters of Piringer's model may need to be revised to ensure a margin of safety for consumers. On the other hand, at temperatures greater than the Tg, both models appear too conservative and unrealistic. The highest estimated Áp value from Piringer's model was 2.6 for methyl salicylate, which was much lower than the "upper-bound" Áp value of 6.4 for PET. Therefore, it may be necessary further to refine "upper-bound" Áp values for PET such that Piringer's model does not significantly underestimate or overestimate the migration of organic compounds dependent upon the temperature condition of the food contact material.

  12. Studies on Tasar Cocoon Cooking Using Permeation Method

    Science.gov (United States)

    Javali, Uday C.; Malali, Kiran B.; Ramya, H. G.; Naik, Subhas V.; Padaki, Naveen V.

    2018-02-01

    Cocoon cooking is an important process before reeling of tasar silk yarn. Cooking ensures loosening of the filaments in the tasar cocoons thereby easing the process of yarn withdrawal during reeling process. Tasar cocoons have very hard shell and hence these cocoons need chemical cooking process to loosen the silk filaments. Attempt has been made in this article to study the effect of using vacuum permeation chamber for tasar cocoon cooking in order to reduce the cooking time and improve the quality of tasar silk yarn. Vacuum assisted permeation cooking method has been studied in this article on tasar daba cocoons for cooking efficiency, deflossing and reelability. Its efficiency has been evaluated with respect to different cooking methods viz, traditional and open pan cooking methods. The tasar silk produced after reeling process has been tested for fineness, strength and cohesion properties. Results indicate that permeation method of tasar cooking ensures uniform cooking with higher efficiency along with better reeling performance and improved yarn properties.

  13. Development of tritium permeation barriers on Al base in Europe

    Science.gov (United States)

    Benamati, G.; Chabrol, C.; Perujo, A.; Rigal, E.; Glasbrenner, H.

    The development of the water cooled lithium lead (WCLL) DEMO fusion reactor requires the production of a material capable of acting as a tritium permeation barrier (TPB). In the DEMO blanket reactor permeation barriers on the structural material are required to reduce the tritium permeation from the Pb-17Li or the plasma into the cooling water to acceptable levels (HIP) technology and spray (this one developed also for repair) deposition techniques. The final goal is to select a reference technique to be used in the blanket of the DEMO reactor and in the ITER test module fabrication. The activities performed in four European laboratories are summarised here.

  14. Tritium permeation in stainless-steel structures exposed to plasma ions

    International Nuclear Information System (INIS)

    Anderl, R.A.; Holland, D.F.; Struttmann, D.A.; Longhurst, G.R.; Merrill, B.J.

    1985-01-01

    This paper presents a comparison of the hydrogen permeation properties of the austenitic primary candidate alloy, PCA, and of the advanced ferritic alloy, HT-9. The comparison is based on experimental measurements of the permeation and reemission of deuterium from specimens undergoing implantation with 3-keV, D 3 + ions produced by an accelerator. Characterization of the specimen surface facing the ion beam is provided by secondary ion mass spectrometer (SIMS) analysis of the species sputtered from the surface during the implantation. Recombination and diffusivity data for PCA and HT-9 were derived from an analysis in which model calculations were applied to the reemission and permeation measurements

  15. Opto-mechanical design of an image slicer for the GRIS spectrograph at GREGOR

    Science.gov (United States)

    Vega Reyes, N.; Esteves, M. A.; Sánchez-Capuchino, J.; Salaun, Y.; López, R. L.; Gracia, F.; Estrada Herrera, P.; Grivel, C.; Vaz Cedillo, J. J.; Collados, M.

    2016-07-01

    An image slicer has been proposed for the Integral Field Spectrograph [1] of the 4-m European Solar Telescope (EST) [2] The image slicer for EST is called MuSICa (Multi-Slit Image slicer based on collimator-Camera) [3] and it is a telecentric system with diffraction limited optical quality offering the possibility to obtain high resolution Integral Field Solar Spectroscopy or Spectro-polarimetry by coupling a polarimeter after the generated slit (or slits). Considering the technical complexity of the proposed Integral Field Unit (IFU), a prototype has been designed for the GRIS spectrograph at GREGOR telescope at Teide Observatory (Tenerife), composed by the optical elements of the image slicer itself, a scanning system (to cover a larger field of view with sequential adjacent measurements) and an appropriate re-imaging system. All these subsystems are placed in a bench, specially designed to facilitate their alignment, integration and verification, and their easy installation in front of the spectrograph. This communication describes the opto-mechanical solution adopted to upgrade GRIS while ensuring repeatability between the observational modes, IFU and long-slit. Results from several tests which have been performed to validate the opto-mechanical prototypes are also presented.

  16. Tritium permeation and recovery for the Flibe/He blanket design

    International Nuclear Information System (INIS)

    Moir, R.

    1984-10-01

    This study assumes tritium to be a gas dissolved in molten salt, with TF formation suppressed. Tritium permeates readily through the hot steel tubes of the reactor and steam generator and will leak into the steam system at the rate of about one gram per day in the absence of special permeation barriers, assuming that 1% of the helium coolant flow rate is processed for tritium recovery at 90% efficiency per pass. Tritiated water in the steam system is a personnel hazard at concentration levels well below one part per million and this level would soon be reached without costly isotopic processing. Alternatively, including a combination of permeation barriers on reactor and steam generator tubes and molten salt processing is estimated to reduce the leak rate into the steam system by over two orders of magnitude. For the option with the lowest estimated leak rate, 55 Ci/d, it may be possible to purge the steam system continuously to prevent tritiated water buildup. At best, isotopic separation of dilute tritiated water may not be necessary and for higher leak-rate options the isotopic processing rate can be reduced. The proposed permeation barrier for the reactor tubes is a 10 μm layer of tungsten which, in principle, will reduce tritium blanket permeation by a factor of about 300 below the bare-steel rate

  17. Permeation of cytotoxic formulations through swatches from selected medical gloves.

    Science.gov (United States)

    Klein, Michael; Lambov, Nikolai; Samev, Nikola; Carstens, Gerhard

    2003-05-15

    The permeability of selected medical glove materials to various cytotoxic agents is described. Fifteen cytotoxic agents were prepared at the highest concentrations normally encountered by hospital personnel. Four single-layer and two double-layer glove systems made of two materials--latex and neoprene--were exposed to the drugs for 30, 60, 90, 120, 150, and 180 minutes. Circular sections of the glove material were cut from the cuff and evaluated without any pretreatment. Permeability tests were conducted in an apparatus consisting of a donor chamber containing the cytotoxic solution and a collection chamber filled with water (the acceptor medium). The two sections were separated by the glove material. Permeating portions, collected in water as the acceptor medium, were analyzed by either ultraviolet-visible light spectrophotometry or high-performance liquid chromatography (HPLC). Permeation rates were calculated on the basis of the concentration of the cytotoxic agent in the acceptor medium. Spectrophotometric measurements were taken every 30 minutes, and HPLC analysis was performed at the end of the three-hour period. Average permeation rates for 14 drugs were low (materials. All glove materials tested were impermeable to most of the cytotoxic agents over a period of three hours. Carmustine was the only agent that substantially permeated single-layer latex glove materials. Permeation of most tested cytotoxic formulations was low through swatches of material from various medical gloves.

  18. Expansion of thermodynamic model of solute permeation through reverse osmosis membrane

    International Nuclear Information System (INIS)

    Nishimaki, Kenzo; Koyama, Akio

    1994-01-01

    Many studies have been performed on permeation mechanism of solute and solvent in membrane separation process like reverse osmosis or ultrafiltration, and several models of solute/solvent permeation through membrane are proposed. Among these models, Kedem and Katchalsky, based on the theory of thermodynamics of irreversible processes, formulated the one-solute permeation process in their mathematical model, which treats membrane as a black box, not giving consideration to membrane structure and to interaction between membrane material and permeates, viz. solute and solvent. According to this theory, the driving force of solute/solvent permeation through membrane is the difference of their chemical potential between both sides of membrane, and the linear phenomenological equation is applied to describing the relation between driving force and flux of solute/solvent. This equation can be applied to the irreversible process only when the process is almost in equilibrium. This condition is supposed to be satisfied in the solute/solvent permeation process through compact membrane with fine pores like reverse osmosis membrane. When reverse osmosis is applied to treatment process for liquid waste, which usually contains a lot of solutes as contaminants, we can not predict the behavior of contaminants by the above one-solute process model. In the case of multi-solutes permeation process for liquid waste, the number of parameter in thermodynamic model increases rapidly with the number of solute, because of coupling phenomenon among solutes. In this study, we expanded the above thermodynamic model to multi-solute process applying operational calculus to the differential equations which describe the irreversible process of the system, and expressed concisely solute concentration vector as a matrix product. In this way, we predict the behavior of solutes in multi-solutes process, using values of parameters obtained in two-solutes process. (author)

  19. Oxygen permeation through oxygen ion oxide-noble metal dual phase composites

    NARCIS (Netherlands)

    Chen, C.S.; Chen, C.S.; Kruidhof, H.; Bouwmeester, Henricus J.M.; Verweij, H.; Burggraaf, Anthonie; Burggraaf, A.J.

    1996-01-01

    Oxygen permeation behaviour of three composites, yttria-stabilized zirconia-palladium, erbia-stabilized bismuth oxidenoble metal (silver, gold) was studied. Oxygen permeation measurements were performed under controlled oxygen pressure gradients at elevated temperatures. Air was supplied at one side

  20. Formation of permeation barriers on ceramic SiC/SiC composites

    International Nuclear Information System (INIS)

    Racault, C.; Fenici, P.

    1996-01-01

    The effectiveness as permeation barriers of the following CVD and PVD (sputtering) coatings has been investigated: TiC+Al 2 O 3 (CVD), SiC(CVD), SiO 2 (CVD), TiN(CVD), TiN(CVD)+TiN(PVD) and SiC(CVD)+Al 2 O 3 (PVD). The substrate material was a SiC/SiC composite, proposed as low activation structural material for fusion applications. Permeation measurements were performed in the temperature range 300-750 K using deuterium at pressures in the range 0.5-150 kPa. A linear dependence of permeation rate on pressure was measured. The efficiency of the coatings as deuterium permeation barriers is discussed in terms of coating microstructure. The best result was obtained with a bilayer of TiN(CVD) (15 μm) +TiN(PVD) (8 μm). (orig.)

  1. Two-dimensional fluid-filled closed-cell cellular solid as an acoustic metamaterial with negative index

    Science.gov (United States)

    Dorodnitsyn, V.; Van Damme, B.

    2016-04-01

    A concept for acoustic metamaterials consisting of a cellular medium with fluid-filled cells is fabricated and studied experimentally. In such a system, the fluid and solid structure explicitly interact, and elastic wave propagation is coupled to both phases. Focusing here on shear wave behavior, we confirm previous numerical studies in three steps. We first measure the material deformations pertaining to three qualitatively different shear wave modes in the frequency range below 3.5 kHz. We then measure the group velocity and demonstrate that, within a certain frequency interval, the group and phase velocity have opposite signs. This shows that the system acts as a negative-index metamaterial. Finally, we confirm the presence of band gaps due to the locally resonant behavior of the cell walls. The demonstrated concept of a closed, fluid-filled cellular material as an acoustic metamaterial opens a wide space for applications.

  2. Effects of hypothyroidism on vascular 125I-albumin permeation and blood flow in rats

    International Nuclear Information System (INIS)

    Tilton, R.G.; Pugliese, G.; Chang, K.; Speedy, A.; Province, M.A.; Kilo, C.; Williamson, J.R.

    1989-01-01

    Effects of hypothyroidism on vascular 125I-albumin permeation and on blood flow were assessed in multiple tissues of male Sprague-Dawley rats rendered hypothyroid by dietary supplementation with 0.5% (wt/wt) 2-thiouracil or by thyroidectomy. In both thiouracil-treated and thyroidectomized rats, body weights, kidney weight, arterial blood pressure, and pulse rate were decreased significantly v age-matched controls. After 10 to 12 weeks of thiouracil treatment, 125I-albumin permeation was increased significantly in the kidney, aorta, eye (anterior uvea, choroid, retina), skin, and new granulation tissue, remained unchanged in brain, sciatic nerve, and heart, and was decreased in forelimb skeletal muscle. A similar pattern was observed in thyroidectomized rats, except that increases in 125I-albumin permeation for all tissues were smaller than those observed in thiouracil-treated rats, and 125I-albumin permeation in retina did not differ from controls. In both thiouracil-treated and thyroidectomized rats, changes in blood flow (assessed with 15-microns, 85Sr-labeled microspheres) relative to the decrease in arterial blood pressure were indicative of a decrease in regional vascular resistance except in the choroid and in the kidney, in which vascular resistance was increased significantly. Glomerular filtration rate was decreased, but filtration fraction and urinary excretion of albumin remained unchanged by thiouracil treatment and thyroidectomy. These results indicate that vascular hemodynamics and endothelial cell barrier functional integrity are modulated in many different tissues by the thyroid. In view of the correspondence of hypothyroid- and diabetes-induced vascular permeability changes, these results raise the possibility that altered thyroid function in diabetes may play a role in the pathogenesis of diabetic vascular disease

  3. Skin deposition and permeation of finasteride in vitro: effects of propylene glycol, ethanol and sodium lauryl sulfate.

    Science.gov (United States)

    Limpongsa, Ekapol; Jaipakdee, Napaphak; Pongjanyakul, Thaned

    2014-08-27

    Abstract The objective of this study was to investigate the effects of propylene glycol (PG), ethanol (EtOH) and sodium lauryl sulfate (SLS) on the in vitro deposition and permeation of finasteride (FNS). A side-by-side diffusion cell mounted with a pig ear skin and a saturated solution of FNS in PG (10, 20% v/v), EtOH (10, 20% v/v) or SLS (0.5, 1% w/v) vehicles were used. Incorporation of PG, EtOH or SLS caused a significant increase in FNS solubility both in the solution and on the skin with SLS > EtOH > PG. The results obtained from skin deposition studies showed that the FNS deposition rate and time increased in the same order as that of the solubility. The deposition kinetics of FNS solubilized in PG, EtOH and SLS vehicles followed either zero-order, square-root-of-time or pseudo-first-order kinetic models depending on the type and concentration of the enhancer. The permeation studies demonstrated that FNS permeation fluxes were enhanced only by EtOH vehicles. These results suggest that PG and SLS could be used as deposition enhancers, while EtOH could be the effective permeation enhancer of FNS. The obtained results can be used as the considerable insights for formulating the topical and transdermal products of FNS.

  4. 40 CFR 1060.521 - How do I test fuel caps for permeation emissions?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test fuel caps for permeation... EQUIPMENT Test Procedures § 1060.521 How do I test fuel caps for permeation emissions? If you measure a fuel tank's permeation emissions with a nonpermeable covering in place of the fuel cap under § 1060.520(b)(5...

  5. Permeation of deuterium implanted into V-15Cr-5Ti

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Struttmann, D.A.

    1987-01-01

    Permeation and reemission of deuterium for the vanadium alloy, V-15Cr-5Ti, was investigated using 3 keV, D 3 + ion beams from a small accelerator. The experiments consisted of measurement of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5 mm thick specimens heated to temperatures from 623 K to 823 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). For the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This is approximately 1000 times that seen in the austenitic stainless steel, PCA, and 200 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates that D = 1.4x10 -8 exp(-0.11 eV/kT)(m 2 /s), over the temperature range 723 K to 823 K. (orig.)

  6. Permeation of deuterium implanted into V-15Cr-5Ti

    Science.gov (United States)

    Anderl, R. A.; Longhurst, G. R.; Struttmann, D. A.

    1987-02-01

    Permeation and reemission of deuterium for the vanadium alloy, V-15Cr-5Ti, was investigated using 3 keV, D 3+ ion beams from a small accelerator. The experiments consisted of measurement of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5 mm thick specimens heated to temperatures from 623 K to 823 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). For the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This is approximately 1000 times that seen in the austenitic stainless steel, PCA, and 200 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates that D = 1.4 × 10 -8 exp( -0.11 eV/ kT) (m 2/s), over the temperature range 723 K to 823 K.

  7. Permeation of deuterium implanted into V-15Cr-5Ti

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Longhurst, G.R.; Struttmann, D.A.

    1987-02-01

    Permeation and reemission of deuterium for the vanadium alloy, V-15Cr-5Ti, was investigated using 3 keV, D/sub 3//sup +/ ion beams from a small accelerator. The experiments consisted of measurement of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5 mm thick specimens heated to temperatures from 623 K to 823 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). For the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This is approximately 1000 times that seen in the austenitic stainless steel, PCA, and 200 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates that D = 1.4x10/sup -8/ exp(-0.11 eVkT)(m/sup 2/s), over the temperature range 723 K to 823 K.

  8. The formation of hydrogen permeation barriers on steels by aluminising

    Science.gov (United States)

    Forcey, K. S.; Ross, D. K.; Wu, C. H.

    1991-06-01

    An extensive investigation has been carried out into the effectiveness of aluminised layers as permeation barriers on AISI 316L stainless and DIN 1.4914 martensitic steels. The study involved measurement of the hydrogen permeation rate through commercially aluminised steel discs of thicknesses in the range 1-1.6 mm, at temperatures between 250 and 600 °C and for an upstream hydrogen pressure of 10 5 Pa. The composition and structure of the aluminide layers were investigated by a number of techniques such as SEM, electron beam microprobe and X-ray diffraction. Accelerator based techniques such as RBS and NRA were employed to study the top micron or so of the surfaces of the samples. By these techniques it was found that the effectiveness of the permeation barrier depended on the formation of a thin surface oxide layer consisting of Al 2O 3. It was found that the permeation rate through the aluminised steels could be reduced by 3-4 orders of magnitude by forming a surface oxide layer up to a micron or so in thickness.

  9. Mechanisms of oxygen permeation through plastic films and barrier coatings

    Science.gov (United States)

    Wilski, Stefan; Wipperfürth, Jens; Jaritz, Montgomery; Kirchheim, Dennis; Mitschker, Felix; Awakowicz, Peter; Dahlmann, Rainer; Hopmann, Christian

    2017-10-01

    Oxygen and water vapour permeation through plastic films in food packaging or other applications with high demands on permeation are prevented by inorganic barrier films. Most of the permeation occurs through small defects (visualized by etching with reactive oxygen in a capacitively coupled plasma and subsequent SEM imaging. In this work, defects in SiO x -coatings deposited by plasma-enhanced chemical vapour deposition on polyethylene terephthalate (PET) are investigated and the mass transport through the polymer is simulated in a 3D approach. Calculations of single defects showed that there is no linear correlation between the defect area and the resulting permeability. The influence of adjacent defects in different distances was observed and led to flow reduction functions depending on the defect spacing and defect area. A critical defect spacing where no interaction between defects occurs was found and compared to other findings. According to the superposition principle, the permeability of single defects was added up and compared to experimentally determined oxygen permeation. The results showed the same trend of decreasing permeability with decreasing defect densities.

  10. Preventing method and device for underground permeation of hazardous material

    International Nuclear Information System (INIS)

    Funabashi, Kiyomi; Kurokawa, Hideaki; Fukazawa, Tetsuo; Yamazaki, Tadashi.

    1996-01-01

    In a method of preventing hazardous materials from permeating into ground by burying adsorbing materials underground, a plurality of adsorbing layers are laminated being spaced apart from each other, the concentration of the hazardous materials between each of the adsorbent layers is measured. When the concentration reaches a predetermined value, the adsorbent layers are regenerated. A suppression means for preventing hazardous materials from permeating into the ground are formed by an upper adsorbent layer and a lower adsorbent layer, and a means for measuring the concentration of hazardous materials passing through the upper adsorbent layer and a means for charging and discharging regenerated liquid are disposed. When it is detected that the poisonous materials can not be eliminated, the poisonous materials are already permeated to the adsorbent layer, and they start to inflow into underground water. In order to prevent it, an adsorbent layer is additionally disposed at the lower side of the place of detection to eliminate the poisonous materials completely thereby enabling to prevent poisonous materials from permeating into underground for a long period of time. (T.M.)

  11. Deuterium permeation measurements on tungsten using ion-beam-based detection

    Energy Technology Data Exchange (ETDEWEB)

    Kapser, Stefan [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Physik-Department, Technische Universitaet Muenchen, James-Franck-Str. 1, 85748 Garching (Germany); Manhard, Armin; Toussaint, Udo von [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2016-07-01

    Tungsten (W) is promising for the inner wall of a future fusion reactor, where it will be exposed to high fluxes of hydrogen (H) isotopes. Knowledge of their diffusion in W is important for safety and economic considerations, particularly concerning tritium. A common method to investigate H diffusion in metals are permeation experiments. Typically, gas loading and mass-spectrometric detection are used. Information about the diffusion can be gained from the temporal evolution of the permeation flux, whose magnitude is determined by the permeability (product of diffusivity and solubility). However, for low-permeability metals, the permeation flux can be unmeasurably small. For W this is the case near room temperature. We present a method that circumvents this problem. It is an improved version of experiments on nickel and stainless steel. The W is exposed to deuterium (D) plasma on one side and the permeating D is accumulated in a getter on the other side. A cover prevents D gettering from the gas phase. The amount in the getter is analysed by the nuclear reaction D({sup 3}He,p){sup 4}He.

  12. Permeation Barrier Coatings for the Helical Heat Exchanger

    International Nuclear Information System (INIS)

    Korinko, P.S.

    1999-01-01

    A permeation barrier coating was specified for the Helical Heat Exchanger (HHE) to minimize contamination through emissions and/or permeation into the nitrogen system for ALARA reasons. Due to the geometry of the HHE, a special coating practice was needed since the conventional method of high temperature pack aluminization was intractable. A survey of many coating companies was undertaken; their coating capabilities and technologies were assessed and compared to WSRC needs. The processes and limitations to coating the HHE are described. Slurry coating appears to be the most technically sound approach for coating the HHE

  13. Permeation of "Hydromer" Film: An Elastomeric Hydrogen-Capturing Biopolymer.

    Energy Technology Data Exchange (ETDEWEB)

    Karnesky, Richard A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Friddle, Raymond William [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Whaley, Josh A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Smith, Geoffrey [New Mexico State Univ., Las Cruces, NM (United States)

    2015-12-01

    This report analyzes the permeation resistance of a novel and proprietary polymer coating for hydrogen isotope resistance that was developed by New Mexico State University. Thermal gravimetric analysis and thermal desoprtion spectroscopy show the polymer is stable thermally to approximately 250 deg C. Deuterium gas-driven permeation experiments were conducted at Sandia to explore early evidence (obtained using Brunauer - Emmett - Teller) of the polymer's strong resistance to hydrogen. With a relatively small amount of the polymer in solution (0.15%), a decrease in diffusion by a factor of 2 is observed at 100 and 150 deg C. While there was very little reduction in permeability, the preliminary findings reported here are meant to demonstrate the sensitivity of Sandia's permeation measurements and are intended to motivate the future exploration of thicker barriers with greater polymer coverage.

  14. Computational investigation of the effects of barrier layers on the permeation of hydrogen through metals

    International Nuclear Information System (INIS)

    Perkins, W.G.

    1975-01-01

    Results of a computational investigation of the permeation behavior of oxide-coated metal membranes are presented. A steady-state permeation model was developed which promises to be useful in evaluation of oxide layers on metals as hydrogen permeation barriers. The pressure and thickness dependence of steady state permeation through oxide-coated metal membranes is described using plots of logarithmic functions. (U.S.)

  15. Increased albumin permeation in eyes, aorta, and kidney of hypertensive rats fed galactose

    International Nuclear Information System (INIS)

    Tilton, R.G.; LaRose, L.; Chang, K.; Weigel, C.J.; Williamson, J.R.

    1986-01-01

    These experiments were undertaken to determine whether ingestion of galactose increases albumin permeation in the vasculature of hypertensive rats. 50% dextrin (control) or 50% galactose diets were fed to unilaterally nephrectomized, male Sprague-Dawley rats weighing 200 g. Hypertension (systolic pressure >175 mmHg) was induced by weekly IM injections of 25 mg/kg DOCA and 1% saline drinking water; 3 months later 125 I-albumin permeation was assessed in whole eyes, aorta and kidneys. 125 I-albumin permeation was significantly increased in all 3 tissues of hypertensive rats (n = 9) vs controls (n = 9): aorta (3.30 +/- 0.19 (SD) vs 2.87 +/- 0.14), eye (3.15 +/- 0.14 vs 2.59 +/- 0.11), and kidney (6.58 +/- 0.63 vs 3.85 +/- 0.50). Albumin permeation was increased still further in hypertensive rats fed the galactose diet (n = 8): aorta (3.75 +/- 0.38), eye (3.82 +/- 0.17), and kidney (10.74 +/- 3.13). Hypertension +/- galactose feeding had no effect on albumin permeation in lung, skin, or brain. These findings indicate that: (1) hypertension increases albumin permeation in vessels affected by diabetic vascular diseases, and 2) hypertension-induced increases in albumin permeation are increased still further by galactose ingestion, presumably mediated by imbalances in polyol/insitol metabolism (analogous to those induced by diabetes) independent of hyperglycemia and/or insulinopenia

  16. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation

    Science.gov (United States)

    Yang, Q.; Su, Y.; Chi, C.; Cherian, C. T.; Huang, K.; Kravets, V. G.; Wang, F. C.; Zhang, J. C.; Pratt, A.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Nair, R. R.

    2017-12-01

    Graphene oxide (GO) membranes continue to attract intense interest due to their unique molecular sieving properties combined with fast permeation. However, their use is limited to aqueous solutions because GO membranes appear impermeable to organic solvents, a phenomenon not yet fully understood. Here, we report efficient and fast filtration of organic solutions through GO laminates containing smooth two-dimensional (2D) capillaries made from large (10-20 μm) flakes. Without modification of sieving characteristics, these membranes can be made exceptionally thin, down to ~10 nm, which translates into fast water and organic solvent permeation. We attribute organic solvent permeation and sieving properties to randomly distributed pinholes interconnected by short graphene channels with a width of 1 nm. With increasing membrane thickness, organic solvent permeation rates decay exponentially but water continues to permeate quickly, in agreement with previous reports. The potential of ultrathin GO laminates for organic solvent nanofiltration is demonstrated by showing >99.9% rejection of small molecular weight organic dyes dissolved in methanol. Our work significantly expands possibilities for the use of GO membranes in purification and filtration technologies.

  17. Impacts of chemical enhancers on skin permeation and deposition of terbinafine.

    Science.gov (United States)

    Erdal, Meryem Sedef; Peköz, Ayca Yıldız; Aksu, Buket; Araman, Ahmet

    2014-08-01

    The addition of chemical enhancers into formulations is the most commonly employed approach to overcome the skin barrier. The objective of this work was to evaluate the effect of vehicle and chemical enhancers on the skin permeation and accumulation of terbinafine, an allylamine antifungal drug. Terbinafine (1% w/w) was formulated as a Carbopol 934 P gel formulation in presence and absence of three chemical enhancers, nerolidol, dl-limonene and urea. Terbinafine distribution and deposition in stratum corneum (SC) and skin following 8-h ex vivo permeation study was determined using a sequential tape stripping procedure. The conformational order of SC lipids was investigated by ATR-FTIR spectroscopy. Nerolidol containing gel formulation produced significantly higher enhancement in terbinafine permeation through skin and its skin accumulation was increased. ATR-FTIR results showed enhancer induced lipid bilayer disruption in SC. Urea resulted in enhanced permeation of terbinafine across the skin and a balanced distribution to the SC was achieved. But, dl-limonene could not minimize the accumulation of terbinafine in the upper SC. Nerolidol dramatically improved the skin permeation and deposition of terbinafine in the skin that might help to optimize targeting of the drug to the epidermal sites as required for both of superficial and deep cutaneous fungal infections.

  18. Comparison of implantation-driven permeation characteristics of fusion reactor structural materials

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Struttmann, D.A.

    1986-01-01

    Implantation-driven permeation experiments have been conducted on samples of the ferritic steel HT-9, the austenitic Primary Candidate Alloy (PCA) and the vanadium alloy V-15Cr-5Ti using D 3 + ions under conditions that simulate charge-exchange neutral loading on a fusion reactor first wall. The steels all exhibited an initially intense permeation ''spike'' followed by an exponential decrease to low steady-state values. That spike was not evident in the V-15Cr-5Ti experiments. Steady-state permeation was highest in the vanadium alloy and lowest in the austenitic steel. Though permeation rates in the HT-9 were lower than those in V-15Cr-5Ti, permeation transients were much faster in HT-9 than in other materials tested. Ion-beam sputtering of the surface in the steel experiments resulted in enhanced remission at the front surface, whereas in the vanadium tests, recombination and diffusivity both appeared to diminish as the deuterium concentration rose. This may be due to a phase change in the material. We conclude that for conditions comparable to those of these experiments, tritium retention and loss in first wall structures made of steels will be less than in structures made of V-15Cr-5Ti

  19. Hydrogen permeation modification of 4140 steel by ion nitriding with pulsed plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzoni, P.; Ortiz, M. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Bruehl, S.P.; Gomez, B.J.A.; Feugeas, J.N. [Inst. de Fisica Rosario (UNR-CONICET), Rosario (Argentina); Nosei, L. [Inst. de Mecanica Aplicada y Estructuras (UNR), Rosario (Argentina)

    1998-11-10

    It is widely known that the hydrogen in steel produces embrittlement. This effect may cause the failure of the elements (confining walls, mechanical parts, etc.) whose surfaces are in contact with this gas or with processes in which hydrogen is continuously generated. In this work it is shown that the ion nitriding of the surface of AISI 4140 is a good mechanism to act as a barrier against hydrogen permeation in its bulk. The ion nitriding was performed using a square wave DC glow discharge. The development of a compound layer of iron nitrides was observed as the cause of the hydrogen permeation reduction. For equal duration of treatment, thicker compound layers were developed in higher discharge/post-discharge ratios in the square wave of the applied voltage onto the sample (cathode), with a greater reduction of hydrogen permeation coefficient as a consequence. Nevertheless, the permeation was not reduced to zero in any of the treatment conditions used. The results of the analysis of the permeation tests and the image of the photomicrographs showed that the existence of cracks, fractures, failures, etc. in the compound layer (pre-existing in the AISI 4140 steel) could be the cause of the residual hydrogen permeation. This can be attributed to the movement of the hydrogen through these defects diffusing through the original {alpha}-Fe phase of the non-treated steel. (orig.) 11 refs.

  20. Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells

    Science.gov (United States)

    Zhang, Yuguang; Wen, Jihong; Zhao, Honggang; Yu, Dianlong; Cai, Li; Wen, Xisen

    2013-08-01

    We present the experimental realization and theoretical understanding of membrane-type acoustic metamaterials embedded with different masses at adjacent cells, capable of increasing the transmission loss at low frequency. Owing to the reverse vibration of adjacent cells, Transmission loss (TL) peaks appear, and the magnitudes of the TL peaks exceed the predicted results of the composite wall. Compared with commonly used configuration, i.e., all cells carrying with identical mass, the nonuniformity of attaching masses causes another much low TL peak. Finite element analysis was employed to validate and provide insights into the TL behavior of the structure.

  1. Effect of Different Skin Penetration Promoters in Halobetasol Propionate Permeation and Retention in Human Skin

    Directory of Open Access Journals (Sweden)

    Paulina Carvajal-Vidal

    2017-11-01

    Full Text Available Halobetasol propionate (HB is a potent synthetic corticosteroid used against inflammatory skin diseases, such as dermatitis, eczema, and psoriasis, among others. The aim of this study is to define how the presence of different skin penetration enhancers (nonane, menthone, limonene, azone, carene, decanol, linoleic acid and cetiol affects the penetration and retention in skin of HB. To determine drug penetration through skin, 5% of each promoter was used in an ex vivo system with human skin on Franz cells. The results showed that the highest permeation occurs in the presence of menthone, followed by nonane. Permeation parameters were determined. The in vivo test was assessed, and the formulation containing HB-menthone presented better anti-inflammatory efficacy. These results are useful to generate a specific treatment according to each patient’s needs, and the inflammatory characteristics of the disease.

  2. Development of a plasma driven permeation experiment for TPE

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, Dean, E-mail: dabuche@sandia.gov [Sandia National Laboratories, Livermore, CA (United States); Kolasinski, Robert [Sandia National Laboratories, Livermore, CA (United States); Shimada, Masa [Idaho National Laboratory, Idaho Falls, ID (United States); Donovan, David [Sandia National Laboratories, Livermore, CA (United States); Youchison, Dennis [Sandia National Laboratories, Albuquerque, NM (United States); Merrill, Brad [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-10-15

    Highlights: • We have designed and fabricated a novel tritium permeation membrane holder for use in the Tritium Plasma Experiment (TPE). • The membrane temperature is controlled by varying the cooling flow rate and proximity of a spiral cooling channel. • Sealing tests have demonstrated adequate helium leak rates up to temperatures of 1000 °C. • Flow modeling indicates a minimal helium pressure drop across the membrane holder (<700 Pa). • Thermal modeling shows good heat removal and minimal membrane temperature variation (±2%) even up to peak TPE ion fluxes. - Abstract: Experiments on retention of hydrogen isotopes (including tritium) at temperatures less than 800 °C have been carried out in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory [1,2]. To provide a direct measurement of plasma driven permeation in plasma facing materials at temperatures reaching 1000 °C, a new TPE membrane holder has been built to hold test specimens (≤1 mm in thickness) at high temperature while measuring tritium permeating through the membrane from the plasma facing side. This measurement is accomplished by employing a carrier gas that transports the permeating tritium from the backside of the membrane to ion chambers giving a direct measurement of the plasma driven tritium permeation rate. Isolation of the membrane cooling and sweep gases from TPE's vacuum chamber has been demonstrated by sealing tests performed up to 1000 °C of a membrane holder design that provides easy change out of membrane specimens between tests. Simulations of the helium carrier gas which transports tritium to the ion chamber indicate a very small pressure drop (∼700 Pa) with good flow uniformity (at 1000 sccm). Thermal transport simulations indicate that temperatures up to 1000 °C are expected at the highest TPE fluxes.

  3. Development of a plasma driven permeation experiment for TPE

    International Nuclear Information System (INIS)

    Buchenauer, Dean; Kolasinski, Robert; Shimada, Masa; Donovan, David; Youchison, Dennis; Merrill, Brad

    2014-01-01

    Highlights: • We have designed and fabricated a novel tritium permeation membrane holder for use in the Tritium Plasma Experiment (TPE). • The membrane temperature is controlled by varying the cooling flow rate and proximity of a spiral cooling channel. • Sealing tests have demonstrated adequate helium leak rates up to temperatures of 1000 °C. • Flow modeling indicates a minimal helium pressure drop across the membrane holder (<700 Pa). • Thermal modeling shows good heat removal and minimal membrane temperature variation (±2%) even up to peak TPE ion fluxes. - Abstract: Experiments on retention of hydrogen isotopes (including tritium) at temperatures less than 800 °C have been carried out in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory [1,2]. To provide a direct measurement of plasma driven permeation in plasma facing materials at temperatures reaching 1000 °C, a new TPE membrane holder has been built to hold test specimens (≤1 mm in thickness) at high temperature while measuring tritium permeating through the membrane from the plasma facing side. This measurement is accomplished by employing a carrier gas that transports the permeating tritium from the backside of the membrane to ion chambers giving a direct measurement of the plasma driven tritium permeation rate. Isolation of the membrane cooling and sweep gases from TPE's vacuum chamber has been demonstrated by sealing tests performed up to 1000 °C of a membrane holder design that provides easy change out of membrane specimens between tests. Simulations of the helium carrier gas which transports tritium to the ion chamber indicate a very small pressure drop (∼700 Pa) with good flow uniformity (at 1000 sccm). Thermal transport simulations indicate that temperatures up to 1000 °C are expected at the highest TPE fluxes

  4. Skin permeation enhancement effects of the gel and whole-leaf materials of Aloe vera, Aloe marlothii and Aloe ferox.

    Science.gov (United States)

    Fox, Lizelle T; Gerber, Minja; du Preez, Jan L; du Plessis, Jeanetta; Hamman, Josias H

    2015-01-01

    The aim of this study was to investigate the in-vitro permeation enhancement effects of the gel and whole-leaf materials of Aloe vera, Aloe marlothii and Aloe ferox using ketoprofen as a marker compound. The permeation studies were conducted across excised female abdominal skin in Franz diffusion cells, and the delivery of ketoprofen into the stratum corneum-epidermis and epidermis-dermis layers of the skin was investigated using a tape-stripping technique. A. vera gel showed the highest permeation-enhancing effect on ketoprofen (enhancement ratio or ER = 2.551) when compared with the control group, followed by A. marlothii gel (ER = 1.590) and A. ferox whole-leaf material (ER = 1.520). Non-linear curve fitting calculations indicated that the drug permeation-enhancing effect of A. vera gel can be attributed to an increased partitioning of the drug into the skin, while A. ferox whole leaf modified the diffusion characteristics of the skin for ketoprofen. The tape stripping results indicated that A. marlothii whole leaf delivered the highest concentration of the ketoprofen into the different skin layers. Of the selected aloe species investigated, A. vera gel material showed the highest potential as transdermal drug penetration enhancer across human skin. © 2014 Royal Pharmaceutical Society.

  5. Synthesis of conjugated chitosan and its effect on drug permeation from transdermal patches.

    Science.gov (United States)

    Satheeshababu, B K; Shivakumar, K L

    2013-03-01

    The aim of this study was to synthesis the conjugated chitosan by covalent attachment of thiol moieties to the cationic polymer, mediated by a carbodiimide to improve permeation properties of chitosan. Thioglycolic acid was covalently attached to chitosan by the formation of amide bonds between the primary amino groups of the polymer and the carboxylic acid groups of thioglycolic acid. Hence, these polymers are called as thiomers or thiolated polymers. Conjugation of chitosan was confirmed by Fourier transform-infrared and differential scanning calorimetric analysis. Matrix type transdermal patches of carvedilol were prepared using the different proportions of chitosan and chitosan-thioglycolic acid conjugates (2:0, 1.7:0.3, 1.4:0.6, 1:1, 0.6:1.4 and 0.3:1.7) by solvent casting technique. Prepared matrix type patches were evaluated for their physicochemical characterization followed by in vitro evaluation. Selected formulations were subjected for their ex vivo studies on Wistar albino rat skin and human cadaver skin using the modified Franz diffusion cell. As the proportion of conjugated chitosan increased, the transdermal patches showed increased drug permeation. The mechanism of drug release was found to be nonFickian profiles. The present study concludes that the transdermal patches of carvedilol using conjugated chitosan with different proportions of chitosan were successfully developed to provide improved drug permeation. The transdermal patches can be a good approach to improve drug bioavailability by bypassing the extensive hepatic first-pass metabolism of the drug.

  6. Water Vapor Permeation of Metal Oxide/Polymer Coated Plastic Films

    Science.gov (United States)

    Numata, Yukihiro; Oya, Toshiyuki; Kuwahara, Mitsuru; Ito, Katsuya

    Barrier performance to water vapor permeation of ceramic coated layers deposited on flexible polymer films is of great interest to food packaging, medical device packaging and flat panel display industries. In this study, a new type film in which a ceramic layer is deposited on a polymer coated film was proposed for lower water vapor permeation. It is important how to control interfacial properties between each layer and film for good barrier performance. Several kinds of polymer coated materials were prepared for changing surface free energy of the films before and after depositing the ceramic layer. The ceramic layer, which is composed of mixed material of SiO2 and Al2O3, was adopted under the same conditions. The following results were obtained; 1) Water vapor permeation is not related to the surface energy of polymer coated films, 2) After depositing the ceramic layer, however, a strong correlation is observed between the water vapor permeation and surface free energy. 3) The phenomenon is considered that the polarity of the polymer layers plays a key role in changing the structure of ceramic coated layers.

  7. Mechanisms of oxygen permeation through plastic films and barrier coatings

    International Nuclear Information System (INIS)

    Wilski, Stefan; Wipperfürth, Jens; Jaritz, Montgomery; Kirchheim, Dennis; Dahlmann, Rainer; Hopmann, Christian; Mitschker, Felix; Awakowicz, Peter

    2017-01-01

    Oxygen and water vapour permeation through plastic films in food packaging or other applications with high demands on permeation are prevented by inorganic barrier films. Most of the permeation occurs through small defects (<3 µ m) in the barrier coating. The defects were visualized by etching with reactive oxygen in a capacitively coupled plasma and subsequent SEM imaging. In this work, defects in SiO x -coatings deposited by plasma-enhanced chemical vapour deposition on polyethylene terephthalate (PET) are investigated and the mass transport through the polymer is simulated in a 3D approach. Calculations of single defects showed that there is no linear correlation between the defect area and the resulting permeability. The influence of adjacent defects in different distances was observed and led to flow reduction functions depending on the defect spacing and defect area. A critical defect spacing where no interaction between defects occurs was found and compared to other findings. According to the superposition principle, the permeability of single defects was added up and compared to experimentally determined oxygen permeation. The results showed the same trend of decreasing permeability with decreasing defect densities. (paper)

  8. Acoustic cloaking and transformation acoustics

    International Nuclear Information System (INIS)

    Chen Huanyang; Chan, C T

    2010-01-01

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  9. Assessment of permeation of lipoproteins in human carotid tissue

    Science.gov (United States)

    Ghosn, Mohamad G.; Syed, Saba H.; Leba, Michael; Morrisett, Joel D.; Tuchin, Valery V.; Larin, Kirill V.

    2010-02-01

    Cardiovascular disease is among the leading causes of death in the United States. Specifically, atherosclerosis is an increasingly devastating contributor to the tally and has been found to be a byproduct of arterial permeability irregularities in regards to lipoprotein penetration. To further explore arterial physiology and molecular transport, the imaging technique of Optical Coherence Tomography (OCT) was employed. With OCT, the permeation of glucose (MW = 180 Da), low density lipoprotein (LDL; MW = 2.1 × 106 Da), and high density lipoprotein (HDL; MW = 2.5 × 105 Da) in human carotid tissue was studied to determine the effect of different molecular characteristics on permeation in atherosclerotic tissues. The permeability rates calculated from the diffusion of the molecular agents into the abnormal carotid tissue samples is compared to those of normal, healthy tissue. The results show that in the abnormal tissue, the permeation of agents correlate to the size constraints. The larger molecules of LDL diffuse the slowest, while the smallest molecules of glucose diffuse the fastest. However, in normal tissue, LDL permeates at a faster rate than the other two agents, implying the existence of a transport mechanism that facilitates the passage of LDL molecules. These results highlight the capability of OCT as a sensitive and specific imaging technique as well as provide significant information to the understanding of atherosclerosis and its effect on tissue properties.

  10. A portable Raman acoustic levitation spectroscopic system for the identification and environmental monitoring of algal cells.

    Science.gov (United States)

    Wood, Bayden R; Heraud, Philip; Stojkovic, Slobodanka; Morrison, Danielle; Beardall, John; McNaughton, Don

    2005-08-01

    We report the coupling of a portable Raman spectrometer to an acoustic levitation device to enable environmental monitoring and the potential taxonomic identification of microalgae. Spectra of living cells were recorded at 785 nm using a fiber-optic probe coupled to a portable Raman spectrometer. The spectra exhibit an excellent signal-to-noise ratio and clearly show bands from chlorophyll a and beta-carotene. Spectra of levitated photobleached microalgae clearly show a reduction in chlorophyll a concentration relative to beta-carotene after 10 min of exposure to a quartz halogen lamp. Spectra recorded from levitated nitrogen-limited cells also show a significant reduction in bands associated with chlorophyll a, as compared to nitrogen-replete cells. To investigate the diagnostic capability of the technique, four species of microalgae were analyzed. Good quality spectra of all four species were obtained showing varying ratios of beta-carotene to chlorophyll. The combination of an acoustic levitation device and a portable Raman spectrometer shows potential as a taxonomic and environmental monitoring tool with direct application to field studies in remote environments.

  11. Effects of hypothyroidism on vascular /sup 125/I-albumin permeation and blood flow in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, R.G.; Pugliese, G.; Chang, K.; Speedy, A.; Province, M.A.; Kilo, C.; Williamson, J.R.

    1989-05-01

    Effects of hypothyroidism on vascular 125I-albumin permeation and on blood flow were assessed in multiple tissues of male Sprague-Dawley rats rendered hypothyroid by dietary supplementation with 0.5% (wt/wt) 2-thiouracil or by thyroidectomy. In both thiouracil-treated and thyroidectomized rats, body weights, kidney weight, arterial blood pressure, and pulse rate were decreased significantly v age-matched controls. After 10 to 12 weeks of thiouracil treatment, 125I-albumin permeation was increased significantly in the kidney, aorta, eye (anterior uvea, choroid, retina), skin, and new granulation tissue, remained unchanged in brain, sciatic nerve, and heart, and was decreased in forelimb skeletal muscle. A similar pattern was observed in thyroidectomized rats, except that increases in 125I-albumin permeation for all tissues were smaller than those observed in thiouracil-treated rats, and 125I-albumin permeation in retina did not differ from controls. In both thiouracil-treated and thyroidectomized rats, changes in blood flow (assessed with 15-microns, 85Sr-labeled microspheres) relative to the decrease in arterial blood pressure were indicative of a decrease in regional vascular resistance except in the choroid and in the kidney, in which vascular resistance was increased significantly. Glomerular filtration rate was decreased, but filtration fraction and urinary excretion of albumin remained unchanged by thiouracil treatment and thyroidectomy. These results indicate that vascular hemodynamics and endothelial cell barrier functional integrity are modulated in many different tissues by the thyroid. In view of the correspondence of hypothyroid- and diabetes-induced vascular permeability changes, these results raise the possibility that altered thyroid function in diabetes may play a role in the pathogenesis of diabetic vascular disease.

  12. Effect of argon ion sputtering of surface on hydrogen permeation through vanadium

    International Nuclear Information System (INIS)

    Yamawaki, Michio; Namba, Takashi; Yoneoka, Toshiaki; Kanno, Masayoshi; Shida, Koji.

    1983-01-01

    In order to measure the hydrogen permeation rate through V with atomically cleaned surface, an Ar ion sputtering apparatus has been installed in the hydrogen permeability measuring system. The permeation rate of the initial specimen was found to be increased by about one order of magnitude after Ar ion sputtering of its upstream side surface. Repeating of such a sputter-cleaning was not so much effective in increasing the steady state permeation rate as the initial sputtering was, but it accelerated the transient response rate by a factor of 2 or 3. The transient response rate was also accelerated by the increase of hydrogen pressure, but this effect tended to be diminished by the sputter-cleaning of specimen surface. The surface impurity layer on the downstream side of specimen was also inferred to act as a diffusion barrier affecting the steady state permeation rate. The present value of activation energy for hydrogen permeation through V at temperatures below 873K was the smallest one ever obtained, showing that the surface effect was minimized in the present study on account of the surface sputter-cleaning in addition to the ultra high vacuum system. (author)

  13. The tomography inside of a Fourier Optics course: some opto-mechanical illustrative arrays

    International Nuclear Information System (INIS)

    Rodriguez Z, G.; Rodriguez V, R.; Luna C, A.

    1999-01-01

    The introduction of tomography as an advanced topic to be included in a Fourier optics course at graduated level is proposed. It is shown a possible presentation sequence which features the use of typical Fourier optics techniques, as well as some well known opto-mechanical devices as examples. Finally, a simplified apparatus which illustrates the central Fourier theorem as an experimental project on Fourier optics is described. Corresponding experimental results are also shown. (Author)

  14. Control of tritium permeation through fusion reactor strucural materials

    International Nuclear Information System (INIS)

    Maroni, V.A.

    1978-01-01

    The intention of this paper is to provide a brief synopsis of the status of understanding and technology pertaining to the dissolution and permeation of tritium in fusion reactor materials. The following sections of this paper attempt to develop a simple perspective for understanding the consequences of these phenomena and the nature of the technical methodology being contemplated to control their impact on fusion reactor operation. Considered in order are: (1) the occurrence of tritium in the fusion fuel cycle, (2) a set of tentative criteria to guide the analysis of tritium containment and control strategies, (3) the basic mechanisms by which tritium may be released from a fusion plant, and (4) the methods currently under development to control the permeation-related release mechanisms. To provide background and support for these considerations, existing solubility and permeation data for the hydrogen isotopes are compared and correlated under conditions to be expected in fusion reactor systems

  15. RF plasma-driven hydrogen permeation through a biased iron membrane

    International Nuclear Information System (INIS)

    Banno, T.; Waelbroeck, F.; Winter, J.

    1984-01-01

    The steady-state RF plasma-driven hydrogen permeation through an electrically biased iron membrane has been investigated as a function of the bias potential Vsub(M) for membrane temperatures in the range of 150-400 0 C. Vsub(M) has been gradually increased positively from the floating potential of the membrane. The permeation flux decreases when Vsub(M) increases at low voltages: positive hydrogen ions are repelled. The membrane temperature does not influence this effect measurably. The permeation flux starts to increase when Vsub(M) is raised higher, i.e. when energetic electrons strike the surface. This phenomenon shows a pronounced temperature dependence - the enhancement is largest for the lowest temperatures. The effect is interpreted in terms of an electron-induced dissociation of hydrogen molecules on the membrane surface. (orig.)

  16. Tritium permeation evaluation through vertical target of divertor based on recent tritium transport properties

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Nishi, Masataka

    2003-11-01

    Re-evaluation of tritium permeation through vertical target of divertor under the ITER operation condition was carried out using tritium properties in the candidate materials such as the diffusion coefficient and the trapping factors in tungsten for armor, and the surface recombination coefficient on copper for the heat sink obtained by authours' recent investigation (authors' data), which simulated the plasma-facing conditions of ITER. Evaluation with the data set of previous evaluation was also carried out for comparison (previous data). The permeation analysis was carried out individually by classifying into the armor region (Carbon Fiber Composites and tungsten) and the slit region without armor (3% of armor surface area) assuming the incident flux and temperature for each region. As the results of the permeation analysis, estimated permeation amount with the authors' data was one order less than that with the previous data at the end of lifetime of the divertor due to authors' small diffusion coefficient of tritium in tungsten. It also indicated the possibility that permeation through the slit region of the armor tiles could dominate total permeation through the vertical target, since tritium permeation amount through tungsten armor with the authors' data was estimated to be reduced drastically smaller than that with the previous evaluation data. The result of a little tritium permeation amount through the vertical target with the authors' data ensured the conservatism of the current evaluation of tritium concentration in the primary cooling water in ITER divertor, as it indicated the possibility of direct drainage of the divertor primary cooling water. (author)

  17. A permeation theory for single-file ion channels: one- and two-step models.

    Science.gov (United States)

    Nelson, Peter Hugo

    2011-04-28

    How many steps are required to model permeation through ion channels? This question is investigated by comparing one- and two-step models of permeation with experiment and MD simulation for the first time. In recent MD simulations, the observed permeation mechanism was identified as resembling a Hodgkin and Keynes knock-on mechanism with one voltage-dependent rate-determining step [Jensen et al., PNAS 107, 5833 (2010)]. These previously published simulation data are fitted to a one-step knock-on model that successfully explains the highly non-Ohmic current-voltage curve observed in the simulation. However, these predictions (and the simulations upon which they are based) are not representative of real channel behavior, which is typically Ohmic at low voltages. A two-step association/dissociation (A/D) model is then compared with experiment for the first time. This two-parameter model is shown to be remarkably consistent with previously published permeation experiments through the MaxiK potassium channel over a wide range of concentrations and positive voltages. The A/D model also provides a first-order explanation of permeation through the Shaker potassium channel, but it does not explain the asymmetry observed experimentally. To address this, a new asymmetric variant of the A/D model is developed using the present theoretical framework. It includes a third parameter that represents the value of the "permeation coordinate" (fractional electric potential energy) corresponding to the triply occupied state n of the channel. This asymmetric A/D model is fitted to published permeation data through the Shaker potassium channel at physiological concentrations, and it successfully predicts qualitative changes in the negative current-voltage data (including a transition to super-Ohmic behavior) based solely on a fit to positive-voltage data (that appear linear). The A/D model appears to be qualitatively consistent with a large group of published MD simulations, but no

  18. Interference-induced angle-independent acoustical transparency

    International Nuclear Information System (INIS)

    Qi, Lehua; Yu, Gaokun; Wang, Ning; Wang, Xinlong; Wang, Guibo

    2014-01-01

    It is revealed that the Fano-like interference leads to the extraordinary acoustic transmission through a slab metamaterial of thickness much smaller than the wavelength, with each unit cell consisting of a Helmholtz resonator and a narrow subwavelength slit. More importantly, both the theoretical analysis and experimental measurement show that the angle-independent acoustical transparency can be realized by grafting a Helmholtz resonator and a quarter-wave resonator to the wall of a narrow subwavelength slit in each unit cell of a slit array. The observed phenomenon results from the interferences between the waves propagating in the slit, those re-radiated by the Helmholtz resonator, and those re-radiated by the quarter-wave resonator. The proposed design may find its applications in designing angle-independent acoustical filters and controlling the phase of the transmitted waves

  19. Broadband unidirectional acoustic cloak based on phase gradient metasurfaces with two flat acoustic lenses

    Science.gov (United States)

    Wang, Xiao-Peng; Wan, Le-Le; Chen, Tian-Ning; Song, Ai-Ling; Wang, Fang

    2016-07-01

    Narrow bandwidth and bulky configuration are the main obstacles for the realization and application of invisible cloaks. In this paper, we present an effective method to achieve broadband and thin acoustic cloak by using an acoustic metasurface (AMS). In order to realize this cloak, we use slitted unit cells to design the AMS due to the advantage of less energy loss, broad operation bandwidth, and subwavelength thickness. According to the hyperboloidal phase profile along the AMS, the incident plane waves can be focused at a designed focal spot by the flat lens. Furthermore, broadband acoustic cloak is obtained by combining two identical flat lenses. The incident plane waves are focused at the center point in between of the two lenses by passing through one lens, and then recovered by passing through the other one. However, they cannot reach the cloaked regions in between of the two lenses. The simulation results can verify the non-detectability effect of the acoustic cloak. Our study results provide an available and simple approach to experimentally achieve the acoustic cloak, which can be used in acoustic non-detectability for large objects.

  20. In Vitro Skin Permeation Enhancement of Sumatriptan by Microneedle Application.

    Science.gov (United States)

    Nalluri, Buchi N; Anusha, Sai Sri V; Bramhini, Sri R; Amulya, J; Sultana, Ashraf S K; Teja, Chandra U; Das, Diganta B

    2015-01-01

    Different dimensions of commercially available microneedle devices, namely, Admin- Patch(®) microneedle arrays (MN) (0.6, 0.9, 1.2 and 1.5 mm lengths) and Dermaroller(®) microneedle rollers (DR) (0.5 and 1mm lengths) were evaluated for their relative efficiency in enhancement of transdermal permeation of Sumatriptan (SMT). Solubility assessment of SMT was carried out using propylene glycol (PG), polyethylene glycol (PEG) in combination with saline (S) at different ratios and the order of solubility was found to be 70:30 > 80:20 > 90:10 %v/v in both PG:S and PEG:S. In vitro skin permeation studies were performed using PG:S (70:30 %v/v) as donor vehicle. A significant increase in cumulative amount of SMT permeated, steady state flux, permeability coefficient and diffusion coefficient values were observed after microneedle treatment, and the values were in the order of 1.5mm MN >1.2mm MN >0.9mm MN >1mm DR >0.6mm MN >0.5mm DR > passive permeation. Lag times were significantly shorter after longer microneedle application (0.24h for 1.5mm MN). Arrays were found to be superior to rollers with similar microneedle lengths in enhancing SMT permeation and may be attributed to higher density of microneedles and force of application onto skin. The in vitro flux values revealed that 2.5cm(2) area patch is sufficient for effective therapy after treatment of skin with 1.5mm MN. It may be inferred that microneedle application significantly enhances the transdermal penetration of SMT and that it may be feasible to deliver clinically relevant therapeutic levels of SMT using microneedle assisted transdermal delivery systems.

  1. Seawater ultrafiltration fouling control: Backwashing with demineralized water/SWRO permeate

    KAUST Repository

    Li, Sheng; Heijman, Sebastiaan G J; Verberk, J. Q J C; Amy, Gary L.; Van Dijk, Johannis C.

    2012-01-01

    In this study, the effect of demineralized water backwashing on fouling control of seawater ultrafiltration was investigated. Seawater from Scheveningen beach in The Hague and a desalination plant of Evides Company at Zeeland in the Netherlands was used as feed water, while demineralized water and UF permeate were used as backwash water for a fouling control efficiency comparison under different fluxes and backwash durations. Furthermore, demineralized waters with 5 or 50 mmol/l NaCl were applied for backwashing as well, to check the influence of monovalent cations on UF fouling control. Additionally, SWRO permeate was used for backwashes in long-term experiments to check the possibility of it replacing demineralized water. Results show that seawater UF fouling control is substantially improved by demineralized water backwashing. However, due to the high salinity of seawater, more water was required to dilute the cation concentration and limit the dispersion effect near the membrane surface than was needed for surface water. A 2-min demineralized water backwash showed better fouling control efficiency than a 1-min backwash. Furthermore, the presence of monovalent cations in the backwash water deteriorated the fouling control efficiency of the backwash, indicating the existence of a charge screening effect. The demineralized water with 5 and 50 mmol/l NaCl both showed a similar fouling control efficiency which is better than the UF permeate backwash. The calcium ions in UF permeate probably deteriorates the fouling control efficiency by maintaining a Ca-bridging effect between the membranes and NOM. SWRO permeate backwashing successfully controls membrane fouling as well. © 2012 Elsevier B.V. All rights reserved.

  2. Seawater ultrafiltration fouling control: Backwashing with demineralized water/SWRO permeate

    KAUST Repository

    Li, Sheng

    2012-09-01

    In this study, the effect of demineralized water backwashing on fouling control of seawater ultrafiltration was investigated. Seawater from Scheveningen beach in The Hague and a desalination plant of Evides Company at Zeeland in the Netherlands was used as feed water, while demineralized water and UF permeate were used as backwash water for a fouling control efficiency comparison under different fluxes and backwash durations. Furthermore, demineralized waters with 5 or 50 mmol/l NaCl were applied for backwashing as well, to check the influence of monovalent cations on UF fouling control. Additionally, SWRO permeate was used for backwashes in long-term experiments to check the possibility of it replacing demineralized water. Results show that seawater UF fouling control is substantially improved by demineralized water backwashing. However, due to the high salinity of seawater, more water was required to dilute the cation concentration and limit the dispersion effect near the membrane surface than was needed for surface water. A 2-min demineralized water backwash showed better fouling control efficiency than a 1-min backwash. Furthermore, the presence of monovalent cations in the backwash water deteriorated the fouling control efficiency of the backwash, indicating the existence of a charge screening effect. The demineralized water with 5 and 50 mmol/l NaCl both showed a similar fouling control efficiency which is better than the UF permeate backwash. The calcium ions in UF permeate probably deteriorates the fouling control efficiency by maintaining a Ca-bridging effect between the membranes and NOM. SWRO permeate backwashing successfully controls membrane fouling as well. © 2012 Elsevier B.V. All rights reserved.

  3. Hydrogen permeation through sol-gel-coated iron during galvanostatic charging

    International Nuclear Information System (INIS)

    Zakorchemna, I.; Carmona, N.; Zakroczymski, T.

    2008-01-01

    One-layer sol-gel silica-zirconia and two-layer silica-zirconia and zirconia coatings were deposited on one side of iron membranes by spin-coating, densified in air and annealed up to 800 deg. C in vacuum. Hydrogen permeation through the membranes, coated and uncoated, polarised cathodically under galvanostatic control in 0.1 M NaOH solution was studied using the electrochemical permeation technique. During the initial period, the effect of the sol-gel coatings was insignificant. However, the coatings quite efficiently prevented the iron surface become more active to hydrogen entry during a long-lasting cathodic polarisation. In addition, the electrochemical-corrosion behaviour of the coated iron and the effect of the sol-gel coatings on the effective diffusivity of hydrogen in the coated membranes were studied. On the basis of the polarisation curves and the hydrogen permeation data it was proved that the sol-gel coatings blocked the iron surface for the hydrogen evolution reaction and, consequently, for the hydrogen entry into iron. The effective coating coverage was determined by comparison of the hydrogen fluxes permeating the coated and uncoated membranes. Finally the real concentration of hydrogen beneath the uncoated iron sites and the amount of hydrogen stored in a membrane were evaluated

  4. Dissolution and permeation characteristics of artemether tablets ...

    African Journals Online (AJOL)

    characterized by delayed drug release but enhanced permeation of the released drug. Keywords: ... and prosopis gum as binders and to consider the relationship between ..... higher tensile strength and higher brittle fracture index compared ...

  5. cell-BOCS: Bio-Optofluidics Cell Sorter

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Bañas, Andrew Rafael

    Within the framework of the recent DTU spin-out activity OptoRobotix we are developing an active cell sorter [1] that utilizes parallel microscopic machine vision for cell identification. Particles are identified based on visual features such as shape, size and color using image processing...... a large field of view, allowing them to be displaed from one laminar flow region to another. As the sorting motion is transverse to the viewing plane, multiple particles can be catapulted at the same time, therefore enabling a fully parallel sorting process [4, 5]. The cell-BOCS is developed with small...

  6. Permeation of platinum and rhodium nanoparticles through intact and damaged human skin

    International Nuclear Information System (INIS)

    Mauro, Marcella; Crosera, Matteo; Bianco, Carlotta; Adami, Gianpiero; Montini, Tiziano; Fornasiero, Paolo; Jaganjac, Morana; Bovenzi, Massimo; Filon, Francesca Larese

    2015-01-01

    The aim of the study was to evaluate percutaneous penetration of platinum and rhodium nanoparticles (PtNPs: 5.8 ± 0.9 nm, RhNPs: 5.3 ± 1.9 nm) through human skin. Salts compounds of these metals are sensitizers and some also carcinogenic agents. In vitro permeation experiments were performed using Franz diffusion cells with intact and damaged skin. PtNPs and RhNPs, stabilized with polyvinylpyrrolidone, were synthesized by reduction of Na 2 PtC l6 and RhCl 3 ·3H 2 O respectively. Suspensions with a concentration of 2.0 g/L of PtNPs and RhNPs were dispersed separately in synthetic sweat at pH 4.5 and applied as donor phases to the outer surface of the skin for 24 h. Measurements of the content of the metals in the receiving solution and in the skin were performed subsequently. Rhodium skin permeation was demonstrated through damaged skin, with a permeation flux of 0.04 ± 0.04 μg cm −2  h −1 and a lag time of 7.9 ± 1.1 h, while no traces of platinum were found in receiving solutions. Platinum and rhodium skin-analysis showed significantly higher concentrations of the metals in damaged skin. Rh and Pt applied as NPs can penetrate the skin barrier and Rh can be found in receiving solutions. These experiments pointed out the need for skin contamination prevention, since even a minor injury to the skin barrier can significantly increase penetration

  7. Permeation of platinum and rhodium nanoparticles through intact and damaged human skin

    Energy Technology Data Exchange (ETDEWEB)

    Mauro, Marcella [University of Trieste, Clinical Unit of Occupational Medicine, Department of Medical Sciences (Italy); Crosera, Matteo; Bianco, Carlotta; Adami, Gianpiero; Montini, Tiziano; Fornasiero, Paolo [University of Trieste, Department of Chemical and Pharmaceutical Sciences (Italy); Jaganjac, Morana [Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Department of Molecular Medicine (Croatia); Bovenzi, Massimo; Filon, Francesca Larese, E-mail: larese@units.it [University of Trieste, Clinical Unit of Occupational Medicine, Department of Medical Sciences (Italy)

    2015-06-15

    The aim of the study was to evaluate percutaneous penetration of platinum and rhodium nanoparticles (PtNPs: 5.8 ± 0.9 nm, RhNPs: 5.3 ± 1.9 nm) through human skin. Salts compounds of these metals are sensitizers and some also carcinogenic agents. In vitro permeation experiments were performed using Franz diffusion cells with intact and damaged skin. PtNPs and RhNPs, stabilized with polyvinylpyrrolidone, were synthesized by reduction of Na{sub 2}PtC{sub l6} and RhCl{sub 3}·3H{sub 2}O respectively. Suspensions with a concentration of 2.0 g/L of PtNPs and RhNPs were dispersed separately in synthetic sweat at pH 4.5 and applied as donor phases to the outer surface of the skin for 24 h. Measurements of the content of the metals in the receiving solution and in the skin were performed subsequently. Rhodium skin permeation was demonstrated through damaged skin, with a permeation flux of 0.04 ± 0.04 μg cm{sup −2} h{sup −1} and a lag time of 7.9 ± 1.1 h, while no traces of platinum were found in receiving solutions. Platinum and rhodium skin-analysis showed significantly higher concentrations of the metals in damaged skin. Rh and Pt applied as NPs can penetrate the skin barrier and Rh can be found in receiving solutions. These experiments pointed out the need for skin contamination prevention, since even a minor injury to the skin barrier can significantly increase penetration.

  8. Crystallization and deuterium permeation behaviors of yttrium oxide coating prepared by metal organic decomposition

    Directory of Open Access Journals (Sweden)

    Takumi Chikada

    2016-12-01

    Full Text Available Yttrium oxide coatings were fabricated on reduced activation ferritic/martensitic steels by metal organic decomposition with a dip-coating technique, and their deuterium permeation behaviors were investigated. The microstructure of the coatings varied with heat-treatment temperature: amorphous at 670ºC (amorphous coating and crystallized at 700ºC (crystallized coating. Deuterium permeation flux of the amorphous coating was lower than the uncoated steel by a factor of 5 at 500ºC, while that of the crystallized coating was lower by a factor of around 100 at 400‒550ºC. The permeation fluxes of both coatings were drastically decreased during the measurements at higher temperatures by a factor of up to 790 for the amorphous coating and 1000 for the crystallized one, indicating a microstructure modification occurred by an effect of test temperature with hydrogen flux. Temperature dependence of deuterium diffusivity in the coatings suggests that the decrease of the permeation flux has been derived from a decrease of the diffusivity. Characteristic permeation behaviors were observed with different annealing conditions; however, they can be interpreted using the permeation mechanism clarified in the previous erbium oxide coating studies.

  9. Improved permeation barriers for tritiated waste packaging

    International Nuclear Information System (INIS)

    Vassallo, G.; Van Den Bergh, R.; Forcey, K.S.; Perujo, A.

    1994-01-01

    High-density polyethylene (HDPE) is extensively used as flexible bagging or packaging for soft tritiated waste in the tritium community because of its low permeability to the more radiotoxic form of tritium, i.e., tritiated water (HTO). However, HDPE does not represent a perfect barrier to HTO nor does it effectively hinder the permeation of elemental tritium, i.e, HT. This latter drawback is particularly important considering that the elemental form may readily convert to HTO outside of the waste package. The possible use of a multilayer film as packing material for the conditioning of tritiated waste is assessed, and its capability to hinder the permeation of elemental tritium is measured and compared with that of bare HDPE. The material investigated is readily available from the food industry. 5 refs., 1 tab

  10. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    International Nuclear Information System (INIS)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant

    2013-01-01

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide-co-glycolide) (PLGA) microparticles (size 1–4 μm, encapsulation efficiency 80–85 %) and nanoparticles (size 151.6 ± 28.6 nm, encapsulation efficiency 92.17 ± 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  11. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant, E-mail: pmishra@dbeb.iitd.ac.in [Indian Institute of Technology Delhi, Department of Biochemical Engineering and Biotechnology (India)

    2013-03-15

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide-co-glycolide) (PLGA) microparticles (size 1-4 {mu}m, encapsulation efficiency 80-85 %) and nanoparticles (size 151.6 {+-} 28.6 nm, encapsulation efficiency 92.17 {+-} 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  12. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    Science.gov (United States)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant

    2013-03-01

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide- co-glycolide) (PLGA) microparticles (size 1-4 μm, encapsulation efficiency 80-85 %) and nanoparticles (size 151.6 ± 28.6 nm, encapsulation efficiency 92.17 ± 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  13. Chromatic response of polydiacetylene vesicle induced by the permeation of methotrexate.

    Science.gov (United States)

    Shin, Min Jae; Kim, Ye Jin; Kim, Jong-Duk

    2015-07-07

    The noble vesicular system of polydiacetylene showed a red shift using two types of detecting systems. One of the systems involves the absorption of target materials from the outer side of the vesicle, and the other system involves the permeation through the vesicular layers from within the vesicle. The chromatic mixed vesicles of N-(2-aminoethyl)pentacosa-10,12-diynamide (AEPCDA) and dimethyldioctadecylammonium chloride (DODAC) were fabricated by sonication, followed by polymerization by UV irradiation. The stability of monomeric vesicles was observed to increase with the polymerization of the vesicles. Methotrexate was used as a target material. The polymerized mixed vesicles having a blue color were exposed to a concentration gradient of methotrexate, and a red shift was observed indicating the adsorption of methotrexate on the polydiacetylene bilayer. In order to check the chromatic change by the permeation of methotrexate, we separated the vesicle portion, which contained methotrexate inside the vesicle, and checked chromatic change during the permeation of methotrexate through the vesicle. The red shift apparently indicates the disturbance in the bilayer induced by the permeation of methotrexate. The maximum contrast of color appeared at the equal molar ratio of AEPCDA and DODAC, indicating that the formation of flexible and deformable vesicular layers is important for red shift. Therefore, it is hypothesized that the system can be applicable for the chromatic detection of the permeation of methotrexate through the polydiacetylene layer.

  14. Cerebellar interaction with the acoustic reflex.

    Science.gov (United States)

    Jastreboff, P J

    1981-01-01

    The involvement of the cerebellar vermis in the acoustic reflex was analyzed in 12 cats, decerebrated or in pentobarbital anesthesia. Anatomical data suggested the existence of a connection of lobules VIII with the ventral cochlear nucleus. Single cell recording and evoked potential techniques demonstrated the existence of the acoustic projection to lobulus VIII. Electrical stimulation of this area changed the tension of the middle ear muscle and caused evoked potential responses in the caudal part of the ventral cochlear nucleus. Electrical stimulation of the motor nucleus of the facial nerve evoked a slow wave in the recording taken from the surrounding of the cochlear round window. A hypothesis is proposed which postulates the involvement of the acoustic reflex in space localization of acoustic stimuli and the action of cerebellar vermis in order to assure the stability and plasticity of the acoustic reflex arc.

  15. Financial Permeation and Economic Growth: Evidence from Sub-Saharan Africa

    OpenAIRE

    Inoue, Takeshi; Hamori, Shigeyuki

    2013-01-01

    This article empirically analyzes the role of finance in economic growth in Sub-Saharan Africa from the perspective of what is termed herein “financial permeation”. By estimating panel data on 37 countries in Sub-Saharan Africa between 2004 and 2010, we examine whether financial permeation through improved convenience and access to financial services has contributed to economic growth in this region. Empirical results clearly indicate that financial permeation has a statistically significant ...

  16. Measurement of tritium permeation through resistant materials near room temperature

    International Nuclear Information System (INIS)

    Maienschein, J.; DuVal, V.; McMurphy, F.; Uribe, F.; Musket, R.; Brown, D.

    1985-01-01

    To measure tritium permeation through low-permeability materials at 50 to 170 0 C, we use highly-sensitive liquid scintillation counting to detect the permeating tritium. To validate our method, we conducted extensive experiments with copper, for which much data exists for comparison. We report permeability of tritium through copper at 50, 100, and 170 0 C, and discuss details of the experimental technique. Further plans are outlined. 15 refs., 5 figs., 1 tab

  17. Robust and reliable banknote authentification and print flaw detection with opto-acoustical sensor fusion methods

    Science.gov (United States)

    Lohweg, Volker; Schaede, Johannes; Türke, Thomas

    2006-02-01

    The authenticity checking and inspection of bank notes is a high labour intensive process where traditionally every note on every sheet is inspected manually. However with the advent of more and more sophisticated security features, both visible and invisible, and the requirement of cost reduction in the printing process, it is clear that automation is required. As more and more print techniques and new security features will be established, total quality security, authenticity and bank note printing must be assured. Therefore, this factor necessitates amplification of a sensorial concept in general. We propose a concept for both authenticity checking and inspection methods for pattern recognition and classification for securities and banknotes, which is based on the concept of sensor fusion and fuzzy interpretation of data measures. In the approach different methods of authenticity analysis and print flaw detection are combined, which can be used for vending or sorting machines, as well as for printing machines. Usually only the existence or appearance of colours and their textures are checked by cameras. Our method combines the visible camera images with IR-spectral sensitive sensors, acoustical and other measurements like temperature and pressure of printing machines.

  18. A programmable nonlinear acoustic metamaterial

    Directory of Open Access Journals (Sweden)

    Tianzhi Yang

    2017-09-01

    Full Text Available Acoustic metamaterials with specifically designed lattices can manipulate acoustic/elastic waves in unprecedented ways. Whereas there are many studies that focus on passive linear lattice, with non-reconfigurable structures. In this letter, we present the design, theory and experimental demonstration of an active nonlinear acoustic metamaterial, the dynamic properties of which can be modified instantaneously with reversibility. By incorporating active and nonlinear elements in a single unit cell, a real-time tunability and switchability of the band gap is achieved. In addition, we demonstrate a dynamic “editing” capability for shaping transmission spectra, which can be used to create the desired band gap and resonance. This feature is impossible to achieve in passive metamaterials. These advantages demonstrate the versatility of the proposed device, paving the way toward smart acoustic devices, such as logic elements, diode and transistor.

  19. Physicochemical Characterization and Skin Permeation of Cationic Transfersomes Containing the Synthetic Peptide PnPP-19.

    Science.gov (United States)

    Almeida, Flavia De Marco; Silva, Carolina Nunes; de Araujo Lopes, Savia Caldeira; Santos, Daniel Moreira; Torres, Fernanda Silva; Cardoso, Felipe Lima; Martinelli, Patricia Massara; da Silva, Elizabeth Ribeiro; de Lima, Maria Elena; Miranda, Lucas Antonio Ferreira; Oliveira, Monica Cristina

    2018-01-08

    PnPP-19 is a 19-amino-acid synthetic peptide previously described as a novel drug for the treatment of erectile dysfunction. The aim of this work was to evaluate the physicochemical properties of cationic transfersomes containing PnPP-19 and the skin permeation of free PnPP-19 and PnPP-19-loaded transfersomes. Three different liposomal preparation methods were evaluated. Cationic transfersomes contained egg phosphatidyl choline: stearylamine (9:1 w/w) and Tween 20 (84.6:15.4 lipid:Tween, w/w). Lipid concentration varied from 20 to 40 mM. We evaluated the entrapment percentage, mean diameter, zeta potential and stability at 4 oC of the formulations. The skin permeation assays were performed with abdominal human skin using Franz diffusion cell with 3 cm2 diffusion area at 32 oC and a fluorescent derivative of the peptide, containing 5-TAMRA, bound to PnPP-19 C-terminal region, where an extra lysine was inserted. Our results showed variable entrapment efficiencies, from 6% to 30%, depending on the preparation method and the lipid concentration used. The reverse phase evaporation method using a total lipid concentration equal to 40 mM led to the best entrapment percentage (30.2 + 4.5%). Free PnPP-19 was able to permeate skin at a rate of 10.8 ng/cm2/h. However, PnPP-19 was specifically hydrolyzed by skin proteases, generating a fragment of 15 amino acid residues. Encapsulated PnPP-19 permeated the skin at a rate of 19.8 ng/cm2/h. The encapsulation of PnPP-19 in cationic transfersomes protected the peptide from degradation, favoring its topical administration. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Particle separation by phase modulated surface acoustic waves.

    Science.gov (United States)

    Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L

    2017-09-01

    High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.

  1. Polycyclic aromatic hydrocarbons (PAHs) skin permeation rates change with simultaneous exposures to solar ultraviolet radiation (UV-S).

    Science.gov (United States)

    Hopf, Nancy B; Spring, Philipp; Hirt-Burri, Nathalie; Jimenez, Silvia; Sutter, Benjamin; Vernez, David; Berthet, Aurelie

    2018-05-01

    Road construction workers are simultaneously exposed to two carcinogens; solar ultraviolet (UV-S) radiation and polycyclic aromatic hydrocarbons (PAHs) in bitumen emissions. The combined exposure may lead to photogenotoxicity and enhanced PAH skin permeation rates. Skin permeation rates (J) for selected PAHs in a mixture (PAH-mix) or in bitumen fume condensate (BFC) with and without UV-S co-exposures were measured with in vitro flow-through diffusion cells mounted with human viable skin and results compared. Possible biomarkers were explored. Js were greater with UV-S for naphthalene, anthracene, and pyrene in BFC (0.08-0.1 ng/cm 2 /h) compared to without (0.02-0.26 ng/cm 2 /h). This was true for anthracene, pyrene, and chrysene in the PAH-mix. Naphthalene and benzo(a)pyrene (BaP) in the PAH-mix had greater Js without (0.97-13.01 ng/cm 2 /h) compared to with UV-S (0.40-6.35 ng/cm 2 /h). Time until permeation (T lags ) in the PAH-mix were generally shorter compared to the BFC, and they ranged from 1 to 13 h. The vehicle matrix could potentially be the reason for this discrepancy as BFC contains additional not identified substances. Qualitative interpretation of p53 suggested a dose-response with UV-S, and somewhat with the co-exposures. MMP1, p65 and cKIT were not exploitable. Although not statistically different, PAHs permeate human viable skin faster with simultaneous exposures to UV. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. In vitro permeation through porcine buccal mucosa of Salvia desoleana Atzei & Picci essential oil from topical formulations.

    Science.gov (United States)

    Ceschel, G C; Maffei, P; Moretti, M D; Demontis, S; Peana, A T

    2000-02-15

    In the light of recent studies, which have shown that the essential oil derived from some Lamiaceae species has appreciable anti-inflammatory activity, moderate anti-microbial action and the ability to inhibit induced hyperalgesia, an assessment of the diffusion and permeation of Salvia desoleana Atzei & Picci (S. desoleana) essential oil through porcine buccal mucosa was considered useful for a possible application in the stomatological field. Topical formulations (microemulsions, hydrogels and microemulsion-hydrogels) were prepared for application to the buccal mucosa. The mucosa permeation of the oil from the formulations was evaluated using Franz cells, with porcine buccal mucosa as septum between the formulations (donor compartment) and the receptor phase chambers. The study also aimed at optimising the permeability of the S. desoleana essential oil by means of an enhancer, the diethylene glycol monoethyl ether Transcutol. The diffusion of the oil through the membrane was determined by evaluating the amount of essential oil components present in the receiving solution, the flux and the permeation coefficient (at the steady state) in the different formulations at set intervals. Qualitative and quantitative determinations were done by gas chromatographic analysis. All the formulations allow a high permeability coefficient in comparison with the pure essential oil. In particular, the components with a terpenic structure (beta-pinene, cineole, alpha-terpineol and linalool) have the highest capacity to pass through the porcine buccal mucosa when compared to the other components (linalyl acetate and alpha-terpinil acetate). Moreover, the enhancer, diethylene glycol monoethyl ether largely increases the permeation of the essential oil components in relation to the concentration.

  3. Changes in chemical permeation of disposable latex, nitrile, and vinyl gloves exposed to simulated movement.

    Science.gov (United States)

    Phalen, Robert N; Le, Thi; Wong, Weng Kee

    2014-01-01

    Glove movement can affect chemical permeation of organic compounds through polymer glove products. However, conflicting reports make it difficult to compare the effects of movement on chemical permeation through commonly available glove types. The aim of this study was to evaluate the effect of movement on chemical permeation of an organic solvent through disposable latex, nitrile, and vinyl gloves. Simulated whole-glove permeation testing was conducted using ethyl alcohol and a previously designed permeation test system. With exposure to movement, a significant decrease (p ≤ 0.001) in breakthrough time (BT) was observed for the latex (-23%) and nitrile gloves (-31%). With exposure to movement, only the nitrile glove exhibited a significant increase (p ≤ 0.001) in steady-state permeation rate (+47%) and cumulative permeation at 30 min (+111%). Even though the nitrile glove provided optimum chemical resistance against ethyl alcohol, it was most affected by movement. With exposure to movement, the latex glove was an equivalent option for overall worker protection, because it was less affected by movement and the permeation rate was lower than that of the nitrile glove. In contrast, the vinyl glove was the least affected by movement, but did not provide adequate chemical resistance to ethyl alcohol in comparison with the nitrile and latex gloves. Glove selection should take movement and polymer type into account. Some glove polymer types are less affected by movement, most notably the latex glove in this test. With nitrile gloves, at least a factor of three should be used when attempting to assign a protection factor when repetitive hand motions are anticipated. Ultimately, the latex gloves outperformed nitrile and vinyl in these tests, which evaluated the effect of movement on chemical permeation. Future research should aim to resolve some of the observed discrepancies in test results with latex and vinyl gloves.

  4. Modeling the Effects of Interfacial Characteristics on Gas Permeation Behavior of Nanotube-Mixed Matrix Membranes.

    Science.gov (United States)

    Chehrazi, Ehsan; Sharif, Alireza; Omidkhah, Mohammadreza; Karimi, Mohammad

    2017-10-25

    Theoretical approaches that accurately predict the gas permeation behavior of nanotube-containing mixed matrix membranes (nanotube-MMMs) are scarce. This is mainly due to ignoring the effects of nanotube/matrix interfacial characteristics in the existing theories. In this paper, based on the analogy of thermal conduction in polymer composites containing nanotubes, we develop a model to describe gas permeation through nanotube-MMMs. Two new parameters, "interfacial thickness" (a int ) and "interfacial permeation resistance" (R int ), are introduced to account for the role of nanotube/matrix interfacial interactions in the proposed model. The obtained values of a int , independent of the nature of the permeate gas, increased by increasing both the nanotubes aspect ratio and polymer-nanotube interfacial strength. An excellent correlation between the values of a int and polymer-nanotube interaction parameters, χ, helped to accurately reproduce the existing experimental data from the literature without the need to resort to any adjustable parameter. The data includes 10 sets of CO 2 /CH 4 permeation, 12 sets of CO 2 /N 2 permeation, 3 sets of CO 2 /O 2 permeation, and 2 sets of CO 2 /H 2 permeation through different nanotube-MMMs. Moreover, the average absolute relative errors between the experimental data and the predicted values of the proposed model are very small (less than 5%) in comparison with those of the existing models in the literature. To the best of our knowledge, this is the first study where such a systematic comparison between model predictions and such extensive experimental data is presented. Finally, the new way of assessing gas permeation data presented in the current work would be a simple alternative to complex approaches that are usually utilized to estimate interfacial thickness in polymer composites.

  5. Double electrolyte sensor for monitoring hydrogen permeation rate in steels

    International Nuclear Information System (INIS)

    Ouyang, Y.J.; Yu, G.; Ou, A.L.; Hu, L.; Xu, W.J.

    2011-01-01

    Highlights: → Designed an amperometric hydrogen sensor with double electrolytes. → Explained the principle of determining hydrogen permeation rate. → Verified good stability, reproducibility and correctness of the developed sensor. → Field on-line monitoring the susceptivity of hydrogen induced cracks. - Abstract: An amperometric hydrogen sensor with double electrolytes composed of a gelatiniform electrolyte and KOH solution has been developed to determine the permeation rate of hydrogen atoms in steel equipment owing to hydrogen corrosion. The gelatiniform electrolyte was made of sodium polyacrylate (PAAS), carboxyl methyl cellulose (CMC) and 0.2 mol dm -3 KOH solution. The results show that the gelatiniform electrolyte containing 50 wt.% polymers has suitable viscosity and high electrical conductivity. The consistent permeation curves were detected by the sensor of the double electrolyte and single liquid KOH electrolyte, respectively. The developed sensor has good stability and reproducibility at room temperature.

  6. Double electrolyte sensor for monitoring hydrogen permeation rate in steels

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Y.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Department of Chemistry and Chemical Engineering, Huaihua College, Huaihua 418008 (China); Yu, G., E-mail: yuganghnu@163.co [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Ou, A.L.; Hu, L.; Xu, W.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2011-06-15

    Highlights: {yields} Designed an amperometric hydrogen sensor with double electrolytes. {yields} Explained the principle of determining hydrogen permeation rate. {yields} Verified good stability, reproducibility and correctness of the developed sensor. {yields} Field on-line monitoring the susceptivity of hydrogen induced cracks. - Abstract: An amperometric hydrogen sensor with double electrolytes composed of a gelatiniform electrolyte and KOH solution has been developed to determine the permeation rate of hydrogen atoms in steel equipment owing to hydrogen corrosion. The gelatiniform electrolyte was made of sodium polyacrylate (PAAS), carboxyl methyl cellulose (CMC) and 0.2 mol dm{sup -3} KOH solution. The results show that the gelatiniform electrolyte containing 50 wt.% polymers has suitable viscosity and high electrical conductivity. The consistent permeation curves were detected by the sensor of the double electrolyte and single liquid KOH electrolyte, respectively. The developed sensor has good stability and reproducibility at room temperature.

  7. Controlled vesicle deformation and lysis by single oscillating bubbles

    Science.gov (United States)

    Marmottant, Philippe; Hilgenfeldt, Sascha

    2003-05-01

    The ability of collapsing (cavitating) bubbles to focus and concentrate energy, forces and stresses is at the root of phenomena such as cavitation damage, sonochemistry or sonoluminescence. In a biomedical context, ultrasound-driven microbubbles have been used to enhance contrast in ultrasonic images. The observation of bubble-enhanced sonoporation-acoustically induced rupture of membranes-has also opened up intriguing possibilities for the therapeutic application of sonoporation as an alternative to cell-wall permeation techniques such as electroporation and particle guns. However, these pioneering experiments have not been able to pinpoint the mechanism by which the violently collapsing bubble opens pores or larger holes in membranes. Here we present an experiment in which gentle (linear) bubble oscillations are sufficient to achieve rupture of lipid membranes. In this regime, the bubble dynamics and the ensuing sonoporation can be accurately controlled. The use of microbubbles as focusing agents makes acoustics on the micrometre scale (microacoustics) a viable tool, with possible applications in cell manipulation and cell-wall permeation as well as in microfluidic devices.

  8. Curcumin protects against acoustic trauma in the rat cochlea.

    Science.gov (United States)

    Soyalıç, Harun; Gevrek, Fikret; Karaman, Serhat

    2017-08-01

    In this study we evaluated the therapeutic utility of curcumin in a rodent model of acoustic trauma using histopathology, immunohistochemical, and distortion product otoacoustic emission (DPOAEs) measurements. 28 Wistar albino rats were included in the study and randomly assigned to 4 treatment groups. The first group (group 1) served as the control and was exposed to acoustic trauma alone. Group 2 was the curcumin group. Group 3 was the curcumin plus acoustic trauma group. Group 4 was the saline plus acoustic trauma group. Otoacoustic emission measurements were collected at the end of the experiment and all animals were sacrificed. Cochlea were collected and prepared for TUNEL (TdT-mediated deoxyuridinetriphosphate nick end-labelling) staining assay. Group 3 maintained baseline DPOAEs values at 3000 Hz, 4000 Hz and 8000 Hz on the 3rd and 5th day of the experiment. DPOAEs results were correlated with the immunohistochemical and histopathological findings in all groups. In comparison to the histopathologic control group, Group 1 exhibited a statistically significant increase in apoptotic indices in the organ of Corti, inner hair cell, and outer hair cell areas (p curcumin may protect the cochlear tissues from acoustic trauma in rats. Curcumin injection prior to or after an acoustic trauma reduces cochlear hair cell damage and may protect against hearing loss. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The opto-mechanical design process: from vision to reality

    Science.gov (United States)

    Kvamme, E. Todd; Stubbs, David M.; Jacoby, Michael S.

    2017-08-01

    The design process for an opto-mechanical sub-system is discussed from requirements development through test. The process begins with a proper mission understanding and the development of requirements for the system. Preliminary design activities are then discussed with iterative analysis and design work being shared between the design, thermal, and structural engineering personnel. Readiness for preliminary review and the path to a final design review are considered. The value of prototyping and risk mitigation testing is examined with a focus on when it makes sense to execute a prototype test program. System level margin is discussed in general terms, and the practice of trading margin in one area of performance to meet another area is reviewed. Requirements verification and validation is briefly considered. Testing and its relationship to requirements verification concludes the design process.

  10. Gas permeation process for post combustion CO2 capture

    International Nuclear Information System (INIS)

    Pfister, Marc

    2017-01-01

    CO 2 Capture and Storage (CCS) is a promising solution to separate CO 2 from flue gas, to reduce the CO 2 emissions in the atmosphere, and hence to reduce global warming. In CCS, one important constraint is the high additional energy requirement of the different capture processes. That statement is partly explained by the low CO 2 fraction in the inlet flue gas and the high output targets in terms of CO 2 capture and purity (≥90%). Gas permeation across dense membrane can be used in post combustion CO 2 capture. Gas permeation in a dense membrane is ruled by a mass transfer mechanism and separation performance in a dense membrane are characterized by component's effective permeability and selectivity. One of the newest and encouraging type of membrane in terms of separation performance is the facilitated transport membrane. Each particular type of membrane is defined by a specific mass transfer law. The most important difference to the mass transfer behavior in a dense membrane is related to the facilitated transport mechanism and the solution diffusion mechanism and its restrictions and limitations. Permeation flux modelling across a dense membrane is required to perform a post combustion CO 2 capture process simulation. A CO 2 gas permeation separation process is composed of a two-steps membrane process, one drying step and a compression unit. Simulation on the energy requirement and surface area of the different membrane modules in the global system are useful to determine the benefits of using dense membranes in a post combustion CO 2 capture technology. (author)

  11. In vitro permeation studies of nanoemulsions containing ketoprofen as a model drug.

    Science.gov (United States)

    Kim, Beom Su; Won, Myoung; Lee, Kang Min; Kim, Cheo Sang

    2008-09-01

    We prepared a nanoemulsion system with benzyl alcohol/ ethanol/Solutol/smash(R) HS 15 /water. Ketoprofen was used as a model drug in this study. The nanoemulsions of this system evidenced a high degree of stability. The droplet diameter did not change over a period of at least 3 months. The nanoemulsion containing 4% benzyl alcohol evidenced a permeation rate higher than was observed with the 1% and 2% nanoemulsions. Also the nanoemulsion containing 1% Solutol(R) HS 15 provided a permeation rate higher than was seen with the 2% and 4% nanoemulsions. All ketoprofen-loaded nanoemulsions enhanced the in vitro permeation rate through mouse skins as compared to the control.

  12. 40 CFR 90.129 - Fuel tank permeation from handheld engines and equipment.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel tank permeation from handheld... KILOWATTS Emission Standards and Certification Provisions § 90.129 Fuel tank permeation from handheld... equipment with respect to fuel tanks. For the purposes of this section, fuel tanks do not include fuel caps...

  13. Ion-driven permeation of deuterium through tungsten under simultaneous helium and deuterium irradiation

    International Nuclear Information System (INIS)

    Lee, H.T.; Tanaka, H.; Ohtsuka, Y.; Ueda, Y.

    2011-01-01

    Ion-driven permeation of D through tungsten under simultaneous irradiation with He-D was measured as a function of temperature, flux, and energy. He reduced the permeation flux with the reduction increasing with decreasing temperature. The reduction in permeation flux followed a linear dependence to the incident flux at T > 1000 K, but shifted to a square root dependence at T < 1000 K. The results were interpreted as shifts from diffusion limited to recombination limited H transport according to Doyle and Brice's theory. Arrhenius functions of front diffusivity and recombination coefficients were derived and used to calculate the transport parameter W. The effect of He can be interpreted as changes to the front diffusivity that approaches H diffusion behavior in the absence of traps. The reduction in total concentration results in a shallower concentration gradient that can describe the observed decrease in permeation.

  14. Hydrogen and deuterium permeation in copper alloys, copper--gold brazing alloys, gold, and the in situ growth of stable oxide permeation barriers

    International Nuclear Information System (INIS)

    Begeal, D.R.

    1978-01-01

    The deuterium permeation through several copper alloys has been measured over a temperature range of 550 to 830 K using the membrane technique. In some cases, the hydrogen permeability was also measured. The results were divided into three categories: common alloys, gold alloys, and stable oxide forming alloys. Common alloys which showed typical bulk metallic diffusion with litle change in the permeation activation energy as compared to copper (77 kJ/mol for D 2 ) were: (additions are in weight percent) 5% Sn, 2.3% U, 0.15% Zr, 4% Sn+4% Pb+4% Zn, 3% Si, and 7% Al+2% Fe. Compared to copper, the D 2 permeability at 573 K was reduced by factors of 2.0, 2.7, 4.5, 5.3, 5.9, and 7.0, respectively. A series of gold--copper alloys including pure gold, 80% Au, 50% Au, 49% Au, and 35% Au also showed typical bulk metallic diffusion with a trend of decreasing permeability (increasing activation energies for permeation) with increasing gold content. There were also pronounced inflections or shifts in the permeability at approx.370 0 C, or about the order--disorder transition for Cu 3 Au and CuAu, for the 80% and 50% alloys. Two alloys did not exhibit bulk metallic permeation behavior and the permeabiltiy was in fact controlled by surface oxide layers. It was found that a layer of beryllium oxide could be formed on Cu+2% Be and a layer of aluminum oxide could be formed on Cu+7% Al+2% Si. As compared to 0.25 mm-thick copper, the deuterium permeability at 500 0 C was reduced by a factor of approx.250 for Cu--Be and approx.1000 for Cu--Al--Si. The activation energies for deuterium permeation were 98 kJ/mol and 132 kJ/mol, respectively. The mechanism for the oxide growth is the high-temperature hydrogen reduction of nearby less stable oxides, simultaneous with oxidation of the active metal, Be or Al, by trace amounts of water in the hydrogen. Ion microprobe mass analysis identified the oxide layers as containing beryllium or aluminum but not containing copper

  15. Hydrogen permeation behavior through F82H at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, S.; Katayama, K.; Shimozori, M.; Fukada, S. [Interdisciplinary Graduate School of Engineering Science, Kyushu University, Kyushu (Japan); Ushida, H. [Energy Science and Engineering, Faculty of Engineering, Kyushu University, Kyushu (Japan); Nishikawa, M. [Malaysia-Japan International Institute of Technology, UTM, Kuala Lumpur (Malaysia)

    2015-03-15

    F82H is a primary candidate of structural material and coolant pipe material in a blanket of a fusion reactor. Understanding tritium permeation behavior through F82H is important. In a normal operation of a fusion reactor, the temperature of F82H will be controlled below 550 C. degrees because it is considered that F82H can be used up to 30,000 hours at 550 C. degrees. However, it is necessary to assume the situation where F82H is heated over 550 C. degrees in a severe accident. In this study, hydrogen permeation behavior through F82H was investigated in the temperature range from 500 to 800 C. degrees. In some cases, water vapor was added in a sample gas to investigate an effect of water vapor on hydrogen permeation. The permeability of hydrogen in the temperature range from 500 to 700 C. degrees agreed well with the permeability reported by E. Serra et al. The degradation of the permeability by water vapor was not observed. After the hydrogen permeation reached in a steady state at 700 C. degrees, the F82H sample was heated to 800 C. degrees. The permeability of hydrogen through F82H sample which was once heated up to 800 C. degrees was lower than that of the original one. (authors)

  16. Confronto Inter-Aziendale sulle Macchine di Misura a Coordinate tramite un Piatto Opto-Tattile

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    2005-01-01

    Si è recentemente concluso un confronto inter-aziendale sulle macchine di misura a coordinate basato sull'utilizzo di un piatto opto-tattile. Il progetto denominato "CIRP Comparison of Coordinate Measuring Machines using an Optomechanical Hole Plate" è constitito in un confronto interlaboratori i...... tesi di dottorato [3]. Il report finale [1] è a disposizione dei membri interessati sul sito del CMM Club mentre il presente articolo è in gran parte tratto dalla memoria...

  17. Dual-directional regulation of drug permeating amount by combining the technique of ion-pair complexation with chemical enhancers for the synchronous permeation of indapamide and bisoprolol in their compound patch through rabbit skin.

    Science.gov (United States)

    Song, Wenting; Cun, Dongmei; Quan, Peng; Liu, Nannan; Chen, Yang; Cui, Hongxia; Xiang, Rongwu; Fang, Liang

    2015-04-01

    To achieve the synchronous skin permeation of indapamide (IND) and bisoprolol (BSP) in their compound patch, the techniques of ion-pair complexation and chemical enhancers were combined to dual-directionally regulate drug permeating amounts. Ion-pair complexes of BSP and various organic acids were formed by the technique of ion-pair complexation. Among the complexes formed, bisoprolol tartrate (BSP.T) down-regulated the permeating amount of BSP to the same extent as that of IND. Then, to simultaneously up-regulate the amounts of the two drugs, an enhancer combination of 15.8% Span80 (SP), 6.0% Azone (AZ) and 2.2% N-methyl pyrrolidone (NMP) was obtained by central composite design and exhibited an outstanding and simultaneous enhancement on IND and BSP with enhancing ratio (ER) of 4.52 and 3.49, respectively. The effect of the dual-directional regulation was evaluated by in vitro permeation experiments and in vivo pharmacokinetic studies. For IND and BSP, their observed permeation profiles were comparable and their MAT (mean absorption time) showed no significant difference, which both demonstrated these two drugs achieved the synchronous skin permeation in their compound patch by the dual-directional regulation strategy of combining the technique of ion-pair complexation with chemical enhancers. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Dynamics of yeast immobilized-cell fluidized-bed bioreactors systems in ethanol fermentation from lactose-hydrolyzed whey and whey permeate.

    Science.gov (United States)

    Gabardo, Sabrina; Pereira, Gabriela Feix; Klein, Manuela P; Rech, Rosane; Hertz, Plinho F; Ayub, Marco Antônio Záchia

    2016-01-01

    We studied the dynamics of ethanol production on lactose-hydrolyzed whey (LHW) and lactose-hydrolyzed whey permeate (LHWP) in batch fluidized-bed bioreactors using single and co-cultures of immobilized cells of industrial strains of Saccharomyces cerevisiae and non-industrial strains of Kluyveromyces marxianus. Although the co-culture of S. cerevisiae CAT-1 and K. marxianus CCT 4086 produced two- to fourfold the ethanol productivity of single cultures of S. cerevisiae, the single cultures of the K. marxianus CCT 4086 produced the best results in both media (Y EtOH/S = 0.47-0.49 g g(-1) and Q P = 1.39-1.68 g L(-1) h(-1), in LHW and LHWP, respectively). Ethanol production on concentrated LHWP (180 g L(-1)) reached 79.1 g L(-1), with yields of 0.46 g g(-1) for K. marxianus CCT 4086 cultures. Repeated batches of fluidized-bed bioreactor on concentrated LHWP led to increased ethanol productivity, reaching 2.8 g L(-1) h(-1).

  19. Exciton confinement in organic dendrimer quantum wells for opto-electronic applications

    Science.gov (United States)

    Lupton, J. M.; Samuel, I. D. W.; Burn, P. L.; Mukamel, S.

    2002-01-01

    Organic dendrimers are a fascinating new class of materials for opto-electronic applications. We present coupled electronic oscillator calculations on novel nanoscale conjugated dendrimers for use in organic light-emitting diodes. Strong confinement of excitations at the center of the dendrimers is observed, which accounts for the dependence of intermolecular interactions and charge transport on the degree of branching of the dendrimer. The calculated absorption spectra are in excellent agreement with the measured data and show that benzene rings are shared between excitations on the linear segments of the hyperbranched molecules. The coupled electronic oscillator approach is ideally suited to treat large dendritic molecules.

  20. Holographic acoustic elements for manipulation of levitated objects

    Science.gov (United States)

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-10-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.

  1. Deuterium permeation of amorphous alumina coating on 316L prepared by MOCVD

    International Nuclear Information System (INIS)

    Li Shuai; He Di; Liu Xiaopeng; Wang Shumao; Jiang Lijun

    2012-01-01

    Highlights: ► Deuterium permeation behavior of alumina coating by MOCVD is investigated. ► The as-prepared alumina is amorphous. ► The alumina coating is dense and well adherent to substrate. ► Deuterium permeation rate of alumina coating is 2–3 orders of magnitude lower than martensitic steels. - Abstract: The deuterium permeation behavior of the alumina coating on 316L stainless steel prepared by metal organic chemical vapor deposition (MOCVD) was investigated. The alumina coating was also characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). It was found that the as-prepared coating consisted of amorphous alumina. This alumina coating had a dense, crack-free and homogeneous morphology. Although the alumina coating was amorphous, effective suppression of deuterium permeation was demonstrated. The deuterium permeability of the alumina coating was 51–60 times less than that of the 316L stainless steel and 153–335 times less than that of the referred low activation martensitic steels at 860–960 K.

  2. Tritium permeation barriers in contact with liquid lithium-lead eutectic (Pb-17Li)

    International Nuclear Information System (INIS)

    Forcey, K.S.; Perujo, A.

    1995-01-01

    The permeation of deuterium through coated stainless steel tubes containing liquid lithium-lead eutectic (Pb-17Li) has been studied and compared to measurements through tubes without the lithium compound. The measurements form part of an investigation into the effect of a potential tritium breeder material on permeation barriers for fusion reactors. The coatings studied were CVD TiC and Al 2 O 3 and a pack aluminised layer. Without the lithium-lead, the CVD coatings reduced the permeation rate up to 1 order of magnitude, and the aluminised layer up to 2 orders of magnitude. A CVD layer was unaffected by Pb-17Li whilst in the case of the aluminised tube, the lithium-lead completely removed the permeation barrier, presumably by attacking the surface oxide. Furthermore, the aluminised sample presented a large number of cracks and poor adheren ce to the substrate. ((orig.))

  3. Modell experiments to determine the effect of inhibitive oxide layers on metals against hydrogen permeation

    International Nuclear Information System (INIS)

    Zink, U.

    1983-11-01

    The coupling of H 2 -permeation and corrosion has been examined with the high-temperature alloys Incoloy 800 and Incoloy 802. Permeationsrates as well as corrosionsrates have been measured simultanously under H 2 O-H 2 atmospheres in the test-facility HD-PERM. Test parameters have been temperature and oxidationpotential. Parabolic laws for the growth of the oxide scales have been identified and are considered to be highly important for the efficiency of a permeation barrier. A comparison between the temperature dependencies of corrosionsrates and H 2 -permeationsrates has revealed that permeation and corrosion are coupled only in so far that the permeation barrier is formed by the corrosion reaction. The corrosion data (parabolic rate constant, activation energy) of the oxide scales have given clear indications for the existence of a Cr 2 O 3 -layer, which is considered to be responsible for efficient oxide permeation barriers. (orig.) [de

  4. Enhanced skin permeation of naltrexone by pulsed electromagnetic fields in human skin in vitro.

    Science.gov (United States)

    Krishnan, Gayathri; Edwards, Jeffrey; Chen, Yan; Benson, Heather A E

    2010-06-01

    The aim of the present study was to evaluate the skin permeation of naltrexone (NTX) under the influence of a pulsed electromagnetic field (PEMF). The permeation of NTX across human epidermis and a silicone membrane in vitro was monitored during and after application of the PEMF and compared to passive application. Enhancement ratios of NTX human epidermis permeation by PEMF over passive diffusion, calculated based on the AUC of cumulative NTX permeation to the receptor compartment verses time for 0-4 h, 4-8 h, and over the entire experiment (0-8 h) were 6.52, 5.25, and 5.66, respectively. Observation of the curve indicated an initial enhancement of NTX permeation compared to passive delivery whilst the PEMF was active (0-4 h). This was followed by a secondary phase after termination of PEMF energy (4-8 h) in which there was a steady increase in NTX permeation. No significant enhancement of NTX penetration across silicone membrane occurred with PEMF application in comparison to passively applied NTX. In a preliminary experiment PEMF enhanced the penetration of 10 nm gold nanoparticles through the stratum corneum as visualized by multiphoton microscopy. This suggests that the channels through which the nanoparticles move must be larger than the 10 nm diameter of these rigid particles. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  5. Characterization of human breast cancer by scanning acoustic microscopy

    Science.gov (United States)

    Chen, Di; Malyarenko, Eugene; Seviaryn, Fedar; Yuan, Ye; Sherman, Mark; Bandyopadhyay, Sudeshna; Gierach, Gretchen; Greenway, Christopher W.; Maeva, Elena; Strumban, Emil; Duric, Neb; Maev, Roman

    2013-03-01

    Objectives: The purpose of this study was to characterize human breast cancer tissues by the measurement of microacoustic properties. Methods: We investigated eight breast cancer patients using acoustic microscopy. For each patient, seven blocks of tumor tissue were collected from seven different positions around a tumor mass. Frozen sections (10 micrometer, μm) of human breast cancer tissues without staining and fixation were examined in a scanning acoustic microscope with focused transducers at 80 and 200 MHz. Hematoxylin and Eosin (H and E) stained sections from the same frozen breast cancer tissues were imaged by optical microscopy for comparison. Results: The results of acoustic imaging showed that acoustic attenuation and sound speed in cancer cell-rich tissue regions were significantly decreased compared with the surrounding tissue regions, where most components are normal cells/tissues, such as fibroblasts, connective tissue and lymphocytes. Our observation also showed that the ultrasonic properties were influenced by arrangements of cells and tissue patterns. Conclusions: Our data demonstrate that attenuation and sound speed imaging can provide biomechanical information of the tumor and normal tissues. The results also demonstrate the potential of acoustic microscopy as an auxiliary method for operative detection and localization of cancer affected regions.

  6. Synergistic effect of iontophoresis and chemical enhancers on transdermal permeation of tolterodine tartrate for the treatment of overactive bladder

    Directory of Open Access Journals (Sweden)

    D. Prasanthi

    2013-01-01

    Full Text Available Purpose The objective of the study was to evaluate the synergistic transdermal permeation effect of chemical enhancers and iontophoresis technique on tolterodine tartrate (TT transdermal gel and to evaluate its pharmacokinetic properties. Materials and Methods Taguchi robust design was used for optimization of formulations. Skin permeation rates were evaluated using the Keshary-chein type diffusion cells in order to optimize the gel formulation. In-vivo studies of the optimized formulation were performed in a rabbit model and histopathology studies of optimized formulation were performed on rats. Results Transdermal gels were formulated successfully using Taguchi robust design method. The type of penetration enhancer, concentration of penetration enhancer, current density and pulse on/off ratio were chosen as independent variables. Type of penetration enhancer was found to be the significant factor for all the responses. Permeation parameters were evaluated when maximum cumulative amount permeated in 24 hours (Q24 was 145.71 ± 2.00µg/cm2 by CIT4 formulation over control (91.89 ± 2.30µg/cm2. Permeation was enhanced by 1.75 fold by CIT4 formulation. Formulation CIT4 containing nerolidol (5% and iontophoretic variables applied (0.5mA/cm2 and pulse on/off ratio 3:1 was optimized. In vivo studies with optimized formulation CIT4 showed increase in AUC and T1/2 when compared to oral suspension in rabbits. The histological studies showed changes in dermis indicating the effect of penetration enhancers and as iontophoresis was continued only for two cycles in periodic fashion so it did not cause any skin damage observed in the slides. Conclusion Results indicated that iontophoresis in combination with chemical enhancers is an effective method for transdermal administration of TT in the treatment of overactive bladder.

  7. 40 CFR 1060.102 - What permeation emission control requirements apply for fuel lines?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What permeation emission control... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY EQUIPMENT Emission Standards and Related Requirements § 1060.102 What permeation...

  8. 40 CFR 1060.103 - What permeation emission control requirements apply for fuel tanks?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What permeation emission control... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY EQUIPMENT Emission Standards and Related Requirements § 1060.103 What permeation...

  9. Permeation of hydrogen at low pressures through stainless steel and implications for tritium control in fusion reactor systems

    International Nuclear Information System (INIS)

    Axtmann, R.C.; Johnson, E.F.; Kuehler, C.W.

    1976-01-01

    New experimental data on the permeation of hydrogen through stainless steel indicate that at driving pressures below 10 -2 torr, the permeation rate is linearly dependent on the driving pressure. A possible consequence is that the permeation rates of hydrogenic species in fusion reactor systems might be much lower than those reported in contemporary conceptual design studies which assume that the rates are dependent on the square root of the driving pressure. The important implications of these low permeation rates are: (1) tritium losses to the environment may be more dependent on ordinary leaks from equipment than on permeation to the steam cycle; (2) recovery of tritium from breeding blankets via permeation windows may be impracticable; and (3) recovery of tritium from breeding blankets not dependent on permeation windows may be simplified by the possibility of operating at much higher average tritium concentrations in the blanket and cooling systems

  10. Development of permeate flux model for municipal wastewater treatment using membrane bioreactor

    International Nuclear Information System (INIS)

    Geissler, S.; Zhou, H.; Zytner, R.; Melin, T.

    2002-01-01

    In municipal wastewater treatment, membrane filtration technologies receive great attention because they usually produce the better quality effluent, generate less sludge and require a smaller aeration tank volume. However, one main challenge of using membranes is membrane fouling, which results in a permeate flux decrease or transmembrane pressure increase over the time. Many efforts have been directed to develop the mechanistic permeate flux model to correlate the permeate flux with process parameters. However, their applicability has been largely thwarted due to complicated membrane fouling mechanisms and the interactions of many factors affecting the membrane bioreactor. This paper proposes a semi-empirical permeate flux model for the membrane bioreactor (MBR) process using ZENON immersed hollow fibre membrane modules. The semi-empirical model was proposed by assuming that the permeate flux is equal to transmembrane pressure divided by total resistance. The total resistance is divided into two components: an inside membrane resistance and an outer fouling layer resistance. These membrane resistances are then related to the ageing of membrane used. Good correlation was found between the predicted and measured flux, with the mean absolute deviation being less than 4%. The observations also identified some general rules for operating membrane systems. Ideally, it is advisable that high pressure periods be avoided as this leads to a faster increase of non-reversal membrane resistance. It was also observed that membrane preservatives should be washed out carefully prior to use. (author)

  11. Molecule@MOF: A New Class of Opto-electronic Materials.

    Energy Technology Data Exchange (ETDEWEB)

    Talin, Albert Alec [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Reese E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spataru, Dan Catalin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Leonard, Francois Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); He, Yuping [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foster, Michael E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Allendorf, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavila, Vitalie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hopkins, Patrick E. [Univ. of Virginia, Charlottesville, VA (United States)

    2017-09-01

    Metal organic frameworks (MOFs) are extended, nanoporous crystalline compounds consisting of metal ions interconnected by organic ligands. Their synthetic versatility suggest a disruptive class of opto - electronic materials with a high degree of electrical tunability and without the property - degrading disorder of organic conductors. In this project we determined the factors controlling charge and energy transport in MOFs and evaluated their potential for thermoelectric energy conversion. Two strategies for a chieving electronic conductivity in MOFs were explored: 1) using redox active 'guest' molecules introduced into the pores to dope the framework via charge - transfer coupling (Guest@MOF), 2) metal organic graphene analogs (MOGs) with dispersive band structur es arising from strong electronic overlap between the MOG metal ions and its coordinating linker groups. Inkjet deposition methods were developed to facilitate integration of the guest@MOF and MOG materials into practical devices.

  12. Whole glove permeation of cyclohexanol through disposable nitrile gloves on a dextrous robot hand: Fist clenching vs. non-clenching.

    Science.gov (United States)

    Mathews, Airek R; Que Hee, Shane S

    2017-04-01

    The differences in permeation parameters when a gloved dextrous robot hand clenched and did not were investigated with the dynamic permeation system described in the companion paper. Increased permeation through the gloves of the present study for cyclohexanol when the gloved hand clenched depended on glove thickness and porosity for cyclohexanol permeation. The Sterling glove, the thinnest and most porous, was the least protective. Hand clenching promoted more permeation for the Sterling glove in terms of breakthrough times, steady state permeation rate, and diffusion coefficient. The Safeskin glove showed increased permeation only for the steady state permeation rate but not breakthrough times or diffusion coefficient. The Blue and Purple gloves showed no differences when the hand was clenching or not. The correlational analysis supported differences between the clenching and non-clenching situations, and the risk assessment considered the worst and best scenarios relative to one and two hydrated hands that were and were not protected by specific gloves.

  13. Tritium permeation through helium-heated steam generators of ceramic breeder blankets for DEMO

    International Nuclear Information System (INIS)

    Fuetterer, M.A.; Raepsaet, X.; Proust, E.

    1994-01-01

    The specifications of permeation barriers, tritium recovery process maintaining a very low tritium activity in the coolant, and control of the coolant chemistry, required the evaluation of the tritium losses through the steam generators and include the definition of its operating conditions by thermodynamic cycle calculations and its thermal-hydraulic design. For both tasks specific computer tools were developed. The obtained geometry, surface area, and temperature profiles along the heat exchanger tubes were then used to estimate the daily tritium permeation into the steam cycle. Steam oxidized Incoloy 800 austenitic stainless steel was identified as the best suited existing material; in nominal steady-state operation, the tritium escape into the steam cycle could be restricted to less than 10 Ci/d. Tritium permeation during temperature and pressure transients in the steam generator (destruction and possible self-healing of the permeation barrier) is identified to bear a large tritium release potential. Solutions are proposed. (from authors). 4 figs., 1 tab

  14. Tritium permeation through helium-heated steam generators of ceramic breeder blankets for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Fuetterer, M A; Raepsaet, X; Proust, E

    1994-12-31

    The specifications of permeation barriers, tritium recovery process maintaining a very low tritium activity in the coolant, and control of the coolant chemistry, required the evaluation of the tritium losses through the steam generators and include the definition of its operating conditions by thermodynamic cycle calculations and its thermal-hydraulic design. For both tasks specific computer tools were developed. The obtained geometry, surface area, and temperature profiles along the heat exchanger tubes were then used to estimate the daily tritium permeation into the steam cycle. Steam oxidized Incoloy 800 austenitic stainless steel was identified as the best suited existing material; in nominal steady-state operation, the tritium escape into the steam cycle could be restricted to less than 10 Ci/d. Tritium permeation during temperature and pressure transients in the steam generator (destruction and possible self-healing of the permeation barrier) is identified to bear a large tritium release potential. Solutions are proposed. (from authors). 4 figs., 1 tab.

  15. Optimisation of cosolvent concentration for topical drug delivery III--influence of lipophilic vehicles on ibuprofen permeation.

    Science.gov (United States)

    Watkinson, R M; Guy, R H; Oliveira, G; Hadgraft, J; Lane, M E

    2011-01-01

    Previously, we have reported the effects of water, ethanol, propylene glycol and various binary and ternary mixtures of these solvents on the permeation of ibuprofen in model membranes and in skin. The present study investigates the influence of lipophilic vehicles on the transport of ibuprofen in silicone membrane and in human skin. The permeation of ibuprofen was measured from mineral oil (MO), Miglyol® 812 (MG) and binary mixtures of MO and MG. The solubility of ibuprofen was 5-fold higher in MG than in MO, however, the permeation of ibuprofen from the pure vehicles and combinations of both was comparable in silicone membrane. Additionally, there were no significant differences in skin permeation for MO and MG vehicles. When the permeation of various hydrophilic and lipophilic vehicles is considered, a trend between flux values for the model membrane and skin is evident (r(2) = 0.71). The findings suggest that silicone membrane may provide information on qualitative trends in skin permeation for vehicles of diverse solubility and partition characteristics. Copyright © 2010 S. Karger AG, Basel.

  16. Implantation measurements to determine tritium permeation in first wall structures

    International Nuclear Information System (INIS)

    Holland, D.F.; Causey, R.A.

    1983-01-01

    A principal safety concern for a D-T burning fusion reactor is release of tritium during routine operation. Tritium implantation into first wall structures, and subsequent permeation into coolants, is potentially an important source of tritium loss. This paper reports on an experiment in which an ion accelerator was used to implant deuterium atoms in a stainless steel disk to simulate tritium implantation in first wall structures. The permeation rate was measured under various operating conditions. These results were used in the TMAP computer code to determine potential tritium loss rates for fusion reactors

  17. Implantation measurements to determine tritium permeation in first-wall structures

    International Nuclear Information System (INIS)

    Holland, D.F.; Causey, R.A.; Sattler, M.L.

    1983-01-01

    A principal safety concern for a D-T burning fusion reactor is release of tritium during routine operation. Tritium implantation into first-wall structures, and subsequent permeation into coolants, is potentially an important source of tritium loss. This paper reports on an experiment in which an ion accelerator was used to implant deuterium atoms in a stainless steel disk to simulate tritium implantation in first-wall structures. The permeation rate was measured under various operating conditions. These results were used in the TMAP computer code to determine potential tritium loss rates for fusion reactors

  18. Airy acoustical-sheet spinner tweezers

    Science.gov (United States)

    Mitri, F. G.

    2016-09-01

    The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in

  19. Highly localized distributed Brillouin scattering response in a photonic integrated circuit

    Science.gov (United States)

    Zarifi, Atiyeh; Stiller, Birgit; Merklein, Moritz; Li, Neuton; Vu, Khu; Choi, Duk-Yong; Ma, Pan; Madden, Stephen J.; Eggleton, Benjamin J.

    2018-03-01

    The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS) has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis to locally measure the SBS spectrum with high spatial resolution of 800 μm and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit. This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.

  20. Highly localized distributed Brillouin scattering response in a photonic integrated circuit

    Directory of Open Access Journals (Sweden)

    Atiyeh Zarifi

    2018-03-01

    Full Text Available The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis to locally measure the SBS spectrum with high spatial resolution of 800 μm and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit. This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.

  1. Ultrafast atomic-scale visualization of acoustic phonons generated by optically excited quantum dots

    Directory of Open Access Journals (Sweden)

    Giovanni M. Vanacore

    2017-07-01

    Full Text Available Understanding the dynamics of atomic vibrations confined in quasi-zero dimensional systems is crucial from both a fundamental point-of-view and a technological perspective. Using ultrafast electron diffraction, we monitored the lattice dynamics of GaAs quantum dots—grown by Droplet Epitaxy on AlGaAs—with sub-picosecond and sub-picometer resolutions. An ultrafast laser pulse nearly resonantly excites a confined exciton, which efficiently couples to high-energy acoustic phonons through the deformation potential mechanism. The transient behavior of the measured diffraction pattern reveals the nonequilibrium phonon dynamics both within the dots and in the region surrounding them. The experimental results are interpreted within the theoretical framework of a non-Markovian decoherence, according to which the optical excitation creates a localized polaron within the dot and a travelling phonon wavepacket that leaves the dot at the speed of sound. These findings indicate that integration of a phononic emitter in opto-electronic devices based on quantum dots for controlled communication processes can be fundamentally feasible.

  2. An Opto-Electronic Sensor for Detecting Soil Microarthropods and Estimating Their Size in Field Conditions

    Directory of Open Access Journals (Sweden)

    Csongor I. Gedeon

    2017-08-01

    Full Text Available Methods to estimate density of soil-dwelling arthropods efficiently, accurately and continuously are critical for investigating soil biological activity and evaluating soil management practices. Soil-dwelling arthropods are currently monitored manually. This method is invasive, and time- and labor-consuming. Here we describe an infrared opto-electronic sensor for detection of soil microarthropods in the size range of 0.4–10 mm. The sensor is built in a novel microarthropod trap designed for field conditions. It allows automated, on-line, in situ detection and body length estimation of soil microarthropods. In the opto-electronic sensor the light source is an infrared LED. Two plano-convex optical lenses are placed along the virtual optical axis. One lens on the receiver side is placed between the observation space at 0.5–1 times its focal length from the sensor, and another emitter side lens is placed between the observation space and the light source in the same way. This paper describes the setup and operating mechanism of the sensor and the control unit, and through basic tests it demonstrates its potential in automated detection of soil microarthropods. The sensor may be used for monitoring activities, especially for remote observation activities in soil and insect ecology or pest control.

  3. Gas Permeation Characteristics across Nano-Porous Inorganic Membranes

    Directory of Open Access Journals (Sweden)

    M.R Othman, H. Mukhtar

    2012-10-01

    Full Text Available An overview of parameters affecting gas permeation in inorganic membranes is presented. These factors include membrane physical characteristics, operational parameters and gas molecular characteristics. The membrane physical characteristics include membrane materials and surface area, porosity, pore size and pore size distribution and membrane morphology. The operational parameters include feed flow rate and concentration, stage cut, temperature and pressure. The gas molecular characteristics include gas molecular weight, diameter, critical temperature, critical pressure, Lennard-Jones parameters and diffusion volumes. The current techniques of material characterization may require complementary method in describing microscopic heterogeneity of the porous ceramic media. The method to be incorporated in the future will be to apply a stochastic model and/or fractal dimension. Keywords: Inorganic membrane, surface adsorption, Knudsen diffusion, Micro-porous membrane, permeation, gas separation.

  4. Operational parameters of an opto-electronic neural network employing fixed planar holographic interconnects

    Science.gov (United States)

    Keller, P. E.; Gmitro, A. F.

    1993-07-01

    A prototype neutral network system of multifaceted, planar interconnection holograms and opto-electronic neurons is analyzed. This analysis shows that a hologram fabricated with electron-beam lithography has the capacity to connect 6700 neuron outputs to 6700 neuron inputs, and that, the encoded synaptic weights have a precision of approximately 5 bits. Higher interconnection densities can be achieved by accepting a lower synaptic weight accuracy. For systems employing laser diodes at the outputs of the neurons, processing rates in the range of 45 to 720 trillion connections per second can potentially be achieved.

  5. Transverse mechanical properties of cell walls of single living plant cells probed by laser-generated acoustic waves.

    Science.gov (United States)

    Gadalla, Atef; Dehoux, Thomas; Audoin, Bertrand

    2014-05-01

    Probing the mechanical properties of plant cell wall is crucial to understand tissue dynamics. However, the exact symmetry of the mechanical properties of this anisotropic fiber-reinforced composite remains uncertain. For this reason, biologically relevant measurements of the stiffness coefficients on individual living cells are a challenge. For this purpose, we have developed the single-cell optoacoustic nanoprobe (SCOPE) technique, which uses laser-generated acoustic waves to probe the stiffness, thickness and viscosity of live single-cell subcompartments. This all-optical technique offers a sub-micrometer lateral resolution, nanometer in-depth resolution, and allows the non-contact measurement of the mechanical properties of live turgid tissues without any assumption of mechanical symmetry. SCOPE experiments reveal that single-cell wall transverse stiffness in the direction perpendicular to the epidermis layer of onion cells is close to that of cellulose. This observation demonstrates that cellulose microfibrils are the main load-bearing structure in this direction, and suggests strong bonding of microfibrils by hemicelluloses. Altogether our measurement of the viscosity at high frequencies suggests that the rheology of the wall is dominated by glass-like dynamics. From a comparison with literature, we attribute this behavior to the influence of the pectin matrix. SCOPE's ability to unravel cell rheology and cell anisotropy defines a new class of experiments to enlighten cell nano-mechanics.

  6. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices.

    Science.gov (United States)

    Wiklund, Martin; Green, Roy; Ohlin, Mathias

    2012-07-21

    In part 14 of the tutorial series "Acoustofluidics--exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation", we provide a qualitative description of acoustic streaming and review its applications in lab-on-a-chip devices. The paper covers boundary layer driven streaming, including Schlichting and Rayleigh streaming, Eckart streaming in the bulk fluid, cavitation microstreaming and surface-acoustic-wave-driven streaming.

  7. Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin

    Science.gov (United States)

    Kumar, Amit; Li, Xinran; Sandoval, Michael A; Rodriguez, B Leticia; Sloat, Brian R; Cui, Zhengrong

    2011-01-01

    Background: The present study was designed to evaluate the extent to which pretreatment with microneedles can enhance skin permeation of nanoparticles in vitro and in vivo. Permeation of live bacteria, which are physically nanoparticles or microparticles, through mouse skin pretreated with microneedles was also studied to evaluate the potential risk of microbial infection. Methods and results: It was found that pretreatment of mouse skin with microneedles allowed permeation of solid lipid nanoparticles, size 230 nm, with ovalbumin conjugated on their surface. Transcutaneous immunization in a mouse skin area pretreated with microneedles with ovalbumin nanoparticles induced a stronger antiovalbumin antibody response than using ovalbumin alone. The dose of ovalbumin antigen determined whether microneedle-mediated transcutaneous immunization with ovalbumin nanoparticles induced a stronger immune response than subcutaneous injection of the same ovalbumin nanoparticles. Microneedle treatment permitted skin permeation of live Escherichia coli, but the extent of the permeation was not greater than that enabled by hypodermic injection. Conclusion: Transcutaneous immunization on a microneedle-treated skin area with antigens carried by nanoparticles can potentially induce a strong immune response, and the risk of bacterial infection associated with microneedle treatment is no greater than that with a hypodermic injection. PMID:21753877

  8. Mapping cell-specific functional connections in the mouse brain using ChR2-evoked hemodynamics (Conference Presentation)

    Science.gov (United States)

    Bauer, Adam Q.; Kraft, Andrew; Baxter, Grant A.; Bruchas, Michael; Lee, Jin-Moo; Culver, Joseph P.

    2017-02-01

    Functional magnetic resonance imaging (fMRI) has transformed our understanding of the brain's functional organization. However, mapping subunits of a functional network using hemoglobin alone presents several disadvantages. Evoked and spontaneous hemodynamic fluctuations reflect ensemble activity from several populations of neurons making it difficult to discern excitatory vs inhibitory network activity. Still, blood-based methods of brain mapping remain powerful because hemoglobin provides endogenous contrast in all mammalian brains. To add greater specificity to hemoglobin assays, we integrated optical intrinsic signal(OIS) imaging with optogenetic stimulation to create an Opto-OIS mapping tool that combines the cell-specificity of optogenetics with label-free, hemoglobin imaging. Before mapping, titrated photostimuli determined which stimulus parameters elicited linear hemodynamic responses in the cortex. Optimized stimuli were then scanned over the left hemisphere to create a set of optogenetically-defined effective connectivity (Opto-EC) maps. For many sites investigated, Opto-EC maps exhibited higher spatial specificity than those determined using spontaneous hemodynamic fluctuations. For example, resting-state functional connectivity (RS-FC) patterns exhibited widespread ipsilateral connectivity while Opto-EC maps contained distinct short- and long-range constellations of ipsilateral connectivity. Further, RS-FC maps were usually symmetric about midline while Opto-EC maps displayed more heterogeneous contralateral homotopic connectivity. Both Opto-EC and RS-FC patterns were compared to mouse connectivity data from the Allen Institute. Unlike RS-FC maps, Thy1-based maps collected in awake, behaving mice closely recapitulated the connectivity structure derived using ex vivo anatomical tracer methods. Opto-OIS mapping could be a powerful tool for understanding cellular and molecular contributions to network dynamics and processing in the mouse brain.

  9. Deuterium gas-driven permeation and subsequent retention in rolled tungsten foils

    International Nuclear Information System (INIS)

    Liu, Feng; Zhou, Haishan; Li, Xiao-Chun; Xu, Yuping; An, Zhongqing; Mao, Hongmin; Xing, Wenjing; Hou, Qing; Luo, Guang-Nan

    2014-01-01

    Experiments concerning deuterium gas-driven permeation through rolled tungsten foils in the temperature range of 850–950 K and subsequent deuterium retention have been performed. The steady state permeation flux of deuterium is proportional to the square root of the driving pressure. The permeability of deuterium is in an order of 10 −14 mol m −1 s −1 Pa −1/2 in this temperature range and the activation energy for permeation is 1.21 eV. Measurements of diffusivity are significantly affected by the driving pressure, which can be well explained by a saturable-trap model. Thermal desorption spectra of samples feature a single deuterium release peak at about 873 K. TMAP 4 modeling of this peak gives a detrapping energy of 1.70 eV, which fits the dissociation enthalpy of deuterium desorbing from the inner wall of vacancy clusters or pores in tungsten

  10. Deuterium gas-driven permeation and subsequent retention in rolled tungsten foils

    Science.gov (United States)

    Liu, Feng; Zhou, Haishan; Li, Xiao-Chun; Xu, Yuping; An, Zhongqing; Mao, Hongmin; Xing, Wenjing; Hou, Qing; Luo, Guang-Nan

    2014-12-01

    Experiments concerning deuterium gas-driven permeation through rolled tungsten foils in the temperature range of 850-950 K and subsequent deuterium retention have been performed. The steady state permeation flux of deuterium is proportional to the square root of the driving pressure. The permeability of deuterium is in an order of 10-14 mol m-1 s-1 Pa-1/2 in this temperature range and the activation energy for permeation is 1.21 eV. Measurements of diffusivity are significantly affected by the driving pressure, which can be well explained by a saturable-trap model. Thermal desorption spectra of samples feature a single deuterium release peak at about 873 K. TMAP 4 modeling of this peak gives a detrapping energy of 1.70 eV, which fits the dissociation enthalpy of deuterium desorbing from the inner wall of vacancy clusters or pores in tungsten.

  11. Experimental evaluation of tritium permeation through stainless steel tubes of heat exchanger from primary to secondary water in ITER

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Nishi, Masataka

    2004-01-01

    Tritium permeation through heat exchanger from primary cooling water to secondary cooling water has been investigated experimentally with SS316L heat exchanger under simulated ITER (international thermonuclear experimental reactor) operation condition in order to establish the tritium permeation evaluation method through the heat exchanger. As the result, the permeation rate of aqueous tritium was found to be about three orders smaller than that of the gaseous tritium. Tritium permeation through the heat exchanger in ITER was then evaluated, and it was revealed that total tritium permeation amount based on obtained aqueous permeability was about one order less than that with the former method with the gaseous permeability and putting the permeation reduction factor as 1000. Evaluated tritium permeation amount into secondary water during 20 years was quite small, which could be considered as negligible from the safety viewpoint

  12. Acoustic Manipulation of Particles and Fluids in Microfluidic Systems

    OpenAIRE

    Johansson, Linda

    2009-01-01

    The downscaling and integration of biomedical analyses onto a single chip offers several advantages in speed, cost, parallelism and de-centralization. Acoustic radiation forces are attractive to use in these applications since they are strong, long-range and gentle. Lab-on-a-chip operations such as cell trapping, particle fluorescence activated cell sorting, fluid mixing and particle sorting performed by acoustic radiation forces are exploited in this thesis. Two different platforms are desig...

  13. Combined use of bile acids and aminoacids to improve permeation properties of acyclovir.

    Science.gov (United States)

    Cirri, M; Maestrelli, F; Mennini, N; Mura, P

    2015-07-25

    The aim of this work was to develop a topical formulation with improved permeation properties of acyclovir. Ursodeoxycholic (UDC) and dehydrocholic (DHC) acids were tested as potential enhancers, alone or in combination with different aminoacids. Equimolar binary and ternary systems of acyclovir with cholic acids and basic, hydrophilic or hydrophobic aminoacids were prepared by co-grinding in a high vibrational micromill. Differential scanning calorimetry (DSC) was used to characterize the solid state of these systems, while their permeation properties were evaluated in vitro through a lipophilic artificial membrane. UDC was more than 2 times more effective than DHC in improving drug AUC and permeation rate. As for the ternary systems drug-UDC-aminoacid, only the combined use of l-lysine with UDC acid produced an evident synergistic effect in enhancing drug permeation properties, enabling an almost 3 and 8 times AUC increase compared to the binary UDC system or the pure drug, respectively. The best systems were selected for the development of topical cream formulations, adequately characterized and tested for in vitro drug permeation properties and stability on storage. The better performance revealed by acyclovir-UDC-l-lysine was mainly attributed to the formation of a more permeable activated system induced by the multicomponent co-grinding process. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Influence of bulk and surface phenomena on the hydrogen permeation through metals

    International Nuclear Information System (INIS)

    Waelbroeck, F.; Wienhold, P.; Winter, J.; Rota, E.; Bauno, T.

    1984-12-01

    We discuss the permeation of hydrogen through metals and alloys such as iron, nickel, steels and Inconel wherein H dissolves endothermically from an H 2 gas. We assume first that trapping centers, surface contamination layers, the saturation of the H surface coverage and the implantation profile - when energetic ions drive the permeation - can be neglected, that a quasi-equilibrium exists between the H atom concentration ν in the adsorbed layer and c in the near surface layers and that the H solubility and diffusivity are homogeneous in the membrane. We evaluate thereafter separately the influence of these various effects and identify the parameter domains where appreciable corrections result. The permeation phenomenon is complex even when these simplifications are made: the penetration rate is proportional to the flux of thermal molecules, atoms or energetic ions - depending upon the case - which strike the surface; the diffusion in the metal is proportional to the gradient of c; the release rate depends on c 2 ; the time-dependent diffusion equation includes a double spatial derivative of c. Permeation can only be fully described when computer codes such as PERI is used. Simple analytical relations are however obtained in several limiting cases. They are the object of this report. Some of them had already been derived by other authors but they were not shown to be part of a single, self consistent permeation model. A comparison of predicted and experimental results shows that the simplified model describes surprisingly accurately the hydrogen exchange between gas and metal solutions. (orig./GSCH)

  15. 40 CFR 1060.520 - How do I test fuel tanks for permeation emissions?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test fuel tanks for... STATIONARY EQUIPMENT Test Procedures § 1060.520 How do I test fuel tanks for permeation emissions? Measure permeation emissions by weighing a sealed fuel tank before and after a temperature-controlled soak. (a...

  16. Permeation of chromium salts through human skin in vitro

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Fullerton, A; Avnstorp, C

    1992-01-01

    Chromium permeation studies were performed on full thickness human skin in diffusion cells. All samples were analysed for the total chromium content by graphite furnace Zeeman-corrected atomic absorption spectrometry. Some samples were analysed by an ion chromatographic method permitting...... the simultaneous determination of Cr(VI) and Cr(III) as well. The amounts of chromium found in all skin layers were significantly higher when potassium dichromate was applied to the skin compared with chromium chloride or chromium nitrate. Chromium could only be detected in the recipient phase after application...... of the dichromate solution. Chromium skin levels increased with increasing concentrations of applied chromium salts up to 0.034 M Cr. The amount of chromium in recipient phase and skin layers increased with increasing pH when the applied solution contained potassium dichromate. This was ascribed to a decreased skin...

  17. Use of focused acoustics for cell disruption to provide ultra scale-down insights of microbial homogenization and its bioprocess impact--recovery of antibody fragments from rec E. coli.

    Science.gov (United States)

    Li, Qiang; Aucamp, Jean P; Tang, Alison; Chatel, Alex; Hoare, Mike

    2012-08-01

    An ultra scale-down (USD) device that provides insight of how industrial homogenization impacts bioprocess performance is desirable in the biopharmaceutical industry, especially at the early stage of process development where only a small quantity of material is available. In this work, we assess the effectiveness of focused acoustics as the basis of an USD cell disruption method to mimic and study high-pressure, step-wise homogenization of rec Escherichia coli cells for the recovery of an intracellular protein, antibody fragment (Fab'). The release of both Fab' and of overall protein follows first-order reaction kinetics with respect to time of exposure to focused acoustics. The rate constant is directly proportional to applied electrical power input per unit volume. For nearly total protein or Fab' release (>99%), the key physical properties of the disruptate produced by focused acoustics, such as cell debris particle size distribution and apparent viscosity show good agreement with those for homogenates produced by high-pressure homogenization operated to give the same fractional release. The only key difference is observed for partial disruption of cells where focused acoustics yields a disruptate of lower viscosity than homogenization, evidently due to a greater extent of polynucleic acids degradation. Verification of this USD approach to cell disruption by high-pressure homogenization is achieved using USD centrifugation to demonstrate the same sedimentation characteristics of disruptates prepared using both the scaled-down focused acoustic and the pilot-scale homogenization methods for the same fraction of protein release. Copyright © 2012 Wiley Periodicals, Inc.

  18. Production of citric acid from whey permeate by fermentation using Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, M; Brooks, J D

    1983-08-01

    The use of lactic casein whey permeate as a substrate for citric acid production by fermentation has been investigated. Using a mutant strain of Aspergillus niger IMI 41874 in fermenter culture, a citric acid concentration of 8.3 g/l, representing a yield of 19% (w/w) based on lactose utilized, has been observed. Supplementation of the permeate with lactose (final concentration 140 g/l) increased the production to 14.8 g/l (yield 23%). The natural pH of the permeate (pH 4.5) was the most suitable initial pH for the process, and pH control during the fermentation was unnecessary. The addition of methanol (final concentration 3% v/v) to the fermentation increased the citric acid production to 25 g/l (yield 33%, based on lactose utilized). 13 references.

  19. Opto-Electromechanical Devices for Low-Noise Detection of Radio Waves

    DEFF Research Database (Denmark)

    Bagci, Tolga

    factors. For example, a hybrid system like this, would enable the use of well-established shot-noise limited optical sensing technologies for detecting weak radio-frequency (rf) signals, rf-to-optical photon conversion and transmission of information in low-loss fiber-optic links over long distances......There is currently an increasing interest in developing hybrid devices that unite the desirable features of different systems. Opto-electromechanics has emerged as one of these promising hybrid fields, where the functionality of conventional electrical circuits can be combined with the salient...... features of optical systems for various technological and sensing applications. Nanomechanical resonators stand as promising candidates in terms of linking the two systems, primarily thanks to their versatility in coupling to various physical systems, together with their excellent mechanical quality...

  20. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  1. LIBRETTO-3: Performance of tritium permeation barriers under irradiation at the HFR Petten

    International Nuclear Information System (INIS)

    Conrad, R.; Fuetterer, M.A.; Giancarli, L.; May, R.; Perujo, A.; Sample, T.

    1994-01-01

    The LIBRETTO-3 irradiation was performed at the HFR Petten during 77 full power days in three cycles to compare the efficiency of three different tritium permeation barriers in presence of Pb-17Li to uncoated AISI 316L steel. For this purpose four steel capsules (arnothing o =10 mm, arnothing i =8 mm, l=300 mm) were filled with 28 g Pb-17Li. The coatings included CVD TiC (outside), CVD TiC+Al 2 O 3 (inside), and pack cementation aluminisation (inside). The generated tritium was partly extracted by bubbling, partly it permeated through the capsules. Permeated and extracted tritium were measured as a function of temperature (280-450 C), H 2 doping (0-1 vol%) and purge gas flow rate. The driving partial pressure in the coated capsules were from an extraction model calibrated by the uncoated capsule for which tritium partial pressure could be calculated. In LIBRETTO-3 conditons, the best barrier was pack cementation aluminisation. The first interpretation of the experiment could, however, not confirm permeation reduction factors of 100 or more expected from this barrier. ((orig.))

  2. Deuterium gas-driven permeation and subsequent retention in rolled tungsten foils

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Feng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhou, Haishan [Department of Fusion Science, The Graduate University for Advanced Studies, Toki 509-5292 (Japan); Li, Xiao-Chun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xu, Yuping; An, Zhongqing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Mao, Hongmin; Xing, Wenjing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hou, Qing [Key Laboratory for Radiation Physics and Technology, Sichuan University, Chengdu 610061 (China); Luo, Guang-Nan, E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China)

    2014-12-15

    Experiments concerning deuterium gas-driven permeation through rolled tungsten foils in the temperature range of 850–950 K and subsequent deuterium retention have been performed. The steady state permeation flux of deuterium is proportional to the square root of the driving pressure. The permeability of deuterium is in an order of 10{sup −14} mol m{sup −1} s{sup −1} Pa{sup −1/2} in this temperature range and the activation energy for permeation is 1.21 eV. Measurements of diffusivity are significantly affected by the driving pressure, which can be well explained by a saturable-trap model. Thermal desorption spectra of samples feature a single deuterium release peak at about 873 K. TMAP 4 modeling of this peak gives a detrapping energy of 1.70 eV, which fits the dissociation enthalpy of deuterium desorbing from the inner wall of vacancy clusters or pores in tungsten.

  3. Acoustic resonance in MEMS scale cylindrical tubes with side branches

    Science.gov (United States)

    Schill, John F.; Holthoff, Ellen L.; Pellegrino, Paul M.; Marcus, Logan S.

    2014-05-01

    Photoacoustic spectroscopy (PAS) is a useful monitoring technique that is well suited for trace gas detection. This method routinely exhibits detection limits at the parts-per-million (ppm) or parts-per-billion (ppb) level for gaseous samples. PAS also possesses favorable detection characteristics when the system dimensions are scaled to a microelectromechanical system (MEMS) design. One of the central issues related to sensor miniaturization is optimization of the photoacoustic cell geometry, especially in relationship to high acoustical amplification and reduced system noise. Previous work relied on a multiphysics approach to analyze the resonance structures of the MEMS scale photo acoustic cell. This technique was unable to provide an accurate model of the acoustic structure. In this paper we describe a method that relies on techniques developed from musical instrument theory and electronic transmission line matrix methods to describe cylindrical acoustic resonant cells with side branches of various configurations. Experimental results are presented that demonstrate the ease and accuracy of this method. All experimental results were within 2% of those predicted by this theory.

  4. Acoustic emission

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1976-01-01

    The volume contains six papers which together provide an overall review of the inspection technique known as acoustic emission or stress wave emission. The titles are: a welder's introduction to acoustic emission technology; use of acoustic emission for detection of defects as they arise during fabrication; examples of laboratory application and assessment of acoustic emission in the United Kingdom; (Part I: acoustic emission behaviour of low alloy steels; Part II: fatigue crack assessment from proof testing and continuous monitoring); inspection of selected areas of engineering structures by acoustic emission; Japanese experience in laboratory and practical applications of acoustic emission to welded structures; and ASME acoustic emission code status. (U.K.)

  5. Ratio of dialytic coefficients of hydrogen and tritium in permeation through palladium alloy film

    International Nuclear Information System (INIS)

    Fujita, Haruyuki; Fujita, Kunio; Sakamoto, Hiroshi; Higashi, Kunio; Okada, Sakae.

    1982-01-01

    The dialytic coefficient for hydrogen is especially large in palladium and its alloys. Recently, with the research on fusion reactors, the dialytic coefficient of tritium permeating through solids and its isotopic effect have been the object of interest. The ratio of the dialytic coefficients of tritium and hydrogen has been usually assumed to be 3. The measurement of the dialytic coefficient in solids using pure tritium is practically difficult. Therefore, the authors carried out the experiment to determine the ratio of the dialytic coefficients of pure T 2 and pure H 2 by permeating the mixed gas of T and H through Pd-Au-Ag alloy. The mixed hydrogen gas was filled in a separation cell containing a palladium alloy tube, and the separation factor of tritium and hydrogen was measured by changing pressure, flow rate and temperature. The separation factor depends mainly on the relative dialytic coefficients of tritium and hydrogen, therefore, the ratio of dialytic coefficients can be determined by the simple analysis of the experimental results. This experimental method is suitable to determine the relative value of dialytic coefficients, and the obtained ratio was about 2.1. (Kako, I.)

  6. Silicon opto-electronic wavelength tracker based on an asymmetric 2x3 Mach-Zehnder Interferometer

    OpenAIRE

    Doménech Gómez, José David; Sanchez Fandiño, Javier Antonio; Gargallo Jaquotot, Bernardo Andrés; Baños Lopez, Rocio; Muñoz Muñoz, Pascual

    2014-01-01

    In this paper we report on the experimental demonstration of a Silicon-on-Insulator opto-electronic wavelength tracker for the optical telecommunication C-band. The device consist of a 2x3 Mach-Zehnder Interferometer (MZI) with 10 pm resolution and photo-detectors integrated on the same chip. The MZI is built interconnecting two Multimode Interference (MMI) couplers with two waveguides whose length difference is 56 mm. The first MMI has a coupling ratio of 95:05 to com...

  7. In vitro skin permeation and anti-atopic efficacy of lipid nanocarriers containing water soluble extracts of Houttuynia cordata.

    Science.gov (United States)

    Kwon, Taek Kwan; Kim, Jin-Chul

    2014-10-01

    The aims of this work are to enhance the in vitro skin permeation of Houttuynia cordata (water-soluble extract of H. cordata; HCWSE) and to boost the efficacy of HCWSE against atopic dermatitis (AD) - like skin lesion in hairless mice using lipid nano-carriers (liposome and cubosome). HCWSE was obtained by a hot water extraction. Monoolein cubosomal suspension containing HCWSE and egg phosphatidylcholine liposomal suspension containing the same was prepared by a sonication and a film hydration method, respectively. The lipid nano-carriers, especially cubosome, enhanced the in vitro skin permeation of HCWSE. The inhibitory effects of HCWSE-containing lipid carrier suspensions on the development of 1-chloro-2,4-dinitrobenzene (DNCB)-induced AD-like skin lesion in hairless mice were investigated by observing appearance of skin surface, serum immunoglobulin E (IgE) level and cytokine expression. HCWSE-containing preparations suppressed IgE production and interleukin 4 expression, whereas they promoted interferon gamma expression. The order of lymphocyte (B-cell, Th1 cell and Th2 cell) modulating effect was HCWSE-containing cubosomal suspension > HCWSE-containing liposomal suspension > HCWSE solution in phosphate buffered saline, indicating that the cubosomal suspension, among the preparations, was the most efficacious in inhibiting the development of DNCB-induced AD-like skin lesion. It is believed that the cubosomal suspension containing HCWSE would be an efficacious preparation for the treatment of AD.

  8. Deuterium permeation behavior of HTUPS4 steel with thermal oxidation layer

    International Nuclear Information System (INIS)

    Xu, Yu-Ping; Liu, Feng; Zhao, Si-Xiang; Li, Xiao-Chun; Wang, Jing; An, Zhong-Qing; Lu, Tao; Liu, Hao-Dong; Ding, Fang; Zhou, Hai-Shan; Luo, Guang-Nan

    2016-01-01

    The permeation behavior of creep-resistant, Al 2 O 3 -forming HTUPS austenitic stainless steels was studied using a gas driven permeation (GDP) device. The steel samples were first thermal oxidized at air condition, followed by GDP experiments. The permeability and diffusion coefficients of oxidized samples and bare 316L steels were derived and compared. In order to characterize the oxide layer, X-ray photoelectron spectroscopy was performed. An oxide layer with a thickness of 200 nm which mainly consists of Al 2 O 3 was detected.

  9. Liposomal buccal mucoadhesive film for improved delivery and permeation of water-soluble vitamins.

    Science.gov (United States)

    Abd El Azim, Heba; Nafee, Noha; Ramadan, Alyaa; Khalafallah, Nawal

    2015-07-05

    This study aims at improving the buccal delivery of vitamin B6 (VB6) as a model highly water-soluble, low permeable vitamin. Two main strategies were combined; first VB6 was entrapped in liposomes, which were then formulated as mucoadhesive film. Both plain and VB6-loaded liposomes (LPs) containing Lipoid S100 and propylene glycol (∼ 200 nm) were then incorporated into mucoadhesive film composed of SCMC and HPMC. Results showed prolonged release of VB6 (72.65%, T50% diss 105 min) after 6h from LP-film compared to control film containing free VB6 (96.37%, T50% diss 30 min). Mucoadhesion was assessed both ex vivo on chicken pouch and in vivo in human. Mucoadhesive force of 0.2N and residence time of 4.4h were recorded. Ex vivo permeation of VB6, across chicken pouch mucosa indicated increased permeation from LP-systems compared to corresponding controls. Interestingly, incorporation of the vesicles in mucoadhesive film reduced the flux by 36.89% relative to LP-dispersion. Meanwhile, both films provided faster initial permeation than the liquid forms. Correlating the cumulative percent permeated ex vivo with the cumulative percent released in vitro indicated that LPs retarded VB6 release but improved permeation. These promising results represent a step forward in the field of buccal delivery of water-soluble vitamins. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Construction and performance test of apparatus for permeation experiments with controlled surfaces

    International Nuclear Information System (INIS)

    Hatano, Yuji; Nomura, Mamoru; Watanabe, Kuniaki; Livshits, Alexander I.; Busnyuk, Andrei O.; Nakamura, Yukio; Ohyabu, Nobuyoshi

    2003-01-01

    A new apparatus was constructed to examine gas-, atom- and plasma-driven permeation of hydrogen isotopes through group VA metal membranes with precisely controlled surface states. Absorption and desorption experiments are also possible. The new apparatus consists of two vacuum chambers, an upstream chamber and a downstream chamber, separated by a specimen membrane. Both chambers are evacuated by turbo-molecular pumps and sputter-ion pumps. The upstream chamber is equipped with Ta filaments serving as atomizers in atom-driven permeation experiments and cathodes in plasma-driven permeation experiments. The specimen membrane is formed into a tubular shape and electrically isolated from the chamber. Hence, ohmic heating of the membrane is possible, and this feature of the membrane is suitable for surface cleaning by high-temperature heating an impurity doping for the control of surface chemical composition through surface segregation. Both chambers were evacuated to 1 x 10 -7 Pa after baking. The main component of residual gas was H 2 , and the partial pressures of impurity gases other than H 2 were ca. 1 x 10 -8 Pa. Gas- and atom-driven permeation experiments were successfully carried out with hydrogen gas for Nb membrane activated by heating in vacuum at 1173 K. Superpermeation was observed in the atom-driven permeation experiments. Absorption experiments with a clean surface were also carried out. The surface was, however, cleaned only partially, because the temperature distribution was not uniform during high-temperature heating. Nevertheless, surface cleanliness was retained during absorption experiments under the present vacuum conditions. A new membrane assembly that will enable a uniform temperature distribution is now under construction. (author)

  11. Acoustic Band Gaps in Three-Dimensional NaCl-Type Acoustic Crystals

    International Nuclear Information System (INIS)

    Nong-Yu, Fang; Fu-Gen, Wu; Xin, Zhang

    2008-01-01

    We present the acoustic band gaps (ABGs) for a geometry of three-dimensional complex acoustic crystals: the NaCl-type structure. By using the super cell method based on the plane-wave expansion method (PWE), we study the three configurations formed by water objects (either a sphere of different sizes or a cube) located at the vertices of simple cubic (SC) lattice and surrounded by mercury background. The numerical results show that ABGs larger than the original SC structure for all the three configurations can be obtained by adjusting the length-diameter ratio of adjacent objects but keeping the filling fraction (f = 0.25) of the unit cell unchanged. We also compare our results with that of 3D solid composites and find that the ABGs in liquid composites are insensitive to the shapes as that in the solid composites. We further prove that the decrease of the translation group symmetry is more efficient in creating the ABGs in 3D water-mercury systems. (fundamental areas of phenomenology (including applications))

  12. Intestinal surfactant permeation enhancers and their interaction with enterocyte cell membranes in a mucosal explant system

    DEFF Research Database (Denmark)

    Danielsen, E Michael; Hansen, Gert H

    2017-01-01

    Intestinal permeation enhancers (PEs) are agents aimed to improve oral delivery of therapeutic drugs with poor bioavailability. The main permeability barrier for oral delivery is the intestinal epithelium, and PEs act to increase the paracellular and/or transcellular passage of drugs. Transcellular...... for the fluorescent polar tracer lucifer yellow, but surprisingly, they all also blocked both constitutive -and receptor-mediated pathways of endocytosis from the brush border, indicating a complete arrest of apical membrane trafficking. At the ultrastructural level, the PEs caused longitudinal fusion of brush border...

  13. Water vapor permeation and dehumidification performance of poly(vinyl alcohol)/lithium chloride composite membranes

    KAUST Repository

    Bui, Duc Thuan

    2015-10-09

    Thin and robust composite membranes comprising stainless steel scaffold, fine and porous TiO2 and polyvinyl alcohol/lithium chloride were fabricated and studied for air dehumidification application. Higher hydrophilicity, sorption and permeation were observed for membranes with increased lithium chloride content up to 50%. The permeation and sorption properties of the membranes were investigated under different temperatures. The results provided a deeper insight into the membrane water vapor permeation process. It was specifically noted that lithium chloride significantly reduces water diffusion energy barrier, resulting in the change of permeation energy from positive to negative values. Higher water vapor permeance was observed for the membrane with higher LiCl content at lower temperature. The isothermal air dehumidification tests show that the membrane is suitable for dehumidifying air in high humid condition. Additionally, results also indicate a trade-off between the humidity ratio drop with the water vapor removal rate when varying air flowrate.

  14. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers.

    Science.gov (United States)

    Chen, Kejie; Wu, Mengxi; Guo, Feng; Li, Peng; Chan, Chung Yu; Mao, Zhangming; Li, Sixing; Ren, Liqiang; Zhang, Rui; Huang, Tony Jun

    2016-07-05

    The multicellular spheroid is an important 3D cell culture model for drug screening, tissue engineering, and fundamental biological research. Although several spheroid formation methods have been reported, the field still lacks high-throughput and simple fabrication methods to accelerate its adoption in drug development industry. Surface acoustic wave (SAW) based cell manipulation methods, which are known to be non-invasive, flexible, and high-throughput, have not been successfully developed for fabricating 3D cell assemblies or spheroids, due to the limited understanding on SAW-based vertical levitation. In this work, we demonstrated the capability of fabricating multicellular spheroids in the 3D acoustic tweezers platform. Our method used drag force from microstreaming to levitate cells in the vertical direction, and used radiation force from Gor'kov potential to aggregate cells in the horizontal plane. After optimizing the device geometry and input power, we demonstrated the rapid and high-throughput nature of our method by continuously fabricating more than 150 size-controllable spheroids and transferring them to Petri dishes every 30 minutes. The spheroids fabricated by our 3D acoustic tweezers can be cultured for a week with good cell viability. We further demonstrated that spheroids fabricated by this method could be used for drug testing. Unlike the 2D monolayer model, HepG2 spheroids fabricated by the 3D acoustic tweezers manifested distinct drug resistance, which matched existing reports. The 3D acoustic tweezers based method can serve as a novel bio-manufacturing tool to fabricate complex 3D cell assembles for biological research, tissue engineering, and drug development.

  15. Negative refraction imaging of acoustic metamaterial lens in the supersonic range

    Directory of Open Access Journals (Sweden)

    Jianning Han

    2014-05-01

    Full Text Available Acoustic metamaterials with negative refraction index is the most promising method to overcome the diffraction limit of acoustic imaging to achieve ultrahigh resolution. In this paper, we use localized resonant phononic crystal as the unit cell to construct the acoustic negative refraction lens. Based on the vibration model of the phononic crystal, negative quality parameters of the lens are obtained while excited near the system resonance frequency. Simulation results show that negative refraction of the acoustic lens can be achieved when a sound wave transmiting through the phononic crystal plate. The patterns of the imaging field agree well with that of the incident wave, while the dispersion is very weak. The unit cell size in the simulation is 0.0005 m and the wavelength of the sound source is 0.02 m, from which we show that acoustic signal can be manipulated through structures with dimensions much smaller than the wavelength of incident wave.

  16. Translational illusion of acoustic sources by transformation acoustics.

    Science.gov (United States)

    Sun, Fei; Li, Shichao; He, Sailing

    2017-09-01

    An acoustic illusion of creating a translated acoustic source is designed by utilizing transformation acoustics. An acoustic source shifter (ASS) composed of layered acoustic metamaterials is designed to achieve such an illusion. A practical example where the ASS is made with naturally available materials is also given. Numerical simulations verify the performance of the proposed device. The designed ASS may have some applications in, e.g., anti-sonar detection.

  17. Opto-electrochemical In Situ Monitoring of the Cathodic Formation of Single Cobalt Nanoparticles.

    Science.gov (United States)

    Brasiliense, Vitor; Clausmeyer, Jan; Dauphin, Alice L; Noël, Jean-Marc; Berto, Pascal; Tessier, Gilles; Schuhmann, Wolfgang; Kanoufi, Fréderic

    2017-08-21

    Single-particle electrochemistry at a nanoelectrode is explored by dark-field optical microscopy. The analysis of the scattered light allows in situ dynamic monitoring of the electrodeposition of single cobalt nanoparticles down to a radius of 65 nm. Larger sub-micrometer particles are directly sized optically by super-localization of the edges and the scattered light contains complementary information concerning the particle redox chemistry. This opto-electrochemical approach is used to derive mechanistic insights about electrocatalysis that are not accessible from single-particle electrochemistry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Whey permeate fermented with kefir grains shows antifungal effect against Fusarium graminearum.

    Science.gov (United States)

    Gamba, Raúl Ricardo; De Antoni, Graciela; Peláez, Angela León

    2016-05-01

    The objective of the work reported here was to study the antifungal capability of cell-free supernatants obtained from whey permeates after fermentation by the kefir grains CIDCA AGK1 against Fusarium graminearum growth and zearalenone (ZEA) production. The assays were performed in order to study the conidial germination inhibition -in liquid media- and the effect on fungal growth rate and the Latency phase -in solid media. We observed that fermented supernatants of pH 3·5 produced the highest percentages of inhibition of conidial germination. The dilution and, particularly, alkalinisation of them led to the gradual loss of antifungal activity. In the fungal inhibition assays on plates we found that only the highest proportion of supernatant within solid medium had significant antifungal activity, which was determined as fungicidal. There was no ZEA biosynthesis in the medium with the highest proportion of supernatant, whereas at lower concentrations, the mycotoxin production was strain-dependent. From the results obtained we concluded that kefir supernatants had antifungal activity on the F. graminearum strains investigated and inhibited mycotoxin production as well, but in a strain-dependent fashion. The present work constitutes the first report of the effect of the products obtained from the kefir-grain fermentation of whey permeates - a readily available by-product of the dairy industry - on F. graminearum germination, growth, and toxin production.

  19. Contaminant Permeation in the Ionomer-Membrane Water Processor (IWP) System

    Science.gov (United States)

    Kelsey, Laura K.; Finger, Barry W.; Pasadilla, Patrick; Perry, Jay

    2016-01-01

    The Ionomer-membrane Water Processor (IWP) is a patented membrane-distillation based urine brine water recovery system. The unique properties of the IWP membrane pair limit contaminant permeation from the brine to the recovered water and purge gas. A paper study was conducted to predict volatile trace contaminant permeation in the IWP system. Testing of a large-scale IWP Engineering Development Unit (EDU) with urine brine pretreated with the International Space Station (ISS) pretreatment formulation was then conducted to collect air and water samples for quality analysis. Distillate water quality and purge air GC-MS results are presented and compared to predictions, along with implications for the IWP brine processing system.

  20. An opto-electronic joint detection system based on DSP aiming at early cervical cancer screening

    Science.gov (United States)

    Wang, Weiya; Jia, Mengyu; Gao, Feng; Yang, Lihong; Qu, Pengpeng; Zou, Changping; Liu, Pengxi; Zhao, Huijuan

    2015-02-01

    The cervical cancer screening at a pre-cancer stage is beneficial to reduce the mortality of women. An opto-electronic joint detection system based on DSP aiming at early cervical cancer screening is introduced in this paper. In this system, three electrodes alternately discharge to the cervical tissue and three light emitting diodes in different wavelengths alternately irradiate the cervical tissue. Then the relative optical reflectance and electrical voltage attenuation curve are obtained by optical and electrical detection, respectively. The system is based on DSP to attain the portable and cheap instrument. By adopting the relative reflectance and the voltage attenuation constant, the classification algorithm based on Support Vector Machine (SVM) discriminates abnormal cervical tissue from normal. We use particle swarm optimization to optimize the two key parameters of SVM, i.e. nuclear factor and cost factor. The clinical data were collected on 313 patients to build a clinical database of tissue responses under optical and electrical stimulations with the histopathologic examination as the gold standard. The classification result shows that the opto-electronic joint detection has higher total coincidence rate than separate optical detection or separate electrical detection. The sensitivity, specificity, and total coincidence rate increase with the increasing of sample numbers in the training set. The average total coincidence rate of the system can reach 85.1% compared with the histopathologic examination.

  1. Study of the input-side subsurface reorganization vs. the outside current density in hydrogen permeation under constant cell voltage through iron membrane according to RHC concept

    International Nuclear Information System (INIS)

    DePetris-Wery, M.; Wery, S.; Catonne, J.C.

    2010-01-01

    In this work, hydrogen permeation tests were performed on pure iron membrane in 1 M sodium hydroxide at 298 K, subjected to hydrogen charging under 'quasi-potentiostatic' polarization conditions, i.e. constant cell voltage applied between the cathode (membrane entry side) and the anode (counter electrode), which is a typical situation during metal electrodeposition or cathodic degreasing on steel in metal finishing industry. Two consecutive charging-discharging runs were carried out. Prolonged hydrogen charging under quasi-potentiostatic polarization was investigated and the change of cathodic current density (i in ) chg and electrode potential (E in ) chg as well as permeation current density (i out ) chg were analysed. Three singularities were underlined for each experiment: (i) the curve (i in ) chg = f((E in ) chg ), illustrating the inverse of hydrogen charge resistance R HC -1 evolution which was negative, equal to zero and then became positive; (ii) quasi-periodic instabilities during the R HC -1 zero period, probably induced by atomic reorganizing due to subsurface hydrogen insertion in the input-side; (iii) the same ratio (i out ) chg /(i in ) chg = -6 x 10 -5 . During discharge runs, both sides of the membrane were polarized at the same potential (E in ) dischg = (E out ) dischg = -0.285 V/Hg/HgO/NaOH 1 M and the current densities, (i in ) dischg and (i out ) dischg which corresponded to the desorption rates of hydrogen, were measured. The following correlation (i out ) dischg vs.(i in ) dischg = -6 x 10 -5 was confirmed leading us to introduce the R HC -1 mirror concept to observe the input-side subsurface reorganization by the survey of its potential vs. outside current density during the hydrogen charge. Thus, this R HC -1 mirror concept showed: (i) a non-stop and irreversible progress in the subsurface reorganization during the two permeations; (ii) a probable structural evolution to a stable subsurface structure, the only condition of a real steady

  2. The impact of tritium solubility and diffusivity on inventory and permeation in liquid breeder blankets

    International Nuclear Information System (INIS)

    Caorlin, M.; Gervasini, G.; Reiter, F.

    1988-01-01

    The authors reviewed hydrogen solubility and diffusivity data for liquid lithium-based compounds which are potential breeding blanket materials in NET-type fusion devices. These data have been used to assess tritium permeation and inventory in separately cooled NET blankets and in self cooled blankets with a vanadium first wall. The results for the separately cooled NET-liquid breeder show that tritium permeation is negligible for lithium, a serious problem for Pb-17Li and a critical one for Flibe. The total tritium inventory is lowest in lithium, high in Pb-17Li and very high in Flibe. The high tritium partial pressure for Flibe or Pb-17Li can be reduced in a self cooled blanket with a vanadium first wall. Permeation into the plasma reduces the blanket tritium inventory and permeation. Tritium recovery can be combined with the plasma exhaust

  3. Permeation of a H2 + HD + D2 gas mixture through a polymer membrane

    International Nuclear Information System (INIS)

    Mercea, P.; Cuna, S.; Kreibik, S.; Ursu, I.

    1990-01-01

    The selective permeation of a H 2 + HD + D 2 gas mixture through a polyethylene terephthalate membrane was studied at T 20 0 C. It was found that the permeation of the HD through the membrane leads to a smaller overall hydrogen-deuterium separation factor than that determined in the permeation experiments with pure H 2 and D 2 . On the other hand, a process of isotopic exchange between deuterium atoms from the penetrant gas stream and hydrogen atoms from the polymer membrane is assumed and discussed in order to explain temporal variations of the H 2 , HD and D 2 concentrations of the permanent gas stream. (author)

  4. Theory of nonlinear acoustic forces acting on fluids and particles in microsystems

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias

    fundamentally new capabilities in chemical, biomedical, or clinical studies of single cells and bioparticles. This thesis, entitled Theory of nonlinear acoustic forces acting on fluids and particles in microsystems, advances the fundamental understanding of acoustofluidics by addressing the origin...... of the nonlinear acoustic forces acting on fluids and particles. Classical results in nonlinear acoustics for the non-dissipative acoustic radiation force acting on a particle or an interface, as well as the dissipative acoustic force densities driving acoustic streaming, are derived and discussed in terms...... in the continuous fluid parameters of density and compressibility, e.g., due to a solute concentration field, the thesis presents novel analytical results on the acoustic force density acting on inhomogeneous fluids in acoustic fields. This inhomogeneity-induced acoustic force density is non-dissipative in origin...

  5. Feasibility of permeation grouting for constructing subsurface barriers

    International Nuclear Information System (INIS)

    Dwyer, B.P.

    1994-04-01

    Efforts are being made to devise technologies that provide interim containment of waste sites while final remediation alternatives are developed. Permeation grouting, a technique used extensively in the civil and mining engineering industry has been investigated as a method for emplacing a subsurface containment barrier beneath existing waste sites. Conceptually an underlying barrier is placed by injecting grout into the formation at less than fracturing pressure from a series of directionally drilled boreholes beneath the waste site. This study evaluated the penetration and performance characteristics in varying soil conditions of four different grout materials (two microfine cements, mineral wax, and sodium silicate) at a field scale. Field testing consisted of grout injection via sleeve (tube-a'-manchette) pipe into both vertical and horizontal borehole configurations at the Mixed Waste Landfill Integrated Demonstration site at Sandia National Laboratories. Prior to, during, and after grout injection non-intrusive geophysical techniques were used to map grout flow. Following the tests, the site was excavated to reveal details of the grout permeation, and grouted soil samples were cored for laboratory characterization. The non-intrusive and intrusive grout mapping showed preferential flow patterns, i.e., the grout tended to follow the path of least resistance. Preliminary testing indicates that permeation grouting is a feasible method for emplacing a low permeability subsurface barrier in the semi-arid unconsolidated alluvial soils common to the Southwest. Despite the success of this project, difficulties in predicting grout flow in heterogeneous soils and non-intrusive methods for imaging grout location and continuity are issues that need more attention

  6. The opto-thermal effect on encapsulated cholesteric liquid crystals

    Science.gov (United States)

    Liu, Yu-Sung; Lin, Hui-Chi; Yang, Kin-Min

    2017-12-01

    In this study, we implemented a micro-encapsulated CLC electronic paper that is optically addressed and electrically erasable. The mechanism that forms spot diameters on the CLC films is discussed and verified through various experimental parameters, including the thickness of CLCs and Poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) (PEDOT:PSS), pump intensity, and pumping time. The opto-thermal effect, brought on by the PEDOT:PSS absorbing layer, causes the spot diameters on the cholesteric liquid crystal thin films to vary. According to our results, the spot diameter is larger for a sample with a thinner cholesteric liquid crystal layer with the same excitation conditions and same thickness of the PEDOT layer. The spot diameter is also larger for a sample with a thicker PEDOT under the same excitation conditions and same thickness of the cholesteric liquid crystal layer. We proposed a simple heat-conducting model to explain the experimental results, which qualitatively agree with this theoretical model.

  7. Hydrogen permeation resistant heat pipe for bi-modal reactors. Final report, October 1, 1994--September 30, 1995

    International Nuclear Information System (INIS)

    North, M.T.; Anderson, W.G.

    1995-01-01

    The principal objective of this program was to demonstrate technology that will make a sodium heat pipe tolerant of hydrogen permeation for a bimodal space reactor application. Special focus was placed on techniques which enhance the permeation of hydrogen out of the heat pipe. Specific objectives include: define the detailed requirements for the bimodal reactor application; design and fabricate a prototype heat pipe tolerant of hydrogen permeation; and test the prototype heat pipe and demonstrate that hydrogen which permeates into the heat pipe is removed or reduced to acceptable levels. The results of the program were fully successful. Analyses were performed on two different heat pipe designs and an experimental heat pipe was fabricated and tested. A model of the experimental heat pipe was developed to predict the enhancement in the hydrogen permeation rate out of the heat pipe. A significant improvement in the rate at which hydrogen permeates out of a heat pipe was predicted for the use of the special condenser geometry developed here. Agreement between the model and the experimental results was qualitatively good. Inclusion of the additional effects of fluid flow in the heat pipe are recommended for future work

  8. Effects of gastric pH on oral drug absorption: In vitro assessment using a dissolution/permeation system reflecting the gastric dissolution process.

    Science.gov (United States)

    Kataoka, Makoto; Fukahori, Miho; Ikemura, Atsumi; Kubota, Ayaka; Higashino, Haruki; Sakuma, Shinji; Yamashita, Shinji

    2016-04-01

    The aim of the present study was to evaluate the effects of gastric pH on the oral absorption of poorly water-soluble drugs using an in vitro system. A dissolution/permeation system (D/P system) equipped with a Caco-2 cell monolayer was used as the in vitro system to evaluate oral drug absorption, while a small vessel filled with simulated gastric fluid (SGF) was used to reflect the gastric dissolution phase. After applying drugs in their solid forms to SGF, SGF solution containing a 1/100 clinical dose of each drug was mixed with the apical solution of the D/P system, which was changed to fasted state-simulated intestinal fluid. Dissolved and permeated amounts on applied amount of drugs were then monitored for 2h. Similar experiments were performed using the same drugs, but without the gastric phase. Oral absorption with or without the gastric phase was predicted in humans based on the amount of the drug that permeated in the D/P system, assuming that the system without the gastric phase reflected human absorption with an elevated gastric pH. The dissolved amounts of basic drugs with poor water solubility, namely albendazole, dipyridamole, and ketoconazole, in the apical solution and their permeation across a Caco-2 cell monolayer were significantly enhanced when the gastric dissolution process was reflected due to the physicochemical properties of basic drugs. These amounts resulted in the prediction of higher oral absorption with normal gastric pH than with high gastric pH. On the other hand, when diclofenac sodium, the salt form of an acidic drug, was applied to the D/P system with the gastric phase, its dissolved and permeated amounts were significantly lower than those without the gastric phase. However, the oral absorption of diclofenac was predicted to be complete (96-98%) irrespective of gastric pH because the permeated amounts of diclofenac under both conditions were sufficiently high to achieve complete absorption. These estimations of the effects of

  9. Effect of piperidones on hydrogen permeation and corrosion ...

    Indian Academy of Sciences (India)

    corrosion inhibition. 3.5 Hydrogen permeation measurements. Hydrogen can enter into the metal during various industrial operations like melting, heat treatment, or pickling and electrochemical processes such as cathodic cleaning and electrolytic machining. Of the various sources of entry of hydrogen into the metal,.

  10. 3-D modeling of triple junction solar cells on 2-D gratings with optimized intermediate and back reflectors

    NARCIS (Netherlands)

    Isabella, O.; Elshinawy, M.A.A.; Solntsev, S.; Zeman, M.

    2012-01-01

    Superstrate thin-film silicon triple-junction solar cells on 2-D gratings were optimized using opto-electrical modeling. Tuning the thickness of intermediate and back reflectors and the band gap of the middle cell resulted in 17% initial efficiency.

  11. Analysis of transient permeation behavior of hydrogen isotope caused by abrupt temperature change of first wall and blanket wall material

    International Nuclear Information System (INIS)

    Yamawaki, Michio; Tanaka, Satoru; Kiyoshi, Tsukasa

    1989-01-01

    To obtain further information on the transient permeation behavior of hydrogen isotopes as caused by an abrupt temperature change, numerical calculations were carried out for two typical metals, nickel and vanadium. Deuterium permeation through nickel is analyzed as a typical case of bulk-diffusion-limited permeation. Its transient behavior changed dramatically according to the specimen thickness. The transient behavior, in general, is separated into two parts, initial and latter period behaviors. Conditions which cause such a separation were evaluated. Evaluation of the hydrogen diffusivity and solubility by an analysis of transient curves of hydrogen permeation was carried out. The transient behavior of simultaneous gas- and ion-driven hydrogen permeation through vanadium was also analyzed. Overshooting of the hydrogen permeation rate appears with an abrupt temperature increase. Increasing the impinging ion flux causes the overshooting peak to become sharper, and also reduces the change of the steady-state permeation rate to be attained after the temperature change compared with the initial value. (orig.)

  12. Ozonation of nanofiltration permeate of whey before processing by reverse osmosis

    Directory of Open Access Journals (Sweden)

    Zmievskii Yurii G.

    2017-01-01

    Full Text Available During nanofiltration processing of whey a significant amount of permeate is generated. In some cases this permeate is treated by reverse osmosis to get purified water for technological needs. Dry substances are not used, because they contain practically the same amount of organic and inorganic components. Mineral substances can be used for the mineralization of drinking water purified by reverse osmosis. However, the presence of organic compounds complicates the process of separation, as well as reduces the specific productivity of reverse osmosis membranes at the concentration stage. Therefore, the search for methods of destruction and removal of organic components is grounded. In the presented work, experimental studies of ozonation and sorption of organic compounds by activated carbon were carried. It has been shown that ozonation improves the degree of sorption purification by six times. Sequential treatment with ozone and subsequent filtration through the layer of activated carbon improves the specific productivity of reverse osmosis membranes by 30% at the stage of treatment of the nanofiltration permeate, while their selectivity remains unchanged.

  13. High throughput imaging cytometer with acoustic focussing.

    Science.gov (United States)

    Zmijan, Robert; Jonnalagadda, Umesh S; Carugo, Dario; Kochi, Yu; Lemm, Elizabeth; Packham, Graham; Hill, Martyn; Glynne-Jones, Peter

    2015-10-31

    We demonstrate an imaging flow cytometer that uses acoustic levitation to assemble cells and other particles into a sheet structure. This technique enables a high resolution, low noise CMOS camera to capture images of thousands of cells with each frame. While ultrasonic focussing has previously been demonstrated for 1D cytometry systems, extending the technology to a planar, much higher throughput format and integrating imaging is non-trivial, and represents a significant jump forward in capability, leading to diagnostic possibilities not achievable with current systems. A galvo mirror is used to track the images of the moving cells permitting exposure times of 10 ms at frame rates of 50 fps with motion blur of only a few pixels. At 80 fps, we demonstrate a throughput of 208 000 beads per second. We investigate the factors affecting motion blur and throughput, and demonstrate the system with fluorescent beads, leukaemia cells and a chondrocyte cell line. Cells require more time to reach the acoustic focus than beads, resulting in lower throughputs; however a longer device would remove this constraint.

  14. Toward enhanced hydrogen generation from water using oxygen permeating LCF membranes

    KAUST Repository

    Wu, Xiao-Yu

    2015-01-01

    © the Owner Societies. Hydrogen production from water thermolysis can be enhanced by the use of perovskite-type mixed ionic and electronic conducting (MIEC) membranes, through which oxygen permeation is driven by a chemical potential gradient. In this work, water thermolysis experiments were performed using 0.9 mm thick La0.9Ca0.1FeO3-δ (LCF-91) perovskite membranes at 990 °C in a lab-scale button-cell reactor. We examined the effects of the operating conditions such as the gas species concentrations and flow rates on the feed and sweep sides on the water thermolysis rate and oxygen flux. A single step reaction mechanism is proposed for surface reactions, and three-resistance permeation models are derived. Results show that water thermolysis is facilitated by the LCF-91 membrane especially when a fuel is added to the sweep gas. Increasing the gas flow rate and water concentration on the feed side or the hydrogen concentration on the sweep side enhances the hydrogen production rate. In this work, hydrogen is used as the fuel by construction, so that a single-step surface reaction mechanism can be developed and water thermolysis rate parameters can be derived. Both surface reaction rate parameters for oxygen incorporation/dissociation and hydrogen-oxygen reactions are fitted at 990 °C. We compare the oxygen fluxes in water thermolysis and air separation experiments, and identify different limiting steps in the processes involving various oxygen sources and sweep gases for this 0.9 mm thick LCF-91 membrane. In the air feed-inert sweep case, the bulk diffusion and sweep side surface reaction are the two limiting steps. In the water feed-inert sweep case, surface reaction on the feed side dominates the oxygen permeation process. Yet in the water feed-fuel sweep case, surface reactions on both the feed and sweep sides are rate determining when hydrogen concentration in the sweep side is in the range of 1-5 vol%. Furthermore, long term studies show that the surface

  15. Cell-cell junctions: a target of acoustic overstimulation in the sensory epithelium of the cochlea

    Directory of Open Access Journals (Sweden)

    Zheng Guiliang

    2012-06-01

    Full Text Available Abstract Background Exposure to intense noise causes the excessive movement of the organ of Corti, stretching the organ and compromising sensory cell functions. We recently revealed changes in the transcriptional expression of multiple adhesion-related genes during the acute phases of cochlear damage, suggesting that the disruption of cell-cell junctions is an early event in the process of cochlear pathogenesis. However, the functional state of cell junctions in the sensory epithelium is not clear. Here, we employed graded dextran-FITC, a macromolecule tracer that is impermeable to the organ of Corti under physiological conditions, to evaluate the barrier function of cell junctions in normal and noise-traumatized cochlear sensory epithelia. Results Exposure to an impulse noise of 155 dB (peak sound pressure level caused a site-specific disruption in the intercellular junctions within the sensory epithelium of the chinchilla cochlea. The most vulnerable sites were the junctions among the Hensen cells and between the Hensen and Deiters cells within the outer zone of the sensory epithelium. The junction clefts that formed in the reticular lamina were permeable to 40 and 500 but not 2,000 kDa dextran-FITC macromolecules. Moreover, this study showed that the interruption of junction integrity occurred in the reticular lamina and also in the basilar membrane, a site that had been considered to be resistant to acoustic injury. Finally, our study revealed a general spatial correlation between the site of sensory cell damage and the site of junction disruption. However, the two events lacked a strict one-to-one correlation, suggesting that the disruption of cell-cell junctions is a contributing, but not the sole, factor for initiating acute sensory cell death. Conclusions Impulse noise causes the functional disruption of intercellular junctions in the sensory epithelium of the chinchilla cochlea. This disruption occurs at an early phase of cochlear

  16. Tritium permeation and recovery

    International Nuclear Information System (INIS)

    Bond, R.A.; Hamilton, A.M.

    1987-01-01

    The paper is an appendix to a study of the reactor relevance of the NET design concept. The latter study examines whether the technologies and design principles proposed for NET can be directly extrapolated to a demonstration (DEMO) reactor. In this appendix, tritium transport in the DEMO breeding blanket is considered with emphasis on the permeation rate from the lithium-lead breeder into the coolant. A computational model used to calculate the tritium transport in the breeder blanket is described. Results are reported for the tritium transport in the NET/INTOR type blanket as well as the DEMO blanket in order to provide a comparison. In addition, results are presented for the helium coolant tritium extraction analysis. (U.K.)

  17. Comparing pervaporation and vapor permeation hybrid distillation processes

    NARCIS (Netherlands)

    Fontalvo, J.; Cuellar, P.; Timmer, J.M.K.; Vorstman, M.A.G.; Wijers, J.G.; Keurentjes, J.T.F.

    2005-01-01

    Previous studies have shown that hybrid distillation processes using either pervaporation or vapor permeation can be very attractive for the separation of mixtures. In this paper, a comparison between these two hybrid processes has been made. A tool has been presented that can assist designers and

  18. 40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by weighing a sealed fuel tank before and after a temperature-controlled soak. (a) Preconditioning fuel soak...

  19. Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle.

    Science.gov (United States)

    Discart, V; Bilad, M R; Marbelia, L; Vankelecom, I F J

    2014-01-01

    A membrane photobioreactor (MPBR) is a proven and very useful concept in which microalgae can be simultaneously cultivated and pre-harvested. However, the behavior with respect to accumulation of algogenic organic matter, including transparent exopolymeric particles (TEPs), counter ions and unassimilated nutrients due to the recycling of the medium is still unclear, even though the understanding of this behavior is essential for the optimization of microalgae processing. Therefore, the dynamics of these compounds, especially TEPs, during coupled cultivation and harvesting of Chlorella vulgaris in an MPBR with permeate recycle are addressed in this study. Results show that TEPs are secreted during algae cell growth, and that their presence is thus inevitable. In the system with permeate recycle, substances such as counter ions and unassimilated nutrients get accumulated in the system. This was proven to limit the algae growth, together with the occurrence of bioflocculation due to an increasing broth pH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Impact of Humidity on In Vitro Human Skin Permeation Experiments for Predicting In Vivo Permeability.

    Science.gov (United States)

    Ishida, Masahiro; Takeuchi, Hiroyuki; Endo, Hiromi; Yamaguchi, Jun-Ichi

    2015-12-01

    In vitro skin permeation studies have been commonly conducted to predict in vivo permeability for the development of transdermal therapeutic systems (TTSs). We clarified the impact of humidity on in vitro human skin permeation of two TTSs having different breathability and then elucidated the predictability of in vivo permeability based on in vitro experimental data. Nicotinell(®) TTS(®) 20 and Frandol(®) tape 40mg were used as model TTSs in this study. The in vitro human skin permeation experiments were conducted under humidity levels similar to those used in clinical trials (approximately 50%) as well as under higher humidity levels (approximately 95%). The skin permeability values of drugs at 95% humidity were higher than those at 50% humidity. The time profiles of the human plasma concentrations after TTS application fitted well with the clinical data when predicted based on the in vitro permeation parameters at 50% humidity. On the other hand, those profiles predicted based on the parameters at 95% humidity were overestimated. The impact of humidity was higher for the more breathable TTS; Frandol(®) tape 40mg. These results show that in vitro human skin permeation experiments should be investigated under realistic clinical humidity levels especially for breathable TTSs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    Science.gov (United States)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  2. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  3. Modelling the effect of mixture components on permeation through skin.

    Science.gov (United States)

    Ghafourian, T; Samaras, E G; Brooks, J D; Riviere, J E

    2010-10-15

    A vehicle influences the concentration of penetrant within the membrane, affecting its diffusivity in the skin and rate of transport. Despite the huge amount of effort made for the understanding and modelling of the skin absorption of chemicals, a reliable estimation of the skin penetration potential from formulations remains a challenging objective. In this investigation, quantitative structure-activity relationship (QSAR) was employed to relate the skin permeation of compounds to the chemical properties of the mixture ingredients and the molecular structures of the penetrants. The skin permeability dataset consisted of permeability coefficients of 12 different penetrants each blended in 24 different solvent mixtures measured from finite-dose diffusion cell studies using porcine skin. Stepwise regression analysis resulted in a QSAR employing two penetrant descriptors and one solvent property. The penetrant descriptors were octanol/water partition coefficient, logP and the ninth order path molecular connectivity index, and the solvent property was the difference between boiling and melting points. The negative relationship between skin permeability coefficient and logP was attributed to the fact that most of the drugs in this particular dataset are extremely lipophilic in comparison with the compounds in the common skin permeability datasets used in QSAR. The findings show that compounds formulated in vehicles with small boiling and melting point gaps will be expected to have higher permeation through skin. The QSAR was validated internally, using a leave-many-out procedure, giving a mean absolute error of 0.396. The chemical space of the dataset was compared with that of the known skin permeability datasets and gaps were identified for future skin permeability measurements. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Effects of anticancer drugs on glia-glioma brain tumor model characterized by acoustic impedance microscopy

    Science.gov (United States)

    Soon, Thomas Tiong Kwong; Chean, Tan Wei; Yamada, Hikari; Takahashi, Kenta; Hozumi, Naohiro; Kobayashi, Kazuto; Yoshida, Sachiko

    2017-07-01

    An ultrasonic microscope is a useful tool for observing living tissue without chemical fixation or histochemical processing. Two-dimensional (2D) acoustic impedance microscopy developed in our previous study for living cell observation was employed to visualize intracellular changes. We proposed a brain tumor model by cocultivating rat glial cells and C6 gliomas to quantitatively analyze the effects of two types of anticancer drugs, cytochalasin B (CyB) and temozolomide (TMZ), when they were applied. We reported that CyB treatment (25 µg/ml, T = 90 min) significantly reduced the acoustic impedance of gliomas and has little effect on glial cells. Meanwhile, TMZ treatment (2 mg/ml, T = 90 min) impacted both cells equally, in which both cells’ acoustic impedances were decreased. As CyB targets the actin filament polymerization of the cells, we have concluded that the decrease in acoustic impedance was in fact due to actin filament depolymerization and the data can be quantitatively assessed for future studies in novel drug development.

  5. Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin

    Directory of Open Access Journals (Sweden)

    Kumar A

    2011-06-01

    Full Text Available Amit Kumar, Xinran Li, Michael A Sandoval, B Leticia Rodriguez, Brian R Sloat, Zhengrong CuiUniversity of Texas at Austin, College of Pharmacy, Pharmaceutics Division, Austin, TX, USABackground: The present study was designed to evaluate the extent to which pretreatment with microneedles can enhance skin permeation of nanoparticles in vitro and in vivo. Permeation of live bacteria, which are physically nanoparticles or microparticles, through mouse skin pretreated with microneedles was also studied to evaluate the potential risk of microbial infection.Methods and results: It was found that pretreatment of mouse skin with microneedles allowed permeation of solid lipid nanoparticles, size 230 nm, with ovalbumin conjugated on their surface. Transcutaneous immunization in a mouse skin area pretreated with microneedles with ovalbumin nanoparticles induced a stronger antiovalbumin antibody response than using ovalbumin alone. The dose of ovalbumin antigen determined whether microneedle-mediated transcutaneous immunization with ovalbumin nanoparticles induced a stronger immune response than subcutaneous injection of the same ovalbumin nanoparticles. Microneedle treatment permitted skin permeation of live Escherichia coli, but the extent of the permeation was not greater than that enabled by hypodermic injection.Conclusion: Transcutaneous immunization on a microneedle-treated skin area with antigens carried by nanoparticles can potentially induce a strong immune response, and the risk of bacterial infection associated with microneedle treatment is no greater than that with a hypodermic injection.Keywords: antibody responses, safety of microneedles, transepidermal water loss

  6. The effect of beta-turn structure on the permeation of peptides across monolayers of bovine brain microvessel endothelial cells

    DEFF Research Database (Denmark)

    Sørensen, M; Steenberg, B; Knipp, G

    1997-01-01

    than the Ile-containing peptides as estimated by the log of their 1-octanol:HBSS partition coefficients (log Po/w). However, the three hydrophilic peptide pairs (Ac-TyrProXaaAspVal-NH2, Ac-TyrProXaaAsnVal-NH2, and Ac-TyrProXaaIleVal-NH2; Xaa = Gly, Ile) were found to permeate BBMEC monolayers...

  7. Acoustic source for generating an acoustic beam

    Science.gov (United States)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  8. Characterisation of the BCM1F Analog Opto Hybrids for the CMS experiment

    CERN Document Server

    Srinidhi, Bheesette

    2013-01-01

    The BCM1F system in the CMS detector is used for measuring the beam-background and more importantly the real time luminosity and sits 1.8 m from the interaction point (IP5).There has been a proposal to upgrade the BCM1F when it would be installed for the LHC run in 2014. The BCM1F is fitted with Analog Opto-Hybrid(AOH) boards which consists of three Linear Laser Drivers (LLD) and three laser diodes. These AOH boards are affected by radiation and temperature in a long term and short term respectively. This paper studies the characteristics and behavior of these AOH boards.

  9. Characterisation of the BCM1F Analog Opto Hybrids for the CMS experiment

    CERN Document Server

    Bheesette, Srinidhi

    2013-01-01

    The BCM1F system used in the CMS is used for measuring the beam-background and more importantly the real time luminosity and sits 1.8 m from the interaction point (IP5).There has been a proposal to upgrade the BCM1F when it would be installed for the LHC run in 2014. The BCM1F is fitted with Analog Opto-Hybrid(AOH) boards which consists of three Linear Laser Drivers (LLD) and three laser diodes. These AOH boards are affected by radiation and temperature in a long term and short term respectively. This paper studies the characteristics and behavior of these AOH boards.

  10. Effect of Microneedle Type on Transdermal Permeation of Rizatriptan.

    Science.gov (United States)

    Uppuluri, Chandrateja; Shaik, Ashraf Sultana; Han, Tao; Nayak, Atul; Nair, Karthik J; Whiteside, Benjamin R; Nalluri, Buchi N; Das, Diganta B

    2017-07-01

    The present study was aimed to investigate the effect of salient microneedle (MN) geometry parameters like length, density, shape and type on transdermal permeation of rizatriptan (RIZ). Studies were carried out using two types of MN devices viz. AdminPatch® arrays (ADM) (0.6, 0.9, 1.2 and 1.5 mm lengths) and laboratory-fabricated polymeric MNs (PMs) of 0.6 mm length. In the case of the PMs, arrays were applied three times at different places within a 1.77-cm 2 skin area (PM-3) to maintain the MN density closer to 0.6 mm ADM. Histological studies revealed that PM, owing to their geometry/design, formed wider and deeper microconduits when compared to ADM of similar length. Approximately 4.9- and 4.2-fold increases in the RIZ steady-state flux values were observed with 1.5 mm ADM and PM-3 applications when compared to the passive studies. A good correlation between different dimensionless parameters like the amount of RIZ permeated (C t /C s ), thickness (h/L) and surface area (S a /L 2 ) of the skin was observed with scaling analyses. Numerical simulations provided further information regarding the distribution of RIZ in MN-treated skin after application of different MNs. Overall, the study suggests that MN application enhances the RIZ transdermal permeation and the geometrical parameters of MNs play an important role in the degree enhancement.

  11. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    Science.gov (United States)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  12. Influence of niobium substitution on structural and opto-electrical properties of BNKT piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Vidhi [Electroceramics Research Group, Department of Physics, Birla Institute of Technology, Mesra, Ranchi (India); Ghosh, S.K., E-mail: saritghosh@gmail.com [Electroceramics Research Group, Department of Physics, Birla Institute of Technology, Mesra, Ranchi (India); Hussain, Ali [School of Advanced Materials Engineering, Changwon National University, Gyeong-Nam, 641-773 (Korea, Republic of); Rout, S.K., E-mail: skrout@bitmesra.ac.in [Electroceramics Research Group, Department of Physics, Birla Institute of Technology, Mesra, Ranchi (India)

    2016-07-25

    Lead free niobium modified piezoelectric ceramics Bi{sub 0.5}Na{sub 0.25}K{sub 0.25}Nb{sub x}Ti{sub 1-x}O{sub 3} (BNKT) (x = 0.0, 0.015 and 0.025) compositions along with their structural and opto-electrical properties are investigated. At room temperature Rietveld refinement analysis on x-ray diffraction data revealed the evidence of tetragonal (P4mm) + cubic (Pm3m) mixed phases at 0.015Nb-BNKT composition and at higher niobium concentration it moves towards cubic phase. Presence of local disorder controls the Raman active vibrational modes along with excitation and emission spectra in these materials. The temperature dependence dielectric constant is investigated in the frequency range of 1 kHz–100 kHz. The broadening of dielectric peak and frequency dependence behavior indicated a relaxor property in these materials. Induced A-site vacancies and coexistence of tetragonal-pseudocubic phases lower the depolarization temperature (T{sub d}) with niobium concentration. The structural mix phases have been correlated with the piezoelectric coefficients and the composition x = 0.015 depicts the better piezoelectric properties amongst the studied compositions which is endorsed to the mixed symmetry of tetragonal and cubic phases. - Highlights: • Coexistence of polar and non-polar phases in Nb doped BNKT materials. • Structural instability and lattice disorder controls the opto-electrical properties. • Broadening and shifting of dielectric peaks highlighted the relaxor behavior. • High value of ferroelectric and piezoelectric coefficients at x = 0.015 composition.

  13. 16th Russian Youth Conference on Physics of Semiconductors and Nanostructures, Opto- and Nanoelectronics

    Science.gov (United States)

    Suris, Robert A.; Vorobjev, Leonid E.; Firsov, Dmitry A.

    2015-01-01

    The 16th Russian Youth Conference on Physics of Semiconductors and Nanostructures, Opto- and Nanoelectronics was held on November 24 - 28 at St. Petersburg Polytechnic University. The program of the Conference included semiconductor technology, heterostructures with quantum wells and quantum dots, opto- and nanoelectronic devices, and new materials. A large number of participants with about 200 attendees from many regions of Russia provided a perfect platform for the valuable discussions between students and experienced scientists. The Conference included two invited talks given by a corresponding member of RAS P.S. Kopyev ("Nitrides: the 4th Nobel Prize on semiconductor heterostructures") and Dr. A.V. Ivanchik ("XXI century is the era of precision cosmology"). Students, graduate and postgraduate students presented their results on plenary and poster sessions. The total number of accepted papers published in Russian (the official conference language) was 92. Here we publish 18 of them in English. Like previous years, the participants were involved in the competition for the best report. Certificates and cash prizes were awarded to a number of participants for the presentations selected by the Program Committee. Two special E.F. Gross Prizes were given for the best presentations in semiconductor optics. Works with potential applications were recommended for participation in the following competition for support from the Russian Foundation for Assistance to Small Innovative Enterprises in Science and Technology. The Conference was supported by the Russian Foundation for Basic Research, the "Dynasty" foundation and the innovation company "ATC - Semiconductor Devices", St. Petersburg. The official Conference website is http://www.semicond.spbstu.ru/conf2014-eng.html

  14. Study on low temperature plasma driven permeation of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    It is one of the most important problem in PWI of fusion devices from the point of view of tritium leakage that hydrogen diffuses in the wall of the device and permeates through it, which results in hydrogen being released to the coolant side. In this study, plasma driven permeation experiments were carried out with several kinds of metal membranes in the low temperature plasma where ionic and atomic hydrogen as well as electron existed in order to survey PDP mechanism from the many view points. In addition, incident flux rate from the plasma to the membrane surface was evaluated by calculation analysis. As a result the mechanism of low temperature PDP was found out and described as PDP models. The simulation of the membrane pump system was executed and the system performance was estimated with the models. (author). 135 refs.

  15. Study on low temperature plasma driven permeation of hydrogen

    International Nuclear Information System (INIS)

    Takizawa, Masayuki

    1998-03-01

    It is one of the most important problem in PWI of fusion devices from the point of view of tritium leakage that hydrogen diffuses in the wall of the device and permeates through it, which results in hydrogen being released to the coolant side. In this study, plasma driven permeation experiments were carried out with several kinds of metal membranes in the low temperature plasma where ionic and atomic hydrogen as well as electron existed in order to survey PDP mechanism from the many view points. In addition, incident flux rate from the plasma to the membrane surface was evaluated by calculation analysis. As a result the mechanism of low temperature PDP was found out and described as PDP models. The simulation of the membrane pump system was executed and the system performance was estimated with the models. (author). 135 refs

  16. Investigation of non-magnetic alloys for the suppression of tritium permeation. Final report

    International Nuclear Information System (INIS)

    1980-07-01

    This report describes a small (300 man hour) literature survey relating to the suppression of tritium loss by permeation through the walls of fusion reactors. The program was based on prior in-house Thermacore work to suppress hydrogen permeation into high temperature (800 0 C) heat pipes. The Thermacore approach involves selection of a steel with a small (.5 to 5%) aluminum content. The aluminum is diffused to the surface and oxidized. The present work was aimed at identification of alloys which might combine low tritium permeation with other properties desired in fusion reactor vessels, heat exchangers, lithium-handling plumbing and other components likely to contain tritium. These properties include low radiation damage, low magnetic permeability, high temperature strength, and compatibility with potential heat transfer and blanket materials. The work consisted of two tasks: Problem Definition and Literature Search and Analysis

  17. 1st International Conference on Opto-Electronics and Applied Optics

    CERN Document Server

    Bhattacharya, Indrani

    2015-01-01

    The Proceedings of First International Conference on Opto-Electronics and Applied Optics 2014, IEM OPTRONIX 2014 presents the research contributions presented in the conference by researchers from both India and abroad. Contributions from established scientists as well as students are included. The book is organized to enable easy access to various topics of interest.   The first part includes the Keynote addresses by Phillip Russell, Max Planck Institute of the Light Sciences, Erlangen, Germany and Lorenzo Pavesi, University of Trento, Italy.   The second part focuses on the Plenary Talks given by eminent scientists, namely, Azizur Rahman, City University London, London; Bishnu Pal, President, The Optical Society of India; Kamakhya Ghatak, National Institute of Technology, Agartala; Kehar Singh, Former Professor, India Institute of Technology Delhi; Mourad Zghal, SUPCOM, University of Carthage, Tunisia; Partha Roy Chaudhuri, IIT Kharagpur; S K. Bhadra, CSIR-Central Glass and Ceramic Research Institute, Kol...

  18. Physics-Based Modeling of Permeation: Simulation of Low-Volatility Agent Permeation and Aerosol Vapor Liquid Assessment Group Experiments

    Science.gov (United States)

    2015-06-01

    methylphosphonothiolate (VX) through natural latex rubber and neoprene resulting from LVAP tests. 2. The permeation model is used to study the sensitivity of...Styrene–Butadiene– Rubber , Ethylene–Propylene–Diene Terpolymer, and Natural Rubber Versus Hydrocarbons (C8–C16). Macromolecules 1991, 24 (9), 2598–2605...22 14. Harogoppad, S.B.; Aminabhavi, T.M. Diffusion and Sorption of Organic Liquids through Polymer Membranes 2. Neoprene, SBR, EPDM, NBR , and

  19. The ‘ideal selectivity’ vs ‘true selectivity’ for permeation of gas mixture in nanoporous membranes

    Science.gov (United States)

    He, Zhou; Wang, Kean

    2018-03-01

    In this study, we proposed and validated a novel and non-destructive experimental technology for measuring the permeation of binary gas mixture in nanoporous membranes. The traditional time lag rig was modified to examine the permeation characteristics of each gas component as well as that of the binary gas mixtures. The difference in boiling points of each species were explored. Binary gas mixtures of CO2/He were permeated through the nanoporous carbon molecular sieve membrane (CMSM). The results showed that, due to the strong interaction among different molecules and with the porous network of the membrane, the measured perm-selectivity or ‘true selectivity’ of a binary mixture can significantly deviate from the ‘ideal selectivity’ calculated form the permeation flux of each pure species, and this deviation is a complicated function of the molecular properties and operation conditions.

  20. Phase Change Permeation Technology for Environmental Control & Life Support Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is evaluating Dutyion™, a phase change permeation membrane technology developed by Design Technology and Irrigation (DTI), for use in future advanced life...

  1. An evidence-based case of acoustic/vestibular schwannoma

    Directory of Open Access Journals (Sweden)

    Girish Gupta

    2015-01-01

    Full Text Available A vestibular schwannoma, often called an acoustic neuroma/schwannoma, is a benign primary intracranial tumor of the myelin-forming cells of the vestibulo-cochlear nerve (8 th cranial nerve. This tumor arises from the Schwann cells responsible for the myelin sheath that helps keep peripheral nerves insulated. [1] Approximately, 3000 cases are diagnosed each year in the United States with a prevalence of about 1 in 100,000 worldwide. It comprises 5-10% of all intracranial neoplasms in adults. Incidence peaks in the fifth and sixth decades and both sexes are affected equally. Studies in Denmark published in 2004 show the incidence of 17.4/million. Most acoustic neuromas are diagnosed in patients between the ages of 30 and 60, and men and women appear to be affected equally. [2] The case illustrated here is a rare one of acoustic/vestibular schwannoma a surgical conditions, treated with Lycopodium, which produced improvement on both subjective and objective parameters.

  2. PermeaLoop™, a novel in vitro tool for small-scale drug-dissolution/permeation studies

    DEFF Research Database (Denmark)

    Sironi, Daniel; Rosenberg, Jörg; Bauer-Brandl, Annette

    2018-01-01

    dissolution and permeation, as it is occurring in vivo. We propose a novel setup with a high area-to-volume ratio and report as a model case the dissolution/permeation behavior of an enabling formulation of the poorly soluble and poorly permeable drug ABT-869. Mini tablets consisting of an amorphous solid......Loop™ is regarded a promising tool for evaluating enabling formulations....

  3. Phononic fluidics: acoustically activated droplet manipulations

    Science.gov (United States)

    Reboud, Julien; Wilson, Rab; Bourquin, Yannyk; Zhang, Yi; Neale, Steven L.; Cooper, Jonathan M.

    2011-02-01

    Microfluidic systems have faced challenges in handling real samples and the chip interconnection to other instruments. Here we present a simple interface, where surface acoustic waves (SAWs) from a piezoelectric device are coupled into a disposable acoustically responsive microfluidic chip. By manipulating droplets, SAW technologies have already shown their potential in microfluidics, but it has been limited by the need to rely upon mixed signal generation at multiple interdigitated electrode transducers (IDTs) and the problematic resulting reflections, to allow complex fluid operations. Here, a silicon chip was patterned with phononic structures, engineering the acoustic field by using a full band-gap. It was simply coupled to a piezoelectric LiNbO3 wafer, propagating the SAW, via a thin film of water. Contrary to the use of unstructured superstrates, phononic metamaterials allowed precise spatial control of the acoustic energy and hence its interaction with the liquids placed on the surface of the chip, as demonstrated by simulations. We further show that the acoustic frequency influences the interaction between the SAW and the phononic lattice, providing a route to programme complex fluidic manipulation onto the disposable chip. The centrifugation of cells from a blood sample is presented as a more practical demonstration of the potential of phononic crystals to realize diagnostic systems.

  4. Investigation on the suitability of plasma sprayed Fe-Cr-Al coatings as tritium permeation barrier

    International Nuclear Information System (INIS)

    Fazio, C.; Serra, E.; Benamati, G.

    1999-01-01

    Results on the fabrication of a tritium permeation barrier by spraying Fe-Cr-Al powders are described. The sprayed coatings were deposited at temperatures below the A c1 temperature of the ferritic-martensitic steel substrate and no post-deposition heat treatment was applied. The aim of the investigation was the determination of the efficiency of the coatings to act as tritium permeation barrier. Metallurgical investigations as well as hydrogen isotope permeation measurements were carried out onto the produced coatings. The depositions were performed on ferritic-martensitic steels by means of three types of spray techniques: high velocity oxy fuel, air plasma spray and vacuum plasma spray. (orig.)

  5. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    Science.gov (United States)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  6. Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin.

    Science.gov (United States)

    Andega, S; Kanikkannan, N; Singh, M

    2001-11-09

    Melatonin (MT) is a hormone secreted by the pineal gland that plays an important role in the regulation of the circadian sleep-wake cycle. It would be advantageous to administer MT using a transdermal delivery system for the treatment of sleep disorders such as delayed sleep syndrome, jet lag in travelers, cosmonauts and shift workers. The porcine skin has been found to have similar morphological and functional characteristics as human skin. The elastic fibres in the dermis, enzyme pattern of the epidermis, epidermal tissue turnover time, keratinous proteins and thickness of epidermis of porcine skin are similar to human skin. However, the fat deposition and vascularisation of the cutaneous glands of porcine skin are different from human skin. In addition, porcine skin has been found to have a close permeability character to human skin. However, the comparative effect of chemical penetration enhancers on the permeation of drugs between porcine and human skin has not been reported. The purpose of this study was to compare the effect of fatty alcohols on the permeability of porcine and human skin using MT as a model compound. The effect of saturated fatty alcohols (octanol, nonanol, decanol, undecanol, lauryl alcohol, tridecanol, myristyl alcohol) and unsaturated fatty alcohols (oleyl alcohol, linoleyl alcohol, linolenyl alcohol) at 5% concentration was tested across dermatomed porcine and human skin. Our studies showed a parabolic relationship between the carbon chain length of saturated fatty alcohols and permeation enhancement of MT with both porcine and human skin. Maximum permeation of MT was observed when fatty alcohol carbon chain length was 10. In general, as the level of unsaturation increased from one to two double bonds, there was an increase in the permeation of MT both in porcine and human skin. However, a decrease in the permeation was observed with three double bonds. Regression analysis using the steady state flux data showed a significant positive

  7. Liquid and Gas Permeation Studies on the Structure and Properties of Polyamide Thin-Film Composite Membranes

    KAUST Repository

    Duan, Jintang

    2014-01-01

    layer by gas adsorption and gas permeation measurements. Gas adsorption isotherms (N2 at 77K, CO2 at 273K) confirmed the microporous nature of PA in comparison with dense CTA and polysulfone materials. Gas permeation through the commercial PA

  8. Implanted-tritium permeation experiments

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Holland, D.F.; Casper, L.A.; Hsu, P.Y.; Miller, L.G.; Schmunk, R.E.; Watts, K.D.; Wilson, C.J.; Kershner, C.J.; Rogers, M.L.

    1982-04-01

    In fusion reactors, charge exchange neutral atoms of tritium coming from the plasma will be implanted into the first wall and other interior structures. EG and G Idaho is conducting two experiments to determine the magnitude of permeation into the coolant streams and the retention of tritium in those structures. One experiment uses an ion gun to implant deuterium. The ion gun will permit measurements to be made for a variety of implantation energies and fluxes. The second experiment utilizes a fission reactor to generate a tritium implantation flux by the 3 He(n,p) 3 H reaction. This experiment will simulate the fusion reactor radiation environment. We also plan to verify a supporting analytical code development program, in progress, by these experiments

  9. Acoustic tomography and 3-D resistivity imaging of grout filled waste cells

    International Nuclear Information System (INIS)

    Morgan, F.D.; Chauvelier, C.; Shi, Weiqun; Lesmes, D.

    1997-01-01

    The Scientific Ecology Group, Inc., (SEG) was contracted by Martin Marietta Energy Systems, Inc., to demonstrate and evaluate four grout compounds for use in stabilizing radioactive waste trenches at the Oak Ridge National Laboratory (ORNL). The demonstration site was constructed at SEG's Gallaher Road test facility in Kingston, Tennessee. SEG's objectives in this project were to compare the effectiveness of the candidate grouts and grouting procedures to hydrologically isolate the waste contained within the trenches and to stabilize the trenches against subsequent subsidence. In a separate agreement with Martin Marietta Energy Systems, MIT was contracted to demonstrate the feasibility of using high-frequency acoustic tomographic imaging to evaluate the performance of the various grouts and grouting procedures, and to monitor the stability of the grouted test cells over time. The test trench consisted of four contiguous cells, each 14 feet long x 12 feet wide x 12 feet deep. The native soil in which the test cells were constructed consisted of fine red clay which is typical of the Oak Ridge area. A plan view of the test cells is shown in Figure 1 , and a cross-sectional view of one of the cells within the trench. Each cell within the trench was filled with approximately 75 cubic yards of simulated waste. The simulated waste, which included 55 gallon drums and HEPA filters, consisted of approximately 35% metal, 15% wood, and 50% paper/plastic. After the cells were loaded with the simulated waste, the trench was covered by three feet of soil to grade, to duplicate the trench configuration commonly found at ORNL

  10. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    Science.gov (United States)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  11. Interior acoustic cloak

    Directory of Open Access Journals (Sweden)

    Wael Akl

    2014-12-01

    Full Text Available Acoustic cloaks have traditionally been intended to externally surround critical objects to render these objects acoustically invisible. However, in this paper, the emphasis is placed on investigating the application of the acoustic cloaks to the interior walls of acoustic cavities in an attempt to minimize the noise levels inside these cavities. In this manner, the acoustic cloaks can serve as a viable and efficient alternative to the conventional passive noise attenuation treatments which are invariably heavy and bulky. The transformation acoustics relationships that govern the operation of this class of interior acoustic cloaks are presented. Physical insights are given to relate these relationships to the reasons behind the effectiveness of the proposed interior acoustic cloaks. Finite element models are presented to demonstrate the characteristics of interior acoustic cloaks used in treating the interior walls of circular and square cavities both in the time and frequency domains. The obtained results emphasize the effectiveness of the proposed interior cloaks in eliminating the reflections of the acoustic waves from the walls of the treated cavities and thereby rendering these cavities acoustically quiet. It is important to note here that the proposed interior acoustic cloaks can find applications in acoustic cavities such as aircraft cabins and auditoriums as well as many other critical applications.

  12. Dynamic permeation sources for volatile organic compounds (VOCS): 'a standards test environment' nuclear track detector

    International Nuclear Information System (INIS)

    Hussain, A.; Marr, I.

    2000-01-01

    The generation of a test environment for trace VOCs in urban air or work place has never been easy. This investigation is concerned with the loss rates of VOCs through polythene membrane of different thickness. Permeation glass sample bottles were suspended in the chamber with water jacket at 24 deg. C -+ 0.5 deg. temperature. The condenser was connected with a stream of nitrogen gas at a flow rate of 75-ml min/sup -1 and further diluted with air 500-ml min/sup -1/. The loss in weight of VOCs in each bottle was determined regularly, every 24 hours, with a good agreement. The loss rate depends upon temperature of the bath, thickness of the polythene, internal diameter of the permeation bottle opening. However the loss rate from permeation tubes also depends upon the solubility of the VOCs in the polymer. It is generally believed that the vapors of VOCs in the permeation bottle are dissolved in the polythene sheet (making some sort of solution) and are eventually evaporated out of it. It was observed that the loss rate per minute for benzene > toluene. This simple technique described 'generation of test environment through dynamic permeation source' could be suitable for preparing mixture of benzene, toluene and xylene in atmosphere at ppm levels or lower, with good stability, reliability and also for other compounds of atmospheric interest. (author)

  13. Permeation of Mixed Penetrants through Glassy Polymer Membranes.

    Science.gov (United States)

    1985-03-15

    and LOPE. Also, ESCA was used in conjunction with plasma etching to determine the effects of the gas phase fluorine concentration and fluorination...at 35 3C. ARD-AISS5 65 PERMEATION OF MIXED PENETRANTS THROUGH GLASSY POLYMER 213 MENBRANES (U) NORTH CAROLINA STATE UNIV AT RALEIGH R T CHERN ET AL. 15

  14. Investigation on hydrogen permeation on heat exchanger materials in conditions of steam coal gasification

    International Nuclear Information System (INIS)

    Moellenhoff, H.

    1984-01-01

    The permeation of hydrogen through iron-based alloys of different compositions in the temperature range between 700 and 1000 0 C was examined in a laboratory fluidized bed in the conditions of steam/coal gasification. Apart from tests on bright metal samples, measurement in the gasification atmosphere at a maximum pressure of 1 bar were carried out during oxidation of the metal. Experiments in a steam/hydrogen/argon mixture with the same oxidation potential were used for comparison purposes. The hydrogen permeated through the metal sample was taken to a gas chromatograph with argon flushing gas and analyzed there. The investigations on bright steel samples of various composition showed that their permeabilities for hydrogen at temperatures around 900 0 C only differed by a maximum of ± 30%. Effective prevention of permeation is therefore not possible simply by choosing a suitable alloy. If the steels are oxidized during permeation measurements, there is a reduction of the hydrogen permeability by 2 or 3 orders of magnitude due to the oxidation process, both in the steam/coal gasification fluidized bed and in a pure steam/hydrogen/argon mixture. (orig./GG) [de

  15. Acoustic droplet vaporization of vascular droplets in gas embolotherapy

    Science.gov (United States)

    Bull, Joseph

    2016-11-01

    This work is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular droplets. Additionally, micro- or nano-droplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Functionalized droplets that are targeted to tumor vasculature are examined. The influence of fluid mechanical and acoustic parameters, as well as droplet functionalization, is explored. This work was supported by NIH Grant R01EB006476.

  16. Permeation mechanisms of pulsed microwave plasma deposited silicon oxide films for food packaging applications

    International Nuclear Information System (INIS)

    Deilmann, Michael; Grabowski, Mirko; Theiss, Sebastian; Bibinov, Nikita; Awakowicz, Peter

    2008-01-01

    Silicon oxide barrier layers are deposited on polyethylene terephthalate as permeation barriers for food packaging applications by means of a low pressure microwave plasma. Hexamethyldisiloxane (HMDSO) and oxygen are used as process gases to deposit SiO x coatings via pulsed low pressure plasmas. The layer composition of the coating is investigated by Fourier transform infrared spectroscopy and energy dispersive x-ray spectroscopy to show correlations with barrier properties of the films. The oxygen permeation barrier is determined by the carrier gas method using an electrochemical detector. The transition from low to high barrier films is mapped by the transition from organic SiO x C y H z layers to quartz-like SiO 1.7 films containing silanol bound hydrogen. A residual permeation as low as J = 1 ± 0.3 cm 3 m -2 day -1 bar -1 is achieved, which is a good value for food packaging applications. Additionally, the activation energy E p of oxygen permeation is analysed and a strong increase from E p = 31.5 kJ mol -1 for SiO x C y H z -like coatings to E p = 53.7 kJ mol -1 for SiO 1.7 films is observed by increasing the oxygen dilution of HMDSO:O 2 plasma. The reason for the residual permeation of high barrier films is discussed and coating defects are visualized by capacitively coupled atomic oxygen plasma etching of coated substrates. A defect density of 3000 mm -2 is revealed

  17. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  18. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  19. Effects of thin films on inventory, permeation and re-emission of energetic hydrogen

    International Nuclear Information System (INIS)

    Ohyabu, N.; Nakamura, Y.; Nakahara, Y.; Livshits, A.; Alimov, V.; Busnyuk, A.; Notkin, M.; Samartsev, A.; Doroshin, A.

    2000-01-01

    A non-metallic coating thicker than the implantation depth may protect a metal against tritium retention and permeation. However, a thinner film has quite the opposite effect: a dramatic increase of permeation and retention, and a corresponding suppression of re-emission. In view of the benefits expected from particle control with a superpermeable membrane placed right inside the divertor, the behavior of a Nb sample was investigated in a plasma-membrane device having a graphite target. Even polyatomic carbide coating was found not to hinder hydrogen absorption and permeation. Polyatomic non-carbide C films effectively inhibits it, but the formation of such films depends on H and C fluxes, H energy and metal temperature. A durable isolation of suprathermal hydrogen with the superpermeable membrane was observed at a high enough ratio between H and C fluxes, and the effects of carbon were found to have a non-monotonic temperature dependence

  20. GAS PERMEATION PROPERTIES OF POLY(LACTIC ACID). (R826733)

    Science.gov (United States)

    AbstractThe need for the development of polymeric materials based on renewable resources has led to the development of poly(lactic acid) (PLA) which is being produced from a feedstock of corn rather than petroleum. The present study examines the permeation of nitrogen...

  1. Parametric Room Acoustic workflows with real-time acoustic simulation

    DEFF Research Database (Denmark)

    Parigi, Dario

    2017-01-01

    The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages......The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages...

  2. Hydrogen permeation measurement of the reduced activation ferritic steel F82H by the vacuum thermo-balance method

    International Nuclear Information System (INIS)

    Yoshida, Hajime; Enoeda, Mikio; Abe, Tetsuya; Akiba, Masato

    2005-03-01

    Hydrogen permeation fluxes of the reduced activation ferritic steel F82H were quantitatively measured by a newly proposed method, vacuum thermo-balance method, for a precise estimation of tritium leakage in a fusion reactor. We prepared sample capsules made of F82H, which enclosed hydrogen gas. The hydrogen in the capsules permeated through the capsule wall, and subsequently desorbed from the capsule surface during isothermal heating. The vacuum thermo-balance method allows simultaneous measurement of the hydrogen permeation flux by two independent methods, namely, the net weight reduction of the sample capsule and exhaust gas analysis. Thus the simultaneous measurements by two independent methods increase the reliability of the permeability measurement. When the gas pressure of enclosed hydrogen was 0.8 atm at the sample temperature of 673 K, the hydrogen permeation flux of F82H obtained by the net weight reduction and the exhaust gas analysis was 0.75x10 18 (H 2 /m 2 s) and 2.2x10 18 (H 2 /m 2 s), respectively. The ratio of the hydrogen permeation fluxes obtained by the net weight reduction to that measured by the exhaust gas analysis was in the range from 1/4 to 1/1 in this experiment. The temperature dependence of the estimated permeation flux was similar in both methods. Taking the uncertainties of both measurements into consideration, both results are supposed to be consistent. The enhancement of hydrogen permeation flux was observed from the sample of which outer surface was mechanically polished. Through the present experiments, it has been demonstrated that the vacuum thermo-balance method is effective for the measurement of hydrogen permeation rate of F82H. (author)

  3. Structural and functional significance of water permeation through cotransporters

    DEFF Research Database (Denmark)

    Zeuthen, Thomas; Gorraitz, Edurne; Her, Ka

    2016-01-01

    Membrane transporters, in addition to their major role as specific carriers for ions and small molecules, can also behave as water channels. However, neither the location of the water pathway in the protein nor their functional importance is known. Here, we map the pathway for water and urea...... through the intestinal sodium/glucose cotransporter SGLT1. Molecular dynamics simulations using the atomic structure of the bacterial transporter vSGLT suggest that water permeates the same path as Na+ and sugar. On a structural model of SGLT1, based on the homology structure of vSGLT, we identified...... to be due to alterations in steric hindrance to water and urea, and/or changes in protein folding caused by mismatching of side chains in the water pathway. Water permeation through SGLT1 and other transporters bears directly on the structural mechanism for the transport of polar solutes through...

  4. Alfuzosin hydrochloride transdermal films: evaluation of physicochemical, in vitro human cadaver skin permeation and thermodynamic parameters

    Directory of Open Access Journals (Sweden)

    Satyanarayan Pattnaik

    2009-12-01

    Full Text Available Purpose: The main objective of the investigation was to develop a transdermal therapeutic system for alfuzosin hydrochloride and to study the effects of polymeric system and loading dose on the in vitro skin permeation pattern. Materials and methods: Principles of experimental design have been exploited to develop the dosage form. Ratio of ethyl cellulose (EC and polyvinyl pyrrolidone (PVP and loading dose were selected as independent variables and their influence on the cumulative amount of alfuzosin hydrochloride permeated per cm2 of human cadaver skin at 24 h (Q24, permeation flux (J and steady state permeability coefficient (P SS were studied using experimental design. Various physicochemical parameters of the transdermal films were also evaluated. Activation energy for in vitro transdermal permeation has been estimated. Results: Ratio of EC and PVP was found to be the main influential factor for all the dependent variables studied. Drug loading dose was also found to influence the dependent variables but to a lesser extent. Physicochemical parameters of the prepared films were evaluated and found satisfactory. Activation energy for alfuzosin permeation has also been estimated and reported. Conclusion: The therapeutic system was found to be dermatologically non-irritant and hence, a therapeutically effective amount of alfuzosin hydrochloride can be delivered via a transdermal route.

  5. Liquid crystalline systems for transdermal delivery of celecoxib: in vitro drug release and skin permeation studies.

    Science.gov (United States)

    Estracanholli, Eder André; Praça, Fabíola Silva Garcia; Cintra, Ana Beatriz; Pierre, Maria Bernadete Riemma; Lara, Marilisa Guimarães

    2014-12-01

    Liquid crystalline systems of monoolein/water could be a promising approach for the delivery of celecoxib (CXB) to the skin because these systems can sustain drug release, improve drug penetration into the skin layers and minimize side effects. This study evaluated the potential of these systems for the delivery of CXB into the skin based on in vitro drug release and skin permeation studies. The amount of CXB that permeated into and/or was retained in the skin was assayed using an HPLC method. Polarizing light microscopy studies showed that liquid crystalline systems of monoolein/water were formed in the presence of CXB, without any changes in the mesophases. The liquid crystalline systems decreased drug release when compared to control solution. Drug release was independent of the initial water content of the systems and CXB was released from cubic phase systems, irrespective of the initial water content. The systems released the CXB following zero-order release kinetics. In vitro drug permeation studies showed that cubic phase systems allowed drug permeation and retention in the skin layers. Cubic phase systems of monoolein/water may be promising vehicles for the delivery of CXB in/through the skin because it improved CXB skin permeation compared with the control solution.

  6. Enantioselective skin permeation of ibuprofen enantiomers: mechanistic insights from ATR-FTIR and CLSM studies based on synthetic enantiomers as naphthalimide fluorescent probes.

    Science.gov (United States)

    Che, Qi-en; Quan, Peng; Mu, Mao; Zhang, Xinfu; Zhao, Hanqing; Zhang, Yu; You, Song; Xiao, Yi; Fang, Liang

    2014-10-01

    The aim of this study was to investigate the mechanisms of different skin permeability of ibuprofen racemate and enantiomers. The percutaneous permeation of ibuprofen racemate and enantiomers through rabbit normal skin and damaged skin (without stratum corneum [SC]) was investigated in vitro using side-by-side diffusion cells. With the melting temperature-membrane transport model, the flux ratio of enantiomer/racemate was calculated from their thermodynamic properties obtained by differential scanning calorimetry. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) study was performed to evaluate the interaction between the enantiomers and the SC. New fluorescent probes were designed and utilized in confocal laser scanning microscopy (CLSM) study for visualization of the enantioselective permeation of the enantiomers through the intact rabbit skin. The flux of (S)-ibuprofen through normal skin was significantly higher than that of (RS)-ibuprofen and (R)-ibuprofen (p skin, there was no significant difference (p > 0.05). The predicted flux ratio of (S)-ibuprofen/(RS)-ibuprofen (2.50) was in close agreement with the experimentally determined ratio (2.48). These results were supported by ATR-FTIR and CLSM studies that indicated that a chiral environment of the skin led to the enantioselective permeation of enantiomers. The chiral nature of the SC and the different physicochemical properties of the enantiomers should be taken into account in the assessment of different skin permeability of the racemate and enantiomers. The synthetic fluorescent probes used in this study could visualize the enantioselective permeation of the chiral compounds across the skin.

  7. Comparison of Hexane Vapour Permeation in Two Different Polymeric Membranes via an Innovative In-line FID Detection Method

    Directory of Open Access Journals (Sweden)

    Z. Petrusová

    2017-07-01

    Full Text Available This manuscript presents a novel method for the analysis of vapour permeation through polymeric membranes based on in-line analysis of the permeate with an FID detector. The hexane vapour permeation was studied for two commercially available membranes, namely low-density polyethylene (LDPE and thin-film-composite polyamide (PA membrane. The hexane permeation was studied at temperatures of 25–45 °C, hexane vapour activity in the range of 0.2–0.8 and trans-membrane pressures of 5–50 kPa. Two fundamentally different membranes were chosen to demonstrate the potential and sensitivity of the permeation apparatus. Upon increasing the temperature from 25 to 45 °C, the flux in LDPE was found to increase almost fourfold over the whole activity range. The nonlinear increase of the flux with activity indicates plasticization of the polymer by hexane. Contrarily, the flux in the PA membrane increases almost linearly with activity, with only a minor upward curvature. Since the PA is far away from any phase transition, it is less temperature-dependent than LDPE. The activation energy for permeation demonstrates that the temperature dependence in the LDPE membrane is dominated by changes in diffusion, whereas it is dominated by changes in solubility in the PA membrane.

  8. An opto-magneto-mechanical quantum interface between distant superconducting qubits.

    Science.gov (United States)

    Xia, Keyu; Vanner, Michael R; Twamley, Jason

    2014-07-04

    A quantum internet, where widely separated quantum devices are coherently connected, is a fundamental vision for local and global quantum information networks and processing. Superconducting quantum devices can now perform sophisticated quantum engineering locally on chip and a detailed method to achieve coherent optical quantum interconnection between distant superconducting devices is a vital, but highly challenging, goal. We describe a concrete opto-magneto-mechanical system that can interconvert microwave-to-optical quantum information with high fidelity. In one such node we utilise the magnetic fields generated by the supercurrent of a flux qubit to coherently modulate a mechanical oscillator that is part of a high-Q optical cavity to achieve high fidelity microwave-to-optical quantum information exchange. We analyze the transfer between two spatially distant nodes connected by an optical fibre and using currently accessible parameters we predict that the fidelity of transfer could be as high as ~80%, even with significant loss.

  9. Japanese technology assessment: Computer science, opto- and microelectronics mechatronics, biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Brandin, D.; Wieder, H.; Spicer, W.; Nevins, J.; Oxender, D.

    1986-01-01

    The series studies Japanese research and development in four high-technology areas - computer science, opto and microelectronics, mechatronics (a term created by the Japanese to describe the union of mechanical and electronic engineering to produce the next generation of machines, robots, and the like), and biotechnology. The evaluations were conducted by panels of U.S. scientists - chosen from academia, government, and industry - actively involved in research in areas of expertise. The studies were prepared for the purpose of aiding the U.S. response to Japan's technological challenge. The main focus of the assessments is on the current status and long-term direction and emphasis of Japanese research and development. Other aspects covered include evolution of the state of the art; identification of Japanese researchers, R and D organizations, and resources; and comparative U.S. efforts. The general time frame of the studies corresponds to future industrial applications and potential commercial impacts spanning approximately the next two decades.

  10. 3rd International Conference on Opto-Electronics and Applied Optics

    CERN Document Server

    Chakrabarti, Satyajit; Reehal, Haricharan; Lakshminarayanan, Vasudevan

    2017-01-01

    The Proceedings of 3rd International Conference on Opto-Electronics and Applied Optics, OPTRONIX 2016 is an effort to promote and present the research works by scientists and researchers including students in India and abroad in the area of Green Photonics and other related areas as well as to raise awareness about the recent trends of research and development in the area of the related fields. The book has been organized in such a way that it will be easier for the readers to go through and find out the topic of their interests. The first part includes the Keynote addresses by Rajesh Gupta, Department of Energy Science and Engineering, Indian Institute of Technology, Bombay; P.T. Ajith Kumar, President and Leading Scientist Light Logics Holography and Optics, Crescent Hill, Trivandrum, Kerala; and K.K. Ghosh, Institute of Engineering & Management, Kolkata, India.  The second part focuses on the Plenary and Invited Talks given by eminent scientists namely, Vasudevan Lakshminarayanan, University of Wate...

  11. Evaluation method for acoustic trapping performance by tracking motion of trapped microparticle

    Science.gov (United States)

    Lim, Hae Gyun; Ham Kim, Hyung; Yoon, Changhan

    2018-05-01

    We report a method to evaluate the performances of a single-beam acoustic tweezer using a high-frequency ultrasound transducer. The motion of a microparticle trapped by a 45-MHz single-element transducer was captured and analyzed to deduce the magnitude of trapping force. In the proposed method, the motion of a trapped microparticle was analyzed from a series of microscopy images to compute trapping force; thus, no additional equipment such as microfluidics is required. The method could be used to estimate the effective trapping force in an acoustic tweezer experiment to assess cell membrane deformability by attaching a microbead to the surface of a cell and tracking the motion of the trapped bead, which is similar to a bead-based assay that uses optical tweezers. The results showed that the trapping force increased with increasing acoustic intensity and duty factor, but the force eventually reached a plateau at a higher acoustic intensity. They demonstrated that this method could be used as a simple tool to evaluate the performance and to optimize the operating conditions of acoustic tweezers.

  12. Surface Acoustic Waves (SAW-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2015-12-01

    Full Text Available Detection and quantification of cell viability and growth in two-dimensional (2D and three-dimensional (3D cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose–response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in

  13. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures.

    Science.gov (United States)

    Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar

    2015-12-19

    Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose-response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell

  14. Reduction of tritium permeation through Inconel 718 and Incoloy 800 HT by means of natural oxides

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, A., E-mail: antonio.aiello@enea.it [ENEA C.R. Brasimone, I-40032 Camugnano (Italy); Utili, M.; Ciampichetti, A. [ENEA C.R. Brasimone, I-40032 Camugnano (Italy)

    2011-10-01

    Chronical releases of tritium from the helium primary coolant into the water secondary coolant is a fundamental safety issue in the design of a fusion reactor steam generator. It is well known that the steam/water circuit of a fusion reactor would be considered not relevant from a radiological point of view, while if a strong permeation of tritium will be present it will be released together with incondensable gases in the condenser. The permeation of hydrogen isotopes through candidate steam generator materials in different conditions was studied in the past. Further experiments demonstrated that nickel alloys of nuclear interest are always covered by a thin and adherent oxide layer able to reduce permeation of orders of magnitude. The major objective of this work is the evaluation of the permeated flux through nickel alloys, when exposed to pure hydrogen and to an oxidant gas stream, to verify the real permeability of these materials in conditions close to those foreseen in the helium side of the steam generator.

  15. Tritium breeders and tritium permeation barrier coatings for fusion reactor

    International Nuclear Information System (INIS)

    Yamawaki, Michio; Kawamura, Hiroshi; Tsuchiya, Kunihiko

    2004-01-01

    A state of R and D of tritium breeders and tritium permeation barrier coatings for fusion reactor is explained. A list of candidate for tritium breeders consists of ceramics containing lithium, for examples, Li 2 O, Li 2 TiO 3 , Li 2 ZrO 3 , Li 4 SiO 4 and LiAlO 2 . The characteristics and form are described. The optimum particle size is from 1 to 10 μm. The production technologies of tritium breeders in the world are stated. Characteristics of ceramics with lithium as tritium breeders are compared. TiC, TiN/TiC, Al 2 O 3 and Cr 2 O 3 -SiO 2 -P 2 O 5 are tritium permeation barrier coating materials. These production methods and evaluation of characteristics are explained. (S.Y.)

  16. Protection efficacy of gloves against components of the solvent in a sprayed isocyanate coating utilizing a reciprocating permeation panel.

    Science.gov (United States)

    Ceballos, Diana M; Reeb-Whitaker, Carolyn; Sasakura, Miyoko; Dills, Russell; Yost, Michael G

    2015-04-01

    Determine protection effectiveness of 5-mil natural rubber latex (0.13-mm), 5-mil nitrile rubber (0.13-mm), and 13-mil butyl rubber (0.33-mm) glove materials against solvents present in a commonly used automotive clear coat formulation using a novel permeation panel. The latex and nitrile gloves were the type commonly used by local autobody spray painters. Glove materials were tested by spraying an automotive clear coat onto an automated reciprocating permeation panel (permeation panel II). Temperature, relative humidity, and spray conditions were controlled to optimize clear coat loading homogeneity as evaluated by gravimetric analysis. Solvent permeation was measured using charcoal cloth analyzed by the National Institute for Occupational Safety and Health 1501 method. Natural rubber latex allowed 3-5 times the permeation of solvents relative to nitrile rubber for all 10 solvents evaluated: ethyl benzene, 2-heptanone, 1-methoxy-2-propyl acetate, o-xylene, m-xylene, p-xylene, n-butyl acetate, methyl isobutyl ketone, petroleum distillates, and toluene. There is a distinct behavior in solvent permeation before and after the coating dry time. Solvent permeation increased steadily before coating dry time and remained fairly constant after coating dry time. Butyl was not permeated by any of the solvents under the conditions tested. Commonly used 5-mil thick (0.13-mm) latex and nitrile gloves were ineffective barriers to solvents found in a commonly used clear coat formulation. Conversely, 13-mil (0.33-mm) butyl gloves were found to be protective against all solvents in the clear coat formulation. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  17. Study of tritium permeation through Peach Bottom Steam Generator tubes

    International Nuclear Information System (INIS)

    Yang, L.; Baugh, W.A.; Baldwin, N.L.

    1977-06-01

    The report describes the equipment developed, samples tested, procedures used, and results obtained in the tritium permeation tests conducted on steam generator tubing samples which were removed from the Peach Bottom Unit No. 1 reactor

  18. A numerical study on acoustic behavior in gas turbine combustor with acoustic resonator

    International Nuclear Information System (INIS)

    Park, I Sun; Sohn, Chae Hoon

    2005-01-01

    Acoustic behavior in gas turbine combustor with acoustic resonator is investigated numerically by adopting linear acoustic analysis. Helmholtz-type resonator is employed as acoustic resonator to suppress acoustic instability passively. The tuning frequency of acoustic resonator is adjusted by varying its length. Through harmonic analysis, acoustic-pressure responses of chamber to acoustic excitation are obtained and the resonant acoustic modes are identified. Acoustic damping effect of acoustic resonator is quantified by damping factor. As the tuning frequency of acoustic resonator approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby complex patterns of acoustic responses show up. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic resonator tuned to broad-band frequencies near the maximum frequency of those of the possible upper modes

  19. Sorption and permeation of gaseous molecules in amorphous and crystalline PPX C membranes: molecular dynamics and grand canonical Monte Carlo simulation studies

    International Nuclear Information System (INIS)

    Bian Liang; Shu Yuan-Jie; Wang Xin-Feng

    2012-01-01

    Amorphous and crystalline poly (chloro-p-xylylene) (PPX C) membranes are constructed by using a novel computational technique, that is, a combined method of NVT+NPT-molecular dynamics (MD) and gradually reducing the size (GRS) methods. The related free volumes are defined as homology clusters. Then the sorption and the permeation of gases in PPX C polymers are studied using grand canonical Monte Carlo (GCMC) and NVT-MD methods. The results show that the crystalline PPX C membranes provide smaller free volumes for absorbing or transferring gases relative to the amorphous PPX C area. The gas sorption in PPX C membranes mainly belongs to the physical one, and H bonds can appear obviously in the amorphous area. By cluster analyzing on the mean square displacement of gases, we find that gases walk along the x axis in the crystalline area and walk randomly in the amorphous area. The calculated permeability coefficients are close to the experimental data. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Three-Dimensional Numerical Modeling of Acoustic Trapping in Glass Capillaries

    DEFF Research Database (Denmark)

    Ley, Mikkel Wennemoes Hvitfeld; Bruus, Henrik

    2017-01-01

    Acoustic traps are used to capture and handle suspended microparticles and cells in microfluidic applications. A particular simple and much-used acoustic trap consists of a commercially available, millimeter-sized, liquid-filled straight glass capillary actuated by a piezoelectric transducer. Here......, we present a three-dimensional numerical model of the acoustic pressure field in the liquid coupled to the displacement field of the glass wall, taking into account mixed standing and traveling waves as well as absorption. The model explains the dynamical mechanism that leads to the formation...